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2.12.5 Component Analyses Using Complete Model

The following section describes the full model analyses of the TB-1 containment vessel and its
detailed components. As discussed in.Section 1, the components within the titanium T-Ampoule
consist of either cast plutonium (Pu) cylinders with a mass of 831 g or 731 g, small sample
containers (SC-1), or medium sample containers (SC-2) containing Pu material or a Be
composite material. Each component will be analyzed for three orientations, the end-on impact,
the side-on impact, and the CGOC impact for the high-speed aircraft impact. For the hypothetical
accident conditions (HAC) dynamic crush analyses, the same sets of analyses were performed.

In the NCT 4-ft-drop scenario, only the side and end impact for the SC-1 and SC-2 cases were
analyzed to assure the positioning of the sample containers did not require adjustment for the
HAC and high-speed aircraft impact analyses.

2.12.5.1 Finite Element Model

2.12.5.1.1 Common Model Components

The common components of the models are presented in Figures 2-65 and 2-66. The T-Ampoule
1s designed to fit snugly inside the TB-1 and to be loaded primarily in compression during
impact. The finite element models of the T-Ampoule and TB-1 have a plane of symmetry along
the center axis of the TB-1 (Z=0). Figure 2-65 shows the T-Ampoule and the TB-1 model for
the top impact orientation. A hexagonal mesh with .015-1n. elements 1s used to model the top of
the T-Ampoule. This results in four elements through the thickness of the T-Ampoule shell.
Since the primary strains are compressive, this allows for a time step which keeps the problem
tractable, while providing adequate resolution of the T-Ampoule strain field. The mesh of the
TB-1 is refined in the upper region with a hexagonal element size of 0.040 in. to adequately
model the contact between the T-Ampoule top and the TB-1. The titanium Ring Filler, which
fills the small void between the T-Ampoule and the TB-1 near the bottom of the TB-1 Iid, is
installed during preparations for shipment to provide uniform support to the ellipsoid
T-Ampoule. As shown in Figure 2-66, the Ring Filler is not modeled explicitly, but 1s modeled
as an integral part of the TB-1 body, with PH13-8-Mo material properties. Although the elastic
moduli do differ, the yield strengths of the 13-8 (141 ksi) vs. Ti-6-4 (141.7 ksi) materials do not
differ significantly, and this small gap-filling component was simplified to be continuous with
the TB-1 since it provides no additional strength and only provides a smoothed inner surface for
contact with the T-Ampoule and its contents. The stresses in this region are monitored to ensure
that they do not threaten the integrity of the Ring Filler. For end impacts, the lower region of the
TB-1 is modeled with a coarser mesh; for side impacts, the non-impact side has the coarser
mesh. The TB-1 halves are tied together using the tied contact algorithm.

In the TB-1 finite element model, the lid and the body are modeled as one unit. The bolted
connection is not modeled. There is a separate analytical bolt analysis in Section 2.12.6. This
analysis uses the peak impulse force from the component finite element models to determine the
bolt loading.

The model developed for the side-on impact analyses is presented in Figure 2-66. The model is
similar to the top impact model except that the mesh for the TB-1 is refined on the sides of the
component. The mesh discretization of the T-Ampoule top and T-Ampoule bottom is the same
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0.015-in. hexagonal element size as that used in the end-on impact analysis. The thread region,
where the top and bottom of the T-Ampoule are joined, is modeled using coincident nodes.

The SC-1 and SC-2 are fit inside a support structure within the T-Ampoule. This structure,
shown in Figures 2-67 and 2-68, is constructed from Titanium 6A1-4V (see Section 2.12.4.14).
The support structure consists of two dishes placed on each end of the T-Ampoule for vertical
positioning (with a thickness that varies from 0.055 in. at the edge to 0.025 in. at the center), 4
upper and lower legs which centrally position the containers within the T-Ampoule (with a
thickness of 0.063 in.), two rings which hold the legs in place (0.094 in. diameter), and either one
or two spacers for the SC-1 and SC-2, respectively to separate the containers (with a thickness of
0.043 in. and a height of 0.749 in. and 1.008 in., respectively). The legs and rings were meshed
to have 4 elements through the thickness, while the dishes have 5 elements through the thickness
(see Figure 2-69 for mesh refinement). Figure 2-67 shows the support structure as used for the
0° rotated models while Figure 2-68 shows the structure used for the 45° rotated models. These
two orientations were used to ensure worst cases analyses were performed in terms of loads on
the support structure and loads on the T-Ampoule.

As detailed in Section 2.12.4.9, the high-strength PH13-8Mo stainless steel TB-1 1s modeled
using an elastic-plastic, power-law constitutive model to assure accurate capture of denting
internally within the TB-1. The Ti-6Al-4V T-Ampoule and support structure are modeled using
an elastic-plastic, power-law constitutive model.

The PRONTO3D code used in this analysis uses the Flanagan-Belytschko hexahedral element
with one center integration point. The results are presented with contour plots showing element
integration point values; they are not smoothed contours of extrapolated nodal values. Although
the plots will look rough, the integration point strains are the primary variable of concern, since
these values will be used in the strain locus plots. Therefore, integration point contours will be
used throughout the analysis.

Included in the high speed aircraft analysis results and the HAC results are plots of kinetic energy
versus time. These were included to demonstrate that the peak loads were captured in the analyses.
The models were all run without built-in units, thus the kinetic energy plots presented for the high
speed aircraft analyses and HAC analyses do not have labels. The x-axis of these plots, time, is in
units of seconds. The y-axis of these plots, kinetic energy, is in units of pounds inches.
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Figure 2-67. Support Structure with 0° Rotation and Spacers for SC-1
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Figure 2-68. Support Structure with 45° Rotation and Spacer for SC-2
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Figure 2-69. Mesh Refinement in Support Structure with
0° Rotation and Spacer for SC-1

2.12.5.2 Component Models

Models of the content components consist of an 831-g plutonium metal hollow cylinder, a 731-g
plutonium metal hollow cylinder, a small sample container (SC-1) and a medium sample
container (SC-2). The sample containers will be used to transport Pu and a Pu/Be composite.
These components are presented in Figures 2-70 through 2-73. The 831-g plutonium metal
hollow cylinder shown in Figure 2-70 has a 2.51-in. diameter and a 2.903-1n. length. The wall
thickness 1s 0.118 in. It is modeled using 0.018 in. hexahedral elements, which results in 6
elements through the thickness. The material of the cylinder 1s modeled as alpha-plutonium as
described in Section 2.12.4.16. The 731-g plutonium metal hollow cylinder model is very
similar to the 831-g model, except that the length 1s reduced to account for the reduced material
weight. It 1s also modeled as an alpha-plutonium material.

The finite element models for the sample containers are also similar to each other. The SC-1
model shown in Figure 2-72 is 3 in. in diameter and 2 in. high. The shell thickness 1s 0.065 in.
The container 1s meshed with 0.020-1n. hexagonal elements, which results in 3 elements through
the shell thickness. The model is shown with the 0.88-in. diameter X 0.88-in. long right circular
cylinder, which is modeled as delta-plutonium and has a mass of 174 g. Note that the Pu
cylinder is located in the bottom of the sample container, which is farthest away from the
T-Ampoule for a top-end impact (producing the highest net velocity difference between the two
upon impact, and thus the highest load to the T-Ampoule). For a right side impact case, the Pu
cylinder would be located on the far left side of the sample container, for the same reason. The
contents of the sample containers are packed in the T-Ampoule with the support structure shown
in Figures 2-67 and 2-68. The SC-2, shown in Figure 2-73, has the same basic geometry and
mesh as the SC-1. The length of the sidewall has been lengthened by 1 in., and the mass of the
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contents has been increased. The contents of the SC-2 are modeled using a 1.1 in. diameter X
1.1-in. long right circular cylinder, which has a mass of 338 g.

2.903 inch

b
\' 0.118 inch
1

2.510 inch

Figure 2-70. 831-g Cylinder Finite Element Model
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Figure 2-71. 731-g Cylinder Finite Element Model
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Figure 2-72. Finite Element Model of SC-1 with Pu Cylinder Contents
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Figure 2-73. Finite Element Model of SC-2 with Pu Cylinder Contents
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2.12.5.3 Normal Conditions of Transport Displacement Analyses

The plutonium contents in the sample containers will be packaged in the T-Ampoule using the
support structure shown in Figures 2-67 and 2-68. Under the NCT free drop, the support
structure integrity must be assessed to assure the positioning of the sample containers for HAC
and high-speed crash need not be adjusted. Therefore, the SC-1 and SC-2 were evaluated for
4-ft-drop end and side impacts. Under side impact, the model was oriented with the support
structure at 0 and 45 degrees.

These analyses were completed for only the sample container components. The design of the
support structure is meant to prevent the sample containers from shifting during normal operating
conditions. If the Pu and Pu/Be-composite cylinders did shift to the outer edge of the T-Ampoule,
and subsequently traveled across its entire width during an HAC or high speed impact, this would
increase loads on the T-Ampoule and TB-1 vessel. Due to the thin walls and open shape of the
hollow cylinder components which are extremely soft, the positioning of the plutonium metal
hollow cylinders did not need restriction, and no support structure was designed to cradle the
cylinders. The Ta foil packing material for the plutonium metal hollow cylinders and the sample
container contents was conservatively neglected to allow for bounding higher net impact velocities
between contents and T-Ampoule wall, and to conservatively omit any energy absorbing or load
spreading from the packing material. In the high-speed impact analyses, the cylinders were
positioned to allow for the maximum displacement (most conservative with the largest velocity
difference between the cylinder and T-Ampoule at time of contact). The NCT analyses were
performed to assure the positioning of the sample containers does not change after the 4-ft-drop.
This was done by confirming the support structure does not undergo large plastic deformation
throughout its thickness.

Three examples of the models created to determine the behavior of the support structure and
sample containers when subjected to the NCT (10 CFR 71.71) performance tests are shown in
Figures 2-74 through 2-76. Not shown are the SC-1 side impact at 45 degrees, the SC-2 side
impact at 0 degrees, and the SC-2 end impact at 0 degrees, due to their similarity to the models
shown. The support structure, sample containers, and plutonium are given an initial velocity of
192 in/sec, corresponding to the NCT regulatory condition. The models are half symmetry
models, with the plane of symmetry passing through the center of the TB-1.

Au20A

Figure 2-74. NCT SC-2 Side Impact with Support Structure Rotated 45°
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2.12.5.3.1 NCT End Drop Analysis

The models created for the 4-ft-drop end impact for the SC-1 and SC-2 at time 0 are shown in
Figures 2-76 and 2-77, respectively. The post-4-ft-drop models are shown in Figures 2-78 and
2-79, although almost no discernable difference can be seen since the package overpack lid ring
1s only slightly dented. The kinetic energy histories for these two impacts are shown in Figures
2-80 and 2-81, indicating that sufficient analysis time transpired to capture the entire impact
event, and the PAT-1 package actually bounced after impact. As shown in Figures 2-82 through
2-86 and Table 2-16, the minimal plasticity (less than 4%, and only in small localized areas of
internal or external corners) observed in the titantum support structure, or cradle, verifies that the
overall structure remained essentially elastic and the original position of the sample containers
would remain unchanged.

Aydojap

Figure 2-77. NCT SC-2 End Impact with Support Structure Rotated 0°
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Figure 2-78. NCT SC-1 End Impact with Support
Structure Rotated 0° — Final Displacement

Figure 2-79. NCT SC-2 End Impact with Support
Structure Rotated 0° — Final Displacement
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Figure 2-80. NCT SC-1 End Impact with Support Structure
Rotated 0° - Kinetic Energy Time History
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Figure 2-81. NCT SC-2 End Impact with Support Structure
Rotated 0° - Kinetic Energy Time History
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Figure 2-83. NCT SC-1 End Impact with Support Structure
Rotated 0° - EQPS in Top Legs
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Figure 2-84. NCT SC-1 End Impact with Support Structure
Rotated 0° — EQPS in Top Dish

Figure 2-85. NCT SC-2 End Impact with Support Structure
Rotated 0° — EQPS in Bottom Legs
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Figure 2-86. NCT SC-2 End Impact with Support Structure
Rotated 0° — EQPS in Top Dish

Table 2-16. Maximum Strains in 4 ft End Drop Models

Model/Part EQPS
SC-1 End Impact

Bottom Legs 1.52e-2

Upper Legs 3.75e-4

Upper Dish 2.42e-2
SC-2 End Impact

Bottom Legs 1.12e-2

Upper Dish 3.90e-2

2.12.5.3.2 NCT Side Drop Analysis

The models created for the 4-ft-drop side impact for the SC-1 AND SC-2 (0 and 45 degree
rotated) at time 0 are shown in Figure 2-87 and Figure 2-88. The post-4-ft-drop models are
shown in Figure 2-89 through Figure 2-92, and for these side impact cases more localized
denting of the overpack lid rings 1s visible than for the end impact cases. The kinetic energy
histories for these four impacts are shown in Figure 2-93 through Figure 2-96, indicating that
sufficient analysis time transpired to capture the entire impact event, and the PAT-1 package
actually bounced after impact. As shown in Figure 2-97 through Figure 2-105 and Table 2-17,
the minimal plasticity (less than 7% and only in small localized areas of internal or external
corners) observed in the titanium support structure, or inner cradle, verifies that the overall
structure remained essentially elastic and the original position of the sample containers would
remain unchanged. The zero plasticity post-drop condition of the T-Ampoule is shown in Figure
2-106, as well as zero plasticity in the TB-1 in Figure 2-107 and extremely low through-
thickness stress intensities in Figure 2-108, below ASME limits shown in Table 2-4.
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Figure 2-92. NCT SC-2 Side Impact with Support Structure Rotated 0° - Final
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Figure 2-93. NCT SC-1 Side Impact with Support Structure
Rotated 45° - Kinetic Energy Time History
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Rotated 0° — Kinetic Energy Time History

T T T T T T T T
\\
AN
12 5\ i
10 —
\
\
_ 8 |
by \\
- 5,
z 5
¢ eF \ a
AN
|
El \\ —
N
A
2L . 4
.
\\ N
“\_\\ 'ﬂ//'
oh ] ! ] P ]
0.0 1.0 2.0 7.0 4.0 5.0 6.0 7.0
TIME (»107%)

Figure 2-96. NCT SC-2 Side Impact with Support Structure
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Figure 2-97. NCT SC-1 Side Impact with Support Structure
Rotated 45° — EQPS in Bottom Dish
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Figure 2-98. NCT SC-1 Side Impact with Support Structure
Rotated 45° — EQPS in Top Legs
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Figure 2-99. NCT SC-1 Side Impact with Support Structure
Rotated 45° — EQPS in Top Dish

Figure 2-100. NCT SC-2 Side Impact with Support Structure
Rotated 45° — EQPS in Bottom Dish
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Figure 2-101. NCT SC-2 Side Impact with Support Structure
Rotated 45° — EQPS in Top Legs

[l
Q
3
w

0.00E-3
2.50E-3
5.00E-3
l (2882
B 12.50E-3
15.00E-3
*=149.120-3
' Figure 2-102. NCT SC-2 Side Impact with Support Structure
‘ Rotated 45° — EQPS in Top Dish

2-127




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev.1

,_—bwﬁ\ \

EOFS

WO TN O
ey e s
o Yo Y o Y Y )
0000000
{o e [ oo T Faa oo
S RN N S R N §
R R IR TOCTRC PR T

PO s s

#= 22,

w0

7B~

Figure 2-103. NCT SC-1 Side Impact with Support Structure
Rotated 0° — EQPS in Bottom Legs
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Figure 2-104. NCT SC-1 Side Impact with Support Structure
Rotated 0° — EQPS in Top Dish
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Figure 2-105. NCT SC-2 Side Impact with Support Structure
Rotated 0° — EQPS in Bottom Legs

Table 2-17. Maximum Strains in 4 ft Side Drop Models

Model/Part EQPS
SC-1 45° Side Impact
Bottom Dish 2.61e-2
Upper Legs 6.28e-2
Upper Dish 1.30e-2
SC-2 45° Side Impact
Bottom Dish 291e-2
Upper Legs 6.86¢-2
Upper Dish 1.41e-2
SC-1 0° Side Impact
Bottom Legs 2.29¢-2
Upper Dish 1.82e-3
SC-2 0° Side Impact
Bottom Legs 2.22e-2

2-129




Rev.1

Docket No. 71-0361

PAT-1 Safety Analysis Report Addendum

Coooooo
OooOoCOoOn
ooOooOQoO
Ooooooo

Figure 2-106. NCT SC-2 Side Impact with Support Structure Rotated 45° -

EQPS in T-Ampoule

S
—
-~

/

e
-
~—
e

—
i

QOOOOO
o v Ham fa § e f e} i}
COCOGoOo

i~
.
o,
e
-
~—

Figure 2-107. NCT SC-2 Side Impact with Support Structure Rotated 45° - EQPS in TB-1
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Figure 2-108. NCT SC-2 Side Impact with Support Structure Rotated 45° - Tresca Stress
in TB-1

2.12.5.3.1 NCT End and Side Drop Analysis Summary

The two previous sections highlight the fact that the position of the contents within their sample
containers and support cradle is essentially unchanged after 4-ft NCT drops. The titanium Inner
Cradle remains essentially undeformed and the contents’ positions no farther from the T-
Ampoule than pre-drop, as well as no plasticity in the TB-1 and the T-Ampoule, all means that
HAC and aircraft impact analyses are justified in assuming an undamaged PAT-1 package and
contents before those events.

2.12.5.4 Aircraft Accident Impact Analyses

Detailed PAT-1 package models identical to those shown in the previous NCT section, except
for neglecting the rolled ring lid ends, were analyzed to determine the response of the
T-Ampoule and TB-1 when subjected to the loading of 10 CFR 71.74 (accident conditions for air
transport of plutonium). Each combination of package orientation (lid end, side, and CG-over-
corner) and contents was analyzed at an initial velocity of 422 ft/sec and each package impacts
onto an analytically unyielding target.

The TB-1 was shown in the SAR ' aircraft impact tests to remain elastic and maintain
containment. With similar mass contents, similar TB-1 response would be expected, excepting
the possibility of minor localized denting due to more dense contents (solid Pu vs. oxide
powder). Effective or von Mises stresses (which capture three-dimensional stress states well and
1s more conservative than Tresca stress to show avoidance of yielding) were calculated and an
acceptance criterion of “below through-thickness yielding” used to demonstrate similar TB-1

2-131




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev.l

behavior as in the original regulatory testing. This also means zero plasticity n the seal area of
the TB-1, ensuring similar containment requirements performance of the containment vessel.

A total of twenty-seven high speed impact analyses were conducted for the five potential
contents in various orientations; the analyses are listed below in Table 2-18. In the hollow-
cyhinder (ER cylinder) component models, as well as the sample container models, no credit 1s
taken for the positioning of the cylinders with the tantalum packing foil. Each form contents are
assumed to be unconstrained and are placed in the worst orientation and most severe location for
each impact. The delta-plutonium in the sample containers is relatively soft and has a greater
degree of plasticity, so although its location will affect T-Ampoule loading, its local orientation
would not. However, the beryllium composite cylinders are much harder and stronger, so their
orientation is always rotated such that they present a sharp corner (CGOC, actually) towards the
normal surface of the T-Ampoule, parallel with the impact direction.

Table 2-18. Aircraft Accident Impact Analyses, Components, and Orientations

Run

No Component Submeodel Orientation

1 831 g Plutonium Metal Hollow | Bottom position, top impact
Cylinder, alpha Pu

2 831 g Plutonium Metal Hollow | Bottom position (angled), top impact
Cylinder, alpha Pu

3 831 g Plutonium Metal Hollow | Bottom position (angled), CGOC impact
Cylinder, alpha Pu

4 831 g Plutonium Metal Hollow | Far side position, side impact
Cylinder, alpha Pu

5 831 g Plutonium Metal Hollow | Far side position (angled), side impact
Cylinder, alpha Pu

6 | 731 g Plutonium Metal Hollow | Bottom position, top impact
Cylinder, alpha Pu

7 731 g Plutonium Metal Hollow | Bottom position (angled), top impact
Cylinder, alpha Pu

8 731 g Plutonium Metal Hollow | Bottom position (angled), CGOC impact
Cylinder, alpha Pu

9 731 g Plutonium Metal Hollow | Far side position, side impact
Cylinder, alpha Pu

10 731 g Plutonium Metal Hollow | Far side position (angled), side impact
Cylinder, alpha Pu

11 |SC-1-Pu Bottom position, support structure 0°, top impact

12 SC-1 — Pu Far side position, support structure 0°,side impact

13 {SC-1-Pu Far side position, support structure 45°, side impact
14 SC-1 - Pu Bottom position, support structure 0°, CGOC impact

15. [SC-1-Pu Bottom position, support structure 45°, CGOC impact
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. Table 2-18. Aircraft Accident Impact Analyses, Components, and Orientations (Continued)
I;l:)n Component Submodel Orientation
16 SC-2 -Pu Bottom position, support structure 0°, top impact
17 SC-2 -Pu Far side position, support structure 0°,side impact
18 SC-2-Pu Far side position, support structure 45°, side impact
19 SC-2—-Pu Bottom position, support structure 0°, CGOC impact
20 SC-2 —Pu Bottom position, support structure 45°, CGOC impact
21 SC-1 - Be Bottom position, angled Be, support structure 0°, top impact
22 SC-1-Be Far side position, angled Be, support structure 0°, side impact
23 SC-1-Be Far side position, angled Be, support structure 45°, side impact
24 | SC-1-Be Bottom position, angled Be, support structure 0°, CGOC
impact
25 SC-1-Be Bottom position, angled Be, support structure 45°, CGOC
impact
26 SC-2 —Pu Far side position, support structure 45°, side impact, friction 0.4
27 SC-2-Pu Far side position, support structure 45°, side impact, friction 0.2
. 2.12.5.4.1 ER Cylinder Analyses

Ten separate plutonium metal hollow cylinder, high-speed impact analyses were conducted.
There are several inherent conservatisms in this model:

1.

The tantalum foil used to package the plutonium metal hollow cylinders inside the T-
Ampoule 1s not modeled. The small quantity of energy it would absorb, and load
spreading it would provide, 1s conservatively ignored. In addition, any initial positioning
that would be provided by the foil is also ignored. Each analysis is run with the
plutonium metal hollow cylinder in a location farthest from the impact surface.

The Pu material is modeled using a power-law hardening constitutive model without
fracture. Hecker and Stevens® present two curves for alpha-plutonium; one curve depicts
a very brittle material, and the other represents a finer-grain material with more ductility.
To maximize the energy and impulse load applied to the T-Ampoule wall, the plutonium
metal was modeled as a continuously hardening material that does not fracture, which is
extremely conservative in terms of the reaction loading of the T-Ampoule. This
conservatism (stronger alpha material, continuously hardening) allows for the possibility
that the cylinder could also consist of delta Pu, if transport of that material were desired
instead.

The dimensions of the plutonium metal hollow cylinders are conservatively assumed to
be the “strongest” possible. Within the bounds of LANL-defined tolerances of
machining these cylinders, they are the most resistant to buckling (shortest, thickest wall,
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maximum OD and minimum ID, see Figures 2-70and 2-71), which allows for the greatest
loading of the T-Ampoule.

2.12.5.4.2 Run 1 - 831-g Plutonium Metal Hollow Cylinder with Bottom Initial Location and a
Top Impact

The top end impact model for the plutonium metal hollow cylinder, oriented axially (with the
impact direction, as opposed to angled) is shown in Figure 2-109. Note that the cylinder is
located at the bottom of the T-Ampoule so that its net impact velocity with the top of the T-
Ampoule is maximized. The post-impact deformation i1s shown in Figure 2-110 and its kinetic
energy history in Figure 2-111. Note the similar degree of overpack crush up as compared to the
certification test end impact analysis in Figure 2-12, despite the slightly reduced impact velocity
of 422 ft/sec versus the tested 445 ft/sec. The plutonium metal hollow cylinder exhibits
significant buckling, despite its conservatively “strongest shape” definition.

Equivalent Plastic Strain (EQPS) in the TB-1 vessel is shown in Figures 2-112 and 2-113 to be less
than 2.3%, and only in some localized outer contact regions with the redwood overpack. This
localized ring of plasticity in the top outer surface of the TB-1 1id 1s due to a minor contact over
closure between the TB-1 and the redwood; it is only a minor modeling artifact. This minor
modeling artifact 1s not a concern because even though 1t produces elevated localized stresses
and even miniscule plasticity, it does not increase through-thickness stresses or in any way
negatively affect the integrity of the containment vessel. The von Mises stresses (see Figures
2-114 and 2-115) peak at 147.5 ksi, just above the elevated-temperature minimum yield strength
for the TB-1 of 141 ksi, but more importantly, through-thickness TB-1 stress values are in the less-
than-50 ksi range, below yield. The time at which the peak value of the von Mises stress occurs
coincides with the peak value of the contact force (summed over the lid area). A plot of this force
as a function of time 1s shown in Figure 2-116. A maximum contact load of 66,000 Ibs 1s applied
to the inner surface of the TB-1 lid during the impact, which 1s below the 108,000 1b preload in the
bolts. No T-Ampoule elements exceeded the tested B-W strain locus, and the peak Tearing
Parameter value (see Table 2-11, High Velocity (Aircraft) Impact Analyses Peak Tearing
Parameter Values, run #1) of 0.0528 was below the cntical Tearing Parameter value of 1.012 for
Ti-6Al-4V.
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Figure 2-109. Finite Element Mesh for the 831-g, Plutonium Metal Hollow Cylinder,
Bottom Position, End Impact

Figure 2-110. Finite Element Mesh for the 831-g, Plutonium Metal Hollow Cylinder,
Bottom Position, End Impact — Final Displacement
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Figure 2-111. Kinetic Energy Time History for the 831-g,
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Figure 2-112. EQPS in the TB-1 for the 831-g,
ER Cylinder, Bottom Position, End Impact




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev.1

* L
&

?\
5

EOFS
0.000E-3
0.167E-3
0.333E-3
0.500E-3
0.667E-73

i 0.833E-3

- 1.000E-73

#= 22.17E-3
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Figure 2-114. von Mises Stress in the TB-1 for the 831-g Plutonium Metal Hollow
. Cylinder, Bottom Position, End Impact (Rotated Forward for Ease of Viewing)
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Figure 2-115. von Mises Stress in the TB-1 for the 831-g, Plutonium Metal Hollow
Cylinder, Bottom Position, End Impact (Rotated Backward for Ease of Viewing)
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2.12.5.4.3 Run 2 - 831-g Angled Cylinder with Bottom Initial Location and a Top Impact

The top end impact model for the plutonium metal hollow cylinder with angled orientation is
shown in Figure 2-117. The cylinder 1s located at the bottom of the T-Ampoule so that its net
impact velocity with the top of the T-Ampoule 1s maximized. The post-impact deformation is
shown in Figure 2-118 and its kinetic energy history in Figure 2-119. The plutonium metal
hollow cylinder deforms but maintains much of its original shape because of its conservatively
assumed “infinitely ductile,” with hardening material constitutive model definition (despite its
alpha Pu being a relatively brittle material in reality). If the plutonium metal hollow cylinder
were modeled as a brittle material with very low ductility, it would effectively shatter and
present a much less concentrated load on the T-Ampoule and TB-1.

Average stress-triaxiality versus EQPS is shown in Figures 2-120 and 2-121 for the 19 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at high stress
triaxiality and low EQPS. The Tearing Parameter values for these same 19 elements are shown
in Figure 2-122, and all are below the critical Tearing Parameter value of 1.012 for Ti-6Al-4V.
These elements are highlighted in red Figure 2-123, but note that these elements are still below
even the initiation of a ductile tear.

Peak EQPS in the TB-1 vessel is shown in Figures 2-124 and 2-125 to be about 2.4%, and only
in some localized outer contact regions with the redwood overpack (contact modeling artifact).
The von Mises stresses (see Figures 2-126 and 2-127) peak at 148.2 ksi, just above the elevated-
temperature minimum yield strength for the TB-1 of 141 ksi, but more importantly, through-
thickness TB-1 stress values are less than 50 ksi, below yield. The time at which the peak value
of the von Mises stress occurs coincides with the peak value of the contact force (summed over
the lid area). A plot of this force as a function of time is shown in Figure 2-128. A maximum
contact load of 54,509 Ibs 1s applied to the inner surface of the TB-1 lid during the impact.

Figure 2-117. Finite Element Mesh for the 831-g, Angled,
ER Cylinder, Bottom Position, End Impact
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Figure 2-118. Finite Element Mesh for the 831-g, Angled, ER,
Cylinder, Bottom Position, End Impact — Final Displacement
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Figure 2-120. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 831-g, Angled, Plutonium Metal Hollow Cylinder,

Bottom Position, End Impact
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Figure 2-121. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
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Figure 2-122. Graph of Tearing Parameter versus EQPS for Elements Exceeding the
Experimental Strain Locus for the 831-g, Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, End Impact

Figure 2-123. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, End Impact
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Figure 2-124. Plot of EQPS in the TB-1 for the 831-g Angled,
ER, Cylinder, Bottom Position, End Impact
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End Impact
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Figure 2-126. Plot of von Mises Stress in the TB-1 for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, End Impact
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Figure 2-127. Plot of von Mises Stress in the TB-1 for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, End Impact
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Sum of Contact Force in TB-1 Top for High Speed 831g Angled ER
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Figure 2-128. Plot of Contact Force in the TB-1 for the 831-g,
Angled Plutonium Metal Hollow Cylinder, Bottom Position, End Impact

2.12.5.4.4 Run 3 — 831-g Angled Plutonium Metal Hollow Cylinder with Bottom Initial Location
and a CGOC Impact

The lid end CG-over-corner impact model for the plutonium metal hollow cylinder 1s shown 1n
Figure 2-129. The cylinder 1s located at the bottom of the T-Ampoule so that its net impact
velocity with the top of the T-Ampoule 1s maximized. The post-impact deformation is shown in
Figure 2-130 and its kinetic energy history in Figure 2-131. The plutonium metal hollow
cylinder deforms slightly more than the previous case because of the slightly more side-impact-
like orientation but maintains much of its original shape because of its conservatively “infinitely
ductile” material constitutive model definition. If the plutonium metal hollow cylinder were
modeled as a brittle material with very low ductility, it would effectively shatter and present a
much less concentrated load on the T-Ampoule and TB-1.

Average stress-triaxiality versus EQPS is shown in Figures 2-132 and 2-133 for the 126 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at relatively
high stress triaxiality and low EQPS. The Tearing Parameter values for these same 126 elements
are shown in Figure 2-134 and all are still safely below the critical Tearing Parameter value of
1.012 for Ti-6Al-4V. These elements are highlighted in red in Figures 2-135 through 2-137, but
these elements are still below the critical value. Note that this impact analysis case produced the
highest value of Tearing Parameter, 0.6177, which still yields a minimum factor of safety of
1.012 divided by 0.6177 equals 1.64 against even the initiation of a ductile tear. With all the
analysis conservatisms in the model, the factor of safety 1s greater, and the T-Ampoule eutectic
barrier integrity is maintained.
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Peak EQPS in the TB-1 containment vessel is shown in Figures 2-138 and 2-139 to be about
18.5%, although this peak is only in a highly, localized, outer corner region where there 1s a
slight contact over closure issue with the redwood overpack. This is a minor modeling artifact
that produces localized plasticity that otherwise would not exist. It occurs when the redwood
compresses well into its “lock-up” phase and becomes analytically stiffer than i1t would
realistically be, due to limitations in the orthotropic crush constitutive model of the redwood.
Nonetheless, through-thickness plasticity is non-existent and the TB-1 integrity is maintained.
The von Mises stresses (see Figure 2-140) peak is 196 ksi (due to the localized redwood contact),
above the elevated-temperature minimum yield strength for the TB-1 of 141 ksi, but more
importantly, through-thickness TB-1 stress values are less than 35 ksi, below yield.

Figure 2-129. Finite Element Mesh for the 831-g, Angled,
ER Cylinder, Bottom Position, CGOC Impact
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Figure 2-132. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 831-g, Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, CGOC Impact
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Figure 2-133. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus (Zoomed in) for the 831-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, CGOC Impact
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Comparison Graph Tearing Parameter
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Figure 2-134. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 831-g Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, CGOC Impact

Figure 2-135. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, CGOC Impact
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Figure 2-136. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, CGOC Impact

Figure 2-137. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, CGOC Impact
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Figure 2-138. Plot of EQPS in the TB-1 for the 831-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, CGOC Impact
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Figure 2-140. Plot of von Mises Stress in the TB-1 for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, CGOC Impact
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2.12.5.4.5 Run 4 — 831-g Plutonium Metal Hollow Cylinder Side Impact

The side impact model for the hollow plutonium metal hollow cylinder is shown in Figure 2-141.
The cylinder is located at the far side of the T-Ampoule so that its net impact velocity with the
side of the T-Ampoule is maximized. The post-impact deformation is shown in Figure 2-142
and its kinetic energy history in Figure 2-143. The plutonium metal hollow cylinder deforms
much more than the previous case because of its weaker side-impact orientation.

Average stress-triaxiality versus EQPS is shown in Figures 2-144 and 2-145 for the 67 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at relatively
high stress triaxiality and low EQPS. The Tearing Parameter values for these same 67 elements
are shown in Figure 2-146 and all are still below the critical Tearing Parameter value of 1.012 for
Ti-6Al1-4V. These elements are highlighted in red in Figures 2-147 and 2-148, but these
elements are still below the critical value and do not indicate failure; T-Ampoule integrity is
maintained.

Peak EQPS in the TB-1 containment vessel is shown in Figures 2-149 and 2-150 to be about

27.4%, although this peak is only in a highly localized outer corner region where there is a slight

contact overclosure issue with the redwood overpack. A slight (<1% EQPS) dent is visible in

Figure 2-150 from the internal impact of the plutonium metal hollow cylinder with the TB-1 wall

(via the T-Ampoule). Through-thickness plasticity is non-existent and the TB-1 integrity 1s

maintained. The von Mises stresses (see Figures 2-151 and 2-152) peak at 222 ksi (due to the

localized redwood contact), which is above the elevated-temperature minimum yield strength for

the TB-1 of 141 ksi, but more importantly, through-thickness TB-1 stress values are less than

37.5 kst, below yield. ‘
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Figure 2-141. Finite Element Mesh for the 831-g, ER,
Cylinder, Far Side Position, Side Impact
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Figure 2-142. Finite Element Mesh for the 831-g, Plutonium Metal Hollow Cylinder, Far
Side Position, Side Impact — Final Displacement
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Figure 2-143. Kinetic Energy Time History for the 831-g,
ER, Cylinder, Far Side Position, Side Impact

Comparison Graph Avg. Stress Triaxiality
Titanium Impact Test and High Speed 831g Cylinder Full Model

E185990
— e EWB102
e E186214

— E186326
E186438
E186550
v E188662
E186774
E186886
e E186998
e EB710
i —EB7222
E187234
—— E 187446
——E187558
E187670
e E187782
E187894
188006
e E1818
E188230
- E191687
- a E319989
£319997
377044
" n EATTISE

. £377268
£377380
- -~ E3TT482
e E377604
——E377718

E£377828
E£405913

End Orientation with Side Impact

o =
== o
et

&
@
—
s

.

=
a

e
o

e
=)
.

Stress Triaxiality (Avg.)

1
e
N

)

)

1
e
F=3

= = = = StrainlLocus ——s——E164674

E186046
st 186158
E186270

E186382
E136494
£186606
E186718

— E196830
186942

i E1B7056

i E1BTIGE

E187278

e E197390

e E187502

T

AL ERTE

——E187838

= EI87950

nsmmoneses 198062

e £ 188174

E188286

£191843

o E319993
£320001

e £ 377100

——E37722

s E377324
£377436

SR

£377680

E3TTTTZ

E377884
E405917

0.0 0.1 0.2 0.3

ECiPS

Figure 2-144. Graph of Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 831-g, Plutonium Metal Hollow Cylinder, Far Side

Position, Side Impact

2-154




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361

Rev.1

Comparison Graph Avg. Stress Triaxiality

End Orientation with Side Impact

—
o
|
i

|

Titanium Impact Test and High Speed 831g Cylinder Full Model

Q
©

e
o

=
o

Stress Triaxiality (Avg.)
e
\‘

e
o

0-4 T T T T

0.000 0.002 0.004 0.006 0.008
EQPS

= = = = Strainlocus »—— E164674
E185990 E186046
e E 186102 ———a— E186158
——— E186214 E186270
E186326 E186382
E186438 E186494
E186550 E186606
i E186662 E186718
e E1BETTE E186830
E186886 E186942
- E186938 E187054
e E187110 + E187168
g £ 187222 i E187278
E187334 s £187390
———u—— E187446 e E187502
E187558 E187614
E187670 e E1G7726
E187782 E187838
E187894 et E187950
E 188006 e E188062
e E188118 ——a— E188174
— 188230 e E188286
E191687 E191843
e £319989 * E319993
e £ 319997 E320001
E377044 e E377100
E377156 —E377212
E377268 el E3TT 324
e E377380 E377436
E377492 e E3T 7548
E377604 E377660
E377T6 E377772
E377828 E377884
E405913 E405917
O 0 1 0 » E405921 E470551
- E470555 et E472951

Figure 2-145. Graph of Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus (Zoomed In) for the 831-g, Plutonium Metal Hollow Cylinder,

Far Side Position, Side Impact

Comparison Graph Tearing Parameter

End Orientation with Side Impact

-
=]

1_2 e

Titanium Impact Test and High Speed 831g Cylinder Full Model

=
0

Tearing Parameter
o
o

EQPS

0.4
0.2
0.000 0.002 0.004 0.006 0.008

0.010

== = = TealPaiamMax ——a—— EIGABTH
E185990 E186046

EI86102 E186158

E186214 E186270

E186326 E186382

E186438 E186434

E186550 E186606

E186662 E186718

E186774 E186830

E186886 E186942

& E186998 —— E187054
e E1BTI0 E187166
smias EAGTI00 - E187278
E187334 e E187390

E187446 E187502

E187558 E187614

E187670 e £187726

E187782 E187838

E187894 s E187950

E188006 s E 188062

E188118 E188174

E188230 E188286

E191687 E191843

s E319989 4 E319993
e E319397 E320001
E377044 i E377100

E377156 E377212

E377268 ——a— E377324
———de—— E377380 E377438
E377492 e E377548
E377604 E377660
E377716 E377772

E377828 E377884

E405913 E405917

E405921 E470551

E470555 s E472951

Figure 2-146. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 831-g, Plutonium Metal Hollow Cylinder, Far Side

Position, Side Impact

2-155




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev.1

‘\%‘“—\—“q——_

Figure 2-147. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Plutonium Metal Hollow Cylinder, Far Side Position, Side Impact

Figure 2-148. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Plutonium Metal Hollow Cylinder, Far Side Position, Side Impact
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Figure 2-150. Plot of EQPS in the TB-1 for the 831-g,
ER Cylinder, Far Side Position, Side Impact
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Figure 2-152. Plot of von Mises Stress in the TB-1 for the 831-g,
ER, Cylinder, Far Side Position, Side Impact
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2.12.5.4.6 Run 5 - 831-g Angled Plutonium Metal Hollow Cylinder Side Impact

The side impact model for the plutonium metal hollow cylinder, angled orientation, is shown in
Figure 2-153. The cylinder is located at the far side of the T-Ampoule so that its net impact
velocity with the side of the T-Ampoule 1s maximized, but also angled to present a sharp corner
impact with the T-Ampoule surface. The post-impact deformation 1s shown in Figure 2-154 and
its kinetic energy history in Figure 2-155. The plutonium metal hollow cylinder deforms
moderately but maintains much of its original shape because of its conservatively “infinitely
ductile” material constitutive model definition.

Average stress-triaxiality versus EQPS is shown in Figures 2-156 and 2-157 for the 91 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at relatively
high stress triaxiality and low EQPS. The Tearing Parameter values for these same 91 elements
are shown in Figure 2-158, and all are still below the critical Tearing Parameter value of 1.012
for Ti-6Al-4V. These elements are highlighted in red Figure 2-159, but these elements are still
below the critical value and do not indicate failure; T-Ampoule integrity is maintained.

Peak EQPS in the TB-1 vessel is shown in Figures 2-160 and 2-161 to be about 26.7%, although
this peak 1s only in a highly localized outer corner region where there is a slight contact
overclosure issue with the redwood overpack. Through-thickness plasticity 1s non-existent and
the TB-1 integrity is maintained. The von Mises stresses (see Figures 2-162 and 2-163) peak at
221 ksi (due to the localized redwood contact), which is above the elevated-temperature
minimum yield strength for the TB-1 of 141 ksi, but more importantly, through-thickness TB-1
stress values are less than 112.5 ksi, below yield.

Figure 2-153. Finite Element Mesh for the 831-g, Angled,
ER Cylinder, Far Side Position, Side Impact
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Figure 2-154. Finite Element Mesh for the 831-g, Angled,
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Cylinder, Far Side Position, Side Impact
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Figure 2-158. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
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Side Position, Side Impact
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Figure 2-159. Plot of Elements Exceeding the Experimental Strain Locus for the 831-g,
Angled, Plutonium Metal Hollow Cylinder, Far Side Position, Side Impact
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Figure 2-160. Plot of EQPS in the TB-1 for the 831-g, Angled,
ER Cylinder, Far Side Position, Side Impact
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Figure 2-161. Plot of EQPS in the TB-1 for the 831-g, Angled,
ER Cylinder, Far Side Position, Side Impact
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Figure 2-162. Plot of von Mises Stress in the TB-1 for the 831-g, Angled, Plutonium Metal
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Figure 2-163. Plot of von Mises Stress in the TB-1 for the 831-g, Angled, Plutonium Metal
‘ Hollow Cylinder, Far Side Position, Side Impact
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2.12.5.4.7 Run 6 - 731-g Plutonium Metal Hollow Cylinder Top Impact

The top end impact model for the slightly smaller (731 g) plutonium metal hollow cylinder,
oriented axially (with the impact direction, as opposed to angled) is shown in Figure 2-164. Note
that the cylinder is located at the bottom of the T-Ampoule so that its net impact velocity with
the top of the T-Ampoule is maximized. The post-impact deformation is shown in Figure 2-165
and its kinetic energy history in Figure 2-166. This slightly shorter plutonium metal hollow
cylinder still exhibits buckling, despite its conservatively “strongest shape” definition.

Equivalent Plastic Strain (EQPS) in the TB-1 vessel is shown in Figure 2-167 to be less than
2.7%, and only in some localized outer contact regions with the redwood overpack. The von
Mises stresses (see Figures 2-168 and 2-169) peak at 148.5 ksi, is just above the elevated-
temperature minimum yield strength for the TB-1 of 141 ksi, but more importantly, through-
thickness TB-1 stress values are in the less-than-25 ksi range, below yield. The time at which
the peak value of the von Mises stress occurs coincides with the peak value of the contact force
(summed over the lid area). A plot of this force as a function of time is shown in Figure 2-170.
A maximum contact load of 66,273 Ibs is applied to the inner surface of the TB-1 lid during the
impact. No T-Ampoule elements exceeded the tested B-W strain locus, and the peak Tearing
Parameter value (see Table 2-11, run #6) of 0.1507 was below the critical Tearing Parameter
value of 1.012 for Ti-6Al-4V. Note that the peak Tearing Parameter value for the T-Ampoule in
this 731 g, plutonium metal hollow cylinder impact case 1s slightly larger than that of the 831 g
cylinder impact, because the shorter plutonium metal hollow cylinder has a slightly higher net
impact velocity with the T-Ampoule.

Figure 2-164. Finite Element Mesh for the 731-g,
ER, Cylinder, Bottom Position, Top Impact
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Figure 2-165. Finite Element Mesh for the 731-g, ER,
Cylinder, Bottom Position, Top Impact — Final Displacement
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Figure 2-166. Kinetic Energy Time History for the 731-g,
ER, Cylinder, Bottom Position, Top Impact
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Figure 2-167. EQPS in the TB-1 for the 731-g, Plutonium Metal Hollow Cylinder, Bottom
Position, Top Impact '
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Figure 2-168. von Mises Stress in the TB-1 for the 731-g,
ER, Cylinder, Bottom Position, Top Impact
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Figure 2-169. von Mises Stress in the TB-1 for the 731-g,
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Figure 2-170. Contact Forces in the TB-1 for the 731-g,
ER, Cylinder, Bottom Position, Top Impact
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2.12.5.4.8 Run 7 - 731-g, Angled, Plutonium Metal Hollow Cylinder Top Impact

The top end impact model for the shorter 731 g plutonium metal hollow cylinder, oriented
angled, is shown in Figure 2-171. The cylinder is located at the bottom of the T-Ampoule so that
its net impact velocity with the top of the T-Ampoule is maximized. The post-impact
deformation is shown in Figure 2-172 and its kinetic energy history in Figure 2-173. The
plutonium metal hollow cylinder deforms but maintains much of its original shape because of its
conservatively “infinitely ductile” material constitutive model definition (despite its alpha Pu
being a relatively brittle material in reality).

Average stress-triaxiality versus EQPS is shown in Figures 2-174 and 2-175 for the 21 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at high stress
triaxiality and low EQPS. The Tearing Parameter values for these same 21 elements are shown
in Figure 2-176, and all are below the critical Tearing Parameter value of 1.012 for Ti-6A1-4V.
These elements are highlighted in red Figure 2-177, but note that these elements are still below
the initiation of a ductile tear, thus T-Ampoule integrity is maintained.

Peak EQPS in the TB-1 vessel, shown in Figure 2-178, is about 2.4% and 1s only in some
localized outer contact regions with the redwood overpack. The von Mises stresses (see Figures
2-179 and 2-180) peak at 148.5 ks, 1s just above the elevated-temperature minimum yield
strength for the TB-1 of 141 ksi, but more importantly, through-thickness TB-1 stress values are
less than 25 ksi, below yield. The time at which the peak value of the von Mises stress occurs
coincides with the peak value of the contact force (summed over the lid area). A plot of this
force as a function of time i1s shown in Figure 2-181. A maximum contact load of 58,873 lbs 1s
applied to the inner surface of the TB-1 during the impact.

Figure 2-171. Finite Element Mesh for the 731-g, Angled,
ER Cylinder, Bottom Position, Top Impact

2-170




Rev.1

1 i
;
i T RN S ey,
.mw.wn S S A s o e
rare, Ty, N
e e T o
r r..nﬁ&!ﬂd!ﬂ“ﬂ“&ﬂ““%\yﬁi‘#ﬁ%‘.‘hﬂ -
e wi e,
g
e

7

_ A i
v, T, iy, )
R NQZQ.«.&NT&#“F'.' oy

4

o
ol

Metal Hollow

um

Docket No. 71-0361

PAT-1 Safety Analysis Report Addendum

argardl

¥,

Tarwavarall

oo

Ak L0
- -u;:%..'.:

e

"

e en
ey
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Comparison Graph Avg. Stress Triaxiality
Titanium Impact Test and High Speed 731g Cylinder
Angled with End Impact
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Figure 2-174. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, Top Impact
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Figure 2-175. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus (Zoomed In) for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, Top Impact ‘
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Figure 2-176. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, Top Impact

Figure 2-177. Plot of Elements Exceeding the Experimental Strain Locus for the 731-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, Top Impact
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Figure 2-178. Plot of EQPS in the TB-1 for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, Top Impact
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Figure 2-179. Plot of von Mises Stress for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, Top Impact
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Figure 2-180. Plot of von Mises Stress for the 731-g, Angled, Plutonium Metal Hollow

Cylinder, Bottom Position, Top Impact
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Figure 2-181. Plot of Contact Force for the 731-g, Angled, Plutonium Metal Hollow

Cylinder, Bottom Position, Top Impact
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2.12.5.4.9 Run & - 731-g Angled Plutonium Metal Hollow Cylinder CGOC Impact

The lid end CG-over-corner impact model for the shorter 731 g plutonium metal hollow cylinder
1s shown 1n Figure 2-182. The cylinder is located at the bottom of the T-Ampoule so that its net
impact velocity with the top of the T-Ampoule 1s maximized. The post-impact deformation is
shown in Figure 2-183 and its kinetic energy history in Figure 2-184. The plutonium metal
hollow cylinder deforms slightly more than the previous case because of the slightly more side-
impact-like orientation but maintains much of its original shape because of its conservatively
“infinitely ductile” material constitutive model definition.

Average stress-triaxiality versus EQPS is shown in Figures 2-185 and 2-186 for the 84 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at relatively
high stress triaxiality and low EQPS. The Tearing Parameter values for these same 84 elements
are shown in Figure 2-187 and all are still safely below the critical Tearing Parameter value of
1.012 for Ti-6Al1-4V. These elements are highlighted in red in Figures 2-188 and 2-189 but these
elements are still below the critical value, thus the T-Ampoule eutectic barrier integrity is
maintained.

Peak EQPS in the TB-1 vessel is shown in Figure 2-190 to be about 28.5%, although this peak is
only in a highly localized outer corner region where there is a slight contact over closure issue
with the redwood overpack. Through-thickness plasticity is non-existent and the TB-1 integrity
1s maintained. The von Mises stress (see Figure 2-191) peak at 225 ksi (due to the localized
redwood contact) is above the elevated-temperature minimum yield strength for the TB-1 of

141 ksi, but more importantly, through-thickness TB-1 stress values are less than 37.5 ksi, below
yield.

Figure 2-182. Finite Element Mesh for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, CGOC Impact

2-176




Rev.1

Docket No. 71-0361

PAT-1 Safety Analysis Report Addendum

m\\#\\\&\\&\i& / ""
s

500
R '
LA IRN AT
eSS
QQ&N@W@\%@
attes!0s)
el

et

40

Metal Hollow

731-g, Angled, Plutonium Metal Hollow

R
=
g
£ @
25
nm T T T T T T T T Jo
g2 T e B
28 =z
PM =9
;e L de =
S .= » —
=
2| 3
Am L 1e &}
R b o . o
- v o &
) = = o
7C - - Dn tﬁ o~
o m o ~
) : k% =
<= E - O 1
s T & a
i
ST 1a g E
= E = o
»n © — =
= = o
=z o 42 mB
- Ex
em =
E 2 1e 2 =
L e L | | ! I I I LS o=
EO o o o o o o o o 5
B © . ey w - sl o - nC
& fg0te 34
LN =
= o 15}
=T &
o 5}
o 5 g
>
e o]
" ¥ :
-
o >
= i
= o~
o :
-
B0
£




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev.1

= - = - Suanlocus -=  E9250
1 1 1 M E720 E18677
Comparison Graph Avg. Stress Triaxiality e o
Titanium Impact Test and 731g Angled Cylinder Full Model | SR i
£188678 £188734
CGOC Impact £188790 .+ Emeess
1 . 0 Bt . - E188302 E188958
i E1B901 -~ E189070
v E189126 E189182
0.8 “ E189238 E189294
e E189742 £189738
o . /! ; E189854  ———n - E189910
. A - E189966 e E190022
o 0.6 .. S L E190078 it 190134
2 N e E190190 e E190248
E190302 o E190358
- 0.4 S -~ E19041 E190470
P s E190526 -~ E190582
= ' « - E1S0638  ——w— E190694
= 0.2 - o E190750  ——a— EI90806
o i " P e E190862 e E190918
§ - = e £ 190974 - E181030
- 0.0 e B E191086 «—— E191142
S o - e E 191198 E191254
o . £191310 E191366
w - e E19422 E191478
g -0.2 e EIS1534  — s EI915%0
O M b [ pemas E191702
=
e . EN97WSE  —a—EI91758
o -0.4 E191812 - E191868
e E365707 o+ E365304
£366101 £366298
366495 386692
-0.6 o~ E386889 - E367086
£367283 367480
‘o E367677 . . E36787¢
-0.8 T T T i T L 388071 n E368268
e E368465  -——a—— E368662
0.0 0.1 0.2 0.3 0.4 0.5 0.6 | emesss E363056
- E369253  ——e— E369450
EQPS - E369647 e E369844
e E 370041

Figure 2-185. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, CGOC Impact
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Figure 2-186. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus (Zoomed In) for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, CGOC Impact
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Figure 2-187. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Angled, Plutonium Metal Hollow Cylinder,
Bottom Position, CGOC Impact
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Figure 2-188. Plot of Elements Exceeding the Experimental Strain Locus for the 731-g,
. Angled, Plutonium Metal Hollow Cylinder, Bottom Position, CGOC Impact
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Figure 2-189. Plot of Elements Exceeding the Experimental Strain Locus for the 731-g,
Angled, Plutonium Metal Hollow Cylinder, Bottom Position, CGOC Impact

o 000000
LM == OO
oo o
oOooooO0O
o T X o s [ f o e

*
n
n
=1}
[33)
n

Figure 2-190. Plot of EQPS in the TB-1 for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Bottom Position, CGOC Impact
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Figure 2-191. Plot of von Mises Stress in the TB-1 for the 731-g, Angled, Plutonium Metal
Hollow Cylinder, Bottom Position, CGOC Impact

2.12.5.4.10  Run 9 - 731-g Plutonium Metal Hollow Cylinder Side Impact

The side impact model for the shorter and lighter 731 g plutonium metal hollow cylinder is
shown in Figure 2-192. The cylinder is located at the far side of the T-Ampoule so that its net
impact velocity with the side of the T-Ampoule is maximized. The post-impact deformation is
shown in Figure 2-193 and its kinetic energy history in Figure 2-194. The plutonium metal
hollow cylinder deforms much more than the previous case because of its weaker side-impact-
like orientation.

Average stress-triaxiality versus EQPS is shown in Figures 2-195 and 2-196 for the 63 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at relatively
high stress triaxiality and low EQPS. The Tearing Parameter values for these same 63 elements
are shown in Figure 2-197 and all are still below the critical Tearing Parameter value of 1.012 for
Ti-6Al1-4V. These elements are highlighted in red Figure 2-198 but these elements are still
below the critical value and do not indicate failure; T-Ampoule integrity is maintained.

Peak EQPS in the TB-1 vessel is shown in Figures 2-199 through 2-202 and is about 30%,
although this peak 1s only in a highly localized outer corner region where there is a slight contact
overclosure issue with the redwood overpack. A slight (<1% EQPS) dent is visible in Figure
2-202 from the internal impact of the plutonium metal hollow cylinder into the TB-1 wall (via
the T-Ampoule). Through-thickness plasticity i1s non-existent and the TB-1 integrity is
maintained. The von Mises stresses (see Figures 2-203 and 2-204) peak at 225 ksi (due to the
localized redwood contact), above the elevated-temperature minimum yield strength for the TB-1

2-181




PAT-1 Safety Analysis Report Addendum Docket No. 71-0361 Rev.1

of 141 ksi, but more importantly, through-thickness TB-1 stress values are less than 80 ksi,

below yield. ‘

Figure 2-192. Finite Element Mesh for the 731-g, ER,
Cylinder, Far Side Position, Side Impact

HHTHT J

Figure 2-193. Finite Element Mesh for the 731-g, Plutonium Metal Hollow Cylinder, Far
Side Position, Side Impact — Final Displacement
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Figure 2-194. Kinetic Energy Time History for the 731-g,
ER, Cylinder, Far Side Position, Side Impact
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Figure 2-195. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Plutonium Metal Hollow Cylinder, Far Side
Position, Side Impact
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Figure 2-196. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus (Zoomed In) for the 731-g, Plutonium Metal Hollow Cylinder,
Far Side Position, Side Impact
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Figure 2-197. Graph of Tearing Parameter versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Plutonium Metal Hollow Cylinder, Far Side
Position, Side Impact
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7

Figure 2-198. Plot of Elements Exceeding the Experimental Strain Locus for the 731-g,
. Plutonium Metal Hollow Cylinder, Far Side Position, Side Impact
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Figure 2-199. Plot of EQPS in the TB-1 for the 731-g,
‘ ER Cylinder, Far Side Position, Side Impact
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Figure 2-200. Plot of EQPS in the TB-1 for the 731-g,
ER Cylinder, Far Side Position, Side Impact
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Figure 2-201. Plot of EQPS in the TB-1 for the 731-g,
ER Cylinder, Far Side Position, Side Impact
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Figure 2-202. Plot of EQPS in the TB-1 for the 731-g, Plutonium Metal Hollow Cylinder,
Far Side Position, Side Impact (Range Adjusted to Highlight Small Stains in the TB-1 Not
Visible in Figure 2-201)
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Figure 2-203. Plot of von Mises Stress in the TB-1 for the 731-g, Plutonium Metal Hollow
Cylinder, Far Side Position, Side Impact
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Figure 2-204. Plot of von Mises Stress in the TB-1 for the 731-g, Plutonium Metal Hollow
Cylinder, Far Side Position, Side Impact (see Figure 2-203 Rotated to Show Internal
Stresses)

2.12.54.11  Run 10 - 731-g Angled Plutonium Metal Hollow Cylinder Side Impact

The side impact model for the lighter, 731 g plutonium metal hollow cylinder, angled
orientation, is shown in Figure 2-205. The cylinder is located at the far side of the T-Ampoule so
that its net impact velocity with the side of the T-Ampoule is maximized, but also angled to
present a sharp corner impact with the T-Ampoule surface. The post-impact deformation is
shown in Figure 2-206 and its kinetic energy history in Figure 2-207. The plutonium metal
hollow cylinder deforms moderately but maintains much of its original shape because of its
conservatively “infinitely ductile” material constitutive model definition.

Average stress-triaxiality versus EQPS is shown in Figures 2-208 and 2-209 for the 94 elements
extending beyond the tested Bao-Wierzbicki strain locus. All of these elements are at relatively
high stress triaxiality and low EQPS. The Tearing Parameter values for these same 94 elements
are shown in Figure 2-210 and all are still below the critical Tearing Parameter value of 1.012 for
Ti-6Al1-4V. These elements are highlighted in red Figure 2-211 but these elements are still
below the critical value and do not indicate failure; T-Ampoule integrity is maintained.

Peak EQPS in the TB-1 vessel is shown in Figures 2-212 and 2-213 and is about 27.6%,
although this peak is only in a highly localized outer corner region where there is a slight contact
over closure issue with the redwood overpack. Through-thickness plasticity is non-existent and
the TB-1 integrity is maintained. The von Mises stresses (see Figures 2-214 and 2-215) peak at
224 ksi (due to the localized redwood contact), above the elevated-temperature minimum yield
strength for the TB-1 of 141 ksi, but more importantly, through-thickness TB-1 stress values are
less than 112.5 ksi, below yield.
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Figure 2-205. Finite Element Mesh for the 731-g, Angled,

ER Cylinder, Far Side Position, Side Impact

Figure 2-206. Finite Element Mesh for the 731-g, Angled,
ER Cylinder, Far Side Position, Side Impact — Final Displacement
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Figure 2-207. Kinetic Energy Time History for the 731-g, Angled, Plutonium Metal Hollow
Cylinder, Far Side Position, Side Impact
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Figure 2-208. Graph of Average Stress Triaxiality versus EQPS of Elements Exceeding the
Experimental Strain Locus for the 731-g, Angled, Plutonium Metal Hollow Cylinder, Far
Side Position, Side Impact
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