

Figure 2.5.1-229 Regional Tectonic Features

Sources: References 822, 482, 823, 457, 212, and 421

Figure 2.5.1-230 Simplified North-South Profile of Mesozoic-Age Rocks in Florida

Modified from: Reference 366

ERA	SYS	TEM	SERIES	STRATIGRAPHIC UNIT		LITHOLOGY	APPROXIMATE THICKNESS (ft)
CENOZOIC	QUATERNARY		OCENE	Miami Limestone / Key Largo Limestone/ Anastasia Formation		sandy, oolitic, coralline, shelly limestone	10-180
			PLEIST	Caloosahatchee Formation/ Fort Thompson Formation		poor/well indurated sandy, fossiliferous limestone	50-100
	TERTIARY	NEOGENE	PLIOCENE	Tamiami Formation/ Cypresshead Formation (Long Key Formation)		Tamiami Formation/ Cypresshead Formation (Long Key Formation)	
			MIOCENE	Hawthorn Group	Peace River Formation	sands, clays, & phosphatic carbonates	100-650
					Arcadia Formation	fine crystalline limestone with sand/clay, phosphatic fossiliferous limestone, & dolomite	100-700
		PALEOGENE	OLIGOCENE	Suwannee Limestone		poor/well indurated fossiliferous vuggy to moldic limestone	200-600
			EOCENE	Ocala Limestone		poor/well indurated fossiliferous limestone	200-400
				Avon Park Formation		poor/well indurated fossiliferous limestone & vuggy dolostone	400-1200
				Oldsmar Formation		vuggy limestone & dolomite	500-1500
			PALEOCENE	Ce	edar Keys Formation	dolomite, gypsum, & anhydrite	500-2000
TOTAL THICKNESS						5000-6000	

Figure 2.5.1-231 Cenozoic Stratigraphy of Southern Florida

Sources: References 357, 373, 375, 376, 394, 397, 398, 399, 403, and 406

Modified from: Reference 397

Figure 2.5.1-233 Cenozoic North-South Cross Section of Florida

Figure 2.5.1-234 East-West Geologic Cross Section of Upper Cenozoic Age Rocks in Southern Florida

Modified from: Reference 373 Note: Primary siliclastic source - Appalachians

Figure 2.5.1-235 East-West Geologic Cross Section of Eocene through Pliocene-age Rocks in Southern Florida

Figure 2.5.1-237 Miocene-Pliocene Siliciclastic Transport Pathways in Southern Florida

Source: Reference 393 Note: primary siliciclastics source – Appalachians

Figure 2.5.1-238 Map of Crust Types in Gulf of Mexico Region

Figure 2.5.1-239 Gulf of Mexico Cross Section B-B'

SOUTH

Note: Explanation in Figure 2.5.1-242

Source: Reference 839

Note: Explanation in Figure 2.5.1-242 Source: Reference 839

Figure 2.5.1-241 Gulf of Mexico Cross Section C–C'

SOUTH

Note: Explanation in Figure 2.5.1-242 Source: Reference 839

Figure 2.5.1-242 Explanation for Gulf of Mexico Cross Sections A–A', B–B', and C–C'

Q	Quaternary
Tn	Tertiary-Neogene (Mio = Miocene; Plio = Pliocene)
Тр	Tertiary-Paleogene (Pal = Paleocene; Eoc = Eocene; Olig = Oligocene)
Ku	Upper Cretaceous
KI	Lower Cretaceous
Ju	Upper Jurassic
Js	Middle Jurassic salt
Ţ,−J	Upper Triassic-Lower Jurassic "red beds" and volcanics (includes Lower Jurassic marine rocks and Middle Jurassic "red beds" and marine rocks in Mexico.)
* * * * * * * * * * * * * * * * * * * *	Permian-Triassic intrusive granitic rocks
Р	Permian
M-P	Upper Mississippian-Pennsylvanian (Platform)
M-P	Upper Mississippian-Pennsylvanian (Flysch)
€-M	Cambrian-Lower Mississippian (Platform)
e-M	Cambrian-Lower Mississippian (Off-shelf)
PP	Upper Proterozoic-Lower Paleozoic metamorphic rocks
	Precambrian crystalline rocks

Source: Reference 839

ALB.- APT. - BERRIAS

OXFORD

(?

JURASSIC

APT

TITH

LOW.

TRIASSIC-

Seismic Line and Well Correlation, Florida, Figure 2.5.1-243

Modified from: Reference 307

3

4

5

EO

PALEO NIA

IOKM

Notes:

Top: Cross section displaying two buried banks (Andros, Bimini) and two completely infilled troughs (Straits of Andros, Bimini embayment). A-E = depositional megasequences. Correlation is given by two horizons (E, B). Note difference in size and age of two troughs.

Bottom: Cross section along WESTERN documenting lateral progradation of Bimini western margin and complex filling of Straits of Andros. Compare volume of prograded part with oroducina platform.

FRA	SYSTEM	RMATION		
	UTOTEM	BNE	Rice Bay Formation	Hana Bay Member
		НОГОС		North Point Member
DZOIC	RNARY	PLEISTOCENE	Grotto Beach Formation	Cockburn Town Member
CENC	QUATE			French Bay Member
			Owl's Hole Formation	

Figure 2.5.1-246 Lithostratigraphic Column for the Bahama Islands

Not drawn to scale Modified from: Reference 438

Figure 2.5.1-247 Tectonic Map of Cuba

Multiple sources were used to compile this map, including References 443, 448, 770, and 492

Source: Reference 497

Figure 2.5.1-249 Focal Mechanisms and Slip Vectors of Northeast Caribbean Earthquakes

- (a) Focal mechanisms of northwestern offshore Puerto Rico earthquakes. Dates are in mm/dd/yy format. Striped mechanisms are from forward modeling, and are less well constrained.
- (b) Historic and recent earthquakes of the Virgin Islands Region
- (c) Slip vectors of earthquakes occurring in Greater Antilles crust (open symbols) and along plate interface (closed symbols). Focal mechanism for 1939 normal faulting outer rise event shown at top."

Figure 2.5.1-250 Tectonic Evolution of the Greater Antilles Arc Collision

C. Latest Early Eocene: Strike-Slip on Pinar Fault Zone

Modified from: Reference 697

D. Middle Eocene-Middle Miocene: Quiescence, Subsidence

Figure 2.5.1-252 Structural Cross Section across Central Cuba, Line E–F

Note: Structural cross section of the Cuban fold-and-thrust belt. This cross section illustrates the deep detachment surface and the amalgamated thrust nappes between the Bahamas platform and the allochthonous Caribbean plate (serpentinite mélange, ophiolites, and Cretaceous volcanic arc suites). The foredeep basin deposits crown the Mesozoic stratigraphic sections, and represent the seal of the petroleum systems.