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Figure 2.5.1-201 Site Region Geologic Map (Sheet 2 of 2)

Explanation
———= Fault; dotted where uncertain

Florida Geologic Units

Holocene sediments
| Qa | Anastasia Formation Key Largo Limestone Miami Limestone
Beach Ridge and Dune deposits

Undifferentiated sediments

QUATERNARY

TQsu| Shelly sediments (includes Fort Thompson, Bermont, and Caloostahatchee Formations)
TQue| Reworked Cypresshead sediments

TQd | Dune deposits
Undifferentiated sediments

LATE TERTIARY/
EARLY QUATERNARY

Cypresshead Formation

Tt | Tamiami Formation
[ th | Hawthorn Group, undivided

Suwannee Limestone
Ocala Limestone

TERTIARY

Other Geologic Units
| Q@ | Quaternary alluvium
Quaternary reef deposits, undivided
Post-Eocene marine strata

Eocene and/or Paleocene marine strata

Tertiary and Cretaceous complex of deformed sedimentary rocks

Upper Cretaceous marine strata
Cretaceous volcanic rocks

Cretaceous plutons, mostly intermediate to silicic
Jurassic marine and continental strata

1| Mesozoic metamorphic rocks

- Mafic and ultramafic rocks

Note: Geologic information from References 827, 492, and 397

2.5.1-313 Revision 2




Turkey Point Units 6 & 7
COL Application
Part 2 — FSAR

Figure 2.5.1-202 Tectonic Map of the Northern Caribbean-North America Plate Boundary (Sheet 1 of 2)
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Figure 2.5.1-202 Tectonic Map of the Northern Caribbean-North America Plate Boundary (Sheet 2 of 2)
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Figure 2.5.1-203

Rodinia

TR, 1300- to 1000-million-year-old mobile belts

% Continents with paleomagnetic data (~750 million years ago)

COL Application
Part 2 — FSAR

Supercontinents Rodinia and Pangea

(a) The Rodinia supercontinent in the Mesoproterozoic
(revised). The revised or “new” Rodinia reconstruction at 750 Ma.
Compared to previous reconstructions, the positions of Australia, East
Antarctica, and Congo have been revised. North China is tentatively placed
north of Bakltica. Continental fragments and magmatic arcs (Avalonian,
Cadomian, and Timanian) along the southwestern margin of Rodinia were
welded onto West Africa, Amazonia, Baltica and Siberia in the Late
Precambrian.

Pangaea

(b) The Pangea supercontinent in the Late Permian. At the
time of its maximum extent, Pangea did not contain North and South China,
and new oceanic crust was formed along the eastern margin. Precambrian
terranes or continents often discussed in Rodinia reconstructions (but at dif-
ferent locations) are shown in yellow. Gondwana, in the Southern Hemi-
sphere, was formed ~550 million years ago. In the Northern Hemisphere, the
earlier terranes of Laurentia, Avalonia, and Baltica combined in the Early De-
vonian (418 to 400 million years ago) to form Laurussia. Gondwana and
Laurus later collided to form Pangea.

Modified from Reference 759
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Figure 2.5.1-204 Alleghanian Oblique Rotational Collision between Laurentia and Gondwana
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Notes:
Red lines and symbols indicate feature is active in the time interval shown.

(A) Initial contact between Gondwana and Laurentia occurred in late Early Carboniferous (late Mississippian), producing initially sinistral faulting in New England
followed immediately by dextral motion and pull-apart basins, then shedding of clastic sediments onto the continent, and Lackawanna-phase deformation.
Southward movement and rotation of Gondwana with respect to Laurentia in early Late Carboniferous (early Pennsylvanian) produced dextral motion throughout

orogen, waning of Lackawanna phase deformation, and greater dispersal of sediments onto the Laurentian foreland.
Continued clockwise rotation of Gondwana with respect to Laurentia during the Late Carboniferous closed the Theic ocean southward, bringing Gondwana into
head-on collision with Laurentia, and producing the first movement on the Blue Ridge-Piedmont mega-thrust sheet.

Early Permian head-on collision of Gondwana with Laurentia produced major transport on Blue Ridge-Piedmont mega-thrust sheet that drove foreland fold-thrust
belt deformation (Valley and Ridge and Plateau) ahead of it.

(B)
(©)

(D)

Source: Reference 795
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Figure 2.5.1-205 Interpreted Basement Map of Florida

Alternate geometry of Suwannee
Suwannee suture Q asuture

L
o

Explanation

Basement Terrane

m Brunswick-Altamaha Magnetic Anomaly

- Mesozoic, continental sedimentary rocks and diabase intrusions

- Jurassic, volcanic sequence

20N - Basalt, granite, agglomerate, and serpentinite in SW Alabama

|: Suwannee terrane, Paleozoic sedimentary suite

- Suwannee terrane, Osceola Granite

Suwannee terrane, calc-alkaline, felsic, low-grade metaigneous suite
(Osceola volcanic complex)

- Suwannee terrane, high-grade metamorphic rocks
(St. Lucie metamorphic complex)

s 200 Miles

I
200 Kilometers

o —— O

Modified from: References 206, 337, and 338.
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Figure 2.5.1-206 Tectonic Plate Reconstructions of Gulf of Mexico and Caribbean Region
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Note: Red circle is the approximate location of the 200-mile radius site region

Modified from Reference 696
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Figure 2.5.1-207 Reconstruction of the Caribbean
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Notes:
(a) Reconstruction of the Caribbean region at 118 Ma
(b) Reconstruction of the Caribbean region at 83 Ma
MSM = Mohave-Sonora megashear, TMVB = Trans-Mexican volcanic belt, EAFZ = eastern Andean fault zone

Modified from Reference 782
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Figure 2.5.1-208 Interpretation of Seismic Line across Bahama Platform and Blake-Bahamas Basin
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Note: See Figure 2.5.1-243 for the location and log of the Great Isaac Well 1.

Modified from: Reference 307
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Figure 2.5.1-209 Seismic Line Interpretation of Cuba Foreland Basin, offshore west Cuba
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Modified from: Reference 482
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Figure 2.5.1-210 Physiographic Features of Northern Caribbean-North America Plate Boundary (Sheet 1 of 2)
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Figure 2.5.1-210 Physiographic Features of Northern Caribbean-North America Plate Boundary (Sheet 2 of 2)
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Figure 2.5.1-211 Deep Sea Drilling Locations
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Explanation

Gulf of
Mexico

ATLANTIC OCEAN ) .
Yk Turkey Point Units 687

77,537 e /. Deep Sea Drilling Project Leg #, Site #
F A

@ Offshore Drilling Project Leg #, Site #
data sources:
Deep Sea Drilling Project - deepseadrilling.org
Offshore Drilling Project - odplegacy.org

Depth (m)

0
20°N l
-8497

157152
15,451

165, 999 0 200 mi
15,154 ok . - 0 200 km
A .

bathymetry data source: GEBCO

Source of DSDP location coordinates: Reference 802
Source of ODP location coordinates: Reference 803
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Figure 2.5.1-212 Climate Change Parameters - Past 600 My
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Modified from: Reference 761
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Figure 2.5.1-213 Caribbean Currents Driven by the
Great Ocean Conveyor Belt

Note: The Antilles Current flows northeast around the Bahama Bank. The Caribbean Current enters the Caribbean
through a series of narrow passages and continues into the Gulf of Mexico as the Loop Current, finally exiting
through the Florida Straits as the Florida Current. The Florida Current rejoins the Antilles Current and together
form the Gulf Stream. The Gulf Stream then moves warm, salty water north along the U.S. East Coast and then
toward Europe, before it transitions into the North Atlantic Current and heads north. As this water reaches higher
latitudes, it releases heat to the atmosphere, tempering winters in the North Atlantic region and leaving behind
saltier, cooler, and denser waters. These transformed waters sink to the depths and form the Deep Western
Boundary Current, which flows southward along the East Coast-beneath the northward-flowing Gulf Stream-and
into the South Atlantic.

Source: Reference 821
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Figure 2.5.1-214 Bathymetry of the Florida Coast
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Figure 2.5.1-215 Schematic lllustrating the Geologic Development of the
Caribbean Crust
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Notes:

(a) Proto-Caribbean oceanic crust formed by seafloor spreading in Late Jurassic-Early Cretaceous time in the
eastern Pacific.

(b) Widespread and rapid eruption of basaltic flows in concert with extension and thinning of the 'old' plate. The
plate was thickened by at least two stages of basalt flows. The large divergent volcanic wedge observed
along the rough-smooth B" boundary, is coincident with the abrupt shoaling of Moho, and appear to be
bounded by a large northwest-dipping fault system.

(c) Minor extensional deformation across the Venezuelan Basin continued after magmatic thickening of crust as
indicated by faulted and rotated basalt flows. The location of major extensional deformation migrated through
time from the Venezuelan Basin to the western flank of the Beata Ridge. The extensional unloading of the
footwall caused uplift and rotation of the Beata Ridge and collapse of the hanging wall (i.e., Hess
Escarpment).

Modified from: Reference 253
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in the Venezuelan Basin

Interpreted Transition from Normal Oceanic Crust to Oceanic Plateau
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Note: Shows interpretation of major horizons of the Venezuelan Basin in multichannel seismic line 1293 in two-way time (top) and converted thicknesses (bottom)
using averaged sonobuoy velocities.

Modified from: Reference 255
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Figure 2.5.1-217 Physiography of Florida
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Modified from References 265 and 266
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Figure 2.5.1-218 Suwannee Channel System

Modified from: Reference 388
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Figure 2.5.1-219 Ancient Florida Coastlines
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Source: Reference 266
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Figure 2.5.1-220 Terraces and Shorelines of Florida
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Modified from: Reference 261
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CaC03 + Hy0 + €07 —-> Ca?* + 2HCO3

® Bacterial and root respiration in
the soil increase pC0y

® As pCOy increases, so do
dissolution rates

Tropical latitudes = high evapotranspiration
+well developed soil
+ high atm. pC02

=KARST
(Yucatan, Caribbean, Florida, South China...)

DEPTH (M)
~

(a) Carbonate dissolution process
and karst formation

Modified from: Reference 760

Figure 2.5.1-221
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Karstification Process
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Figure 2.5.1-222 Sinkhole Type, Development, and Distribution
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| [ 1 Areal. Bare or thinly covered limestone. Sinkholes are few, generally shallow 14N
and broad, and develop gradually. Solution sinkholes dominate.
[:] Area |l. Cover is 30 to 200 feet thick. Consists mainly of incohesive and permeable
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\:] Area |ll. Cover is 30 to 200 feet thick. Consists mainly of cohesive clayey sediments
of low permeability. Sinkholes are most numerous, of varying size, and develop
abruptly. Cover-collapse sinkholes dominate.
E Area |V. Cover is more than 200 feet thick. Consists of cohesive sediments
interlayed with discontinuous carbonate beds. Sinkholes are very few, but several
large diameter, deep sinkholes occur. Cover-collapse sinkholes dominate.
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Data source: Reference 264
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Figure 2.5.1-223 The Caribbean Carbonate Crash and Initiation of the Modern Global
Thermohaline Ocean Circulation
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Caribbean Paleo-Reconstruction
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Modified from: Reference 879
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Figure 2.5.1-224 Cross Section of the Florida/Bahama Platform Showing Range of Thickness of Carbonate
Rocks Covering Basement Rocks
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Note: Peninsular Arch forms the backbone of peninsular Florida. About 4 kilometers (2.5 miles) of shallow water carbonates underlie portions of the site area. This
figure shows that the west Florida shelf is a low-gradient carbonate ramp.

Source: Reference 764

2.5.1-338 Revision 2




Turkey Point Units 6 & 7
COL Application
Part 2 — FSAR

Figure 2.5.1-225 Facies Distribution across the West-Central Florida Inner Shelf
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Note: Deposits along the coast are predominantly comprise quartz-rich sediments but contain a skeletal carbonate component. Just offshore, the skeletal components
increase so that the inner shelf lies within the mixed quartz and carbonate zone. Further to the west out onto the shelf and upper slope, the carbonate content
increases and belts of different carbonate constituents, including mollusks, algae, ooids and foraminifera, appear with broad transitions between the belts.

Source: Reference 764
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Figure 2.5.1-226 Cape Fear Landslide and the Blake Ridge Salt Diapir
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(I) Three-dimensional view of the Cape
Fear Slide from the south,assuming a van-
tage point near the Blake Ridge Diapir and
looking along the strike of the normal fault
(black line with tick marks). The solid black
lines show the locations of interpreted
cross sections bb’, cc’, and dd’ (Figures |l,
[1l, and IV, respectively). Although Figures
Il through IV correspond to different parts
of the fault, they also serve as a proxy for
the impact of salt migration along the
normal fault over time: The northernmost

profile (dd’) captures the most advanced
stage of salt intrusion, and the southern-
most profile captures the least (bb’).

(I) Cross section coincident with Cape
Fear Slide line 59, where the normal fault
is observed. This likely represents the con-

figuration of slumps (green), salt
(hatched), and the normal fault at the
Cape Fear Slide before sliding initiated.
(1) As normal faulting progressed, salt
began to evacuate the subsurface, result-
ing in slope steepening along the down-

dropped portion of the fault and some slid-

v ing.
L (IV) Continued salt extrusion resulted in
even further steepening, perpetuating
Y/ /‘ mass wasting at the site and eventually
L e e A «] leading to breaching of the salt structure.

Notes:
(a) Source: Reference 302
Modified from: Reference 323

(b)
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Figure 2.5.1-227 Physiography of Cuba
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*Note: The from the ETOPO2, which is a 2-minute gridded global
relief model of the Earth and a product ofthe National Oceanic and Atmospheric Administration (NOAA).

**Note: The land are i lated from the Advanced Spaceborne Thermal Emission
and Reflection Radiometer (ASTER) global digital elevation model. ASTER GDEM is a product of METI and NASA.
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Figure 2.5.1-228 Paleozoic to Mesozoic Stratigraphy of Florida

APPROXIMATE
ERA SYSTEM [ SERIES STRATIGRAPHIC UNIT LITHOLOGY THICKNESS (ft)
UPPER Pine Key Formation chalk, Is, dol 3000
23 - Corkscrew Swamp Fm 450
‘S & 0| RookeryBayFm Is with anhyd & dol 500
Zz  O| Panther Camp Fm 350
ﬁ i~ Dollar Bay Fm Is w. dol & anhyd 450-620
» 88 g Gordon Pass Fm | _anhyd w. Is & dol 475
8 O Marco Junction Fm Is w. dol & anhyd 350
L c Rattlesnake
&,:) s § §' Hammock Fm anhyd w. Is & dol 600
& o § x (5 |__Lake Trafford Fm Is with anhyd, dol 150
0o x e Sunniland Fm Is with dol & anhyd 200-300
8 < o Punta Gorda
2 S - Anhydrite salt with anhyd & dol 800
= n . anhyd, Is, dol 210
] Lehigh Acres
B Eormation Is, dol, brown dol zone 300
O sh 200
Pumpkin Bay Formation i}
anhyd with Is 1200
Bone Island Formation Is with anhyd & dol 1300-2000
o UPPER Wood River Formation dol, anhyd, salt, ss 1700-2100
7
< felsic rocks: rhyolite
& MIDDLE o ryy
= basement volcanic province Y
LOWER mafic volcanics:
basalt & diabase
Paleozoic quartzitic sandstone &
o [} sedimentary Suite black shale
2 g St. Lucie Meta- pan-African
8 G g morphic Complex metamorphics
4 % ﬁ Osceola Granite granite
& @ Osceola volcanic
complex felsic meta-igneous
TOTAL THICKNESS 12,750-14,300
Abbreviations:
Is = limestone ss = sandstone sh = shale

dol = dolomite Fm = formation

Sources: References 352, 339, 338, 354, 366, 467, and 470

anhyd = anhydrite
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