Industrial Nuclear Company, Inc. Ten Hole Source Changer Model IR–THSC

A Presentation to the US Nuclear Regulatory Commission

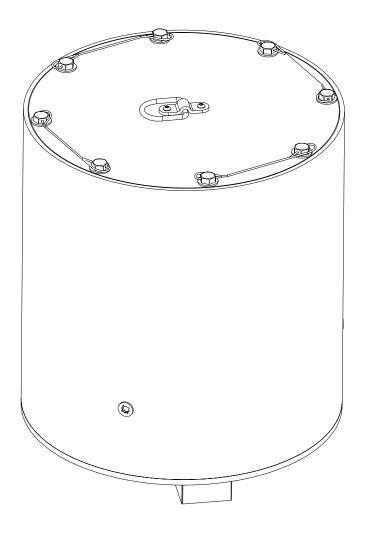
January 12, 2011

- ► Introduction
- Description of IR–THSC Package
- Materials of Construction
- ► IR-THSC Payload Description
- Certification Test Plan
- ► Schedule
- ► Summary

Description of IR–THSC Package

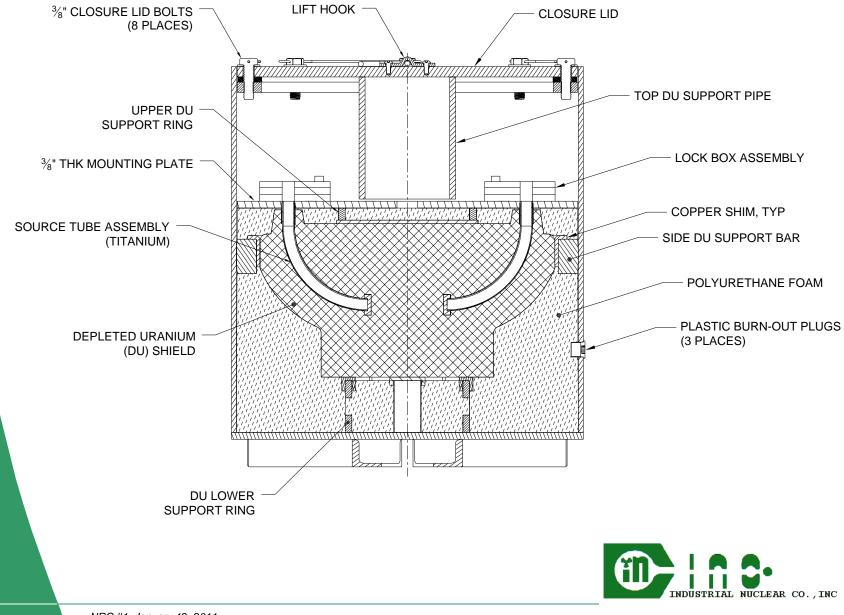
Enclosed, Right Circular Cylinder

• 12-3/4" OD x 14-1/2" High


Welded Stainless Steel Construction

Depleted Uranium Gamma Shield

- Titanium Source Tubes/Hub
- Gross Weight: Approximately 310 lbs



Description of IR–THSC Package (con't)

Description of IR–THSC Package (con't)

> NRC #1, January 12, 2011

5

Materials of Construction

Structural:

- Type 304 stainless steel plate, bar, and pipe
- ASTM A320 L7 or L43 Closure Lid Bolts
- All welded construction encasing gamma shield
- Copper shims between DU and stainless steel contact points
- Polyurethane foam for impact mitigation
- 0.44" OD x 0.065" wall titanium source tubes
- Titanium hub
- Gamma Shielding
 - Cast depleted uranium (DU)
- All materials have been previously used in currently NRC licensed source changers and radiation cameras

IR–THSC Payload Description

► Contents

- Iridium 192 (Ir–192) capsules
- Selenium 75 (Se–75) capsules
- Licensed as Special Form

Contents limits

- 1,500 Ci total limit
- Maximum 150 Ci per capsule
- Maximum of 10 capsules per package

Certification Test Plan

Objectives

- To demonstrate that, after a worst-case sequence of free drop and puncture, and thermal tests, no degradation in shielding capability of package occurs
- To demonstrate retention of special form capsules within the gamma shield

- ► Full–scale, prototypic CTUs
- Demonstration basis: radiation dose rates comply with 10 CFR 71 radiation limits after full series of free and puncture drops, and thermal test
 - Use of actual radioactive source capsules
 - Post-test readings versus pre-test readings
- Normal speed filming of free drops planned
- Tests
 - Free Drops
 - Puncture Drops
 - Thermal Test

Structural evaluations:

• NCT free drop, and HAC free drop & puncture, by test

• Total of three free drops and three punctures

All other NCT and HAC load cases by analysis

- Thermal evaluation by test
 - Due to presence of DU, thermal test will be performed in an oven in a controlled environment
 - Air supplied directly into oven cavity to preclude oxygen starvation
 - Same test method as used for the IR–100 thermal test

Initial conditions

For high-impact drops, temperature will be cold (-20 °F)

• Bottom down orientation

 For maximum crush deformation drops, temperature will be ambient

- Top down, CG–over–corner
- Side

Puncture tests will be at ambient

► One NCT, 4–ft free drop

- ► Three HAC 30-ft free drops
 - Two focused on impact

One focused on deformation

- Three puncture drops
 - Probably in same free drop orientations
 - Final orientations to be determined based on observed free drop damage
- Thermal Test of Most Damaged CTU

Free Drop Test	<u>Purpose</u>
Vertical, Bottom Down (cold); NCT & HAC	Max impact to dislodge gamma shield, source capsules
Side (ambient)	Impact to dislodge gamma shield, source capsules
Top Down, CG– over–Corner (ambient)	Max deformation to attempt to damage lock bock assemblies

77777777777

777777777777777

Data collection

Temperature of polyurethane foam

Normal speed film

Measurements (pre- and post-test)

Crush distance, puncture damage

Radiation Dose Rates

Photographs

► Acceptance Criteria

Radiation dose rates comply with 10 CFR §71.51(a)(2)

No dislodgement of source capsules

Discussion

Schedule

- ► CTU fabrication start 1st Quarter 2011
- ► Certification testing November 2011
- Submittal of application to NRC for Type B(U)–96 certification – February 2012
- Planning on approximately 5 months to first round RAIs

IR–THSC Package

Summary Discussion

