

RG 1.183 Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors

3.6 Fuel Damage in Non-LOCA DBAs

The amount of fuel damage caused by non-LOCA design basis events should be analyzed to determine, for the case resulting in the highest radioactivity release, the fraction of the fuel that reaches or exceeds the initiation temperature of fuel melt and the fraction of fuel elements for which the fuel clad is breached. Although the NRC staff has traditionally relied upon the departure from nucleate boiling ratio (DNBR) as a fuel damage criterion, licensees may propose other methods to the NRC staff, such as those based upon enthalpy deposition, for estimating fuel damage for the purpose of establishing radioactivity releases.

The amount of fuel damage caused by a FHA is addressed in Appendix B of this guide.

4. DOSE CALCULATIONAL METHODOLOGY

The NRC staff has determined that there is an implied synergy between the ASTs and total effective dose equivalent (TEDE) criteria, and between the TID-14844 source terms and the whole body and thyroid dose criteria, and therefore, they do not expect to allow the TEDE criteria to be used with TID-14844 calculated results. The guidance of this section applies to all dose calculations performed with an AST pursuant to 10 CFR 50.67. Certain selective implementations may not require dose calculations as described in Regulatory Position 1.3 of this guide.

4.1 Offsite Dose Consequences

The following assumptions should be used in determining the TEDE for persons located at or beyond the boundary of the exclusion area (EAB):

4.1.1 The dose calculations should determine the TEDE. TEDE is the sum of the committed effective dose equivalent (CEDE) from inhalation and the deep dose equivalent (DDE) from external exposure. The calculation of these two components of the TEDE should consider all radionuclides, including progeny from the decay of parent radionuclides, that are significant with regard to dose consequences and the released radioactivity.¹³

4.1.2 The exposure-to-CEDE factors for inhalation of radioactive material should be derived from the data provided in ICRP Publication 30, "Limits for Intakes of Radionuclides by Workers" (Ref. 19). Table 2.1 of Federal Guidance Report 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (Ref. 20), provides tables of conversion factors acceptable to the NRC staff. The factors in the column headed "effective" yield doses corresponding to the CEDE.

4.1.3 For the first 8 hours, the breathing rate of persons offsite should be assumed to be 3.5×10^4 cubic meters per second. From 8 to 24 hours following the accident, the breathing rate should be assumed to be 1.8×10^4 cubic meters per second. After that and until the end of the accident, the rate should be assumed to be 2.3×10^4 cubic meters per second.

¹³ The prior practice of basing inhalation exposure on only radioiodine and not including radioiodine in external exposure calculations is not consistent with the definition of TEDE and the characteristics of the revised source term.