
Test date: 25-Mar-2008

TURKEY POINT COL PROJECT - BORING B-615; 117.3'-118.8' Sample

Page 1 of 2 PDIPLOT Ver. 2008.1 - Printed: 28-May-2008

TURKEY POINT COL	. PROJECT - BORING	G B-615; 117.3'-118.	8' Sample

Case Metrica Results		i bii Loi	VCI. 2000.1 "	i ilitica. 20-li	11ay-2000
TURKEY POINT COL PROJECT - BORING B-615; 117.3'-118.8' Sample OP: HJC				R ID 331145 est date: 25-l	٠,
AR: 1.19 in^2				SP: 0	.492 k/ft3
LE: 121.00 ft				EM: 30	,000 ksi
WS: 16,807.9 f/s				JC:	0.70
CSX: Max Measured Compr. Stress			FVP: Force/	Velocity propo	ortionality
TSX: Tension Stress Maximum			EF2: Energy	of F^2	·
FMX: Maximum Force			ETR: Energy	Transfer Ra	tio
VMX: Maximum Velocity			EMX: Max Tr	ansferred En	ergy
BPM: Blows per Minute					
BL# depth CSX TSX FMX VMX	ВРМ	FVP	EF2	ETR	EMX

VMX:	Maximum Velocity							EMX: Max Tra		
	Blows per Minute									
BL#	depth	CSX	TSX	FMX	VMX	BPM **	FVP	EF2	ETR	EMX
2	ft 0.00	ksi 22.1	ksi 6.6	kips 26	f/s 14.2	1.9	[] 0.77	k-ft 0.279	(%) 84	k-ft 0.295
3	0.00	21.4	7.0	25	14.4	51.4	0.70	0.279	84	0.293
4	0.00	22.0	6.7	26	14.1	51.2	0.69	0.273	84	0.294
5	0.00	21.3	6.0	25	14.1	51.3	0.74	0.273	83	0.289
6	0.00	21.9	5.3	26	13.9	50.9	0.79	0.274	82	0.289
7	0.00	21.8	4.6	26	13.8	51.1	0.77	0.272	82	0.288
8 9	0.00 0.00	21.8 21.9	3.3 3.1	26 26	13.1 12.4	51.6 50.9	0.71 0.76	0.268 0.265	80 76	0.280 0.266
10	0.00	21.9	3.3	26	12.6	51.3	0.76	0.270	77	0.270
11	0.00	21.7	2.7	26	12.8	51.1	0.70	0.265	76	0.267
12	0.00	21.6	3.5	26	14.4	51.0	0.72	0.271	82	0.285
13	0.00	21.7	2.5	26	15.6	51.1	0.68	0.270	86	0.300
14 15	0.00 0.00	21.4 21.3	2.9 3.2	26 25	15.3 15.5	51.2 51.2	0.66 0.72	0.269 0.262	86 87	0.300 0.303
16	0.00	21.3	3.1	25	16.0	51.3	0.65	0.269	89	0.303
17	0.00	21.5	3.2	26	15.5	51.3	0.68	0.266	86	0.301
18	0.00	21.1	3.4	25	15.4	51.3	0.62	0.265	86	0.301
19	0.00	21.0	4.1	25	16.2	51.0	0.67	0.267	87	0.306
20 21	0.00 0.00	21.0 21.1	4.5 4.0	25 25	15.3 14.8	51.2 51.0	0.67 0.69	0.266 0.265	86 84	0.299 0.294
22	0.00	21.5	3.9	26	15.4	51.3	0.69	0.268	88	0.294
23	0.00	21.2	3.7	25	13.1	50.9	0.74	0.266	81	0.283
24	0.00	21.5	3.9	26	12.5	51.5	0.75	0.269	82	0.286
25	0.00	21.7	4.1	26	14.3	51.0	0.67	0.269	84	0.295
26 27	0.00 0.00	21.6 21.1	4.4 4.6	26 25	15.6 15.2	51.2 51.0	0.73 0.66	0.275 0.271	91 85	0.318 0.299
28	0.00	20.7	4.4	25 25	15.1	51.3	0.65	0.266	86	0.300
29	0.00	20.7	4.0	25	15.2	51.3	0.66	0.270	87	0.304
30	0.00	21.5	3.3	26	15.5	51.3	0.68	0.269	87	0.303
31	0.00	21.4	3.5	25	13.7	51.1	0.76	0.266	81	0.282
32 33	0.00 0.00	21.0 21.5	3.5 3.5	25 26	16.5 13.1	51.1 51.3	0.61 0.80	0. 2 67 0.270	91 81	0.318 0.283
34	0.00	21.1	3.5	25	17.1	51.3	0.60	0.270	94	0.263
35	0.00	20.8	3.5	25	11.6	51.0	0.85	0.262	75	0.263
36	0.00	20.5	3.5	24	17.0	51.3	0.66	0.267	95	0.333
37	0.00	20.6	3.5	24	11.7	51.2	0.81	0.269	75	0.263
38 39	0.00 0.00	20.5 20.4	3.2 3.5	24 24	17.0 11.5	50.9 51.2	0.57 0.85	0.262 0.268	93 74	0.326 0.260
40	0.00	20.4	3.6	24 25	17.5	51.2	0.58	0.268	96	0.336
41	0.00	20.2	3.5	24	11.1	51.2	0.88	0.266	74	0.258
42	0.00	20.3	3.3	24	17.2	51.1	0.57	0.264	95	0.331
43	0.00	21.0	3.3	25	11.1	51.2	0.81	0.268	75	0.263
44 45	0.00 0.00	20.4 20.2	3.2 3.7	24 24	16.6 11.0	51.2 50.8	0.62 0.87	0.263 0.267	92 74	0.321 0.258
46	0.00	20.4	3.7	24	17.2	51.2	0.57	0.264	95	0.238
47	0.00	20.5	3.4	24	11.3	51.5	0.81	0.263	73	0.256
48	0.00	20.5	3.2	24	16.3	51.0	0.67	0.263	92	0.323
49	0.00	20.6	3.0	25	11.7	51.1	0.77	0.260	73	0.255
50 51	0.00 0.00	20.7 20.4	3.0 3.0	25	16.7	51.3 51.0	0.60	0.261	92 74	0.323
52	0.00	20.4	3.3	24 24	10.2 17.3	50.8	0.80 0.55	0.263 0.255	74 93	0.257 0.325
53	0.00	20.2	3.0	24	10.4	51.6	0.90	0.260	72	0.251
54	0.00	20.3	3.0	24	18.0	51.1	0.59	0.263	98	0.345
55	0.00	20.7	3.1	25	9.8	50.9	0.98	0.262	71	0.248
56 57	0.00 0.00	20.1 20.6	2.9 2.9	24	17.8	51.3	0.53	0.262	98	0.343
58	0.00	20.0	3.0	24 24	9.5 17.8	50.8 51.2	0.99 0.51	0.264 0.264	70 97	0.245 0.339
59	0.00	20.2	3.8	24	9.2	51.0	0.90	0.258	68	0.239
60	0.00	20.4	4.1	24	16.8	51.1	0.53	0.258	92	0.323
61	0.00	20.7	3.9	25	10.0	51.2	0.86	0.263	69	0.241
62 63	0.00 0.00	20.2 20.1	3.8	24	17.4	50.8	0.54	0.266	94	0.329
64	0.00	20.1	2.3 2.7	24 24	9.0 15.5	51.4 51.2	1.03 0.61	0.262 0.262	69 87	0.242 0.305
65	0.00	20.4	3.0	24	9.6	50.9	0.85	0.261	69	0.241
66	0.00	20.2	3.3	24	14.9	51.0	0.60	0.257	84	0.294

0.277

0.287

PDIPLOT Ver. 2008.1 - Printed: 28-May-2008

O

TURKEY POINT COL PROJECT - BORING B-615; 117.3'-118.8' Sample OP: HJC									R ID 331145 est date: 25-	,
BL#	depth	CSX	TSX	FMX	VMX	BPM	FVP	EF2	ETR	EMX
	ft	ksi	ksi	kips	f/s	**	n	k-ft	(%)	k-ft
67	0.00	19.9	2.9	24	9.4	50.8	0.93	0.264	`71	0.248
68	0.00	20.2	2.8	24	15.3	50.6	0.63	0.262	88	0.307
69	0.00	19.3	2.7	23	8.9	51.2	0.89	0.256	68	0.238
70	0.00	19.7	2.7	23	13.7	50.9	0.67	0.260	86	0.301
71	0.00	20.3	2.4	24	10.5	50.7	0.80	0.263	71	0.249
72	0.00	19.8	3.2	24	16.9	50.9	0.53	0.260	90	0.314
73	0.00	20.4	3.0	24	9.4	51.1	0.92	0.262	68	0.237
74	0.00	19.5	3.2	23	12.6	50.3	0.62	0.257	81	0.284
75	0.00	20.3	2.8	24	9.3	51.0	0.90	0.260	69	0.240
76	0.00	20.3	2.8	24	11.6	51.1	0.75	0.261	76	0.265
77	0.00	19.9	3.2	24	10.9	50.7	0.72	0.265	76	0.266
78	0.00	19.9	3.1	24	9.4	50.9	0.82	0.265	73	0.255
79	0.00	20.3	3.3	24	10.3	50.5	0.80	0.262	73	0.255
80	0.00	20.5	3.9	24	11.9	51.2	0.72	0.264	78	0.274
81	0.00	20.7	3.8	25	10.5	50.9	0.82	0.264	74	0.259
82	0.00	20.5	3.4	24	11.2	50.8	0.76	0.262	76	0.265

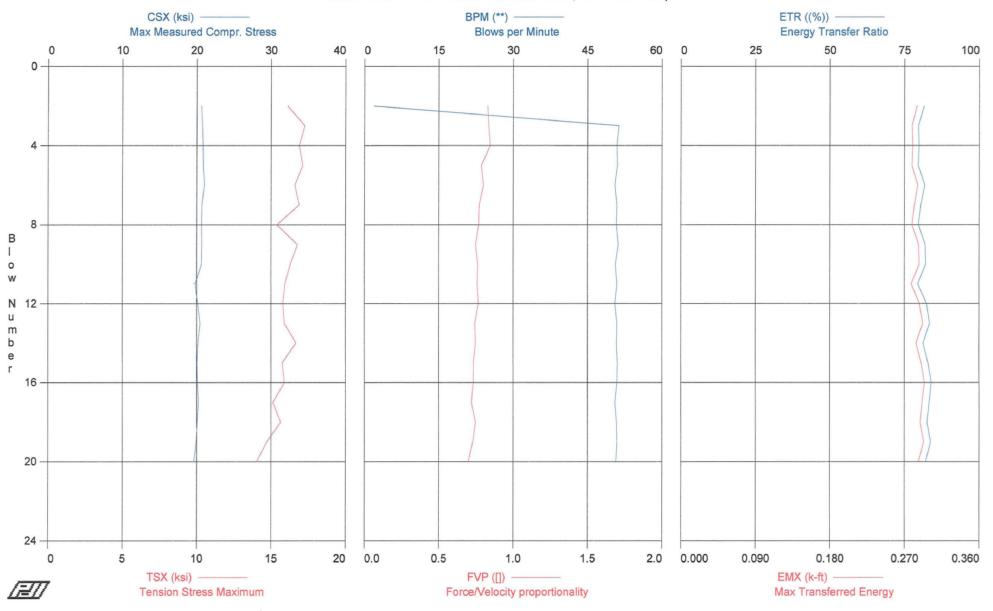
24

3.5

11.0 51.1 0.79 0.261 79 13.6 50.5 0.73 0.265 82 Total number of blows analyzed: 82

Time Summary

Drive 1 minute 35 seconds


Average

83 0.00 19.9 3.6

20.8

4:31:21 PM - 4:32:56 PM (3/25/2008) BN 2 - 83

TURKEY POINT COL PROJECT - BORING B-615; 127' - 128.5' Sample

Test date: 26-Mar-2008

PDIPLOT Ver. 2008.1 - Printed: 28-May-2008

TURKEY POINT COL PROJECT - BORING B-615; 127' - 128.5' Sample OP: HJC

HAMMER ID 331145 (BANKS) Test date: 26-Mar-2008

<u>~</u>			
AR:	1.19	in^2	
1 🗀	124 00	£4	

SP: 0.492 k/ft3 EM: 30,000 ksi

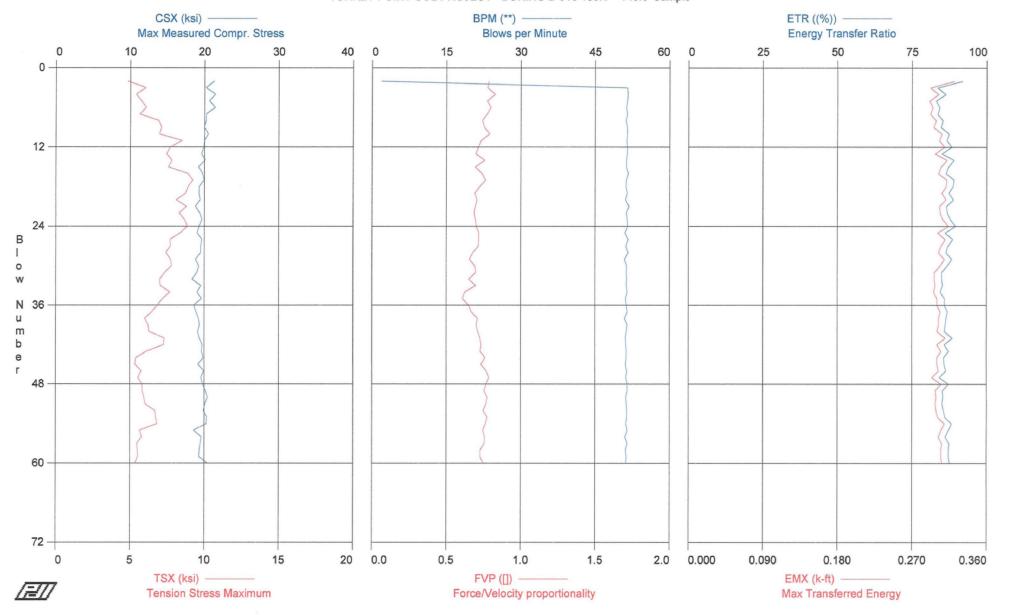
WS: 16,807.9 f/s CSX: Max Measured Compr. Stress TSX: Tension Stress Maximum FMX: Maximum Force

JC: 0.70 FVP: Force/Velocity proportionality

VMX: Maximum Velocity

EF2: Energy of F^2 ETR: Energy Transfer Ratio EMX: Max Transferred Energy

BPM:	Blows per Minu	ıte								• •
BL#	depth	CSX	TSX	FMX	VMX	BPM	FVP	EF2	ETR	EMX
	ft	ksi	ksi	kips	f/s	**	[]	k-ft	(%)	k-ft
2	0.00	20.6	16.1	25	13.9	1.9	0.83	0.260	82	0.285
3	0.00	20.7	17.3	25	13.5	51.3	0.84	0.253	80	0.279
4	0.00	20.8	16.9	25	13.8	50.9	0.85	0.252	80	0.280
5	0.00	20.9	17.1	25	14.9	51.0	0.79	0.255	80	0.279
6	0.00	21.0	16.6	25	14.7	50.5	0.30	0.258	82	0.286
7	0.00	20.7	16.9	25	15.0	50.9	0.77	0.256	80	0.282
8	0.00	20.7	15.4	25	15.0	50.8	0.77	0.252	80	0.279
9	0.00	20.7	16.8	25	15.5	51.2	0.75	0.255	82	0.287
10	0.00	20.7	16.3	25	15.1	50.6	0.76	0.258	82	0.288
11	0.00	19.8	15.9	24	14.5	50.9	0.76	0.252	79	0.278
12	0.00	20.1	15.8	24	14.8	50.5	0.77	0.256	82	0.288
13	0.00	20.5	15.9	24	15.4	50.9	0.74	0.260	83	0.292
14	0.00	20.2	16.7	24	15.1	50.8	0.75	0.255	81	0.284
15	0.00	20.0	15.7	24	15.3	51.0	0.73	0.257	83	0.290
16	0.00	20.1	15.9	24	15.4	50.9	0.73	0.258	84	0.294
17	0.00	20.2	15.1	24	15.7	50.5	0.72	0.257	83	0.291
18	0.00	20.0	15.7	24	15.0	50.8	0.75	0.256	83	0.289
19	0.00	19.9	14.7	24	15.3	50.9	0.73	0.255	84	0.293
20	0.00	19.6	14.0	23	15.7	50.7	0.70	0.252	82	0.287
	Average	20.4	16.0	24	14.9	48.3	0.76	0.256	82	0.286
				To	tal number o	f blows analy:	zed: 19			


Time Summary

21 seconds Drive

8:14:34 AM - 8:14:55 AM (3/26/2008) BN 2 - 20

Test date: 26-Mar-2008

TURKEY POINT COL PROJECT - BORING B-615 139.1' - 140.6' Sample

Page 1 of 1 PDIPLOT Ver. 2008.1 - Printed: 28-May-2008

TURKEY POINT COL PROJECT - BORING B-615 139.1' - 140.6' Sample

HAMMER ID 331145 (BANKS) Test date: 26-Mar-2008

SP: 0.492 k/ft3 EM: 30,000 ksi JC: 0.70

CSX: Max Measured Compr. Stress

TSX: Tension Stress Maximum
FMX: Maximum Force
VMX: Maximum Velocity

WS: 16,807.9 f/s

FVP: Force/Velocity proportionality

EF2: Energy of F^2
ETR: Energy Transfer Ratio

	Maximum Velo							EMX: Max Tr	ansferred En	ergy
	Blows per Minu			-:-:-						
BL#	depth	csx	TSX	FMX	VMX	BPM	FVP	EF2	ETR	EMX
_	ft	ksi	ksi	kips	f/s	**	_ []	k-ft	(%)	k-ft
2	0.00	21.3	4.8	25	15.2	1.9	0.79	0.288	92	0.321
3	0.00	20.2	6.0	24	14.6	51.5	0.78	0.270	84	0.292
4	0.00	21.5	5.4	26	14.5	51.6	0.83	0.280	86	0.302
5	0.00	20.6	5.7	25	14.9	51.5	0.77	0.269	83	0.291
6	0.00	21.4	6.1	25	14.9	51.3	0.80	0.275	84	0.295
7	0.00	20.2	5.6	24	14.6	51.5	0.77	0.272	84	0.292
8	0.00	20.2	6.9	24	14.1	51.2	0.74	0.277	85	0.299
9	0.00	20.0	7.1	24	14.8	51.5	0.76	0.277	85	0.296
10	0.00	20.5	7.0	24	14.5	51.5	0.79	0.281	87	0.306
11	0.00	20.0	8.5	24	15.3	51.4	0.73	0.279	87	0.303
12	0.00	19.9	7.7	24	14.6	51.5	0.72	0.283	88	0.309
13	0.00	19.6	7.4	23	15.1	51.5	0.70	0.272	85	0.298
14	0.00	20.1	7.8	24	14.9	51.3	0.76	0.272	89	0.290
15	0.00	19.2	7.6	23	15.1					
						51.3	0.69	0.276	87	0.305
16	0.00	19.7	8.9	23	14.9	51.7	0.74	0.275	86	0.302
17	0.00	20.0	9.2	24	14.6	51.3	0.76	0.283	89	0.312
18	0.00	19.3	8.9	23	14.9	51.2	0.72	0.276	89	0.311
19	0.00	19.3	8.7	23	15.5	51.5	0.69	0.276	87	0.306
20	0.00	19.4	8.1	23	15.4	51.1	0.71	0.275	89	0.311
21	0.00	18.8	8.8	22	15.1	51.8	0.69	0.272	86	0.303
22	0.00	19.4	8.3	23	15.8	51.3	0.69	0.271	87	0.304
23	0.00	19.7	8.7	23	15.8	51.5	0.70	0.277	88	0.307
24	0.00	19.3	8.9	23	15.5	51.6	0.70	0.277	90	0.314
25	0.00	19.0	8.4	23	14.8	51.0	0.72	0.272	86	0.301
26	0.00	19.7	7.7	23	15.3	51.7	0.72	0.277	89	0.310
27	0.00	19.5	7.7	23	15.3	51.2	0.72	0.274	87	0.305
28	0.00	19.5	7.4	23	16.1	51.7	0.68	0.272	86	0.302
29	0.00	18.8	7.7	22	16.1	50.9	0.66	0.271	88	0.309
30	0.00	19.3	7.8	23	15.6	51.4	0.69	0.272	87	0.304
31	0.00	19.0	7.3	23	15.3	51.3	0.70	0.262	85	0.297
32	0.00	18.4	7.0	22	15.8	51.4	0.65	0.267	85	0.297
33	0.00	19.5	7.0	23	15.6	51.3	0.70	0.269	85	0.298
34	0.00	19.0	7.7	23	15.7	51.5	0.70	0.264	84	0.296
35	0.00	19.6	7.2	23	15.4	51.1	0.61	0.266	86	0.300
36	0.00	18.6	6.8	22	16.1	51.1	0.65	0.262		
37	0.00	18.9							86	0.300
			6.5	22	15.8	51.5	0.67	0.263	87	0.304
38	0.00	19.2	6.0	23	15.2	50.9	0.71	0.262	86	0.302
39	0.00	19.4	6.2	23	15.5	51.5	0.70	0.259	86	0.302
40	0.00	19.1	6.3	23	15.1	51.3	0.71	0.262	86	0.300
41	0.00	19.3	7.3	23	14.9	51.1	0.73	0.263	88	0.310
42	0.00	19.7	7.3	23	15.0	51.2	0.73	0.265	86	0.300
43	0.00	19.6	6.1	23	15.0	51.3	0.73	0.267	87	0.305
44	0.00	19.9	5.4	24	14.7	51.3	0.76	0.264	86	0.300
45	0.00	19.1	5.3	23	14.6	51.1	0.73	0.259	86	0.300
46	0.00	19.9	5.8	24	14.5	51.4	0.77	0.262	86	0.302
47	0.00	19.5	5.5	23	13.9	51.2	0.79	0.255	84	0.294
48	0.00	19.8	5.8	24	14.4	51.5	0.77	0.263	87	0.305
49	0.00	20.2	5.8	24	15.0	51.5	0.75	0.259	85	0.298
50	0.00	20.4	5.9	24	14.8	51.2	0.78	0.260	85	0.299
51	0.00	20.1	6.0	24	14.6	51.3	0.77	0.257	85	0.298
52	0.00	19.9	6.7	24	14.1	51.4	0.75	0.260	85	0.299
53	0.00	20.3	6.7	24	14.7	51.4	0.78	0.261	86	0.301
54	0.00	20.3	6.8	24	14.8	51.2	0.76	0.262	88	0.309
55	0.00	18.6	5.7	22	13.9	51.5	0.75	0.254	87	0.305
56	0.00	19.6	5.8	23	14.5	51.0	0.75	0.254	86	0.303
57	0.00	19.5	5.5	23	14.5	51.0 51.5	0.76	0.257		
58	0.00	19.5	5.5 5.5	23 23				0.254	87	0.306
59	0.00	19.4			14.8	51.1	0.73	0.259	87	0.305
	0.00	20.4	5.5	23	14.8	51.3	0.73		87	0.305
60			5.3	24	15.3	51.2	0.75	0.261	88	0.306
	Average	19.7	6.9	23 _	15.0	50.5	0.73	0.268	87	0.303
				10	tal number o	f blows analyz	יבתי גט			

Time Summary

Drive 1 minute 8 seconds

9:08:24 AM - 9:09:32 AM (3/26/2008) BN 2 - 60

Total number of blows analyzed: 59

engineering and constructing a better tomorrow

June 30, 2008

Memorandum to File

From: Steve Kiser

Reviewed By: Tom McDaniel

Subject:

Report of SPT Energy - MACTEC Charlotte CME 75 Truck

Hammer Serial No. MEC-09 Automatic Hammer

WORK INSTRUCTION TUR-055

Turkey Point COL Project Dade County, Florida

MACTEC Project No. 6468-07-1950

Jay Cerceo, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on April 5 and 6, 2008, during drilling of Borings B-710 (DH) at the referenced site. The testing was performed by Jay Cerceo from approximately 4:25 PM on April 5 to 1:35 PM on April 6 under partly cloudy skies and a temperature of in the 80s in degrees Fahrenheit. The boring was drilled with personnel and equipment from MACTEC Charlotte. The drilling equipment consisted of a CME 75 model truck-mounted drill rig with an SPT automatic hammer. The drilling tools consisted of NW-J-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the borings below the depth at which groundwater was encountered at the time of energy testing. The drill rig operator during sampling was Mr. Jimmy Warren. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K1050 and P5992) and strain gages (Serial Nos. NW #146/1 and NW#146/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 1.49 square inches and an outside diameter of approximately 2.625 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 2.625 and 2.25 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

Calibration Records

The calibration records for all the above are filed in DCN TUR054.

Calculations for EFV

The work was done in general accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA, and the data was interpreted by the PDA according to the Case Method equation. The maximum energy transmitted to the drill rod string (as measured at the location of the strain gages and accelerometers) was calculated by the PDA using the EFV method equation, as shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV

F(t) = Calculated force at time t

V(t) = Calculated velocity at time t

The EFV method of energy calculation is recommended in ASTM Standard D4633-05. The EFV equation, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not used in the data reduction.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 270 foot-pounds to 295 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 77% to 84% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 289.7 foot-pounds, with an average ETR of 82.8%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Page 5 Work Instruction - DCN TUR-055 - 1 Page Pages 6 Record of SPT Energy Measurement - 1 Page

Pages 7 – 13 PDIPLOT Output – 7 Pages

Work Instruction No. 9

Turkey Point COL Project
MACTEC Engineering and Consulting, Inc.
MACTEC Project 6468-07-1950

Issued To:	Steve Kiser and	Jay Cerceo		Rev. No.	1
Issued By:	Tom McDaniel			Date:	3-24-08
Valid From:_	3-24-08		To:	4-30-08	

Task Description: Perform SPT Energy Measurements

<u>Applicable Technical Procedures or Plans, or other reference:</u> Geotechnical Work Plan (current revision; available at Site Office), Bechtel Specification 25409-102-3PS-CY00-00001, Rev. 000 or later revision, section 4.3, ASTM D 4633-05 (copy attached.).

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in accordance with ASTM D-4633-05. Consult with Site Coordinator as to schedule for rigs that may be planned for use that are not yet present. Hammer weights have been checked by site personnel, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Be sure to check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Coordinator, and can be directed by Becthel in accordance with the specification. Site profile consists of very soft soils to about 5 feet followed by high-N-value soft rock to about 20 feet where coring begins. Sands are present below about 100 to 125 feet. Energy measurements should be made in the deeper sand zone as often as can be done, consistent with the drilling depths at the time of the measurements. See Site Coordinator for current boring logs of holes drilled and use these to plan most effective field measurement program.

Submit copies of calibration records for equipment to Project Principal for review prior to beginning work on site.

<u>Special Instructions</u> (note attachments where necessary): Confirm with Site Manager that approval of equipment calibration records has been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Coordinator, Project Principal (Tom McDaniel) or Sr. Project Principal (Al Tice) immediately.

Report Format: Standard report in accordance with ASTM D 4633 requirements.

Specific Quality Assurance Procedures Applicable: QAP 20-1; QAP 25-1; QAP for Reporting Nuclear-Related Defects, or Noncompliances, per Federal Regulation 10CFR21 and Section 306 of the Energy Reorganization Act of 1974. Current revisions apply.

Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Reviewed and Approved by: (No	te: Only one signature is required fo	r issuanc	e)
Project Manager:	MALLO	_ Date:	
Project Principal Engineer:	14'11111	Date:	3/24/08
Site Manager/Coordinator:	70 7.10	Date:	
Pages: 1 plus attachment			DCN: TUR-055
Attachments: ASTM D 4633-05			

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

Turkey Point COL Project
Dade County, Florida
MACTEC Project No. 6468-07-1950

Hammer Serial No.	Rig Owner	Rig Operator	Boring No. Tested	Rod Size	Date Tested	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
MECIOO					4/5/2008	121.3 - 122.8	7 - 6 - 7	23	270	77.1%
MEC-09 (CME 75	MACTEC	Jimmy	B-710	NW-J		128.4 - 129.9	10 - 15 - 17	-	-	_
Truck)	Charlotte	Warren	(DH)	14 AA -1	4/6/2008	138.4 - 139.9	8 - 11 - 20	41	295	84.3%
Truck)						148.4 - 149.9	23 - 35 - 44	100	292	83.4%
							Ave	rage for Rig:	289.7	82.8%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

The average ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

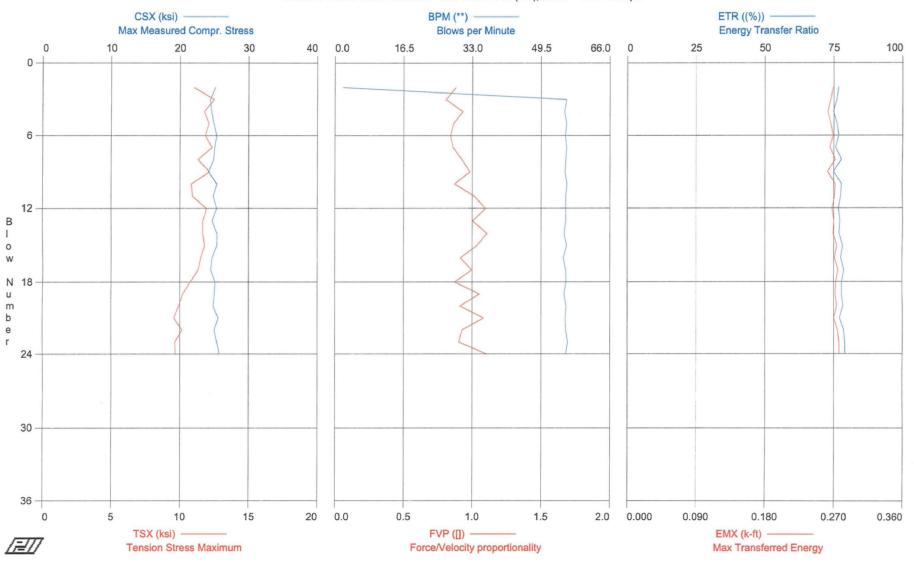
Data from depth of 128.4 to 129.9 was not used in analysis due to improper mounting of equipment on to drill rod.

Prepared By:	SLD)	Date: 5-30-08	Checked By:	WBD	Date: 6-4-08

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).

2801 YORKMONT ROAD, SUITE 100

CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

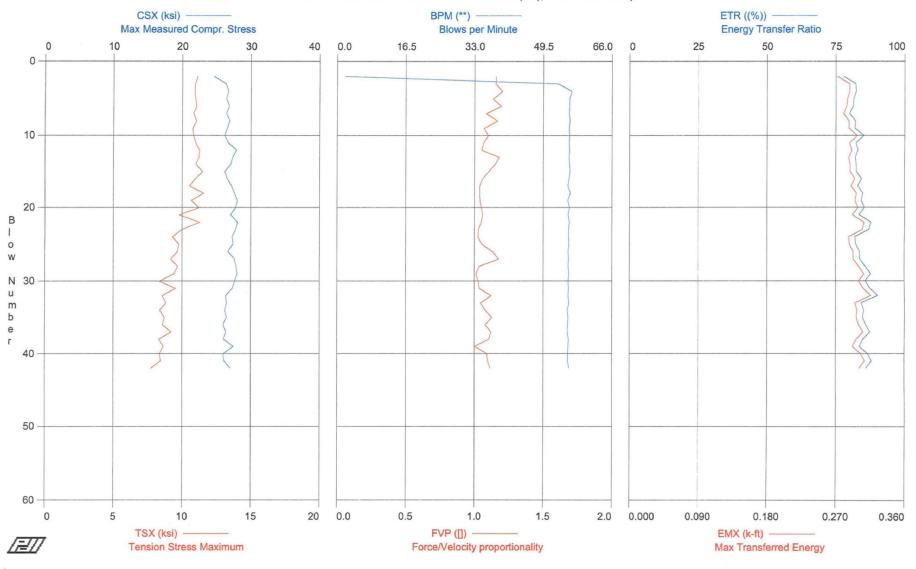

RECORD OF SPT ENERGY MEASUREMENT

	GENERA	L INFORM	ATION			DRILL RIG DATA						
PROJECT:		oint COL Pro				MAKE:		CME				
LOCATION:	Florida Ci					MODEL:		75	Truck			
PROJECT NO.:	6468-07-1					SERIAL NO.: 211			97			
DATE:	4/5/2					HAMMER TY	PE:	Automatic				
WEATHER:			8Ū5.	hamid		ROPE COND		N/A				
INSPECTOR: HC	Pattur Steve Kise	er Jan	Cesco			ROD SIZE:		NWJ	•			
DRILLING COMPANY/5/08	MAC	TEC 3				NO. OF SHE	AVES:	N/A				
					BORING	DATA						
BORING NUMBER:	@ 4	710 DH			DOMING	PAIA						
DEPTH DRILLED:	IZI.	7					 		·			
TIME DRIVEN:	2,3	0.4									· · · · · ·	
RIG OPERATOR:	1	Opm Warren Sloan						······································				
HAMMER OPERATOR:	<u>J.</u>	Slace									· · · · · · · · · · · · · · · · · · ·	
			221			362	221			362	221	
PDA PAK SERIAL NO.: INSTR. ROD AREA:	3622L 1.49											
ACCEL, SERIAL NOS.:	K1050 + P5992									·		
STRAIN SERIAL NOS.:	NWI	415-1 N	W146-3	2								
	SAMPLE	SPT	- DEPTH-	SPT	SAMPLE	SPT	DEPTH	SPT	SAMPLE	SPT	DEPTH	SPT
	DEPTH	N-VALUE	/ 452:		DEPTH	N-VALUE	cont.	N-VALUE	DEPTH	N-VALUE	cont.	N-VALUE
		•	-14 4/5/a	8 (bpf)	(feet)	(bpf)	(feet)	(bpf)	(feet)	(bpf)	(feet)	(bpf)
4/5/08 4/6/08, 9:00an 4/6/08 12:15 pm 4/6/08 1:37pm	121.3-	7-6-7	129									
4/10/08, 9:00 am	128.5-	10-15-17	134								-	
4/6/08 12:15 pm	1385-	8-11-20	144									
4/6/08 1:37pm	148.5	23-33-4	154									
1 <i>b</i>		,										
							`	.*				
•												
		 										
•		<u> </u>			<u> </u>							
								 	٠,			
									;			
					-				<i>*</i>			
REMARKS:						<u>l</u>		:			<u></u>	<u> </u>

Test date: 5-Apr-2008

PDIPLOT Ver. 2008.1 - Printed: 30-May-2008

TURKEY POINT COL PROJECT - BORING B-710 (DH); 121.3' - 122.8' Sample


	C Engineering ethod Results	and Consulting	ng, Inc.				PDIPLOT	Ver. 2008.1 -		age 1 of 1 May-2008
TURKE'	Y POINT COL	PROJECT - E	BORING B-7	10 (DH); 121		ample		HAMMER ID) 311797 (J.V Test date: 5-	
	1.49 in^2 29.00 ft 807.9 f/s								EM: 30	.492 k/ft3 ,000 ksi 0.70
CSX: M	Max Measured Tension Stress	Maximum	S				I	FVP: Force/\ EF2: Energy	/elocity propo of F^2	ortionality
VMX: N	Maximum Forc Maximum Velo Blows per Minu	city						ETR: Energy EMX: Max Tr		
BL#	depth	CSX	TSX	FMX	VMX	BPM	FVP	EF2	ETR	EMX
UCH	ft	ksi	ksi	kips	f/s	**	Ü	k-ft	(%)	k-ft
2	0.00	25.1	11.0	37	12.2	1.9	0.88	0.295	77	0.269
3	0.00	24.4	12.5	36	11.7	55.6	0.81	0.290	76	0.266
4	0.00	24.6	11.8	37	11.7	55.1	0.93	0.288	75	0.262
5	0.00	24.9	12.1	37	11.6	55.6	0.86	0.290	76	0.266
6	0.00	25.3	11.8	38	11.6	55.3	0.84	0.293	77	0.269
7	0.00	25.1	12.3	37	11.6	55.6	0.86	0.288	76	0.265
8	0.00	24.9	11.3	37	11.9	55.4	0.92	0.295	78	0.272
9	0.00	24.1	12.2	36	11.8	55.2	0.98	0.290	75	0.262
10	0.00	25.4	10.8	38	11.9	55.7	0.87	0.297	78	0.272
11	0.00	24.8	10.9	37	11.9	55.4	1.01	0.295	77	0.271
12	0.00	25.3	11.9	38	11.6	55.4	1.10	0.294	77	0.268
13	0.00	24.7	11.7	37	12.2	55.4	1.00	0.294	77	0.270
14	0.00	25.4	11.7	38	11.8	55.0	1.11	0.293	77	0.269
15	0.00	25.4	11.8	38	12.1	55.6	1.03	0.297	78	0.274
16	0.00	24.7	11.5	37	12.1	54.8	0.91	0.289	78	0.271
17	0.00	24.5	11.3	36	12.1	55.4	1.00	0.290	79	0.276
18	0.00	25.1	10.8	37	11.9	55.5	0.87	0.295	78	0.273
19	0.00	25.0	10.2	37	11.8	55.0	1.05	0.292	78	0.272
20	0.00	24.9	9.9	37	12.0	55.5	0.91	0.292	78	0.274
21	0.00	25.6	9.6	38	11.9	55.3	1.08	0.291	77	0.270
22	0.00	25.0	10.2	37	12.1	55.4	0.93	0.293	79	0.275
23	0.00	25.4	9.7	38	12.0	55.9	0.90	0.295	79	0.277
24	0.00	25.7	9.7	38	12.0	55.4	1.11	0.298	79	0.277
	Average	25.0	11.2	37	11.9	53.1	0.96	0.293	77	0.270
				То	tal number o	f blows analy	zed: 23			

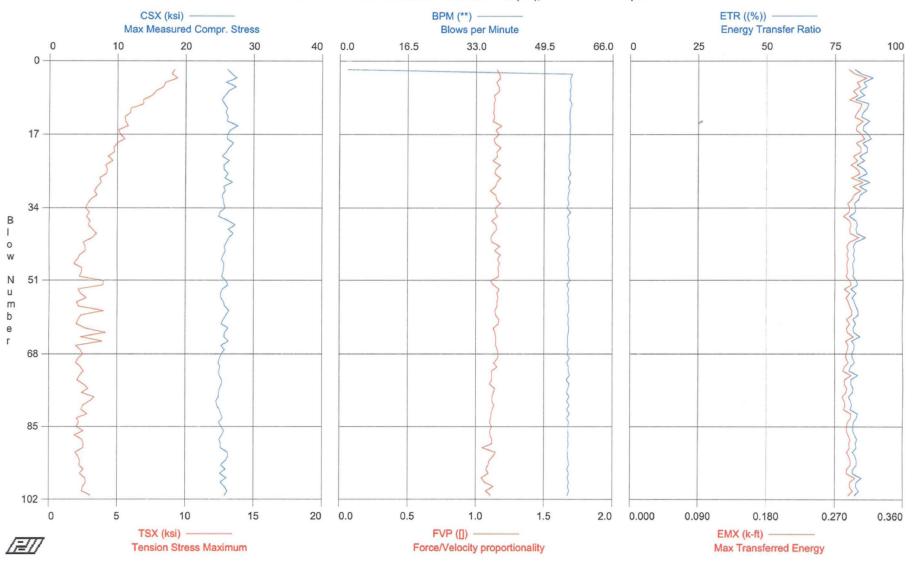
Time Summary

Drive 23 seconds 4:26:00 PM - 4:26:23 PM (4/5/2008) BN 2 - 24

Test date: 6-Apr-2008

TURKEY POINT COL PROJECT - BORING B-710 (DH); 138.4 - 139.9 Sample

	EC Engineering Method Results	and Consulti	ing, Inc.				PDIPLO1	Ver. 2008.1 -		age 1 of 1 May-2008
TURKI OP: H	EY POINT COL JC	PROJECT -				mple		HAMMER ID	311797 (J.W Test date: 6-	/ARREN) Apr-2008
AR:	1.49 in^2						• • •		SP: 0	.492 k/ft3
LE:	144.00 ft								EM: 30	,000 ksi
	6,807.9 f /s									0.70
	Max Measured		SS					FVP: Force/\	elocity prope	ortionality
	Tension Stress Maximum Forc							EF2: Energy		
	Maximum Velo							ETR: Energy EMX: Max Tr		
	Blows per Minu							LIVIA. IVIAX III	ansierred En	ergy
BL#	depth	CSX	TSX	FMX	VMX	ВРМ	FVP	EF2	ETR	EMX
	ft	ksi	ksi	kips	f/s	**	f)	k-ft	(%)	k-ft
2	0.00	24.6	11.1	37	11.9	1.9	1.16	0.296	78	0.272
3	0.00	26.3	10.9	39	12.8	53. 1	1.15	0.312	82	0.288
4	0.00	26.7	10.9	40	12.5	56.3	1.20	0.311	82	0.288
5	0.00	26.4	11.0	39	13.1	55.8	1.13	0.312	81	0.285
6 7	0.00 0.00	26.8 26.4	11.0 10.8	40 39	12.6 12.7	55.8 55.7	1.19 1.09	0.309	81	0.284
8	0.00	26.9	11.0	39 40	12.7	55.7 55.9	1.09	0.310 0.312	80 82	0.280 0.287
9	0.00	26.5	10.7	40	12.7	55.7	1.07	0.312	82 82	0.287
10	0.00	26.2	10.8	39	13.3	55.8	1.10	0.318	85	0.298
11	0.00	26.7	11.0	40	12.8	55.7	1.07	0.312	82	0.288
12	0.00	27.9	11.3	42	13.4	55.8	1.05	0.320	83	0.291
13	0.00	27.3	11.2	41	13.0	55.7	1.18	0.315	82	0.287
14	0.00	27.1	11.0	40	13.2	55.8	1.15	0.312	82	0.289
15 16	0.00	26.2	11.5	39	13.3	55.9 55.3	1.10	0.315	82	0.289
16 17	0.00 0.00	26.5 27.2	11.0 10.5	40 40	13.6 13.0	55.7 55.4	1.06 1.0 4	0.317 0.316	84 83	0.295 0.290
18	0.00	27.6	11.6	41	13.4	56.0	1.04	0.320	85	0.290
19	0.00	28.0	10.7	42	13.3	55.4	1.04	0.318	84	0.295
20	0.00	27.8	11.2	41	13.4	55.8	1.05	0.319	85	0.299
21	0.00	27.0	9.8	40	13.0	55.5	1.06	0.311	83	0.292
22	0.00	28.1	11.3	42	13.5	55.8	1.05	0.317	88	0.307
23	0.00	27.8	10.0	41	13.0	55.6	1.03	0.321	87	0.305
24 25	0.00 0.00	27.3 27.4	9.3 9.8	41	13.0	55.6	1.03	0.306	82	0.287
25 26	0.00	27.4 26.7	9.8 9.7	41 40	13.2 13.2	55.7 55.5	1.05 1. 13	0.310 0.310	82 8 4	0.288 0.293
27	0.00	27.6	9.2	41	13.2	55.6	1.13	0.315	84	0.293
28	0.00	27.8	9.7	41	13.3	55.5	1.04	0.314	86	0.300
29	0.00	28.0	9.4	42	13.4	55.7	1.01	0.314	88	0.307
30	0.00	27.7	8.3	41	13.5	55.5	1.03	0.317	86	0.300
31	0.00	27.3	9.5	41	13.3	55.6	1.04	0.316	87	0.306
32	0.00	26.3	8.6	39	13.2	55.5	1.12	0.315	90	0.316
33	0.00 0.00	26.5	8.8	39	12.8	55.7	1.05	0.311	84	0.295
34 35	0.00	26.2 26.5	8.4 8.7	39 39	13.3 13.1	55.3 55.5	1.08	0.313	85 95	0.298
36	0.00	26.0	8.6	39	13.1	55.5 55.4	1.13 1.08	0.312 0.310	85 86	0.297 0.300
37	0.00	26.4	9.2	39	13.1	55.3	1.12	0.313	87	0.306
38	0.00	26.0	8.3	39	13.2	55.6	1.11	0.310	85	0.297
39	0.00	27.5	8.6	41	13.2	55.5	1.00	0.306	84	0.292
40	0.00	26.0	8.4	39	13.3	55.4	1.09	0.314	87	0.303
41	0.00	26.1	8.4	39	13.3	55.4	1.10	0.314	88	0.308
42	0.00	27.0	7.8	40	13.6	55.7	1.11	0.321	86	0.301
	Average	26.9	10.0	40	13.1	54.3	1.09	0.313	84	0.295
Time - (ic	ıtaı number ol	f blows analyz	ea: 41			


Time Summary

Drive 43 seconds

12:09:26 PM - 12:10:09 PM (4/6/2008) BN 2 - 42

Test date: 6-Apr-2008

TURKEY POINT COL PROJECT - BORING B-710 (DH); 148.4' - 149.9' Sample

TURKEY POINT COL PROJECT - BORING B-710 (DH); 148.4' - 149.9' Sample

HAMMER ID 311797 (J.WARREN) Test date: 6-Apr-2008 SP: 0.492 k/ft3

OP: HJC
AR: 1.49 in^2
LE: 154.00 ft EM: 30,000 ksi JC: 0.70 WS: 16,807.9 f/s
 WS: 16,807.9 f/s
 JC: 0.70

 CSX: Max Measured Compr. Stress
 FVP: Force/Velocity proportionality pro

	Maximum Force Maximum Veloci	tv					E	ETR: Energy EMX: Max Tra	Transfer Rat	tio oray
	Blows per Minute						ŧ	EIVIA. IVIAX ITA		ergy
BL#	depth	CSX	TSX	FMX	VMX	ВРМ	FVP	EF2	ETR	EMX
_	ft	ksi	ksi	kips	f/s	**		k-ft	(%)	k-ft
2	0.00	26.1	9.2	39	12.7	1.9	1.15	0.313	82	0.288
3 4	0.00 0.00	26.7 27.4	9.0 9.4	40 41	12.8 13.1	56.2 55.8	1.17 1.18	0.319 0.321	85	0.296
5	0.00	27. 4 25.9	9.4 8.5	39	12.6	55.8	1.15	0.321	89 86	0.311 0.299
6	0.00	27.4	8.4	41	13.1	55.9	1.17	0.320	87	0.299
7	0.00	26.3	7.8	39	12.6	55.7	1.17	0.313	84	0.294
8	0.00	25.8	7.5	38	12.7	55.8	1.13	0.315	86	0.300
9	0.00	25.3	6.9	38	12.4	55.6	1.14	0.312	83	0.289
10	0.00	25.6	6.9	38	12.8	56.1	1.13	0.309	87	0.305
11 12	0.00 0.00	26.1 25.9	6.0 5.9	39 39	12.9 12.9	55.8 55.7	1.13	0.316 0.313	87	0.303
13	0.00	26.2	5.5	39	13.0	55.7 55.6	1.13 1.13	0.313	85 85	0.299 0.296
14	0.00	26.1	5.6	39	12.5	55.7	1.12	0.316	88	0.307
15	0.00	27.6	5.8	41	13.1	55.8	1.19	0.311	86	0.299
16	0.00	26.6	5.1	40	13.0	55.7	1.15	0.315	85	0.298
17	0.00	26.2	5.2	39	12.5	55.7	1.17	0.318	87	0.305
18	0.00	26.1	5.5	39	12.9	55.7	1.13	0.323	88	0.309
19 20	0.00 0.00	27.0 26.4	5.0 4.7	40 39	13.3 12.5	55.7 55.6	1.14	0.312 0.317	85	0.298
21	0.00	25.9	4.8	39	12.6	55.7	1.18 1.15	0.317	87 87	0.304 0.304
22	0.00	25.4	4.3	38	12.3	55.4	1.16	0.314	84	0.294
23	0.00	26.4	4.7	39	13.1	55.6	1.12	0.319	86	0.300
24	0.00	25.6	4.1	38	12.2	55.5	1.18	0.309	83	0.291
25	0.00	25.6	4.3	38	12.2	55.5	1.14	0.316	86	0.300
26	0.00	26.2	4.2	39	12.9	55.9	1.14	0.315	87	0.303
27 28	0.00 0.00	25.7 26.9	3.7 3.8	38 40	12.2	55.3 55.8	1.18	0.309	83	0.292
29	0.00	25.6	3.5	38	13.1 12.5	55.6 55.4	1.15 1.14	0.311 0.314	88 84	0.307 0.294
30	0.00	25.8	3.3	38	13.1	55.6	1.10	0.313	87	0.304
31	0.00	25.4	3.5	38	12.4	55.3	1.15	0.310	84	0.295
32	0.00	25.5	3.0	38	12.4	55.2	1.15	0.305	84	0.293
33	0.00	25.6	2.8	38	12.2	55.5	1.18	0.308	82	0.287
34 35	0.00	25.8	2.7	38	12.6	55.0	1.14	0.306	83	0.290
36	0.00 0.00	25.1 24.8	2.9 2.7	37 37	12.2 12.0	55.9 55.1	1.14 1.16	0.310 0.306	83 80	0.289 0.282
37	0.00	26.3	3.0	39	13.2	55.5	1.12	0.305	83	0.202
38	0.00	27.3	2.9	41	13.3	55.2	1.15	0.312	83	0.292
39	0.00	26.3	3.2	39	12.7	55.4	1.15	0.311	83	0.290
40	0.00	27.0	3.5	40	13.4	55.4	1.13	0.307	83	0.291
41	0.00	26.4	3.2	39	13.3	55.7	1.11	0.317	86	0.302
42 43	0.00 0.00	26.0 25.7	2.5 2.7	39 38	12.5 12.2	55.3 55.2	1.12	0.308	83	0.290
44	0.00	25.7 25.8	2.7	38	12.2	55.2 55.5	1.18 1.14	0.310 0.307	82 82	0.286 0.288
45	0.00	25.6	2.3	38	12.2	55.3	1.18	0.310	82	0.286
46	0.00	25.3	2.1	38	12.3	55.5	1.16	0.307	82	0.288
47	0.00	25.6	1.8	38	12.2	55.2	1.17	0.309	82	0.286
48	0.00	25.6	2.4	38	12.3	55.4	1.16	0.310	82	0.286
49 50	0.00	25.5	2.4	38	12.3	55.4	1.17	0.305	82	0.287
51	0.00 0.00	25.3 25.9	2.2 4.0	38 39	12. 1 13.0	55.4 55.8	1.17 1.11	0.310 0.315	82 83	0.285 0.290
52	0.00	26.2	3.9	39	13.1	55.0	1.13	0.306	83	0.292
53	0.00	25.5	2.1	38	12.2	55.5	1.17	0.307	81	0.283
54	0.00	25.1	2.3	37	12.2	55.2	1.16	0.310	83	0.290
55	0.00	25.2	2.7	38	12.2	55.4	1.16	0.305	81	0.285
56 57	0.00	25.6	2.0	38	12.4	55.3	1.16	0.311	82	0.288
57 58	0.00 0.00	25.8 26.4	2.2 4.0	38 39	12.5 13.0	55.5 55.5	1.16 1.1 4	0.310 0.309	83	0.290 0.293
59	0.00	25.9	2.3	39 39	12.6	55.5 55.2	1.14	0.309	84 84	0.293
60	0.00	25.6	2.1	38	12.3	55.4	1.17	0.308	82	0.286
61	0.00	25.2	2.0	38	12.2	55.3	1.17	0.311	83	0.290
62	0.00	26.2	2.7	39	13.0	55.5	1.13	0.305	82	0.286
63	0.00	25.8	4.1	38	12.7	55.4 55.3	1.14	0.305	82	0.287
64 65	0.00 0.00	25.7 26.3	2.3 3.9	38 39	12.6 12.9	55.2 55.2	1.15 1.15	0.315 0.305	84	0.295 0.285
66	0.00	25.2	2.0	38	12.9	55.2 55.1	1.15	0.305	81 82	0.288
	3.03		2.0	00	. 2.0	33.1	1.10	0.000	ŲŽ	0.400

TURKEY POINT COL PROJECT - BORING B-710 (DH); 148.4' - 149.9' Sample

HAMMER IC	311797	(J.WARREN)
	Toet dat	a. 6 Apr 2009

OP: HJ	C	FROJECT	BONING B-7	10 (DH), 140	1.4 - 149,9 3	ample		HAIVIIVIEK ID	Test date: 6-	
BL#	depth	ÇSX	TSX	FMX	VMX	ВРМ	FVP	EF2	ETR	EMX
	ft	ksi	ksi	kips	f/s	**	[]	k-ft	(%)	k-ft
67	0.00	25.7	2.3	38	12.4	55.4	1.16	0.311	82	0.287
68	0.00	25.3	2.5	38	12.1	55.1	1.17	0.309	81	0.285
69	0.00	25.0	2.1	37	12.1	55.7	1.16	0.306	82	0.285
70	0.00	24.8	2.0	37	12.2	55.0	1.13	0.310	82	0.288
71	0.00	25.0	2.3	37	12.1	55.4	1.16	0.306	81	0.283
72	0.00	24.9	2.5	37	12.4	55.4	1.12	0.304	80	0.281
73	0.00	25.0	2.3	37	12.6	55.7	1.12	0.309	83	0.292
74	0.00	25.3	2.1	38	12.6	54.9	1.12	0.306	81	0.283
75	0.00	25.3	2.5	38	12.9	55.6	1.10	0.304	81	0.283
76	0.00	25.0	2.9	37	12.3	55.3	1,14	0.304	82	0.286
77	0.00	24.9	2.4	37	12.3	55.0	1.13	0.306	82	0.285
78	0.00	24.9	3.3	37	12.4	55.6	1.12	0.301	80	0.280
79	0.00	24.5	3.0	37	12.2	55.0	1.12	0.304	81	0.283
80	0.00	24.7	2.5	37	12.2	55.6	1.13	0.307	81	0.284
81	0.00	25.0	2.4	37	12.4	55.0	1.12	0.307	81	0.282
82	0.00	25.2	2.8	38	12.8	55.7	1.11	0.307	83	0.292
83	0.00	25.4	2.1	38	12.8	55.0	1.11	0.307	83	0.291
84	0.00	24.9	2.2	37	12.7	55.5	1.10	0.305	82	0.287
85	0.00	25.3	2.0	38	12.7	55.3	1.12	0.304	82	0.286
86	0.00	25.7	2.5	38	12.9	55.3	1.11	0.307	82	0.286
87	0.00	25.4	1.9	38	12.8	55.4	1.11	0.305	82	0.288
88	0.00	25.0	2.5	37	12.5	55.3	1.12	0.306	83	0.291
89	0.00	25.2	2.5	37	12.6	55.4	1.12	0.305	83	0.289
90	0.00	25.1	2.5	37	13.4	55.3	1.05	0.308	83	0.290
91	0.00	26.2	2.0	39	12.8	55.3	1.15	0.305	82	0.286
92	0.00	26.3	2.1	39	13.0	55.2	1,13	0.310	83	0.289
93	0.00	25.9	2.3	39	12.7	55.4	1.10	0.310	83	0.291
94	0.00	25.2	2.2	38	13.0	55.5	1.09	0.309	83	0.291
95	0.00	25.9	2.5	39	12.8	55.1	1.08	0.310	82	0.286
96	0.00	25.1	2.3	37	12.8	55.5	1.09	0.305	82	0.286
97	0.00	26.0	2.7	39	14.0	55.2	1.04	0.306	85	0.297
98	0.00	25.2	2.7	37	13.2	5 5.5	1.07	0.308	83	0.290
99	0.00	25.7	2.5	38	12.8	55.3	1.13	0.309	83	0.290
100	0.00	26.2	2.4	39	12.9	55.6	1.08	0.310	84	0.294
101	0.00	25.8	3.0	38	13.0	55.2	1.11	0.308	82	0.288
	Average	25.7	3.5	38	12.6	54.9	1.14	0.310	83	0.292
				To	tal number of	blows analyze	ed: 100			

Time Summary

Drive 1 minute 47 seconds 1:31:22 PM - 1:33:09 PM (4/6/2008) BN 2 - 101

engineering and constructing a better tomorrow

August 15, 2008

Subject:

Memorandum to File From: Steve Kiser

Reviewed By: Tom McDaniel MM 8 19 68

Report of SPT Energy - MACTEC Charlotte CME 550 ATV

Hammer Serial No. MEC-04 Automatic Hammer

WORK INSTRUCTION TUR-055

Turkey Point COL Project Dade County, Florida

MACTEC Project No. 6468-07-1950

Jay Cerceo, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on April 22, 2008, during drilling of Borings B-710 (DH) R at the referenced site. The testing was performed by Jay Cerceo from approximately 9:05 to 9:45 AM under clear skies and a temperature in the 70s and 80s in degrees Fahrenheit. The boring was drilled with personnel and equipment from MACTEC Charlotte. The drilling equipment consisted of a CME 550 ATV-model drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split tube sampler. Mud rotary drilling techniques were used to advance the borings below the depth at which groundwater was encountered at the time of energy testing. The drill rig operator during sampling was Mr. Jimmy Warren. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K1050 and P5992) and strain gages (Serial Nos. AW #75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod insert had a cross-sectional area of approximately 1.19 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

Calibration Records

The calibration records for all the above are filed in DCN TUR054.

14 Pages Total

Calculations for EFV

The work was done in general accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA, and the data was interpreted by the PDA according to the Case Method equation. The maximum energy transmitted to the drill rod string (as measured at the location of the strain gages and accelerometers) was calculated by the PDA using the EFV method equation, as shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV

F(t) = Calculated force at time t

V(t) = Calculated velocity at time t

The EFV method of energy calculation is recommended in ASTM Standard D4633-05. The EFV equation, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not used in the data reduction.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 279 foot-pounds to 291 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 80% to 83% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 281.4 foot-pounds, with an average ETR of 80.4%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Page 5 Work Instruction – DCN TUR-055 – 1 Page Pages 6 Record of SPT Energy Measurement – 1 Page

Pages 7 – 14 PDIPLOT Output – 8 Pages

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

Turkey Point COL Project
Dade County, Florida
MACTEC Project No. 6468-07-1950

Hammer Serial No.	Rig Owner	Rig Operator	Boring No. Tested	Rod Size	Date Tested	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
) MIC 04					·	6.0 - 7.5	5 - 10 - 14	30	279	79.7%
MEC-04	MACTEC	Jimmy	B-710	AW-J	4/22/2008	8.5 - 10.0	5 - 5 - 3	13	291	83.1%
(CME 550 ATV)	Charlotte	Warren	(DH) R	W.M3	412212000	11.0 - 12.5	20 - 8 - 13	42	284	81.1%
1317)						13.5 - 15.0	3 - 8 - 34	46	278	79.4%
							Ave	rage for Rig:	281.4	80.4%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

The average ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

		 				4	
Prepared By: Date: 8-15-08 Checked By:			() e	/ Date:	8/	19	108
	ŢF	 T	/			7	

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).

Work Instruction No. 9

Turkey Point COL Project
MACTEC Engineering and Consulting, Inc.
MACTEC Project 6468-07-1950

Issued To: S	teve Kiser and	Jay Cerceo		Rev. No1
Issued By:	Tom McDaniel			Date: 3-24-08
Valid From:_	3-24-08		To:	4-30-08

Task Description: Perform SPT Energy Measurements

<u>Applicable Technical Procedures or Plans, or other reference:</u> Geotechnical Work Plan (current revision; available at Site Office), Bechtel Specification 25409-102-3PS-CY00-00001, Rev. 000 or later revision, section 4.3, ASTM D 4633-05 (copy attached.).

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in accordance with ASTM D-4633-05. Consult with Site Coordinator as to schedule for rigs that may be planned for use that are not yet present. Hammer weights have been checked by site personnel, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Be sure to check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Coordinator, and can be directed by Becthel in accordance with the specification. Site profile consists of very soft soils to about 5 feet followed by high-N-value soft rock to about 20 feet where coring begins. Sands are present below about 100 to 125 feet. Energy measurements should be made in the deeper sand zone as often as can be done, consistent with the drilling depths at the time of the measurements. See Site Coordinator for current boring logs of holes drilled and use these to plan most effective field measurement program.

Submit copies of calibration records for equipment to Project Principal for review prior to beginning work on site.

<u>Special Instructions</u> (note attachments where necessary): Confirm with Site Manager that approval of equipment calibration records has been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Coordinator, Project Principal (Tom McDaniel) or Sr. Project Principal (Al Tice) immediately.

Report Format: Standard report in accordance with ASTM D 4633 requirements.

Specific Quality Assurance Procedures Applicable: QAP 20-1; QAP 25-1; QAP for Reporting Nuclear-Related Defects, or Noncompliances, per Federal Regulation 10CFR21 and Section 306 of the Energy Reorganization Act of 1974. Current revisions apply.

Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Reviewed and Approved by: (No	ote: Only one signature is required fo	or issuance)
Project Manager:	Motion	Date:
Project Principal Engineer:	14' 1MX)	Date:
Site Manager/Coordinator:	70 7.10	Date:
Pages: 1 plus attachment		DCN: <u>TUR-055</u>
Attachments: ASTM D 4633-05		