

GOTHIC Overview Introduction

Dr. Nathan Carstens, Code Development Engineer

December 13, 2010

U.S. Nuclear Regulatory Commission Pre-Application Meeting Rockville, MD

Safety Analysis Code: GOTHIC

- GOTHIC has been selected as the NuScale safety analysis code for licensing analyses
 - Some minor development is necessary
 - Through NAI, direct access to all legacy code documentation and assessments plus access to the code developers
 - Allows NuScale to focus on NuScale specific assessments and not on redoing and documenting legacy assessments for compliance with our QA program
- RELAP5 will continue to be used for some non-DCD referenced applications and as a reasonableness check of GOTHIC results

GOTHIC Overview

Dr. Tom George, Numerical Applications Inc.

December 13, 2010

U.S. Nuclear Regulatory Commission Pre-Application Meeting Rockville, MD

GOTHIC

- General Purpose Thermal-Hydraulic Analysis
- Special Features for Nuclear Plant Modeling
- Ongoing Development and Maintenance Support by the EPRI GOTHIC Enhancement Project (since 1993).

Ancestry

COBRA (~1965) COBRA-IV (~1977) → VIPRE (~1979) → COBRA-WC (~1980) → COBRA-SF (~1984) **COBRA-TF** (~1979) COBRA-TRAC (~1981) → WCOBRA-TRAC (~1985) **COBRA-NC** (~1983) → FATHOMS (~1985) GOTHIC (~1989)

GOTHIC Development

COBRA-NC

- Graphical Interface, Junction Model
- Components (pumps, HX, etc.)
- Separate Drop Energy Equation
- Design Review, QA

GOTHIC 4.0

- k-e Turbulence Model, Hydrogen Burn, Fan Coolers
- Improve Interphase Heat and Mass Transfer
- Control Variables, Radioactive Isotopes, Radiant Heat Transfer

GOTHIC 6.0

- Porous Body Model, Rectangular Coordinates, 3D Connectors
- DLM for Heat and Mass Transfer, Flow Networks, 2nd Order Numerics

GOTHIC 7.0

- Dissolved Gases, Solid Particles, Freezing, 2D Conduction
- Multiple Drop Fields, Parallel Processing
- Improved Water Properties, Improved Interphase Drag
 GOTHIC 8.0

Multi-Zone Modeling

- Combine Lumped and Subdivided Volumes
- Superimposed Conductors
- Finite Volume Solution
 - Semi-implicit

Multiphase/Multicomponent

- Vapor
 - Steam
 - N Gas Components
- Drops
 - N Fields
- Liquid
 - Films
 - Pools
 - Slugs
 - Stratified Flow
- Mist
- Ice

Lumped

Subdivided

Equation Set

Phase	Description	Mass Balance	Energy Balance	Momentum Balance
Vapor	Steam, gas components in bubbles or free vapor	Steam, each gas component	Yes	Yes
Liquid	Continuous liquid in pools, films, slugs, bubbly flow	Yes	Yes	Yes
Drops	Water drops	Yes	Yes	Yes
Mist	Very Small Droplets	Yes	T=T _{sat}	U=U _v
Ice	Ice formation and melting on conductor surfaces	Yes	Yes	No

Comprehensive Drop Behavior Models

- Drop Breakup
 - Hydrodynamic Forces
 - Flashing
- General Entrainment Model
 - Relative Velocity
 - Film/Pool Thickness
 - Fluid Properties
- Depositions Models
 - Diffusion
 - Turbulent Impaction
 - Bends
 - Settling

WALE Test Drop Concentration

Interphase Heat, Mass and Momentum Transfer

- Drop/Vapor and Liquid Vapor Interfaces
- Evaporation
- Condensation
 - Diffusion Layer Model for Noncondensing Gas Effects
- Boiling/Flashing
- Drop Entrainment
- Drop Deposition
- Ice Formation and Melting

Mixing and Stratification

- Buoyant Flows
- Forced Convection
- Jet Induced Mixing
- Diffusion
 - Molecular
 - Turbulent k-e Model
 - Mass Diffusion
 - Vapor and Liquid
 - Thermal Diffusion
 - Vapor and Liquid
 - Momentum Diffusion
 - Vapor and Liquid

Equipment Models

- Pumps/Fans
- Valves
- Vacuum Breakers
- Heat Exchangers
- Fan Coolers
- Igniters
- Recombiners
- Heaters/Coolers
- Spray Nozzles

- Controls
 - Trips
 - Forcing Function
 - Control Systems

Piping System Modeling

- Loop Performance
 - Pumps
 - Heat Exchangers
- Gas Transport
- Pressure Surge
- Water Hammer
- NPSH
- Thermal Mixing

Thermal Penetration in Stagnate RHR Suction Line

Subdivided Volumes

- Volume and Area
 Porosity Factors to
 Model Obstructions
 and Irregular
 Boundaries
- Slip/No-Slip Boundaries
- Easy User Interface

3D Connectors

- Connect Subdivided Volumes to
 - Lumped Volumes
 - Subdivided Volumes
- Embedded Grids
- Full 3D Momentum Solution
- Diffusion Across Connection

3D Connectors at interface between coarse and fine grids.

Multiple Detail Levels

14

Wall Heat Transfer and Condensation

- Free Convection
- Forced Convection
- Radiation
 - Wall Steam
 - Wall Wall
- Condensation
 - Uchida
 - Tagami
 - Mist/Diffusion Layer Model

1D and 2D Conduction

Solution Methods

- Conductor Solution
 - Full implicit finite volume
- Fluids Solution
 - Semi-implicit finite volume
 - 1st and 2nd order upwind differencing options
 - Multigrid, Conjugate Gradient, Block Iterative and Direct Matrix solution options.
- Parallel Processing
 - Shared memory

Quality Assurance

- GOTHIC is maintained under NAI's QA Program.
- Conformance to 10CFR50 Appendix B requirements.
- Meets intent of ASME NQA-1
- Audited by NUPIC
- Built in QA features
 - Event Logging
 - File Comparison Utility

GOTHIC Qualification

Separate Effects Tests

- Comparison with analytic solutions
- Comparison with experimental data
- Component functionality
- Combined Effects Tests
 - Comparison with experimental data

Basic Phenomena and Thermodynamics

- Compression and work
- Thermal and mass diffusion
- Buoyancy Driven Flows
- Multiphase phenomena
 - Interphase heat and mass transfer
 - Drop/Vapor
 - Liquid/Vapor
 - Interphase drag
 - Drop/Vapor
 - Liquid/Vapor
- Gas absorption and release

Interphase Heat and Mass Transfer Free Convection for Pool

- PNL Grout Mold Evaporation Tests
 - Varied ventilation rate

Diffusion Layer Model (DLM) Wall Heat Transfer with Condensation

Test range

- Pressure, 1 4.5 atm
- Steam Temperature, 47 139 C
- Steam concentration, 0.1 1.0
- Wall Temperature, 28 109 C
- Wall Height, 0.3 18.3 m
- Vapor Velocity, 0 7 m/s
- Film roughening effect
- Mist formation effect

- Data Sets
 - Uchida
 - U of W Vessel
 - U of W Plate Plate
 - MIT
 - Nusselt Theory
 - CVTR
 - Park Film Test

DLM for Heat and Mass Transfer

Buoyancy Driven Flow

- Mixing Analysis
- Room/Building Heatup
- Test
 - Analytic
 - Separate effects experiment
 - Large scale single and multicompartment tests
 - HDR
 - Battelle Frankfurt Model Containment
 - MISTRA
 - TOSQAN
 - THal
 - Others

Buoyancy Driven Flow Thermally Driven Cavity

Natural Convection Heat Transfer

Raleigh No	Nu (Exp.)	Nu (GOTHIC)
1,300	2.35	2.52
2,400	2.79	3.06
3,400	3.06	3.38

PWR FLECHT SEASET

<u>Data</u> <u>Comparisons</u>

- Loop Flows
- Steam Generator
 Performance

FLECHT-SEASET Noding

2-Phase Natural Circulation Intact Loop Flow

2-Phase Natural Circulation Broken Loop Flow

2-Phase Natural Circulation Intact Loop SG Inlet/Outlet Temp.

2-Phase Natural Circulation Upper Plenum Vapor Fraction

Examples from NRC Submittals

- SER for Topical Report CPC-NE-3004-A, Duke Power, McGuire Nuclear Station Mass and Energy Release and Containment Response Methodology, 12/2000
- SER for Topical Report WCAP-16608-P, Westinghouse Containment Analysis Methodology, 1/27/09 (ML090230441)
- Acceptance Review Results for Topical Report WCAP-17065-P Rev. 0, Westinghouse ABWR Subcompartment Analysis Methodology Using GOTHIC Related to South Texas Project Units 3 & 4 Combined License, 6/2/10 (ML101530006)
- Approved Topical Report DOM-NAF-3 NP-A, "GOTHIC Methodology for Analyzing the Response to Postulated Pipe Ruptures Inside Containment" (ML063190467)

Summary

- GOTHIC solves fundamental equations for multiphase flow with basic models for interface and wall mass, momentum and energy transfer.
- Validation covers a wide range of single and two-phase flow situations
- Wide range applicability hinges on capability to simulate fundamental phenomena
 - Interphase and wall heat and mass transfer
 - Interphase and wall drag
 - Momentum dominated flow
 - Gravity dominated flow
- Code results are generally in good agreement with data
- Controlled code versions under NAI QA Program
 - Validation repeated for each code version

1000 NE Circle Blvd, Suite 10310 Corvallis, OR 97330 541-207-3931 nuscalepower.com

