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FOREWORD

This book is intended as a reference manual of statistical methodology for
nuclear material management practitioners. It describes statistical methods
currently or potentially important in nuclear material management,
explains the choice of methods for specific applications, and provides
examples of practical applications to nuclear material management prob­
lems. Together with the accompanying training manual, which contains
fully worked out problems keyed to each chapter, this book can also be
used as a textbook for courses in statistical methods for nuclear material
management. . It should provide increased understanding and guidance to
help improve the application of statistical methods to nuclear material
management problems.

The U. S. Nuclear Regulatory Commission, Office of Nuclear Regula­
tory Research, sponsored the preparation of this book.

Eric S. Beckjord, Director
Office of Nuclear Regulatory Research
U. S. Nuclear Regulatory Commission
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PREFACE

Since 1973, the standard manual of statistical analysis methods for nuclear
material management has been a book by John L. Jaech, Statistical
Methods in Nuclear Material Control, which was compiled from material
prepared by Jaech for several courses on the application of statistics to
problems of nuclear material accounting. The courses were conducted as
part of a Safeguards Training Program sponsored by the U. S. Atomic
Energy Commission. The book was intended as a personal reference book
rather than as a textbook. It did not contain sets of assignment problems
or a bibliography but served as a source of practical methods and example
problems for self study and supplementary classroom use.

In 1981, the Office of Standards Development of the U. S. Nuclear
Regulatory Commission (NRC), subsequently merged with the NRC
Office of Nuclear Regulatory Research, contracted with the Pacific
Northwest Laboratory, operated by Battelle Memorial Institute for the
U. S. Department of Energy, to prepare both a new reference manual and
a training manual for guidance in the application of statistical methods in
nuclear material management. The reference manual was to be complete
enough to serve as a single source of statistical methodology for nuclear
material management practitioners. It would describe statistical methods
currently perceived as important or potentially important for nuclear
material management, provide abundant examples of practical applications
to nuclear material management problems, and explain the principles and
rationale for the choice of methods in specific applications. The training
manual would be a companion volume containing sets of problems for stu­
dent assignments, together with fully worked out solutions. This book and
the companion training manual written by Jaech are the result of this
effort.

It should be emphasized that this book, while providing much of the
statistical background and methodology needed by nuclear material
management practitioners for routine applications, is not always a substi­
tute for professional statistical advice. Statistics is a subtle subject with
many potential pitfalls, and there are many situations, sometimes even
apparently routine ones, where an experienced statistician should be con­
sulted. It is our hope that this book will help the practitioner master
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Iv PREFACE

enough basic statistical methodology to handle many routine applications
and to recognize those situations where professional statistical assistance is
needed.

W. Michael Bowen
Carl A. Bennett
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INTRODUCTION

Nuclear material accounting is that part of a nuclear material safeguards
program that consists of procedures and systems to perform nuclear
material measurements, prepare and maintain accounts and records, and
perform analyses of the data generated.* The principal method of main­
taining and demonstrating control of materials in most industries, including
the nuclear industry, is material balance accounting. The essential principle
of material balance accounting is maintaining a record of the current
(book) inventory of material from input and output data and reconciling it
Periodically with a physical (measured) inventory. This requires counting
and/or measuring all receipts, disbursements and losses of material, main­
taining records of these transactions, and periodically counting and/or
measuring the quantity of material on hand.

Statistical analysis is an essential element of effective material balance
accounting. Although many books are available on general statistical
methods, a specialized book on their application to nuclear material
accounting can provide methods specific to that application in a single
volume and can address some of the unique problems encountered in
nuclear material accounting that are not adequately covered in conven­
tional texts. Some of these unique problems are:

I. Multiplicity of error sources in a material balance.
2. Estimation of the variance components associated with each error

source.
3. Reconciliation of measurement results from different measurement

systems and different laboratories.
4. Independent verification of inventories and material balances.

Statistical methods are needed to help monitor the measurements that
are used to generate material accounting data, evaluate accounting anoma­
lies, and determine the effectiveness of the material accounting system.
One of the primary uses of statistical methodology is to evaluate uncertain­
ties in the reported amount of nuclear material received, produced,

*For a more complete review of the role of material accounting in nuclear material safe­
guards see Report of the Material Control and Accounting Task Force. 1978, NUREG-0450,
Vol. 2, Chapter 1, U. S. Nuclear Regulatory Commission, Washington, D. C.
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x M'RODUCT1ON

shipped, lost, discarded, or otherwise added to or removed from the inven­
tory. In addition, statistical methods are used to estimate the effects of
these uncertainties on inferences and decisions that are based upon
accounting results. The basic issues are the power of the accounting system
to detect anomalies and, conversely, the assurance provided by the system
that such anomalies are absent and the accounts are correct. For those who
possess large amounts of nuclear material, it may be necessary to incor­
porate tests into a material management system that can detect material
losses more promptly than is achieved by a periodic physical inventory.
Such tests, which may utilize process yield data and other process informa­
tion that cross-checks material quantities and locations, also require the
use of statistical methodology.

The accounting systems and the periodic material balance tests need to
be independently audited on a regular basis to assure the effectiveness of
nuclear material management. The audits are commonly referred to as
inspections. They generally involve independent tests and measurements to
verify the accuracy of the reported inventory data, and they require the use
of statistical methods for designing sampling schemes and for evaluating
the test and measurement results.

As the title indicates, this book deals with statistical methods for
nuclear material management. The discussion until now has been directed
toward problems in nuclear material accounting. This emphasis reflects the
fact that most of the statistical applications are in the nuclear material
accounting area. Nuclear material management, however, also includes
other areas requiring statistical treatment, such as auditing and process
control, that go beyond nuclear material accounting. Many of the statisti­
cal methods presented in this book are applicable to these areas of nuclear
material management. Nuclear material management is, however, also
closely related to the control of processes for the manufacture of inter­
mediate and final nuclear products. Statistical control charts and other
process control techniques are used to control the key chemical and physi­
cal product specifications in the fuel production process, and statistical
analysis is used to certify finished products that are blends of several indi­
vidual production batches.

This book presents a unified approach to the solution of these and other
problems of concern to the practitioner in the field of nuclear material
management. It provides both a guide to the statistical methods needed to
support a nuclear material management program and a description of the
statistical principles upon which their application is based. It is intended as
a reference for the scientists and engineers in research and production
facilities who produce and evaluate nuclear material accounting data, and
for those in government organizations who develop and administer ac­
countability requirements and audit the accountability programs of facili­
ties that possess nuclear materials.
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Most practitioners in this field have had courses in advanced algebra
and elementary calculus but only limited formal training in mathematical
statistics and data analysis. Therefore, the content and style of the book
are directed to those inexperienced in the application of statistical methods.
Generally, derivations and statistical theory are not presented. The
emphasis is on providing a guide to practice. With this book and a short
course in the use of the statistical methods, such individuals will be able to
apply many of the methods to the less complex problems that occur in
nuclear material management. For the more complex problems, such as
modeling and estimating the variances of inventory differences or develop­
ing an inventory verification procedure, consultation with a statistician is
recommended.

The contents of this book will be valuable to others· besides practi­
tioners in nuclear material management. The statistical methods presented
can be used in many chemical and engineering applications, including
those that deal with nuclear materials. Conversely, the book will help
administrators and statisticians become familiar with the material account­
ing process, particularly through the example problems presented
throughout the book and the material accounting overview in Chapter 13.
Simplified descriptions of the principal nuclear materials measurements
and of a typical accounting system are presented (see the appendixes to
Chapter 13).

This book has two parts. Chapters I through 12 provide a background
in the principles and methods of statistical analysis. They cover such topics
as basic probability, estimation, hypothesis testing, analysis of variance,
regression analysis, experimental design, statistical sampling, non­
parametric methods, simultaneous inference, and detection of outliers.
Each chapter contains example problems to help the reader understand and
use the statistical methods. Brief introductions to simulation and decision
theory are also presented. Chapters 13 through 17 describe specific appli­
cations of the statistical methods to nuclear material accounting and
demonstrate most of the methods with typical problems.

Although statistical methods currently in regular use are emphasized,
some additional statistical tools are included because they have consider­
able pot~ntial value in nuclear material management. Such methods appear
particularly in the chapters on experimental design, nonparametric
methods, simulation, and decision theory. In a number of cases, methods
are not described in detail but are simply summarized, and references are
given for further study. In some instances, additional references not specifi­
cally referred to in the chapter are also listed. Many of the important
methods described in this book are referenced except for some standard
statistical methods that can be found in textbooks.

Readers with engineering or scientific training and a good familiarity
with nuclear material processes and measurements may gain an improved
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understanding of most of the currently used statistical methodology
without reading Chapters 1,2, 7,9, 11, 12, and 13. Those who need more
practice in applying the methods to measurement and accounting data
should consult the training manual, which has been published as a com­
panion volume.· A short course based on the training manual with this
book as a reference is recommended. For student practice, the training
manual presents many statistical problems typical of those that occur in
nuclear material accounting.

Most statistical calculations can be performed by computers. Many
good statistical software packages are available and more are appearing all
the time. No attempt is made in this book to reference or recommend any
specific software package. Readers not trained in statistics should apply
such computer programs with caution. It is important to understand which
algorithms are used in a particular software package to ensure that they
are applicable to the problem. For the most part, hand calculations are
shown for the problems illustrated in this book to illustrate clearly how
they are solved. The number of digits retained in the results is often more
than is significant, but this retention is done to minimize error in subse­
quent calculations due to rounding or truncating intermediate results. If
hand-held calculators are used, the number of figures that the calculator
can retain in memory may sometimes be too limited for accurate calcula­
tions, especially where small differences between large numbers are
involved. The user should be always aware of this possibility. If the reader
cannot get exactly the same answer to a problem as presented in this book,
the difference may be due to the rounding or truncating effect.

When the example problems given in this book are based upon data
drawn from other publications, reference is made to the source. If no such
reference is made, it should be assumed that the problem and its data were
synthesized, generally by a simulation, or were taken from the author's
personal experience. It is not intended that any set of data represents any
specific facility or occurrence.

The authors have generally adhered to the recommended notation and
terminology of the draft 1982 ANSI standard.t When additional notation·
or terminology is necessary, the terms are defined when introduced. One of
the departures from common terminology occurs in Chapter 8, Statistical
Sampling of Finite Populations. In that chapter, the terminology common
in the survey sampling literature rather than that in the traditional statisti­
cal literature is used. Another terminology issue occurs with respect to the
usage of the terms short-term systematic error variance and long-term

*Jaech, J. L., 1988, Training Manual for Statistical Methods for Nuclear Material
Management, NUREG/CR 4605 (PNL·5855), U. S. Nuclear Regulatory Commission,
Washington, D. C.

tAmerican National Standards Institute, Inc., Statistical Terminology and Notation for
Nuclear Materials Management, ANSI NI5.5·1982 (draft), New York.
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systematic error variance by Jaech* and others in the nuclear material
safeguards literature. These terms have been applied for many years to
describe the variance components associated with effects which are com­
mon to some subset or all of the results in an inventory difference or one
of its components. In this book, the traditional statistical terminology is
adhered to in describing such error sources. The need for identifying the
various error effects in a model of the material accounting process first
occurs in Chapter 14, where in Sections 14.2.3, 14.3.1, and 14.3.3 the con­
cepts of the effects of calibrations, bias corrections, and other sources of
error are defined.

-Jacch, J. L., 1973, Statistical Methods in Nuclear Material Control. TID·26298,
National Technical Information Service, U. S. Department of Commerce, Springfield,
Virginia.
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CHAPTER 1

Data Description and Display
1.0 INTRODUcnON

Statistics is the science and the art of collecting, organizing, summariz­
ing, analyzing, interpreting, and presenting data to understand the infor­
mation that the data contain and to reach valid conclusions from the data.
Thus, data may be used for descriptive or for inferential purposes. For
example, data on the output of a fuel production facility may be used to
describe the level of production or to infer whether the level of production
has changed. Often data are used for both purposes.

When data are being collected on characteristics of objects or events,
such as the uranium content of nuclear fuel pellets, it is usually impracti­
cal to measure the entire population or universe, the totality of all actual or
conceivable objects or events. Instead, a part of the population, called a
sample, is examined. If items in a sample are selected so that all possible
samples of size n have an equal chance of being chosen, the sample is a
random sample of size n. To make valid inferences about a population
from a sample, it must be a random sample. Methods for developing sam­
pling plans for specific purposes and for making inferences from the result­
ing data that are collected are the topics of Chapters 2 through 12.

Most features of a population are described by numerical constants
called parameters. A measurable characteristic of an object or event is
called a variable. When a population is sampled, obsened values (or mea­
surements) of a variable are examined. Parameters are estimated from
observed values of variables. If all possible observed values of a variable in
a population were known, the parameter for the feature of interest could
be calculated exactly. This is usually not the case, however. Thus, statisti­
cal theory and methods are applied to describe and make inferences about
parameters based on the observed values of a variable in a random sample.
Methods that summarize the information in a random sample are
presented in this chapter. In later chapters, statistical methods are applied
to the observed values of variables to estimate and to make inferences
about parameters. Chapter 2 includes formal defmitions, discussions, and
examples of populations, parameters, and variables.

If a variable theoretically can assume any value within some interval, it
is continuous. Fuel pellet weight is a continuous variable. A variable is
discrete if it can assume only a countable or finite number of values in the
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interval. Counts of alpha emissions from fuel pellets are discrete variables.
Even though a variable is continuous in theory, it may be measured in
such a way that the observed values are discrete. Chapter 2 includes more
information on different tYpes of variables.

A statistic is a number calculated from observed values of one or more
variables. For example, the average weight observed in a sample of fuel
pellets is a statistic. The plural of statistic has a different meaning than
the same term used above to denote a scientific discipline; that is, statistics
are numbers calculated from observed values of variables. Statistics (the
plural of statistic) that describe a sample without making inferences about
the population are one of the topics of this chapter.

The purpose of descriptive methods is to reveal characteristics of a
sample which may be concealed by the collection of numbers. Descriptive
methods are both mathematical and graphical. Descriptive methods sum­
marize and display the data so that the structure can guide the choice of
inferential methods. Descriptive methods suggest features of the sample
and, thus, of the population, but do not confirm their existence as do infer­
ential methods. The use of one or more descriptive techniques to explore
and understand the information in data is called exploratory data analysis.

Data exploration is a first step in statistical analysis, but exploratory
techniques can be useful at all phases of analysis, as new information is
revealed and explored. In addition, exploratory data analysis may suggest
valid assumptions and lead to the use of appropriate inferential statistical
methods. Confirmatory data analyses use data to make inferences about
populations, and graphical techniques may be used to infer whether
assumptions are reasonable. Thus, methods presented in this chapter for
displaying and summarizing data may be related to confirmatory tech­
niques presented in later chapters. In this chapter, however, graphical
techniques for information display relate to summarizing and describing
data.

Many excellent computer software packages are available that have
been specifically developed for data display and/or exploratory data analy­
sis. Utilizing such a software package, especially with large data sets, can
simplify implementation of the techniques presented in this chapter and
can greatly reduce the required time and effort. Many such software pack­
ages also provide techniques that are not presented in this book.

1.1 SCALES OF MEASUREMENT

A measurement (or observed value) results from assigning numbers or
labels to objects or events. The numbers or labels contain information
about a characteristic of the objects or events. The way in which such
numbers or labels are assigned imposes restrictions on the use of the mea­
surements in data analysis, and these restrictions cannot be violated if
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valid inferences are to be made. Four measurement scales are used to
describe measurements, and these relate to the permissible arithmetic
operations with the measurements. The scales are nominal, ordinal, inter­
val, and ratio.

1.1.1 Nominal Scale

When numbers or symbols are used to identify groups (or categories)
to which objects belong, the scale of measurement is said to be nominal.
Numbers are used only as a label. In addition to group identification,
when nominal data are summarized, the summary includes an identifica­
tion and a count of the number of items within each group. These counts
are called frequencies. Frequencies can only assume integer values; there
cannot be 2.5 nuclear facilities in a region, but there may be 2 or 3.

Suppose that the storage area of a nuclear fuel facility contains red
and yellow storage drums. The number of each color of drum is the
corresponding frequency, and a table showing the number (or frequency)
of each color gives an inventory of the storage area. Drum color can repre­
sent drum content, such as red for scrap and yellow for waste. On the
other hand, drums can be labeled by an identifier other than color to
represent drum content. The identifier I could represent scrap; 2, feed
material; 3, pellets; and 4, wastes. Arithmetic operations may be per­
formed on the frequencies but not on the numerical identifiers. Frequen­
cies may be statistically compared to some prescribed or expected value.
Both· frequencies and identifiers are discrete numbers; however, identifiers
are qualitative, whereas frequencies are quantitative.

1.1.2 Ordinal Scale

If, in addition to the grouping that characterizes nominal measure­
ments, a relative ordering or ranking of groups can be identified (but not
necessarily quantified), the measurements are ordinal in scale. Ordinal
relationships are typically assigned consecutive integral numbers as iden­
tifiers. These identifiers are called ranks. Rankings are discrete and quan­
titative. An order preserving transformation of ranks does not change the
information contained in the ranks. That is, it does not matter whether the
rank of I is assigned to last place, 2 to second-to-last and on up; or
whether the rank of I is assigned to first place and groups are ranked in
descending order. _

Suppose that the storage area of a nuclear fuel facility contains large
(55-gal), medium (30-gal), and small (5-gal) drums. The capacities of
these drums can be identified by (L, M, S), (55, 30, 5), (A, B, C), or by
the ranks (1, 2, 3) or (3, 2, 1). The scale applies to the drum capacities,
not to contents. (If the contents are unknown then the ordinal scale for the
contents is not necessarily the same as for the capacities.)
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1.1.3 Interval Scale
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When measurements have characteristics of an ordinal scale and, in
addition, the interval size (distance) between objects can be quantified, the
measurements are said to be on an inte..,.1 scale. An interval scale is char­
acterized by a unit of measurement that assigns a distance between all
pairs of objects. A transformation or arithmetic operation on interval
values preserves the ordering and relative distances between objects. The
differences may be discrete, e.g., if the measurements are counts. The
interval scale may be either continuous or discrete. The interval scale is
sometimes referred to as a metric scale.

Temperature is an example of an interval scale measurement. Celsius
and Fahrenheit scales demonstrate the arbitrary nature of both the zero
point and the distance defined to be a unit. Thus, for a given time period,
the ratios of daily maximum to minimum temperature differ for
Fahrenheit and Celsius temperature scales. As another example, the liquid
level (in inches or centimeters) in a tank is an interval scale measurement.
It is an interval scale because there is an arbitrary heel below the zero
level that may vary from tank to tank.

1.1.4 Ratio Scale

When measurements have the characteristics of an interval scale and
also a physically definable zero point, the measurements are said to be on
a ratio scale, where zero is the number that defmes the absence of a quan­
tity. For example, measurements of weight, length, and volume are on a
ratio scale. For this scale, the ratio of any two measured values of the
same type is independent of the unit of measurement. For example, the
ratio of height to diameter of a cylindrical tank is the same whether
English or metric units are used. (The ratio of length to volume will
depend on the units). Like the interval scale, the ratio scale may be either
continuous or discrete.

1.2 DESCRIPTIVE STATISTICS: MEASURES OF
CENTRAL TENDENCY

Sections 1.2 and 1.3 discuss statistics that describe objects or events.
For any scale of measurement, certain descriptive statistics may be
obtained by grouping the observed values of a variable into categories. For
all scales except the nominal scale, there are statistics that may be
obtained by ordering the observed values in increasing (or decreasing)
order of magnitude. For interval and ratio scale measurements, there are
many statistics that are obtained through arithmetic operations on the
observed values. The commonly used descriptive measures fall in two gen­
eral categories: measures of central tendency or location and measures of
dispersion, scatter, or variability.
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In most data sets, there is a tendency for values to cluster. A measure
of central tendency locates the "middle" of the cluster. Thus, measures of
central tendency are also called measures of location. Alternative measures
of central tendency differ in the defmition of the middle of the cluster.

1.2.1 Mean (Arithmetic Mean)

The mean is the statistic most commonly used to describe central ten­
dency, and it is calculated from observed values on at least an interval
scale of measurement. Batting average, grade-point average, and average
temperature are examples of means. The word average refers to the
arithmetic mean or to the centroid of a sample, typically referred to as the
.mean.

For a set of n observed values, Xl> X2,"" xn, the mean is the sum of
the values divided by the number of values. The symbol denoting a mean
is a line or bar over the symbol denoting the observed value. For example,
when the observed values are denoted by Xj, i = 1,2, ... , n, the mean is
denoted by x and is pronounced "x-bar." The mean is mathematically
expressed as

(1J)

The mean xis in the same units as the observed values Xi that are summed
to compute the mean.

Sometimes the values are grouped into intervals, and the number of
values falling into each interval is provided. Techniques for obtaining
groupings are presented in Section 1.4.3; such a grouping is one way of
summarizing a sample of observed values. For each interval, a single num­
ber summarizes the values in the grouping; this number is called the group
or class mark. Typically, this value is the midpoint of the group interval.
Let Vj denote the class mark and fj the frequency in the jib group. If each
Xi falling in the jib group had the value of its class mark Vj, then the sum
of observations in the jib group would be exactly fjvj. Because all values of
Xi are not actually equal to Vj but are distributed in the interval, the sum
of the values in the jib group is approximated by fjvj, and the sum of the
observations in all groups is approximated by summing the fjvj over the
index j. The total number of observed values is the sum of the fj . Thus, if
k is the number of groups, the approximate mean calculated from grouped
data is given by

(1.2)
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1.2.2 Weighted Mean
In calculating the mean of a sample of values, it is assumed that all

values are of equal importance. In situations where the values are not
equally important, each value may be assigned a weight proportional to its
relative importance, and a weighted mean is calculated. Let Xit i = 1,
2, ... , n, be observed values, and let Wi be the corresponding weights or
relative importance of the observed values. The weighted mean is

(1.3)

An example of a weighted mean is a grade-point average where the
weights are the number of credit hours associated with each grade.

Example 1.1 Suppose that a sample of scrap is sent for analysis to
two laboratories with the following results. A measure of analysis precision
is reported as a quantity called the variance, defmed in Section 1.3.2. The
unweighted average of the two means is 7.40.

Laboratory Mean Variance

A 7.1 pCi/g 3.2
B 7.7 pCi/g 1.8

To fmd the weighted mean of the laboratories, weighted by the precision
of each mean, the appropriate weight is the inverse of the variance. Using
Equation 1.3, the mean weighted by the inverse of the variance is

7.1/3.2 + 7.7/1.8 = 7.48
1/3.2 + 1/1.8

Another use of weighted means is to estimate the overall mean with
unequal-sized samples. If all observed values in the different samples are
of equal importance, the mean of each sample is weighted by the sample
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size. To combine k samples, where the jth sample is of size nj with mean
Xj, the overall mean is

(1.4)

Note that this is similar to taking the mean of grouped data, where the Xj
serves as the mark and the nj as the frequency. In this case, however, nj~

is the exact total for the jth group rather than an approximation.

Example 1.2 Suppose that an operator in a nuclear fuel facility
wants to know the average yearly number of fuel assemblies that have
been shipped during the last 5 years. Available data show that for the past
5 years the average number of 24-rod assemblies shipped has been 227 per
year. Also, during the last 2 years the average number of 27-rod assem­
blies shipped per year was 88. That is, for 3 of the 5 years, only 24-rod
assemblies were shipped; for 2 of the 5 years, both 24-rod and 27-rod
assemblies were shipped. The average number of assemblies shipped in the
first 3 years is 227 per year and in the last 2 years is 227 + 88 = 315
per year. From Equation 1.4, the overall average yearly number of assem­
blies shipped is

- = 3(227) + 2(227 + 88) = 2622
x 3+2 .

1.2.3 Median
The median is a number that is greater than or equal to half of the

observed values in a sample and simultaneously is less than or equal to the
other half. Before the median can be determined, the observed values must
be ordered. Thus, the measurements must be on at least the ordinal scale
of measurement. The median, unlike the mean, is not affected by a few
extremely large or small values.

Suppose that there are n observed values. These values are ranked in
increasing order of magnitude (decreasing order works equally well). If n
is odd, the median is the value in the middle position in the ordering. In
the ordered series 2, 3, 3, 8, 11, 14, 19, the median is 8, because there are
three values smaller than 8 and three values larger. If n is even, there is no
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single middle position, so the median is defmed as the average of the
two values occupying the middle two positions. In the ordered series 2, 3,
3, 8, 11, 14, the two middle values are 3 and 8, and the median is
(3 + 8)/2 = 5.5.

1.2.4 Mode

The mode is the value that occurs most frequently. Note that there can
be more than one mode in a set of data. The mode can be found for mea­
surements on any of the scales of measurement. When data are grouped,
the group with maximum frequency is called the modal group. For
grouped data measured on an interval or ratio scale, the mode is the mark
of the modal group. Note that there can be more than one modal group.
In the series 2, 3, 3, 8, 11, 14, the mode is 3 because 3 occurs twice and
the other values each occur only once. In the series 2, 3, 3, 8, 8, 11, 14,
the modes are 3 and 8.

1.2.5 Geometric Mean

For a set of n positive numbers Xh X2, ••• , XD on at least an interval
scale of measurement, the geometric mean, G, is defmed as the nth root of
the product of the values; that is,

By taking logarithms, this can be expressed as

1 D

10gG = - ~Iog Xi
ni-l

(1.5)

(1.6)

That is, the geometric mean of the Xi values is the antilog of the arithmetic
mean of the logarithms of the Xi values. The geometric mean is used for
data that come from a lognormal distribution (discussed in Section 2.5.3)
or for data with a multiplicative rather than an additive structure.

1.3 DESCRIPTIVE STATISTICS: MEASURES OF
VARIABILITY

Measures of central tendency describe the middle of the data, whereas
measures of variability describe the scatter or spread in a set of data. In a
sample of measurements, the numerical values usually are not identical,
but are dispersed due to random fluctuations in the measuring apparatus
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and due to inherent differences in the items being measured. Measures of
variability describe the spread of the values in a set of data and are also
called measures of dispersion or measures of scatter. Both a measure of
location (central tendency) and a measure of variability are needed to
characterize a sample.

1.3.1 Range

The range is the difference between the largest and smallest values in a
sample and is a good statistic for describing the spread in a set of data.
The range is easily calculated from the observed values in a sample where
measurements are on at least an interval scale. For small samples (less
than 5 to 10 values), the range may be as stable as other measures of vari­
ability (i.e., in repeated samples of this size, the range often exhibits no
more discrepancy from sample to sample than other measures of disper­
sion). One common, but somewhat invalid, objection to the range is that
not all of the data are used. Because the range is computed from only the
largest and smallest values, however, these cannot be determined unless all
values are considered.

1.3.2 Variance and Standard Deviation

The most commonly used measure of variability is the sample variance,
denoted by S2. It is calculated from measurements on at least an interval
scale and is defined as

(1.7)

The divisor (n -1) is used rather than n so that the sample variance is an
unbiased estimator of the population variance (Section 3.4.1). The vari­
ance is related to parameters of many commonly used statistical distribu­
tions and is algebraically easy to manipulate for inferential purposes.
Because the variance is computed using the square of deviations from the
mean, it is heavily influenced by large deviations from the mean. All
values, however, influence the variance. The sign of each deviation is not
important because squaring results in all positive terms. It also results in
units that are the square of the units of the observed values.

A convenient computational formula for S2, which is algebraically
equivalent to the definition given in Equation 1.7, is

(1.8)
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Another algebraically equivalent form is

S2=~I±Xl- n x21
n I i-I

(1.9)

Equations 1.8 and 1.9 are called computing formulas because they simplify
hand computations. By applying Equations 1.1 and 1.8 or 1.9, the mean
and variance are calculated by passing through the data once, accumulat­
ing the sum of values (2:xi) and the sum of squared values (2:xl). If the
variance is computed directly from Equation 1.7, the data must be
processed twice, first to compute the mean and then to compute the sum
of squared deviations from the mean. Equations 1.8 and 1.9, however,
should not be used on a computer, especially with large data sets, because
serious roundoff errors can result in inaccurate calculation of the sample
variance.

The variance is calculated from grouped data by applying the formula

S2 =_I_~f.(v, - x)2
g n-I..,J J g

(1.10)

where Vj is the class mark, fj is the frequency of the jth group, and Xg is the
mean estimated from Equation 1.2. This gives an approximation to the
variance. Sheppard's correction, discussed by Kendall and Stuart (1973),
can be applied to improve the approximation.

The standard deviation is defined as the positive square root of the vari­
ance. The units of the standard deviation are the same as the units of
observed values and the measures of central tendency.

Another commonly used measure of variability is the standard devia­
tion of a parameter estimate, which is often called the standard error of
the parameter estimate.

1.3.3 Geometric Standard Deviation

The geometric mean, given by Equation 1.5, is the appropriate measure
of central tendency to use for lognormally distributed data from a mea­
surement scale that is at least an interval scale. The geometric standard
deviation (GSD) is the corresponding measure of dispersion in such data.
This statistic is the antilog of the standard deviation of the logarithms of
the values. This definition is algebraically equal to

I I D l~GSD = exp --=-1.2; [In(xi/G)]2
n 1-1

where G is the geometric mean, given by Equation 1.5.

(1.11)
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Percentiles are summary values of data on at least an ordinal scale of
measurement that can be used to convey information on either cen­
tral tendency or dispersion. The lOOpth percentile of a sample is a value
that exceeds at least lOOp% of the sample and is exceeded by at most
1OO( 1- p)%. Sample percentiles are easily determined if data are ranked
or ordered. In Section 1.2.3, the median is defined as the 50th Percentile.
The 25th and 75th percentiles have special names, the first (or lower) and
third (or upper) quartiles of the data. The first quartile is the value that
equals or exceeds one-quarter of the data and also is equaled or exceeded
by three-quarters of the data. Similarly decUes are the lOth percentile, 20th

percentile, and so on. Quantities such as quartiles, deciles, and percentiles
are often called quantiles, and functions of quantiles are used as measures
of dispersion. The most commonly used of these is the interquartile range,
defined as the difference between the upper and lower quartiles.

1.4 DATA DISPLAY: SINGLE VARIABLE

It is often difficult to see patterns in tables of numbers. Thus, displays
that summarize data can be used to convey the information in the data at
a glance, based on the use of fewer numbers. Characteristics and patterns
that are not readily apparent in a collection of numbers often can be easily
determined from appropriate summaries or displays of the data. Display
techniques differ in the scales of measurement that are valid and in the
number of variables that are displayed simultaneously.

1.4.1 Pie Charts

One common type of diagram is the pie chart. A "pie" or circle
representing the whole is cut into slices or sectors corresponding in area to
proportions that comprise the whole. The pie chart can be used to display

Figure 1.1 Pie cbart illustrating dispositioD or fuel pellets.
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data from any measurement scale. For a scale of measurement higher than
nominal, however, information is lost if the data are reduced to a nominal
level for a pie chart display. Figure 1.1 is an example of a pie chart that
displays the proportions of fuel pellets with the indicated dispositions.

1.4.2 Bar Charts
A bar chart is used to display nominal or ordinal scale measurements.

Each bar represents one group, and the bar height corresponds to that
group frequency. Bars are of equal width, so that area and height of the
bars are proportional. Bars may be oriented horizontally or vertically. If
the categories are on an ordinal scale, the bars are placed in sequence.
Figure 1.2 displays the monthly number of fuel rod rejects at a fuel fabri­
cation facility during a particular year.

7 *Number 6 * *of 5 * * * *rejects 4 * * * * * * * * *3 * * * * * * * * *2 * * * * * * * * * * * *1 * * * * * * * * * * * *
J F M A M J J A S 0 N 0

Month

Figure l.2 Bar chart illustrating moathIy rejects or fuel rods.

1.4.3 Histograms

A histogram is similar to a bar chart and is used for displaying fre­
quencies of values of a variable measured on an interval or ratio scale. The
heights of the bars represent frequencies. Each bar corresponds to a value
of a discrete variable or an interval of values of a continuous variable. Bar
width represents interval size. In the following discussion, intervals of
equal width are assumed, so bar height and area are proportional.

Consider Table 1.1 which displays the weights of six samples of 25
uranium ingots for input to a nuclear fuel production cycle. From visual
examination of Table 1.1, it is difficult to see the central tendency and dis­
persion of ingot weights in the samples. Thus, a histogram is appropriate
to summarize the central tendency and dispersion of the observed values of
ingot weight.

The first step in constructing a histogram is to group the data. A
grouping is chosen to condense information for the specific display pur­
pose. A typical grouping is based on intervals of equal width. A grouping
is successful if it conveys significant information from the data but does
not display unnecessary detail. Sometimes a grouping may not condense
the data enough, and the histogram may not convey the central tendency
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TABLE 1.1

Six Samples of Size 25 of Uranium Ingot Weightst

Sample Number

1 2 3 .. 5 6

425.0 426.7 423.3 429.4 427.9 422.1
422.5 424.4 427.8 428.9 425.3 427.3
424.9 422.4 426.1 424.8 432.4 419.7
431.7 432.2 422.4 427.3 427.3 425.7
426.3 427.8 424.8 428.0 426.3 425.9
424.5 431.3 431.2 427.3 418.5 431.6
426.1 425.8 429.8 429.5 425.3 424.6
423.1 426.8 430.9 423.9 421.9 421.8
428.3 424.8 427.0 425.1 425.2 432.3
423.2 423.6 427.9 427.9 428.5 428.8
428.2 424.8 421.0 423.6 428.0 425.7
429.1 429.7 419.6 421.3 426.8 425.2
424.2 430.3 424.6 430.0 423.5 430.0
429.7 423.2 428.8 425.4 427.5 424.9
424.8 431.0 427.9 423.6 421.7 426.6
427.2 428.0 428.0 429.7 427.4 426.2
428.3 426.6 428.4 427.1 427.5 426.2
429.3 425.4 423.1 426.9 425.7 434.2
421.8 427.3 425.2 427.3 425.7 420.4
424.0 426.0 424.9 430.5 426.3 424.9
428.0 423.3 431.1 426.4 429.0 423.3
426.5 426.3 429.9 427.4 424.2 428.2
427.2 429.2 425.9 426.6 425.5 419.2
424.5 425.1 424.4 424.7 427.7 421.2
425.9 425.4 427.9 423.7 428.6 428.8

t In kilograms.

and dispersion because there are too few observations in each interval. If
this is the case, fewer groups based on wider intervals should be used. On
the other hand, if the shape of the distribution of observed values is not
apparent from the histogram because all observations are in a few inter­
vals, then the number of groups should be increased using narrower inter­
vals. The samples in Table 1.1 are summarized in· Figure 1.3 in
histograms with intervals of unit width in which one less digit is displayed
in the figure than in Table 1.1.

Let x be the observed weight. The group intervals in Figure 1.3 are
defined by the inequalities 417.5 < x ~ 418.5, 418.5 < x ~ 419.5,
419.5 < x ~ 420.5, and so on. Because of the < and ~ signs, there is no
ambiguity as to which class each weight belongs. The categories can be
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defined instead as 417.51 through 418.50, 418.51 through 419.50, 419.51
through 420.50, and so on. Here, ambiguity is avoided by using one addi­
tional significant digit to define the interval boundaries. In both cases, the
middles of the intervals are the integers 418 through 434, and one fewer
digit is displayed than is recorded in Table 1.1.

Based on this grouping for the six samples, the six histograms in
Figure 1.3 are generated. These histograms provide a much clearer picture
of the central tendency and dispersion within each sample than the
columns of numbers in Table 1.1. Note, however, that the central tendency
and especially the dispersion of the values appear to vary among samples.

Frequency

Middle of
interval Sample 1 Semple 2 Semple 3 Sample 4 Semple 6 SImple 6

418 0 0 0 0 1* 0
419 0 0 0 0 0 1*420 0 0 ,* 0 0 2**421 0 0 ,* ,* 0 ,*
422 2** ,* ,* 0 2** 2**423 2** 2** 2** 0 ,* ,*
424 4**** 2** ,* 4**** ,* 0
426 3*** 6***** 4**** 4**** 4**** 4****426 4**** 3*** 2** ,* 4**** 6*****427 2** 4**** ,* 7******* 5***** 2**428 4**** 2** 6****** 2** 4**** ,*
429 2** ,* ,* 3*** 2** 2**430 ,* 2** 2** 3*** 0 ,*
431 0 2** 3*** 0 0 0
432 ,* ,* 0 0 ,* 2**433 0 0 0 0 0 0
434 0 0 0 0 0 ,*

Figure 1.3 Histograms of uraaiam iDgot weights by IIUIpIe DlllDher from Table 1.1.

Assume that the six samples are known to be from the same population
and, thus, can be combined. Methods for testing this assumption are given
in Chapter 5. If the six samples are combined and a histogram is drawn as
in Figure 1.4, it appears that the central tendency in the data is some­
where between 425 and 428 kg, with the values ranging from 418 to
434 kg. The distribution of weights is approximately symmetrical. With
the combined sample, the shape of the histogram gives a better indication
of the distribution of observed values than the individual histograms in
Figure 1.3. This illustrates the increased information that can be gained by
increasing the sample size.
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Middle of
interval Frequency

418 1*
419 1*
420 3***
421 3***
422 8********
423 8********
424 12************
~5 ~************************
426 19*******************
4U 21*********************
4~ 19*******************
429 11***********
430 9*********
431 5*****
432 5*****433 0
434 1*

, Figure 1.<4 Combioed histogram of Ingot weights from Table 1.1.

15

1.4.4 Stem-and-Leaf Displays

A histogram uses data measured on an interval or ratio scale, grouped
into intervals to reduce data to an ordinal level for display. This reduction
of measurement scale discards some of the information in the data. A
stem-and-Ieaf display retains all or almost all of the information in the
interval or ratio scale measurements. It shows the range of values in the
data, the gaps where no values occur, the concentration or clustering of
values, the symmetry of values, values that are markedly different than the
rest, and any unusual patterns in the data. These are features that may go
unnoticed in a table or listing of data.

One feature of a stem-and-Ieaf display is the illustration of most of the
digits of the observed values (some information is lost with truncation).
Each value is split into two parts, leading digits (stem) and trailing digits
(leaf). Usually, trailing digits are further split into displayed and discarded
digits. For example, the number 62367 might be split into 62 as leading
digits and 367 as trailing digits. Of trailing digits, the 3 would be
displayed and the 67 discarded. With numbers that have only two or three
digits, no digits are discarded.

In a stem-and-Ieaf display each unique combination of leading digits is
displayed on a separate line in increasing order. Any missing combinations
of leading digits in the counting sequence are also displayed on a separate
line. The retained trailing digits for all values with the same leading digits
are displayed on the same line as the leading digits. For the number
62367, if 6 and 2 (displayed as 62) are chosen as the leading digits and 3
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as the displayed trailing digit, the 62 is displayed on a line. On the same
line the digit 3 is displayed, along with the third digit of any other five
digit values in the data set between 62000 and 62999. The displayed trail­
ing digits are arranged in increasing order of magnitude for each stem
value.

Example 1.3 Construct a stem-and-leaf display of the five numbers
493, 506, 478, 497, and 502, with the first two digits as the leading digits
(stem) and the third digit as the trailing digit (leaf). The stem-and-leaf
display is

Stem Leaf

47 8
48
49 37
50 26

The stem digits are to the left and are not repeated for each observed
value. The leaf digits are on the right, ordered by magnitude, and on the
row corresponding to the two digits in their stem. The stem value of 48 is
included with a blank leaf space to indicate that no values occur between
480 and 489.

Choice of the position of the stem-and-leaf split is determined by the
range and number of values to be displayed. For large samples with four
or more digits per value, a three-digit stem is typically used if the range of
stem values is not large. Because decimal point lOCation is lost when a
value is split into a stem and leaf, the display notes where the decimal .
point falls; this is usually provided in the heading. A stem-and-leaf display
of the data in Table 1.2 is given in Figure 1.5.

In the heading of the stem-and-Ieaf display in Figure 1.5, the place­
ment of the decimal point is indicated in two ways. The first line indicates
that the leaf digit represents the units part of a number. The second line,
with the space between the first 266 and 2 (representing the space between
stem-and-leaf columns), shows that a stem of 266 and a leaf of 2
represents 2662 kg.

A feature not apparent in Table 1.2 is emphasized by Figure 1.5; i.e.,
all leaf digits are even numbers. This suggests that measurements were
recorded to the nearest even kilogram. Such patterns are lost in a histo­
gram in which each of the leaf digits is replaced by an asterisk.
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TABLE l.2

Uranium Hexafluoride Cylinder Weightstt

17

2676
2674
2682
2686
2690
2672
2640
2682
2672
2692

2684
2690
2710
2670
2690
2680
2672
2692
2688
2662

2690
2686
2692
2690
2682
2680
2678
2690
2666
2642

2682
2660
2658
2686
2672
2664
2682
2696
2666
2676

2684
2696
2686
2694
2708
2684
2682
2660
2674
2686

tIn kilograms.
*Simulated data with a mean of 2680 kg.

Leaf Digit Unit = 1
266 2 Represents 2662

Stem Leaf

264 02
265 8
266 002466
267 0222244668
268 00222222444666668
269 o00ooo222466
270 8
271 0

FIpre 1.5 Stem-ud-Ieaf display or
cyIiDder welgbts from Table 1.2

1.4.5 Boxplots

Frequently, less detail than a stem-and-leaf display is sufficient. A dis­
play of all the information may be confusing, but an overall summary such
as a mean and standard deviation is too brief. In such cases, boxplots may
be appropriate. Boxplots require that the observed values be interval or
ratio scale measurements.

Boxplots use a median to describe the central tendency of data. To
represent the spread, each half of the data is split in half again by the
hinges. Hinges are found in the same way that the median was found in
Section 1.2.3; the data are split into two parts at the median, and the
hinges are the medians of each of the two parts. Depending on the num-
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ber of values in the data, the hinges are either equal to or approximately
equal to the upper and lower quartiles. A boxplot summarizes data by
using five numbers: the median, the two hinges, and the maximum and
minimum values. A boxplot is made by drawing a box or rectangle
between the hinges. A vertical line is placed across the box at the median.
A horizontal line is extended from each hinge to the maximum and mini­
mum values; these lines are called whiskers.

A set of data on shipper-receiver differences is displayed in Table 1.3.
Assume that the time between shipper and receiver weighings is relatively
short and that the shipments are made monthly at approximately the same
time, so that the time intervals are approximately equal. Each observation
consists of three values (tj, Sj, rj), where i is the index (i = I ,... , to), tj is
month of shipment, and Sj and rj are shipper and receiver net weight
values. Because the values of index and month are the same, only one is
needed. Thus, the shipper-receiver data have up to five variables at vari-

. ous scales of measurement: cylinder index (nominal or ordinal scale), time
(date) of shipper weighing (interval scale), time (date) of receiver weigh­
ing (interval scale), shipper net weight (ratio scale), and receiver net
weight (ratio scale). In addition, in Table 1.3 the difference in net weight
between shipper and receiver values is calculated.

Figure 1.6 is a boxplot of the shipper-receiver differences (Sj - rj)
from Table 1.3. An overall impression is displayed, including spread and
symmetry. The median is 1.34 kg, the spread between hinges is 1.62 kg
(0.22 to 1.84 kg), and the range is 5.52 kg (-2.06 to 3.46 kg). The distri­
bution is asymmetrical because the median is not in the middle of the box.
Because the entire box is above zero, there is a good indication that the
shipper weights tend to be larger than the receiver weights.

TABLE 1.3

Net Weight of UF, Cylinders by Montht

1Ddex, i Moath,G Sbipper, .. Recei,er, f. Differeac:e,.. - f.

I 1 1471.22 1468.12 3.10
2 2 1470.98 1469.52 1.46
3 3 1470.82 1469.22 1.60
4 4 1470.46 1469.26 1.20
5 5 1469.42 1465.96 3.46
6 6 1468.98 1470.80 -1.82
7 7 1469.10 1467.89 1.21
8 8 1470.22 1472.28 -2.06
9 9 1470.86 1469.02 1.84

10 10 1470.38 1470.16 0.22

tIn kilograms.
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-3 kg -1 kg 1 kg 3 kg

Figure 1.6 Boxplot of shipper-recei'er differences (SI - rJ from Table 1.3.

Samples can be compared visually by placing several boxplots in the
same figure. For example, to further compare the shipper and receiver
data, the corresponding boxplots are placed together in Figure 1.7. The
shipper and receiver sample medians do not coincide (the shipper weights
tend to be larger than the receiver weights), and the shipper measurements
are more precise (less spread out) than the receiver measurements.

Receiver

----~..._......D----­
Shipper

-I-....(}-
1466 kg 1468 kg 1470 kg 1472 kg

na-e J.7 Boxplots of Iblpper ad receber welgbts from Table 1.3.

1.5 DATA DISPLAY: MULTIPLE VARIABLES

The shipper-receiver data displayed in Figure 1.7 form ordered pairs.
That is, for each value reported by the shipper, there is a corresponding
value reported by the receiver. The pairing occurs because the same
uranium hexafluoride cylinder is measured. An ordered pair of values is
indicated by enclosing the values in parentheses: if x is used to indicate
one variable and y the other, then (x,y) is an ordered pair. For the ship­
per-receiver data, values are referred to by sand r, so the ordered pair is
represented by (s,r) or (r,s). In addition, the observations in this example
are time-ordered, because the time sequence in which cylinders were
shipped and weighed is known.

For most months, the shipper vaiues are larger than the receiver values.
If only randomness were influencing the data, about five positive and five
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negative differences would be expected. In this case, two negative and
eight positive differences are observed. This suggests that, on the average,
shipper values may be larger than receiver values due to some nonrandom
influence. Based on the Sign Test (Chapter 9) for 10 observed differences,
eight or more positive and two or fewer negative differences are expected
to occur by chance about 5.4% of the time in situations where there is no
true difference. Thus, there is evidence of nonrandom structure in the data
that may be further explored graphically. In the following sections, differ­
ent graphs of the shipper-receiver data are presented.

, ,-

1.5.1 Scatterplots

Pairs of observed values are typically displayed as scatterplots or x-y
plots to show how x and yare related. Using the data in Table 1.3, if ship­
per values are plotted on the vertical axis (y-axis) or ordinate and receiver
values on the horizontal axis (x-axis) or abscissa, each (r,s) pair is
represented by a point on the graph. This plot is shown in Figure 1.8.

1472

•1471 ~ ...
• • •Si 1470 -

•
1469 - • •
1468 I I I I I I I

1465 1466 1467 1468 1469 1470 1471 1472 1473

FIpI'e 1.8 Scatterplot of pain of shipper aad receiYer weights from Table 1.3.

The month of shipment can be included as a third variable in a scatter­
plot by replacing each plotted point with the index number for the month
of shipment. Such a display is shown in Figure 1.9. The diagonal line indi­
cates where the points should fall if the shipper weight equals the receiver
weight.

The points in Figure 1.8 or 1.9 do not follow any simple pattern. How­
ever, during the months 5, 6, 7, and 8, the receiver weights show a greater
variability than shipper weights and the other six receiver weights, but the
central tendency of these four receiver weights is close to the yearly cen­
tral tendency of all receiver weights.
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1472

1471 9 3 2

4

1470 8
Sj

5
1469 7 6

1468
1465 1466 1467 1468 1469 1470 1471 1472 1473

Fipre l.9 Scatterplot or pairs or shipper and receinr weights rrom Table 1.3 also dJspIayiDg
moBth or shipmeat.

1.5.2 Time Series Plots

The data in Figure 1.9 suggest that there may be a seasonal effect.
Thus, it is of interest to plot time (month) on the x-axis. A plot of
observed values vs. time is called a time series plot. Several such plots can

4r------------.......,

Sj' rj

3

2

o

-1

-2

3 5

Month

7 9

Figure 1.10 Time series plot or shipper-receiver
differences rrom Table 1.3.
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be derived from this example set of data. One plot that may be useful
would have two lines on it: one describing the shipper's values and a sec­
ond describing the receiver's values. Another useful plot is of the ship­
per-receiver differences, as shown in Figure 1.10.

Note that the clustering in Figures 1.8 and 1.9 is not apparent in
Figure 1.10. There is a suggested trend from upper left to lower right in
Figure l.l0, but there is also substantial variability. In Section 1.6,
methods are presented for "filtering out" some of the variability so that
underlying trends are more obvious.

1.6 DATA SMOOTHING

When x-values (abscissa) are equally spaced, it is useful for y-values
(ordinate) to change smoothly from point to point to indicate trends in a
set of data. The process of smoothing consists of nItering some of the ran­
domness from the y-values. This section presents techniques for such nIter­
ing, where the discussion is restricted to equally spaced x-values. In this
case, the y-values are considered to be a sequence of values. Methods also
exist, however, for unequal spacing.

Smoothing is the operation of displaying the dominant trends in a
sequence and ignoring some of the irregularities. Consecutive overlapping
segments of the sequence are used for smoothing; for example, the ftrst
four values are used, then the second through the ftfth, then the third
through the sixth, and so on. Because the segments overlap, changes in the
smoothed data are smoother than in the original data. A mathematical
algorithm that removes variability is called a fIlter. The nIters discussed in
this section use medians and means to smooth a sequence.

Using more than one smoother or nIter sequentially is called compound
smoothing. Through a combination of smoothing procedures, the defmition
(or resolution) of an underlying trend is improved. Early steps in a com­
pound smoother concentrate on moderating the effect of unusual values in
the sequence. Later steps concentrate on creating a smooth trend.

A more complete discussion of smoothing is found in Chapters 7 and
16 of Tukey (1977). A review of smoothing algorithms is found in
Velleman (1980).

Although several smoothing methods are presented, no rule is given as
to which method is preferred. This is often a matter of individual choice.

1.6.1 Running Medians

Suppose that each observed value, except the end values in a sequence,
is replaced by the median of itself and its two neighboring values. This is
an example of a 3-point running median smoother, so named because each
value is replaced with a median. If the two neighboring values on each side
of a value and the value itself are used to estimate the median, a 5-point



SECTION 1.6 DATA SMOOTHING 23

running median smoother results, and so on. Methods of handling the ftrst
and last points in a 3-point smoother or the ftrst and last two points in a
5-point smoother, and so on, are presented in Section 1.6.4. As a simplifted
procedure, the original ftrst and last points are copied into the smoothed
sequence. To illustrate running medians, a 3-point smoother is applied
twice to the shipper-receiver difference data from Table 1.3. The results
are displayed in Table 1.4. The column labeled "Residual" is calculated as
the difference between the column labeled "Difference" and the column
labeled "2nd Smoothing."

TABLEU

Three-Point Smoothing of Shipper-Receiver Differences from Table 1.3

Month Differeoce 111 smoothing r' lDlonthing Residual

1 3.10 ---copy- 3.10 --<XIpy- 3.10 0.0
2 1.46 1.60 1.60 -0.14
3 1.60 1.46 1.60 0.0
4 1.20 1.60 1.46 -0.26
5 3.46 1.20 1.21 2.25
6 -1.82 1.21 1.20 -3.02
7 1.21 -1.82 1.21 0.0
8 -2.06 1.21 0.22 -2.28
9 1.84 0.22 0.22 1.62

to 0.22 ---copy--- 0.22 --<XIpy- 0.22 0.0

Figure 1.11 shows the effect of the ftrst 3-point median smoothing; a
smooth curve is obtained except for the 7th month. Figure 1.12 illustrates
that applying the second 3-point median smoother aligns this value. For
these data, the third 3-point median smoother is virtually identical to the
second.

When smoothing with an even number of values (an even segment), the
x-values are used as well as the y-values. A description of a 4-point run­
ning median smoother illustrates the principle. Recall that the median of
four values is obtained by ordering the values and then averaging the mid­
dle two values.

When using a 4-point median smoother, it is unclear which of the two
central x-values should be associated with the median y-value. The median
of an odd length smoothing segment is associated with the middle x-value
of the segment. For example, with a 3-point smoothing segment, the
median y-value from the data segment deftned by (Xj_ It Yj_I), (Xj, Yj),
(Xj+1t Yj+l) is associated with the abscissa position Xj' The center of an
even length segment, however, is between two x-values. Thus, the new Y­
values are aligned with the original x-values by averaging the two 4-point
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Figure 1.11 First smoothing by 3-point nmning
median or shipper-receiver differences rrom Table 1.4.
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Figure 1.12 Second smoothing by 3-point running
median or shipper-receiver differences rrom Table 1.4.
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running medians on either side of the two middle x-values. This is called
recentering. The operations are as follows:

x-values ...5 6 7...
y-values .. ·Ys Y6 Y7' ..
smoothed by 4's Z4.S Zs.s Z6.S Z7.S
recentered Zs Z6 Z7

Note that recentering is a 2-point running median of the 4-point running
medians. Algebraically, a 4-point recentered running median replaces each
Yj with

Zj = 1/2 [median (Yj-2, Yj-h Yj, Yj+I)

+ median (Yj-h Yj, Yj+h Yj+2)] (1.12)

For illustration, the 4-point recentered smoother is applied to the
shipper-receiver differences from Table 1.3. Table 1.5 summarizes the
computations.

TABLE 1.5

Recentered 4-Point Running Median Smoothing of Data From Table 1.3

Mollth Differeaee Smoothed Residual

1 3.10 ----copy 3.10
2 1.46 ----copy----- 1.46

1.53
3 1.60 1.53

1.53
4 1.20 1.47

1.40
5 3.46 1.31

1.21
6 -1.82 0.45

-0.31
7 1.21 -0.31

-0.31
8 -2.06 0.21

0.72
9 1.84 ----copy--- 1.84

10 0.22 copy---- 0.22

Figure 1.13 is a plot of the recentered data. A comparison with Figure
1.12 shows that a double 3-point and a 4-point median smoother have
about the same effect on the first half of the sequence but that the 4-point
smoother does not completely fIlter the randomness in the last half of the
sequence.
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Figure 1.13 Four-point running median smoothing
and recentering of shipper-receiver differences from
Table 1.5.

1.6.2 Running Averages

A filter that has less of a smoothing effect than the median filters may
be preferred. One possibility is a running average which smooths sequences
by replacing each value with the average of itself and neighboring values.
Often a running weighted average is used, in which neighboring values
closest to the value being replaced are given the highest weights. For
example, Yj may be replaced by lA Yj-l + lh Yj + lA Yj+l' This is a
weighted average because the coefficients (lA, lh, lA) are unequal and add
to one. Although an unlimited number of running averages and running
weighted averages are possible, this particular one is useful in application
and is called hanning. Any running weighted average is affected by even a
single unusual value, so such smoothers are often used only after unusual
values are filtered by a median smoother.

1.6.3 Smoothing tbe Endpoints

Endpoints in a sequence cannot be smoothed in the same way as values
in the middle because the endpoints are not surrounded by values on both
sides. With a S-point smoother, the problem is alleviated by substituting a
3-point smoother near the ends of the sequence. Likewise, a 2-point
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smoother can be substituted for a 4-point smoother near the ends. This
substitution smooths all values except the first and last points. Smoothed
values for the first and last points are obtained by extrapolating from the
smoothed curve to the endpoints.

One approach is to find the line that passes through the two smoothed
values adjacent to the endpoints, then to extrapolate this line to the end­
points. For equally spaced values on the x-axis, the distance or time
between values is denoted as ~. The y-values (Ylo Y2, ••• , Yo) are
smoothed into (Z2' Z3' ... , Zo-t). Linear extrapolation obtains values for
Zt and Zo. The slope of the extrapolation line at the beginning of the
sequence is

(1.13)

and the estimated first value is

(1.14)

The estimate for the [mal value is

(1.15)

When using compound smoothers, it is unnecessary to perform end­
point extrapolation between each step. Extrapolation should be performed,
however, both before and after hanning.

1.6.4 Examining the Residuals

Studying a smoothed sequence is part of examining a time series. It is
also important to study residuals, which are the differences between ftI·
tered and original values. Examining residuals can reveal outliers, patterns
or trends in the sequence that are short term. Residuals can also reveal
portions of the sequence subject to more variability than other portions.
Figure 1.14 displays the residuals for the shipper-receiver differences
example in which the double 3-point smoother was applied.

No rules for examining residuals are formulated because the purpose of
such an examination is to find unusual or unexpected trends in the
sequence. Sometimes it is helpful to smooth residuals. This can yield a sec­
ondary trend. What is to be done after smoothing has identified a trend is
not discussed here. Working with an algebraic definition of a trend is dis­
cussed in Chapter 6.
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Figure 1.14 Residuals after smoothing of ship­
per-receiver differences with the double 3-point
median smoother from Table 1.4.
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CHAPTER 2

Probability
2.0 INTRODUCTION

Statistics enters into scientific investigation through experimentation
and observation. Scientific investigation is a means for acquiring informa­
tion from which a conclusion can be drawn. Most statements resulting
from scientific investigations are only inferences which are uncertain in
character. In many instances, part of the uncertainty is random in nature
and can be described using probability theory. The drawing and evaluation
of inferences in the face of random uncertainty is the essence of statistics.

In this chapter some basic probability concepts and formal definitions
are provided that are fundamental to the development and application of
the statistical methods presented in subsequent chapters. This is not meant
to be a comprehensive presentation of probability theory. The reader inter­
ested in a more thorough treatment of the subject can find varying levels
of rigor in such texts as Feller (1968), Hines and Montgomery (1980),
Hogg and Craig (1978), and Rohatgi (1984).

2.1 BASIC PROBABILITY CONCEPTS

Prior to a formal discussion of probability, a few basic concepts and
terms are introduced to facilitate the formal definitions and theoremst
which are presented in this section. First, the concept of experimentation is
introduced.

According to Webster's Ninth New Collegiate Dictionary (1983), an
experiment is "an operation carried out under controlled conditions in
order to discover an unknown effect or law, to test or establish a hypothe­
sis, or to illustrate a known law." Similarly, the American Heritage Dic­
tionary (1982) defines an experiment as "a test made to demonstrate a
known truth, to examine the validity of a hypothesis, or to determine the
efficacy of something previously untried." These definitions include the
essence of the notion of an experiment as used in most statistics texts. For
example, rolling dice or tossing a coin may be looked upon as experiments.

t The expression "theorems" is used somewhat loosely to denote various properties, propo­
sitions, theorems, etc., which result from the deflDitions. Although not strictly correct, this
will reduce the number of terms to be absorbed by the reader.

29
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Each possible result of an experiment is called an outcome of the experi­
ment. The numbers that turn up on the rolled dice or the face observed on
the tossed coin are outcomes of the corresponding experiments. Each of
the outcomes that can occur in a single trial of an experiment is called an
elementary event or a sample point. The collection of all possible sample
points for a given experiment is called the sample space. An event, some­
times called a chance event, is a specified subset of the sample space (i.e.,
the sample points in this subset possess some specified characteristic).

As an example, suppose that an experiment consists of rolling a die.
The possible outcomes are the numbers 1, 2, 3, 4, 5, 6. That is, the sample
space has a total of six sample points. An event of interest might be that
of observing an even number. This event includes the sample points 2, 4, 6,
and is a subset of the sample space.

Probability is a measure of the likelihood of occurrence of a chance
event. The specific approach to probability used here is an axiomatic one,
in which the probability of an event is simply a number associated with
that event, and where the probabilities of a collection of events are
constrained to obey a certain set of axioms. Although other approaches to
probability exist, the axiomatic approach is the most consistent with the
subject matter of this book.

Before presenting the definition and axioms of probability, it is neces­
sary to introduce a number of defmitions and concepts from set theory.

Definition 2.1

A set is a collection of elements.

Definition 2.2

The universal set is the set consisting of all elements under consider­
ation. The universal set is sometimes referred to as a space.

Definition 2.3

The null set is the set containing no elements.

Definition 2.4

Associated with each set A is another set A' called the complement of
A. The set A' contains all elements of the universal set which are not ele­
ments of A.

Definition 2.5

The union of any two sets A and B is the set consisting of all elements
which are either in A or in B or in both A and B. The union of A and B is
commonly denoted by AUB or by A + B.
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The intersection of any two sets A and B is the set consisting of all ele­
ments which are simultaneously in both A and B. The intersection of A
and B is commonly denoted by AnB or simply AD.

To illustrate the concepts presented in Definitions 2.1 through 2.6, con­
sider an ordinary deck of 52 playing cards. Let the universal set be the
52 cards. Define the set A to be the 13 cards belonging to the suit hearts.
Then the set A' would be the 39 cards which are not hearts. Define the set
B to be the 4 cards with a king for their "face value." The union of sets A
and B is the set which includes all cards showing a heart, or a king, or
both. The intersection of sets A and B is the set which includes all cards
showing both a heart and a king (the king of hearts card is the only ele­
ment in this set).

A useful device for illustrating the properties of the algebra of sets is
the Venn diagram. In such a diagram, the points interior to a rectan­
gle constitute the universal set. Arbitrary sets within the universal set
(i.e., subsets of the universal set) are represented by points interior to cir­
cles within the rectangle. In the Venn diagram displayed in Figure 2.1, the
set A is shaded by vertical lines, and the set B is shaded by horizontal
lines. Because in this figure the set AB is not the null set, it appears as the
crosshatched area. In the above card example, A includes all hearts, B
includes all kings, the crosshatched area includes the king of hearts, and
the area outside the two circles but inside the rectangle includes all other
cards.

A B

FlglII'e 2.1 A VeDII diagram.

Counting the number of elements in a set is an essential part of proba­
bility theory. The following concepts are useful.



32 CHAPTER 2 PROBABILITY

n(A) + n(B) - n(AB).

Definition 2.'

The number of elements in an arbitrary set A is denoted by n(A).

Theorem2.t

For any two sets A and B, n(AUB)

Theorem 2.2

If A and B are mutually exclusive (have no points in common), then
AB is the null set. Thus, n(AB) = 0, and n(AUB) = n(A) + n(B).

In the previous card example there are n(A) = 13 hearts and
n(B) = 4 kings. The set AB includes only the king of hearts, thus
n(AB) = 1. Then n(AUB) = 13 + 4 - I = 16. That is, there are
16 cards that show a heart, or a king, or both. Note that in computing
n(AUB), we first add n(A) and n(B), but because the king of hearts
belongs to both A and B, it has been counted twice. Thus, n(AB) is
subtracted from the sum so that no elements are counted twice.

Permutations and combinations are concepts used for counting the dif­
ferent subgroups and arrangements that can be formed from a given set. A
permutation is a particular sequence or arrangement of a given set or sub­
set of elements. A combination is the set or subset without reference to the
order of the contained elements. In the following defmitions, the factorial
notation nl is used where nl = n(n - 1)(n - 2) ... (2)(1). The conven­
tion 01 = 1 is assumed.

Definition 2.8

The number of permutations (distinct arrangements) which can be
formed from n elements taken r at a time is P(n,r). It can be shown that
P(n,r) = nl/(n - r)1 = n(n - 1) ... (n - r + 1).

Definition 2.9

The number of combinations (different subsets) which can be formed
from n distinct elements taken r at a time is C(n,r). It can be shown that
C(n,r) = P(n,r)/rl = nl/(n - r)lrl.

To illustrate permutations and combinations, consider once again a
deck of 52 playing cards. In being dealt a five-card poker hand, a player is
interested only in the composition of the hand and not in the order in
which the cards are dealt. Thus, the player might be interested in counting
the number of possible five-card poker hands that could be dealt to him
from a 52-card deck without regard to the arrangement of the cards in a
given hand. This is simply the number of combinations which can be
formed from 52 objects taken five at a time and is computed as
C(52,5) = 521/47151 = 2,598,960.
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Now suppose that for some reason the player is interested in counting
the number of possible distinct five-card arrangements that could be dealt
from the 52 cards. Conceptually, this is analogous to first being dealt one
of the 2,598,960 possible five-card hands and then arranging the five cards
within the hand. In counting the number of possible arrangements of the
five cards within a hand, there are r = 5 possible choices for the first
position, then r - 1 = 4 possible choices for the second position, and so
on. Thus, the number of possible arrangements within a five-card hand is
5·4·3·2·1 = 5!, and the total number of possible five-card arrange­
ments that could be dealt from the 52-card deck is the product
(5!)(2,598,960) = 311,875,200. Note that this is (5!)C(52,5) =
52!/47! = P(52,5), the number of permutations that can be formed from
52 objects taken five at a time.

There is a natural relation between set theory and probability theory.
In probability theory the universal set is the sample space, each subset of
the sample space is an event, and an element is a sample point. With this
understanding, probability is dermed as follows:

Definition 2.tOt

For any event A in a sample space S, the probability of occurrence of
A, denoted by Pr(A), is a number associated with A such that

1. O::l:; Pr(A) ::l:; 1
2. Pr(S) = 1
3. If A and B are mutually exclusive events, Pr(AUB) = Pr(A) +

Pr(B)

There is no necessary relation between the theory of probability based
on the axiomatic approach used here and the real world. With this
approach, the theory of probability bears the same relation to the real
world as, say, the theory of relativity. Both theories are logical constructs
which purport to describe or predict the results of observations or experi­
ments with physical objects. As with any other scientific theories, these
theories are accepted as valid to the extent that they can adequately
describe or predict the results of actual observations or experiments. The
validity of the axiomatic approach is established by the fact that countless
observations and experiments have demonstrated that real physical objects
behave according to the descriptions and predictions of the theory of
probability.

The analogy between the theory of probability and the theory of rela­
tivity can be taken further. The theory of relativity involves physical con­
stants such as c, the speed of light. The theory does not specify the actual

tThis dcrmition of probability is not intcnded to be complctc or mathcmatically rigorous.
A complctc cxposition appears in Cramer (1946).
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value of c, which must be determined by measurement. In the same way,
the theory of probability does not provide the value of Pr(A)-it must
either be assumed or estimated. For example, suppose an experiment con­
sists of throwing a die. Let P(n) be the probability that the die shows
n spots. The theory of probability only tells us that the P(n) sum to one.
In particular, it does not follow from the axioms that P(n) = 1/6 for
every n. The numbers P(n) should, in fact, be regarded as physical con­
stants of the particular die that is being used. Their numerical values are
not provided by the axioms of probability theory, any more than the size
and the weight of the die are determined by the axioms of geometry and
mechanics. Experience shows, however, that for a well-made die the fre­
quency of any face coming up in a long series of throws usually
approaches 1/6 of the number of throws. Accordingly, it is often assumed
that the die is "fair" and that all P(n) = 1/6. This is, however, an
assumption and not a logical consequence of the axioms.

If the value of a probability is not assumed, then it must be estimated.
The process of estimation of a probability is the exact analogue of the
process of measurement used to obtain values for physical constants.
Whether a value for Pr(A) is assumed or estimated, the number obtained
is only an approximation to the probability of the physical outcome
corresponding to A. The true state of nature is never exactly characterized
by theories or measurements.

The assumption that the faces of a die each have probability 1/6 of
coming up is a special case of an assumption that is often made. This
assumption is that the sample points in a sample space are equaUy likely.
If there are N equally likely sample points in the sample space, it follows
from axioms (2) and (3) in Definition 2.10 that each has probability liN.

Assume that the sample points in a sample space are equally likely and
that A is any event. Then the probability of occurrence of the event A is
the ratio of the number of sample points in the event A to the number of
sample points in the sample space. Symbolically, this is Pr(A) = n(A)/N,
where n(A) is the number of sample points in the event A, and N is the.
number of sample points in the sample space. Also, 0 ~ Pr(A) ~ 1.

In some treatments of probability, n(A)/N is taken as the definition of
Pr(A). Although this is a possible approach when the sample points are
assumed to be equally likely, this definition cannot be easily extended
when the sample points are not equally likely. The axiomatic approach
applies to all cases and yields Pr(A) = n(A)/N as a theorem in the
equally likely case.

Another common approach to probability is to identify the probability
of an event A with its limiting relative frequency. If a large number M of
experiments is performed and A occurs m times, then the observed relative
frequency of A is m/M. This approach has a number of drawbacks. First,
no matter how large M is, the observed relative frequency of A is, by
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itself, a random quantity and is only an estimate of Pr(A). Second, it may
not even be a good estimate, because even a fair coin can come up heads,
say, 75 times in 100 tosses. Third, if the limiting value of m/M as
M - 00 is used as the definition of Pr(A), the difficult conceptual prob­
lem remains of defining probability in terms of an experiment that is
impossible to carry out in the real world.

The basis for the relative frequency approach to probability stems from
the observation that, in countless experiments that have been performed,
the observed relative frequency of an event A does seem to approach a
limit. The counterpart to this observation is the law of large numbers,
which is a theorem in the theory of probability.

Theorem 2.3 (Law of Large Numbers)

Let A be an arbitrary event in a sample space with probability Pr(A).
If m(A) is the number of occurrences of A in M experiments, then

Pr(A) = lim m(A)
M---oo M

The following theorem is a direct analogy to Theorems 2.1 and 2.2.

Theorem 2.4
For arbitrary events A and B, Pr(AUB) = Pr(A) + Pr(B)

Pr(AB). If A and B are mutually exclusive, Pr(AUB) = Pr(A) + Pr(B).

Definition 2.11

Let A be an event in an arbitrary sample space with Pr(A) :;: O. Let
B be any event in the same sample space. Then, the conditional probability
that B occurs, when it is known that A has occurred, is defined by
Pr(BIA) = Pr(AB)/Pr(A). Then by algebraic manipulation, Pr(AB) =
Pr(A)Pr(BIA). Similarly, if Pr(B) :;: 0, Pr(AB) = Pr(B)Pr(AIB).

Definition 2.12

Two events A and B are said to be statisticaUy independent if
Pr(A!B) = Pr(A) or Pr(BIA) = Pr(B).t From Definition 2.11, this is
equivalent to saying that A and B are statistically independent if
Pr(AB) = Pr(A)Pr(B).

To illustrate these concepts, consider the experiment of drawing one
card from a shuffled deck of 52 playing cards. First, note that there are
52 cards (sample points) in the sample space and each card has an equal
chance of being the one selected. Define A to be the event that the

tFrom Dcfmition 2.11, if either of these equations holds, then the other must also hold.
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selected card is a heart and B to be the event that the selected card is a
king. From Definition 2.10 and the previous discussions, Pr(A) =
13/52 = 1/4, Pr(B) = 4/52 = 1/13, and Pr(AB) = 1/52. Using
Theorem 2.3, the probability of selecting a heart or a king or both is
Pr(AUB) = 13/52 + 4/52 - 1/52 = 16/52 = 4/13.

Now suppose that in this experiment, a card is selected by someone
who tells us that it is a heart but does not tell us the face value. What is
the probability that this card is a king? Using Definition 2.11, the proba­
bility it is a king, given that it is a heart, is Pr(BIA) = Pr(AB)/Pr(A) =
0/52)/03/52) = 1/13.

Notice that in this example Pr(BIA) = Pr(B) = 1/13; i.e., knowing
that the selected card is a heart does not alter the probability that it is a
king. Thus, by Definition 2.12, the events A and B are statistically inde­
pendent. The practical implication is that knowing a card is a heart pro­
vides no additional information about its possible face value.

Suppose now that a "joker" is added to the deck (sample space). The
experiment and the events A and B are as defined above but now Pr(A) =
13/53, Pr(B) = 4/53, and Pr(AB) = 1/53. The probability of a king,
given that a heart was selected, is Pr(B!A) = 0/53)/03/53) = 1/13 as
before; however, Pr(B) :#: Pr(BIA) (i.e., 4/53 :#: 1/13). Also note that
Pr(A).Pr(B) :#: Pr(AB) [i.e., 52/(53)2 :#: 1/53]. Thus, events A and B
are not statistically independent when a joker is added to the deck. In this
case, knowing that a card is a heart does provide additional information
about its possible face value (i.e., we know it is not the joker).

2.2 RANDOM VARIABLES AND
PROBABILITY DISTRIBUTIONS

In the previous section the concept of an outcome of an experiment is
introduced. In most applications it is desirable to assign numbers to the
possible outcomes. Usually this occurs quite naturally. For example, out­
comes can be the percent 235U measured in a sample, the number of gross
discrepancies between the facility and an audit team in an inspection situa­
tion, or the amount of plutonium in a barrel of solid waste. When a num­
ber is not assigned naturally to an outcome, one can be assigned to repre­
sent it. Thus, for example, if we speak of an attempted diversion, either
there will be an attempt of some kind in a given instance or there will not
be. For convenience, the values 1 and 0 can be arbitrarily assigned to the
two possible outcomes. This assignment of numbers is described by defin­
ing a random variable.

A random variable is a numerically valued function defined over a sam­
ple space. It is a rule which assigns a numerical value to each possible out­
come of an experiment.
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As an example, consider the simple experiment of rolling two dice.
Define an outcome to be the numbers facing up on the two dice after they
are rolled. Let (a,b) denote observing the numbers a on the first die and b
on the second. Table 2.1a lists the sample space for this experiment, which
consists of 36 possible outcomes (sample points).

Suppose the sum of the numbers observed on the two dice is of inter­
est. The random variable X = a + b is defined, which assigns a number
to each sample point. These are listed in Table 2.1b.

TABLE 2.1.

The Sample Space for the Experiment
of Rolling Two Dice

0,1) 0,2) 0,3) 0,4) 0,5) 0,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

TABLE 2.1b

The Random Variable X Assigns the Number
a + b to Each Sample Point

2
3
4
5
6
7

3
4
5
6
7
8

4
5
6
7
8
9

5
6
7
8
9

10

6
7
8
9

10
11

7
8
9

10
11
12

Perhaps the actual value of the sum a + b is not important but sim­
ply whether or not a + b is greater than 9. In this case, the random vari­
able Y is defined such that Y = 0 if a + b ~ 9 and Y = 1 if
a + b > 9. A random variable of this type is called an indicator variable.
Y can be interpreted as follows. For each sample point, count the number
of values of a + b that are greater than 9. Because there is only one
value of a + b for each sample point, this count is either 0 or 1.
Table 2.1c shows the values of Y assigned to the sample points.
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TABLE 2.1c

The Random Variable Y Assigns 0
ifa +b::e;9andlifa+ b>9

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 I
0 0 0 0 I I
0 0 0 I I I

The presentation and examples thus far may have left the impression
that it is necessary to be able to completely list the sample space and to
assign only integer values to the sample points based on some characteris­
tic of interest. In practice, however, the sample points might be, for exam­
ple, containers of U02 powder, and the characteristic of interest might be
the weight of each container or the percent uranium of the powder in each
container. Clearly, a random variable which assigns an integer value to a
weight or a measurement is not wholly satisfactory for most applications.
A more realistic random variable would take on a continuum of values in
a specified interval.

There are two basic types of random variables, discrete and continuous.
A discrete random ,ariable is one that can take on only a finite or a denu­
merable number of values which are usually, but not necessarily, integers.
In this context denumerable means that the possible values of a random
variable can be put in one-to-one correspondence with the integers (count­
ing numbers). A continuous random ,ariable is one that can take on a con­
tinuum of values.

In most experiments, interest is centered on the values of a random
variable rather than on all possible outcomes. As illustrated in Tables 2.1 b
and 2.1c, a single value of a random variable may be associated with more
than one of the sample points. Thus, the set of sample points associated
with a single value of a random variable is an event. The notation X = x
is used to denote the event that the random variable X takes on the
value x.

Of course, it is rarely known in advance exactly what the outcome of a
single trial of an experiment will be. (An exception is when, say, a two­
headed coin is tossed.) It is often possible, however, to make assumptions
about the experiment which allow the assignment of probabilities to the
values of the random variable of interest. For the experiment of rolling two
dice, the assumptions made are that each die has six sides which are num­
bered 1 through 6, the dice are fair (i.e., not weighted or rolled so as to
favor any particular outcome), and that the outcomes are statistically inde­
pendent. Under these assumptions, a probability of 1/36 is assigned to
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each of the individual sample points listed in Table 2.la. Definition 2.10 is
used to assign probabilities to the possible values of the random variable X
in Table 2.1b. These are listed in Table 2.2. Similarly, if probabilities are
assigned to the values of the random variable Y in Table 2.lc, then
Pr(Y = 0) = 5/6 and Pr(Y = I) = 1/6.

An enumeration of the possible values of a random variable with their
associated probabilities, such as Table 2.2, is called the probability distri­
bution of the random variable. For the example, note from Table 2.2 that
on a single trial of rolling two dice, X = 7 is more likely to be observed
than any other single value. Because the events X = x are mutually
exclusive for x = 2, 3, ... , 12, Theorem 2.3 can be implemented to com­
pute, for example, Pr(X ~ 3) = Pr(X = 2) + Pr(X = 3) = 1/36 +
2/36 = 3/36.

TABLE 1.2

Pr(X = x) for the Experiment
of Rolling Two Dice·

x Pr(X - x)

2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36

10 3/36
11 2/36
12 1/36

.X is the total of the two face
values.

In the previous example, the probabilities were obtained from a com­
plete listing of the sample space. Such a listing, however, is not always
possible in practice, and even if it were possible, it usually is not practical.
A more realistic approach is to define a probability model which expresses
Pr(X = x) as a function of x over the range of possible values of x.
Although this concept is not directly applicable to continuous random vari­
ables, the analogy should become clear as the presentation progresses.

Conventional concepts and notations are now given for assigning proba­
bilities to the possible values of a random variable.
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For any random variable X,

F(x) = Pr(X ~ x) (2.1)

is called the cumulative distribution function (cdf) of X. If X is a discrete
random variable, the probability function (PI) of X is defmed to be

and the cdf is given by

f(x) = Pr(X = x)

F(x) = ~ f(y)
~x

(2.2)

(2.3)

If X is a continuous random variable with a differentiable cdf, the
probability density function (pdf) is defined to be

and the cdf is given by

f(x) = dF(x)jdx

F(x) = J~oo f(y) dy

(2.4)

(2.5)

It is common practice to distinguish between pfs and pdfs as correspond­
ing to discrete and continuous random variables, respectively. For conve­
nience of presentation, however, pdf is used to refer to either a pf or a pdf
throughout the remainder of this book.

Theorem 2.5

A pdf f(x) has the following properties:

1. f(x) ~ 0

2. ~ f(x) = 1 if X is discrete
all x

3. J~oo f(x)dx = 1 if X is continuous.
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Theorem 2.6

If X is discrete,

Pr(a < X ~ b) = F(b) - F(a) = }; f(x)
.<xE;b

If X is continuous,

Pr(a <X < b) = Pr(a ~ X ~ b) = fabf(x) dx = F(b) - F(a) .

41
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It should be noted from Theorem 2.6 that if X is continuous, then
strictly speaking, the probability that X is exactly equal to x is O. Because
of limitations on our ability to measure and record x in practice, however,
we usually talk about an interval (x - Li < X < x + Li). For example,
the weights of U02 powder containers may be rounded to the nearest
10 g. Thus, a weight recorded as 22.03 kg could actually be interpreted as
being from the interval (22.025 kg < X < 22.035 kg). The probability
of observing a value of X from this interval is F(22.035) - F(22.025),
which is not zero unless F(22.035) = F(22.025).

In Sections 2.4 and 2.5 some specific pdfs are presented that have
applications in nuclear material accounting and are the basis for the statis­
tical methods presented throughout this book.

2.3 EXPECI'ED VALUES

Although the probability distribution of a random variable is com­
pletely specified by its pdf, it is often convenient to work with some
descriptive characteristics of the random variable. This section introduces
descriptive measures which are expected values of certain functions of the
random variable.

The expected value of any function of a random variable is defined as
the weighted average (weighted by the probability of its occurrence) of the
function over all possible values of the random variable. The symbol E[.)
is used to denote the expected value of whatever appears within the
brackets. For example, the expected value of a function u(X) is denoted by
E[u(X»). To simplify the notation in subsequent discussions, the expression
~ denotes summation over all values of x.
x

For a random variable X, the expected value of a function u(X) is
defined as

E[u(X») = }; u(x)f(x)
x

(2.6)
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if X is discrete, or

CHAPTER 2 PROBABH.ITY

E[u(X») = J~oo U(x)f(x)dx (2.7)

if X is continuous.
The mean and variance of a random variable_X are special cases of

E[u(X)]. The mean provides a measure of central'tendency in X and is
defined as

if X is discrete, or

P.x = E[X) = 2; xf(x)
x

(2.8)

(2.9)

if X is continuous. When it is clear from the context that the random vari­
able is X, P.x is denoted by p..

The variance describes the spread or dispersion of the possible values of
X about the mean and is defined as E[(X - p.)2); i.e.,

if X is discrete, or

qi = Var[X) = 2;(x-p.)2f(x)
x

(2.10)

(2.11)

if X is continuous. When it is clear from the context that the random vari­
able is X, qi is denoted by q2. An alternative form of the variance which
is sometimes more convenient to evaluate is derived as

q2 =E[(X - p.)2) = E[X2- 2Xp. + p.2) = E[X2) -2p.E[X) + p.2

=E[X2) - 2p.2 + p.2 -= E[X2) - p.2 (2.12)

for either a discrete or continuous random variable. This derivation of
Equation 2.12 involves linearity properties of expected values that are not
presented here.

The variance is the average squared deviation from the mean. Thus; for
example, if the units of measure for the random variable X are grams,
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then the units for the variance would be grams squared. Another measure
of dispersion, the standard deviation, is defined as the positive square root
of the variance and is given by

(2.13)

The standard deviation is in the same units of measure as X and is often
more easily interpreted than the variance.

The mean and standard deviation are sometimes referred to as location
and scale parameters. It is a common practice in statistics to express a
random variable as a distance from its mean in units of its standard
deviation. This is accomplished by the transformation

X-IlZ =-----''-
(1

(2.14)

This transformation standardizes X. The random variable Z has a mean
equal to zero and a variance equal to one. This concept is used and further
discussed in subsequent sections and chapters.

In the previous discussion the terminology "mean and variance of a
random variable X" was used. Another commonly used terminology is
"mean and variance of a distribution." Either terminology is acceptable,
and they are used interchangeably throughout this text.

An expectation of the form Ilk = E[Xk] is called the ktll moment of
the distribution of X. For example, the mean is the first moment
III = E[X], and the variance, given by Equation 2.12, is r? = 112 - Il~
or the second moment minus the square of the first moment.

An expectation of the form E[(X - Il)k] is known as the ktll moment
about the mean and is denoted by Ilk' For example, the variance is Ili, the
second moment about the mean. The third moment about the mean is
113 = E[(X - 1l)3], which is a measure of skewness, or lack of symmetry
about the mean, of a pdf. The fourth moment about the mean is
Il~ = E[(X - 1l)4], which is a measure of the kurtosis, or peakedness, of
the pdf. The quantity

(2.15)

is a standardized measure of skewness, and

(2.16)

is a standardized measure of kurtosis.
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2.4 CERTAIN DISCRETE DISTRIBUTIONS

In this section, three discrete distributions are presented that are widely
used in nuclear material accounting. They are the hypergeometric, bino­
mial, and Poisson distributions. These distributions are commonly used to
compute probabilities for attribute sampling plans (introduced in
Chapter 17).

2.4.1 Hypergeometric Distribution

Suppose that a coIlection of N objects contains D of one type and
N - D of another type and that exactly n ~ N objects are randomly
selected without replacement from the coIlection. Let the random variable
X be the number of objects of the first type that appear in the sample.
The probability that X = x is computed from the bypergeometric pdf,
which is given by

f(x) (2.17)

x = 0, 1, ... ,min(D, n)

where min(D,n) indicates the minimum or smaIler of the values D and n,
and where

(a) a!
b = C(a,b) = b!(a - b)!

is the number of possible combinations of a items taken b at a time
(Definition 2.9).

The mean and variance of the hypergeometric distribution are given,
respectively, by

and

nD
~=E[X]=­

N

u'- = (N-n) . nD(N-D)
(N-l) N2

(2.18)

(2.19)
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In nuclear material accounting, the hypergeometric distribution is
applicable to certain audit inspection activities. In this context, N might be
the number of containers of a particular type that are on inventory. Then
D would be the number of these containers that possess some charac­
teristic of interest. The D items are typically called "defectives" or
"discrepants," because the characteristic of interest is often a difference of
a given size between the operator's statement of what is in a container and
what an audit team finds. Then n of the containers are randomly selected
without replacement from the N containers and examined by the audit
team. If X is the number of defectives observed in the sample, then the
probability that X = x is given by Equation 2.17. The mean, given by
Equation 2.18, is interpreted as the number of defectives we would expect
to observe in a sample of size n when D of the N containers are defectives.

Example 2. t Assume that N = 50 items are on inventory and that
n = 25 of these items are randomly selected without replacement by an
audit team. Each selected item is classified as either being defective (in
some sense) or not being defective. The inventory is considered acceptable
by the audit team if x ~ 1 defective items are observed in the sample.
What is the probability of accepting the inventory when the total number
of defective items on inventory is D = 2, D = 5, or D = 10?

The solution uses Equations 2.1, 2.3, and 2.17. The probability of
acceptance is

Pr{X ~ 1) = Pr{X = 0 or X = 1)

= Pr{X = 0) + Pr{X = 1) = f{O) + f{l)

(D) (50-D)
1 25-1

(~~)

For D = 2, the probability of acceptance is

Pr(X ~ 1) = (~) (i~)
g~)

= 0.24490 + 0.51020 = 0.75510
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For D = 5,

= 0.02508 + 0.14926 = 0.17434

For D = 10,

= 0.000318 + 0.004972 = 0.00529

Thus, if 2 of the 50 items on inventory are defectives, there is a 76%
chance (i.e., the probability is 0.76) that the inventory will be accepted. If
5 of the 50 items are defectives, there is a 17% chance that the inventory
will be accepted. If 10 of the 50 items are defectives, there is a 0.5%
chance that the inventory will be accepted.

Suppose that the manager of the audit team feels that when D = 5, a
17% chance of accepting the inventory is too large. The probabilities of
accepting the inventory for a given value of D can be decreased by
increasing the sample size n. For example, if n = 30 and D = 5,
Pr(X E; I) = 0.07592. That is, the probability of accepting the inventory
when D = 5 can be decreased from 0.17434 to 0.07592 by increasing the
sample size from 25 to 30.

The number of defectives we would expect to observe when N = 50,
n = 25, and D = 5 is computed from Equation 2.18 to be

,,= 25(5) = 2 5
,.. 50 .

The variance is computed from Equation 2.19 to be

r? = (50-25) . 25(5)(50-5) = 1.148
(50-I) 502

and, the standard deviation is (f = J1.I48 = 1.07.
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2.4.2 Binomial Distribution

47

Suppose that an experiment can have only two possible outcomes, con­
veniently called "success" and "failure," and suppose that the probability
of a success is p. If the experiment is repeated independently n times
under exactly the same conditions and if the random variable X is defined
to be the number of successes observed in the n independent trials, then
X has a binomial distribution. Before formally presenting the binomial pdf,
it is instructive to consider an application.

In the inventory example of the previous section, suppose that the sam­
ple is selected with replacement. Theoretically, when sampling with
replacement, an item is randomly selected from the N items on inventory,
is classified as either being defective or not being defective, and is returned
to the inventory. This process of random selection, classification, and
replacement is repeated n times. It is possible for any item to be in the
sample more than once. Of course when this happens in practice, the item
is not actually measured repeatedly. Instead, the item is measured once,
and this measured value is reported each time the item is in the sample.
Under this sampling plan, the n classifications are equivalent to n
independent trials of an experiment. This is because the probability of a
defective occurring (p = DIN) is the same for every observation, regard­
less of the outcomes of previous observations (this is not true for sampling
without replacement).

The binomial pdf is given by

f(x) = (~) pX (l - p)D-X, X == 0, 1, ... , n

The mean of X is given by

#L = E[X] == np

and the variance of X is given by

(2.20)

(2.21)

(2.22)

Although f(x), given by Equation 2.20, can be programmed on a com­
puter or hand-held calculator, Table Al of Appendix A provides values of
F(x) = Pr(X ~ x) for n ranging from 1 to 20 and p ranging from 0.05
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to 0.95 in increments of 0.05 (i.e., 0.05, 0.10, 0.15, ... , 0.95). For exam­
ple, if n = 10 and p = 0.30, suppose that Pr(X ~ 4) is to be deter­
mined. Enter Table Al with n = 10 and x = 4 in the left margin. Fol­
low this row of the table to the column headed by p = 0.30. The table
gives Pr(X ~ 4) = 0.8497.

Table Al can also be used with Theorem 2.6 to determine individual
probabilities of the form f(x) = Pr(X = x) by using the relationship
Pr(X = x) = Pr(X ~ x) - Pr(X ~ x-I). In the above example,
Pr(X = 4) = Pr(X ~ 4) - Pr(X ~ 3) = 0.8497 - 0.6496 = 0.2001.

Example 1.1 Assume that sampling with replacement is implemented
in Example 2.1. The sample size is n = 25, and the probability of a suc­
cess (defective) is p = DIN = D/50 for each of the 25 observations.
The inventory will be accepted if x ~ 1 defectives are observed. Thus, the
probability of accepting the inventory is given by

Pr(X ~ I) = Pr(X = 0) + Pr(X = I)

For D = 2, the probability of acceptance is

Pr(X ~ I) = (0.96)25 + 25(0.04)(0.96)24 = 0.73581

For D = 5,

Pr(X ~ I) = (0.9)25 + 25(0.1)(0.9)24 = 0.27121

For D = 10,

Pr(X ~ I) = (0.8)25 + 25(0.2)(0.8)24 = 0.02739

These probabilities of accepting the inventory are noticeably different,
especially for D = 5 and D = 10, from the corresponding probabilities
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computed in Example 2.1, where sampling without replacement was
assumed.

It was pointed out previously that when sampling with replacement,
any item could appear in the sample more than once. Thus, for a given
sample size n, the sample collected with replacement would be expected to
have less information about the inventory (i.e., fewer distinct items) than
the sample collected without replacement. For this reason, sampling with
replacement is less efficient than sampling without replacement for some
applications.

When N is "large" relative to n, however, the binomial pdf provides a
satisfactory approximation to tb.e hypergeometric pdf for computing proba­
bilities when sampling is without replacement. A widely accepted defmition
of "large" is N > 50 and n/N :ll; 0.10, where the approximation gets bet­
ter as N approaches 00 and n/N approaches zero. Rohatgi (1984) provides
a mathematically rigorous treatment of this subject. In such cases, sam­
pling without replacement does not significantly alter the sample space
from one trial to the next. Thus, the probability of a success stays
practically constant for all trials, and the conditions for using the binomial
distribution are reasonably well satisfied.

To illustrate this, consider an example of sampling without replacement
where N = 1000, D = 200, and n = 10. In this case n/N =
10/1000 = 0.01. For the first item selected, the probability of observing
a defective is p = 200/1000 = 0.2. The value of p for the second item
selected, however, depends on the outcome of the first trial. If the first
item selected is a defective, then 199 of the remaining 999 items are defec­
tives, and the probability of observing a defective on the second trial is
p = 199/999 = 0.1992. If the fIrSt item selected is not a defective,
then 200 of the remaining 999 items are defectives and p =
200/999 = 0.2002 for the second trial. In either case, the outcome of the
first trial has only slightly changed the value of p for the second trial.

Now suppose that the first nine items selected are all defectives. Then
the probability of a defective on the lOth trial is p = 191/991 = 0.1927.
On the other hand, if the first nine items selected are all nondefectives,
then p = 200/991 = 0.2018 for the 10th trial. Because these are the two
extremes of the possible outcomes, the value of p is within the interval
0.1927 :ll; P :ll; 0.2018 for every trial. Thus, for practical purposes, the
assumption of independent trials (i.e., constant p for all trials) is not too
badly violated, and the binomial pdf with p = 0.2 and n = 10 provides
an acceptable approximation to the hypergeometric pdf.

This concept is further illustrated by comparing the means and vari­
ances of the hypergeometric and binomial distributions. By letting p =
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DIN, the mean of the hypergeometric distribution given by Equation 2.18
can be expressed as

Il = nDIN = np (2.23)

which is the mean of the binomial distribution given by Equation 2.12.
Thus, the two distributions have the same mean. Substituting p = DIN
into Equation 2.19, the variance of the hypergeometric distribution can be
expressed as

[
N-nJu'-= --np(I-p)
N-I

(2.24)

which is the variance of the binomial distribution multiplied by
(N - n)/(N - 1)._

The quantity (N - n)/(N - I) is called the rmite population correc­
tion factor. As N approaches 00 (for n > 1), the variances of the two dis­
tributions are the same. When nlN = 0.10, the finite population correc­
tion factor is slightly less than 0.90, so that the variance of X is inflated
by about 11 % and the standard deviation by about 5% when the binomial
distribution is used to approximate the hypergeometric distribution. For
most practical applications, this amount of inflation is not considered to be
serious and may often be ignored.

2.4.3 Poisson Distribution

The Poisson distribution is applicable for computing probabilities of
events in time and space. Its development is best illustrated by an example.
Consider a nondestructive assay. The item being assayed will emit gamma
particles at a rate (say A per unit of time) that depends on the amount of
one or more nuclides in the item. Suppose that the emitted particles are
counted over a finite time interval T. Let the time interval T be divided
into a large number n = TIT of arbitrarily small intervals of length T. In
one of these small intervals, the probability that a particle reaches the
counter is p = AT, irrespective of whether previous particles have been
counted recently. That is, p is assumed to be constant from one small
interval to another. Thus, the number of particles counted in time T has a
binomial distribution with n = TIT and p = AT. Now if in Equation
2.20 we let n - 00 and p - 0 while holding np constant, the result is
the Poisson pdf, which is given by .

x
f(x) = e, e-", x = 0, 1, ... ,

x.
(2.25)
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where Il is the constant value of np. For the Poisson distribution, both the
mean and the variance are equal to Il. That is,

(2.26)

It may seem unusual that the mean and variance are equal. The variance
of the binomial distribution is np(l - p), however, and if p approaches 0
while np remains constant, then (l - p) approaches 1, and np(1 - p)
approaches np = Il.

In the nondestructive assay example, as r - 0, note that n
Tlr - 00 and p = >.r - 0, while Il = np = >.T remains constant.
Thus, as r becomes very small, the number of particles counted in time T
has a Poisson distribution with pdf given by Equation 2.25 where
Il = >'T.

Similarly, if particles of a certain type are distributed randomly in a
liquid with density >. per unit volume, the number of particles found in a
sample of volume V has a Poisson distribution with Il = >.V.

Although the Poisson pdf, f(x), given by Equation 2.25, is easily pro­
grammed on a computer or hand-held calculator, Table A2 of
Appendix A provides values of Pr(X ~ x) for selected values of Il ranging
from 0.01 to 20. For example, suppose that Il = 3.0, and the value of
Pr(X ~ 4) is to be determined. Enter Table A2 and find the column
headed by Il = 3.0. Follow this column down to the row with x = 4 in
the left margin. The table gives Pr(X ~ 4) = 0.815.

The value of Pr(X = x) is determined from Table A2 by taking the
difference Pr(X ~ x) - Pr(X ~ x-I). For the above example,
Pr(X = 4) = Pr(X ~ 4) - Pr(X ~ 3) = 0.815 - 0.647 = 0.168.

The development of the Poisson pdf as a limiting form of the binomial
implies that, under certain conditions, the Poisson pdf could be used to
approximate the binomial. There are a number of proposed "rules of
thumb" that indicate when the Poisson provides an acceptable approxima­
tion to the binomial. Many texts state that if n ~ 20 and p ~ 0.05, the
approximation is acceptable, and that it is very good if n ~ 100 and
np ~ 10.

In some audit inspection applications of attribute sampling, the number
of defective items on inventory considered tolerable is quite small relative
to the total number of items on inventory. In such cases, it is necessary to
inspect a large sampl~ of the items to verify the inventory. For such situa­
tions, it is sometimes possible to approximate the hypergeometric distribu­
tion with the Poisson. This requires that nlN ~ 0.10, so that the binomial
can be used to approximate the hypergeometric, and it also requires that
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the rules of thumb for approximating the binomial with the Poisson be
satisfied.

Example 2.3 Consider an audit inspection situation where D of the
N = 250 items on inventory are defective. A random sample of n = 25
items will be selected without replacement. The inventory will be accepted
if x ::$; 1 defectives are observed in the sample. Suppose that the probabil­
ity of accepting the inventory when D = lOis to be evaluated. Because
nlN = 0.10, the binomial distribution with p = DIN = O,~ and
n 25 can be used to approximate the hypergeometric. Also, because
p = 0.04 < 0.05 and n = 25 > 20, the Poisson distribution with
Jl = np = 1 can be used to approximate the binomial (and hence the
hypergeometric).

For comparison, Table 2.3 displays the probability distributions com­
puted from Equation 2.25 with Jl = 1, Equation 2.20 with p = 0.04 and
n = 25, and Equation 2.17 with N = 250, D = 10, and n = 25. For
this example, the Poisson approximation to t?e binomial is quite accurate,

TABLE 1.3

Probabilities Computed from
Poisson, Binomial, and

Hypergeometric Distributions

Binomial Hypergeometric
Poisson • - %5, N"" 250,

x ".-1 P = 0.04 D = 10,R - %5

0 0.3679 0.3604 0.3416
1 0.3679 0.3754 0.3954
2 0.1839 0.1877 0.1968
3 0.0613 0.0600 0.0554
4 0.0153 0.0137 0.0097

~5 0.0037 0.0028 0.0011

and for practical purposes the Poisson approximation to the hyper­
geometric is probably acCeptable. The Poisson approximation of the proba­
bility of accepting the inventory is given by

Pr(X::$; 1) = 0.3679 + 0.3679 = 0.7358
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This is quite close to the exact probability of acceptance, which is com­
puted from the hypergeometric distribution to be

Pr(X::!5: I) = 0.3416 + 0.3954 = 0.7370

For most practical situations, this would be rounded to two significant
digits and presented as 0.74, in which case the Poisson approximation is
identical to the exact value.

2.5 CERTAIN CONTINUOUS DISTRmUTIONS

In this section some selected continuous distributions are presented.
The uniform, normal, and lognormal distributions are commonly used in
nuclear material accounting applications and are discussed in some detail.
Other distributions, which have potential applications in nuclear material
accounting, are briefly introduced.

2.5.1 Uniform Distribution

The uniform distribution has a variety of applications in nuclear
material accounting. These include modeling the rounding errors in
weighing processes, randomization in designed experiments and sampling
plans (Chapters 7 and 8), and Monte Carlo simulation techniques
(Chapter 1I).

The uniform probability density function is given by

If(x) =---, ex::!5: x::!5: {J
{J-ex

= 0, otherwise, (2.27)

where ex and {J are real constants with ex < {J. The uniform pdf is illus­
trated in Figure 2.2. Because a uniformly distributed random variable has
a pdf that is constant over the interval ex ::!5: x ::!5: {J, the pdf is simply the
reciprocal of the length of the interval.

The mean and variance of the uniform distribution are given by
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a+{3
#L= E[X] =-­

2

and

(2.28)

(2.29)

fIx)

_1_~
f3-a

L... .L.- ....... X

a

FJglII'e 2.2 A lIIIiform pdf with parameters a < 11.

The cdf, F(x) = Pr(X ~ X), is given by

F(x) = 0, x<a

x-a
= {3-a'

= 1, x>{3

(2.30)

For any subinterval a ~ X ~ b, where a ~ a ~ b ~ {3. the proba­
bility Pr(a ~ X ~ b) is given by

Pr(a ~ X ~ b) = F(b) - F(a) = b - a (2.31)
{3-a

and this probability is the same for all such subintervals of length b - a.

Example 2.4 Consider the effect of rounding off measurement data.
Suppose that numbers of the form NN.N are "rounded off" to the nearest
integer. One round-off procedure is such that if the decimal part is less
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than 0.5, the number is rounded down by simply dropping the decimal
part. If the decimal part is 0.5 or larger, the number is rounded up by
adding 1 and then dropping the decimal part. The round-off error X is
defined as the difference between the number before rounding and the
number after rounding. These errors are commonly assumed to have a
uniform distribution on the interval [-0.5,0.5]. That is,

fi(x) -' 1 = 1 when -0.5::e; x::e; 0.5
- 0.5 - (-0.5)

= 0, otherwise.

The mean and variance of X are given by

II- = (-0.5 + 0.5)/2 = 0.0

and

c? = [0.5 - (-0.5)]2/12 = 1/12

Suppose that the numbers being rounded are observed values of a ran­
dom variable, say Y. The rounded numbers are then observed values of the
sum of two random variables, say Z = Y + X. If Y and X are inde­
pendent, the effect of rounding to the nearest integer is that the variance
of Z is larger than the variance of Y. The difference is the variance of X,
which is 1/12. (The variance of a sum of random variables is discussed in
Section 2.7.1.)

Jaech (1973) states that round-off error may be a dominant source of
the variation due to weighing some types of items. He discusses the effect
of rounding recorded weights to the nearest 50 g and then gives the vari­
ance and standard deviation of the round-off error for six rounding rules.
These results are summarized in Table 2.4.

Probably the most common use of the uniform distribution is in appli­
cations of Monte Carlo simulation modeling, as discussed in Chapter 11.
Briefly, all computers and many hand-held calculators can be programmed
to generate the equivalent of a random sample from a uniform distribution
with specified parameters. These values can then be transformed to simu­
late a random sample from a specified discrete or continuous distribution.
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Thus, computerized models can be developed to simulate complicated
processes. This allows study of the effects on a process due to modifying
various operating conditions. It is then feasible to conduct studies that
would otherwise be extremely difficult.

TABLE 1.4

Variance Due to Rounding

ROIIIld to
....est
K lIIIits*

K - 1
5

10
25
50

100

VariaDc:e
iD(lIIIitsf

0.0833
2.0833
8.3333

52.0833
208.3333
833.3333

Standard
deriatiou

0.29
1.44
2.89
7.22

14.43
28.87

*Units may be g, kg, lb, or
other units of weight.

In the simulation context, the uniform distribution is used to generate
randomization schemes for sampling plans (Chapter 8) and for experimen­
tal designs (Chapter 7). As a simple example, suppose that a list is avail­
able of 1000 items on inventory and that 25 of these items are to be
selected for inspection. Assume that sampling with replacement is desired.
The solution is to generate a random sample of size 25 from the uniform
distribution with parameters a = 0.50 and {3 = 1000.49. The resulting
25 values are then rounded to the nearest whole integer and arranged in
ascending order. Note that a = 0.50 ensures that, when rounding to the
nearest whole integer, the value 1 is the smallest possible. Similarly,
{3 = 1000.49 ensures that integers larger than 1000 are never generated.
This provides a list of the randomly selected items to be inspected. Specifi­
cally, suppose the first two integers on the sample list were 55 and 97.
Then the 55th and 97th items on the inventory list would be two of the
items scheduled for inspection. Of course, if any item appears in the sam­
ple more than once, it is inspected only once, and the inspection result
would be recorded repeatedly (or simply weighted) according to the num­
ber of times the item is in the sample.

2.5.2 Normal Distribution

The normal distribution is undoubtedly the most commonly used distri­
bution in statistical applications. A random variable X has a normal distri-
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bution with mean p, and variance r1l if it has the probability density
function given by

f(x) = _1_ expl- (x - p,)2j, -00 < X< 00
(f,Ji;. 2r1l

(2.32)

The normal distribution is used so extensively that the shorthand notation
X - N(p"r1l) has been adopted to indicate that the random variable X is
normally distributed with mean p, and variance r1l.

The normal pdf, given by Equation 2.32, defines a "bell-shaped" curve
which is symmetric about the mean p,. This is graphically illustrated in
Figure 2.3.

fIx)

L....:=~ --I ....;::=-- x

JJ

Figure 1.3 The IIOrIDaI pdf.

The normal distribution is used extensively in practice because many
(but of course not all) random variables are either approximately normally
distributed or can be made nearly so by a simple transformation. It is also
the limiting distribution for many sample statistics. That is, as the sample
size becomes large, many statistics computed from sample data tend to be
normally distributed. This is discussed further in Chapters 3 and 4. Thus,
many important statistical inference procedures are developed by assuming
that the random variable of interest is normally distributed. Fortunately,
most of these so-called "normal theory" procedures are not very sensitive
to even moderate departures from normality. This means that, in practice,
the assumption that a random variable is normally distributed can be
violated to some moderate degree without seriously affecting the validity
of conclusions reached when these procedures are applied to sample data.
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The cumulative distribution function for the normal is given by

F(x)=JX _I_ exp!- (t-#l)2Idt
-00 u~ 2~

(2.33)

This integral cannot be evaluated directly without resorting to numerical
methods. Also, tabulating F(x) for every possible pair of values (#l,U)

would be an impossible task. The random variable X can be standardized,
however, by the transformation

Z = ..,:X..::...----'#lc­
u

(2.34)

This transforms X to the random variable Z which has a normal distribu­
tion with mean 0 and variance I. This transformation brings all normal
distributions to the same form, N(O,I), which is called the standard normal
distribution. F(x) can then be evaluated by noting that

F(x) - PrIX <; x) _ prl X : " <; x ~ "I
= Pr(Z ~ z) = JZ ;,. exp (-t2/2)dt

-00 v27r
(2.35)

where the integral is commonly denoted by iJl(z). Note that iJl(z) does not
involve #l or u.

Table A3 of Appendix A gives values of iJl(z) for values of z ranging
from 0 to 3.99. Because the normal probability density function is sym­
metric about the mean, iJl(z) is evaluated for negative values of z by using
the identity iJl( - z) = 1 - iJl(z).

Example 2.5 Define a random variable X to be the weight in kilo­
grams of U02 powder containers filled at a given facility. Suppose it is
known that X - N(22, 0.0016), and the cdf F(22.08) =
Pr(X ~ 22.08) is to be evaluated. Applying Equations 2.34 and 2.35 gives
Pr[Z E; (22.08 - 22)/0.04] = iJl(2). Entering Table A3 with z = 2,
we find iJl(2) = 0.97725. This probability is rounded to 0.98 and can be
interpreted to mean that 98% of the U02 powder containers filled at this
facility have weights less than or equal to 22.08 kg.
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Suppose now that it is necessary to evaluate the probability that
X is between 21.946 and 22.022 kg, that is, Pr(21.946 :E; X :E; 22.022).
Applying Equation 2.34 and Theorem 2.6 gives Pr( -1.35 :E; Z :E;
0.55) = ~(O.55) - ~(-1.35). Table A3 gives ~(O.55) = 0.70884 and
~(-1.35) = 1 - ~(1.35) = 1 - 0.91149 = 0.08851. Thus, ~(O.55) ­
~(-1.35) = 0.70884 - 0.08851 = 0.62033 is the desired result. This
means that 62% of the V02 powder containers fIlled at the given facility
have weights between 21.946 and 22.022 kg.

When computing probabilities from the standard normal distribution, it
is helpful to draw sketches that illustrate the necessary steps. Figure 2.4
illustrates the steps in calculating Pr( -1.35 :E; Z :E; 0.55) in Example
2.5. .

Tables of the standard normal distribution are also useful for solving
another type of problem. Suppose that in Example 2.5 it is necessary to
determine the value of X, say x, such that Pr(X :E; x) = 0.90. From
Equation 2.35,

[
X - 221 [x - 221Pr(X :E; x) = Pr Z:E; 0.04 = ~ 0.04 = 0.90

Entering the body of Table A3, the value of z, for which ~(z) = 0.90, is
between 1.28 and 1.29. For most practical situations, either of these values
would suffice, and so z = 1.28 is selected. From Equation 2.35,

z = x - 22 = 1.28
0.04

and the solution is

x = 1.28(0.04) + 22 = 22.0512 kg

That is, 90% of the V02 powder containers filled at the given facility have
weights less than or equal to 22.0512 kg. Note that if the value z = 1.29
had been chosen, the solution would be x = 22.0516 kg.

2.5.2.1 Central Limit Theorem

In numerous material accounting applications, the random variable
being considered may be the sum of n independent random variables, some
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0.55

Pr(Z:::; 0.55) =0.70884

-1.35

Pr(Z:::; 1.35) =0.08851

-1.35 0.55

Pr(-1.35:::;Z:::; 0.55) = 0.70884 - 0.0885 =0.62033

Figure 2.4 Steps in calculating Pr( -1.35 ~ Z ~ 0.55).

of which may be measurement error, some due to physical considerations,
and so forth. A useful result in probability theory states that if a random
variable Y is the sum of n independent random variables which satisfy cer-
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tain general conditions, then for sufficiently large n, Y is approximately
normally distributed. This is known as the Central Limit Theorem, which is
now stated formally.

Theorem 2.7

If X" X2, ••• , Xn are n independent random variables with E(Xi)
JLi and Var(Xi) = 0"[, and if Y = Xl + X2 + ... + Xn, then under
some general conditions, the distribution of

n
Y - ~JLi

i-Iz=-----,,:==
r±:r

Vi~"i

(2.36)

approaches a N(O,I) distribution as n approaches 00.

The "general conditions" mentioned in the theorem are basically that
the terms Xi! taken individually, contribute a negligible amount to the vari­
ance of the sum, so that it is unlikely that a single term Xi makes a large
contribution to the sum Y. Also, lLi and O"i must be finite, but this is not a
problem in most applications. The fact that Y is approximately normally
distributed when the Xi terms can have essentially any distribution is one
of the basic reasons for the usefulness of the normal distribution in statisti­
cal inference.

In practical applications of the Central Limit Theorem, the question
arises as to how large n must be to obtain valid results. The answer
depends on the characteristics of the distribution of the individual Xi terms
in Equation 2.36 and the meaning of "valid results." For the special case
where the Xi are from the same distribution, as when the Xi are a random
sample from a particular distribution, various authors and practitioners
advocate some rules of thumb for the size of n when the distribution of Xi
falls into one of several categories as follows:

1. Nearly Normal: The Xi are from a distribution which is close to a
normal distribution in the sense that there is a bell-shaped pdf that is
nearly symmetric about the mean. For this case, n ~ 4 is adequate
(Hines and Montgomery, 1980).

2. Uniform: The Xi are from a distribution which has no prominent
mode, and the pdf has a rectangular shape which closely imitates the
uniform pdf. In this case, n ~ 12 has been found to yield satisfactory
results (Hines and Montgomery, 1980).

3. Other Distributions: When the Xi are from a distribution which
does not fall into one of the above two categories, the required size of n
depends on the shape of the pdf. For many situations n = 100 is not suf-
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ficient. This is certainly a nebulous area, and any attempt to give values of
n for all specific distributions would be voluminous and probably incom­
plete. If, however, the Xi are from a distribution with a single mode and a
pdf that is not highly skewed, a value of n ~ 30 is often sufficient (Hald,
1952).

Also, for the case where the Xi are from a single distribution, Rohatgi
(1984) provides a formula for estimating an upper bound on the size of
the error that would result from using the normal cdf to approximate the
cdf of the sum of the Xi' He also tabulates the error bound estimates as
functions of sample size for four specific distributions. Although Rohatgi's
formula is valid for any distribution, he points out that the estimate of the
error bound can be improved when the cdf of the distribution is completely
specified.

It is recommended that if there is any doubt about the assumption
that a sum of random variables has a normal distribution, techniques from
simulation (Chapter I I) and goodness-of-fit hypothesis testing (Chap­
ter 9) should be implemented to test the validity of the assumption.

2.5.2.2 Normal Approximation to the Binomial

One particularly useful application of the Central Limit Theorem pro­
vides a convenient approximation to the binomial distribution. This normal
approximation to the binomial complements the Poisson approximation dis­
cussed in Section 2.4.3. The normal approximation is often appropriate
when the Poisson is not and vice versa.

In Section 2.4.2, the binomial random variable X is defined as the
number of successes observed in n independent trials of an experiment,
where the probability of a success is p at each trial. For the itb single trial,
the number of successes, say Xi> is either I or 0 with probabilities p and
(I - p), respectively. By substituting n = I into Equations 2.21 and
2.22, the number of successes Xi at the itb trial has a binomial distribution
with mean p and variance p( I - p). Because the n trials are independent,
the random variable X is the sum of n independent random variables Xi>
and the Central Limit Theorem is applicable. Using Equation 2.36,
Theorem 2.7 states that the random variable Z, given by

D

X- ~p
i-I

Z = -;:;=====
-Ji~P(I -p)

X-np

.Jnp(l - p)
(2.37)

approaches the N(O,I) distribution as n approaches 00. Another way of



SECTION 2.5 CONTINUOUS DISTRIBUTIONS 83

stating this result is that, for large n, X has an approximate normal
distribution with mean JL = np and variance (12 = np( I - p).

There are some general rules of thumb concerning how large n must be
before the approximation gives reasonably accurate results. In general, the
approximation seems to be quite accurate if np > 5 when p :E; 0.5, or
n(1 - p) > 5 when p > 0.5. This gives n > Sip when p :E; 0.5, and
n > 5/(1 - p) when p > 0.5. See, for example, Hines and Montgomery
(1980).

One major difference between the binomial distribution and the normal
distribution is that a binomial random variable is discrete, so that· the
binomial distribution has probability greater than zero only at X = 0,
1, ... , n, whereas the normal distribution has probability greater than
zero in any subinterval on the interval - 00 :E; X :E; 00. This raises a
slight problem in applying the normal approximation to the binomial.

Suppose that the binomial probability Pr(X = x) is to be approxi­
mated. The area under the normal pdf is zero at any single value of x.
Thus, to accommodate the normal approximation, an interval must be
defined which includes x. The simplest way of doing this is to define an
interval from x - 0.5 to x + 0.5 and then use the normal distribution
with JL = np and ~ = np( I - p) to compute

Pr(X = x) === Pr(x - 0.5 :E; X :E; x + 0.5)

= 4> [ x + 0.5 - np1_ 4> Ix - 0.5 - np1l .Jnp(1 - p) .Jnp(1 - p)
(2.38)

Example 2.6 Consider Figure 2.5. The solid vertical lines show the
binomial pdf for n = 10 and p = 0.5. The solid curve is the normal pdf
with mean np = 5 and variance np(1 - p) = 2.5. The rectangles (dot­
ted lines) define a relative frequency histogram where each class has width
equal to 1, with midpoint x and class boundaries x - 0.5 and x + 0.5.

o 2 3 4 5 6 7 8 9 10

FJglIJ'e 2.5 Normal approximation to the binomial for D = 10 aDd p ., 0.5.
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The area of each rectangle can be quite accurately approximated by using
Equation 2.38. For example,

Pr(X = 5) ~ Pr(4.5 ~ X ~ 5.5) = Pr( -0.32 ~ Z ~ 0.32)

= ~(0.32) - ~(-0.32) = 0.25102

The exact binomial probability, computed from Equation 2.20 is
Pr(X = 5) = 0.24609. The difference between the approximation
and the exact value is 0.00493, which is negligible for most practical
applications.

Cumulative binomial probabilities are formally dermed as

a
Pr(X ~ a) = ~ Pr(X = x)

x-o

Rather than summing the approximate probabilities to obtain an approxi­
mation, use the formula

(2.39)

In Example 2.6, where n = 10 and p = 0.5, suppose that Pr(X ~ 7) is
to be approximated. Using Equation 2.39,

Pr(X ~ 7) ~ Pr(X ~ 7.5) = ~(1.58) = 0.94295

The exact probability obtained from Table Al is 0.9453.
The approximations computed for the previous example are quite close

to the exact probabilities. If n were larger than 10 with p = 0.5, however,
the approximations would be even closer to the exact values.

2.5.3 Lognormal Distribution

The lognormal distribution is the distribution of a random variable
whose logarithm has a normal distribution. As judged by the number and
variety of applications, the lognormal distribution may be as fundamental
as the normal distribution in applications of statistics. It applies when ran­
dom variables are combined by multiplication (rather than addition).
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To present the lognormal, consider a random variable X which can
take on values in the interval 0 < x < 00, where Y = I08e X is nor­
mally distributed with ~ean p.y and variance u? The quantities p.y and u?
are the parameters of the lognormal random variable X. The pdf of X is
given by

(2.40)

A lognormal pdf is illustrated in Figure "2.6. In terms of its parameters,
the characteristics of the lognormal distribution can be expressed as
follows:

mean = E[X] = P.x = exp (p.y + u?!2) (2.41)

variance = Var[X] = ui = [exp (u?) - 1] exp (2p.y + u?) (2.42)

mode = exp (p.y - u?) (2.43)

median = exp(p.y) (2.44)

fIx)

L--........................ -= x

Figure 2.6 The lognormal pdf.

The lognormal distribution has the following useful property: If Xh
X2, ... , Xn are n independent random variables from lognormal distribu­
tions with parameters P.Yi and u?i> i = 1, 2, ... , n, and if b, ah a2,
... , an are arbitrary constants, then
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(2.45)

has a lognormal distribution with parameters

D

PI = b + ~ aj#tYj
i-I

and

D

P2 = ~ ajO'Yi
i-I

Thus, the mean and variance of Ware given by

E[W) = exp (PI + P2/2)

and

Var[W) = [exp(P2) - l)exp(2PI + P2)

(2.46)

(2.47)

A special case of this property is worth noting. If Xl> X2, ••• , XD are
independent random variables having a lognormal distribution with param­
eters #tv and at, then the geometric mean, given in Equation 1.5 by

(2.48)

has a lognormal distribution with parameters #tv and at/no Thus, the geo­
metric mean G has mean and variance given by

and

E[G) = exp(#tY + at/2n)

Var[G) = [exp(at/n) - l)exp(2#tY + aVn)

(2.49)

. (2.50)

The popularity of the lognormal is due in part to the convenience of
working in terms of Y = 108e X, where methods based on the normal
distribution are easily applied.
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Example 2.7 Suppose that the random variable Y = lo~ X has an
N(3,2) distribution. Then X has a lognormal distribution with

E[X] = exp (3 + 2/2) = 54.60

Var[X] = [exp (2) - I] exp (6 + 2) = 19,045.51

mode = exp (3 - 2) = 2.72

median = exp (3) = 20.09

The probability that X ~ 100, for example, can be expressed in terms of
Y = lo~ X and determined from Table A3 as follows:

Pr(X ~ 100) = Pr(Y ~ lo~ 100)

- Pr [z.,; 4.6~ 3]

= ~(1.14) = 0.87285

2.5.4 Other Continuous Distributions

There are a large number of both discrete and continuous distributions
in statistical theory that are useful in many specific areas of application.
Those presented in the previous sections of this chapter are among the
more commonly used and applicable distributions in nuclear material
accounting. Also, some commonly used sampling distributions are
presented in Chapter 3 and in subsequent chapters as needed. In this sec­
tion, a brief introduction is given to four continuous distributions which
have the potential of being used for some nuclear material accounting or
related applications. These are the exponential, gamma, Weibull, and beta
distributions. For a detailed presentation of these and other distributions,
the reader is referred to Johnson and Kotz (1969; 1970) or Hahn and
Shapiro (1967).

The exponential distribution has pdf, parameter, mean, and variance as
given in Table 2.5. The exponential is used to model the time (or space,
distance, etc.) between occurrences of events and is related to the Poisson
distribution as follows: If the time t between occurrences of an event is a
random variable that has an exponential distribution with parameter X,
then the number of events occurring in an interval of length T has a Pois­
son distribution, as given by Equation 2.25, with parameter Il = XT.

The gamma distribution has pdf, parameters, mean, and variance as
given in Table 2.5. The parameter r is called the shape parameter, and X
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is called the scale parameter. There is a close relationship between the
gamma and the exponential distributions, as follows: If a random
variable X is the sum of r independent, exponentially distributed random
variables, each having parameter A, then X has a gamma distribution with
parameters rand A. Note that when r = 1, the gamma and exponential
pdfs are identical.

A special form of the gamma distribution, known as the chi-square dis­
tribution, arises when a random variable X is the sum of the squared
values of n independent random variables from the N(O,I) distribution. In
this case the parameters are A = 1/2 and r = n/2, and X is said to
have a chi-square distribution with n degrees of freedom. The chi-square
distribution and some applications are discussed further in subsequent
chapters.

The Weibull distribution, as specified in Table 2.5, has been widely
applied in modeling many types of random phenomena. The popularity of
the Weibull distribution stems from the fact that it provides excellent
approximations to many different distributions. Also, the Weibull pdf is
easily integrated yielding a simple form for the cdf. Thus, no tables are
necessary for its application. Its parameters are classified as the location
parameter 'Y, the scale parameter 6, and the shape parameter f3. If values
of these parameters are appropriately chosen, the Weibull pdf will closely
approximate many observational phenomena. Note that when 'Y = 0 and
f3 = 1, the Weibull pdf is identical to an exponential pdf with parameter
A = 1/6.

The beta distribution, as specified in Table 2.5, has a wide variety of
applications. It is used in conjunction with order statistics for constructing
confidence intervals for distribution quantiles and tolerance limits for
distribution functions. A detailed discussion of this application with exam­
ples is given by Hogg and Craig (1978). The beta pdf also occurs fre­
quently as both a prior and a posterior pdf in deriving so-called Bayes esti­
mators, especially for percentages and binomial probabilities. An excellent
account of this application is given by Larson (1969). Note that when
ex = f3 = 1 the beta reduces to a uniform distribution on the unit
interval.

2.6 JOINTLY DISTRIBUTED RANDOM
VARIABLES

The presentation thus far has been concerned with distributions which
involve only one random variable. Such distributions are referred to as
univariate distributions. Situations often arise in practice, however, where
more than one random variable is measured on each sampled unit. In such
cases, the distribution of the random variables is called a multivariate
distribution.
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This section presents concepts, definitions, and formulas that are used
when working with more than one random variable at a time. To illustrate
the concepts, the special case of two random variables (the bivariate case)
is considered, frrst with both variables discrete and then with both vari­
ables continuous. A generalization to more than two random variables is
then given, and two commonly used distributions, the multinomial and the
bivariate normal, are introduced.

2.6.1 Discrete Bivariate Distributions
If X and Yare two discrete random variables, the joint probability

density function (pdf) is defined as

f(x,y) = Pr(X = x,Y = y)

where f(x,y) ~ 0 and ~ ~ f(x,y) = 1.
x y

(2.51)

Suppose that X can assume anyone of m values Xh X2, ... , Xm, and Y
can assume anyone of n values Yh Y2, ... , Yn' Then the probability that
X = Xj and Y = Yk is given by

Pr(X = xj,Y = Yk) = f(Xi,Yk) (2.52)

This joint pdf of X and Y can be represented by a joint probability table,
such as Table 2.6. The probability that X = Xi is obtained by adding all
entries in the row corresponding to Xi and is given by

n
fl(Xi) = Pr(X = Xi) = ~ f(xj, Yk)

k-I

TABLE %.6

Joint and Marginal pdrs of X and Y

}z YI Yl ... Y• Totals

x. f(x.,YI) f(X.,Y2) ... f(x.s.) f.(x.)
X2 f(X2'YI) f(X2'Y2) ... f(X2,Y.) f.(X2)

x,. f(x,.,y.) f(x,.'Y2) ... f(x,.,y.) f.(x,.)

Totals f2(y,) f2(Y2) ... f2(y.) 1

(2.53)
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For i = 1, 2, ... , m, the values of fl(Xi) are given by the row totals in the
right-hand margin (last column) of Table 2.6. Similarly, the probability
that Y = Yk is obtained by summing all entries in the column correspond­
ing to Yk and is given by

m

f2(Yk) = P(Y = Yk) = ~ f(Xi,yk)
i-I

(2.54)

For k = 1, 2, ... ,n, the values of f2(Yk) are given by the column totals in
the lower margin (bottom row) of Table 2.6.

Because fl(Xi) and f2(Yk) are obtained from the margins of the table,
they are commonly called the marginal pdf's of X and Y, respectively, and
are generally denoted by fl(x) and f2(y). It should be noted that marginal
pdfs have the same properties as univariate pdfs in the sense that
fl(x) ~ 0, f2(y) ~ 0, and

~ fl(x) = ~ f2(y) = ~ ~ f(x,y) = 1
x y x y

The joint cumulative distribution function (cdf) of X and Y is given by

F(x,y) = Pr(X ~ x, Y ~ y) = ~ ~ f(u,v) (2.55)
u"x v"y

To compute F(x,y) from Table 2.6, sum over all values of f(Xi,yk) for
which Xi ~ X and Yk ~ y.

Suppose now that only Y is measured, but it is of interest to determine
the probability that X = Xi when it is known that Y = Yk' Such proba­
bilities are given by the conditional pdf of X, given Y = y, denoted by
f(xIY), which is determined from Definition 2.11 to be

(2.56)

For X = Xi and y = Yk, the values of f(XiIYk) are computed from Table 2.6
by dividing the elements of the Yk column by the marginal probability,
f2(Yk)'

Similarly the conditional pdf of Y, given X = x, is given by

(2.57)
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For x = Xj and y = Ylo the values of f(Yklxj) are computed from Table 2.6
by dividing the elements of the Xj row by the marginal probability c.<Xj).

Conditional pdfs have the same properties as univariate pdfs in the
sense that f(xly) ~ 0 and

If the conditional pdf f(xly) does not involve y, then X is independent
of Y in the probability sense (Definition 2.12). When this is the case, it
can be shown that

(2.58)

Thus, when X and Yare independent,

(2.59)

and

(2.60)

Expected values are obtained by extending the concepts presented in
the previous sections. The mean of X is given by

#LX = E[X] = ~ xft(x) = ~ ~ xf(x,y) (2.61)
]I ]I y

Similarly, the mean of Y is given by

#LY = E[Y] = ~ yf2(Y) = ~ ~ yf(x,y) (2.62)
y ]I y

The variance of X is given by

]I

Similarly, the variance of Y is given by

CTt = Var[Y] = E[(Y - #Ly)2] = E[y2] - #Lt = ~ y2 f2(y) -#Lt (2.64)
y
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An expected value that is of great interest in most bivariate applica­
tions is the covariance of X and Y, which is given by

CTXY = Cov(X,Y) = E[(X -ltx)(Y - Ity)] = E[XY] -ItXllY

= ~ ~ xyf(x,y) - Itxlty (2.65)
x y

A measure of association between X and Y, known as the correlation coef­
ficient, is defined as

CTXY CTXY
PXY= =--

JCTiCTt CTXCTy
(2.66)

Note that when X and Yare independent, E[XY] = ItXlly, and thus
CTXY = 0 and PXy = O. The converse is not always true, however. That
is, in general, PXy = 0 does not imply independence.

The conditional mean and variance of X, given Y = y, are defined as

ItX!y = E[Xly] = ~ xf(xly)
x

and

CTily = Var[XIY] = ~ x2f(xly) - Itily
x

Similarly, the conditional mean and variance of Y, given X
defined as

ItYlx = E[Ylx] = ~ yf(ylx)
y

and

CTflx = Var[Ylx] = ~ y2f(ylx) - Itflx
y

2.6.2 Continuous Bivariate Distributions

(2.67)

(2.68)

x, are

(2.69)

(2.70)

For the case where two random variables X and Yare both continu­
ous, practically all of the definitions can be obtained by analogy to the dis­
crete case if the summations are replaced by integrals.

If X and Yare continuous random variables, any function f(x,y) may
be regarded as a joint pdf of X and Y if

f(x,y) ~ 0
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J~ooJ~oo f(x,y)dxdy = I

The marginal pdfs of X and Yare given by

ft(x) = J~oo f(x,y)dy

and

(2.71)

(2.72)

It should be noted that the marginal pdrs have the same properties as
univariate pdrs in the sense that ft(x) ;,: 0, f2(y) ;,: 0, and

f
OO foo foo . foo
-00 ft(x)dx = -00 f2(y)dy =. -00 -00 f(x,y)dxdy = 1

The joint cumulative distribution function of X and Y is given by

F(x,y)=Pr(X~x,Y~y)= J~oo J~oof(u,v)dudv (2.73)

and by analogy with Equation 2.4, the joint pdf of X and Y is defined as

f(x, ) = o2F(x,y)
y oxoy

The conditional pdf of X, given Y = y, is defined as

and the conditional pdf of Y, given X = x, is defined as

f(ylx) = f(x,y)
ft(x)

(2.74)

(2.75)

(2.76)

Conditional pdrs have the same properties as univariate pdrs in the sense
that f(xly) ;,: 0, f(ylx) ;,: 0,
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J~co f(xly)dx = 1

J~co f(ylx)dy = 1
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If the conditional pdf f(xlY) does not involve y, then X and Yare said
to be independent in the probability sense (Definition 2.12). When this is
the case, it can be shown that

(2.77)

Thus, when X and Yare independent,

(2.78)

and

(2.79)

Expected values are obtained by analogy with Equations 2.60 through
2.70 if the summations are replaced by integrals. These are listed here.

P.x = E[X] = J~co xf1(x)dx = J~co J~co xf(x,y)dxdy (2.80)

(1XY = E[XY] - p.XJl.y = J~coJ~co xyf(x,y)dxdy - p.XJl.y (2.84)

(1XY (1XY
PXY = = -- (2.85)

~(1* (1~ (1X (1y
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Note that when X and Yare independent, E[XY] = ILxJty, and thus
O'XY = 0 and PXy = O. As previously noted for the discrete case,
PXy = 0 does not, in general, imply independence. For normal distribu­
tions, however, PXy = 0 does imply independence.

The conditional means and variances are given by

ILXly = J~co xf(xly)dx

ILYlx = J~co yf(Ylx)dy

and

2.6.3 More Than Two Variables

(2.86)

(2.87)

(2.88)

(2.89)

The concepts presented in Sections 2.6.1 and 2.6.2 are easily extended
to the general case of k jointly distributed random variables, say Xl>
X2, ... ,Xk• In general, any function f may be regarded as a joint pdf of k
random variables if

and

~ ~ ... ~ f(xl> X2, ..., Xk) = I
xl X2 xk

when all Xi are discrete, or

when all Xi are continuous.
For k jointly distributed random variables, the joint cdf is given by

(2.90)
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for the discrete case, and
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x

F(x), X2,"" Xk) = L: ... f~~f~~f(u), U2"" ,Uk)du ldu2'" dUk (2.91)

for the continuous case. Thus, for the continuous case, the joint pdf can be
expressed as

(2.92)

The joint marginal pdf of any subset of the k random variables is
obtained by summing (or integrating) the joint pdf f(x), X2,'''' Xk) over
the entire range of all other random variables which are not in the subset.
For example, the joint marginal pdf of X.. X2, and X3is given by

f123(x.. X2, X3) = ~ ~ ... ~ f(x.. X2,"" Xk)
X4 Xs Xk

for the discrete case, and

(2.93)

(2.94)

for the continuous case.
The conditional joint pdf of a subset of the random variables, given the

values of the other random variables not in the subset, is found by taking
the ratio of the joint pdf of all k variables to the joint marginal pdf of the
variables not in the subset. For example, the conditional joint pdf of ~,
Xs, ... ,Xk, given th~t XI = x.. X2 = X2, and X3 = X3, is defined as

(2.95)

Similarly, the conditional joint pdf can be determined for a subset of the
random variables, given the values of another subset of the random vari­
ables, where the two subsets do not exhaust all k random variables. This is
accomplished by applying the above rule to the joint marginal pdfs. For
example, the conditional pdf of X.. given X2 = X2 and X3 = X3, has the
form

(2.96)
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The expected values for the general k variable case are summarized
using vector and matrix notation. The k element mean ,ector is denoted by

~=

where the ith element Ilj is dermed as

Ilj = E[Xj] = ~ X#Xj)
~

for the discrete case, and

(2.97)

(2.98)

(2.99)

for the continuous case. Note that in Equations 2.98 and 2.99, fj(xj) is the
marginal pdf of Xj obtained by summing (or integrating) f(xh X2, ••• 'xt)
over all other variables.

The k-by-k symmetric ,ariance-co,ariance matrix is denoted by

0'1 0'12 0'13 •••••• (Tlk

0'21 0'1 0'23 0'24 •• • 0'2k

~= 0'31 0'32 0'1 (2.100)

O'k-I,k

O'kl 0'k2 ••• O'k,k-I 0"

where the diagonal clements O'l are the variances of the Xi> given by

O'l = Var[Xj] = E[Xll _1lj2 = ~ xlrbj) _1lj2

~

for the discrete case, and

(2.101)
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for the continuous case. The ijth off-diagonal element O"ij is the covariance
of Xi and Xj, which by analogy with Equations 2.65 and 2.84 is given by

O"ij = Cov[Xj, Xj] = E[XiXj] - #liJLj

= ~ ~ Xi Xlij(Xj, Xj) - #liJLj
xi Xj

for the discrete case, and

for the continuous case.
The correlation Pij between Xi and Xj is given by

O"ij = O"ij
Pij = p;r O"iO"j

(2.103)

(2.104)

(2.105)

If Xi and Xj are independent, then O"ij = 0, and thus Pij = O. In general,
however, Pij = 0 does not imply independence.

A multivariate joint pdf that deserves special mention arises when XI>
X2, ... , Xn is a random sample of size n from the pdf f(x). In this case,
the Xi are assumed to be independent, so that by analogy with Equations
2.58 and 2.77, the joint pdf is given by

n
f(xl> X2,' .. ,xn) = f(xI)f(X2)' .. f(xn) = n f(xi)

i-I
(2.106)

This joint pdf is called the likelihood function and is discussed further in
Chapter 3.

2.6.4 Two Special Multivariate Distributions

In this section, two multivariate distributions are presented that have
applications in nuclear material accounting. These are the multinomial dis­
tribution and the bivariate normal distribution.

2.6.4.1 Multinomial Distribution

The multinomial distribution is the multivariate extension of the bino­
mial distribution. It is a discrete distribution that arises in attribute sam­
pling applications when the attribute of interest can be classified into
k ~ 2 mutually exclusive classes. That is, in a sequence of independent
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trials, there are k ~ 2 possible outcomes at each trial. Let the probabili­
ties of the k outcomes be denoted by Ph P2, - .. , PIc, where

(2.107)

The values of the Pi are assumed constant for all trials.
Consider n independent trials of such an experiment. Let Xi be the

number of times the outcome corresponding to Pi occurs. The joint pdf of
X h X2, ... , Xkis given by

(2.108)

where

(2.109)

It should be noted that Xh X2, .. _, Xk are not independent random
variables because knowing the value of n and the values of any k - 1 of
the Xi completely determines the value of the remaining Xi. For example,
if it is known that XI = Xh X2 = X2, ... , Xk- I = Xk-h them the
value of Xkis determined from Equation 2.109 and is given by

k-I
Xk=xk=n- ~ Xi

i-I

Similarly, knowing the values of any k - 1 of the Ph the value of the
remaining Pi can be determined from Equation 2.107. Using the same
example as above, if the values of Ph P2, ... ' PIc-I are known,
then the value of PIc is given by

k-I
PIc=I-~Pi

i-I

For this reason, a multinomial distribution with k possible outcomes is
often said to be a k - 1 variate distribution with parameters n, Ph
P2, ... , PIc-I· The quantity PIc plays the same role as (l - p) in the bino-
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mial distribution. For example, the binomial has k = 2 possible outcomes
and is classified as a univariate distribution with parameters nand p,
where the number of successes is the random variable.

The mean and variance of each Xi are given by

(2.110)

and

(2.111)

The covariance O'ij between any two variables Xi and Xj, for i ¢ j, is
given by

(2.112)

Example J.8 Consider an automated process where U02 powder con­
tainers are filled to a prespecified weight, sealed, and labeled. The plant
manager routinely audits the container weights, which are rounded to the
nearest 109, to monitor their compliance with the prespecified filled
weight. Historical audit data reveal that when the process is "in control,"
95% of the container weights will agree exactly with the prespecified filled
weight, 4% will agree within 109, and I% will have discrepancies of more
than 109. It is desirable that these percentages remain constant over
time.

An audit proceeds by randomly selecting 50 filled containers from the
process, weighing them, and recording their weights to the nearest 109.
Let

Xl = number of containers whose weights agree exactly with the
prespecified filled weight

X2 = number of containers with weight discrepancies within 10 g
X3 = number of containers with weight discrepancies exceeding 10 g

The process is said to be "in control" if, in the sample of 50 containers,
values of X2 ~ 3 and X3 ~ I are observed. Suppose that it is of interest
to compute the probability Pr(X2 ~ 3, X3 ~ I) when the percentages are
as stated above.

The appropriate pdf for computing probabilities is the multinomial,
given by
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The desired probability is computed as

Pr(X2 ~ 3, X3 ~ I) = f(50,0,0) + f(49,0,1) + f(49,1,0) + f(48,1,1)

+ f(48,2,0) + f(47,2,1) + f(47,3,0) + f(46,3,1)

= 0.782~

where, for example,

( = 50! ( )48(0 )2( )0 - 0~ 48,2,0) 48!2!0I 0.95 .04 0.01 - .16710

Thus, when the percentages are as specified above, there is a 78% chance
of concluding that the process is in control and a 22% chance of conclud­
ing that the process is out of control. It would seem desirable to develop
an inspection plan which would yield a larger probability of concluding
that the process is in control when the percentages are at the desired lev­
els. This could be accomplished by increasing the sample size n.

For this example, the mean vector is computed from Equation 2.110
and is given by

[

47.5]
~= 2.0

0.5

These are the average values we would expect to observe if the sampling
process were repeated a large number of times when the percentages are at
the desired levels.

The variance-<:ovariance matrix for this example is computed from
Equations 2.111 and 2.112 and is given by

[

2.375

~ = -1.900
- -0.475

-1.900

1.920
-0.020

-0.475]
-0.020

0.495

2.6.4.2 Bivariate Normal Distribution

One of the most important and widely used multivariate distributions
in statistics is the multivariate normal distribution. This distribution and its
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various applications have been the topic of many excellent texts on mul­
tivariate analysis, such as Anderson (1984) and Kshirsagar (1972). To dis­
cuss more than two variables, however, is quite tedious without the use of
matrices and vectors. The two variable case, the bivariate normal distribu­
tion, is presented in this section.

Two jointly distributed random variables XI and X2 have a bivariate
normal distribution if their joint pdf is given by

-00 < XI < 00 and -00 < X2 < 00

The parameters #1-10 #1-2, 0'10 0'2, and p have straightforward interpreta­
tions as the means, standard deviations, and correlation coefficient of XI
and X2• That is,

E[Xd = #1-1

E[X2] = #1-2

Var[Xd = O'~

Var[X2] = O'f
0'12

P=PI2= -­
0'10'2

The joint probability that a < XI < band c < X 2 < d is computed
from the formula

(2.114)

and is illustrated in Figure 2.7.
The marginal pdfs of XI and X2 are given by

(2.115)
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(2.116)

On comparison with Equation 2.32, note that XI - N(~haD and
X2 - N(~2,aD. That is, the marginal pdfs of XI and X2 are univariate
normal pdfs.

+"',--~or--...,....~-----x,

Figure 2.7 Tbe bi,ariate IIOrDI8I pdf.

An important application of the bivariate normal distribution in
nuclear material accounting involves finding the conditional distribution of
one variable given the value of the other. If XI and X2 have a joint pdf
f(xhx2), given by Equation 2.113, then in accordance with Equation 2.75
the conditional pdf of X h given that X2 = X2, is given by

(2.117)

where f2(x2) is given by Equation 2.116. On comparison with Equation
2.32, f(Xllx2) is a univariate normal pdf with mean and variance given by
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(2.118)

(2.119)

Note that Var[Xllx2] is constant for all values of X2.
The conditional pdf of X2, given that XI = Xl> and its mean and vari­

ance are determined by exchanging the subscripts I and 2 in Equations
2.117,2.118, and 2.119.

It should be noted with the bivariate normal distribution that if
p = 0, f(x Ilx2) reduces to fI(xI)' That is, Equation 2.117 reduces to
Equation 2.115, from which it follows that f(xI;X2) = fl(xI)f2(x2)' Thus,
when p = 0, Xl and X2are independent.

The expression for E[XtlX2] is commonly called the regression of XI on
X2and is usually written as

(2.120)

where

130 = ILl - 1311L2

and

In many applications it is desirable to control one of the variables, e.g.,
X2, and only allow it to take on certain values. These values are called
fIXed levels of X2. At each fixed level of X2, a random sample of values of
Xl is taken. The analysis of data from this type of controlled experiment
requires special assumptions. Regression analysis is the topic of Chapter 6,
and the generalizations and underlying assumptions for various applica­
tions are presented there.

Example 2.9 Use of a nondestructive assay (NDA) instrument is
being considered as an alternative to a more expensive but very reliable
procedure for measuring the plutonium content of specific items. Over an
extended period of time, both techniques were used simultaneously to
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measure a large number of items. Thus, for each item, values were
recorded for the two random variables:

XI = grams of plutonium as determined by the more expensive
procedure

X2 = net count rate (counts per minute) from the NDA instrument,
. corrected for background and dead time

It was concluded that XI and X2 have a bivariate normal pdf with
parameters:

ILl = 290 g
1L2 = 390,217 cpm
0'1 = 34 g
0'2 = 44,307 cpm
p = 0.99

Note that 0'1 primarily reflects the variability in plutonium content among
the measured items and is not an indicator of the precision of the more
expensive procedure. Because the correlation coefficient is 0.99, the NDA
instrument could replace the more expensive procedure. It is of interest to
determine the conditional pdf of XI when the value of X2 is known. If the
above parameters are substituted into Equations 2.117, 2.118, and 2.105,
the conditional pdf f(xdx2) is a univariate normal pdf with mean and vari­
ance given by

E[X l lx2] = 290+0.99[ 44~:071(X2 - 390,217)

= -6.4476 + x2(0.759699)l0-3 g

and

Suppose that an unknown item is counted using the NDA instrument, and
its net corrected count rate is X2 = 350,000 cpm. Then the amount of
plutonium contained in this item is from a normal distribution with mean
and variance given by

E[Xdx2 = 350,000] = 259.45 g

and

Var[Xdx2 = 350,000] = 23.0044 g2
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It is of interest to find an upper limit (U) and a lower limit (L) such that

Pr(X1 > UIX2 = 350,000) = 0.05

and

Pr(X1 < Llx2 = 350,000) = 0.05

Using the procedures discussed in Section 2.5.2,

[
U - 259.451Pr[X1 > (U - 259.45)/J23.0044] = 1 - ~ 4.80 = 0.05

or

~[U-259.451= 0.95
4.80

87

Entering Table A3, the value of z for which ~(z) = 0.95 is z = 1.65.
Thus,

U - 259.45 = 1.65
4.80 .

or

U = 267.36g

Similarly, the value of z for which ~(z) = 0.05 is z = -1.65, so that

L - 259.45 = -1.65
4.80

or

L = 251.54g
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Thus, the following probability statement can be made about the amount
of plutonium in the item:

Pr(251.54 g <Xl < 267.36 g) = Pr( -1.65 < Z < 1.65) = 0.90

That is, the probability is 0.90 that the amount of plutonium in the item is
between 251.54 g and 267.36 g.

This example is a problem in calibration, a topic which is more
thoroughly developed in Chapter 15.

2.7 FUNCfIONS OF RANDOM VARIABLES

In nuclear material control and accounting applications, the random
variable of interest is often a mathematical function of other random vari­
ables, and it is desirable to characterize the pdf of this composite variable.
Depending upon the form of the mathematical function and whether
or not the pdfs of the individual random variables in the function are
known, it may be difficult or impossible to derive its pdf. In most cases,
however, either exact or approximate formulas for the mean and variance
of the function can be derived. In most applications, this provides an ade­
quate characterization of the pdf for estimation and inferential purposes.

Section 2.7.1 presents the exact formulas for the mean and variance of
a linear combination of random variables. Section 2.7.2 presents a method
for deriving approximate formulas for the means and variances of more
general functions of random variables. In each case, the formulas involve
the means, variances, and covariances of the individual variables in the
function. Usually, these quantities are unknown, and they are estimated
from sample or experimental data. Section 3.6 addresses the estimation
problem.

2.7.1 Linear Combinations of Random Variables

Assume that the random variables X" X2, ••• , Xk have means p"
P2, ••. , Pk and variances 01, 0'1, ... ,O'i. and that the covariance between
Xi and Xj is O'ij' Define the random variable Y to be a linear combination
of Xl, X2, ••• , Xkof the form

k

Y=8o+ ~aiXi
i-I

(2.121)

where 80, a" ... , ak are arbitrary constants. The mean of Y is given by
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k
lLy = E[Y] = ao + ~ aj#Li

i-I

and the variance of Y is given by

k k-I

u~ = Var[Y] = ~ al ul + 2~ ~ ai aj Uij
i-I i-I j>i

89

(2.122)

(2.123)

When the Xi are from a k-variate normal distribution, then Y is nor­
mally distributed with mean and variance given by Equations 2.122 and
2.123. When the Xi are independent normally distributed random vari­
ables, then Y is normally distributed with mean and variance given by
Equations 2.122 and 2.123, where all covariances Uij are zero.

Suppose, however, that the exact distributions of the individual random
variables Xi are unknown but that they are independently distributed. In
such cases, it is often possible to apply the Central Limit
Theorem (Theorem 2.7). To do so requires that the number of individual
terms ajXi be sufficiently large to satisfy the rules of thumb given in
Section 2.5.2.1 for applying the Central Limit Theorem. Note that aiXi is
a random variable with mean ailLi and variance alul. When applicable, the
Central Limit Theorem states that the distribution of Y can be approxi­
mated by a normal distribution with mean and variance given by Equa­
tions 2.122 and 2.123, where all covariances Ujj are zero. In such cases, sta­
tistical procedures based on the normal distribution can be applied to make
inferences about Y.

Example 2.10 In this example, given by Jaech (1973), the total
weight of a fuel rod is the sum of the cladding, end-plug, spring, and fuel
weights. Assume that these weights are random variables with means and
variances given below.

Component weight

Cladding: XI

Plug: X2

Spring: X3

Fuel: ~

Mean weight, g

ILl = 554.89

1L2 = 10.64

1L3 = 16.07 g

1L4 = 1814.85 g

Variance, .;

ul = 16.8100

u1 = 0.0016

(1j = 0.0036

u1 = 6.0025
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Assuming that all covariances are zero, use Equations 2.122 and 2.123 to
determine the mean and variance of the total weight of a fuel rod.

The total weight of a fuel rod is

which is the form of Equation 2.121 with aa
Thus, Equations 2.122 and 2.123 give

oand all other ai 1.

#LY = 554.89 + 10.64 + 16.07 + 1814.85 = 2396.45 g

and

O't = 16.8100 + 0.0016 + 0.0036 + 6.0025 = 22.8177 g2

The standard derivation of Y is

O'y = .J22.8177 g2 = 4.78 g

which is in the same units as #LY.

2.7.2 General Functions of Random Variables

Assume that the random variables X io X2, ••• , Xk have means ILIo

#L2, ••• , ILk and variances O'?, O'i" ...,O'~ and that the covariance between
Xi and Xj is O'ij' Define the random variable Y to be a known mathemati­
cal function of X io X2, ••• , Xb denoted by

(2.124)

When the pdfs of the individual Xi are known, it is possible to derive the
pdf of Y using techniques of mathematical statistics. This pdf can then be
used to derive exact expressions for the mean and variance of Y. Depend­
ing on the complexity of Y, however, the resulting mathematical expres­
sions can be cumbersome to work with. When the pdfs of the individual
Xi are unknown, it is not possible to derive the pdf of Y, and when Y is
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other than a linear combination of the Xi> this generally precludes deriving
exact expressions for the mean and variance of Y.

One approach, which provides approximate results and has been found
useful in many practical applications, involves a first-order Taylor series
expansion of Y about the point where each Xi = iii. (The Taylor series
expansion is presented in most basic calculus texts.) This provides an
approximation of the function which is a linear combination of the Xi> and
the techniques described in Section 2.7.1 can be applied to obtain
approximate expressions for the mean and variance of Y.

The first-order Taylor series expansion of Y about the point where
each Xi = iii is given by

(2.125)

where the partial derivatives (ahjaXi) are evaluated at Xi == iii and, thus,
are constants. Because the iii are constants,

and

Var[Xi - iii] = Var[Xil = ul

Also,

Using these results together with Equations 2.122 and 2.123, approximate
expressions for the mean and variance of Yare given by

and

k [ ah ]2 k-I [ahI[ahIu~ a= ~ - ul + 2 ~ ~ - - Uij
i-I aXi i-I j>i aXi aXj

where the partial derivatives are evaluated at Xi = iii.

(2.126)

(2.127)
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The validity of these expressions depends upon how well the first-order
Taylor series approximation represents Y. This can be investigated over
the relevant range of the Xi variables by substituting values of the Xi into
both Equations 2.124 and 2.125 and then comparing the resulting values
of Y. Another problem is that the 1J.j, ul, and Uij are usually unknown and
must be estimated from sample data. Substituting sample estimates for
these unknown quantities in Equations 2.126 and 2.127 can yield estimates
of Ily and uf with undesirable statistical properties. This is discussed fur­
ther in Section 3.6. Thus, it is possible to obtain poor estimates of inade­
quate approximations. Generally, however, if the Taylor series approxima­
tion of Y is deemed adequate over the relevant range of the Xj variables,
and if each Uj is small relative to 1J.j, the resulting estimates of Ily and uf
are acceptable for practical use.

Example 2.11 In this example, presented by Jaech (1973), the
amount of 23SV in a container of V02 powder is measured by determining
the net weight of the powder and then drawing a sample of powder for
analysis of percent uranium and percent 235V. The random variables are:

XI = net weight of V02 powder, with mean ILl = 20.0 kg and vari­
ance ul = (0.05)2 kg2.

X 2 = ratio of uranium to V02 (proportion of uranium) with mean
1L2 = 0.876 and variance u! = (0.001)2.

X3 = ratio of 235V to uranium, with mean 1L3 = 0.0425 and variance
(11 = (0.0002)2.

It is assumed that XI> X 2 and X 3 are independent, so that all covariances
Uij are zero.

The estimated amount of 23SV in a container is given by

Determine the mean and variance of Y.
The mean of Y is approximated by substituting ILl> 1L2, and 1L3 into

Equation 2.126 which gives

lLy == (20.0)(0.876)(0.0425) = 0.7446 kg

The variance of Y is approximated by applying Equation 2.127, where the
partial derivatives, evaluated at Xi = 1J.j, are
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aY-X = X2X3 = (0.876)(0.0425) = 0.03723
a I

aY-X = X IX3 = (20.0)(0.0425) = 0.850
a 2

and

aY-X = X IX2= (20.0)(0.876) = 17.52
a 3

Thus, the variance of Y is approximately given by

ut ~ (0.03723)2 (O.05? + (O.850)2(O.OO1)2

+ (l7.52)2(O.OO02)2

= 16.466 X 10-6 kg2

The standard deviation of Y is approximated by

Uy ~ .J16.466 X 10 6 kg2= 0.0041 kg
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CHAPTER 3

Estimation
3.0 INTRODUcnON

In Chapter 2, the concepts of random variables, probability density
functions (pdf), and cumulative distribution functions (cdf) are introduced.
A random variable is a function which assigns a numerical value to each
possible outcome of an experiment. The set of all possible numerical values
or labels of a random variable is referred to as the population of values or
labels. Information about the probability of observing the values or labels
of a random variable is obtained from its pdf (or cdf). The pdf of a ran­
dom variable is a function with one or more parameters. For example, the
mean (~) and the variance (al) are the parameters that describe a normal
pdf, whereas the probability of success (p) and the number of trials (n) are
the parameters that describe a binomial distribution. Because the parame­
ters of a pdf are usually unknown, it is necessary to make inferences about
them based upon a sample of observed values of the random variable taken
from the population. The concept of a sample is that only a portion of all
possible observations is obtained from the population. An inference on a
parameter involves reaching a conclusion or decision about a parameter
based upon the information in a sample. There are two major types of
statistical inference: estimation and hypothesis testing. The topic of estima­
tion is introduced in this chapter; hypothesis testing is introduced in
Chapter 4.

A statistic is a function of a sample; that is, it is an expression or for­
mula that is used to calculate a numerical value from sample observations.
An estimator of an unknown parameter is a statistic that yields a numeri­
cal estimate of the parameter. An estimate is the numerical value of an
estimator calculated from a set of sample data. Because an estimator
is a known mathematical function of random variables, it is a random vari­
able. An estimate is an observed value of this random variable. Thus, an
estimator itself has a probability distribution referred to as its sampling
distribution.

In this chapter, two types of estimators are considered. A point estima­
tor is a statistic that, when evaluated for a given set of sample data, results
in a single numerical value for the estimate of an unknown parameter. An
inte"al estimator is a statistic that, when evaluated for a given set of sam­
ple data, results in an interval with a specified probability of including the

95
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true value of an unknown parameter. These random intervals are called
confidence intenals. Often, a confidence interval for an unknown parame­
ter can be developed from a point estimator of the parameter and the sam­
pling distribution of this point estimator.

Empirical density functions and cdfs are discussed in Section 3.1.
Some properties of estimators are discussed briefly in Section 3.3. Point
and interval estimators of several population parameters introduced in
Chapter 2 are discussed in Sections 3.4 and 3.5, respectively. Estimators
for functions of random variables are considered in Section 3.6. Statistical
tolerance limits for normal distributions are discussed in Section 3.7.

3.1 EMPIRICAL DISTRIBUTIONS
An approximation of a probability density function (pdf) developed

from sample observations is known as an empirical density function. A sim­
ilar approximation of a cumulative distribution function (cdf) is known as
an empirical cumulative distribution function. These are discussed in
Section 3.1.1.

Moments of a pdf are introduced in Section 2.3 and are referred to as
population moments. Moments of an empirical density function are
referred to as sample moments and are discussed in Section 3.1.2.

3.1.1 Empirical Density and Cumulative
Distribution Functions

In situations where the functional form of a population pdf (or cdf) is
unknown, sample observations are used to construct an approximation and
to aid in determining the form of the pdf (or cdf).

Let X represent either a discrete or a continuous random variable with
pdf f(x) and cdf F(x). Let Xh X2, ., '. Xn represent the observed values of a
random sample of size n taken from f(x). Assume that the random sample
is ordered from smallest to largest, and denote the ordered values by x(l) ~
X(2) ~ '" ~ x(n). In this ordered form, x(i), i = 1, 2, ... , n, is referred
to as the itb order statistic. Then, the empirical density function of X is
given by (I.!. for x = x(i), i = 2 ... , n

g x) = n (3.1)
o elsewhere

The empirical cumulative distribution function of X is given by

o for x < x,

k
G(x) = for x(lt) ~ x < X(HI), k = 1,2, ... , n - 1

n
for x;;?; Xn

(3.2)
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In words, the empirical cumulative distribution function G(x) is equal to
the fraction of the Xi'S that are less than or equal to X for each x,
-00 < X < 00. Illustrations of the empirical cumulative distribution
function are found in Examples 9.17 and 9.18 of Chapter 9.

Empirical density and cumulative distribution functions provide simple
approximations to unknown pdfs and cdfs. A simple approximation to
pdfs, the histogram, is considered in Chapter 1. A histogram often pro­
vides a sufficient approximation for graphical display and exploratory pur­
poses. For more complicated applications where a functional form is
required and none of the well-known distributions are appropriate, Johnson
or Pearson approximations are often used. Hahn and Shapiro (1967)
discuss techniques for determining which well-known distribution might
adequately represent a set of sample observations. They also discuss the
development of Johnson and Pearson approximations when no well-known
distribution is appropriate. The goodness-of-fit tests discussed in Sec­
tion 9.6 are also applicable for this purpose.

3.1.2 Sample Moments

The kth population moment of the random variable X is defmed in Sec­
tion 2.3 as

for X continuous and as

Ilk = E[Xk] = 2: xkf(x)
x

(3.3)

(3.4)

for X discrete. In both cases f(x) is the pdf of X. In an analogous manner,
the ktll sample moment is defined as

(3.5)

where the empirical density function g(x) is given by Equation 3.1. Note
that this equation provides sample moments for both discrete and continu­
ous random variables X. The first sample moment (k = 1) is referred to
as the sample mean and is denoted by x.

The kth moment about the population mean is defined in Section 2.3 as
Ilk = E[(X-Il)k]. The kth sample moment of X about the sample mean is
given by

.
mk=----­

n
(3.6)
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3.2 PROPERTIES OF POINT ESTIMATORS

There are a number of properties which are used to judge estimators of
population parameters. Several of these are discussed below.

1. A point estimator t of the parameter "Y is said to be unbiased if
E[t l = "Y; that is, if the mean of the sampling distribution of the estima­
tor t equals the population parameter "Y. When E[ t l :#: "Y, t is said to be
a biased estimator of "Y.

2. A point estimator t is said to have minimum variance with respect
to a class of estimators if the estimator has a variance no larger than the
variance of any other estimator of the parameter "Y in the class. For exam­
ple, the estimator in the class of unbiased estimators with minimum vari­
ance is the minimum variance unbiased estimator.

3. Many estimators are a function of the sample size n. An estimator
t is said to be consistent if it becomes arbitrarily close to "Y as n increases
and approaches infinity. Mathematically, this is written as

lim Pr(1 t - "Y I~ E) = 0 for any E > 0
0-+00

An estimator that improves with increasing sample size (a consistent esti­
mator) is both intuitively and theoretically appealing.

4. A point estimator is said to be robust if it is not seriously affected
by departures from distributional assumptions or by potential extreme
sample observations.

The above properties of estimators are referred to in Section 3.4 dur­
ing the presentation of point estimators for several common population
parameters of interest. Although it is desirable to develop estimators hav­
ing all of the above properties, this is not always possible. In a specific sit­
uation, there may be reasons why an estimator missing one or more of the
previously mentioned properties is preferred. The trade-offs among various
properties may determine which estimator should be used.

A common measure of performance of a point estimator t is the
mean-squared error, defined by

which can be written as

= Var(t) + (Bias[t])2

If t is an unbiased estimator of "Y, Bias[tl = 0 and MSE(t)

(3.7)

(3.8)

Var(t).
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Mean-squared error is sometimes used to compare two or more estimators,
with preference given to those estimators with smaller MSE's.

3.3 METHODS FOR DERMNG ESTIMATORS

In this section, four commonly used methods for deriving point estima­
tors are discussed. These are the method of moments, least squares, maxi­
mum likelihood, and Bayesian estimation. Depending on the distribution
being sampled, these methods may yield identical or different estimators.

3.3.1 Method of Moments
The method of moments devised by Karl Pearson in 1894 is one of the

oldest methods of deriving estimators.
Assume that k parameters of a population distribution are to be

estimated. The method consists of expressing the first k population
moments (Section 2.3, Section 3.1.2, and Equations 3.3 and 3.4) in terms
of these k parameters, equating them to the corresponding sample
moments, and then solving the resulting equations for the k parameters.
This gives k formulas which express each of the k parameters as a function
of the sample moments. These formulas are the method of moments esti­
mators of the k parameters. This method is illustrated by the following
example.

Example 3.1 An audit of a manual record-keeping system is to be
performed. For a random sample of n records, each record is examined to
determine whether it does or does not contain one or more errors. Develop
an estimator of the probability of a defective record, i.e., a record contain­
ing one or more errors.

The result of examining a single record is a random variable X, where
X = 1 if the record contains one or more errors and X = 0 if the
record contains no errors. Assume that Pr(X = 1) = P and
Pr(X = 0) = 1 - P for all records in the population. Note that X is a
special case of the binomial distribution (Section 2.4.2) with n = 1. The
parameter (probability) p is estimated by the method of moments by
equating the first population moment to the first sample moment. Because
E[Xjl = p is the first population moment, equating E[Xjl to the first
sample moment gives

D

P = ml = ~ xiJn =
j-I

1+0+1+ ... +0+1 =:i..
n n
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n

y= ~Xi
i-I

is the number of defective records observed in the random sample. Note
that y is an observation on a binomially distributed random variable Y
with mean np and variance np(l - p). Hence, p = Y/n is an unbiased
estimator of p, because

IYI I IE[p] = E - = - E[Y] = - (np) = p
n n n

3.3.2 Least Squares

Least squares is a specialized estimation technique that is widely used
for fitting equations to data; it is further discussed in Chapter 6.

Consider the sum of squares

(3.9)

where Xi is an observation on the random variable Xi. The expectation of
Xi is E[Xil, which depends upon the unknown parameters to be estimated.
Least squares estimation attempts to minimize the sum of squares in
Equation 3.9 over possible values of the parameters. If a unique minimum
exists, the corresponding values of the parameters are their least squares
estimates. Note that for a unique minimum to exist, the number of obser­
vations n in the sample must be equal to or larger than the number of
parameters being estimated.

In a random sample where XI> X 2, ••• , Xn are not independent and
identically distributed, the sum of squares in Equation 3.9 must be modi­
fied before minimization. This generalized least squares problem is dis­
cussed in Chapter 6, where the method of least squares is used extensively
in estimating regression equation parameters.

3.3.3 Maximum Likelihood

Consider a random sample XI> X 2, ••• , Xn from a pdf f(x,O) that
depends upon an unknown parameter O. The joint pdf of XI> X2, ••• , Xn
(Section 2.6), also a function of 0, is referred to as the likelihood function
and is given by



SECTION 3.3 DERIVING ESTIMATORS 101

(3.10)

Using calculus techniques, it may be possible to find a value 8 that maxi­
mizes the likelihood function when substituted for O. If so, then 8 is the
maximum likelihood estimate of the parameter O. This technique is illus­
trated in the following example.

Example 3.2 Derive the maximum likelihood estimator of p for the
problem described in Example 3.1.

The pdf of X is

f(x) = pX(I - p)l-x X = 0, 1

The likelihood function of a random sample X.. X2, ••• , Xn is

= pY (I - p)n-y

where

n

y= ~Xi
i-I

The value of p which maximizes the likelihood function is found by differ­
entiating the logarithmt of L(p; x.. X2, ••• , xn) with respect to p, setting
the derivative equal to zero, and then solving for p. These steps are illus­
trated below.

d InL = 1.. _...!!....=.1.. = 0
dp pi""" p

y(I - p) - p(n - y) = 0

t Maximizing the logarithm of a function is equivalent to maximizing the function itself. It
is sometimes easier to maximize the logarithm of the function.
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np=y

p=y/n

Hence, p = Yin is the maximum likelihood estimator of p. Note that the
same estimator was obtained in Example 3.1 by using the method of
moments.

Maximum likelihood estimation is easily extended to estimating k
parameters 8., (h, ... , 8" based upon a random sample XI> ... , Xn from
a pdf f(x; 8., 82, ••• , 8,,). The likelihood function is still obtained as the
joint pdf of XI, ... , Xn but is now considered as a function of the param­
eters 8., 82, ••• , 8". The maximum likelihood estimates 8., 82, ••• , 8" of
the parameters are generally those values of 8., 82, ••• , 8" that solve the k
equations

a
8
L = 0, i = 1, 2, ... , k

a i

or equivalently

a(In L)
....:....>.:.:,;...;:::,.<.. = 0, i = 1, 2, ... , k

a8i

In some applications, the possible values of the parameters 8., 82, ••• ,

8" are constrained. For example, suppose that a negative value of 81 is
meaningless. In such cases, the likelihood function is maximized subject to
specified constraints on the values of the parameters. The resulting esti­
mates are usually called constrained maximum likelihood estimates.

3.3.4 Bayesian Estimation

In some estimation problems, prior knowledge about one or more of the
population parameters may exist. For example, in the records-auditing
illustration of Examples 3.1 and 3.2, prior work in investigating error fre­
quencies might suggest that a smaller value of p is more likely than a
larger value. Bayesian estimation uses such prior information in addition to
sample observations for estimating unknown parameters. Prior information
about the parameters to be estimated is incorporated by assuming that p
has a specified distribution (referred to as a prior distribution).

The description of the actual derivation process for obtaining Bayesian
estimators is beyond the scope of this brief discussion. The interested
reader can refer to DeGroot (l970); Martz and Waller (l982); Larson
(l969); Lindgren (l976); Hogg and Craig (l970); Hoel, Port, and Stone
(l970); o~ other texts on mathematical statistics.
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Example 3.3 Consider the following estimators of p for the problem
described in Examples 3.1 and 3.2.

Prior Distribution of p Bayesian Estimator, p
(1) Uniform

f(p)

~ V + 1
.- n + 2

0 I
0 0.5 1.0

p

(2) Beta (a=3. 13=112)

f(p)

v+ 3
~- n + 3.6

0
0 0.5 1.0

P

(3) Beta (a=112. 13=3)

f(p)

V+ ~
~3---'

n + 3.6

0
0 0.5 1.0

p

Note that fl3 < fll < fl2, as might be expected from viewing the graphs of
the prior distributions. Also, none of the three estimators is unbiased.
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3.4 POINT ESTIMATORS

Point estimators for several of the population parameters introduced in
Chapter 2 are presented in this section. These estimators, for the most
part, are obtained using one of the methods for deriving estimators dis­
cussed in Section 3.3. Because only the estimators themselves are of
interest here, their derivations are not presented. Examples illustrating the
use of estimators presented in this section are deferred until Section 3.5.
Examples of interval estimators in that section also illustrate the use of
point estimators.

3.4.1 Estimators for the Mean and Variance
of a Normal Distribution

Consider a normally distributed random variable X with unknown pop­
ulation mean p. and variance u'-. Let XJ, X2, ••• , XD represent a random
sample of size n. The method of moments, least squares, and maximum
likelihood estimators of p. are identical and are given by the sample mean

_ D

X= ~ Xi/n
i-I

(3.11)

This is the minimum variance unbiased estimator for p. and is also
consistent.

For any distribution with E(X) = p. and Var(X) = u'-, Xis an unbi­
ased and consistent estimator for p.. The variance of X is u'-In. The stan­
dard deviation of Xis often referred to as its standard error and is equal
to (JIJD.

In some situations, estimators of p. other than X may be preferred. For
example, X is sensitive to extreme observations in the sample; i.e., it is not
robust. The sample median, introduced in Section 1.2.1.3, is a more robust
estimator of p. than X. For the normal distribution, the sample median is
an unbiased estimator of p. but always has larger variance than X for
n > 2. Other robust estimators of p. are presented and discussed by
Andrews et al. (1972).

We now consider point estimators for the unknown population variance
u'- based on a random sample XJ, X2, ••• , XD• The method of momentst
and maximum likelihood estimators are identical and are given by

(3.12)

tEven if the random variable X is not normally distributed, Equation 3.12 supplies the
method of moments estimator of tl-.
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Note that &2 is biased because it can be shown that

An unbiased estimator of il is given by

105

(3.13)

Both &2 and S2 are consistent estimators for il.
For any distribution with Var(X) = il, it can be shown that

E[S2] = il; i.e., S2 is an unbiased estimator of il as stated previously.
When the Xi are a random sample from a normal distribution with vari­
ance il, the variance of S2 is given by

(3.14)

Equations 3.12 and 3.13 assume that the random sample X lo X2, ... ,
Xn is drawn either from a finite population with replacement or from an
infinite population. Chapter 8 provides formulas and techniques for cases
where the random sample is drawn without replacement from a fmite
population.

The estimators &2 and S2 are not particularly robust because they are
inflated by extreme sample observations. Although more robust estimators
exist, such as the interquartile range (Section 1.3.4), they are not often
used. In practice, the influence of confirmed outlying observations on
estimators of il can be negated by deleting the outlying obserVations from
the sample before calculating the point estimate. Techniques for detecting
outlying observations are discussed in Section 10.4.

3.4.2 Estimators for the Binomial
Distribution Parameter

Point estimators for p, one of the parameters of a binomial distribution,
are presented in this section. When sampling from a binomial distribution,
there are only two possible outcomes on each "trial," often referred to as
"success" or "failure." The parameter p is the true unknown probability of
a success in the population. Using the convention that X = 1 for a suc­
cess and X = 0 for a failure, the method of moments, least squares, and
maximum likelihood estimators for p are identical and are given by
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(3.15)

where Y is the number of successes observed in the random sample of
size n. The derivations of Equation 3.15, using the method of moments
and maximum likelihood estimation, are given, respectively, in Sections
3.3.1 and 3.3.3. The estimator p given by Equation 3.15 is an unbiased
and consistent estimator of p.

If some prior information exists, biased Bayesian estimators of p such
as those in Example 3.3 might be considered.

3.4.3 Estimators for Other Distributions

Maximum likelihood estimators for the parameters of the hyper­
geometric, Poisson, uniform, gamma, and lognormal distributions are sum­
marized in Table 3.1. Readers interested in the properties of these estima­
tors (unbiasedness, etc.) are referred to Johnson and Kotz (1969; 1970).

3.5 SAMPLING DISTRIBUTIONS AND
INTERVAL ESTIMATORS

In Section 3.3, methods are presented for obtaining point estimators of
an unknown population parameter. For each possible sample of a given
size, an estimator may yield a different point estimate. All such possible
estimates form a probability distribution referred to as the sampling distri­
bution of the estimator. That is, the estimator is a random variable with
its own distribution.

Starting with a point estimator, its sampling distribution is employed to
derive an interval estimator of the unknown parameter.t An interval esti­
mator is a random interval (an interval with at least one end-point being a
random variable) with a prespecified probability that it will include the
true value of the unknown parameter. The probability structure is provided
by the sampling distribution of the estimator. These random intervals are
usually called confidence intervals.

Consider the interval [L, U], where either L or U or both are random
variables. Then, if

Pr(L~8~U)= 1 - a (3.16)

t Although all of the interval estimato~ discussed in this section are developed in this
manner, there are other ways to develop interval estimators. See Rohatgi (1984) for a discus­
sion of this topic.
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the interval [L, U] is called a 100(1 - a)% confidence intenal for the
parameter 6. In practice, a random sample is taken from the population,
and values ~ and u are calculated. Although the interval [~, u] is referred
to as a 100(1 - a)% confidence interval, care must be taken in the inter­
pretation of the "percent confidence" statement. For example, suppose
[~, u] is a 95% confidence interval for O. This does not mean there is a
95% chance that 8 is between ~ and u. Given ~ and u, 0 is either between
them (100% chance) or it is not between them (0% chance); we do not
know. It does mean, that if repeated samples are collected and ~ and u are
computed for each sample, 95% of the estimated intervals [~, u] can be
expected to include O. In practice, only one sample is collected, and it
mayor may not produce one of the 95 out of 100 intervals which does
include O.

In this section, interval estimators are considered for the mean and var­
iance of the normal distribution and for the parameter p of a binomial dis­
tribution. Because it is often of interest to compare these parameters for
two populations, interval estimators for differences of means, ratios of
variances, and differences of proportions are also considered. The sampling
distributions required to develop the interval estimators are also presented.
The well-known F, chi-square, and Student's t-distributions are introduced
in this manner. The sampling distributions presented in this section also
play an important part in the development of hypothesis tests in Chapter 4
and subsequent chapters. For developmental purposes, interval estimation
of variances (for normal distributions) is considered first.

3.5.1 Variances and Ratios of Variances
for the Normal Distribution

The point estimator of r? most commonly used in nuclear material
accounting applications is S2 given by Equation 3.13. Although the sam­
pling distribution of the random variable S2 is known, the sampling distri­
bution of a function of S2 is more tractable for developing an interval esti­
mator for r? The function (n - I )S2/r? has a chi-square distribution
with n - I degrees of freedom. Notationally, this is written

(3.17)

The pdf of a chi-square random variable with " degrees of freedom is a
special case of the gamma pdf (Table 2.5 in Section 2.5.4) where A = ~

and r = ,,/2. The mean and variance of a chi-square distribution with
" degrees of freedom are E[x2] = " and Var(x2) = 2", respectively;
see Graybill (1976) for a derivation. Quantiles xi(") of the distribution for
various values of " and p are given in Table A4 of Appendix A. Use of
Table A4 is illustrated in Example 3.4.
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Based upon the sampling distribution of x2 given by Equation 3.17, a
lOOO - a)% two-sided confidence interval for rfl is developed. Although
the chi-square distribution is not symmetric, it is common practice to
assign probability a/2 to each tail in developing the two-sided confidence
interval. Thus, a lOOO - a)% two-sided confidence interval is given by

(3.18)

A lOOO - a)% two-sided confidence interval for the population standard
deviation is given by

A one-sided lOOO - a)% upper confidence limit for (12 or (1 is obtained by
replacing a/2 with a in the right-hand side of Equation 3.18 or 3.19 and
setting the left-hand side equal to zero. A lOOO - a)% lower confidence
limit for (12 or (1, although rarely used in practice, is obtained by replacing
a/2 with a in the left-hand side of Equation 3.18 or 3.19 and setting the
right-hand side equal to 00.

Example 3.4 A facility wishes to verify that the variability in the
weights of completed fuel rods is sufficiently low that no problems will
arise with respect to the total weight of the rods in an assembled fuel
element. A sample of 12 rods is weighed, with the following results (in
grams).

2396.85, 2397.41, 2395.20, 2397.75, 2389.27, 2391.08,
2388.31, 2394.52, 2393.79, 2403.17, 2397.01, 2388.82

Estimate the variability in the fuel rod weights and determine a 95% one­
sided upper confidence limit.

A point estimate of rfl, obtained by substituting the sample observa­
tions into Equation 3.13, is given by

(2396.852+ ... + 2388.822) - (2397.86 + ... + 2388.82)2/12
12 - 1

68,799,852.66 - (28,733.18)2/12 = 216.58 = 1969 2
11 11' g

A point estimate of the population standard deviation (1 is given by
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s=JI9.69 g2 = 4.44 g. A 95% one-sided upper confidence limit for tT is
obtained by using the right-hand side of Equation 3.19, with the quantile
X;/2(n - 1) replaced by X;(n - 1). Because a = 0.05 and n = 12,
we have x;(n - 1) = x6.os( 11). Entering Table A4 with p = 0.05 and
11 = 11, the value x6.os( 11) = 4.57 is obtained. By substituting the
above quantities into the right-hand side of Equation 3.19, the 95% upper
confidence limit for tT is computed as

tT~ {[Il (19.69»)/4.57}~

tT~ 6.88g

Thus, we are 95% confident that the standard deviation of fuel rod weights
in this population does not exceed 6.88 g.

Now suppose that the variances of two populations are to be consid­
ered. Let random variables XI and X2 have population variances tT~ and
tTi, respectively. If random samples of sizes nl and n2 are selected from XI
and X2, unbiased point estimators of the population variances are individu­
ally given by Equation 3.13 and are denoted by S~ and s1, Consider the
random variable

(3.20)
U/(nl -1)

V /(n2 - 1)
sl!tT~

F=
si/tTi

[(nl - 1) sl!tT~]/(nl - 1)

[(n2 - 1) sV tTi]/(n2 - 1)

where U - x2 (nl - 1) and V - X2 (n2 - 1). The random variable F
is said to have an F-distributioo with (o} - 1) and (0% - 1) degrees of
freedom. This is denoted by F - F(nl - 1, n2 - 1). The functional
form of the F-distribution is not required for the applications presented in
this text and is not given here. The interested reader is referred to Graybill
(1976) for a detailed presentation. Quantiles Fp(1Ih1l2) are given in
Table A6 of Appendix A for various values of p, 1110 and 112. Note that
F I - p(1Ih1l2) = I/Fp(1I2,1I1). An illustration of the use of Table A6 is given
in Example 3.5.

Based upon the sampling distribution of the random variable F in
Equation 3.20, a 100(1 -a)% confidence interval for the ratio tTl!tTi of
the population variances is given by
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A 100(1 - a)% two-sided confidence interval for the ratio of the popula­
tion standard deviations is given by

(3.22)

A one-sided 100(1 - a)% confidence limit for CTV CT'J; or CTd CT2 is obtained
from Equation 3.21 or 3.22 by replacing a/2 with a and choosing the
appropriate side of the two-sided interval, depending upon whether an
upper or lower confidence limit is to be computed.

Example 3.5 Several containers from each of two batches of U02
powder are measured for percent uranium with the following results.

Batch 1
87.659
87.626
87.637
87.662
87.619
87.630
87.640
87.621

Batch 2
87.692
87.614
87.662
87.650
87.675
87.687
87.661
87.691
87.676
87.664

Estimate the ratio of the population standard deviations for the two
batches, and construct a 90% confidence interval for the ratio.

A point estimate of CTdCT2 is given by SdS2 = 0.016/0.023 = 0.696,
where Equation 3.13 is used to compute Sl and S2. A confidence interval
for CTdCT2 is computed from Equation 3.22. For nl = 8, n2 = 10, and
a = 0.10, the quantiles required are
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For FO.95 (7,9), we have p = 0.95, III = 7, and 112 = 9 in the notation
of Table A6. The value FO.95 (7,9) = 3.29 is obtained by locating the
correct III across the top of the table, the correct 112 on the left margin, and
the correct p value within the (1110112) combination. Because Table A6 does
not include quantiles Fp(IIJ,1I2) for p < 0.50, the quantile FO•05 (7,9) is
obtained from the relationship

I I
FO.05(7, 9) = F (9 7) = 368 = 0.27

0.95 , •

By substituting the above quantities into Equation 3.22, the 90% confi­
dence interval is computed as

UI
0.384 ~ - ~ 1.339

U2

That is, a 90% confidence interval for the ratio uI!u2 is (0.384, 1.339).

3.5.2 Means and Differences of Means
for the Normal Distribution

In Section 3.4.1, the sample mean X is presented as the most fre­
quently used point estimator of the population mean J./.. We now consider
the sampling distribution of X and interval estimators developed from it.

If the random variable X is distributed as N(J./.,u2), then by using the
results of Section 2.7.1, the sample mean X is distributed as N(J./.,u2/n). If
the random variable X is not normally distributed, then, according to the
Central Limit Theorem presented in Section 2.5.2.1, X is approximately
distributed as N(J./.,u2In) if the sample size n is sufficiently large. Some
rules of thumb are given in that section for deciding when n is large
enough for this normal approximation to yield valid results.

With X- N(J./.,u2In), it follows that

z = (X - ~)/(u2/n)'Iz - N(O,1) (3.23)
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as discussed in Section 2.5.2. Based upon this sampling distribution
(assuming that u'- is known),t a 100(1 - a)% confidence interval for the
unknown population mean II- is given by

- (1 - (1

X - ZI-a/2 In ~ II- ~ X + ZI-a/2 In (3.24)

where ZI-a/2 is obtained from Table A3. A specific quantile Zp is found by
locating the desired p value in the body of Table A3 and then reading the
quantile value from the margins. To illustrate, suppose that the value of
7.0.975 must be obtained. First, 0.975 is located in the body of Table A3.
Then 7.0.975 = 1.96 is read from the margins. The digits 1.9 come from
the left margin, while the digit 6 (in the hundreds place) comes from the
top margin. If the exact desired value of p is not in the body of the table,
the closest value may be chosen, or an interpolation procedure may be
used.

If u'- is not known, it can be replaced in Equation 3.23 with its point
estimator S2 which is given by Equation 3.13. Then,

z
~/(n - 1) (3.25)

where Z N(O, 1) from Equation 3.23 and V = (n - I)S2/u'-
x2 (n - 1) from Equation 3.17. This new random variable T is said to
have Student's t-distribution with (n - 1) degrees of freedom, which is
denoted by T - t(n - 1). The form of the pdf of T is not required for the
applications given in this book and is not given here. Quantiles tp(lI) of the
pdf are given in Table A5 in Appendix A for various values of
p and II.

Based upon the sampling distribution of T from Equation 3.25, a
100(1 - a)% confidence interval for the population mean II- is given by

(3.26)

A one-sided 100(1 - a)% confidence limit for II- is obtained from Equa­
tion 3.24 or 3.26 by substituting a for a/2 and using the appropriate side
of the two-sided confidence interval. Alternately, each side of a
100(1 - a)% confidence interval is a 100(1 - a/2)% one-sided confi­
dence limit.

t Although a population parameter such as ,r is usually unknown, previous experience
may yield an estimate which can often be treated as the true value.
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Note that the confidence intervals given in Equations 3.24 and 3.26
are exact 100(1 - a)% confidence intervals when X is normally dis­
tributed. These confidence intervals, however, are only approximate
100(1 - a)% confidence intervals if X is not normally distributed.

Example 1.& Calculate a 98% confidence interval for the population
mean using the data from Example 3.4.

The desired confidence interval is given by Equation 3.26, assuming
that the population variance is unknown. By entering Table AS with
p = 1-a/2 - 0.99 and n - 12, the valueto.99(1l) = 2.72 is
obtained. The confidence interval is then computed as

2394.43 - 2.72 4~ ~ 1J. ~ 2394.43 + 2.72 4~
,,12 ,,12

2394.43 - 3.49 ~ 1J. ~ 2394.43 + 3.49

2390.94 ~ 1J. ~ 2397.92

That is, a 98% confidence interval for 1J. is (2390.94 g, 2397.92 g).
To illustrate one-sided confidence limits, one can be 99% confident that

1J. ~ 2397.92. Similarly, one can be 99% confident that 1J. ~ 2390.94.

Another type of interval estimation problem involves calculating the
sample size required to yield a 100(1 - a)% confidence interval with a
specified width. For the confidence interval given by Equation 3.24, the
half-width w is given by

q

w - ZI-a/2 .JD (3.27)

(3.28)

If q is known (or a reliable estimate from previous data is available), then
the sample size required to yield a (1 - a)% confidence interval with
half-width w is given by solving Equation 3.27 for n. This gives

D -1"-</1 :r
Because the sample size is an integer, n is rounded to the nearest integer.
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When it is desirable to be conservative, n is rounded up. Equation 3.28 can
also be used to calculate the sample size required for a one-sided confi­
dence limit by substituting Zl-a in place of ZI-a/2'

For cases where c? is not known and a reliable estimate does not exist
prior to sampling, Kendall and Stuart (1973) present a two-stage method.
Briefly, a random sample of specified size is taken, and the resulting data
are used to estimate c? This estimate is used to determine whether addi­
tional sampling is necessary, and if so, how many additional observations
are required. If required, the additional sampling is completed, and the
new data are combined with the initial data to construct a confidence
interval for IJ.. For specific details of the procedure, see Kendall and Stuart
(1973).

Example S.7 For a particular U02 manufacturing process, historical
process data indicate that the standard deviation of percent uranium in the
pellets is 0.025%. A 95% two-sided confidence interval with half-width
0.01% for the true mean percent uranium value for a lot of 10,000 pellets
is desired. Determine how many pellets must be measured.

The desired sample size is given by Equation 3.28, where a = 0.05,
a = 0.00025, and w = 0.0001; that is,

I 1
2

0.00025 2
n = Zo.97S 0.0001 = [1.96(2.50)] = 24.01 s24

A sample of 24 pellets should be measured.

In some nuclear material control applications, it is necessary to esti­
mate the difference between two population means. Let XI and X2 be two
random variables with means IJ.I and IJ.2 and variances al and al and sup­
pose that IJ.I -IJ.2 is to be estimated. A point estimator for this difference
is given by XI - X2. A confidence interval for IJ.I - IJ.2 can be based on
this point estimator, but the precise form depends upon the relationship
of al and al. One form results if al = al, whereas another form results if
al :1= a1. If al and al are unknown, a test based upon their sample esti­
mates may be performed to determine whether or not al = a1. A
hypothesis test for this purpose is discussed in Section 4.3.3.

Now, assume that al and al are unknown, but independent random
samples of size nl and n2 are available. If al = al, a 100(1 - a)% confi­
dence interval for IJ.I - IJ.2 is given by
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where

(3.30)

is the pooled estimator of the common standard deviation 0'1 = 0'2 = 0'

and where sl and s1 are given by Equation 3.13. The quantity
tl-a/2(nl + n2 - 2) is obtained from Table A5.

If O'l ::1= O'f' an approximate 100(1 - a)% confidence interval for
III - 112 is given by

where df denotes the approximate degrees of freedom given by

df (3.32)

This approximation is from Satterthwaite (1946).
A 100(1 - a)% one-sided confidence limit may be obtained from

Equation 3.29 or 3.31 by substituting a for al2 and choosing the
appropriate side of the two-sided interval.

When O'l and 0'1 are known, Equation 3.31 should be used, with the
known values of O'l and 0'1 substituted for sl and s1 and with ZI-a/2 sub­
stituted for tl-a/2(df).

Example 3.8 Suppose the data in Example 3.5 represent D02 con­
tainers from two batches produced by different processes. Estimate the dif­
ference in true mean D02 content of material produced by the two
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processes and construct a 95% confidence interval for the difference
ILl -1L2·

Let batch 1 be the Xl population and batch 2 be the X2 population and
assume that o} and u} are equal. Equation 3.29 provides the appropriate
confidence interval. With nl = 8, n2 = 10, and a = 0.05, the value
to.97S(I6) = 2.12 is obtained from Table A5. Substituting these values
with s~ = (0.016)2, s} = (0.023)2, Xl = 87.637, and X2 = 87.667 into
Equations 3.30 and 3.29 yields

sp = [(8 - I) (0.016)2 + (IO - I) (0.023)2/(8 + 10-2)]Yz = 0.0202

and

(87.637 - 87.667) - 2. 12(0.0202)(I/8 + l/lO)Yz~1L1 -1L2

~(87.637 - 87.667) + 2. 12(0.0202)(I/8 + Ijl0)Yz

or

-0.050 ~ ILl - IL2 ~ -0.010

The point estimate of the difference is -0.030%, and the 95% confidence
interval is (-0.050, -0.010).

3.5.3 Interval Estimators for Binomial
Distribution Parameters

In Section 3.4.2, an unbiased estimator for the binomial parameter p is
given by p = YIn, where Y is the number of successes observed in a
sample of size n. In this section, the sampling distribution of the estimator
p for large sample sizes is considered, and a confidence interval for p using
this sampling distribution is presented. A confidence interval for p for
small sample sizes is also considered.

For large sample sizes, the Central Limit Theorem (Section 2.5.2.1)
indicates that the quantity

p-p
Z = '.J~p(~1=_:!::p::;::)/:;=n (3.33)

is approximately distributed as N(O,I). That is, for large sample sizes, p is
approximately distributed as N[p, p(I -p)/n]. The discussion in Sec-
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tion 2.5.2.2 indicates that this normal approximation to the binomial gives
reasonably accurate results for n > 5/p when p:i5: 0.5 and for
n > 5/(1 - p) when p > 0.5. Under these conditions on n, the sampling
distribution of p yields an approximate lOO(l - a)% confidence interval
for p, given by

(3.34)

where p(l - p) is used to estimate p(l - p).
A one-sided 100(1 - a)% confidence limit is obtained from Equation

3.34 by substituting a for a/2 and choosing the appropriate side of the
interval.

In practice, the approximate confidence interval computed from Equa­
tion 3.34 may yield a lower limit less than zero or an upper limit greater
than one. Because p must be between zero and one, the lower or upper
confidence limits of the confidence interval should be set to these values if
they fall outside them in a particular application.

Example 3.9 For the manual record-keeping system audit problem of
Example 3.1, assume that n = 100 records are sampled, and y = 8 of
them are found to contain at least one error. Compute a 95% confidence
interval for the population proportion of erroneous records.

The point estimate of p is given by p = yin = 8/100 = 0.08. Because
n = 100 > 5/p = 62.50, the normal approximation to the binomial
should give satisfactory results. For a 95% confidence interval, a = 0.05
and 7.0.975 = 1.96. By substituting these quantities into Equation 3.34, the
approximate confidence interval is computed as

0.08 - 1.96 [0.08 (0.92)/100]~:i5: p:i5: 0.08 + 1.96 [0.08 (0.92)/100]~

0.08 - 0.05 :i5: P :i5: 0.08 + 0.05

0.03:i5: p:i5: 0.13

That is, an approximate 95% confidence interval for p is (0.03, 0.13).

A related confidence interval problem is to determine the sample size
required to obtain a 100(1 - a)% confidence interval for p, with half­
width w. The sample size is obtained by solving the equation
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w = ZI-a/2[p(l- p)/n]~

~]n=zr-a/2~··

119

(3.35)

Because the sample size is an integer, n is rounded to the nearest integer.
When it is desirable to be conservative, n is rounded up.

A maximum value of n is obtained for given wand a when p = 0.5.
This can be used when no specific prior information is available about the
value of p. Although P is unknown, in practice there is usually some
knowledge about its possible values. Often this knowledge. may be in the
form of upper or lower limits on the true unknown probability p. The use
of such information with Equation 3.35 is illustrated in the following
example.

Example 5.10 A population of 2000 cans of U02 powder is to be
inspected to verify the gross weights stored in the records system. Each
can weighs approximately 10 kg. A can is termed "defective" if its mea­
sured weight is not within 20 g of the value in the records system. Calcu­
late the sample size required to obtain a one-sided 90% upper confidence
limit with half-width 0.02 for p, the population proportion of defective
cans. It is expected that the true value of p is less than 0.05.

Equation 3.35 provides the required approximate sample size where
ZI-a/2 is replaced by Zl-a for the one-sided upper confidence limit.
Because in Equation 3.35 n is an increasing function of p for fixed a and
w when p ~ 0.5, a conservative sample size is obtained by substituting the
approximate upper limit of 0.05 for p. Then Equation 3.35 yields

n=( )2 ,O.05(l-0.05)] = (1.28)2 (l 18.75) = 194.56;;:195
Zo,90 (0.02)2

Thus, 195 cans should be sampled to obtain a 90% upper confidence limit
with half-width 0.02.

Consider the case of interval estimation of p for smaller sample sizes,
where the normal approximation method is not applicable. Recall that the
number of successes Y observed in a sample of size n is a binomial ran-
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dom variable with mean np and variance np(1 - p). This sampling distri­
bution of Y yields a 100(1 - a)% confidence interval for p of the form

(3.36)

where Pu is the value of p such that

(3.37)

Pi is the value of p such that

and where y is the number of successes observed in the sample of size n. A
one-sided 100(1 - a)% confidence limit is obtained by substituting a for
al2 in Equation 3.37 or 3.38. The solution of Equations 3.37 and 3.38 for
Pu and Pi is simplified by utilizing the cumulative binomial distribution
values from Table AI. The following example illustrates the technique.

Example 3.11 For the manual records-keeping system audit problem
of Example 3.9, suppose that n = 20 records are sampled and y = 2 of
them are found to contain at least one error. Develop a 95% confidence
interval for the population proportion of erroneous records.

The point estimate of p is given by p = yin = 2/20 = 0.10. The
sample size of 20 is too small to use the normal approximation method.
Hence, the desired confidence interval is obtained from Equations 3.36,
3.37, and 3.38, where a = 0.05 and n = 20.

Consider first the upper limit Pu, which is the value of p such that

±(20) pk(1 - p)20-k = 0.025
k-O k

Entering Table Al with n = 20 and x = 2, look for the value 0.025 in
the body of the table; the corresponding value of p from the upper margin
is Pu. Usually the specified value of al2 (or a for a one-sided interval)
does not appear in Table AI. The bounding values and their associated
p values are used with linear interpolation to approximate the value of
p associated with the chosen value of al2 (or a). From Table Al with
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n = 20 and y = 2, note that 0.30 < Pu < 0.35. Linear interpolation yields

0.0355 - 0.025
Pu = 0.30 + 0.0355 _ 0.0121 (0.35 - 0.30) = 0.322

Now consider the lower limit Pi, which is the value of p such that

~ (201p~ 1 - P)20-k = 0.025
k-2 kJ

This may be solved using the cumulative binomial probabilities in
Table Al by noting that

P(Y ~ y) = 1 - P(Y ~ Y- 1)

To make the cumulative binomial Table Al directly applicable, Equation
3.38 can be rewritten as

Then, entering Table Al with n = 20 and x = 2 - 1 = 1, note that
o< Pi < 0.05. Using linear interpolation gives

Pi = 0 + ~:~=~:~~:8 (0.05 - 0.0) = 0.005

Thus, a 95% confidence interval for the population proportion of erroneous
records is (0.005, 0.322).

Other methods for constructing confidence intervals for the binomial
parameter p are found in Nelson (1982); however, they are not discussed
or illustrated here.

Consider two binomial random variables XI and X2 for two populations
with parameters PI and P2. Suppose that independent random samples of
size nl and n2 are available. If nl and n2 both satisfy the "large sample"
conditions for applying the normal approximation to the binomial, an
approximate 100(1 - a) confidence interval for the difference PI - P2 is
given by
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where

PI (1 - PI) + 1'2 (1 - 1'2)

n1 n2
(3.40)

An approximate 100(1 -a)% one-sided confidence limit is obtained
from Equation 3.39 by substituting a for al2 and choosing the appropriate
side of the two-sided interval.

3.5.4 Interval Estimators for the Hypergeometric
Distribution Parameter D

For finite populations where sampling is performed without replace­
ment, the hypergeometric distribution (Section 2.4.1) is applicable. The
maximum likelihood estimator of D, the number of defectives in the popu­
lation, is given in Table 3.1 of Section 3.4.3. A confidence interval for D
is now considered.

Assume that a random sample of n items is selected from a population
of N items which contains D defectives. The number of defectives Y
observed in a sample of size n has a hypergeometric distribution. This
sampling distribution of Y yields a 100(1 - a)% confidence interval for D
of the form

(3.41)

where Du is the smallest integer value of D such that

(3.42)

and D2 is the largest integer value of D such that

(3.43)
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and where y is the number of defectives observed in the sample of size n.
A one-sided confidence limit for D is obtained by choosing the appropriate
side of Equation 3.41 and then substituting a for al2 in Equation 3.42 or
3.43.

In most practical applications, the number of observed defectives y is
small, and Equations 3.42 and 3.43 can be solved by trial and error using
a hand calculator. A programmable calculator or computer is recom­
mended, however, for larger values of y. Values of Du for one-sided upper
confidence limits have been tabulated by Stewart (1973). Note that it is
usually not possible to find values of Du and D2 such that Equations 3.42
and 3.43 are exactly equal to a12. Thus, the actual confidence level is
(1 - a·), where a· is the sum of the actual values computed from Equa­
tions 3.42 and 3.43 when the chosen values of Du and D2 are substituted
for D.

Example 3.12 This example is adapted from Jaech (1973). A popu­
lation of N = 300 fuel rods is to be sampled, and the sampled rods will be
scanned to verify the 23SU enrichment. A sample of size n = 50 rods is
scanned, and all are verified as having the enrichment stated on the inven­
tory listing. Find the upper 95% confidence limit for the number of defec­
tives D in the population of 300 rods.

Equation 3.42, with al2 replaced by a = 0.05, provides the desired
limit. Here N = 300, n = 50, the number of observed defectives in the
sample is y = 0, and it is necessary to find Du, the smallest value of D
such that

Fy(O)
(D) (3OO-D)
o 50-0 ~0.05

P50g)

For illustration, Fy(O) is evaluated for D ranging from 12 to 20 with the
following results

D Fy(O) D Fy(O)

20 0.0228 15 0.0604
19 0.0278 14 0.0731
18 0.0338 13 0.0886
17 0.0410 12 0.1072
16 0.0498
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Du = 16 is the smallest value of D such that Fy(O) ~ 0.05. Therefore, the
upper 95% confidence limit for D is Du = 16.

3.6 ESTIMATORS FOR FUNCI10NS OF
RANDOM VARIABLES

Population means and variances of functions of random variables are
considered in Section 2.7. In both Sections 2.7.1 and 2.7.2, the expressions
for the mean and variance of a function involve the means, variances, and
covariances of the individual random variables in the function. In practice,
however, the true values of these parameters are often unknown, and they
must be estimated from sample data. The sample estimates are then sub­
stituted for the unknown parameters to compute point estimates of the
mean and variance of the function.

In this section, point estimators are presented for the mean and vari­
ance of a function of random variables (Section 3.6.1) and interval estima­
tors for the mean of a function of random variables (Section 3.6.2).

3.6.1 Point Estimators

In Section 2.7.1, Equations 2.122 and 2.123 are the population mean
and variance of a linear combination of random variables of the form

(3.44)

Point estimators for the mean and variance of the random variable
Yare obtained by replacing the unknown population means, variances,
and covariances of the Xi in Equations 2.122 and 2.123 with their point
estimators, which gives

(3.45)

and

(3.46)

If Xh X2, ••• , Xk are mutually independent, all of the uij are set equal to
zero, and Equation 3.46 reduces to

(3.47)
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In Equations 3.45, 3.46, and 3.47, the estimators Pi and ur for the
mean and variance of Xi are often the sample mean Xi and the sample
variances Sr given by Equations 3.11 and 3.13, respectively. The estimator
uij is often the sample covariance of Xi and Xj . That is, when n paired
observations (Section 4.4) are taken on any two random variables Xi and
Xj , the sample covariance is given by

n-l (3.48)

In many specialized applications, however, such as regression (presented in
Chapter 6), the means, variances, and covariances of the random variables
in a function are estimated by other methods. Thus, the notation Pi, uf,
and uij indicates only that estimators of the mean, variance, and covari­
ance are to be used, but no particular estimators are implied.

Example 3.13 Suppose that in Example 2.10, the same scale is used
to weigh both the plugs and springs but that another scale is used to weigh
both the cladding and the fuel. This implies that a covariance exists
between the observed plug and spring weights and also between the
observed cladding and fuel weights.

Assume that the means, variances, and covariances of the four random
variables are unknown but that point estimates have been calculated from
sample data. For illustration, assume that the point estimates of the means
and variances have the same values as the parameters given in Example
2.10. These are repeated below in the point estimate notation.

Component

Cladding: X I

Plug: X2
Spring: X3
Fuel: X4

Sample mean
weight, in grams

XI 554.89
X2 10.64
X3 16.07
X4 1814.85

Sample variance,
in grams2

sl = 16.8100
si = 0.0016
sj = 0.0036
sl = 6.0025
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Assume also that the covariance estimates, 0'14 = 0.9041 and 0'23 =
0.0004, are computed from sample data. Compute the point estimates of
the mean, variance, and standard deviation of Y, the total weight of a fuel
rod.

Applying Equations 3.45 and 3.46, the estimates of lLy and tTt are

#Ly = 554.89 + 10.64 + 16.07 + 1814.85 = 2396.45 g

and

at = 16.8100 + 0.0016 + 0.0036 + 6.0025

+ 2[(0.9041) + (0.0004)]

= 24.6267 g2

The estimate of tTy is then

tTy = .J24.6267 = 4.96 g

Equations 2.126 and 2.127 of Section 2.7 are approximate expressions
for the population mean and variance of an arbitrary function

(3.49)

of random variables X" X2, ••• , Xk• Point estimators for the approximate
mean and variance of Yare obtained by replacing the unknown population
means, variances, and covariances of the Xi in Equations 2.126 and 2.127
with their point estimators. This gives

and

A h (A A A )
lLy = ILl' 1L2' ••• , ILk (3.50)

(3.51)

where the partial derivatives (ahjaXi) are evaluated at Xi = #Li. If the ran­
dom variables X" X2, ••• , Xk are mutually independent, Equation 3.51
reduces to

(3.52)
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As in the discussion of Equations 3.45, 3.46, and 3.47, the notation ~, ul,
and Uij in Equations 3.50, 3.51, and 3.52 indicates that point estimators
are to be used, but no particular estimators are implied.

When Equations 3.50 and 3.51 are applied to obtain estimates of JLy
and IT~, the validity of the resulting estimates depends upon the effects of
two primary factors, as discussed in Section 2.7.2. First, the first-order
Taylor series approximation may be a poor representation of the function
h(X h X2, ••• , Xk). Second, estimating the partial derivatives, variances,
and covariances in Equation 2.127 by substituting sample estimates for fJi,
ITl, and ITij may result in estimates with poor statistical properties. The
combined effect of these two factors may result in poor estimates of inade­
quate approximations.

Jaech (1973) points out that in most nuclear material control applica­
tions the errors introduced by substituting sample estimates for the
unknown parameters overshadow the errors that might be introduced by
an inadequate approximation of the function h(Xh X2, ••• , Xk). Thus,
there is usually little need to be concerned about the adequacy of the
approximation. Generally, if the approximation is deemed reasonable over
the relevant range of the Xi variables, and if each Ui is small relative to ~,

the estimates obtained by applying Equations 3.50 and 3.51 are acceptable
for practical use.

3.6.2 Interval Estimators for Means

Often, in nuclear material accounting applications, an interval estimate
for the mean JLy of a random variable Y is desired, where the random var­
iable is some function of other random variables (which are often mea­
sured quantities). If Y is a linear combination, as given by Equation
3.44, where the Xi are independently distributed as N(fJi, IT?>, then from
Section 2.7.1, Y - N(ao + ~aitJi, ~alITf). When ~ = Xi is used, then
fLy given by Equation 3.45 is distributed as N(ao + ~aitJi, ~afITl/ni).

Even when the Xi are not normally distributed, the sample means Xi
are closer to being normally distributed than the Xi, and a linear combina­
tion of the sample means can often be assumed to be approximately nor­
mally distributed. Suppose that random samples of size ni are taken from
each Xi population and yield point estimates Xi and Sf for the mean and
variance of each Xi' Based upon these point estimates and the sampling
distribution of fLy, a 100(1 - a)% confidence interval for JLy is given by

fLy - tl- a /2(JI) [.f(alsl/ni)l~
1-1

~ JLy ~ fLy + tl-a /2 (JI) [.f (ar sl/ni)l~ (3.53)
1=1
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where fLy is given by Equation 3.45, tl-a/2(V) is obtained from Table AS,
and v is the approximate degrees of freedom obtained from Satterthwaite's
(1946) formula

(3.54)

If v ~ 30, then ZI-a/2 from Table A3 may be used instead of tl-a/2(V) in
Equation 3.53 with satisfactory results.

Example 3. t 4 In Example 2.10, assume that the parameter values
are actually point estimates of the means and variances of the rod
components obtained from samples of size nl = 10, n2 = 20, n3 = 15,
and n4 = 8. Further, assume that the four components are independently
normally distributed. Compute a 95% confidence interval for the mean
total weight of a fuel rod.

Noting that ao = 0 and all aj = 1, the sample estimates are substi­
tuted into Equation 3.45 to compute

fLy = 554.89 + 10.64 + 16.07 + 1814.85 = 2396.45 g

The variance of fLy is estimated by the quantity

.. _ 4 ar sr = 16.8100 + 0.0016 + 0.0036 + 6.0025
VAr(#!y) -.~ n. 10 20 15 8

I-I I

= 2.4316

Substituting the variance estimates and sample sizes into Equation 3.54
gives the approximate degrees of freedom

II = .....j["-'.(=..:16~.8~1/L.:l~0!-)+~(0:...:..;.00:..::....:::.:16:.L/.=..20:,,!.)....,:+.....:('-=-0.:.:.00.:..:3:.:.6L..:./1:.,=..5!.....)+~(6:..:..:.oo=25:.L/..=..,8)~)2~::­
(16.81/10)2 + (0.0016/20)2 + (0.0036/15)2 + (6.0025/8)2

9 19 14 7

5.9128 = 1499:;: 15
0.3944 .
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Then, entering Table A5 with 15 df, the value to.97S(l5) = 2.13 is
obtained. A 95% confidence interval for JLy is calculated from Equation
3.53 as

2396.45 - 2.13.J2.4316 ~ JLy ~ 2396.45 + 2.13.J2.4316

2396.45 - 3.32 ~ JLy ~ 2396.45 + 3.32

2393.13 ~ JLy ~ 2399.77

That is, a 95% confidence interval for the mean total fuel rod weight is
(2393.13 g,2399.77 g).

3.7 TOLERANCE LIMITS FOR
NORMAL DISTRIBUTIONS

This section presents techniques for constructing one-sided and
two-sided statistical tolerance limits for a normal distribution with un­
known mean and variance. The techniques are based upon the assumption
that a random sample of size n > 1 has been taken from a population with
a pdf that is either normal or very nearly so. For cases where the normal­
ity assumption is in doubt, methods for constructing distribution-free toler­
ance limits such as those presented by Natrella (l966) and Conover
(1980) should be considered.

3.7.1 Two-Sided Tolerance Limits

The confidence interval given by Equation 3.26 provides an interval
estimate for the unknown mean. Tolerance limits differ from confidence
intervals in that tolerance limits provide an interval within which at least a
specified proportion P of the population lies, with specified probability
I-a. To introduce the notion of tolerance limits, consider first a random
variable X - N(JL, t?), where the values of JL and t? are known. Suppose
that it is necessary to find limits, Land U, such that the interval (L, U)
includes 100P% of the possible values of X. This problem can be solved by
the methods presented in Section 2.5.2. For example, if P = 0.95, then the
limits are L = JL - Zo.975 u and U = JL + Zo.97S u; that is, 95% of the
possible values of X are in the interval given by JL ± 1.96 u. In practice,
however, JL and u are usually unknown and must be estimated. Because the
estimators X and S2 are random variables, substituting the point estimates
xand s for JL and u in the above formulas for Land U ignores the sam­
pling distributions of X and S2 and can yield misleading results.
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Statistical tolerance limits are computed from a procedure that takes
into account the sampling distributions of X and S2. Consider a random
variable X - N(#t, a2), where the values of #t and a2 are unknown. Sup­
pose that an interval (XL, Xu) must be constructed in such a way that we
are 100 (I -a)% confident that at least l00P% of the possible values of X
are inside of the interval. Assume that a random sample of size n is taken
and that point estimates of #t and a2 are computed from Equations 3.11
and 3.13. Tolerance limits with specified values of I-a and P are given
by

and

where

XL = X- K(n, I-a, P) S

Xu = X+ K(n, I-a, P) S

K(n, I-a, P) = ZI-(J-P)/2 [ ~n - 1) jYl [1 + _1I
xa(n-l) 2n

(3.55)

(3.56)

(3.57)

and where ZI-(J-P)/2 is obtained from Table A3 and x~ (n-1) is obtained
from Table A4.

The derivation of Equation 3.57 is presented by Hald (1952), who also
provides a table of values of K(n, I-a, P) for selected values of I-a
and P with n ranging from 4 to 00 in selected increments. More extensive
tables of K(n, I-a, P) are provided by Natrella (1966).

Example 3.15 Using the data from Example 3.4, construct tolerance
limits such that we can be 90% confident that at least 95% of the fuel rod
weights in the population are within the tolerance limits.

The point estimates of #t and tT are X = 2394.43 g and s = 4.44 g.
With P = 0.95, the value 1.0.975 = 1.96 is obtained from Table A3. With
1 - a = 0.90 and n - 1 = 11, the value X6.1O(l1) = 5.58 is obtained
from Table A4. Substituting these values into Equation 3.57 yields

K(I2, 0.90, 0.95) = 1.96 J 5~:811 + ~I= 2.81

Application of Equations 3.55 and 3.56 yields the tolerance limits
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XL = 2394.43 - 2.87 (4.44) = 2381.69

Xu = 2394.43 + 2.87(4.44) = 2407.17

131

Thu&, we can be 90% confident that at least 95% of the fuel rod weights in
this facility are between 2381.69 g and 2407.17 g.

3.7.2 One-Sided Tolerance Limits
For some applications, interest is focused on estimating a single limit

above (or below) which at least a specified proportion P of the population
lies with specified probability 1 - a. In such cases, either an upper or
lower one-sided statistical tolerance limit is appropriate. Assume that a
random sample of size n has been taken from a normal distribution with
unknown mean and variance and that point estimates of J.L and r? are com­
puted from Equations 3.11 and 3.13. For specified values of 1 - a and P,
a lower tolerance limit is given by

and an upper tolerance limit is given by

X~ = X+ K*(n, I-a, P)S

(3.58)

(3.59)

The asterisk notation is used to emphasize that K*(n, 1 - a, P) is not the
same as K(n, 1 - a, P) given by Equation 3.57. K*(n, 1 - a, P) is
given by

where

and

zp + .Jz$ - ab
K*(n, I-a, P) = -----

a

zt-a
a = 1 - 2(n-1)

2
2 Zl-a

b=zp--­
n

(3.60)

(3.61)

(3.62)
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The values of ZI-a and Zp are obtained from Table A3. Equations 3.58
through 3.62 are from Natrella (1966), where extensive tables of
K" (n, 1 - a, P) are also provided.

Example 3.16 Using the data from Example 3.4, construct an upper
tolerance limit X~ such that we can be 90% confident that at least 95% of
the fuel rod weights in the population are below X~.

The point estimates of JL andu are x = 2394.43 g and s = 4.44 g.
With I - a = 0.90 and P = 0.95, the values 7.0.90 = 1.29 and 7.0.95 =
1.65 are obtained from Table A3. Application of Equations 3.61 and 3.62
yields

= 1 - (1.29)2 = 0.924
a 2(11)

and

and substituting these values into Equation 3.60 yields

K"(12, 0.90, 0.95) = 1.65 + .J(1.65)~.;2~0.924)(2.584) = 2.41

Finally, application of Equation 3.59 yields

x~ = 2394.43 + 2.41(4.44) = 2405.13 g

Thus, we can be 90% confident that at least 95% of the fuel rod weights in
the population are less than 2405.13 g.
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CHAPTER 4

Hypothesis Testing
4.0 INTRODUCI10N

In nuclear material control, situations frequently arise that require
deciding whether or not it is reasonable to continue operating under a
specified assumption about the value of one or more population or process
parameters. A formal statement that specifies the assumed parameter
values is called a hypothesis, and the procedure for deciding whether or
not it is reasonable to continue operating under this hypothesis is called
hypothesis testing. This. is an extremely useful aspect of statistical infer­
ence because many types of decision problems can be formulated as
hypotheses about population or process parameters. This chapter presents
fundamental concepts and procedures for some important applications of
hypothesis testing.

4.1 BASIC CONCEPTS

This section gives a brief overview of hypothesis testing. Some basic
concepts and terms are introduced to facilitate subsequent discussions.

4.1.1 Statistical Hypotheses

A statistical hypothesis is a formal statement about the probability
density function of one or more random variables associated with a popu­
lation or process. This statement is usually expressed in terms of the
parameters of the pdf; many of the statistical hypotheses encountered in
material control applications specify values for population or process
parameters, such as means, differences between means, variances, propor­
tions, and so on. For example, suppose that it is of interest to estimate the
uranium content of a particular batch of U02 powder. The normal prac­
tice is to multiply the net weight of U02 powder by a standard factor of
87.6%. Suppose that in this case, however, there is some reason to suspect
the applicability of the standard factor and it is of interest to decide
whether or not the true mean percent uranium (say p,) for this batch is
87.6%. This can be expressed formally as the set of hypotheses

Ho:p,- 87.6%

Preceding page blank 135
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HA:IJ.* 87.6%

(4.1)

The statement Ho: IJ. = 87.6% is called the null hypothesis, and the state­
ment HA: IJ. * 87.6% is called the alternative hypothesis. In this example,
the alternative hypothesis includes values of IJ. that are either greater than
or less than 87.6%.

We are interested in deciding whether or not it is reasonable to con­
tinue operating under the specified null hypothesis. Hypothesis testing
leads to such a decision based upon an evaluation of the information in a
random sample from the population or process of interest. If the sample
information indicates that the random sample could reasonably have come
from a distribution with the parameter value(s) specified in the null
hypothesis, then a decision is typically made to continue operating as
though the null hypothesis were true. If, however, the indication is that the
observed sample results would have a small probability of occurring under
the null hypothesis, then we conclude that the null hypothesis is probably
false, which implies that the alternative hypothesis is probably true. This
could indicate a need for investigative studies or process modifications
before operations continue.

It is important to remember that hypotheses are always statements
about the population under study and not statements about the sample
data. On this subject, Jaech (1973) has the following comment:

A misapplication of hypothesis testing occurs when the hypotheses are formu­
lated after the data are collected. This practice of using data to suggest
hypotheses is at variance with the whole idea of hypothesis testing. Once the
data have been collected, anyone with an ounce of brains and a lesser amount of
integrity, or more charitably stated, "any misguided individual," can formulate
hypotheses that will be rejected when tested against the data. The statement is
then made that "the data prove that such and such. . . ." It is an acceptable
practice, of course, to formulate hypotheses based on given data sets, but it is
simply not acceptable to test their validity with the same set of data that pro­
vided the basis for formulating the hypotheses in the first place.

It should be noted that, although Jaech's comment is definitely relevant to
the topics covered in this chapter, there are special cases (primarily associ­
ated with comparative studies) in which it is legitimate to test hypotheses
that have been suggested by the data. Specialized techniques, however,
such as the one presented in Section 5.1.4.4., must be used to control the
risk of reaching erroneous conclusions.

The value of a population parameter specified in the null hypothesis
(IJ. = 87.6% in the above example) is usually determined in one of three
ways. First, it may result from experience or knowledge about the process
under study or from prior experimentation. In this case, the objective of
hypothesis testing is to determine whether the process or experimental con-
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ditions have changed. Second, a parameter value may be determined from
a scientific theory or model pertaining to the process under study. Here
the objective of hypothesis testing is to verify the theory or model. Third, a
parameter value may be determined by external considerations, such as
design or engineering specifications, contractual obligations, or imposed
regulations. In this case, the objective of hypothesis testing is to assess
compliance.

The hypothesis testing procedures covered in this chapter require that a
test statistic be computed from the sample data. This test statistic is then
compared with a prespecified table value to make a decision about the
null hypothesis. For example, consider testing the null hypothesis in
Equation 4.1 about the true mean percent uranium in a batch of V02
powder. Suppose that five powder samples are randomly selected from the
batch of interest. Each powder sample is analyzed to determine its percent
uranium. TheJive percent uranium values are then averaged, givin,! a
sample mean X, which might be used as a test statistic as follows: If X ~

87.57 or if X ~ 87.63, we conclude that the true percent uranium for this
particular batch of powder is probably not 87.6. That is, we reject the null
hypothesis Ho: IL = 87.6%. Rejecting Ho implies that the alternative
hypothesis HA is probably true. Thus, the set of possible values of Xthat
are less than 87.57 or greater than 87.63 is called the rejection region or
critical region for the test. On the other hand, if 87.57 < X < 87.63, then
we fail to reject the null hypothesis. Note that the values 87.57% and
87.63% were arbitrarily chosen for this example. The details of construct­
ing an appropriate test statistic and determining the rejection region are
presented in subsequent sections for specific situations.

4.1.2 Type I and Type n Errors

The decision of whether or not to reject a null hypothesis is based upon
information from a random sample and thus is subject to error. There are
two possible types of decision errors that can be made when testing
hypotheses. If a null hypothesis is rejected when in fact it is true, a
Type I error is made. If a null hypothesis is not rejected when in fact it is
false, a Type n error is made. The possible outcomes of a hypothesis test
are summarized in Table 4.1.

TABLE 4.1

Possible Outcomes of Hypothesis Testing

True situation
•Decision He Is true U.is false

Do not reject Ho No error
Reject Ho Type I error

Type II error
No error
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It is common practice in statistics to let ex designate the probability of
making a Type I error and to let fJ designate the probability of making a
Type II error. These conditional probabilities are expressed formally as

ex = Pr(Type I error) = Pr(reject HoIHois true) (4.2)

and

fJ = Pr(Type II error) = Pr(do not reject HoIHois false) (4.3)

In practice, ex is commonly called the significance level of the test. The
probability of correctly rejecting a false null hypothesis is called the power
of the test and is formally given by

Power = 1 - fJ = Pr(reject HoIHois false) (4.4)

It is important to note that because a hypothesis test is based upon
sample data which generally do not conclusively rule out either the null or
the alternative hypothesis, ex and fJ are greater than zero in most applica­
tions. Thus, failing to reject a null hypothesis does not prove it is true, and
rejecting a null hypothesis does not prove it is false. It may be possible,
however, to design an experiment or sampling plan and hypothesis testing
procedure that fixes ex and fJ at suitably small values.

The definition of "suitably small" values of ex and fJ depends upon the
consequences of making a Type I or a Type II error. For example, in a
criminal trial, the null hypothesis is that the accused person is innocent. A
Type I error results in punishing an innocent person, whereas a Type II
error results in setting a criminal free. In this situation, a Type I error is
usually considered by society to be more serious. A parachute manufac­
turer, however, may want to test the null hypothesis that each of the para­
chutes he sells will open when needed. In this case, a Type II error results
in selling a defective parachute, which could have far more serious conse­
quences than a Type I error of choosing not to sell a good parachute.

One nuclear material accounting application involves testing the null
hypothesis that no nuclear material was lost or diverted from a given plant
or area of a plant during a specified period. In this application, a Type I
error is commonly called a false alarm, and ex is referred to as the false
alarm rate. This is because a Type I error is made by concluding that
there was a loss or diversion when in fact there was not. Such a false
alarm could result in an unnecessary investigation and inspection of the
facility. On the other hand, a Type II error is made by concluding that
there was no loss or diversion when in fact there was. This is almost
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always the more serious error. It is clear, however, that small values for
both a and {3 are desirable in such situations. Considering the trade-offs
between the Type I and Type II errors from a regulatory point of view,
however, a small value of {3 is more desirable than a small value of a when
both a and (3 cannot simultaneously be made small.

4.2 SINGLE SAMPLE FROM A
NORMAL DISTRIBUTION

In this section, methods are presented for testing hypotheses about the
parameters of a normal distribution. The first case involves testing
hypotheses about the mean p. when the variance Ul is known. The
procedure is then generalized to the case of testing hypotheses about the
mean p. when Ul is unknown and is estimated from the data. Finally, a
method for testing hypotheses about Ul is presented.

-
4.2.1 Tests About the Mean, Variance Known

This section presents methods for testing two-sided and one-sided
hypotheses about the unknown mean of a normal distribution when the
variance is known. These methods are based upon the sample mean X,
where the random sample is assumed to be from a N(p.,Ul) distribution.
Thus, X - N(p.,UlIn), where n is the sample size. Recall from the
Central Limit Theorem (Section 2.5.2.1) that for distributions with mean
p. and finite variance Ul, X has approximately a N(p.,UlIn) distribution,
provided the sample size n is sufficiently large. Thus, the methods of this
section are applicable for making approximate hypothesis tests about
means from many distributions. However, for a given distribution, the vali­
dity of the approximate test results depends upon how closely
N(p.,q2In) approximates the true distribution of X(see the rules of thumb
for applying the Central Limit Theorem in Section 2.5.2.1).

4.2.1.1 Two-Sided Tests

Consider a random variable X which is a measure of a characteristic of
some process or population of interest. Assume that X has a N(p., Ul) dis­
tribution with p. unknown but Ul known. The hypothesis to be tested is

against the alternative (4.5)

where #J{) is a specified value, and P.A is an alternative value which is
unspecified. This form of HA is called a two-sided alternative hypothesis
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because it includes values of JL which are either greater than or less
than fJ.O.

Assume that a random sample of size n is drawn from the population
of interest, and the sample mean Xis computed. If the null hypothesis is
true, X - N(fJ.O,u2In). Thus, if a value of X is observed which is quite
different from fJ.O, this indicates that Ho may not be true. The size of the
difference between X and fJ.O is usually expressed in units of uIJr., the
standard deviation of X. This quantity is called the test statistic and is
given by

X-fJ.O
Z=--

ulJr.
(4.6)

Referring to Section 3.5.2, and in particular to Equation 3.23, Z has the
N(O, 1) distribution when Hois true.

Consequently, if Ho is true, the probability is I - a that an observed
value of the test statistic Z will fall between - ZI-a/2 and ZI-a/2, where
ZI-a/2 is the value from the N(O, 1) distribution such that Pr(Z ~

ZI-a/2) = l-aI2. When Ho is true, the probability is a that a value of Z
will fall in the region Z ~ - ZI-a/2 or Z ~ ZI-a/2' This is illustrated in
Fig. 4.1.

Rejection
Region

a/2

-z, -al2 z, -al2

Flg1II'e 4.1 Distribution or Z when He: II = lit is true.

The value of a is specified in advance of the test and is the probability
of making a Type I error. The value of ZI-a/2 is obtained from Table A3
by entering the body of the table, locating l-aI2, and then reading
ZI-a/2 from the margins of the table. For example, if a = 0.05, then
l-al2 = 0.975. Entering Table A3, the value of Z for which iI>(Z) =
0.975 is Zo.975 = 1.96.

The hypothesis test proceeds by comparing Z with ±ZI-a/2. Ho is
rejected if
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(4.7)

Hois not rejected if

(4.8)

The region defined by Equation 4.7 is called the rejection region for the
test, and the quantities - ZI-a/2 a~ ZI-a/2 are called critical ,alues or
rejection Omits. If Ho is rejected, X is said to be significantly different
than #4) at the a level of significance. This is sufficient evidence to con­
clude that Ho is probably false, or equivalently that HA is probably true,
and that It :I: #4).

Example 4.1 The stoichiometric factor for percent uranium of U02

powder manufactured by a given facility is 87.6%. While a batch of U02
powder is being processed, five powder samples are randomly selected from
the batch and analyzed for percent uranium. Assume that the percent ura­
nium measured from the individual samples has an approximate normal
distribution with mean It and variance r? = (O.0342f It is of interest to
test the hypothesis

Ho:1t = 87.6

against the alternative

where a = 0.05 is the specified probability of making a Type I error.
From Table A3, ZI-a/2 = Zo.975 = 1.96.

The five sample values are 87.627, 87.649, 87.642, 87.571, and 87.637.
The sample mean is X = 87.625. The test statistic is computed from
Equation 4.6 as

z 87.625 - 87.6 = 1.63
0.0342/../5
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Because -1.96 < 1.63 < 1.96, Ho is not rejected, and it is concluded that
the sample mean percent uranium for this batch of V02 powder is not sig­
nificantly different than the stoichiometric value of IJ(J = 87.6%. That is,
there is insufficient evidence to conclude that the true mean percent ura­
nium for this batch is different than the stoichiometric value of Po =
87.6%. Thus, the batch is deemed acceptable with respect to its percent
uranium.

4.2.1.2 One-Sided Tests

One-sided hypotheses are more specific than two-sided hypotheses
because a one-sided alternative states the direction of the difference
between IJ(J and #LA that the investigator wishes to detect. There are two
cases to consider, and they are presented here without examples because
they are simply modifications of the two-sided test.

It is sometimes of interest to test the hypothesis

against the alternative (4.9)

In this case, a true mean #L which is less than or equal to IJ(J is "accept­
able," whereas, if #L is larger than Po, the investigator wishes to detect the
difference. In defining the rejection region for this test, observe that a neg­
ative value of the test statistic Z would never lead to the conclusion that
Ho is false. Thus, the rejection region is in the upper tail of the N(O,l)
distribution. For a specified value of ex, Ho is rejected if

Otherwise, Hois not rejected.
Similarly, to test the hypothesis

against the alternative

(4.10)

(4.11)
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the rejection region is in the lower tail of the N(O,l) distribution. Thus,
for a specified value of a, Hois rejected if

(4.12)

Otherwise, Hois not rejected.

4.2.1.3 Probability of Type n Error and Power

In testing the hypotheses given by Equations 4.5, 4.9, and 4.11, the
probability a of a Type I error, and thus the rejection region for the test,
is specified in advance. The probability fJ of a Type II error, however,
depends upon the value of a, the sample size n, the variance cfl, and the
true value of the mean JL.

Consider the two-sided hypothesis given by Equation 4.5, and suppose
that HA is true. The distribution of X is N(JLA,cfl In), and it follows that
the distribution of the test statistic is

The value of fJ is computed by noting that Ho is not rejected if -ZI-a/2 <
Z < ZI-a/2' A case where JLA > JLo is illustrated in Fig. 4.2. A case where

Ho: fJ = fJo

I
-z'-a/2

Figure 4.2 Distribution of Z under He and HAwben /loA> jjo.

JLA < JLo is illustrated in Figure 4.3. In each figure, the probability of not
rejecting Ho is shown as the shaded portion and is computed from the
formula
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(4.13)

Ho: JJ = JJo

I
-Z1-al2 I

o

I
Z1-al2

Fagure 4.3 Distribution of Z under He aod HA when /<lA < lito

For the one-sided hypothesis given by Equation 4.9, {3 is the probability
that Z < Zl-a when Jl = JlA > fJO. This is given by

JlA - fJO]
"/.JD.

(4.14)

For the one-sided hypothesis given by Equation 4.11, {3 is the probability
that Z > - Zl-a when Jl = JlA < fJO. This is given by

[
JlA - fJO]

{3 = 1 - ~ -Zl-a - ,,/.JD. (4.15)

For a sampling plan, an experiment, or a testing application that is being
planned, a recommended practice is to evaluate {3 for a range of values of
JlA and then plot either {3 or 1-{3 vs. JlA' The plot of {3 vs. JlA is called
an operating characteristic cune, or OC cuneo The plot of 1 - {3 vS. JlA is
called a power cuneo Either type of curve is useful for determining which
values of JlA are likely to result in rejecting Ho. For a hypothesis test to be
informative and worthwhile, the probability of rejecting Ho (i.e., the power
of the test) should be high when the difference between fJO and JlA is large
enough to be of practical importance to the investigator.
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Example 4.2 For the sampling plan and hypothesis test described in
Example 4.1, determine fJ for values of IlA from 87.56 to 87.64 in incre­
ments of 0.01. Then plot both the OC curve and the power curve for this
range of IlA values.

To illustrate the procedure for determining fJ, consider IlA = 87.56.
First, compute the quantity

IlA -p.o = 87.56 - 87.6 = -2.62
u/JD. 0.0342/.J5

and note that ZI-a/2 = 1.96. Substituting these values into Equation 4.13
gives

fJ = ~(1.96 + 2.62) - ~(-1.96 + 2.62) = ~(4.58) - ~(0.66)

= 1.0 - 0.74537 = 0.25463

Similarly, when IlA = 87.58,

IlA - p.o = -1.31
u/JD.

and

fJ = ~(3.27) - ~(-0.65) = 0.99946 - 0.25785 = 0.74161

Continuing in this manner and rounding the probabilities to two significant
digits, the following table is constructed:

IlA fJ I-fJ

87.56 0.25 0.75
87.57 0.50 0.50
87.58 0.74 0.26
87.59 0.90 0.10
87.60 0.95 0.05
87.61 0.90 0.10
87.62 0.74 0.26
87.63 0.50 0.50
87.64 0.25 0.75
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Note that f3 decreases (l - f3 increases) as IlA gets farther away in either
direction from IlO = 87.6. Also note that when IlA = IlO (i.e., when Ho is
true), f3 = 1 - ex = 0.95 and 1 - f3 = ex = 0.05. Of course, ex = 0.05 is
simply the prespecified probability of rejecting Howhen Hois true.

The OC curve for this test is constructed by plotting f3 vs. IlA and is
shown below.

1.0

0.8

/3 0.6

0.4

0.2

87.56
IJA

The power curve for this test is constructed by plotting 1 - f3 vs. IlA
and is shown below.

1.0

~ 0.8

"- 0.6
Q)

~
0

0.4~

0.2

0
87.56 87.58 87.60 87.62

JJA

Interpretation of either of these curves depends upon which values of
JlA would cause concern (or are unacceptable). Suppose that a mean per­
cent uranium value of 87.57 is unacceptably low. Notice from the OC
curve and power curve that f3 = 1 - f3 = 0.50 when IlA = 87.57. That is,
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when ILA = 87.57, there is a 50% chance of not rejecting Ho and a 50%
chance of rejecting Ho. This indicates that the sampling plan and hypothe­
sis testing procedure described in Example 4.1 are inadequate for detecting
when the mean percent uranium is 87.57. Example 4.3 illustrates that one
way to resolve this is to take a larger sample.

4.2.1.4 Sample Size

For the two-sided hypothesis given by Equation 4.5, the investigator
might state that if the absolute difference lILA - ILoI is greater than or
equal to a specified value, then the power of the test must be greater than
or equal to a specified level. Suppose that in the application described in
Example 4.1, it is required that if the true mean percent uranium is
smaller than or equal to 87.57 or larger than or equal to 87.63, then the
power of the test must be at least 0.90. That is, if lILA - 87.61 ~ 0.03,
then 1 - fJ ~ 0.90. The results of Example 4.2 indicate that 1 - fJ =
0.50 when lILA - 87.61 = 0.03. This is clearly not in accordance with the
requirements.

The results of Example 4.2 indicate that the power of the two-sided
hypothesis test increases (fJ decreases) as ILA gets farther away in either
direction from ILO. In fact, an examination of Equation 4.13 reveals that fJ
decreases (the power of the test increases) as the quantity (ILA ­
1LO)/«(1/~) gets farther away from zero. In planning a hypothesis test, a
value of (ILA - ILO) is specified that is of practical importance to the exper­
imenter. Values of a and either fJ or 1 - fJ are also specified. That is, all
quantities in Equation 4.13 are specified except (1/~, the standard devia­
tion of X. Thus, a value of (1/ ~ must be determined such that Equation
4.13 holds when values of a, fJ, and (ILA - ILO) are specified.

Because (1 is assumed to be known, a common practice is to determine
the sample size n required to satisfy Equation 4.13 when all other quanti­
ties are specified. This problem can be simplified somewhat for applica­
tions where the specified values of a and fJ are small (for example,
<0.25). Note in Fig. 4.2 that when ILA > IJ.O, especially if (ILA ­
1LO)/«(1/~) > ZI-a/2, a negligible portion of the shaded region cxtcnds
below ZI-a/2' In such cases the second term on the right-hand side of
Equation 4.13 is practically zero. Then, from the symmetry of thc normal
pdf, zp = - Zl _ p, so that

or equivalently



148 CHAPTER 4 HYPOTHESIS TESTING

Rearranging terms and squaring gives

n s=
(ZI-a/2 + ZI_P )2 u'­

(#LA - 1Lo)2
(4.16)

Equation 4.16 can also be derived from a similar argument using the case
illustrated in Fig. 4.3 where #LA < 1Lo. Thus, for specified values of u'-, ex, {3,
and (#LA - 1Lo), Equation 4.16 gives a good approximation of the required
sample size for a two-sided test. Because sample sizes are integers, a
noninteger value computed from Equation 4.16 is rounded up to the next
integer.

The sample size formula which applies to either of the one-sided tests
is given by

n=
(Zl-a + Zl-P )2u'­

(#LA - 1Lo)2
(4.17)

which is Equation 4.16 with Zl-a in place of ZI-a/2' Equation 4.17, how­
ever, is not an approximation.

In many applications, the costs and resource requirements associated
with sampling are a major consideration. Thus, using Equation 4.16 or
4.17 alone might not be wholly satisfactory, because the result might indi­
cate that an infeasibly large sample size is required to achieve a specified
level of power. In such cases, there are other factors to consider which
sometimes can be altered to achieve both an affordable sampling plan and
a hypothesis test with satisfactory properties.

Recall from the previous discussion that for a fixed value of ex, the
power of a hypothesis test increases ({3 decreases) as (#LA - 1Lo)/«(T/~)
gets farther away from zero in a specified direction, depending upon which
hypothesis is being tested. Thus, when ex, (#LA - 1Lo), and (T are fixed,
increasing the sample size n pushes (#LA - 1Lo)/«(T/~) farther away from
zero, which increases the power of the test. If there is an upper limit on
the sample size, however, a desired level of power can still be achieved if (T
can be decreased enough to satisfy Equation 4.13, 4.14, or 4.15 when ex, {3,
(#LA - 1Lo), and n are fixed. In practice, this requires careful examination
of the process or population being sampled and the methods of sampling,
sample analysis, measurement, and so on with the objective of identifying
sources of variation that can either be better controlled or eliminated.

It is not always possible or practical to reduce (T, and even when (T can
be reduced, the amount of reduction possible may not be enough to
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achieve the level of power desired. In such cases, the specified values of a,
(JLA - JLo), and (I - (j) or {j should be reviewed. Perhaps the desired level
of power is unrealistic or excessively strict when the purpose of the
hypothesis test and some of the practical limitations are considered. If so,
a less restrictive set of specified values should be considered. If acceptable,
the result could be an affordable sampling plan and a hypothesis test that
has satisfactory properties with respect to the particular application.

When compromises are made between a desired level of power and one
that is practical and affordable, it is essential that all parties involved be
aware of the properties and limitations of the resulting hypothesis test. A
power curve or OC curve is invaluable for this purpose because it illus­
trates in a concise form the probability of rejecting (or not rejecting) Ho
for any value of JLA'

Example 4.3 How can the sampling plan described in Example 4.1
be modified to ensure that 1 - {j ~ 0.90 if JL ~ 87.57 or JL ~ 87.63?

First, note that

(87.57 - 87.6)2 = (87.63 - 87.6)2 = (0.03)2

Zl-P = Zo.90 = 1.28

ZI-a/2 = Zo.975 = 1.96

~ = (0.0342)2

Substituting these values into Equation 4.16 gives

n= (1.96+ 1.28)2(0.0342)2 = 13.64= 14
(0.03)2

That is, because the sample size must be an integer, n is always rounded
up to be conservative.

The new sampling plan is to randomly select 14 powder samples from a
batch. The percent uranium will be determined for each powder sample,
and the test statistic

Z= X-87.6
uj.Jf4

will be computed. If Z ~ -1.96 or Z ~ 1.96, reject Ho.
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A sample of size 14 is too costly for this particular application. Sup­
pose, however, that it is possible to refine the method of analyzing the
powder samples such that q is reduced from 0.0342 to 0.03. Suppose also
that upon reviewing the hypothesis testing procedure, it is decided that a
two-sided test is not really necessary because there is a natural upper limit
on the percent uranium (i.e., stoichiometric U02). Thus, a sample mean
significantly larger than 87.6% would indicate a bias in the method of ana­
lyzing the powder samples rather than an undesirable percent uranium
factor. Because the analysis procedure is monitored and maintained
independently of this application, the upper rejection region, Z > ZI-a/2,

is of little practical interest. A sample mean significantly less than 87.6%,
however, could indicate that impurities are present or that the composition
of the powder is not correct.

Thus, suppose that the scope of the problem is changed so that the
hypothesis to be tested is

Ho: IL ~ 87.6

against the alternative

HA : IL< 87.6

and that the significance level is still a = 0.05. The power requirements
have been relaxed slightly, such that when IL ~ 87.565 the probability of
rejecting Ho should be 1 - fJ = 0.90. The required sample size for this
modified plan is determined by substituting the values

(ILA - 11-0) = -0.035

Zl-Il = 1.28

Zl-a = 1.65

~ = (0.03)2

into Equation 4.17, which gives

n= (1.65 + 1.28)2(0.03)2 = 6.31 == 7
( -0.035)2

Thus, the modified plan is to randomly select seven powder samples
from a batch. The percent uranium will be determined for each sample,
and the test statistic
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. Z= X- 87.6
0.03/J7
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will be computed. Howill be rejected if Z ~ -1.65.
The points for constructing a power curve or OC curve for this new

plan are determined from Equation 4.15 and summarized in the following
table.

II-A fJ I-fJ

87.550 0.003 0.997
87.555 0.010 0.990
87.560 0.030 0.970
87.565 0.076 0.924
87.570 0.159 0.841
87.575 0.288 0.712
87.580 0.456 0.544
87.590 0.776 0.224
87.600 0.950 0.050
87.700 0.994 0.006

Note that when II-A = 87.565%, the power is 1 - {3 = 0.924 which
exceeds the specified value of 0.90. This is because the sample size n = 7
is larger than the value n = 6.31 computed from Equation 4.17. This
illustrates that rounding n to the next larger integer is conservative.

This example illustrates how a review of the purpose of a hypothesis
test can result in redefining both the hypothesis and the power require­
ments. This, together with a reduction in (1 through better control of an
analysis procedure, has resulted in a required sample size which is half as
large as that required to meet the previous specifications.

4.2.1.5 Confidence Intenals and Hypothesis Testing

There is a close relationship between hypothesis testing and confidence
intervals. Consider testing the two-sided hypothesis given by Equation 4.5.
Note from Figure 4.1 and Equation 4.6, that if II- = Po, the expression
-Zl - al2 < Z < ZI - al2 is equivalent to

X-Po
-zl-aI2 < r < ZI-a

(1/.."n
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This can be rearranged to the form

Thus, the two-sided hypothesis test is equivalent to the following proce­
dure: Construct a (l - a)IOO% confidence interval for /l (Section 3.5.2).
If Ilo is inside the confidence interval, do not reject Ho. If Ilo is outside the
confidence interval, reject Ho.

Example 4.4 Rework Example 4.1 using the confidence interval
approach. Recall that Ilo = 87.60, X = 87.625, a = 0.05, ZI-a/2 =
1.96, (1 = 0.0342, and n = 5. Thus, a 95% confidence interval for /l is
given by

87.625 ± 1.96 (0.0342)jJ5"

or

(87.595,87.655)

Because Ilo = 87.60 is inside this interval, Ho is not rejected. This, of
course, agrees with the conclusion reached in Example 4.1.

4.2.2 Tests About the Mean, Variance Unknown

We now consider the case where a random variable X has a normal
distribution with mean /l and variance ~, both unknown, and we wish to
test hypotheses about /l. Although the normality assumption is required in
theory, slight departures from normality are not serious in practice, partic­
ularly if the sample size is not small.

Assume that a random sample of size n is drawn and that X and S2
are the sample mean and sample variance computed from the sample data
using Equations 3.11 and 3.13.
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The hypothesis to be tested is

against the alternative
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with a specified probability a of a Type I error.
Since u'- is unknown, substitute the sample variance S2 for u'- in Equa­

tion 4.6 to compute the test statistic t, given by

(4.18)

If Ho is true, t has a Student's t-distribution with n - 1 degrees of free­
dom (Section 3.5.2). Thus, Hois rejected if either

or

where t1-(1./2 (n - 1) is obtained from Table AS. Hypothesis tests that
are based upon the Student's t-distribution are commonly referred to as
t-tests.

The one-sided tests are simply modifications of the two-sided test pro­
cedure described above. To test the hypothesis

against the alternative

at the a level of significance, reject Hoif t ~ t1 - (1.(n - I).
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To test the hypothesis

against the alternative

at the a level of significance, reject Hoif t ~ -tl-a(n - 1).

Example 4.5 In Example 4.3, a sampling plan and hypothesis test are
developed for monitoring the percent uranium in batches of U02 powder.
In that development, there is an underlying assumption that (1 can be
reduced from 0.0342 to 0.03. Suppose that the necessary steps have been
taken to reduce (1, but their effect on (1 has not yet been established. That
is, (1 is unknown. A new batch of U02 powder is ready to be tested, how­
ever, and a decision is made to proceed by randomly selecting n = 7
powder samples and testing the hypothesis

Ho: JI. ~ 87.60

against the alternative

HA : JI. = Jl.A < 87.60

at the a = 0.05 significance level using the t-test described in this section.
The percent uranium values for the seven powder samples are:

87.559, 87.552, 87.587, 87.600, 87.517, 87.609, 87.565

The sample mean, sample standard deviation, and test statistic are com­
puted as

x= 87.5699

S = 0.0316
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t = 87.5699 - 87.60 = -2.52
0.0316/J7
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From Table A5, 10.95(6) = 1.94. Because -2.52 < -1.94, Ho is rejected.
It is concluded that the true mean percent uranium for this batch of U02
powder is less than 87.60%.

When Ho is false, the test statistic t given by Equation 4.18 follows a
distribution known as the noncentral t-distribution with n - 1 degrees of
freedom and noncentrality parameter X = .JD (J.LA - J.Lo)/(1. Thus, {J, the
probability of a Type II error for a specified value of J.LA' is determined
from the noncentral t-distribution. A detailed presentation of the noncen­
tral t-distribution is beyond the scope of this book. Tables and charts are
provided by Ferris, Grubbs, and Weaver (1946) and Bowker and
Lieberman (1972). Use of these tables and charts, however, requires values
of X which involve the unknown parameter (1. Thus, results of implement­
ing the noncentral t-distribution are approximate.

For most situations in practice, Equation 4.13, 4.14, or 4.15 can be
used to approximate {3 for a specified value of J.LA' For a given value of (1,

this approximation underestimates {3, especially if n < 30, but it provides
valuable information to the practitioner. Another possible drawback is that
Equations 4.13, 4.14, and 4.15 require specifying a value for (1. There are
a number of possibilities for selecting a value of (1. If a similar experiment
or a "pilot study" has been completed, the sample variance S2 could be
used in place of ~ in the approximation. If no experimental data are avail­
able, then an estimate of (1 must come from prior studies, scientific laws,
or guesswork. Another possibility is to express (J.LA - J.Lo) as a multiple of
(1, so that the OC curve is {3 plotted against values of (J.LA - J.Lo)/ (1.

When (1 is unknown, an equation for determining a required sample
size can be derived from the noncentral t-distribution. Because the degrees
of freedom depend upon the sample size, however, the solution to this
equation is iterative and involves numerical analysis techniques. To avoid
this difficulty, Guenther (1981) proposes an approximate solution which is
a modification of Equation 4.16 or Equation 4.17. For testing the two­
sided hypothesis at the a level of significance with power 1 - {3 for a
specified value of (J.LA - J.Lo), the required sample size is approximately

(ZI-a/2 + ZI_p)2 ~ ( ) 2
n == 2 + 0.5 ZI-a/2

(J.LA - J.Lo)
(4.19)
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where r? is replaced by the best available estimate. Since the sample size
must be an integer, n is always rounded up to be conservative. The approx­
imate required sample size for either of the one-sided tests is computed by
substituting Zl-a in place of ZI-a/2 in Equation 4.19. Guenther (1981)
states that this approximation is quite accurate and usually gives the same
result that would be obtained by iterative numerical methods.

Example 4.6 Continuing with the U02 powder example, suppose that
until the true value of q can be established, the t-test will be used to moni­
tor the percent uranium in batches of U02 powder. There is some concern,
however, that the sample size n = 7 may be inadequate to ensure that
1 - {3 ~ 0.90 when ("'A - ",<» ::s;; -0.035. Should the sample size be
changed for future testing?

Recall from Examples 4.4 and 4.5 that for each batch of U02 powder,
the hypothesis

Ho:"'~ 87.6

vs. the alternative

HA :", = "'A <87.6

is to be tested at the a = 0.05 level of significance. Thus, using the value
S = 0.0316 from Example 4.5 as an estimate of q and noting that

("'A - ",<»2 = (-0.035)2

Zl-P = 1.28

and

Zl-a = 1.65

the approximate required sample size, computed from Equation 4.19, is

n == (1.65 + 1.28)2(0.0316)2 + 0 5 (165)2 = 8 36 =::9
( -0.035)2 .. .-

That is, the sample size should be increased to n = 9 until the value of q
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is established, at which time Equation 4.17 should be used to determine
the sample size for future testing.

4.2.3 Tests About the Variance

There are situations in practice where it is useful to test the null
hypothesis that the variance r? of a normal distribution is equal to a speci­
fied value, say O'J. This arises, for example, when a quality standard per­
taining to the amount of variability allowable in some measurement speci­
fies a value r? = O'J. It also arises when r? is predicted from some theory
that is to be tested, or when r? is known for a population to which sample
data are being compared.

Unlike the tests about the mean, tests about the variance are quite sen­
sitive to departures from the normality assumption. Thus, we must assume
rather strictly that X - N(~,r?), where ~ and r? are unknown, and that
XI> X2, ... , Xn is a random sample of n observations on X. When the
normality assumption is in doubt, nonparametric methods should be used
to test hypotheses about the variance (Sections 9.2.2 and 9.3.2).

Suppose that we wish to test the hypothesis

against the alternative (4.20)

at the 0: level of significance. The test statistic is given by

(4.2I)

where S2 is the sample variance computed from the n observations using
Equation 3.13. When Ho is true, x2 has a chi-square distribution with
n-I degrees of freedom. Thus, Hois rejected if either

or (4.22)
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where X~/2 (n -1) and x~-a/2 (n -1) are obtained from Table A4.
The one-sided tests are more common, particularly the test of the

hypothesis

against the alternative (4.23)

Hois rejected at the Ot level of significance if

The less common one-sided hypothesis is

against the alternative

Here Hois rejected at the Ot level of significance if

(4.24)

(4.25)

(4.26)

Example 4.' In an automated process, U02 powder containers are
filled to a prescribed weight, sealed, and labeled. Periodically, a random
sample of six ftlled containers is weighed to monitor the variability in the
automatic filling process. The hypothesis of interest is

Ho: u'- ~ (0.20 kg)2
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against the alternative
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and the level of significance is a = 0.10.
The most recent sample of six containers had the following weights in

kg: 22.06, 22.52, 22.34, 22.90, 22.86, 22.18. From these weights, the value
S2 = (0.3488)2 is computed. The test statistic is

2 = (5)(0.3488)2 = 15.21
X (0.20)2

From Table A4, X8.90(5) = 9.24. Since x2 = 15.21 > 9.24, reject Ho.
Conclude that the variance in filled container weights exceeds (0.20 kg)2.

Operating characteristic curves for hypothesis tests about rfl are given
by Ferris, Grubbs, and Weaver (1946) and Bowker and Lieberman (1972).
They provide charts where P is plotted against uAIUo for various sample
sizes. To compute P or 1 - P for a specified value of uAIUo is not difficult
but can involve interpolation because of the usually limited tables available
for the chi-square distribution. The procedure for Computing P is illus­
trated for the one-sided hypothesis given by Equation 4.23.

For given values of n, a, u8, and ul, the rejection region of the test
includes values of x2 ~ xl-a (n -1). That is, under Ho, x2 has a chi­
square distribution with n - 1 degrees of freedom. When HA is true, the
probability of accepting Hois given by

(4.27)

The value of P is determined as follows: Obtain xl-a (n - 1) from
Table A4, and multiply by (uVul). Enter Table A4 and locate the row
with n-l degrees of freedom in the left margin. On this row, locate the
computed value (uVul) xl-a (n-l), and read P from the column head­
ing. The power of the test at this value of ul is 1 - p.
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Example 4.8 For the problem described in Example 4.7, find {3 when
u'- = 01 = (0.25)2. Recall that X6.9<i5) = 9.24, n = 6, and 0'6 =
(0.20)2. Then

0'6 2 (5) = (0.20)2 (9.24) = 5.91
0'1 XO.90 (0.25)2

Entering Table A4 with n - 1 = 5 degrees of freedom, we do not fmd
the value 5.91, but we see that the value 5.13 corresponds to {3 = 0.60 and
that 6.06 corresponds to {3 = 0.70.

Using linear interpolation, an approximate value of {3 for 5.91 is

R::: 070 - (0 70 - 060) (6.06 - 5.91) = 070 - 0016 = 0.684
fJ -. • • (6.06 - 5.13) . .

That is, when u'- = (0.25)2, {3 = 0.684, and the power of the test is
1 - {3 = 0.316.

A sample size can be determined which ensures that the power of the
test 1 - {3 is at a specified level for a given value of O'l!0'6. The procedure
requires specified values of a, {3, and>. = (0'1/0'6). For the one-sided
hypothesis given by Equation 4.23, enter Table A4, compare the columns
headed by {3 and 1 - a, and locate the row where >.xp = x1-/I" This row
has n - 1 degrees of freedom in the left margin, and the required sample
size is n = (n - 1) + 1 (i.e., the degrees of freedom plus one).

Example 4.9 For the problem described in Example 4.7, determine
the sample size required to ensure that 1 - {3 = 0.80 when (O'l!0'6) =
2.0.

Enter Table A4 and locate the columns headed by 0.20 and 0.90. Note
that when n - 1 = 18, 2 X6.20 (18) = 25.8 and X6.90 (18) = 26.0. Also,
when n - 1 = 19, 2 X6.20 (19) = 27.4 and X6.90 (19) = 27.2. To be con­
servative, choose the larger degrees of freedom value n - 1 = 19, which
gives the required sample size n = 19 + 1 = 20.

Thus, if it is desirable to have 1 - {3 = 0.80 when u'- == (2)(0.20)2,
the sample size must be increased to n = 20.
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4.3 INDEPENDENT SAMPLES FROM
TWO NORMAL DISTRmUTIONS
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In this section, hypothesis testing procedures are presented for compar­
ing the parameters of two normal distributions when each of the distribu­
tions has been sampled independently of the other. The tests fall under
three broad categories: comparing the means when the variances are
known, comparing the means when the variances are unknown, and com­
paring the variances.

The tests for comparing means are based upon the sample means,
Thus, although the normality assumption is necessary to develop the test­
ing procedures, the procedures are applicable for comparing the means of
many different types of distributions if the sample sizes satisfy the rules of
thumb for applying the Central Limit Theorem. The testing procedure for
comparing the variances, however, is sensitive to departures from the nor­
mality assumption. In either case, if there is any reason to doubt the valid~

ity of the normality assumption, one of the nonparametric techniques
presented in Chapter 9 should be used to test the hypothesis of interest.

4.3.1 Comparison of Two Means, Variances Known
Suppose that we are interested in comparing the means of two normal

distributions, N(#LIo0-r) and N(#L2'0'!)' where #Ll and #L2 are unknown,
whereas O't and 0'1 are assumed known. For example, it might be desirable
to compare the mean percent uranium in two batches of U02 powder
which were prepared under different process conditions. Assume that Xl
is the sample mean computed from a random sample of size nl from
N(#LIoO'f) and that X2 is the sample mean computed from a random sample
of size n2 from N(#L2,O'n. Assume further that the two random samples are
drawn independently of each other.

Consider first testing the two-sided hypothesis

Ho: #Ll - #L2 = 00

against the alternative (4.28)

at the a level of significance. Here, 00 is a specified difference between #Ll
and #L2, and OA is any alternative value of the difference. For many appli­
cations 00 is zero.

The testing procedure is based upon Xl - X2, the difference in the
sample means. Using the results presented in Section 2.7.1, it can be
shown that
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It follows that if the null hypothesis is true, then the test statistic

Z= (4.29)

has the N(O,1) distribution. Thus, Hois rejected if either
,

or (4.30)

Example 4.10 A facility which produces V02 pellets is interested in
comparing the mean percent uranium of two batches of pellets produced
under different operating conditions. It has been established from experi­
ence that the percent uranium of pellets in a batch is normally distributed
with unknown mean IL and with variance Ul = 0.0055. The variance is due
mostly to the method of analysis and remains practically constant from
batch to batch. A random sample of n1 = 8 pellets is taken from the first
batch, and a random sample of n2 = 12 pellets is taken from the second
batch. The data are:

Batch I batch 2

88.056 87.939
88.088 87.883
88.044 88.005
88.015 88.064
87.897 88.001
88.039 87.977
87.950 87.881
88.113 87.946

88.107
87.970
87.923
88.119
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The hypothesis to be tested is

against the alternative
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where ILl and IL2 are the true mean percent uranium for batches 1 and 2,
respectively. A significance level a = 0.10 is designated for this test.

The sample means are XI = 88.0253 and X2 = 87.9846, with nl = 8
and n2 = 12. Substituting these values and at = ai = 0.0055 into Equa­
tion 4.29, the value of the test statistic is

Z = (88.0253 - 87.9846) -Yz0 = 1.20

[
0.0055 + 0.0055]

8 12

From Table A3, ZI-a/2 = Zo.95 = 1.65. Because -1.65 < 1.20 < 1.65, Ho
is not rejected. There is not sufficient evidence to conclude that the two
batches of pellets differ in mean percent uranium.

The one-sided tests are modifications of the two-sided test. To test the
hypothesis

against the alternative

at the a level of significance, reject Hoif

To test the hypothesis

Ho: ILl - IL2 ~ ~o

(4.31)

(4.32)
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against the alternative (4.33)

at the a level of significance, reject Hoif

(4.34)

Power curves and OC curves are constructed for tests about ILl - IL2
by analogy with the procedure given in Section 4.2.1.3. For example, con­
sider the two-sided hypothesis given by Equation 4.28. When HAis true,
the probability of making a Type II error is

fJ =4> [ZI-a/2 - (OA - 00) I «(1f!nl + (11/n2)'I2]

- 4> [-ZI-a/2 - (OA - 00) I «(1f!nl + (11/n2)'I2] (4.35)

The power curve is constructed by plotting 1- fJ over a given range of
values of OA' Power curves for the one-sided tests are constructed by not­
ing that if al2 is replaced by a in Equation 4.35, the first term on the
right-hand side gives fJ for the hypothesis in Equation 4.31, whereas one
minus the second term gives fJ for the hypothesis in Equation 4.33.

It is possible to derive formulas to compute the approximate sample
sizes required to achieve a specified value of fJ for given values of 00, OA,
(1f, (1f, and a. To use these formulas, however, it is assumed that inde­
pendent samples of equal size are to be drawn from the two distributions
of interest; that is, nl = n2' Because the derivation closely follows the sin­
gle sample case in Section 4.2.1.4, only the formulas are given.

For testing the two-sided hypotheses given by Equation 4.28, the
approximate required sample sizes are given by

(ZI-a/2 + zl_P )2 «(1f + (1D

(OA - 00)2
(4.36)

For testing either of the one-sided hypotheses given by Equations 4.31
and 4.33, the required sample sizes are given by

(Zl-a + ZI_p)2 «(1f + (11)

(OA - 00)2
(4.37)
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Example 4.11 For the hypothesis test described in Example 4.10,
how large would nl and n2 have to be to ensure a 90% chance of rejecting
Ho when there is a difference 1#11 - #121 ~ 0.08.

For this problem, fJ = 0.10, and Table A3 gives Zl-tl = 1.28. Because
in Example 4.10, 00 = 0, it follows that lOA - 001 = 0.08. Also, recall
that a = 0.10, Zl-a/2 = 1.65, and ul = uf = 0.0055. Substituting these
values into Equation 4.36 gives

(1.65 + 1.28)2(0.0055 + 0.0055) = 14.75:::= 15
(0.08)2

Thus, a sample of size 15 taken from each batch will ensure a 90%
chance of rejecting Ho when the mean percent uranium in two batches of
pellets differs by 0.08 (note that this is 0.08% absolute).

4.3.2 Comparison of Two Means, Variances Unknown
When comparing the means of two normal distributions with unknown

variances, there are two cases to consider. If it can be assumed that
ul = uf, an exact test is possible. If ul ::I: uf, however, an approximate
test must be made. In this section, hypothesis testing procedures are given
for both cases.

4.3.2.1 Comparison of Two Means, Assuming Equal Variances

Assume that a random variable Xl has the N(#1hul) distribution and
that a random variable X2 has the N(#12,uf) distribution, where #1h #12, ul,
and uf are unknown, but ul = uf = ~. Consider testing the hypothesis

Ho: #11 - #12 = 00

against the alternative (4.38)

at the a level of significance.
Assume that independent random samples of size nl and n2 are taken

on Xl an'!.. Xl! respectively, and that the sample means and sample
variances, Xh X2, sl, and si are computed from the sample data. Because
both Sf and si provide estimates of the common variance, they are com-
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bined or pooled to form a single estimator, which is given by

S~=
(nl -l)S~+ (n2 -l)sI

01 + n2 - 2
(4.39)

This pooled estimator is introduced and discussed in Section 3.5.2.
To test the hypothesis in Equation 4.38, compute the test statistic

t=
(XI - X2) - ao
SpO/nl + l/n2)'I>.

(4.40)

If Ho is true, t has a Student's t-distribution with nl + 02 - 2 degrees of
freedom. Thus, reject Hoif either

or (4.41)

The one-sided hypotheses are treated similarly. To test the hypothesis

Ho: ILl - IL2 ~ ao

against the alternative

at the a level of significance, reject Hoif

To test the hypothesis

Ho: ILl - IL2 ~ ao

(4.42)

(4.43)
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against the alternative

at the a level of significance, reject Hoif
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(4.44)

(4.45)

Example 4.12 Rework Example 4.10, assuming that a} = ul= r?­
and that the value of r?- is unknown.

From the sample data in Example 4.10, nl = 8, n2 = 12,
XI = 88.0253, Sf = 0.005055, X2 = 87.9846, and s1 = 0.006241. The
pooled estimate of r?- is computed from Equation 4.39 as

S2 = 7(0.005055} + 1l(0.006241) = 0.005780
p 18

and the pooled standard deviation is

Sp = .JSl= 0.0760

The test statistic is computed from Equation 4.40 as

t = (88.0253 - 87.9846) -0 = 1.17
0.0760 [(1/8) + (1/12)]~

From Table A5, 10.95 (18) = 1.73. Because -1.73 < 1.17 < 1.73, Ho is
not rejected. There is not sufficient evidence to conclude that the mean
percent uranium differs for the two batches of pellets.

When Ho is false, the test statistic t, given by Equation 4.40, follows
the noncentral t-distribution with 01 + 02 - 2 de rees of freedom and
ooncentrality parameter A = (OA - oo}/u 1/01 + l/n2' Thus, for a spe­
cific value of 0A, fJ can be determined from the ooocentral t-distribution.
Tables and charts for determining fJ from the noncentral t-distribution are



168 CHAPTER .. HYPOTHESIS TESTING

provided by Ferris, Grubbs, and Weaver (1946) and Bowker and Lieber­
man (1972).

As with the single sample case discussed in Section 4.2.2, application
of the noncentral t-distribution is not illustrated. For most situations in
practice, however, Equation 4.35 can be used to approximate fJ for a speci­
fied value of ~A' The problem of specifying a value of tTl = tTl = rfl in
Equation 4.35 can be dealt with as in the single sample case. For a given
value of rfl, the approximation will underestimate fJ, especially if nl +
n2 - 2 < 30. Even so, it provides useful information.

Determining sample sizes from the noncentral t-distribution is quite
tedious and requires iterative numerical techniques. The tables and charts
provided by Ferris, Grubbs, and Weaver (1946) and Bowker and Lieber­
man (1972) can be used in determining sample sizes. The following
approximate procedure proposed by Guenther (1980, however, yields sam­
ple sizes which agree quite closely with those computed from exact
methods: Use Equation 4.36 or 4.37 to determine an initial value; say n'.
Then for the two-sided test, set nl = n2 = n' + 0.25 (ZI_a/2)2, and for
the one-sided test, set nl = n2 = n' + 0.25 (ZI_a)2.

4.3.1.1 Comparison of Two Means, Assuming Unequal Variances

In some situations, it is not reasonable to assume that tTl = tTl. When
this happens, the test statistic t, given by Equation 4.40, cannot be used to
test the hypotheses stated in Equation 4.38, 4.42, or 4.44. Because there is
not a common variance, the sample variances are not pooled; however, sl
and sl provide unbiased estimates of tTl and tTl, respective:!>'. Th!.s,
Sl/nl + SVn2 gives an unbiased estimate of the variance of XI - X2'
Consequently, if tTl and tTl are replaced with sl and sl in Equation 4.29,
the resulting test statistic, t', is given by

(4.46)

However, t' does not follow the Student's t-distribution when Ho is true;
that is, when ILl - 1L2 = ~o.

This particular hypothesis testing application is referred to in the sta­
tistical literature as the Behrens-Fisher problem. From the 19208 to the
present, much research has been done on the distribution of t'. Many of
the publications on this subject provide special tables for determining
probabilities and percentiles. Some commonly referenced publications with
tables include Fisher and Yates (1957), Aspin (1949), and Trickett et al.
(1956). The use of these tables is not illustrated. Instead, an approximate
procedure due to Satterthwaite (1946) is presented, which may be ade­
quate for most applications.
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For the approximate procedure, Equation 3.32 is used to compute the
approximate degrees of freedom v for t'. This formula, repeated here for
convenience, is

(4.47)

To be conservative, the computed value is always rounded down to an inte­
ger value. The Student's t-distribution with v degrees of freedom is then
used to approximate the distribution of t' when ILl - IL2 = ~o.

Thus, to test the two-sided hypothesis in Equation 4.38 at the a level of
significance, reject Hoif either

t' ~-tl-a/2(v)

or

t' ~tl-a/2(v)

For the one-sided hypothesis in Equation 4.42, reject Hoif

For the one-sided hypothesis in Equation 4.44, reject Hoif

(4.48)

(4.49)

(4.50)

Example 4.13 Suppose that a rapid but imprecise method has been
developed for measuring the percent u:anium in U02 powder. Eight
powder samples from a given batch are analyzed by this method. Four
samples are analyzed by the standard method, which is precise but very
time consuming. It is of interest to test whether the rapid method either
overestimates or underestimates the percent uranium.

Assume that ILl and tTl are the mean and variance of the individual
analytical results using the rapid method, and IL2 and tT~ are the mean and
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variance for the standard method. The rapid, imprecise method has a
larger variance than the standard method. Thus, assume that 0'1 ¢ O'f and
test the hypothesis

against the alternative

at the a = 0.05 level of significance.

The sample data in percent uranium are as follows

Rapid
method

Xl

87.71
87.19
87.64
86.22
87.10
86.89
86.36
87.00

Standard
method

Xz

87.78
87.53
87.34
87.55

The necessary quantities computed from the data are:

Xl = 87.0138

X2 = 87.5500

sl = (0.5330)2

Sf = (0.1802)2

Substituting these values into Equations 4.46 and 4.47, the test statistic is

t'= (87.0138 - 87.55) - 0 = -257
{[(0.5330)2j8] + [(0.1802)2j4])~ .

and the approximate degrees of freedom are
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[(0.5;30)2 + (0.1~02)2r
v = -----''------------::-- = 9.42;;: 9

[(0.5330)2/8]2 + [(0.1802)2/4f
7 3
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From Table A5, to.97S(9) = 2.26. Because -2.57 < -2.26, reject Ho and
conclude that the quick method underestimates the percent uranium in
U02 powder relative to the standard method. Methods from Section 3.5.2
can be used to construct a confidence interval for the difference (#L' - #L2).

When #L' - #L2 = !JA *" !Jo, the distribution of t' is unknown, and no
tables or charts are available to aid in constructing power curves or OC
curves. If v ~ 30, however, Equation 4.35 can be used to approximate (3.
This approximation improves as n, and n2 approach 00, but even when n,
and n2 are not large, this approximation is quite useful in practice.

To approximate required sample sizes, use of Equation 4.36 or 4.37
with estimates substituted for tTl and tTl is recommended. This approxima­
tion provides valuable guidance in planning an experiment. The resulting
sample size estimate, however, should be increased to help compensate for
the inadequacy of the approximation.

4.3.3 Comparison of Two Variances
Assume that independent random samples of size n, and n2 are taken

from the normal distributions N(#LlttTl) and N(#L2,tT1), respectively, where
#Lit #L2, tTl, and tT1 are unknown. It is of interest to test the hypothesis

against the alternative (4.51)

at the a level of significance.
If Ho is true, then tTl = tT1 = a2, and the sample variances sl and sl

provide independent estimates of the common variance a2. Thus, if Ho is
true, the ratio

sl
F=-

sl (4.52)
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has an F-distribution with nl - 1 and n2 - 1 degrees of freedom (Section
3.5.1). Thus, Hois rejected if either

or (4.53)

Because Table A6 gives only the upper percentile points of the
F-distribution, the value of Fa/2 (nl-I, n2-1) is determined from the
relationship

To test the one-sided hypothesis

against the alternative

at the a level of significance, reject Hoif

Similarly, to test the hypothesis

against the alternative

at the a level of significance, reject Hoif

(4.54)

(4.55)

(4.56)

(4.57)
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(4.58)

Note that anyone-sided test can be formulated in terms of the
hypotheses and test given by Equations 4.55 and 4.56 by designating
which population has variance O'l and which has variance 0'1. In fact,
many statistics texts advocate this convention, and it is commonly used in
practice. Thus, the hypotheses and test given by Equations 4.57 and 4.58
are not necessary and are presented here only for completeness.

Bowker and Lieberman (1972) give charts showing the OC curves for
the above tests for a = 0.05 and a = 0.10, assuming that nl = n2 = n;
however, fJ can be computed directly for specific values of X, a, nh and n2'
For the two-sided test,

p~ pr[F < ~ F1_./,(D, -I, D, -Ill

-pr[F< ~ Fa/2(nl-l,n2-0! (4.59)

For the one-sided test given by Equations 4.55 and 4.56,

(4.60)

Even with extensive tables of the F-distribution, application of Equa­
tions 4.59 and 4.60 requires interpolation. Thus, the values of fJ are
approximate but sufficiently accurate for most applications.

The sample sizes nl and n2 required to achieve a specified value of
1 - fJ at a given value of X can be determined in a "trial-and-error" fash­
ion. This involves calculating fJ or 1 - fJ for some possible values of nl
and n2' This continues until the desired value of fJ or 1 - fJ is found. Then
the corresponding values of nl and n2 are the required sample sizes.

Example 4.14 In Example 4.13, the variance of the rapid method is
said to be larger than the variance of the standard method. That is,
O'l > O'i. Do the sample results substantiate this at the 0.10 level of
significance?

To answer this question, test the hypothesis
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against the alternative
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at the a = 0.10 level of significance. The sample results are

sl = (0.5330)2

s~ = (0.1802)2

The test statistic is

F = (0.5330)2 = 8.75
(0.1802)2

From Table A6, FO.90 (7, 3) = 5.27. Because 8.75 > 5.27, reject Ho and
conclude that tTl is larger than tTl

For the sample sizes n, = 8 and n2 = 4, determine the power of this
test for values of ~ in the range 1 ::E: ~ ::E: 5. Equation 4.60 and Table A6
are used. The results are summarized below, and the reader is encouraged
to verify these values.

~ (1/~)F0.,0(7,3) {J Power = 1 - {J

1.0 5.27 0.90 0.10
2.0 2.64 0.74 0.26
3.0 1.76 0.62 0.38
4.0 1.32 0.53 0.47
5.0 1.05 0.46 0.54

To illustrate the procedure, consider the case ~ = 3. From the previous
results, FO.90 (7,3) = 5.27. Thus,

(1/~)FO.90(7,3) =(1/3)(5.27) = 1.76

Entering Table A6 with 7 and 3 degrees of freedom, we note that
Fo.so(7,3) = 1.15 and FO.7S(7,3) = 2.43. Using linear interpolation, the
value F = 1.76 is approximately the 100 pth percentile of the
F-distribution with 7 and 3 degrees of freedom, where p is approximated
as
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== 0.75 - (2.43 - 1.76) (075 - 050) = 062
P (2.43 - 1.15)' . .

That is, 1.76 == Fo.d7,3), and Equation 4.60 becomes

P= Pr[F < 1.76] == 0.62
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This test is not very powerful for the values of >. considered. Determine
values of n, and n2 such that 1-P = 0.80 when>. = 5, subject to the
constraint n, = 2n2. Begin the trial and error procedure with n, = 10 and
n2 = 5. The procedure for computing P is the same as for the above table.
That is, for n, = 10 and n2 = 5, the value FO.90 (9,4) = 3.94 is obtained
from Table A6, and since >. = 5,

0/>.)FO.90 (9,4) = 0/5)(3.94) = 0.79

Then entering Table A6 with 9 and 4 degrees of freedom, we note that
all values in the body of the table are greater than 1.10. Thus, Equation
4.54 is used to explore the lower tail of the distribution, where

Entering Table A6 with 4 and 9 degrees of freedom, Fo.so(4,9) = 0.906
and FO•7S(4,9) = 1.63. Thus,

Fo.so (9,4) = 1/0.906 = 1.10

and

FO•2S (9,4) = 1/1.63 = 0.61

Then, using linear interpolation, the value F = 0.79 is approximately the
100 pth percentile of the F-distribution with 9 and 4 degrees of freedom,
where

(1.10 - 0.79)
P == 0.50 - (1.10 _ 0.61) (0.50 -0.25) = 0.34

That is, 0.79 = FO.34(9,4), and Equation 4.60 becomes
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(j = Pr[F <0.79] :;;; 0.34

The results are summarized below. Sample sizes of nl
satisfy the specified requirements.

14 and n2 = 7

Db D2 FO.9Ol:Dl - 1, D2 - 1) (ljS)Fo.9Ol:Dl - 1, D2 - 1) {J 1-{J

10,5 3.94 0.79 0.34 0.66
12,6 3.28 0.66 0.26 0.74
14,7* 2.89 0.58 0.20 0.80
16,8 2.63 0.53 0.14 0.86

*Values calculated by interpolation.

4.4 COMPARISON OF TWO MEANS USING
PAIRED OBSERVATIONS

A special case of the comparison of two means occurs when the obser­
vations from the two distributions of interest are collected in pairs. The
observations in each pair, say (Xlj,X2j), are taken under homogeneous con­
ditions, but these conditions may change from one pair to another. This is
the simplest case of the randomized complete block experimental design
discussed in Section 7.2.2, where in this case the pairs are the "blocks"
described there.

To illustrate this concept, suppose that we are interested in comparing
two balances used for weighing V02 powder containers. If several con­
tainers are randomly selected from those on inventory, and half are ran­
domly assigned to be weighed on balance I and half on balance 2, and
then one of the independent sample tests of Section 4.3.2 is applied, the
results of the test could be misleading. This is because the difference
between the two sample means includes a possible difference in the means
of the true container weights in the two samples, as well as a possible dif­
ference in weights due to the two balances.

A better experimental procedure is to collect the data in pairs. That is,
weigh each container on both scales and record the paired obse"atioD on
the jth container as (xlj, X2j), where Xlj and X2j are the weights observed
from balances 1 and 2, respectively. The test procedure then consists of
analyzing the differeDces dj = Xlj - X2j. If there is no difference between
the two scales, then the population mean of the differences is zero.
Proceeding in this manner, the sample mean of the dj's does not include
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differences among the true container weights. Thus, the resulting test is
more sensitive to the difference between the two balances than the inde­
pendent sample techniques of Section 4.3.2. This concept is discussed fur­
ther after the details of the testing procedure and a worked example are
presented.

Paired observations are quite common in nuclear material accounting
applications. For example, an operator and an inspector measure the same
items to verify the operator's reported inventory estimate. Some of the
applications where paired observations are used, however, require more
sophisticated statistical methods than those presented in this section. Dis­
cussion of such cases and the appropriate statistical methods to use are
provided in Chapter 17.

Assume that there are two random variables of interest, say XI and X2,

with means ILl and 1L2 and variances tT~ and tT~, where a comparison of
ILl and 1L2 is desired. By taking paired observations, if the pairing is effec­
tive, a positive correlation p between XI and X2 is introduced. This is dis­
cussed in detail after Example 4.15. Thus, the random variable D = XI ­
X2 has mean ILD = ILl - 1L2 and variance tTf> = tT~ + tT~ - 2ptTltT2 =
tT~ + tT~ - 2tTI2 in accordance with Equations 2.122 and 2.123. To con­
struct a test which compares ILl and 1L2' assume that the differences Dj =
(Xlj - X2j), j= 1, 2, ... , n, are a random sample from the N(ILD,tTf» dis­
tribution, with ILD and tTf> unknown. It follows that testing the hypothesis
that (ILl - 1L2) = 00 is equivalent to testing the hypothesis

HO:ILD = 00

against the alternative

(4.61)

In many applications 00 is chosen to be zero, so that Ho is the hypothesis
that ILl = 1L2' The test is conducted by utilizing the single sample tech­
niques of Section 4.2.2, where the sample statistics

_ n

D= ~ Ddn
j-I

and

n
sf> = ~ (Dj - 5)2 /(n-1)

j-I
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are used to compute the test statistic

o-ao
t=--=

SD/.JD

Hois rejected at the a level of significance if either

t ~ -tl-a /2 (n - 1)

or

To test the one-sided hypothesis,

against the alternative

reject Hoat the a level of significance if

Similarly, to test the hypothesis

against the alternative

reject Hoat the a level of significance if

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)
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The discussions in Section 4.2.2 concerning power curves, OC curves,
and required sample sizes apply to this procedure and thus are not
repeated here. Note, however, that the sample size n presented there
corresponds to the number of pairs in this procedure. Thus, in determining
the total cost of measurements or experimentation" the total size of the
experiment is 2n.

Example 4.15 Twenty sintered U02 pellets were randomly selected
from a given batch. Each pellet was split into two parts. One part was ran­
domly selected from each pellet and analyzed for percent uranium by the
gravimetric method. The other part was stored for a specified length of
time and then analyzed by the same method. Let Xlj and X2j be the percent
uranium observed for the jth pellet from the initial analysis and the later
analysis, respectively. The data below are Xlj, X2j, and the difference
dj = (Xlj - X2j) in percent uranium.

XI X2 d XI X2 d

88.067 88.063 0.004 88.101 88.063 0.038
88.118 88.072 0.046 88.023 88.011 0.012
88.090 88.045 0.045 88.082 88.070 0.012
88.118 88.125 -0.007 88.038 88.016 0.022
88.085 88.106 -0.021 88.062 88.040 0.022
88.105 88.104 0.001 88.107 88.067 0.040
88.113 88.129 -0.016 88.141 88.116 0.025
88.044 88.041 0.003 88.095 88.074 0.021
88.026 88.021 0.005 88.065 88.045 0.020
88.088 88.063 0.025 88.112 88.134 -0.022

Was there a significant decrease in percent uranium over the specified
time period? To answer this question, test the hypothesis

against the alternative
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at the a = 0.05 level of significance. From the sample data, compute the
quantities

D= 0.01375

SD = 0.02056

and

t 0.01375 - 0 = 2.99
0.02056/.J2O

From Table A5, to.95 (19) = 1.73. Since 2.99 > 1.73, reject Ho and con­
clude that there was a decrease in the percent uranium content of the pel-
lets over the specified time period. .

The formula for the variance of the difference D = Xl - X2 provides
some insight into the circumstances where pairing is effective. From the
discussion in Section 2.7.1 and from Equation 2.123, the variance of D =
Xl - X2 is given by

where

Ul2 = E[(XI - ILl )(X2 - IL2)]

is the covariance of Xl and X2• When pairing, the pairs should be chosen
such that if Xl is high, so is X2• Then if Xl - ILl is positive, X2 - IL2 is
usually positive, and their product (Xl - ILl) (X2 - IL2) is usually posi­
tive. Similarly, if (Xl - ILl) is negative, (X2 - IL2) is usually negative,
and their product is usually positive. Since Ul2 is essentially the average of
the products (Xl - ILl) (X2 - IL2) over the entire population, Ul2 will be
positive when pairing is successful. This makes ul> smaller than the sum of
the individual variances. That is, when U12> 0, it follows that
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When pairing is successful, O'f, is substantially smaller than O't + O'i. Note
also that the correlation between XI and X2 is given by p = 0'12/0'10'2.

Thus, p will be positive and should be significantly greater than zero when
pairing is successful.

Pairing is not always effective because XI and X2 may be poorly corre­
lated with the criterion used to define the pairs, and thus XI and X2 are
poorly correlated within the resulting pairs. Fortunately, it is possible from
the results of a paired experiment to estimate what the variance of

.XI - X2 would have been if the experiment had been conducted without
pairing. With paired samples of size n, the variance of the mean difference
i5 = XI - X2 is O'5!n, where O'f, is the variance of the population of
paired differences. With two unpaired groups, assuming O't = O'i = ~ the
variance of XI - X2 is 2~In. Thus, the quantities to be compared are O'f,
and 2~.

Using the data from a paired experiment, the sample variance sf, is an
unbiased estimator of o'f>. Estimation of ~ from the paired data, however,
is slightly more difficult. One possibility is to analyze the paired data by
the method given in Section 4.3.2.1 for two independent samples using the
pooled variance S~, given by Equation 4.39, as an estimate of ~. For a
comparison which utilizes the 2n observed values from a paired experi­
ment, however, this procedure is not quite correct. This is because if the
experiment had been conducted by randomly assigning half of the 2n
objects to one "treatment group" and half to the other (in Example 4.15,
this would be equivalent to randomly selecting n of the 2n pellet halves for
immediate analysis and storing the remaining n for later analysis), it is
very likely that some pairs would have one member in each treatment
group. Thus, a partial pairing occurs without deliberate planning so that
XI and X2 are not totally independent. An unbiased estimator of 2~ is not
2S~ but is given by

20'2 = 2S~ - (2S~ - Sf,)/(2n - 1)

From the data of Example 4.15, we compute sf,
0.0004227, S~ = 0.0012550, and

(0.02056)2

20'2 = 2(0.001255) - [2(0.001255) - 0.0004227]/39 = 0.0024565

In this example, the pairing has resulted in a much smaller variance of
XI - X2; that is, 0.0004227/n with pairing compared to 0.0024565/n
without pairing. In practical terms, this implies that with independent
samples, the sample size would have to be increased from 20 pairs to inde­
pendent samples of size n = 20(0.0024565)/0.0004227 E: 116 each to
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give the same variance of XI - X2 as the paired experiment. In this case,
the savings in terms of cost, time, and so on, due to pairing are substan­
tial. That is, 232/40 = 5.8 times as many pellet halves are required
without pairing to achieve the same power that results from pairing.

The above comparison overlooks one important point. In the paired
experiment, sf> has n-I degrees of freedom, whereas S~ has 2(n - 1)
degrees of freedom. Thus, the t value obtained from Table A5 to be used
in the hypothesis test is smaller for the independent samples test than for
the paired test. Before comparing sf> with 202, Fisher (1960) advocates
multiplying each estimate by the factor (" + 3)/(" + 1), where" is n-I
for sf> and 2(n-I) for the 02. In the above example, this gives
23(0.0004227)/21 = 0.0004630 and 41(0.0024565)/39 = 0.0025825.
Then making the same comparison as above, the sample size must be
increased from 20 pairs to independent samples of size n =
20(0.0025825)/0.0004630 ~ 112 each to give the same variance of XI ­
X2 as the paired experiment. That is, in this example, 224/40 = 5.6 times
as many pellet halves are required without pairing to achieve the same
power that results from pairing.

If the criterion used for pairing has no correlation with XI and X2, a
small loss in power of the test, relative to the independent samples test,
results from pairing due to the adjustment for degrees of freedom. A sub­
stantial loss in power can occur if the criterion for pairing is so poorly cho­
sen that it results in a negative correlation between members of a pair.

Sometimes, in practice, an experimenter with paired data forgets or
ignores the fact that they are paired and carries out the hypothesis test as
if the two samples were independent. This is a serious mistake if the pair­
ing was effective. In Example 4.15, the value

.J2S~/20 = 0.0112

would be used in the denominator ofthe test statistic rather than

.JS't!20 = 0.0046

This mistake negates the advantage of pairing, and a difference be­
tween XI and X2 that is actually statistically significant may be deemed
nonsignificant.

4.5 TESTS ON PROPORTIONS AND
COUNT RATES

There are situations in practice where the random variable of interest
follows either the binomial distribution or the Poisson distribution. These
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distributions are introduced in Sections 2.4.2 and 2.4.3, respectively. This
section presents exact methods for testing hypotheses about the parameter
p of the binomial distribution and the parameter fJ. of the Poisson distribu­
tion. Also, approximate methods are presented for testing hypotheses about
these parameters and for comparing the parameters of two binominal dis­
tributions using data from independent samples.

4.5.1 Exact Tests on the Binomial Parameter p

In Section 2.4.2, a binomial random variable X is defined as the num­
ber of successes observed in n independent trials of an experiment with
two possible outcomes, where the probability of a success at each trial is p.

Consider testing the hypothesis

against the alternative

HA:p= pA::I= Po

(4.68)

at the a level of significance. Assume that a random' sample of size n is
taken from a binomial distribution and that x successes are observed. If Ho
is true, the random variable X has a binomial distribution with parameters
n and Po. Thus, the rejection region is determined by using Equations 2.20
and 2.3 to find limits L and V such that

Pr(L ~ X~ Vip = Po)

u
= ~ (:) p8 (l-Po)n-x a: 1 - a

x-L

Hois rejected if either

x<L

or

x>V

(4.69)

(4.70)

Because X is a discrete random variable, it is rare in practice that Ho
can be tested at exactly the a level of significance. That is, Equation 4.69
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is rarely an equality; however, L and V should be chosen so that they sat­
isfy as closely as possible the criteria

L-l
Pr(X < Lip = Po) = ~ (f) p~ (l-po)n-x ~ al2

x-o

and

n
Pr(X > Vip = Po) = ~ (:) re (l_po)n-x

x-U+l

U
= 1 - ~ (:) p~ (l_po)n-x ~ al2

x-o

The actual significance level of the test is given by

a* = Pr(X < Lip = Po) + Pr(X > Vip = Po)

(4.71)

(4.72)

To evaluate Equations 4.69, 4.71, and others discussed in this section, a
computer or calculator that has been programmed to compute binomial
probabilities and cumulative binomial probabilities is desirable.

To test the one-sided hypothesis

against the alternative (4.73)

at approximately the a level of significance, find the limit V such that

a* = Pr(X > Vip = Po) ~ a

Ho is rejected at the a level of significance if

x>V

(4.74)

(4.75)
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To test the hypothesis

against the alternative

186

(4.76)

at approximately the a level of significance, fmd the limit L such that

a* = Pr(X <Lip = Po) a: a

Hois rejected at the a* level of significance if

x<L

(4.77)

(4.78)

To construct a power curve or an OC curve for the two-sided test,
compute f3 at specified values of PA, where

f3 = Pr(L ~ X ~ Vip = PA) (4.79)

Note that this is Equation 4.69 with PA in place of Po. For the one-sided
hypothesis in Equation 4.73, f3 is given by

f3 = Pr(X ~ Vip = PA) (4.80)

Similarly, for the one-sided hypothesis in Equation 4.76, f3 is given by

f3 = Pr(X ~ Lip = PA) (4.81)

The value of f3 in Equation 4.79, 4.80, or 4.81 is computed from the bino­
mial distribution with parameters nand PA. The power of the test when
P = PA is 1-f3 in each case.

With the aid of a computer or programmed calculator, the following
trial-and-error procedure is adequate for determining the sample size
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required to ensure that the power of the test is at a specified level when p
takes on a specified value PA' For specified values of a, fJ, Po, and PA, this
process begins by arbitrarily selecting an initial value of n. The limits L
and/or U are determined such that Equation 4.71, 4.74, or 4.77 is satisfied
as closely as possible. Then fJ is computed from Equation 4.79, 4.80, or
4.81. If the computed fJ is much smaller than the specified value of fJ, the
sample size may be unnecessarily large, and the above steps are repeated
with a smaller value of n. If, however, the computed fJ is larger than the
specified value, then the sample size is too small, and the above steps are
repeated with a larger value of n. This process continues until a value of n
is found where a* and the computed fJ are acceptably close to the
specified values of a and fJ.

For the one-sided hypothesis given by Equation 4.73, Jaech (1980)
presents a method to determine the required sample size and the rejection
limit U for specified values of Po, PA, a, and fJ. His method is not a trial­
and-error procedure, and the results are obtained by using tables of the
normal and chi-square distributions together with special tables provided
by Stephens (1978). The details of Jaech's method are not presented here.

Example 4.18 Suppose that in Example 2.8 the plant manager
recommends that a random sample of 100 containers be taken periodically
from the process and weighed. The weights are recorded to the nearest
109. The process is said to be in control if no more than 5% of the con­
tainers filled by this process have weights that differ from the prespecified
filled weight. If p denotes the percent of containers with weight discrepan­
cies, then the hypothesis to be tested is

Ho: p:::::0.05

against the alternative

HA: p = PA> 0.05

Assume that a significance level of a = 0.10 is specified.
In the most recent sample of 100 containers, seven have weights that

differ from the prespecified value. To test the above hypothesis, first con­
sider the pdf of the number of discrepancies, X, when p = 0.05 and
n = 100. Using Equation 2.20, this is
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x Pr(X = xlp = 0.05) x Pr(X = xlp = 0.05)

0 0.0059 9 0.0349
1 0.0312 10 0.0167
2 0.0812 11 0.0072
3 0.1396 12 0.0028
4 0.1781 13 0.0010
5 0.1800 14 0.0003
6 0.1500 15 0.0001
7 0.1060 ~16 0.0000
8 0.0649
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To determine the rejection region, note that Pr(X > 7) = 0.1280 and
Pr(X > 8) = 0.0631. To be conservative, choose U = 8 with a* =
0.0631. That is, if x> 8, Ho is rejected at the 0.0631 level of significance.
Since x = 7, however, Ho is not rejected, and we conclude that the process
is in control.

Points for constructing either a power curve or an OC curve for this
test are obtained by using Equation 4.80 and are tabulated below for some
selected values of PA.

PA fJ = Pr(X ~ Vip = pJ Power = 1 - fJ

0.010 1.0000 0.0000
0.025 0.9991 0.0009
0.050 0.9369 0.0631
0.075 0.6648 0.3352
0.100 0.3209 0.6791
0.125 0.1088 0.8912
0.150 0.0275 0.9725

Suppose the plant manager decides that the power of the test must be
0.80 (fJ must be 0.20) when p = 0.09. What sample size is required?

The trial-and-error results are as follows:
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D V a* p = Pr(X ~ Vip = 0.09) Power = 1 - {J

100 8 0.0631 0.4494 0.5006
120 9 0.0786 0.3530 0.6470
140 10 0.0931 0.2761 0.7239
160 11 , 0.1064 0.2154 0.7846
165 12 0.0714 0.2687 0.7313
170 12 0.0855 0.2314 0.7686
175 12 0.1012 0.1978 0.8022

A plan that reasonably satisfies the plant manager's specifications is to
take a sample of size 175 and reject Ho at the a* = 0.1012 level of signif­
icance if x> 12. This plan has pOwer 0.8022 when p = 0.09.

4.5.2 Approximate Tests on the Binomial Parameter p

This section presents a procedure based upon the normal approxima­
tion to the binomial for testing the hypotheses given by Equations 4.68,
4.73, and 4.76. This approximate procedure is adequate when the condi­
tions for applying the normal approximation to the binomial are met for
specified values of n and Po (Section 2.5.2.2). If these conditions are met
and Ho is true, then the random variable X, the number of successes, is
approximately distributed as N[npo, npo( 1 - Po)].

To test the hypothesis in Equation 4.68, assume that a random sample
of size n is taken from a binomial distribution and that X successes are
observed. Compute the test statistic Z, given in terms of either X or pas

X-npo
Z = --------,-,

[nPo{l - Po)]~ [Po{l - Po)/n]~
(4.82)

where p = X/no Reject Hoat the a level of significance if either

Z~ -Z\-a/2

or

where Z\-a/2 is obtained from Table A3.
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To test the one-sided hypothesis given by Equation 4.73 at the a level
of significance, reject Hoif

Similarly, to test the one-sided hypothesis given by Equation 4.76 at the a
level of significance, reject Hoif

Approximations of power and required sample size are derived by
noting that when Ho is false, p = PA and X has an approximate
N[npA, npA(I -PA)] distribution. That is, both the mean and variance of
X are different when p = PA than when p = Po.

Points for constructing power curves or OC curves are obtained for the
two-sided test by using the approximation

For the one-sided hypothesis in Equation 4.73, an approximate value of fJ
is

(4.84)

For the one-sided hypothesis in Equation 4.76, the approximation is

(4.85)

For the two-sided hypothesis, when approximating the sample size n
required to ensure a specified power of the test when IPA-Pol = d, there
are two separate values of PA to consider: PA = Po + d and PA =
Po - d. They give different values of PA (I - PA) unless Po = 0.50. In
computing sample size, use the value of PA corresponding to the maximum
value of PA (I - PA)' Then the approximate required sample size is given
by
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[ZI-a/2.JPo(l-PO) + ZI-P.JPA (l-PA )r
(PA - PO)2

(4.86)

For the one-sided hypothesis in Equation 4.73, use PA = Po + ~ to
compute

n == [ZI-a.JPo(l-Po) + ZI-P.JPA (l-PA)r

(PA - Po)2
(4.87)

For the one-sided hypothesis in Equation 4.76, use PA = Po - ~ in Equa­
tion 4.87 to compute the required sample size.

Example 4.17 In Example 4.16, note that n = 100, Po = 0.05, and
nPo = 5. Thus, the rules of thumb for applying the normal approximation
to the binomial (as stated in Section 2.5.2.2) are satisfied. Use the approx­
imate procedure to test the hypothesis

Ho:p~0.05

against the alternative

HA : p>0.05

at the a = 0.10 level of significance.
Recall that there are x = 7 containers with weight discrepancies. Thus,

fI = 7/100 = 0.07, and the test statistic is computed from Equation 4.82
as

Z = 0.07 - 0.05 = 0.92
[O.05(0.95)/100]~

From Table A3, 1.0.90 = 1.28. Since 0.92 < 1.28, Ho is not rejected. We
conclude that the process is in control. This agrees with the conclusion
reached in Example 4.16.

In Example 4.16, the plant manager specified that the power of the
test must be 0.80 when P = 0.09. Determine the required sample size for
the approximate test.
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Substituting Zo.90 = 1.28, Zo.80 = 0.84, Po = 0.05, and PA = 0.09 into
Equation 4.87 gives

n a; [1.28.J0.05(0.95) + 0.84.J0.09(0.91)]2 = 168.6 a; 169
(0.09 - 0.05)2

That is, the sample size must be increased from 100 to 169 to satisfy the
requirements. This is in reasonably close agreement with the results of
Example 4.16, where a sample of n = 175 was recommended for the exact
test.

4.5.3 Comparing Two Proportions from Independent Samples
Consider the case where there are two binomial populations of interest

with probabilities of success PI and P2, and we wish to test the hypothesis

HO:PI = P2

against the alternative (4.88)

at the a level of significance.
An exact procedure for testing this hypothesis is given by Nelson

(1982). This section presents an approximate procedure based upon the
normal approximation to the binomial.

Assume that independent random samples of size nl and n2 have been
taken from two binomial distributions, and that PI = XJ!nl and P2 =
X2/n2 are the estimators for PI and P2, where XI and X2 are the number
of successes in the two samples. Assume further that the conditions for
applying the normal approximation to the binomial are satisfied for nl and
PI and for n2 and P2.

Under these assumptions, if Ho is true and PI = P2 = p, then the ran­
dom variable

is approximately distributed as N(O, 1). An estimator for the common
parameter p is given by
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(4.89)

The test statistic is then given by

(4.90)

To test the two-sided hypothesis given by Equation 4.88, Ho is rejected
at the a level of significance if either

Z~ -ZI-a/2

or

To test the one-sided hypothesis

Ho:PI ~P2

against the alternative

at the a level of significance, reject Hoif

Similarly, to test the hypothesis

Ho:PI ~P2

against the alternative

(4.91)

(4.92)

(4.93)

(4.94)
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at the a level of significance, reject Hoif

Z~ -Zl-a
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(4.95)

Only approximate techniques are available for determining power
curves, OC curves, and required sample sizes. These involve using the
formula

(4.96)

for the variance of PI - P2'
Approximate power curves and OC curves are constructed by substitut­

ing (PI - P2) for (OA - 00), PI(I -PI) for 0'1, and P2(I -P2) for o'! in
Equation 4.35. Required sample sizes are approximated as follows. For the
two-sided test, to control the power of the test at a specified level 1- {3 for
given values of a and (PI - P2), the approximate required sample sizes
are given by

(4.97)

For the one-sided tests, the approximate required sample sizes are given by

(Zl-a + ZI_p)2 [PI (I -PI) + P2 (I -P2)]

(PI-P2)2
(4.98)

One difficulty in applying the above approximations is that values of PI
and P2 must be specified. The discussions given previously on specifying
estimates of unknown parameters for constructing OC curves and
determining required sample sizes apply here. If the experimenter has no
knowledge at all about possible values of PI and P2, substituting the value
PI = P2 = 0.5 in the numerator of Equation 4.97 or 4.98 yields the max­
imum sample size over all possible values of PI and P2 and thus provides a
conservative estimate of the required sample size.

Example 4.18 Suppose that in Example 4.16 random samples of size
nl = 100 and n2 = 100 were taken during two successive periods and that
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the numbers of weight discrepancies observed are XI = 4 and X2 = 9. Test
the hypothesis that the unknown true percent of containers having weight
discrepancies is the same for both periods. Use the a = 0.10 level of sig­
nificance. That is, test the hypothesis

Ho:PI = P2

against the alternative

From the sample information, compute the quantities

PI = 4/100 = 0.04

P2 = 9/100 = 0.09

P = (4 + 9)/(100+ 100) = 0.065

and the test statistic

Z = 0.04 - 0.09 = -1.43
{0.065(0.935) [(1/100) + (1/100)])~

From Table A3, 7.0.95 = 1.65. Since -1.65 < -1.43 < 1.65, do not reject
Ho at the 0.10 level. There is insufficient evidence to conclude that the
proportion of containers with weight discrepancies is different for the two
periods.

How large must the sample sizes be to ensure that the power of the
test is 0.90 when IpI - P21 ~ 0.05? To answer this, use Equation 4.97 and
assume that the process is in .control, and historical data indicate that
PI(1-PI) :l: P2(1-P2) = 0.05(0.95) = 0.0475. This gives approximate
required sample sizes

nl = n2:l: (1.65 + 1.28)2(0.04;5 + 0.0475) = 326.23:l: 327
(0.05)

That is, samples of size n, = n2 = 327 are required to meet the
specifications.

A few calculations of this type illustrate the fact that large samples are
required to detect small differences between two proportions.
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4.5.4 Exact Tests on the Poisson Parameter

The Poisson distribution is introduced in Section 2.4.3 with pdf given
by Equation 2.25. The random variable X is the frequency of occurrence
of some event within some observed time, area, volume, and so on. For
example, a nondestructive assay might consist of counting the number of
gamma emissions from a sample of material within a specified period of
time. If the count rate is A emissions per minute, the number of particles
counted in a 5-min interval follows the Poisson distribution with parameter
Il = 5A. In general, let A be the rate of occurrence per unit time (area,
volume, etc.) of some event, and let T denote the number of units of time
(area, volume, etc.) over which the number of events is counted. Then the
observed count is assumed to follow a Poisson distribution with parameter
Il = AT.

Consider testing the hypothesis that the count rate A is equal to a
specified value >.0, when the random variable X is the number of events
counted over T units of time (area, volume, etc.). Thus, the hypothesis to
be tested is

against the alternative (4.99)

Let a denote the desired level of significance.
If Ho is true, X has a Poisson distribution with parameter Il = >.0T.

Thus, the rejection region is determined by using Equations 2.25 and 2.3
to find limits Land U such that

u (>.0 T)X -A"T
Pr(L:i!S;X:i!S;UIIl=>.oT)=~ , e === I-a (4.100)

x-L x.

Then Ho is rejected if either

x<L

or

where x is the observed count.

x>U

(4.101)
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Because X is a discrete random variable, it is rare in practice that Ho
can be tested at exactly the a level of significance; however, Land U
should be chosen such that they satisfy as closely as possible the criteria

and

00

Pr(X > UI#l = Ao T) = ~
x-U+I

(Ao T)X -A"T
, ex.

(4.102)

= 1 - ~ (Ao T)X e-A"T ~ a/2
x=o xl

The actual significance level of the test is given by

a* = Pr(X < LI#l = Ao T) + Pr(X> UI#l = Ao T) (4.103)

In applying Equations 4.100 and 4.102, a computer or calculator that is
programmed to compute Poisson probabilities and cumulative Poisson
probabilities is desirable.

To test the one-sided hypothesis

against the alternative (4.104)

at approximately the a level of significance, find the limit U such that

a* = Pr(X > UI#l = Ao T) ~ a

Hois rejected at the a* level of significance if

x>U

(4.105)

(4.106)
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To test the hypothesis

against the alternative
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(4.107)

at approximately the a level of significance, find the limit L such that

a* = Pr(X <Lilt = Ao T) === a

Hois rejected at the a* level of significance if

x<L

(4.108)

(4.109)

Either a power curve or an OC curve is constructed for the two-sided
test by computing {3 at specified values of AA' where

(4.110)

Note that this is Equation 4.100 with AA in place of Ao. For the one-sided
hypothesis in Equation 4.104, {3 is given by

(4.111)

Similarly, for the one-sided hypothesis in Equation 4.107, {3 is given by

(4.112)

The value of {3 in Equation 4.11 0, 4.111, or 4.112 is computed from the
Poisson distribution with parameter It = AAT, and the power in each case
is 1-{3.

Determining the value of T (the number of units of time, area, volume,
and so on) required to ensure that the power of the test is at a specified
level when A takes on a specified value AA is a trial-and-error process. For
specified values of a, {3, Ao, and AA' this process begins by arbitrarily
selecting an initial value of T. The limits Land/or U are determined such
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that Equation 4.102, 4.105, or 4.108 is satisified as closely as possible.
Then {J is computed from Equation 4.110, 4.111, or 4.112. If the computed
{J is much smaller than the specified value of {J, then T may be unneces­
sarily large, and the above steps are repeated with a smaller value of T. If,
however, the computed {J is larger than the specified value of {J, then T is
too small, and the above steps are repeated with a larger value of T. This
process continues until a value of T is found where a· and the computed {J
are acceptably close to the specified values of a and {J.

Example 4.19 A fuel fabrication plant is required to comply with
EPA's radon standard of 5 pCi/liter when discharging its liquid wastes. To
monitor the liquid discharge, a I-liter sample is taken periodically and
prepared such that daughter products in secular equilibrium with radon
are collected on a small filter. If the discharge is precisely at the EPA
standard, the filter will emit gamma particles at the rate of II per min. A
laboratory counting instrument is used to count gamma emissions from the
filter. The counting instrument is only 50% effective, however, so that the
expected count rate is 5.5 emissions per min when the liquid discharge is
at the EPA standard.

To demonstrate compliance, an instrument count rate less than or
equal to 3 emissions per min is desirable. To monitor this, a test of the
hypothesis

against the alternative

is to be performed at the a = 0.10 level of significance each time a sam­
ple is analyzed. If, however, the EPA standard of 5.5 emissions per min is
reached or exceeded, this must be detected with a probability 0.90 (i.e.,
(J = 0.10).

Determine T, the number of minutes the filter must be counted, and
describe the hypothesis test that satisfies the specified requirements.

The trial-and-error procedure for determining the required value of T
begins with T = 1. Equation 4.105 is used to determine U and a·, and
Equation 4.111 is used to compute {J. The results are summarized below.
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a* = p=
T >.oT XAT U Pr (X > UI#L =>.oT) Pr (X~ UI#L = XAT)

1.0 3.0 5.50 5 0.084 0.615
2.0 6.0 11.00 9 0.084 0.587
3.0 9.0 16.50 13 0.074 0.236
4.0 12.0 22.00 16 0.101 0.117
4.5 13.5 24.75 18 0.092 0.100
5.0 15.0 2'7.50 20 0.083 0.086

A procedure that satisfies the specified requirements is to "count" the
filter for 4.5 min and reject Ho if x > 18 emissions are counted in the
4.5-min interval.

4.5.5 Approximate Tests on the Poisson Parameter

When #L ~ 50, the Poisson distribution is satisfactorily approximated by
the N(#L,#L) distribution (recall from Section 2.4.3 that the mean and vari­
ance of a Poisson distribution are equal). Thus, under Ho in Equation
4.99, the test statistic

z (4.113)

is approximately distributed as N(O,l).
To test the two-sided hypothesis in Equation 4.99, Ho is rejected at the

a level of significance if

or (4.114)

where ZI-a/2 is obtained from Table A3.
The null hypothesis Ho in Equation 4.104 is rejected at the a level of

significance if
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Z~ZI-a (4.115)

Similarly, Hoin Equation 4.107 is rejected at the a level of significance if

(4.116)

Approximate power curves or OC curves are constructed for the above
tests by computing (3 from the N(O,I) distribution for specified values of
).A. For the two-sided test, {3 is approximated by

For the one-sided hypothesis given by Equation 4.104, {3 is approximated
by

(4.118)

For the one-sided hypothesis given by Equation 4.107, {3 is approximated
by

(4.119)

In each case, the power of the test at ).A is 1 - {3.
In approximating the value of T required for the two-sided test to

ensure that {3 is at a specified level when I).A - >.01 = ~, there are two
separate values of ).A to consider: ).A = >.0 + ~ and ).A = >.0 - ~.

Because the variance of X is ).AT, the value ).A = >.0 + ~ yields the max­
imum value of the variance and is used to determine the required value of
T for the two-sided test from the formula

(4.120)
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For either of the one-sided hypotheses in Equations 4.104 and 4.107, the
approximate required value of T is given by

(4.121)

Note that in Equation 4.104, XA > Xo so that XA = Xo + a is used in
Equation 4.121; whereas in Equation 4.107, XA < Xo so that XA = Xo - a
is used in Equation 4.121.

Example 4.20 A gamma counting instrument used for nondestructive
assays is tested periodically for accuracy. A standard that is known to emit
gamma particles at the rate of 20,000 per min is counted by the instru­
ment for 5 min. The efficiency of the instrument is 50%, so that if the
instrument is in proper adjustment, its expected effective count rate is
10,000 emissions per min.

In a 5-min test, the observed count was 49,532. Test the hypothesis

Ho: X= 10,000 per min

against the alternative

at the a = 0.10 level of significance, and calculate the points for an OC
curve for this test over the range 9,800 ~ XA ~ 10,200.

Equation 4.113 is used to compute the test statistic

z 49,532 - (10,000)(5) = -2.09
.J(10,ooo)(5)

From Table A3, Zo.9S = 1.65. Since -2.09 < -1.65, reject Ho and con­
clude that the count rate is lower than 10,000 emissions per min. Thus, the
instrument is in need of adjustment.

To compute the points for either a power curve or an OC curve for the
above test over the range' 9,800 ~ XA ~ 10,200, Equation 4.117 is used,
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and the results are summarized in the table below. The reader is encour­
aged to verify several of these values of fJ.

XA {J Power XA {J Power

9,800 0.002 0.998 10,050 0.696 0.304
9,850 0.043 0.957 10,100 0.281 0.719
9,900 0.278 0.722 10,150 0.046 0.954
9,950 0.571 0.429 10,200 0.003 0.997

10,000 0.900 0.100

Suppose the plant manager requires that fJ = 0.10 when
IXA - 10,0001 = 100. How many minutes must the instrument test be
run to meet this requirement? Using Equation 4.120 with "A = 10,100
gives

T === (1.65.JI(f,OOO + 1.28.JIOJOO)2 = 8.62
(lO,OOO - 10,100)2

Thus, the length of the test must be increased from 5 min to 8 min and
38 sec to meet the requirements.

4.6 SEQUENTIAL TESTS

All of the tests considered thus far in this chapter are based upon sam­
ples of a predetermined, fixed size. In this section, a procedure is given for
testing the hypothesis

Ho: the distribution being sampled has pdf fo(x)

against the alternative

HA: the distribution being sampled has pdf fA(x)

(4.122)

where the sample size is not fixed in advance. The procedure is called a
sequential probability ratio test, or SPRT, and is the topic of texts by
Wald (l947) and Wetherill (l975). The reader is referred to these texts
for more complete and detailed discussions of the subject.

A sequential test proceeds by taking a sequence of independent obser­
vations on a random variable X, denoted by xI. X2, ••• , one at a time, and
making one of three decisions after each observation. For the mth observa­
tion, m = 1, 2, ... , the decisions are as follows:
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1. Continue sampling by taking an (m + 1)5t observation if

2. Stop sampling and accept Hoif

3. Stop sampling and reject Ho(accept HA) if

203

(4.123)

(4.124)

(4.125)

The values of A and B are chosen so that the probabilities of Type I and
Type II errors are equal to specified values a and fJ, respectively.t Exact
values of A and B are difficult to obtain. For the small values of a and fJ
typically used in practice, however, good approximations to A and Bare
given by

I-fJ
(4.126)Aa=--

a

and

Ba=-fJ- (4.127)
I-a

For this sequential test, the sample size required to reach a decision to
either accept or reject Ho is a random variable. It is shown by Wald
(1947), however, that, regardless of whether Ho or H A is true, the
expected value of this sample size, also called the al'erage sample number
or ASN, is always smaller than the fixed sample size required to test the
same hypotheses with the same values of a and fJ using one of the fixed
sample size methods of the previous sections. The savings can be substan­
tial. For example, Wald (1947) demonstrates that the average sample

tThe constants associated with the SPRT are denoted by A and B, B < A, to conform
with standard notation. The upper limit A should not be confused with the subscript A in HA•

the alternative hypothesis.
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number for the SPRT is about half of the fIxed sample size required to
test hypotheses about the mean of a normal distribution.

As an illustration, assume that a random variable X has a N(#L,q2) dis­
tribution with #L unknown but q2 known. Suppose that we wish to test the
hypothesis

against the alternative (4.128)

at the a level of signifIcance with specifIed values of 1Lo, #LA, and fl. From
Equation 2.33,

and

After the fIrst observation XI is drawn, the ratio of the pdfs is

and after the mth observation,

Referring to Equations 4.123, 4.126, and 4.127, sampling continues as long
as
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By taking logarithms and rearranging terms, this becomes

[ r? ]In [_(3]+ m [#LA + ILO]
#LA - ILO 1 - a 2

m [r? I [1 - (3] [#LA + ILOI<.~Xi< _ In -- +m 2
I-I #LA ILO a
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(4.129)

m
This inequality can be displayed in a graph with Tm = ~ Xi on the ver­

i-I
tical axis and m on the horizontal axis. The lines given by

and

I,. - [ "A~ PoH[~ aI+ m ["A: PoI

(4.130)

(4.131)

are plotted on the graph and define the decision regions for the sequential
test. Then, as the observations are taken, the points (m,Tm) are plotted,
and sampling continues as long as the sequence of points (m,Tm) falls
between the two lines. If a point falls below Lm, the decision is made to
stop sampling and accept Ho. If a point falls above Um' the decision is
made to stop sampling and reject Ho (i.e., accept HA ). This is illustrated
in Figure 4.4.

If a new variable Yi = Xi - (ILO + #LA)/2 is defined, then the in­
equality in Equation 4.129 is expressed in terms of Yi as

[ r? ] [ (3 1 m [r? ] [ I - (3]In -- < y'< In --
#LA - ILO I - a i~ 1 #LA - ILO a

(4.132)
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m

Figure 4.4 Decision regloas ror the sequential test sbowIDg • sampllDa pada Ieadbte to tile
rejection or Ho: p. = ".. in r.,or or HA: p. - P.A > lito

The sum 2:Yi is then plotted in a horizontal manner analogous to a cumu­
lative sum chart (introduced in Section 4.7.3).

The one-sided sequential test is easily adapted for testing the two-sided
hypothesis

against the alternative (4.133)

where 0 = ± 00, with specified values of a and fl. As with the fIXed sam­
ple size tests, it is common practice to split a equally across both alterna­
tive hypotheses IlA < /lO and IlA > /lO. The two-sided sequential testing
scheme is then equivalent to the two one-sided schemes with al2 and fl. If
we define a variable Yi = Xi - /lO, the equations for both the upper and
lower pairs of boundary lines in the sequential plot are given by

[ r?/ln[ fl ]+.!.m <~ Yi<[r?/lnl l
-
/2

fl /+ 2
0

m (4.134)o 1 - al2 2 i_loa
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where 0 = 00 defines one pair of boundary lines, and 0 -00 defines
the other pair. The resulting decision regions are illustrated in Figure 4.5.

rn
}: (X'-!JO)

i = 1

", ....
-'"-",-

< 0
..............

.......... ..... .......

m

Figure 4.5 Decision regions for the two-sided sequential test showing. sampling path leading
to acceptance of He: 1£ = lie-

Sequential techniques are also useful in applications of attribute sam­
pling (considered in Chapter 17), where the items being sampled are clas­
sified as either "success" or "failure." In Example 4.16, a binomial distri­
bution is assumed where p is the proportion of containers from the process
that have weight discrepancies. The plant manager wishes to test the
hypothesis

Ho: p = 0.05

against the alternative

HA : p = 0.09

with a = 0.10 and f3 = 0.20. The results show that a sample size of
n = 175 is required to ensure these specifications when the test procedure
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of Section 4.5.1 is used. By using sequential testing, it is possible to meet
the above requirements with an average sample number of fewer than 175
observations. The test proceeds as follows.

Let X be a random variable that takes on the value 1 if the ith con­
tainer has a weight discrepancy and the value 0 if it does not. Note that X
has a binomial distribution with n = 1. Referring to Equations 2.20 and
4.122, fo(x) = (0.05)X(0.95)\-X and fA(x) = (0.09)X(0.9I)\-x. Let Xj

denote the observed value of X for the ith canister. If Tm = l:Xj is the
total number of discrepancies observed after the mth observation, then

fA(x\) fA(x2)'" fA(xm) _ (0.09)T. (0.9I)m-T.

fo(x\) fo(x2)' .. fo(xm) - (0.05)T. (0.95)m-T.

Then by Equations 4.123, 4.126, and 4.127, sampling continues as long as

[
0.201< (0.09)T. (0.91)m-T. <[0.801
0.90 (0.05)T. (0.95)m-T. 0.10

By taking logarithms and rearranging, sampling continues as long as

-2.3844 + 0.0682m < Tm< 3.2965 + 0.0682m

That is, the decision regions are defined by the lines

Um= 3.2965 + 0.0682m

and

Lm= -2.3844 + 0.0682m

(4.135)

Sampling continues as long as the sequence of points (m, Tm) falls
between Lm and Um' If a point falls below Lm, sampling stops and Ho is
accepted. If a point falls above Um, sampling stops and Ho is rejected (HA
is accepted).

From Equation 4.135, Lm = 0 when m = 34.96 55 35. This means
that if no weight discrepancies are observed in the first 35 observations,
sampling stops, and Ho is accepted. Thus, if p = 0, the process will pro­
duce no weight discrepancies in a given period, and only 35 observations
are required to reach the decision to accept Ho. Using results by Wald
(1947), if p = 0.05, the average sample number, or ASN, required to
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reach a decision is 100. If p = 0.09, the ASN is 99. The ASN reaches a
maximum value of 124 when p = 0.0682, that is, when p is equal to the
common slope of the two lines in Equation 4.135. Finally, if p = 1, the
ASN is 4. These five points can be used to plot a crude ASN curve as
illustrated in Figure 4.6. Comparing these ASN values with the sample
size n = 175, required for the testing procedure of Section 4.5.1, gives
the reader an appreciation for the potential savings in sampling costs that
can be realized by implementing sequential procedures.

120 I-

100~

80 I-
Z
rJl
<l:
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40
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I I
o Po PA

P

Figure ".6 ASN cane for testiDg He: p - 0.05... HA: P - 0.09, witII a - 0.10 aad
{J - 0.20.

Sequential testing schemes for a variety of specific hypotheses are
given by Wald (l947), Davies (l956), Duncan (l974), and Wetherill
(l975). These references include formulas for constructing OC curves and
ASN curves to aid in evaluating sequential testing schemes.
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4.7 CONTROL CHARTS

In any manufacturing process, no matter how refined, almost any
measurement that can be made on an individual item from the process will
vary from item to item. When this variability is confined to chance varia­
tion only, the process is said to be in a state of statistical control. The
process variability might also be affected by one or more assignable
causes, however, such as a faulty machine or instrument setting, worn
components, an unskilled operator, unsatisfactory raw materials, and so on.
Such assignable causes of variation usually have an adverse effect on prod­
uct quality. Thus, it is important to detect serious departures from a state
of statistical control as soon as possible after they occur. Control charts are
widely used for this purpose.

Whereas many practitioners associate control charts with statistical
quality control (SQC) or statistical process control (SPC), the concept of
quality control involves a management philosophy that goes well beyond
simply monitoring a process or system. In fact, the control chart methods
presented in this section are only one small set of the many statistical and
nonstatistical techniques that are useful in SQC and SPC applications.
Thus, this section is not intended to be a guide for quality control method­
ology. Instead, its purpose is to introduce a few techniques that have prov­
en to be quite useful in many SQC and SPC applications. For detailed
treatments of quality control philosophies, concepts, and techniques, the
reader is referred to such texts as Deming (1982), Ishikawa (1976), Juran
and Gryna (1980), and Wadsworth et al. (1986).

It should also be noted that the techniques presented in this section can
be programmed on a computer. In fact, many commercially available com­
puter software packages will perform these techniques.

A control chart consists of a center line (CL), corresponding to the
average quality at which the process should perform when in a state of
statistical control, and two control limits, called the upper control limit
(UCL) and the lower control limit (LCL). A typical control chart is illus­
trated in Figure 4.7. The control limits are chosen such that values falling·
between them can be attributed to random chance, but values falling out­
side them indicate a lack of statistical control. The general approach is to
periodically take a random sample from the process, compute an appropri­
ate quantity (such as the sample mean or total), and plot this quantity on
the control chart. When a sample value falls outside the control limits, an
investigation into possible assignable causes of variation is undertaken in
an attempt to identify and resolve the cause of this unusual outcome. Even
when all sample values fall between the control limits, however, a trend or
some other nonrandom pattern may indicate that some action is necessary
to avoid a more serious problem.

One use of control charts is to monitor an important measurement on a
succession of mass-produced objects from a process that has been previ-
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Upper Control Limit (UCL)

t--J~lIr-----.l~-~--f-'\---j~------'r- Center Li ne

Lower Control Limit (LCL)

211

3 5 7 9
Sample Number

11 13

Figure 4.7 A typical control chart.

ously brought into a state of statistical control. In such situations, there
has usually been an evolution of the process to the point where the distri­
bution of the measurements is approximately known, or at least its mean
and variance are known. Control charts used for this purpose are called
theoretical control charts. They provide a means for detecting departures
from an existing state of statistical control.

Another major use of control charts is to provide guidance in establish­
ing a state of statistical control. Control charts used for this purpose
depend upon computations made from a historical sequence of samples of
measurements and are called empirical control charts.

Both theoretical and empirical control charts for some applications are
presented in this section with formulas and procedures for their
implementation. For more detailed presentations of these and other control
chart applications, see Duncan (1974) or Burr (1976).

4.7.1 Theoretical Control Charts

When dealing with a quality characteristic, it is customary to exercise
control over both the mean and variability of the characteristic. In this
section, three basic types of theoretical control charts are presented. The
first type is quite general and is typically used to monitor means, propor­
tions, and rates. The other two types, based upon the sample variance and
the sample range, are used to monitor variability.

4.7.1.1 Theoretical Control Charts for Means, Proportions, and Rates

Consider a manufacturing process which is in a state of statistical con­
trol with respect to a particular quality characteristic. It is of interest to
construct a control chart for the characteristic so that if the process is
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thrown out of control with respect to the characteristic, the control chart
will detect this event. Specifically, suppose that a process is in a state of
statistical control and that a measurement is made on each object in a ran­
dom sample of size n taken from a particular part of the production line at
a given time. If a statistic Y is computed from the sample (for example,
the sample mean Xor the sample total), then in successive samples, the
values of Y, say Y10 Y2, ••• , will behave as independent random variables
from a common distribution. This common distribution has a mean Ily and
a standard deviation (Ty, which are known if the distribution of the mea­
surements on the successive objects manufactured under the state of sta­
tistical control is known.

It must be emphasized that all of the control chart methods presented
in Section 4.7 require that the successive Yi items are independent and
that each Yi is based upon a random sample. If the Yi items are corre­
lated, application of these control chart techniques can lead to erroneous
conclusions. For example, a misuse of control charts in nuclear material
accounting would be for monitoring successive inventory differences, which
are definitely correlated. The assumption that each Yi is based upon a ran­
dom sample requires that the observations within each sample be uncorre­
lated. When this assumption is in doubt, specialized techniques such as
those presented by Alt et al. (l977) and Alt and Deutsch (l979) should be
used.

In many situations, the distribution of Y can be approximated by a
normal distribution with mean Ily and standard (Ty. In such cases, the
probability that Y will fall in any given interval when the process is under
statistical control is easily computed. For example, the probability is
0.9973 that Y will fall inside the limits Ily ± 3(Ty. Of course, the validity
of such statements depends upon how closely the distribution of Y is
approximated by the N(lly,O'f) distribution.

A three-sigma control chart, also known as a Shewhart chart, is set up
by drawing three horizontal lines:

UCL=IlY + 3(Ty

CL=IlY

LCL=Ily - 3(Ty

(4.136)

The successive values Y1, Y2, ••• , are then plotted against the sample
number on this chart. This is visualized by referring to Figure 4.7.

Suppose that something causes the distribution of Y to shift by an
amount ~, so that Y now has mean Ily + ~ and standard deviation (Ty. If
Y is approximately normally distributed, then the successive values Y10 Y2,

... , will behave like a random sample from the N(IlY + 0, (Tf) distribu-
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tion. The probability that a given Yj will fall outside the three-sigma con­
trol limits is given by

1 - [~(3 - 5/uy) - ~(-3 - 5/uy)] (4.137)

where ~(z) is obtained from Table A3. Thus, the larger the absolute value
of 5/Uy, the higher the probability that the control chart will detect the
shift in the distribution of Y.

The variable Y is used in the previous discussion to represent several
possible statistics. Some of the statistics frequently used in practice are the
sample mean X, the number of defective items X in a sample of size n, the
sample proportion defective p = X/n, and the count C of the number of
events per unit time (or space, etc.). The specifications for three-sigma
control charts for each of these statistics are given in Table 4.2. In ex­
amining Table 4.2, note that the normal distribution is presented in Sec­
tion 2.5.2, the binomial in Section 2.4.2, and the Poisson in Section 2.4.3.

TABLE 4.2

Three-Sigma Control Chart Specifications for Four Statistics

Statistic Y Distribution UCL CL LCL

Sample mean: X Normal II- + 3u/JD II- II- - 3u/JD
Sample number defective: X Binomial np + 3.Jnp(l-p) np np - 3.Jnp(l-p)

Sample proportion defective: ~ Binomial p + 3.Jp(l-p)/n p p - 3.Jp(I-p)/n

Total count: C Poisson II- + 3..1; II- II- - 3..1;

Control charts employing these three-sigma limits are called theoretical
control charts since the CL, VCL, and LCL are determined by using
known parameter values from the distributions of the measurements.

Although in many practical situations the statistic Y is approximately
normally distributed for a process under statistical control, even when Y is
not normally distributed, it is customary in practice to establish a three­
sigma control chart as defined above for Y. In such cases, for a process
under statistical control, the probability that Y will fall between the VCL
and LCL is not 0.9973. Nevertheless, the VCL and LCL are referred to as
three-sigma control limits, where the probability is quite small that a given
Yj will fall outside the limits when the process is in a state of statistical
control. If the distribution of Y is known (or approximately known), this
probability can be computed (or approximated). The following discussion
demonstrates that this probability will never exceed 0.11 and will be much
smaller in most applications.



214 CHAPTER 4 HYPOTHESIS TESTING

A basic theorem in probability theory, known as Chebyshev's inequal­
ity, guarantees that if Y has a finite mean Ity and variance O"?, then no
matter how Y is distributed,

1
Pr(lty - kO"y < Y < Ity + kO"y) ~ 1 - 2"

k
(4.138)

That is, for any distribution, the probability that Y will fall outside the
interval Ity ± kO"y is at most l/k2• Thus, for a three-sigma control chart,
the probability that a given Yj will fall outside the control limits is at most
119 = 0.11 when the process is under statistical control and is near
0.0027 if Y is approximately normally distributed. For most distributions
encountered in practice, Chebyshev's inequality is overly conservative for
estimating this probability (it overestimates the true value). Thus, it would
rarely, if ever, be used in practice, and it is used here only to demonstrate
that the probability will never exceed 0.11 for three-sigma control limits.
See Rohatgi (1984) for a detailed presentation of Chebyshev's
inequality.

When Y is from either the binomial or the Poisson distribution, and
the normal approximation is questionable, the concepts from Sections 4.5.1
and 4.5.4 on exact tests are used to determine control limits based upon
the true distribution of Y. This involves finding upper and lower control
limits such that when a state of statistical control exists,
Pr(LCL < Y < VCL) ~ 1 - a. To be analogous to a three-sigma con­
trol chart for a normally distributed variable, 1 - a = 0.9973 and the
LCL and VCL are determined such that Pr(Y ~ LCL) ~ al2 and
Pr(Y ~ VCL) ~ al2 where al2 = 0.00135.

Example 4.21 In this example, given by Jaech (1973), a theoretical
control chart is constructed for the average percent uranium in successive
batches of V02 powder. When the process is in a state of statistical con­
trol, it is assumed that It = 87.60% and 0" = 0.06%. Thus, a three-sigma
control chart is defined by the following quantities:

VCL=87.60 + 3(0.06) = 87.78

CL=87.60

LCL=87.60 - 3(0.06) = 87.42

The data from 19 successive batches are given in the order observed.
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87.54
87.56
87.50
87.47
87.64

87.56
87.71
87.61
87.60
87.60

87.47
87.60
87.69
87.78
87.69

87.72
87.77
87.79
87.78

87.46

These values are plotted on the control chart below, where the circled
points are greater than or equal to the VCL.

ti" Upper
87.78 --------- - - .@--"';-@------ Control

Limit (UCL)
87.74 •

87.70 • • •
E

87.66:l •C
~ 87.62 •••::> • Center Line
C 87.58 •Q) •~ •Q) 87.54c.. •87.50 • •

Lower
87.42 ------------------------ Control

Limit (LCL)

The batches with circled values may have true means larger than 87.60%.
In fact, since the last seven points are all above the CL, it appears likely
that there has been an upward shift in the process mean.

4.7.1.2 Theoretical Control Charts for the Variance

Let tfl be the known variance of the measurements on objects manufac­
tured by a process which is in a state of statistical control. Suppose that
we wish to establish a control chart to monitor tfl based upon the sample
variances, Sr, si, ... , from a succession of independent samples of size n
from a normal distribution. In practice it is customary to use only a VCL
for monitoring tTl. If the probability is to be a that any sl would fall
above the VCL, then by analogy with the hypothesis test defined by Equa­
tions 4.21, 4.23, and 4.24, the VCL is the horizontal line given by

tflx~-a (n -1)
VCL = ---'--n---l-- (4.139)
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To work in terms of Sj rather than sl, take the square root of the right­
hand side of Equation 4.139.

In some applications, it is also of interest to detect unusually small
values of Sr In such cases, both upper and lower control limits are
needed. These are given by

~xr-a/2(n-l)
VCL = ---'---­

n-I

and

~x~/2(n-l)
LCL=-~-­

n-I

(4.140)

To work in terms of Sj rather than sl, the VCL and LCL are determined
as the square roots of the right-hand sides of Equations 4.140.

4.7.1.3 Theoretical Control Charts for the Range

Another technique for monitoring the variance is to set up a control
chart based upon the sample range R. Since R is simply the difference
between the maximum and minimum values observed in a sample, it is
easier to compute than S2. Intuitively, if the process variance ~ increases,
R is also expected to increase. If the process is in a state of statistical con­
trol and if ~ is known, a three-sigma theoretical control chart for R has
control limits

and (4.141)

where D) and D2 depend on n. For samples from a normal distribution, D)
and D2 are tabulated in Table 4.3 for n = 2, 3, ... , 10. In many appli­
cations, n is smaller than 10. For guidance on how to proceed with
n > 10, see Duncan (l974) or Burr (l976).

As with the control chart for the variance, the LCL is rarely used in
practice. In fact, when n < 7, Table 4.3 gives D) = 0, which is equivalent
to no LCL. This is because the sample range will never be less than zero,
but the lower three-sigma control limit would be negative (and thus mean­
ingless) when n < 7; thus, no LCL is used.
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TABLE 4.3

Values or D. and Dzror
Three-Sigma Theoretical

Control Charts ror the Range

• D1 D2

2 0 3.686
3 0 4.358
4 0 4.698
5 0 4.918
6 0 5.078

7 0.205 5.203
8 0.387 5.307
9 0.546 5.394

10 0.687 5.469

4.7.2 Empirical Control Charts

In some situations a manufacturing process is under way, but a satis­
factory state of statistical control has not yet been established. Thus, the
measurements taken on successive manufactured objects do not behave like
a random sample from a distribution with the desired mean and variance.
If assignable causes of this lack of statistical control can be identified and
resolved, however, then the behavior of the measurements should more
closely resemble a random sample from the desired distribution.

When the parameters of the measurement distribution are unknown,
they must be estimated using historical data from the process. Thus,
reaching a state of statistical control by identifying and resolving assign­
able causes of extraneous variability is somewhat iterative and evolution­
ary. Briefly speaking, historical data from the process are used to estimate
parameters and to construct empirical control charts on which past and
ongoing process data are plotted. From these plots, one or more of the
assignable causes of variability might be detected, identified, and resolved.
The parameter estimates and control charts are then refined by removing
obvious outlying points from the data, and the above steps are repeated.
This usually continues over time until the process is refined to the point
where it is in a satisfactory state of statistical control and the parameters
of the measurement distribution are assumed to be known. Once this has
been achieved, the theoretical control chart techniques of the previous sec­
tion are implemented.

This section presents empirical control chart techniques for means, pro­
portions, rates, and variances.
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4.7.2.1 Empirical Control Charts for Means, Proportions, and Rates

Consider first a control chart for the mean of a normally distributed
process, when IL and r? are unknown. Assume that k independent random
samples, each of size n, have been taken from the process, such that the
objects within each sample are closely spaced in time, but the samples
themselves have been taken periodically and mayor may not be closely
spaced in time. Let XI> X2, ... , Xk be the sample means and SI> S2,''''
Sk be the sample standard deviations of the k samples. Proceeding in this
manner helps to ensure that the sample standard deviations, Si' reflect only
the random variability in the process and that they are not inflated by
shifts in the process mean IL. It also helps to ensure that shifts in IL are
reflected by the sample means Xi'

If the process is in a state of statistical control, the sample means, Xi>
will follow the N(IL,r?In) distribution. An estimate of IL that is used in
practice is the average of the k sample means, given by

(4.142)

Similarly, an estimate of (J is obtained by averaging the k sample standard
deviations and is given by

_ k

S = ~ Silk
i-I

(4.143)

The following procedure is based upon the normal distribution but is
satisfactory if the sample means Xi satisfy the rules of thumb for applica­
tion of the Central Limit Theorem (Section 2.5.2.1). The VCL, CL, and
LCL for a three-sigma empirical control chart for the mean are given as
follows:

VCL=X+AIS

CL=X

LCL=X-AIS

(4.144)

where Al depends on the sample size n and is tabulated in Table 4.4 for
n = 2, 3, ... , 10. Al is a quantity such that AIS is an unbiased estimate
of 3(JIJD. For n > 10, see Table V in Burr (1976).

An alternate method of estimating 3(JIJD uses the k sample ranges RI>
R2, ... , Rk rather than the sample standard deviations. Thus, it is compu­
tationally simpler than the previously mentioned procedure, but it makes'
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TABLE 4.4

Values of AJ and Azfor
Three-Sigma Empirical

Control Charts for the Mean

D AI Az

2 2.659 1.880
3 1.954 1.023
4 1.628 0.729
5 1.427 0.577
6 1.287 0.483

7 1.182 0.419
8 1.099 0.373
9 1.032 0.337

10 0.975 0.308

less efficient use of the sample information. Let R be the average of the k
sample ranges, given by

_ It

R = ~ Ri/k
i-I

(4.145)

The VCL, CL, and LCL for a three-sigma empirical control chart for the
mean are given as follows:

VCL=X+A2R

CL=X

LCL=X-A2R

(4.146)

where A2 depends on the sample size n and is tabulated in Table 4.4 for
n = 2, 3, ... , 10. A2 is a quantity such that A2R is an unbiased esti­
mate of 3rrj.JD. Duncan (1974) and Burr (1976) provide guidance on how
to proceed with n > 10.

When preliminary samples are used to estimate limits for control
charts, it is customary to treat these limits as trial values. Therefore, the k
sample means are plotted on the chart, and any points that fall outside the
control limits are investigated. If assignable causes .for these points are
discovered, they are eliminated from the data. Then X and either S or R
are recomputed, and the values of the VCL, CL, and LCL are updated.
Proceeding in this manner, a state of statistical control may eventually be
established.
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Example 4.22 In an automated process, U02 powder containers are
filled, weighed, sealed, and labeled. This process was recently set up by a
facility, and a state of statistical control has not yet been established. Five
containers are randomly selected from the process each day. The sampled
containers are weighed, and their weights recorded in kilograms. The sam­
ple means and ranges for the first 20 days are given below.

Day Xi Ri Day Xi Ri

1 22.316 0.04 11 22.298 0.04
2 22.330 0.03 12 22.340 0.04
3 22.350 0.04 13 22.330 0.10
4 22.322 0.04 14 22.348 0.04
5 22.338 0.02 15 22.356 0.07
6 22.384 0.03 16 22.308 0.06
7 22.316 0.04 17 22.330 0.05
8 22.368 0.10 18 22.316 0.03
9 22.350 0.15 19 22.282 0.09

10 22.340 0.06 20 22.338 0.06

X = 22.333 R= 0.0565

Entering Table 4.4 with n = 5, the value A2 = 0.577 is obtained. An
empirical control chart for the mean weight has limits given by

UCL=22.333 + (0.577)(0.0565) = 22.366
CL=22.333

LCL=22.333 - (0.577)(0.0565) = 22.300

The sample means are plotted on the control chart below, where the means
for days 6, 8, 11, and 19 fall outside the control limits.

@
(i)22.366 UCL

Xi • • • ••• • •22.333 • • • •
• • • •

22.300 • I@I
LCL

I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Day
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Assume that the cause of these outlying points has been identified and
resolved. If days 6, 8, 11, and 19 are removed from the data, the recom­
puted quantities are

x= 22.333
R= 0.0544

VCL= 22.364
CL = 22.333

LCL = 22.302

Note that CL has not changed and that the VCL and LCL have changed
only slightly. By examining the previous control chart, it is clear that
removing the sample means for days 6 and 8 balances the effect of remov­
ing those for days 11 and 19. This is coincidental and may not be typical
of the changes and refinements that might be observed in practice. All of
the 16 remaining sample means fall within these updated limits.

Further refinement of this process based upon variability is discussed in
Example 4.23.

Empirical control charts for the proportion of defectives also assume
that k independent random samples, each of size n, have been taken peri­
odically from the process. It should be noted, however, that the required
sample sizes for such attribute sampling plans are considerably larger than
those where measurements, rather than classifications, are made. This is
analogous to the required sample size calculations in Examples 4.16 and
4.17.

Let Xi be the number of defective objects observed in the ith random
sample of size n. Then Pi = Xi/n is the corresponding sample proportion
defective. Assume that Xi is a random variable having a binomial distribu­
tion with parameter p. A combined estimate of p is obtained by averaging
the sample proportions and is given by

k k X.
p= ~pi/k= ~_l

i-I i_Ink
(4.147)

Thus, a three-sigma empirical control chart for p is defined by the values

VCL = P+ 3.Jp(l - p)fn

CL=p (4.148)
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LCL = P- 3.Jp(l - p}/n

If p is small, the lower control limit may be negative. When this happens,
the LCL is replaced by zero. These control limits are based upon the nor­
mal approximation to the binomial (Section 2.5.2.2). When the rules of
thumb for applying this approximation are not satisfied, it is best to use
control limits determined directly from the binomial distribution by
analogy with the exact methods described in Section 4.5.1.

In some applications, count rates are monitored. For example, nonde­
structive assay (NDA) instruments may be checked daily by analyzing a
standard. The response obtained from an instrument is typically counts per
minute (or counts per some other unit of time). When the instrument is
functioning properly and is not in need of adjustment or repair, the count
rate should follow a Poisson distribution with parameter p.. If p. is known,
a theoretical control chart as indicated in Table 4.2 is used to monitor the
daily check readings from an instrument. If p. is unknown, then an empiri­
cal control chart can be set up by the following general
procedure.

Let C be the total counts observed in a time interval of specified
length. If k such counts are available from a process of interest, let q be
the count from the ith time interval. An estimate of p. is given by

_ k

C= ~q/k
i-I

(4.149)

A three-sigma empirical control chart for the daily counts is defmed by
the values

UCL=C+ 3.JC

CL=C

LCL=C- 3ft

(4.150)

In the NDA instrument example, the historical daily check counts are
plotted on the control chart. If the count for any of the days falls outside
the control limits, an investigation into the cause is conducted. If assign­
able causes are found and resolved for any of these outlying counts, they
are removed from the data and the control limits are recomputed.
Thereafter, when a count falls outside the control limits, the instrument is
examined, and any necessary repairs or adjustments are made.

Note that the control limits in Equation 4.150 are based upon the nor­
mal approximation to the Poisson discussed in Section 4.5.5. When
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C < 50, control limits should be determined directly from the Poisson dis­
tribution by analogy with the exact methods described in Section 4.5.4.

4.7.2.2 Empirical Control Charts for the Range

When it is of interest to monitor the variance rfl, but rfl is unknown, an
empirical control chart based upon the sample range can be used. Assume
that k independent random samples of size n have been taken from the
process of interest. It must also be assumed that the individual observa­
tions within each sample are from a normal distribution. Then R, given by
Equation 4.145, is used to set up an empirical control chart for the range
with control limits given by

LCL= D3R

UCL=D4R (4.151)

where D3 and D4 depend on the sample size n and are tabulated in
Table 4.5 for n = 2, 3, ... , 10. Duncan (1974) and Burr (1976) give
guidance on how to proceed when n > 10.

TABLE 4.5

Values of D3 and D4 for Three-Sigma
Empirical Control Charts for the Range

D D3 D.

2 0 3.267
3 0 2.575
4 0 2.282
5 0 2.115
6 0 2.004

7 0.076 1.924
8 0.136 1.864
9 0.184 1.816

10 0.223 1.777

As with the charts for the variance, the LCL is seldom of interest. In
fact, when n < 7, Table 4.5 gives D3 = 0, which is equivalent to no LCL.
This is because the sample range will never be less than zero, but the
lower three-sigma control limit would be negative (and thus meaningless)
when n < 7; thus, no LCL is used.



224 CHAPTER 4 HYPOTHESIS TESTING

Example 4.23 In Example 4.22, after removing days 6, 8, 11, and 19
from the data, the value it = 0.0544 is computed. Entering Table 4.4
with n = 5, the values D3 = 0 and D4 = 2.115 are obtained. Thus, an
empirical control chart for the range has control limits given by

LCL=O

UCL = (2.115)(0.0544) = 0.115

Without plotting the 16 sample ranges, note that day 9 has
R = 0.15 > 0.115.

Suppose that the cause of this large value has been resolved. If day 9 is
removed from the data, the recomputed values are

it = 0.0480

LCL=O

UCL = 0.102

and all 15 remaining sample ranges are within these new limits. After
removing day 9, the control chart for the mean should also be updated.

Note that day 13 has R = 0.10, which is just inside the UCL. It
would be advisable to investigate the cause of this value. If it is removed
from the data, then both the control charts for the range and for the mean
should be updated.

In any case, future values of Xi and Ri will be incorporated and the
control limits for both the mean and range charts refined until a satisfac­
tory state of statistical control is established.

4.7.3 Cumulative Sum Charts

The theoretical and empirical control charts discussed so far control
the probability of a Type I error. Thus, as long as the process is in control,
only rarely will a plotted point fall outside the three-sigma control limits.
In practice, however, the Type II error can have serious consequences.
That is, failing to detect when a process is out of control can adversely
affect product quality. The cumulative sum chart (CUSUM chart),
together with the V-mask, which is an adaptation of the sequential proce­
dure discussed in Section 4.6, is a charting technique which controls the
probabilities of both the Type I and Type II errors. An excellent survey of
the use of CUSUM charts is given by Ewan (1963).
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Although the cumulative sum chart technique is quite general in scope,
it is introduced by considering only the case where the measurements are
from a normal distribution and the mean is to be monitored. That is, if the
process is in a state of statistical control, then the measurements follow the
N(#L(),a2) distribution. It is further assumed that ILo and fT are either known
or have been estimated from a large number of measurements taken at
times when the process was thought to be in control. Techniques from Sec­
tion 4.7.2.1 can be used on historical process data to develop refined esti­
mates of ILo and fT. In this section, the symbols ILo and fT are used to denote
either the known values or the refined estimates.

Cumulative sum charts can be applied to either a sequence of indepen­
dent single measurements or to a sequence of sample means computed
from independent samples of size n. For convenience, the notation Y11

Y2' ••• , is used to denote the sequence of interest, and if the process is in
a state of statistical control, the observed values of the Yj behave like a
random sample from the N(ILo,fT~) distribution. Note that if Yj is a single
measurement, then fT~ = a2; if Yj = Xii then fT~ = a2In.

Instead of plotting the sequence YI, Y2, ••• , Ym, the cumulative sum,
or CUSUM, given by

m

Tm = ~(Yj -1Lo)
j-I

(4.152)

is plotted against m. If the process is in a state of statistical control, Tm is
expected to fluctuate randomly about O. If, however, the mean should shift
from ILo to ILo + 0, then Tm is expected to increase by 0 for each new
observation if 0 is positive and to decrease if 0 is negative.

The scale used for plotting a CUSUM chart is of some importance and
should be considered in advance. The horizontal scale should be chosen
such that consecutive points can be easily distinguished. It is recommended
that the relationship between the scales of the horizontal and vertical axes
be such that the distance between consecutive observations on the horizon­
tal axis is approximately equal to the distance 2fTy on the vertical axis.
This is illustrated in Figure 4.8.

Some examples of data and the corresponding CUSUM charts are
illustrated in Figure 4.9. The data in Figure 4.9A fluctuate about 1Lo, and
the CUSUM plot is quite flat and fluctuates about O. In Figure 4.9B, the
data are all above 1Lo, and the CUSUM is continually increasing. Simi­
larly, the data in Figure 4.9C are all below 1Lo, and the CUSUM continu­
ally decreases.

Now suppose that in a continuing process a shift in the process mean
from ILo to ILo + 0 occurred which affected all Yj values from Yr

throughYm (where r < m). Figure 4.10 shows a plot of the data and the
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Figure 4.8 Recommeuded sc:aIes for CUSUM charts. 2cry llllits 011 tile Yertical IcaIe sbouId
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Figure 4.9 Examples of data aDd associated cumulati,e sum charts.
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rrom IAt to IAt + 6.

CUSUM chart for such a situation, where 8 is positive. Notice how the
CUSUM chart responds quickly to the change, providing a much clearer
visual alert than the data plot. Also, a straight line drawn through the 11
most recent points on the CUSUM chart provides a good indication of
when the shift occurred. Let Trbe the CUSUM just after the point where
this straight line intersects a horizontal line drawn at CUSUM = O. The
point (r, Tr) is called the turning point and is the best guess as to when the
shift occurred. An estimate of the amount of shift 8 is given by

- Tm - Tr8=--­
m-r

(4.153)

where Tm is the most recent CUSUM value and Tr is defined above.
Although the CUSUM chart alone provides valuable information about

the process, it does not provide any criteria for deciding whether an
observed change warrants action. Since it is desirable to monitor the pro­
cess mean subject to specified probabilities of making a Type I or Type II
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error, the quantities /l{), O'y, a, fJ, and the value of 0 that would cause con­
cern must be specified. The hypotheses of interest are

with specified values of a and fJ. Then, by analogy with the two-sided
sequential test, a V-mask is constructed.

The V-mask, illustrated in Figure 4.11, is identical to the "V" produced
by the two-sided sequential testing procedure (Figure 4.5), except that the
mask is reversed and placed adjacent to the most recently plotted point

••••••

Figure 4.11 Example of. V-mask.

(m,Tm). To construct a V-mask like the one in Figure 4.11, the angle 8 is
given by

(4.154)

where C is a scale factor giving the number of units on the vertical axis
per unit on the horizontal axis. For example, the recommended scales, 200
vertical units per 1 horizontal unit, gives C = 20'/1 = 20'. The lead dis­
tance d is given by

2~ [I -fJ]
d = ~log a/2 (4.155)
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The V-mask is placed such that the V is a lead distance d in front of
the most recently plotted point. If a previously plotted point falls beyond
the "arms" of the V-mask, reject the hypothesis that the process mean
is JLo.

The application of the V-mask follows the algorithm given below:
1. Prepare the CUSUM chart, taking care to use appropriate scales.
2. Specify ~, a, fl, and 0'; determine 8 and d; and draw the appropriate

V-mask on a sheet of transparent paper.
3. Position the V-mask over each successive point on the CUSUM

chart, with the middle line of the V-mask parallel to the horizontal axis
(Figure 4.11).

4. When the V-mask is positioned over a given point, examine all
points to the left of this point with respect to the arms of the V-mask.

This algorithm can be programmed on a computer. In fact, there are
many commercially available computer software packages that will per­
form a sequential V-mask analysis.

Some of the patterns that might be observed are illustrated and briefly
interpreted below:

A. All points within the V indicate a stable process around JLo.

B. A downward trend which crosses the V indicates that the process
mean is significantly below JLo.

C. An upward trend which crosses the V indicates that the process
mean is significantly above JLo.
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D. A sudden one-point drop indicates an outlying value whose cause
should probably be investigated.

In implementing the CUSUM and V-mask technique, the successive
observations must be independent (uncorrelated). Also, it is advisable to
restart the cumulative sum calculations whenever a significant shift is indi­
cated by the V-mask technique. Otherwise, the CUSUM statistic Tm may
never return to being near zero, even if the process returns to a state of
statistical control and remains in control indefinitely.

The CUSUM chart provides information about the entire history of a
process mean. As the number of terms in the cumulative sum becomes
large, however, some types of shifts in the mean could be "smoothed over"
or balanced out by previous undetected shifts and go unnoticed. MoYing
sum charts are a compromise between CUSUM charts and control charts.
A moving sum, as the name implies, includes only the most recent set of k
observations. Then, each time a new observation is added to the sum, the
"oldest" observation is dropped from the sum.

If a moving sum is to include only the most recent k observations in a
sequence of m > k observations, the formula for the moving sum is

m
Tm(k) = ~ (Yi - Po)

i-m-k+1
(4.156)

When k = 1, the moving sum is simply (Ym - Po), the most recent
observation minus JLo, and the moving sum chart reduces to a control chart
as presented in Section 4.7.1.

Bauer and Hackl (1978, 1980) provide formulas and procedures for a
variety of applications of moving sum charts.
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CHAPTER 5

Analysis of Variance
5.0 INTRODUCTION

In nuclear material accounting applications, experiments are often con­
ducted for the purpose of studying and quantifying how certain changes in
the environment of an experiment affect particular response variables. This
requires that an experiment be conducted with the factors of interest var­
ied in a controlled, prescribed manner, so that the total variability in the
resulting response variable data can be partitioned into components
corresponding to each factor that was varied in the experiment. It is then
possible, through statistical hypothesis testing, to determine which factors
cause significant variations in the response variable and whether any of the
factors interact to affect the response variable. This information is often
used in modeling and characterizing measurement systems and material
control and accountability systems. These and other applications are dis­
cussed in Chapters 14, 15, and 16.

The statistical methods that are used in planning experiments of this
type and in analyzing the resulting data fall under the general headings of
experimental design and analysis of variance. These are very broad subject
areas, and it is not possible to thoroughly cover them in this book.
Some basic concepts and techniques are presented in this chapter and in
Chapter 7 that are adequate for many applications. These concepts and
techniques can be extended and adapted to accommodate more compli­
cated applications than are discussed in this book. Careful study of an
appropriate text or reference, however, should precede such extensions and
adaptations.

This chapter covers estimation and hypothesis testing techniques for
analyzing data from some particular types of experiments and observa­
tional studies. Chapter 7 covers some elementary methods for planning and
executing experiments to ensure that adequate data are collected to meet
specific objectives.

In this chapter, fIXed effects and random effects are defmed, and
methods for analyzing experimental data are presented for each. It should
be noted, however, that the random effects methods presented in this chap­
ter assume- that the "levels" of a random factor which appear in an experi­
ment are a random sample from an infmite population of levels. In prac­
tice, not all populations are infinite. Of those that are fmite, some are

233
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large enough to treat as being infinite, while others are not and should be
treated as finite. Random effects analysis of variance methods for finite
populations are presented by Bennett and Franklin (1954). Rules for con­
verting the estimation procedure for any infinite population situation into
one for finite populations are given by Searle and Fawcett (1970).

5.1 ONE-WAY FIXED EFFECfS ANALYSIS
OF VARIANCE

Section 4.3.2.1 addresses the problem of comparing the unknown
means of two populations when the unknown variances are assumed to be
equal. The hypothesis testing procedure in that section assumes that
independent random samples are taken from the two populations. The test
statistic, given by Equation 4.40, is a function of the difference between
the two sample means and a pooled estimate of the common variance. If
the null hypothesis of interest is rejected, a confidence interval for the
difference in the population means can be constructed by using Equation
3.29 to aid in interpreting the difference. In practice, however, it is often
necessary to compare the means of more than two populations. In such
situations the fIXed effects analysis of variance is an appropriate methodol­
ogy that provides an initial overall test of the equality of two or more
means and also provides the quantities necessary for further specific com­
parisons among the means.

This section introduces the one-way fixed effects analysis of variance
with computational formulas for both equal and unequal sample sizes.
Power curves, OC curves, and required sample size determination are
presented, as well as techniques for making comparisons among the sample
means.

5.1.1 An Overall Test for Equal Means

Suppose that it is of interest to compare the means of a ~ 2 popula­
tions and that independent random samples of size n > 1 are taken from
each of the populations. The resulting data are symbolically displayed in .
Table 5.1. Let the subscript i denote population, and let j denote individual
sample observations. Then Yij is the jtb observed value from population i.
Within population i, the observations Yij are assumed to be from a distribu­
tion with mean JLi and variance Ul. The means /li may differ from popula­
tion to population, but the variance Ul is assumed to be the same for all
populations.

In practice, the a samples are sometimes called classes or treatment
groups. These names are descriptive of certain analysis of variance applica­
tions. For example, in an experiment involving college students, it might be
of interest to compare males and females with respect to some characteris­
tic such as grade point average. Thus, individuals in a random sample of
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TABLES.1

Sample Data Layout for a
One-Way Analysis of Variance

Population

235

1

YII
Y12

2

Y21

Yn

•
Yat

Ya2

Yan

students would be classified by sex, and a comparison of the observed class
means would provide a basis for reaching a conclusion about the equality
of the true population means of the characteristic of interest for male and
female college students. The name "treatment groups" comes from applica­
tions where a random sample from a homogeneous population is randomly
split into a groups, and each group is assigned a different stimulus or
treatment. Each treatment group is then assumed to be equivalent to a
random sample from the population as if the entire population had been
subjected to the corresponding treatment. The objective is to determine the
effect of the different treatments on some characteristic of interest. This is
accomplished by comparing the treatment means. In some applications, the
treatments are different levels of a stimulus, such as temperature. Thus,
the term treatment levels is often used in references to the population or
class identifications.

From the above assumptions, the observations can be characterized by
the linear model

Yij = Ili. + Eij

i = 1,2 ... ,a;j = 1, 2, ... ,n

(S.l)

where Ili. is the unknown mean of the ith population, and Eij is a random
error from a distribution with zero mean and with variance u'-. It is
assumed in the analysis of variance that the Eij are independent observa­
tions from a single distribution. The hypothesis testing and interval estima­
tion techniques presented in this section require the additional assumption
that the Eij are from a N(O,u'-) distribution. That is, each Yij is assumed to
be an observation from a N(Ili.,u'-) distribution.

Consider now the null hypothesis that all Ili. are equal with the alterna­
tive hypothesis that some of the Ili. differ. This is expressed as



236 CHAPTER 5 ANALYSIS OF VARIANCE

Ho: P.I = P.2 = ... = P.a

H A : some of the means are not equal
(5.2)

If we define an overall mean p., given by

a
p. = "l;1J.i/a

j-I
(5.3)

then under Hoevery IJ.i is equal to p., and the hypotheses can be written as

Ho:p.j = p., i = 1, 2, ... ,a
(5.4)

HA : 1J.i'*p., for some i

This latter representation of Ho gives rise to another form of the linear
model in Equation 5.1. To see this, define the quantity

aj=IJ.i-p.

and note that Equation 5.1 can be expressed as

Yjj = p. + (1J.i - p.) + Ejj

= p. + aj + Ejj

i = 1,2, ... ,a; j = 1, 2, ... ,n

(5.5)

(5.6)

In this form of the model, aj is called the effect of being in the ith popula­
tion. Thus, each observation Yjj is the sum of an overaU mean p., a
population effect aj, an observation Ejj which is assumed to be from a
N(O,~) distribution.

From Equations 5.3 and 5.5, note that

a a a
"l; aj = "l; (1J.i - p.) = "l;1J.i - ap. = ap. - ap. = 0 (5.7)
j-I j-I j-I

Thus, the hypotheses given by Equations 5.2 and 5.4 can be expressed in
terms of the aj as

Ho: aj = 0, i = 1, 2, ... ,a

HA : aj '* 0 , for some i
(5.8)
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That is, if all a populations. have the same mean, then each ILi. p. and
each ai = O.

The following notation is introduced to simplify subsequent discussions.
Denote the ith sample total by

D

Yi. = ~ Yij
j-I

Then the ith sample mean is given by

Y-· = Y'/n1. 1.

Similarly, denote the overall sample total by

a D a

Y.. = ~ ~Yij = ~Yi.
i-I j-I i-I

Then the overall sample mean is given by

'I.. = Y..Ian

(5.9)

(5.10)

(5.11)

(5.12)

This so-called "dot notation" is a concise way of representing sums.
Replacing a subscript by a dot indicates that the observations are summed
over all values of the subscript.

The total corrected sum of squares is a measure of the total variability
in the data and is given by

a D

SSTotal = ~ ~ (Yij - y,y
i-Ij-I

(5.13)

By analogy with Equation 3.13, SSTotai has (an - 1) degrees of freedom.
Equation 5.13 can also be expressed as

a D

SSTotai = ~ ~ [('Ii. - 'I.,) + (Yij - yiJ]2
i-Ij-I

a a D

= n~(Yi. - y,y + ~ ~ (Yij - yiJ2
i-I i-Ij-I

a D

+ 2 ~[(Yi. - Y.,)~(Yij - yiJ]
i-I j-I
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D

1; (Yij - Yi) = nyi. - nYi. = 0
j-I

so that the last term in the above expression vanishes, leaving

a a D

SSTotal = n 1; (Yi. - Y.Y + 1; 1; (Yij - yL>2
i-I i-Ij-I

(5.14)

Thus, the total variability in the data, measured by the total corrected sum
of squares, can be partitioned and expressed as a sum of two components.
The first component, called the between sample sum or squares, is a sum of
squared differences between the sample means Yi. and the overall sample
mean Y.. and is denoted by

a
SSBetweeD = n1; (Yi. - y,y

i-I
(5.15)

with (a - 1) degrees of freedom. The second component, called the within
sample sum or squares, is a sum of squared differences between the obser­
vations Yij within samples and the sample means Yi. and is denoted by

a D

SSWithiD = 1; 1; (Yij - yL>2
i-Ij-I

(5.16)

with a(n - 1) degrees of freedom. Thus, Equation 5.14 can be written
symbolically as

SSTotal = SSBetweeD + SSWithiD (5.17)

Efficient computational formulas for the sums of squares are obtained
by expanding and simplifying the expressions in Equations 5.14, 5.15, and
5.16. The resulting formulas are

a D y2

SSTotal = 1; 1; Yi~ - -"
i-Ij-I an

(5.18)
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a y2 y2
SS = '" -.!:.. - -"Between .~ n an

I-I

SSWithin = SSTotal - SSBetween
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(5.19)

(5.20)

The between sample mean square and the within sample mean square are
obtained by dividing the corresponding sums of squares by their degrees of
freedom; that is,

and

MSBetween = SSBetween/(a - 1)

MSWithin = SSWithin/a(n-1)

(5.21)

(5.22)

It is from these mean squares that a test of the hypothesis in Equation
5.4 or 5.8 is constructed. It can be shown that the expectations of the
mean squares are given by

a
E[MSBetween] = r? + n~(#Li - #t)2/(a-1)

i-I

or, equivalently,

and

a
E[MSBetween] = r? + n~aN(a-1)

i-I

E[MSWithin] = r?

(5.23)

(5.24)

Thus, MSWithin is an unbiased estimator for r? Note that when a = 2,
MSWithin is the pooled estimator for r? used in the two sample t-tests
presented in Section 4.3.2.1 with nl = n2 = n. Note also that if the null
hypothesis is true, each (#Li - #t) = 0; that is, each ai = 0, and Equa­
tion 5.23 reduces to E[MSBctween] = r? This means that under the null
hypothesis, MSBetween is also an unbiased estimator for r? When Ho is
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false, however, some of the ai are not zero, and examination of Equation
5.23 reveals that E[MSBctwcen] is larger than rfl. That is, when Ho is false,
MSBctwcen tends to overestimate rfl.

Next, assuming Eij - N(O,rfl), it follows that Yij - N(1l + ai,rfl),
Yi. - N(1l + aj,rfl/n), and Y.. - N(Il,rfl/an). Using these results, it
can be shown [see Searle (1971) or Graybill (1976) for details] that:

1. SSWithin/rfl has a chi-square distribution with a(n - 1) degrees of
freedom.

2. When Ho is true, SSBctwcen/rfl has a chi-square distribution with
a-I degrees of freedom.

3. SSBctwcen and SSWithin are independent.

Thus, when Hois true, the statistic

[SSBctwcen/rfl]/(a-I)F = ..:....-~-~---'---

[SSWithin/rfl]/a(n-1)

= MSBctwcen/MSWithin (5.25)

has an F-distribution with a-I and a(n - I) degrees of freedom.
When Ho is false, however, SSBctwcen/rfl has a noncentral chi-square distri­
bution with a-I degrees of freedom, and F in Equation 5.25 has a
noncentral F-distribution. The noncentral chi-square and noncentral F­
distributions are not discussed in detail in this section. The interested
reader is referred to Searle (1971) or Graybill (1976). At the intuitive
level, however, the previous discussion implies that if Ho is false, the
numerator of F in Equation 5.25 tends to be larger than rfl, while the
denominator is an unbiased estimator of rfl. Thus, an unusually large value
of F suggests that Ho is false. Specifically, Ho is rejected at the a level of
significance if

F ~ F1-a[a-l, a(n-I)] (5.26)

where F1-a[a - 1, a(n - I)] is obtained from Table A6. In practice, the
results at each step of the analysis are summarized in an analysis of ,ari­
ance table as illustrated in Table 5.2.

Example S.l Petit and Kienberger (1961) published the results of a
series of experiments to determine whether a particular ignition time and
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TABLE 5.2

One-Way Fixed Effects Analysis of Variance Table
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df ss MS ElMS! F

a MSIIetweea
Between samples a-I SSBetween MSBetwccn a2+n1;al/(a-J)

MSWithilli-I
Within samples a(n - 1) SSWithill MSWithill a2

Total an - I SSrotaJ

temperature combination reliably converts uranium-oxygen compounds to
stoichiometric U30s. Such a conversion procedure is important to the pre­
cise determination of uranium content by the gravimetric method and for
the preparation of uranium chemical and isotopic standards. One objective
of their experimentation was to assess the effect of the starting chemical
compound (parent material) on the uranium content of the U30s resulting
from the conversion.

Four 100g samples of each of three parent materials were ignited for
16 h at 850°C. The data below show the percent uranium content of the
resulting U30 S for the 12 samples. Use the one-way analysis of variance to
test the hypothesis that the true mean percent uranium is the same for the
three parent materials. Use the 0.05 significance level.

Parent Material

Urauyl Unnlum Uraulum
RaorIde peroxide Crioxide

84.798 84.794 84.772
84.793 84.805 84.773
84.793 84.802 84.760
84.815 84.797 84.775

yi.: 339.199 339.198 339.080
Yi.: 84.7998 84.7995 84.7700

yoo = 1017.477

The sums of squares are computed by applying Equations 5.18, 5.19, and
5.20 as follows:



SS = 339.1992 + 339.1982 + 339.080
2

&tW"D 4 4 4
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. 1017.4772

SSTotal =(84.7982 + 84.7932 + ... + 84.7752
) - 12

= 86,271.62335 - 86,271.62046 = 0.00289

1017.4772

12

= 86,271.62280 - 86,271.62046 = 0.00234

SSWithiD = 0.00289 - 0.00234 = 0.00055

The results are summarized in the following analysis of variance table:

Source df SS MS ElMSI F

3

4~a?
0.00117 '= 19 15Between materials 2 0.00234 0.00117 u2+....!=.!-

2 0.0000611 .

Within materials 9 0.00055 OO611סס.0 u2

Total 11 0.00289

From Table A.6, Fo.9s(2,9) = 4.26; and because F = 19.15 > 4.26,
reject the hypothesis of equal means.

Methods for further specific comparisons among the means are
presented in Section 5.1.3. In this example, however, a preliminary conclu­
sion can be reached by noting that the theoretical percent uranium in
stoichiometric U30 8 is 84.80, and that the sample means, rounded to three
significant digits, are as follows:

Uranyl fluoride:
Uranium peroxide:
Uranium trioxide:

84.800
84.800
84.770

Thus, the sample means for uranyl fluoride and uranium peroxide are
identical to the theoretical percent uranium for stoichiometric U30 8,

whereas the sample mean for uranium trioxide is somewhat smaller (this
obviously caused the rejection of the null hypothesis). A logical conclusion
is that igniting for 16 h at 850°C probably does not completely convert
uranium trioxide to stoichiometric U30 8•

5.1.2 Unequal Sample Sizes
Often in practice, the number of observations is not the same for all

classes. In such cases, the one-way analysis of variance formulas are
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slightly different. Let nj denote the sample size for the ith class; then

a
N= ~nj

i-I

243

(5.27)

is the total number of observations. The formulas for the sums of squares
and degrees of freedom are given by

and

dfTotal = N-I

a y~ y2
~ L ••

SSBetwccn = ,6J - - N
i-I ni

dfBetwccn = a- I

SSWithio = S8Total - SSBetwccn

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

dfwjthio = dfTotal - dfBetwccn = (N-1) - (a-I) = N-a (5.33)

As before, a mean square is a sum of squares divided by its degrees of
freedom. When the Dj are unequal, the expected value of MSBetwccn is given
by

where

a
p = ~ni#Li/N

i-I

(5.34)

(5.35)
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Note that if the II-i are not equal, 'ji is not in general equal to the parame­
ter 11-, given by Equation 5.3. If Ho is true, however, each ILi = 11-, from
which it follows that 'ji = 11-, and each (1Li - 'ji)2 = (II- - 11-)2 = O. Thus,
when Ho is true, Equation 5.34 reduces to E[MSBctween] = UZ. Also,
whether or not the sample sizes are equal, E[MSwithin] = UZ; that is,
MSWithin is an unbiased estimator of UZ.

As with equal sample sizes, SSBctween/UZ and SSWithin/UZ are indepen­
dent and have chi-square distributions with (a - 1) and (N - a) degrees
of freedom, respectively. Thus, the null hypothesis in Equation 5.4 or 5.8 is
rejected at the a level of significance if

MSBctween
F = MS ~ F1-a(a-I,N-a)

Within
(5.36)

In constructing an analysis of variance table and performing the
hypothesis test of equal means, the major difference caused by unequal
sample sizes is in the calculation of sums of squares and degrees of
freedom. There are, however, important advantages in having equal sample
sizes. First, the test statistic is relatively insensitive to slight departures
from the assumption of equal variances if the sample sizes are equal. This
may not be true for unequal sample sizes. Second, the power of the F-test
is maximized for a fixed total sample size N when the sample sizes are
equal. Thus, when possible, the practitioner should design and control an
experiment such that the sample sizes are equal, or as nearly so as possi­
ble. Experimental design is the topic of Chapter 7, and the reader is
referred there for more details.

5.1.3 Power and Required Sample Size

This section describes how power curves and OC curves are constructed
and how required sample sizes are determined for the one-way fixed
effects analysis of variance with equal sample sizes.

Section 4.1.2 defines Type I and Type II errors and their probabilities
of occurring in hypothesis testing. The probability {3 of a Type II error and
the power of a test, 1 - {3, are given by Equations 4.3 and 4.4. For the
one-way fixed effects analysis of variance, the probability of a Type II
error is given by

{3 = Pr[F < Fl-a(a-I ,N - a)IHois false]

and the power is given by

1 - {3 = Pr[F ~ F1-a(a-I,N-a)IHois false]

(5.37)

(5.38)
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Evaluation of Equations 5.37 and 5.38 requires knowing the distribution of
F when Ho is false and specifying the extent to which the means Ili differ.
From the discussion in Section 5.1.1, when Ho is false, F has a noncentral
F-distribution with a-I and N - a degrees of freedom and with non­
centrality parameter A, given by

(5.39)

Note that if Ho is true, A = O. As A increases, however, fJ in Equation
5.37 decreases, and 1 - fJ in Equation 5.38 increases.

Probabilities are difficult to compute directly from the noncentral
F-distribution. However, Pearson and Hartley (1951) provide charts that
give the power, 1 - fJ, of an F-test for various combinations of a, "1 =
(a - 1), "2 = (N - a), and q" where q, is given by

(5.40)

A subset of these charts is reproduced in Table A7 for values of "1 = 1
through "1 = 8, with a = 0.05 and a = 0.01.

Examination of q, in Equation 5.40 reveals that the use of the
Pearson-Hartley charts, and the interpretation of the resulting probabili­
ties, depends upon the interpretation of the quantity

Suppose that it is of interest to determine the power of a test when at least
two of the means differ by at least a specified amount o. Rather than
determining the power for every possibility (i.e., two means differ, three
means differ, and so on), a conservative approach is to consider the case
where two of the means differ by an amount 0, and the remaining (a - 2)
means are equal to the average of the two that differ. Then (Ili - p,)2 is
equal to (0/2)2 for the two extreme Ili, and equal to zero for the others. In
this case,

a
~(Ili - p,)2 = 2(0/2)2 = 02/2
i-I
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which is substituted into Equation 5.40 to obtain

(5.4l)

Usually in determining power, t? is unknown. If the purpose is to con­
struct a power curve or an OC curve for an analysis of variance that is
already completed, then MSWithin is substituted for t? in Equation 5.40
or 5.41. However, if the purpose is to provide guidance in choosing a sam­
ple size n for an experiment that is being planned, then u'l must be
estimated from similar previous studies or guesswork based on scientific
laws. Unfortunately, a poor choice of u'l can yield misleading results. This
is illustrated by Scheffe (1959). An often satisfactory alternative is to
express ~ as a multiple of fT. For example, it might be of interest to detect
when two of the means differ by ~ == 0.5 fT. Then substituting 0.5fT for ~

in Equation 5.41 gives

cP == .In(0.5)2/2a == .In/8a

which docs not require an estimate of u'l.
Use of the charts in Table A7 is best illustrated by example. Thus, the

following two examples cover the construction of a power curve and an
OC curve for an analysis of variance that has been completed, and the
determination of the required sample size n for an experiment that is being
planned.

Example 6.2 Suppose that in Example 5.1 we adopt the conservative
philosophy leading to Equation 5.41. Determine the points for constructing
a power curve and an OC curve for the F-test in Example 5.1.

First, note that in Example 5.1, a == 0.05, a == 3, n == 4, and
MSWithin == .OO611סס.0 Thus, the following quantities are needed to use
Table A7:

a == 0.05

"1 == a-I == 2

"2 == na-a == 12-3 == 9

and
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q, 2! [462/2(3)(O.OOOO611)1~= (l04.456)6
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Entering Table A7 with a = 0.05, "1 = 2, and "2 = 9, the
corresponding curve is a plot of 1 - fJ against q,. Because the objective is
to plot either 1 - fJ or fJ against 6, note that 6 = q,/104.456 and con- ­
struct the following table.

q, i 1 - fJ fJ

0.0 0.0 0.05 0.95
1.0 0.0096 0.23 0.77
1.2 0.0115 0.32 0.68
1.4 0.0134 0.43 0.57
1.6 0.0153 0.55 0.45
1.8 0.0172 0.65 0.35
2.0 0.0191 0.75 0.25
2.2 0.0211 0.82 0.18
2.4 0.0230 0.89 0.11
2.6 0.0249 0.93 0.07
2.8 0.0268 0.96 0.04
3.0 0.0287 0.978 0.022
3.2 0.0306 0.988 0.012

The resulting power curve and OC curve are constructed by plotting
1 - fJ against 0 and then fJ against 0, respectively. If an acceptable power
is 1 - fJ ~ 0.82, then the experiment described in Example 5.1 and the
resulting analysis of variance are satisfactory for detecting a difference of
approximately 0.0211 or larger between any two of the true means. Con­
ceptually, this means that if the experiment described in Example 5.1
could be repeated a large number of times and if any two of the true
means differ by about 0.0211 or more, then the F-test would be expected
to reject the hypothesis of equal class means at least 82% of the time.

Example 5.3 Suppose that the experiment described in Example 5.1
is only a pilot study and that the full-scale experiment will compare seven
parent materials. It is of interest to detect differences among the true
means of size 0 = 0.015 with probability 0.90 when testing at the
a = 0.05 level of significance. Determine the sample size n that satisfies
these requirements.
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The necessary quantities for using Table A7 are as follows:

1- 13= 0.90

a= 0.05

JlI = a-I = 7-I = 6

Jl2 = na-a = a(n-I) = 7(n-1)

tTl ~ MSWitbin = 0.0000611

and, from Equation 5.41,

tP ~ In(0.015)2/2(7)(0.OOOO611) = 0.5129.Jii

or

n ~(tP/0.5129)2

Because the objective is to determine n, enter Table A7 with JlI = 6 and
a = 0.05. To get a first approximation of n, look at the curve for
Jl2 = 00 and note that I - 13 = 0.90 when tP ~ 1.6. Substituting this
value of tP into the above expression for n gives n ~ (1.6/0.5129)2 =
9.73 ~ 10. A first approximation of n obtained from the curve for
Jl2 = 00 is always too small because for any finite n the actual curve is to
the right of the curve for Jl2 = 00, thus requiring a larger value of n for a
specified power.

If n = 10, then Jl2 = 7(9) = 63. Because in Table A7 there are no
curves for values of Jl2 between 60 and 00, it is not possible to use interpo­
lation to find a value of tP for I - 13 = 0.90 at Jl2 = 63. For any value of
I - 13, however, the curve for Jl2 = 60 yields a larger value of tP, and
thus a larger required sample size, than would be obtained for any
Jl2 > 60. Thus, using the curve for Jl2 = 60 provides a conservative esti­
mate of the required sample size for this example.

The curve for Jl2 = 60 indicates that tP ~ 1.68 when I - 13 = 0.90.
Substituting this value of tP into the above equation yields n ~

(1.68/0.5129)2 = 10.73 ~ II. Thus, the experiment should include
n = II samples of each of the seven parent materials, for a total of
na = 77 material samples.

5.1.4 Estimation and Comparison of Qass Means

Constructing an analysis of variance table and performing an overall
test of equal means, as described in Sections 5.1.1 and 5.1.2, is only the
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initial phase of a complete analysis of the data. The next phase involves
examining and making comparisons among the class sample means. This
section deals with constructing confidence intervals for the unknown true
class means and three basic types of comparisons: planned comparisons,
comparisons among all possible pairs of class sample means, and compari­
sons suggested by the data. Each of the three types of comparisons has its
own anomalies and requires its own specialized statistical procedures.

5.1.4.1 Confidence Intenals for the Qass Means

A summary display of results is an essential part of an effective data
analysis. In addition to an analysis of variance table, such as Table 5.2, a
list of the class sample means and their estimated standard deviations is
essential.

In the one-way fixed effects analysis of variance, it is assumed that Yij
is from a N(~j,~) distribution. Thus, the ith sample mean Yi. is from a
N(~j,~/ni) distribution. Because ~ is assumed to be the same for all
classes, a pooled estimator is given by

(5.42)

which has N - a degrees of freedom.
A 100(1 -a)% confidence interval for JLi is given by

(5.43)

where tl-a / 2(N - a) is obtained from Table AS.

Example 5.4 Using the results from Example 5.1, construct 95%
confidence intervals for the three unknown true means.

The following quantities are needed for application of Equation 5.43:

.JS2/ni = .JMSWithin/ni= .J0.OOOO611 /4 = 0.003908

t l - a /2(N-a) = 10.975(9) = 2.26

YI. = 84.7998

Y2. = 84.7995

Y3. = 84.7700
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By substituting these quantities into Equation 5.43, the 95% confidence
intervals are

#£1: 84.7998 ± 2.26(0.003908)

= 84.7998 ± 0.0088

or (84.7910, 84.8086)

#£2: (84.7907, 84.8083)

#£3: (84.7612, 84.7788)

Note that the value 84.80, which corresponds to stoichiometric U30 S, is
inside the confidence intervals for #£1 and #£2 but outside the confidence
interval for #£3' This should interest the investigator because it implies that
#£3 is less than 84.80 or that the ignition conditions used in the experiment
will not completely convert uranium trioxide to stoichiometric U30s.

Any inferences based upon confidence intervals for individual means
should be made and interpreted with caution. To see why, recall that the
data are assumed to be independent random samples from a normal distri­
butions. If 100(1 - a)% confidence intervals are constructed for all a of
the Pi, then the probability that all a intervals simultaneously cover their
respective Pi is approximately (1 - a)a (Definition 2.12). In Example 5.4,
the probability that all three 95% confidence intervals simultaneously
cover their respective true means is approximately (0.95)3 = 0.8574.
Thus, the approximate probability that at least one of the intervals does
not cover its true mean is 1 - (1 - a)a, which in Example 5.4 is 1 ­
(0.95)3 = 0.1426. As the number of intervals increases, the overall proba­
bility of reaching a wrong conclusion also increases. For example, if indi­
vidual 95% confidence intervals are constructed for a = 10 means, then
(0.95)10 = 0.5987 and 1 - (0.95)10 = 0.4013. That is, the approximate
probability is 0.4013 that at least one of the intervals does not cover its
true mean.

There are a number of possible remedies for this situation. Two are
considered here. The first is a special case of a procedure introduced by
Scheffe (1959). Rather than using Equation 5.43, the formula

(5.44)

yields confidence intervals for the a unknown true class means with an
overall probability of at least (1 - a) that the a intervals simultaneously
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cover their respective true means. Note that FI-a(a - l,N - a) is
obtained from Table A6.

The second procedure uses an inequality due to Bonferroni [no refer­
ence available, see Miller (1966) for a discussion] which basically guaran­
tees that using a/a in place of a in Equation 5.43 will yield confidence
intervals for the a unknown true class means with an overall probability of
at least (1 - a) that the a intervals simultaneously cover their respective
true means. The appropriate formula is thus

(5.45)

Either method guarantees an overall confidence level of at least
(1 - a). The width of the resulting intervals, however, will not in general
be the same for both methods. Thus, it may be desirable to construct
intervals by both methods and then report the narrower intervals. That is,
because both methods guarantee the same overall confidence level, it is
overly conservative to use intervals that are wider than necessary.

Example S.S Using the results from Example 5.1, construct confi­
dence intervals for the three unknown true means, with an overall confi­
dence level of 95%. Use both the Scheff6 method and the Bonferroni
method and compare the results.

By using Equation 5.44 with FO•9S(2,9) = 4.26, the Scheff6 confidence
intervals are given by

Yi. ± J2(4.26) JO.OOOO611/4

or

ri. ± 0.0114

Thus, we can be 95% confident that the following intervals simultaneously
cover the respective true class means:

Ill: (84.7884,84.8112)

1l2: (84.7881, 84.8109)

1l3: (84.7586,84.7814)

By using Equation 5.45 with to.9917(9) === 2.966 (computed by linear
interpolation), the Bonferroni confidence intervals are given by
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Yi. ± (2.966) JO.OOOO611j4

Yi. ± 0.0116

Thus, we can be 95% confident that the following intervals simultaneously
cover the respective true class means:

""1: (84.7882,84.8114)

""2: (84.7879, 84.8111)

""3: (84.7584,84.7816)

Note that the Bonferroni intervals are slightly wider than the Scheffe
intervals. In this example, however, the discrepancy is of no practical
importance. Because neither of the intervals for ""3 includes 84.80, we con­
clude that the ignition conditions used in the experiment probably will not
completely convert uranium trioxide to stoichiometric U30 S'

5.1.4.2 Planned Comparisons

In controlled experiments, the investigator typically plans an experi­
ment in such a way that certain comparisons among the class means can
be made. For instance, suppose that in Example 5.1 the investigator is
reasonably certain that igniting uranyl fluoride (UF) for 16 h at 850°C
will, on the average, convert this material to stoichiometric U30 S' The
investigator is not sure, however, what will happen when either uranium
peroxide (UP) or uranium trioxide (UT) is ignited under the same condi­
tions. Thus, the investigator quite likely had two specific comparisons in.
mind when he planned the experiment:

1. UP vs UF

2. UTvs UF

If ""1> ""2, and ""3 denote the true mean percent uranium content of
U30 S converted from UF, UP, and UT, respectively, then the above com­
parisons can be stated as the following statistical hypotheses:

""2 0
""2 ::f:. 0
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1L3 = 0
1L3 :F 0

Note that the null hypothesis in each case above is expressed as a lin­
ear combination of the true means, which can be written symbolically as

(5.46)

where the Ci are specified constants. That is, the first null hypothesis has
CI 1, C2 = -1, and C3 = 0; whereas the second null hypothesis has
CI = 1, C2 = 0, and C3 = -1. Note also that in each case

(5.47)

In general, any linear combination of means having the form given by
Equation 5.46, where the q satisfy Equation 5.47, is called a contrast of
the means. Note that if the null hypothesis of equal class means given by
Equation 5.4 is true, then each JLj IL, and Equation 5.46 reduces to

a a

C= ~ qJLj=1L ~ Ci
i-I i=1

which is IL(O) = 0 if Equation 5.47 holds.
Also note that to work in terms of ai rather than JLj, Equation 5.46 can

be expressed as

a a
C= ~ q JLj = ~ q(1L + ai)

i-I i-I

(5.48)

Whether working in terms of Equation 5.46 or 5.48, an estimator of C
is obtained by substituting Yi. for JLj, which gives

(5.49)
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Because each Yi. is from a N(#li,~/ni) distribution, it follows (see Section
2.7.1) that

(5.50)

An estimator of the variance of Cis obtained by substituting MSWithin for
~ in Equation 5.50. This estimator is denoted by Var(C) and is given by

.. a
Var(C) = MSWithin 2; Cflni

i-I

Consider testing the hypothesis

a
Ho: 2; Cj#li = 0

i-I

against the alternative

a
HA : 2; Cj#li = CA::I= 0

i-I

at the a level of significance. If Hois true, the statistic

C
t = -..Jt=Y=ar=(t==)

(5.51)

(5.52)

(5.53)

has a Student's t-distribution with N - a degrees of freedom. Thus, Ho is
rejected if

or (5.54)

where tl-a /2(N-a) is obtained from Table A5.
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A 100(l-a)% confidence interval for C is given by
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(5.55)

Example 5.6 Suppose that prior to the experiment described in
Example 5.1, the investigator was reasonably certain (from the results of
previous experiments) that igniting uranyl fluoride (UF) for 16 h at
850°C would, on the average, convert this material to stoichiometric U30 g•

The investigator was not sure, however, what would happen if either ura­
nium peroxide (UP) or uranium trioxide (UT) was ignited under the same
conditions. Thus, suppose that the investigator conducted the experiment
to compare UP with UF and UT with UFo To be consistent with the data
displayed in Example 5.1, let ILh IL2, and IL3 denote the true mean percent
uranium for UF, UP, and UT, respectively. By defining the contrasts

and

the hypotheses of interest are

1. Ho : C1 0
HA : C1 '* 0

2. Ho : C2 = 0
HA : C2 '* 0

These· are each to be tested at the a = 0.05 level of significance.
By using the results from Example 5.1 with Equation 5.49, estimates of

C1 and C2 are

(;1 = YI. - Y2. = 84.7998 - 84.7995 = 0.0003

and

(;2 = YI. - Y3. = 84.7998 - 84.7700 = 0.0298
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By applying Equation 5.51, estimates of the variances of (;1 and (;2 are

.. [ 12 (_1)2]Var(CI ) = Var(C2) = (OO611סס.0) "4 + -4-

= OO3055סס.0

and estimates of the standard deviations are

The test statistics, computed from Equation 5.53, are

tl = (;1 x = 0.0003/0.005527 = 0.054
.JVar(CI )

and

From Table AS, to.97S(9) = 2.26. Since -2.26 < tl = 0.054 < 2.26, there
is insufficient evidence to conclude that C. =!= O. Because t2 = 5.39 >
2.26, however, the hypothesis that C2 = 0 is rejected, and we conclude
that C2 > O. In terms of the true mean percent uranium values, there is
insufficient evidence to conclude that III and 112 are different, but there is
strong evidence that 113 is smaller than Ill' This leads to the conclusion that
igniting for 16 h at 850°C does not completely convert UT to
stoichiometric U30g.

5.1.4.3 Duncan's Multiple Range Test

Sometimes in practice an investigator cannot specify in advance which
contrasts of the means are to be tested. In such cases, the purpose of the
experiment may be to attempt to identify which of the population means
differ from one another. This can be accomplished by considering every
possible pair of the sample means, where for each pair the hypothesis of
equal population means is tested. That is, the hypothesis
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is tested against the alternative
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for each of the a(a-I)/2 pairs of means where i :# j. If, however, the
testing method presented in Section 4.3.2.1 is used to test each pair of
means at the a level of significance, then the probability of incorrectly
rejecting at least one of the null hypotheses is larger than a when a > 2.
From the Bonferroni inequality discussed in Section 5.1.4.1, an upper
bound on this probability is given by

1-(1 _a)[a(a-I)/2)

For example, if a = 0.05 and a = 5, then there are 5(4)/2 = 10 pairs of
means, and the probability of incorrectly rejecting at least one of the null
hypotheses could be as large as

1-(0.95)10 = 0.4013

There are several valid procedures that avoid this problem. Among the
more popular of these are the Newman-Keuls test, see Newman (1939)
and Keuls (1952) or Hicks (1982); Tukey's test, see Tukey (1949), Box,
Hunter, and Hunter (1978), or Graybill (1976); and Duncan's multiple
range test, see Duncan (1955). This section presents Duncan's multiple
range test.

To apply Duncan's multiple range test when the sample sizes are equal,
the a class sample means are arranged in ascending order. The estimated
standard deviation of each sample mean is given by

Sy, = .JMSWithin/n
I.

(5.56)

where n is the sample size for each class. From Table A8, obtain the
values qa(P,N -a), for p = 2, ... , a, where a is the desired level of sig­
nificance and N - a is the degrees of freedom for MSWithin. For each p, the
least significant range Rp is calculated as

Rp = qa(P, N -a) .JMSWithin/n, p = 2,3, ... ,a (5.57)
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Then the ranges (or differences) between sample means are tested, begin­
ning with the largest sample mean minus the smallest, which is compared
with Ra. If the range is larger than Ra, the two sample means are declared
significantly different, which implies that the corresponding true means are
different. Next, the range given by the largest sample mean minus the sec­
ond smallest is compared with Ra- l. This continues until all sample means
have been compared with the largest. The range given by the second larg­
est sample mean minus the smallest is then compared with Ra- l. The sec­
ond largest sample mean minus the second smallest is compared with
Ra- 2, and so on. This process continues until all a(a-l)/2 possible pairs
of sample means have been tested.

It sometimes happens that two sample means that are declared signifi­
cantly different fall between two sample means that are not significantly
different. To avoid contradictions, a difference between two means is con­
sidered nonsignificant if the two sample means fall between two other
means that do not differ significantly.

When the sample sizes are unequal, an approximate procedure can be
used if the ni are not too different. In the approximate procedure, the har­
monic mean ii of the sample sizes, given by

ii = a/O/nl + 1/n2 + ... + l/na) (5.58)

is substituted for n in Equation 5.56. That is, a pseudo standard deviation
is computed as

s;. = JMSWithin/ ii
I.

(5.59)

Then Equation 5.57 for computing the least significant ranges is appropri­
ately modified, to the form

(5.60)

The testing then proceeds exactly like Duncan's multiple range test, except
that the R; values are used in place of the Rp values. This method is
briefly mentioned by Snedecor and Cochran (980), but they give no spe­
cific reference.

Example 5.' The experiment described in Example 5.1 actually
involved more parent materials and ignition conditions than the three used
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in that example. The data for five classes (i.e., five sets of test conditions)
are given in the following table:

Experimental Data

Oass 1 2 3 4 5

Parent Metallic Uranyl Uranyl Uranium Uranium
_teriaI uranium fluoride fluoride peroxide trioxide

Ipition 2 h at 16 h at 4 h at 16 h at 16 h at
eoaditioas 850°C 850°C 900°C 850°C 850°C

84.794 84.798 84.795 84.794 84.772
84.792 84.793 84.798 84.805 84.773
84.790 84.793 84.802 84.802 84.760

84.815 84.805 84.797 84.775

Yi. 254.376 339.199 339.200 339.198 339.080
Yj. 84.7920 84.7998 84.8000 84.7995 84.7700
Di 3 4 4 4 4

The total sample size, computed from Equation 5.27, is

s
N= ~ nj= 19

j-I

Application of the formulas in Section 5.1.2 for unequal sample sizes
yields the one-way analysis of variance results summarized below.

Source

Between classes
Within classes

Total

elf SS

4 0.00265593
14 0.00060375

18 0.00325968

MS

0.000663983
OO43125סס.0

F

15.40

Table A6 does not give a value of Fo.9s(4,14); however, the values
Fo.9s(4,12) = 3.26 and Fo.9s(4,15) = 3.06 are given and can be used with
linear interpolation to compute

(15-14)
FO•9S(4,14) ::=3.06 + (3.26 - 3.06) (15-12) = 3.13

Because F = 15.40 > 3.13, the hypothesis of equal means is rejected.
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Next, apply the approximate multiple range procedure, with a = 0.05,
to compare all possible pairs of the class sample means.

The harmonic mean of the sample sizes, computed from Equation 5.58,
is

ii = 5/0/3 + 1/4 + 1/4 + 1/4 + 1/4) = 3.75

Substituting ii and MSWithin into Equation 5.59 gives

S;i= ~0.000043125/3.75 = 0.00339

Entering Table A8 with a = 0.05 and N -a = 14, the values

qo.os(2,14) = 3.03
qo.os(3,14) = 3.18
qo.os(4,14) = 3.27
Qo.os(5,14) = 3.33

are obtained, and Equation 5.60 is used to compute the values

R; = 3.03 (0.00339) = 0.01027
R; = 3.18 (0.00339) = 0.01078
R; = 3.27 (0.00339) = 0.01109
R; = 3.33 (0.00339) = 0.01129

The sample means are arranged in ascending order as shown below:

Ys. = 84.7700
Yl. = 84.7920
Y4. = 84.7995
Y2. = 84.7998
Y3. = 84.8000

The testing then proceeds as follo\\<5:

Y3. - Ys. = 0.0300 > R;
Y3. - Yl. = 0.0080 < R;
Y3. - Y4. = 0.0005 < R;
Y3. - Y2. = 0.0002 < R;
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Y2. - YS. = 0.0298 > RZ
Y2. - Yl. = 0.0078 < R;
Y2. - Y4. = 0.0003 < R;

Y4. - YS. = 0.0295 > R;
Y4. - Yl. = 0.0075 < R;

Yl. - YS. = 0.0220 > R;
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These results indicate that Ys. is significantly less than each of the other
four sample means. There are no significant differences, however, among
the sample means for classes 1, 2, 3, and 4. This implies that ILs is less
than the other four true mean percent uranium values, but there is not
sufficient evidence to conclude that ILh IL2, IL3, and IL4 differ from one
another.

It should be noted that short cuts can be utilized with Duncan's multi­
ple range rest to minimize the total number of calculations. In this exam­
ple, the first two comparisons indicate that Y3. -Ys. is significant, but
Y3. -Yl. is not. Because Y4. and Y2. are between Yl. and Y3., there can be no
significant differences among YI" Y4., Y2., and Y3.; thus, further tests among
these four sample means are not necessary. All that remains is to deter­
mine whether Ys. is significantly smaller than Yl., Y4., and Y2.. Because Yl. is
closest to Ys., the testing could begin with Yl. -Ys., which is significant.
Because both Y4. and Y2. are greater than Yl., they are certainly signifi­
cantly greater than Ys., so that Y4. -Ys. and Y2. -Ys. need not be tested.
Using this approach, the above example requires testing only 3 of the 10
possible differences.

5.1.4.4 Comparisons Suggested by the nata

The testing procedure presented in Section 5.1.4.2 is recommended for
any comparisons among the class sample means that the experiment was
designed to make. Sometimes, however, in examining the means, whether
by an "eyeball inspection" or by a procedure such as Duncan's multiple
range test, patterns are noticed which suggest certain comparisons that
were not planned in advance. The corresponding contrasts are estimated by
using Equation 5.49, but the t-test given by Equation 5.54 is not valid
because the contrasts were selected after examining the data. Thus, when
using the t-test, the probability of finding an erroneous significant result
(Le., making a Type 1 error) is larger than a, the specified level of signifi­
cance. Scheffe (1959) provides a conservative test for this situation. By
using Scheff6's test, any number of comparisons can be simultaneously
tested, and the overall probability of making a Type I error is at most a.
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Scheffe's test requires computing a test statistic t from Equation 5.53
for each contrast. The null hypothesis Ho, given by Equation 5.52, is
rejected for a particular contrast if either

t ~ J(a-I)F1-a(a-I,N-a)

or

t~ - J(a-1)F1- a(a-I,N-a)

(5.61)

where a is the number of classes in the experiment, N - a is the degrees of
freedom for MSWithin, and F1-a(a-I,N-a) is obtained from Table A6.

Confidence intervals for the unknown true values of any number of
contrasts can be constructed from the formula

C± JVar(C) J(a-1)F1- a(a-I,N-a) (5.62)

where C and Var(C) are given by Equations 5.49 and 5.51. The overall
probability that these intervals simultaneously cover their true parameter
values is at least I-a.

When a = 2, Scheffe's test and confidence intervals are identical to
the t-test and confidence intervals that result from Equations 5.54 and
5.55. This is because

When a > 2, however, a substantially larger (positive or negative) value of
t is required to reject Ho with Scheffe's test than with the t-test. For
example, let a = 0.05, and suppose that there are a total of N = 32
observations in an experiment. If there are only a = 2 classes in the
experiment, then 1o.97s(30) = 2.04 and

J(2-1)Fo.9S(l,30) = .J4.17 = 2.04

However, if there are a = 8 classes in the experiment, then 10.975(24) =
2.06 and

J(7)Fo.9S(7,24) = .J(7)2.42 = 4.12
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Thus, when a > 2, Scheff6's test gives protection against Type I errors,
but at the expense of less powerful tests.

Example 5.8 Suppose that in Example 5.7 the experimenter wishes to
test the hypothesis that all of the following contrasts are zero with an
overall significance level of a = 0.10:

CI : (IL2 + IL3)/2 - ILl

C2 : (IL2 + IL3)/2 - IL4

C3 : (IL2 + IL3)/2 - ILs

C4 : (IL2 + IL3 + IL4)/3 - ILl

Cs : (IL2 + IL3 + IL4)/3 - ILs

C6 : (ILl + IL2 + IL3 + IL4)/4 - ILs

From Example 5.7, a = 5 and N - a = 14. Table A6 does not give a
value of Fo.90(4,14); however, the values Fo.90(4,12) = 2.48 and FO.90(4,
15) = 2.36 are given and can be used with linear interpolation to compute

(15-14)
Fo.90 (4,14) =:2.36 + (2.48 - 2.36) (15-12) 2.40

Thus,

.J(5 -l)Fo.90 (4,14) = J(4) 2.40 = 3.10

Estimates and test statistics obtained by applying Equations 5.49, 5.51,
and 5.53 are displayed below. The reader is encouraged to verify some of
these values.

..
.JVar(C)Contrast C t

CI 0.0079 0.00445 1.78 < 3.10
C2 0.0004 0.00402 0.10 < 3.10
C3 0.0299 0.00402 7.44 > 3.10
C4 0.0078 0.00424 1.84 < 3.10
Cs 0.0298 0.00379 7.86 > 3.10
C6 0.0278 0.00370 7.51 > 3.10
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The t statistics for the estimated contrasts C3, Cs, and (;6 exceed 3.10;
thus, these estimated contrasts are significantly larger than zero, which
implies that the unknown true contrasts are larger than zero. The
estimated contrasts Cit C2, and C4 are not significantly different than
zero.

The estimated contrasts Cit (;2, and C3 compare the average of Y2. and
Y3. against each of the "other th!ee sample means, and only Ys. is signifi­
cantly different (less). C4and Cs compare the average of Y2.' Y3., and Y4.
against each of the other two sample means, and only Ys. is significantly
different (less). Finally, C6 compares Ys. with the average of the other four
class means, and Ys. is significantly less. These results are consistent with
the results of Duncan's multiple range test in Example 5.7.

Note, however, that if the contrasts had been tested by using the t-test
in Equation 5.54, all contrasts except C2 would have been declared signifi­
cantly larger than zero. This is because 1o.9s(14) = 1.76, whereas the
Scheff6 criterion is 3.10.

5.2 ONE-WAY RANDOM EFFECTS
ANALYSIS OF VARIANCE

In Section 5.1, the effects aj = ILl - IL, for i = 1,2, ... , a, are called
fixed effects because only the a classes present in the experiment are of
interest. If the experiment was repeated several times, the same a classes
would be included each time. In the fixed effects case, the purpose of the
experiment and subsequent data analysis is to estimate and compare the a
means JLj, or the a effects aj. In some applications, however, the a classes
present in an experiment are a random sample from a large population of
classes. Thus, if the experiment was repeated several times, a different
random sample of a classes would be selected from the population of
classes each time. In such cases, the purpose of the experiment, the inter~

pretation of the model used, and the objectives of the analysis are different
than for the fIXed effects case.

Because the a classes are a random sample from a population of
classes, the corresponding true means ILl are a random sample from a pop­
ulation of means. If it is assumed that the means in this population have a
distribution with an overall mean jJ" then the effects

aj = JLj - IL, i = 1, 2, ... , a

corresponding to the classes in the experiment, are a random sample from
a population of effects that have a distribution with mean zero and vari­
ance IT;. Therefore, the aj are called random effects.
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As in the fIxed effects case, a random sample of size ni is taken from
the ith class. The measured response for the jth sampled unit in the ith class
can be expressed as

Yij = II. + (Xi + Eij

i = 1,2, ... ,a; j = 1,2, ... ,ni

(5.63)

where it is assumed that II. is the overall population mean, (Xi has a distri­
bution with mean zero and variance 11~, and Eij has a distribution with
mean zero and variance Ul. It is also assumed that the (Xi are uncorrelated,
the Eij are uncorrelated, and every (Xi is uncorrelated with every Eijo Under
these assumptions, Equation 5.63 is called the random effects model.

Although Equations 5.6 and 5.63 have the same form, the interpreta­
tion of the (Xi and the objectives of the experiment and data analysis differ
for the two models. In the fIxed effects model, Yij is assumed to have a dis­
tribution with mean JI.i = II. + (Xi and variance Ul, and the objectives of
the experiment and data analysis are to estimate and compare the JI.i (or
(Xi), and to estimate Ul. Also, any inferences from the fIxed effects analysis
apply only to the a classes present in the experiment. In the random
effects model, however, Yij is assumed to have a distribution with mean II.
and variance 11~ + Ul; that is,

and

Var[Yij]= Var[(Xi + Eij]

= Var[(Xi] + Var[Eij] = 11~ + 112

(5.64)

(5.65)

In the random effects case, the objectives of the experiment and data anal­
ysis are to estimate 11., 11~, and Ul and to test the hypothesis that 11~ = O.
Inferences from the random effects analysis are applicable to the entire
population of classes, not just the a classes present in the experiment.

5.2.1 Variance Components

For the one-way random effects analysis of variance, the experimental
data are tabulated as in Table 5.1. The sums of squares are computed
exactly as in the fIxed effects case by applying Equations 5.18, 5.19, and
5.20 when the within class sample sizes are equal, or Equations 5.28, 5.30,
and 5.32 when the sample sizes are unequal. The degrees of freedom,
mean squares, and test statistic F are also computed exactly as in the fIxed
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effects case. The general form of a one-way random effects analysis of var­
iance table is illustrated by Table 5.3, where the quantity 110 in the E[MS]
column is given by

I a
no = -- [N - (~nD/N]

a-I i-I

TABLE 5.3

One-Way Random Effects Analysis of Variance Table

Source d( SS MS ElMS) F

Between classes a-I SSBet.... MS_ rr + DoO'~
MSIlctween

MSwithin
Within classes N-a S8withiD MSWithin rr

Total N-I SSrotal

(5.66)

When the sample sizes are equal, say ni = n, Equation 5.66 reduces to
no = n; that is,

I 2 (a-On
no= a-I [an-an Ian] = a-I =n

Estimation of the variance components, u; and ~, is accomplished by
equating the observed and expected mean squares, which results in the
equations

and

MSWithin = q2

(5.67)

The estimators of ~ and u;, obtained by solving these equations, are given
by

..2-MSu - Within (5.68)
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.. 2 MSBctwccn - MSWithin
(1 =

a nO
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(5.69)

These estimators are unbiased when the model, given by Equation 5.63,
and the corresponding assumptions are valid. Note that for the purpose of
estimation, it is not necessary to assume any particular form of the distri­
bution of Yij except that the mean and variance are given by Equations
5.64 and 5.65.

In practice, it sometimes happens that MSBctwccn < MSWithin, so that
Equation 5.69 yields a negative estimate of (1~. Because a variance is posi­
tive by definition, a negative estimate is disturbing. One course of action is
to interpret the estimate as evidence that the true value of (1~ is near zero,
and that variability due to sampling has caused the negative estimate.
Under this philosophy, &~ is set to zero whenever MSBctwccn ~ MSWithin.

The hypothesis of interest in a one-way random effects analysis is that
(1~ = O. Because (1~ ~ 0 by definition, the alternative hypothesis is one­
sided and includes values of (1~ larger than O. That is, we wish to test the
hypothesis

against the alternative (5.70)

at the a level of significance. To do so requires the additional assumptions
that

and thus

Yij - N(#t, (1~ + ~)

(5.71)

(5.72)

(5.73)

With these additional normality assumptions, SSWithin/~ has a chi-square
distribution with N - a degrees of freedom and SSBctwccn/(~ + nO(1~)
has a chi-square distribution with a-I degrees of freedom. Also,
SSBctwccn and SSWithin are independent.
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From the E[MS] column of Table 5.3, note that if O'~ = 0, then both
MSBctwccn and MSWithin are unbiased estimators of rfl. Thus, when Ho is
true, the test statistic

MSBctwccnF=-"":"";":'-
MSWithin

has an F-distribution with a-I and N - a degrees of freedom. When
O'~ > 0, however, the numerator in F is an unbiased estimator of rfl +
DoO'~, which is larger than rfl. That is, when HA is true, the numerator of F
is expected to be larger than the denominator. Thus, Ho is rejected at the
a level of significance if

F ~ F1-ia-I,N-a)

where F1-a(a-I,N-a) is obtained from Table A6.

(5.74)

Example 5.9 In this example, adopted (and condensed) from Jaech
(1973), six U02-PU02 pellets are randomly selected from a batch of pel­
lets, and three analyses are performed on each pellet to determine percent
plutonium. The resulting data are given in the table below.

Percent Plutonium in VOz-PoOzPellets

Pellet

1 2 3 4 5 6

2.51 2.46 2.47 2.49 2.51 2.45
2.53 2.50 2.50 2.53 2.49 2.42
2.50 2.46 2.47 2.53 2.53 2.50

Yi. 7.54 7.42 7.44 7.55 7.53 7.37
Y.. 44.85

The population of "classes" includes all pellets in the batch, and the six
pellets in the experiment are a random sample from this population. The
three analyses on the ith pellet are assumed to be a random sample from
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the conceptual population of possible analyses that would be observed if
the pellet were analyzed an infinitely large number of times.

The hypothesis that O'~ = 0 is to be tested at the 0.10 level of signifi­
cance. It is also of interest to estimate the variance components, O'~ and u'-,
for pellets and analyses within pellets, respectively, and the variance of Yij'

By applying Equations 5.18, 5.19, and 5.20, the sums of squares are
computed as

SSTotal = 2.512 +2.532 + ... + 2.502 - (44.85)2/18

= 111.76790 - 111.75125 = 0.01665

SSBctween = (7.542 +7.422 + ... + 7.372)/3 - (44.85)2/18

= 111.76063 -111.75125 = 0.00938

SSWithin = 0.01665 - 0.00938 = 0.00727

and the analysis of variance table is given below.

Source elf SS MS ElMS] F

Between pellets 5 0.00938 0.001876 u'- + 30'~ 3.10
Within pellets 12 0.00727 0.000606 u'-

Total 17 0.01665

From Table A6, Fo.90(5,12) = 2.39. Since 3.10 > 2.39, reject the hypoth­
esis that O'~ = 0 and conclude that O'~ > O.

From Equations 5.68 and 5.69, estimates of u'- and O'~ are

q2 = 0.000606

and

u~ = 0.001876 ~ 0.000606 = 0.000423

By substituting these estimates in place of u'- and O'~ in Equation 5.65, an
estimate of the variance of Yij is given by

Var(Yij ) = u~ + q2

= 0.000423 + 0.000606 = 0.001029
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5.2.2 Power and Required Sample Size
for Testing 110: O"~ = 0

In some applications, the variance component O'~ is of primary interest,
and it is necessary to design a sampling plan that ensures a specified Icvcl
of power for testing the hypothesis in Equation 5.70. This requires
methods for computing the power of the test and for dctermining the sam­
ple size required to ensure a specified level of power.

As a basis for developing the methods presented in this section, notc
that the ratio

MSBctwccn/(al + Do O'~)

MSWithin/ al

has an F-distribution with a - I and N - a degrees of freedom. Thus,
the test statistic

MSBetwccn
F=----

MSWithin

is distributed as the product

[ 21-1 [ 2/-1
al + no O'a Do O'a

U =U 1+--
al al (5.75)

where U has an F-distribution with a - I and N - a degrees of freedom.
To use this result in determining power and required sample sizes for vari­
ous values of O'~, a value of al must be specified. This can be a problem,
because al is usually unknown. A common approach is to work in tcrms of
the quantity

(5.76)

For specified values of A, no, and significance level a (not to be con­
fused with the effects ail, the power of the test is given by

(5.77)
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This can be written in the form

I-P = Pr[F > Fp(a-l,N-a)]

where
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Fp(a-l,N-a) = (1 + noX)-1 F I - a (a-l,N-a) (5.78)

and where F I - a (a-l,N-a) is obtained from Table A6. Then p (and thus
1- P) is approximated from Table A6 by interpolation. This procedure is
illustrated by the following example.

Example 5.10 In Example 5.9, determine the power of the hypothe­
sis test when X = u;/r? = 1 and when X = 2. Recall that no = n = 3
and Fo.90(5,12) = 2.39.

For the case where X = 1, application of Equation 5.78 yields

FP(5,12) = (1 + 3)-1(2.39) = 0.598

Entering Table A6 with 5 and 12 degrees of freedom, note that all entries
in the body of the table are larger than 0.598. Thus, the reciprocal rela­
tionship given by Equation 4.54 is used. That is,

F1_P(12,5) = I/FP(5,12)

or

F1- p(12,5) = 1/0.598 = 1.672

Entering Table A6 with 12 and 5 degrees of freedom, the values

Fo.so (12,5) = 1.09

and

FO•7S (12,5) = 1.89
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are obtained. By linear interpolation, the power of the test when >. = I is
approximately

I-P '" 0.75 -[::::::: ::~~21 (0.75 - 0.50) - 0.682

For the case where >. = 2, application of Equation 5.78 yields

Fp(5,12) = (l + 6)-1 (2.39) = 0.341

and the reciprocal relationship gives

F1- P(l2,5) = 1/0.341 =2.933

Entering Table A6 with 12 and 5 degrees of freedom, the values

Fo.7s(l2,5) = 1.89

and

Fo.90(l2,5) = 3.27

are obtained. By linear interpolation, the power of the test when >. = 2 is
approximately

I-P :a: 0.90 _[3.27 - 2.933 1(0.90 - 0.75) = 0.863
3.27 - 1.89

Now consider the problem of determining the within class sample size
n required to ensure a specified level of power of the hypothesis test when
O'~ is greater than or equal to a given value. The method presented
assumes a fixed number of classes a, and specified values of 0';, u'-, signifi­
cance level a, and power 1 - p. Since u'- is usually unknown, it is conven­
ient to work in terms of >. = O'~/u'-.

Note that if all nj = n, then Do = n, and Equation 5.78 can be
rearranged and written in the form
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F1-a(a - I,N - a) I. -I
Fp(a - I,N-a)
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(5.79)

Because N = an, however, Equation 5.79 involves n nonlinearly and
must be solved iteratively for n. The iterations begin by substituting
F1-a(a-l,oo) and Fp (a-I,oo), obtained from Table A6, into Equation
5.79 and computing an initial value for n. This first approximation to n
(rounded up to the next integer) is used to compute N = an, and the
quantities F1-a(a-I,N-a) and Fp(a-I,N-a),obtained from Table A6,
are substituted into Equation 5.79. The resulting value of n (rounded up)
is then used to compute N = an, and the procedure continues until there
is no change in the value of n. When the iterations require a value from
the F-distribution with degrees of freedom that are not included in Table
A6, linear interpolation can be used to compute an approximate F value.
Linear interpolation is illustrated in Examples 5.7 and 5.8.

Although the number of classes a is specified in the above procedure,
the procedure can be repeated with different values of a. This will deter­
mine a number of alternative sampling plans and may be advantageous
when the costs of sampling and measurements or analyses are an
important consideration.

Example s. t t The results of Example 5.10 indicate that the sam­
pling plan described in Example 5.9 provides power I - fJ = 0.682 when
~ = 1. Find the required number n of analyses per pellet to ensure that
the power is I - fJ ~ 0.90 when ~ = I, a = 0.10, and the number of pel­
lets is a = 6.

The iterations begin by obtaining the values of Fo.90(5,oo) = 1.85 and
FO.1O(5,oo) = I/Fo.90(oo,5) = 1/3.10 = 0.323 from Table A6. The initial
value of n, computed from Equation 5.79, is

[~-II0.323
n = = 4.73 ~5

I

With N = 6(5) = 30, the values FO•90(5,24) = 2.10 and FO.lo(5,24) =
I/Fo.90(24,5) = 1/3.19 = 0.313 from Table A6 are substituted into Equa­
tion 5.79 to compute
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[;31
1°3 - 11

n = ~----'- = 5.71 :::=6
1

Then with N = 6(6) = 36, the values FO•90(5,30) = 2.05 and Fo.IO(5,30)
= I/Fo.90(30,5) = 1/3.17 = 0.315 from Table A6 are substituted into
Equation 5.79, to compute

[
2.05 _ 11

0.315
n= ~-_---..:....=5.51:::=6·

1

Because n = 6 is the same value as obtained from the previous iteration,
the iterations stop.

Thus, the number of analyses per pellet must be increased from n = 3
to n = 6 to ensure that the power is at least 0.90 when X = 1 (i.e., when
u; = q2).

5.2.3 Estimation of the OveraU Mean Il

An important objective of a one-way random effects analysis of vari­
ance is often to estimate the overall mean IJ.. When the nj are equal, say
nj = n, the minimum variance unbiased estimator of IJ. is given by

- - INY.. -Y.. (5.80)

When the nj are unequal, however, Equation 5.80 assigns more weight to
classes with larger nj values and less weight to classes with smaller nj
values. To see this, note that

where Yi. = Yj.!nj is the sample mean of the ith class. If the unequal nj
were planned in advance for the specific purpose of weighting the class
sample means in estimating IJ., then Equation 5.80 may be an appropriate
estimator. With unequal nj, however, although Y.. is an unbiased estimator
for IJ., it is not a minimum variance estimator unless u; = O. Thus, for
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applications where q~ > 0, the investigator should carefully consider the
trade-off between achieving· a particular weighting of the observations in
estimating II- and obtaining a more precise estimate (one with a smaller
variance).

In practice, the unequal nj are usually not planned, but happen due to
unavoidable occurrences or circumstances during experimentation or mea­
surement. In such cases, it is desirable to find an unbiased estimator for II­
that has the smallest possible variance. Searle and Pukelsheim (1986)
show that the minimum variance unbiased estimator for II- is the weighted
average of the class sample means, given by

it=

where the weight assigned to each Yi. is the reciprocal of its variance.
Unfortunately, q~ and u'- are usually unknown, and it cannot be

applied directly. One option is to substitute the estimates q~ and 02. When
this is done, however, the variance of it involves the variances and covari­
ance of q~ and 02, which results in an expression that is cumbersome and
difficult to work with. To gain an appreciation for the potential complexity
of the variance of it, the interested reader is referred to the formulas for
the variances and covariance of q~ and 02 in Searle (1971). Also, when
estimates are substituted for q~ and u'- in it, the variance of it is larger (in
many cases considerably larger) than when q~ and u'- are known, and it is
no longer the minimum variance estimator.

In most nuclear material accounting applications, the variance com­
ponents are unknown, and one objective of the experiment and analysis of
variance is to estimate them. Thus, it is not recommended for general use.
Instead, two other estimators are discussed and recommendations are given
to help in deciding when each is most appropriate.

The discussion given by Searle and Pukelsheim (1986) makes use of
the ratio

which is referred to in the statistics literature as the intraclass correlation
coefficient; e.g., see Snedecor and Cochran (1980). As p approaches zero,
it approaches the estimator Y.., given by Equation 5.80. A value of p near
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zero indicates that q~ is very small relative to u'-. As p approaches one, ft
approaches the unweighted average of the class sample means, given by

a

Yu = ~ y. fa
j_1 1.

(5.81)

A value of p near one indicates that u'- is very small relative to q~.

By letting p vary between zero and one, Searle and Pukelsheim (1986)
demonstrate that as p increases from zero, the weights assigned to the
class sample means in ft rapidly equalize (i.e., become nearly equal). The
rate of equalization depends upon the values of the nj. In the most extreme
cases considered, however, the weights were nearly equal when p ~ 0.7,
which corresponds to values of u'- ~ O.4q~. In such cases, ft is practically
the same as the unweighted estimator Yu, given by Equation 5.81.

For many applications, neither Yu nor Y.. will be a minimum variance
estimator. For specified values of the variance components and the nj, how­
ever, one of the estimators will have a smaller variance than the other and
would be a satisfactory choice.

It can be shown that when q~ ~ u'- (which is often the case), Yu has a .
smaller variance than Y.. for any set of unequal nj. Thus Yu is recom­
mended whenever q~ ~ &2. If q~ is quite small relative to &2, then Y.. is
recommended. For cases that do not satisfy one of the above criteria, it is
recommended that the estimated variances of Yu and Y.. be computed (for­
mulas are given below); then the estimator with the smallest estimated
variance should be used.

Note that when the nj are equal, Y.. = Yu = ft. This is one advantage
of equal sample sizes.

The variance of Y.. is given by

where

Var(yJ (5.82) .

a

rl = ~nf!N
j-I

(5.83)

Var(yJ is estimated by substituting q~ and &2, computed from Equations
5.68 and 5.69, into Equation 5.82, which gives
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Var(yJ (5.84)

The degrees of freedom for Var(yJ are approximated by applying
Satterthwaite's (1946) formula for linear combinations of independent
mean squares. This requires that Equation 5.84 be expressed in terms of
MSBctween and MSWithin' From Equations 5.68 and 5.69,

rl(MSBctween - MSWithin)
--'----------'-- + MSWithin

no
V!r(yJ = -----=---N-----

rl [ 1 rl I= Nno MSBctween + N - Nno MSWithin

(5.85)

The approximate degrees of freedom for Var(y.. ) are then

(5.86)

and df is rounded to the nearest integer. When it is desirable to be con­
servative, df is rounded down.

The variance of the unweighted estimator Yu is given by

where

1 a [ I 1r2= -~ -
ai-I nl

(5.87)

(5.88)
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An estimate of Var(yu) is given by

(5.89)

In terms of the mean squares, Var(yu) can be expressed as

MSBetween - MSWithinI
110 + r2 MSWithin

Vdr(yu) = ....:...--------'------
a

MSBetween + I~-_1_] MSWithin
ano a ano

= m3 MSBetween - m4 MSWithin

The approximate degrees of freedom for Var(yu) are then

(m3 MSBetween + m4 MSWithin)2

(m3 MSBetween)2 + (ffi4 MSWithin)2
a-I N-a

(5.90)

(5.91) .

and dfu is rounded to the nearest integer. When it is desirable to be con­
servative, dfuis rounded down.

At this point, it should be noted that when the ni are equal, say ni = n,
the estimators y.. and Yu are identical, and Equations 5.82 and 5.87 reduce
to the form

Var(y.,) = Var(yu)

E[MSBetween]
=

an

Then, Equations 5.84 and 5.89 reduce to

MSBev.. (- ) V" (- ) . tweenary=ary=
.. u an

(5.92)

(5.93)
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and Equations 5.86 and 5.91 reduce to
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(5.94)

Assuming that Yij - N (#t,0'; + <?), an approximate 100(1 - a) %
confidence interval for #t is given by either

(5.95)

or

(5.96)

depending upon whether Y.. or Yu is chosen to estiTate #t. In Equations
5.95 and 5.96, the value of tl-a/2(df) or t1- a/2(dfu) is obtained from
Table A5.

Hypotheses about #t are tested by using methods analogous to those in
Section 4.2.2. The test statistic is given by either

or

Y.. -I'{)
t=---r==

.JVar(y.,)

Yu - I'{)

t = -.Jr=Y=ar=(y=u)

(5.97)

(5.98)

depending upon whether Y.. or Yu is chosen to estimate #t. In the notation of
Section 4.2.2, I'{) is a hypothesized value of #t, and the test statistic t is
compared with a value obtained from Table A5 with either df or dfu
degrees of freedom.

5.2.4 Sampling to Estimate IJ.

Suppose that an experiment is to be designed by selecting n and a so
that Var(y.,) in Equation 5.92 is minimized, subject to limits on the cost of
experimentation. In many applications, the cost C of randomly selecting a
units from a population and making n independent measurements or
analyses on each unit is approximately of the form
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(5.99)

In this cost function, c, is the cost of an individual unit and its random
selection from the population, and C2 is the cost of a single measurement
or analysis on a unit or on a subsample from the unit. It can be shown
that Var(y..> is minimized with respect to a and n, subject to a rlXed total
cost C, when

(5.100)

Because n must be a positive integer, this value is rounded to the nearest
positive integer, and a is found from Equation 5.99.

Use of Equation 5.100 requires values for O'~ and q2, which are usually
unknown. Thus, if an extensive experiment is being planned to estimate
the population mean p., a small pilot study may be needed to obtain pre­
liminary estimates of O'~ and q2.

Example 5.12 In Example 5.9, six U02-PU02 pellets are randomly
selected from a batch of pellets, and three analyses are performed on each
pellet to determine percent plutonium. The following estimates are
obtained from the sample data in Example 5.9:

Y.. = y..lN = 44.85/18 = 2.4917

&; = 0.000423

q2 = 0.000606

MSBctwecn = 0.001876

Suppose that performing each analysis costs five times as much as the
combined cost of randomly selecting a pellet and the loss of some material
due to analyzing the pellet (most of the pellet would reenter the manufac­
turing process as usable scrap). Can the experiment be redesigned to
reduce Var(y..> while holding the cost of the experiment rlXed?

First, let C2 be the cost of each analysis on a pellet. Thus, c, = C2/5 is
the combined cost of randomly selecting a pellet and the loss of some
material. From Equation 5.99, the total cost of the experiment described
in Example 5.9 is
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An estimate of Var(y.,), computed from Equation 5.93, is

VA (- ) = 0.001876 = 00001042ar Y.. 18 .
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If the estimates of u; and ,; are substituted into Equation 5.100 with
Cl = C2/5, the resulting value of n is

n = .J(C2/5) (O.000606)/C2(O.000423)

= .J0.000606/5(O.000423) = 0.535

Because n must be a positive integer, n = 1 is chosen. Thus, Var(yJ is
minimized, subject to a fIxed total cost, by performing only one analysis
on each pellet. To determine a, the number of pellets to include in the
experiment, use the cost function in Equation 5.99 with n = 1. This gives

or

a = 19.2 = 16 pellets
1.2

By substituting the sample estimates of u; and ,; with a= 16 and
n = 1 into Equation 5.92, an estimate of the resulting variance of y.. is

1(0.000423) + 0.000606 = OO643סס.0
16(1)

For comparison of this value with the estimate Var(yJ = 0.0001042 from
the experiment described in Example 5.9 the ratio is

OO643סס.0

0.0001042 = 0.62

That is, Var(yJ for the revised experiment is expected to be about 62% of
that for the previous experiment. These results indicate that for the same
cost as the experiment described in Example 5.9, a more precise estimate
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of 1.1. (one with a smaller variance) could be obtained by performing only
one analysis on each of 16 randomly selected pellets.

Note, however, that with n = 1 analysis per pellet, it will not be possi­
ble to compute MSwjthin, to separately estimate q~ and u'l, or to test the
hypothesis that q~ = O. This may not be a problem if the primary objec­
tive is to estimate 1.1.. But if it is necessary to separately estimate q~ and u'l
(for example, if q~ is being monitored), then it is necessary to have some
nj > 1. The values of the nj must be chosen to meet the objectives of the
experiment to the extent possible, subject to the cost limitations. Thus,
there could be trade-offs between, for example, minimizing Var(Y'J,
attaining a specified level of power in testing q~, and meeting the cost con­
straints. In fact, it might be necessary to evaluate a number of alternative
sampling plans and then select the one that is the best compromise.

5.3 ANALYSIS OF VARIANCE WITH
NESTED (HIERARCHICAL) MODELS

The concepts presented in Section 5.1 and 5.2 can be extended to three
or more stages of sampling. To illustrate this, suppose that the sampling
plan described in Example 5.9 is carried out on each of four batches of
pellets from a process. That is, six pellets are randomly selected from each
of four batches, and three analyses are performed on each pellet to deter­
mine percent plutonium. If Yijk denotes the kth analysis on the jth pellet
from the ith batch, then a linear model that characterizes yjjk is given by

Yjjk = 1.1. + £rj + P(i)j + E(jj)k

i = 1, ... , a; j = 1, ... ,bj; k = 1, ... , njj

The terms in this model are defined as follows:

(5.101)

1.1.=

£rj=

E(ij)k =

the overall population mean percent plutonium
the deviation from 1.1. due to the ith batch. In context of Sec­
tions 5.1 and 5.2, £rj is the effect of the ith batch. There are
a = 4 batches in this example.
the deviation from 1.1. + £rj due to the jth pellet in the ith batch.
There are bj = 6 pellets from batch i in this example.
the deviation from 1.1. + £ri + P(i)j due to the kth analysis of
the ijth pellet. There are nij = 3 analyses on the ijth pellet in
this example.

In this section, analysis of variance procedures arising from two different
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assumptions about ai are presented. In the first case, the aj, {3(i)j, and E(ij)k

are all assumed to be random effects. The resulting model is called the
nested (or hierarchical) random effects model. In the second case, the aj

are assumed to be fixed effects, with {3(i)j and E(ij)k assumed to be random
effects. The resulting model is called the nested (or hierarchical) mixed
effects model. The term "mixed effects model," or simply "mixed model,"
is used in the analysis of variance literature to indicate that a model
includes both fixed and random effects.

5.3.1 The Nested Random Effects Model

Suppose that in the example described in the previous paragraph, the
four batches of pellets are assumed to be a random sample from a large
number of batches from the process over a given time period. Assume also
that a random sample of six pellets is taken from each batch and that the
three analyses performed on a given pellet are a random sample from the
population of all possible analyses of the pellet. The appropriate model is
given by Equation 5.101, where the terms in the model are defmed as
follows:

Il = mean percent plutonium over all pellets in all batches
ai = the deviation from Il due to the ith batch; ai is a random

observation from a population with zero mean and with vari­
ance u;

{3(i)j = the deviation from Il + ai due to the ijth pellet; {3(j)j is a ran­
dom observation from a population with zero mean and with
variance up

E(ij)k = the deviation from Il + ai + {3(i)j due to the kth analysis of
the ijth pellet; E(ij)k is a random observation from a population
with zero mean and with variance al.

It is also assumed that the aj are uncorrelated, the {3(i)j are uncorrelated,
the E(ij)k are uncorrelated, and there are no correlations among the aj, {3(i)j,

and E(ij)k'

Thus, Yijk is an observation from a population with mean Il and with
variance u; + up, + al. In general, it is of interest to

1. Estimate u;, up, and al.
2. Test the hypotheses Ho: u; = 0 and Ho: up = O.
3. Estimate Il.

5.3.1.1 Variance Components: Estimation and Hypothesis Tests

The two sets of hypotheses that are of interest for the nested random
effects model are
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1. Ho: u~ = 0
(5.102)

HA : u~>O

and

2. Ho: up = 0

HA : up>O
(5.103)

The quantities that must be computed to test these hypotheses and to
obtain estimates of the variance components u~. up. and r? are summa­
rized as follows:

Dij bi

Yij. = ~ Yijlt Yi.. = ~ Yij.
It-I j-I

a

Y... = ~Yi..
i-I

(5.104)

bi

n· = ~n··I. ~ IJ
j-I

a
n = ~n'.. ~ I.

i-I

a
b = ~b·. ~ I

i-I
(5.105)

a
SSa = ~ (y[Jni) - Y.~.In..

i-I

dfa = a-I

dfp = b. - a

df =n -bE •• •

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)

(5.111)

(5.112)
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MSp= SSp/dfp

a

n.. - ~ nVn..
i-I

k2 ='--a---1--

a bi
n - ~ ~nh/n·•• ~ ~ IJ I.

i-I j-Ik3 =·---..::....-_-
b. -a
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(5.113)

(5.114)

(5.115)

(5.116)

(5.117)

The values computed from Equations 5.106 through 5.117 are then
displayed in an analysis of variance table as illustrated by Table 5.4.

TABLE 5.4

Nested Random Effects Analysis of Variance Table

Source de SS MS ElMS!

aj a-I SSa MSa ,r + kleri + k% er~

~(i)j b. - a SSp MSp ,r + k3eri

E(ij)k D.. - b. SS, MS, ,r

Estimates of the variance components o'~, up, and u2 are obtained by
equating the computed mean squares to their expected values and .then
solving the resulting equations for the unknown variance components. This
leads to the unbiased estimators

~=MS, (5.118)

(5.119)
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MSa - k} &J - MS f

k2

k,
MS - -(MSp - MS) - MSa k

3
f f

(5.120)

If &p yields a negative estimate, then the estimate is set equal to zero, and
zero is substituted for &p in Equation 5.120. When this is done, however,
the resulting estimates of up and u; are not unbiased. Similarly, if &;
yields a negative estimate, the estimate is set equal to zero and is no
longer an unbiased estimate of u;.

The test of the hypothesis in Equation 5.103 is carried out by comput­
ing the test statistic

(5.121)

Under the null hypothesis, Ho: up = 0, and the assumption that YUk is
from a normal distribution, the test statistic F has an F-distribution with
degrees of freedom dfp and dfE' Thus, Ho is rejected at the a level of
significance if

(5.122)

where F'-a(b. - a,n.. - bJ is obtained from Table A6.
In general, unless k, = k3, it is necessary to perform an approximate

test of the hypothesis given by Equation 5.102. The approximate test
presented here is from Satterthwaite (1946) and requires computing the
test statistic

(5.123)

where

The null hypothesis, Ho: u; = 0, is rejected at approximately the alevel
of significance (not to be confused with the effects aj) if
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where F1- a(a-l,df;) is obtained from Table A6, and where

(miMSp + m2MSt)2

(m 1MSp)2 (m2MSt)2
....:...-...:...----::..._+_..:....-_-
(b. - a) (n.. - b)

287

(5.125)

(5.126)

This quantity is rounded to the nearest integer. When it is desirable to be

conservative, df; is rounded down.
In the approximate test, MS; has expected value

* 2 2E[MSp] = rr + k1 Up (5.127)

(5.128)

Thus, if Yijk is from a normal distribution, the test statistic F*, given by
Equation 5.123, is approximately distributed as the product

U [ r? + k1 up + k~ u~I
r? + k1 up

where U has an F-distribution with a-I and df; degrees of freedom.
When u~ = 0, Equation 5.128 reduces to U, and the test statistic F* has
approximately an F-distribution with a-I and df; degrees of freedom.
However, when u~ > 0, Equation 5.128 yields a value larger than U. Thus,
a value of F* which is greater than or equal to F1- a (a - l,df;) indicates
that O'~ is probably larger than zero.

Example 5.13 Random samples from a single batch of Pu oxide are
distributed to each of three laboratories for analysis of percent plutonium
by a given analytic method. These three laboratories are assumed to be a
random sample from the population of possible laboratories that could
have been asked to participate in this study. Within each laboratory, a
number of aliquots are prepared in such a way that, for a given laboratory,
they are assumed to be a random sample from all possible aliquots that
could have been prepared by that laboratory. Then replicate analyses are
performed on each aliquot within each laboratory, and it is assumed that
the analyses on a given aliquot are a random sample from the population
of all possible analyses of the aliquot. The resulting data, in percent recov-
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ery minus 86, are tabulated below with quantities computed from Equa­
tions 5.104 and 5.105.

Lab 1 2 3

Aliquot 1 2 3 1 2 3 1 2

0.188 0.348 0.388 0.847 1.007 0.837 0.651 0.581
0.178 0.298 0.338 0.837 0.657 0.611 0.641
0.158 0.368 0.398 0.591
0.198

Yij. 0.722 1.014 1.124 0.847 1.844 1.494 1.853 1.222
Yi.. 2.860 4.185 3.075
Y... 10.120
nij 4 3 3 2 2 3 2
n· 10 5 5I.

n.. 20
bi 3 3 2
b 8

The objectives of this experiment are
I. To estimate the variance components for laboratories, aliquots

within laboratories, and replicate analyses on aliquots within laboratories.
2. To test the hypotheses that the variance components for labora­

tories and aliquots within laboratories are zero..

The nested random effects analysis of variance with three stages of
sampling is the appropriate methodology for this application. Considering
the linear model given by Equation 5.101, the terms in the model are
defined for this application as follows:

II- = true mean percent uranium for the population from which
samples were randomly selected to send to the three labora­
tories

aj = deviation from II- due to the ith laboratory; aj is assumed to be
a random observation from a population with zero mean and
with variance ulabs

P(i)j = deviation from II- + ai due to the jth aliquot within the ith lab­
oratory; P(i)j is assumed to be a random observation from a
population with zero mean and with variance UXuq

E(ij)k = deviation from II- + ai + P(i)j due to the kth replicate analysis
of the jth aliquot within the ith laboratory; E(ij)k is assumed to
be a random observation from a population with zero mean
and with variance ulna!
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Equations 5.106 through 5.117 are applied to compute the following
quantities used to construct the analysis of variance table displayed below.

SS = [2.8602 + 4.185
2 + 3.075

2
]_ 10.120

2

Labs 10 5 5 20

= 6.211930 - 5.120720 = 1.091210

SS . = [0.722
2 + 1.014

2 + 1.124
2 + + 1.222

2
]

A1iquots 4 3 3". 2

- 6.211930 = 6.318952 - 6.211930 = 0.107022

SSAnalyses = (0.1882 + 0.1782 + ... + 0.641 2) -6.318952

= 6.358810 - 6.318952 = 0.039858

dfLabs =3-1 =2

dfAliq = 8-3 = 5

dfAnal = 20-8 = 12

_ 1 [42 + 32 + 32 12+ 22 + 22

k1 - (3-1) 0 + 5

+ 32+ 22 _ 42 + 32 + ... + 22]
5 20

= (7.8-2.8)/2 = 2.50

k
2

= 20 - (102+ 52 + 52)/20 = 20 - (150/20) = 6.25
3-1 2

k3 = 20 -7.8
= 2.44

8-3

Source elf SS MS ElMS]

Labs 2 1.091210 0.545605 0'1.11 + 2.50 0'1;q + 6.25 O'l...
Aliquots 5 0.107022 0.021404 0'1.11 + 2.44 0'1;q

Analyses 12 0.039858 0.003322 0'1.aJ
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The variance component estimates, computed from Equations 5.118,
5.119, and 5.120, are

ulnal = 0.003322

0.021404 - 0.003322 = 0.007411
2.44

.. 2 = 0.545605 - 2.50(0.007411) - 0.003322 = 0.083801
ULabs 6.25

To test the hypothesis

Ho: uluq = 0

against the alternative

the test statistic F, computed from Equation 5.121, is

0.021404 = 6.44
0.003322

From Table A6, the value Fo.9s(5,12) = 3.11 is obtained. Because 6.44 >
3.11, Ho is rejected, and it is concluded that uluq is probably larger than
zero.

To perform the approximate test of the hypothesis

Ho: ulabs = 0

against the alternative

Equation 5.124 is used to compute the quantity

MS·. = 2.50 MS . + [I - 2.50]MS
A1iq 2.44 A1iq 2.44 Anal

= 0.021931 - OO82סס.0 = 0.021849
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which has approximate degrees of freedom computed from Equation 5.126
to be

(0.021849)2
df.:nq =------'-------'"---- = 4.96 a: 5

(0.021931)2 + (-0.000082)2
5 12

The test statistic F*, computed from Equation 5.123, is

F* = MSLabs = 0.545605 = 24.97
MS.:n

q
0.021849

From Table A6, the value FO.9S(2,5) = 5.79 is obtained. Because 24.97 >
5.79, Ho is rejected, and it is concluded that the Uf.abs is probably larger
than zero.

5.3.1.2 Estimation of the OveraU Mean p.'

When the bi and nij are not constant over the experiment, there are a
number of important considerations in choosing an appropriate estimator
for p. from the nested random effects model. One consideration is whether
or not the unequal sample sizes were planned in advance for the specific
purpose of assigning more (or less) weight to certain sampling units in
estimating p.. If so, the intended weighting scheme will dictate the form of
the estimator. Usually, however, the unequal sample sizes were not
planned in advance, in which case the objective is to determine an unbi­
ased estimator for p. that has the smallest possible variance.

It is possible to construct a minimum variance unbiased estimator for
p.. In Example 5.13, the estimator would be a weighted average of the lab
averages, and the lab averages would be weighted averages of the aliquot
averages. The weights, however, would be functions of the unknown vari­
ance components. This raises the same issues discussed in Section 5.2.3 in
connection with the estimator iJ,. Specifically, when estimates are substi­
tuted for the unknown variance components, the variance of the estimator
for p. is larger (in some cases considerably larger) than when the variance
components are known, and the estimator is no longer a minimum variance
estimator. Also, when the variance components are unknown, the variance
of the estimator for p. involves the variances and covariances of the vari­
ance component estimators, which results in an expression that is cumber­
some and difficult to use.
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Thus, rather than attempting to provide a single estimator for all cases,
four estimators for JL are presented in this section with guidelines for
deciding which is most appropriate for a particular application. It should
be noted that for most applications, none of the four estimators will be a
minimum variance estimator. However, for specified values of the variance
components, the bj and the njj, one of the estimators will have a smaller
variance than the others and would be a satisfactory choice.

Table 5.5 lists four possible schemes for using the unequal bj and njj as
weights in estimating JL from a nested random effects model. The
corresponding estimator for each scheme is indicated. It should be noted
that when the bj and njj are constant over the experiment, all four estima­
tors of JL are equivalent, and the estimation techniques are considerably
simplified. See Section 5.3.1.3 for details.

TABLE s.s

Schemes for Using Unequal ... and Dq as
Weights in Estimating JL in Example 5.13

Weighting Weight lab Weight aliquot
scheme .,erages equaUy? .,erages equaUy? Estimator

1 Yes Yes Yuu
2 Yes No Yu.
3 No Yes Y..
4 No No Y..

Weighting scheme 1 in Table 5.5 leads to the completely unweighted
estimator given by

1 a 1 bi

Yuu = - ~ - ~ (Yji.!nij)
a j-I bj j-I

(5.129)

In this notation, the subscripts uu indicate unweighted averages at the first
and second stages of sampling. This estimator has variance given by

(5.130)

Weighting scheme 2 in Table 5.5 leads to the estimator given by

(5.131)
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If this estimator is used in Example 5.13, the .sample mean for the ith lab
is the weighted average Yi..!ni. of the aliquot averages, and Y'lW is the
unweighted average of the lab averages. This estimator has variance given
by

(5.132)

Weighting scheme 3 in Table 5.5 leads to the estimator given by

(5.133)

In Example 5.13, this estimator would assign equal weight to the aliquots
in computing the ith lab average, but would weight the ith lab average
according to the number of aliquots analyzed by lab i. This estimator has
variance given by

(12 a (1p ~ a hi 1
Var(ywu) = 2. 2; br + - + - 2;2;-

b2 b b2 .. n··. i-I . . 1 J IJ

Finally, weighting scheme 4 in Table 5.5 leads to the estimator

Yww = y...!n..

(5.134)

(5.135)

which in Example 5.13 would weight the ijth aliquot average according to
the number of analyses in computing the ith lab average and would weight
the ith lab average according to the number of aliquots analyzed by lab i.
This estimator has variance given by

(5.136)

All four of the above estimators for Il are unbiased. As noted previ­
ously, however, their variances will differ for specified values of the vari­
ance components, the bi and the nij' The following guidelines are useful in
deciding which estimator is most appropriate (has the smallest variance)
for a particular application:
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1. Yuu is recommended when &; ~ &~ ~ &2.
2. Yuw is recommended when &; ~ &2, and &~ is small relative to 02.
3. Ywu is recommended when &~ ~ &2, and &; is small relative to &~.

4. Yww is recommended when &; < &~ < &2, where &; is small relative
to &~, and &~ is small relative to &2.

When a case is encountered that does not satisfy the criteria for any of the
above guidelines, the estimated variances of the four estimators should be
evaluated (formulas are given below), and the estimator with the smallest
estimated variance should be used.

When the unequal bi and nij are planned in advance for the specific
purpose of utilizing one of the weighting schemes in Table 5.5, the
corresponding estimator of II. will be unbiased but might have a larger
variance than one or more of the other estimators. If this is found to be
true, the investigator should reconsider the motivation and objectives that
led to the choice of a particular weighting scheme. If the difference in
variances is large, then perhaps obtaining a more precise estimate of II.
(one with a smaller variance) is more desirable than achieving a particular
weighting of the observations in estimating 11..

The variances given by Equations 5.130, 5.132, 5.134, and 5.136 are
estimated by replacing the variance components rfl, up, and u; with their
respective estimates &2, up, &; computed from Equations 5.118, 5.119, and
5.120. This yields a linear combination of the variance component esti­
mates of the form

(5.137)

Equation 5.137 can be expressed as a linear combination of the computed
mean squares MSa, MSp, and MSE by replacing &;, up, and &2 with the
terms on the right-hand sides of Equations 5.118, 5.119, and 5.120. This
gives
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(5.138)

Using Satterthwaite's (1946) formula, the approximate degrees of freedom
for an estimator of this fon:n are given by

(5.139)

Application of the concepts and some of the equations presented in this
section are illustrated in Example 5.14.

If it is assumed that Yijk is normally distributed with mean p. and vari­
ance u~ + up + r?, then each of the estimators of p. given by Equations
5.129, 5.131, 5.133, and 5.135 is normally distributed with mean p. and
with variance as specified for each estimator. Thus, whichever of the four
estimators of p. is chosen for a given application, an approximate
1OO( 1- a)% confidence interval for p. is given by

(Estimate of p.)±.JVar (Estimator of p.) tl-a /2(d'r) (5.140)

where df is given by Equation 5.139 and tl-a /2(df) is obtained from Table
A5.

Also, hypotheses about p. are tested by using methods analogous to
those in Section 4.2.2. The test statistic is given by

(Estimate of p.) - IJ.Q
t = ----;;::======

.JVar (Estimator of p.)
(5.141)

In this formulation, IJ.Q is a hypothesized value of p., and t is compared
with a value obtained from Table A5 with degrees of freedom de.

Example 5.14 For the experiment described in Example 5.13, con­
struct a 95% confidence interval for the overall mean p.. From the results
of Example 5.13, note that Ut.bs > ulllq > uXnai; thus, the unweighted esti­
mator Yuu' given by Equation 5.129, is appropriate.

/
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Substituting the data values from Example 5.13 into Equation 5.129
yields

- = 1[110.722 + 1.014 + 1.124 1
Yuu 3 3 4 3 3

+ 11 0.847 + -1.844 + 1.494 1
3 1 2 2

+ n1.~53 + 1.;2211_ 0.5836

To estimate the variance of yuu by applying Equation 5.130, the quantities

1 a 1 III 1 11 7_ '" - = - - + - + - = - = 0.129630
a2 i~ bi 32 3 3 2 54

and

are computed from the Example 5.13 data. The variance component esti­
mates computed in Example 5.13 are

ul.bs = 0.083801

uIuq = 0.007411

and

ulna! = 0.003322
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By substituting these values into Equation 5.130, the variance estimate is

Var(yuu) = 0.08:801 + (0.129630)(0.007411)

+ (0.059156)(0.003322)

= 0.029091

Note that this is Equation 5.137 with al = 1/3, a2 = 0.129630, and a3 =
0.059156.

Recall that the values k1 = 2.50, k2 = 6.25, and k3 = 2.44 were com­
puted in Example 5.13. Substituting these values into the individual terms
of Equation 5.138 yields

al 1
m3 = k

2
= 3(6.25) = 0.053333

7 2.50
m4 = 54(2.44) - 3(6.25)(2.44) = -0.001518

and

= 1-[ 2.50-2.441_ 7 + 0.059156 = 0.007341
ms 3 6.25(2.44) 54(2.44)

Thus, in terms of the computed mean squares, the variance estimate is

Var(yuu) = 0.053333 MSLabs - 0.001518 MSAliq + 0.007341 MSAnal

= (0.053333)(0.545605) - (0.001518)(0.021404)

+ (0.007341)(0.003322) = 0.029091

This is, of course, the same value as calculated above.
The degrees of freedom for Var(yuu) are obtained by substituting m3,

m4, ms, the computed mean squares, and their degrees of freedom from
Example 5.13 into Equation 5.139. By doing so, the numerator is

[0.053333(0.545605) - 0.001518(0.021404)

+ 0.007341(0.003322)]2 = 0.0008436

and the denominator is
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(0.053333(0.545605)]2 + (-0.001518(0.021404)]2
2 5

+ [0.007341(0.003322)j2 0.0004234
12

Thus, application of Equation 5.139 yields

d"f = 0.0008436 = 1.99 :i!;; 2
0.0004234

From Table A5, the value to.97S(2) = 4.30 is obtained, and by applying
Equation 5.140, a 95% confidence interval for p. is given by

0.5836 ±.J0.029091 (4.30)

which yields the interval (-0.1498, 1.3170). Note that the data are in
percent recovery minus 86, so that a negative value is meaningful. In
terms of the original percent recovery units, a 95% confidence interval for
the unknown true mean is (85.8502, 87.3170).

5.3.1.3 Equal Sample Sizes at Each Stage

When all nij are equal, say nij = n, and all bi are equal, say bi = b,
the methods presented in Sections 5.3.1.1 and 5.3.1.2 are considerably sim­
plified. Equations 5.104 through 5.117 can be simplified, and the resulting
analysis of variance table is shown in Table 5.6.

TABLE 5.6

Nested RaDdom Effects Analysis of
VariaDce Table with Dq = Dand t». = b

Source elf SS MS ElMS) F

IX; a-I SS" MS" ",. + ntTp + bntT~ MSc.lMS~

P(i)j a(b-l) SS" MS" ",. + ntTp MS~/MS.

E(ij)k ab(n-l) SSE MS, ",.

Note from Table 5.6 that the coefficients for tTj are the same in both
E[MSaJ and E[MSpJ; i.e., kl = k3 = n. Thus, an exact test of the null
hypothesis Ho: tT~ = 0 can be performed by computing the ratio

F=MSa/MSp
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The null hypothesis is rejected at the a level of significance if F is greater
than or equal to F.-a(a - l,ab - a), which is obtained from Table A6.
The null hypothesis Ho: up = 0 is tested exactly as described in Section
5.3.1.1.

Estimates of the variance components are computed by applying Equa­
tions 5.118, 5119, 5.120. Note, however, that k. = k3 = nand k2 = bn.

When njj = nand bj = b, all four estimators of IL, presented in Sec­
tion 5.3.1.2, are equivalent to the estimator

Y... = Y...Iabn

which has variance given by

~ + DlTP + bDIT~ E[MSal
Var(y..,) = abn = abn

Thus, Var(y..,) is estimated by

.. MSaVar(y- ) =--... abn

which has a - I degrees of freedom.

5.3.2 The Nested Mixed Effects Model

(5.142)

(5.143)

(5.144)

Suppose now that in the example discussed in introducing Equation
5.101, the four batches of pellets are not assumed to be a random sample
from all batches of pellets produced by the process. Instead, suppose that
the four batches of pellets were manufactured under four different sets of
operating conditions, possibly representing changes in the process over a
given period, and it is of interest to estimate and compare the mean per­
cent plutonium values for the four batches. It is still assumed that a ran­
dom sample of six pellets is taken from each batch and that the three
analyses performed on a given pellet are a random sample from the popu­
lation of all possible analyses of the pellet. The appropriate model is given
by Equation 5.101, where the terms in the model are defined as follows:

IL + aj = JLi = the mean percent plutonium for the population of pel­
lets in the ith batch. That is, the aj are fixed effects.

fJ(i)j = the deviation from JLi due to the ijth pellet; .fJ(i)j is a random
observation from a population with zero mean and variance

2up.
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E(ij)k = the deviation from IJi + fj(i)j due to the kth analysis on the
ijth pellet; E(ij)k is a random observation from a population
with zero mean and with variance rfl.

It is also assumed that the fj(i)j are uncorrelated, the E(ij)k are uncorrelated,
and there are no correlations among the fj(i)j and the E(ij)k'

Thus, Yijk is an observation from a population with mean IJi = p. + ai
and with variance up + rfl. In general, with the nested mixed effects
model, it is of interest to

I. Estimate and compare the means 1Ji.
2. Estimate up and rfl.
3. Test the hypothesis Ho: up = O.

5.3.2.1 An Overall Analysis of Variance

As in Section 5.3.1.1, all quantities given by Equations 5.104 through
5.117, except Equation 5.116, are computed. An analysis of variance table
is then constructed as shown in Table 5.7. Note that E[MSal is different
in Table 5.7 than in Table 5.4. In Table 5.7, the quantity a. in E[MSal
is defined as

a
a = ~ n· a-In• ~ L 1 oo

i-I

where ni. and noo are given by Equations 5.105.

TABLES.7

Nested Mixed Effects Analysis of Variance Table

Soar« df SS MS ElMS)

•
aj a-I SSa MSa a2 + k1ITp + ~} ~Di.(ai - ay

a i-I

1J(i)j b. - a SS/I MS/I a2 + k3ITp

f(ij)k D.. - b. SS, MS, a2

Consider now testing the hypothesis

Ho: P.I = P.2 = ... = P.a

against the alternative

HA : some of the means are not equal

(5.145)

(5.146)
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These hypotheses can be rewritten in the equivalent form

Ho: aj = 0, i = 1, 2, ... , a

HA : aj '* 0, for some i

301

(5.147)

The procedure for testing the hypotheses in Equation 5.146 or 5.147 is
identical to the approximate procedure presented in connection with Equa­
tions 5.123 through 5.126 for testing the hypothesis that u; = 0 in the
nested random effects model.

The hypothesis that up = 0 is tested by the procedure presented in
connection with Equations 5.121 and 5.122. Estimates of the variance
components rTl and up are computed by applying Equations 5.118 and
5.119.

5.3.2.2 Estimation and Comparison of the Means Pi = /.& + at

When the hypothesis of equal means given by Equation 5.146 or 5.147
is not rejected, the problem can often be reformulated as one where the a
classes are treated as having been randomly selected from a single popula­
tion with an overall mean /.&. Then the appropriate model is the nested ran­
dom effects model described in Section 5.3.1, where u; is interpreted as
the variance due to sampling error and the methods described in Section
5.3.1.2 are applied to estimate the overall mean /.&. If the estimate of u; is
near zero, an alternate approach is to drop aj from the model and treat the
b subclasses as a random sample of classes from a population with an
overall mean 1.&. Then the one-way random effects analysis of variance
methods described in Section 5.2 would be used to estimate the overall
mean 1.& and the two variance components up and rTl.

When the hypothesis of equal means is rejected, however, it is of inter­
est to estimate and compare the individual means I.&i.. Methods for estimat­
ing the means I.&i. from the nested mixed effects model are analogous to the
methods presented in Section 5.2.3 for estimating 1.& from the one-way ran­
dom effects model. Also, the rationale for choosing an appropriate estima­
tor for I.&i. when the njj are unequal is analogous to the rationale discussed
in that section for choosing an estimator for /.&. Thus, to avoid redundancy,
two estimators for I.&i. are presented in this section, with some brief guide­
lines for deciding which one to use in a particular application, but little
discussion is given. The reader can review Section 5.2.3 for further discus­
sions, keeping in mind that I.&i., up, and njj from this section correspond to
1.&, u;, and nj in Section 5.2.3. This section also presents methods for con­
structing confidence intervals and for making comparisons among the I.&i..

These methods are analogous to those in Section 5.1.4. When the njj and bj
are not constant over the experiment, however, estimation of the I.&i. and
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computation of estimated variances and approximate degrees of freedom
are somewhat more cOmplicated for the nested mixed effects model than
for the one-way fixed effects model.

If the nij are unequal and &~ ~ &2, then the averages Yij. at the second
stage of sampling should be weighted equally in estimating Pi, and

(5.148)

is the recommended estimator. The variance of Yiu is given by

(5.149)

where

(5.150)

Var (Yiu) is estimated by substituting the estimates &2 and &p, computed
from Equations 5.118 and 5.119, in place of a'l and oJ in Equation 5.149;
that is,

(5.151)

To obtain the approximate degrees of freedom for Var(Yiu), Equation
5.151 is expressed as a linear combination of MS, and MS~. This is
achieved by substituting Equations 5.118 and 5.119 into Equation 5.151,
which give~

(5.152)

where

(5.153)

and



SECTION 6.3 NESTED MODELS 303

(5.154)

Then, by using Satterthwaite's (1946) formula, the approximate degrees of
freedom for Var (Yiu) are given by

(5.155)

where df·u is rounded to the nearest integer. When it is desirable to be
I ..

conservative, dfiu is rounded down.
When up is small relative to ol, the weighted average

_ 1 bi _

Yiw = Yi..Ini. = -n ~ nii Yii.
i. i-I

is the recommended estimator. The variance of Yiw is given by

_ ri2 up + ~
Var(Yiw) =......;..-'-n-.-­

I.

where

bi
ri2 = ~ n~/n·

~ IJ I.
i-I

(5.156)

(5.157)

(5.158)

Var(Yiw) is estimated by substituting the estimates ol and up, computed
from Equations 5.118 and 5.119, in place of ~ and up in Equation 5.157;
that is,

(5.159)

To obtain the approximate degrees of freedom for Var(Yiw), note that sub­
stituting Equations 5.118 and 5.119 into Equation 5.159 gives

_r,,-i2(_M_S..:;.fJ_-_M_S,,-f) + _M_S_f

Di.k3 ni.

(5.160)
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where

and

CHAPTER 6 ANALYSIS OF VARIANCE

(5.161)

(5.162)

The approximate degrees of freedom for Vir (Yiw) are then given by

(5.163)

where d"fiw is rounded to the nearest integer. When it is desirable to be
conservative, dfiw is rounded down. .

In this discussion, Yiu is recommended when up ~ 02, and Yiw is recom­
mended when up is small relative to 02. When cases are encountered that
do not satisfy either of the above criteria, the estimated variances of Yiu
and Yiw should be computed for all i. Then, for each i, the estimator with
the smallest estimated variance should be used.

If it is assumed that Yijk is an observation from a N(IIi,crP + ~) dis­
tribution, then each of the estimators of iii given by Equations 5.148 and
5.156 is normally distributed with. mean iii and with variance as specified
for each estimator. Thus, whichever estimator is chosen for a given appli­
cation, an approximate 100(1 - a)% confidence interval for iii is given by

where dfi is computed from Equation 5.155 or 5.163, depending upon
which estimator of iii is used, and tl-a /2(dfi ) is obtained from Table AS.

The problem of constructing simultaneous confidence intervals for the
Q means iii is dealt with by using one of the two methods introduced in
Section 5.1.4.1, with some slight modifications. By using Scheffc's (1959)
method, the formula

(5.165)

yields confidence intervals for the Q class means with an overall probability
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of at least (I-a) that the a intervals simultaneously cover their respective
true means. In this formulation, (Estimate of 1Li), Var(Estimator of 1Li),
and lfi are computed from Equations 5.148, 5.151, and 5.155 if Yiu is the
chosen estimator of 1Li, or from Equations 5.156, 5.159, and 5.163 if Yiw is
chosen. Also, F I - a(a-l,dfi ) is obtained from Table A6.

The Bonferroni method guarantees that using a/a in place of a in
Equation 5.164 will yield confidence intervals for the a means with an
overall probability of at least (I-a) that the a intervals simultaneously
cover their respective true means. The appropriate formula is

Either method guarantees an overall confidence level of at least (1 - a).
The width of the resulting intervals, however, will not in general be the
same for both methods. Thus, it may be desirable to construct intervals by
both methods and then report the narrower intervals.

In most applications, comparisons of the means 1Li. can be expressed as
contrasts of the form

(5.167)

where

(5.168) .

Note also that Equation 5.167 can be expressed as

a a
C = ~ ~ = ~ q(#L + ai)

i-I i-I

(5.169)

Whether working in terms of Equation 5.167 or 5.169, an estimate of
C is obtained by substituting either Yiu or Yiw for 1Li; that is,
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A a
C = ~ Q(Estimate of~)

i-I
(5.170)

A a
Var(C) = ~ C? Var(Estimator of #Ii)

i-I
(5.171)

which is estimated by substituting either Var(Yiu) or Var(Yiw) for
Var(Estimator of #Ii)' That is,

A a
Var(C) = ~ C? Var(Estimatorof #Ii)

i-I

(5.172)

To accommodate computing approximate degrees of freedom for
Var(C), either Equation 5.152 or 5.160 is substituted for Var(Estimator of
~) in Equation 5.172. Thus, if Yiu is chosen to estimate #Ii, then

(5.173)

If Yiw is chosen to estimate ~, then

(5.174)

In either case, Var(C) is a linear combination of the computed mean
squares, MSp and MS.. which has the form

A

Var(C) = al MSp + a2MS. (5.175)

Thus, the approximate degrees of freedom for Var(C), computed by
Satterthwaite's (1946) method, are

(5.176)
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An approximate l00(l-a)% confidence interval for C is given by

307

(5.177)

where tl-a/2(d'r) is obtained from Table AS. To test the hypothesis

a
Ho: ~ q~=O

i-I

against the alternative

a
HA : ~ q ~ = CA ::;: 0

i-I

compute the test statistic

Hois rejected at the a level of significance if

or

(5.178)

(5.179)

(5.180)

where ti-a/2(df) is obtained from Table AS.
These confidence interval and hypothesis testing methods are recom­

mended for making any comparisons among the means that were planned
before collection of the data; that is, comparisons the experiment was spe­
cifically designed to make. Sometimes when the estimated means are
examined, patterns become apparent which suggest certain comparisons
that were not planned. The corresponding contrasts are estimated by
applying Equation 5.170, with variance estimates and approximate degrees
of freedom computed from Equations 5.172 and 5.176. The confidence
interval and hypothesis test described above are not valid, however,
because the contrasts were selected after examining the data. In such
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cases, Scheff6's (l959) method is recommended. Any number of contrast
hypotheses can be siniultaneously tested by using Scheff6's method, and
the overall probability of making a Type I error is at most a. Similarly,
confidence intervals can be constructed for any number of contrasts, with
an overall probability of at least (l-a) that the intervals simultaneously
cover the corresponding contrasts of the true means iii.

Scheff6 confidence intervals for any number of contrasts are con­
structed from the formula

(5.181)

where C, Var(C), and de are computed from Equations 5.170, 5.172, and
5.176, and where F1-ia-l,df) is obtained from Table A6. .

To test hypotheses of the form given by Equation 5.178 for any num­
ber of contrasts, the test statistic t is computed for each contrast by apply­
ing Equation 5.179. For a given contrast, Hois rejected if

or (5.182)

5.3.2.3 Equal Sample Sizes at Each Stage

When all nij are equal (nij = n) and all bi are equal (bi = b) the
methods presented in Sections 5.3.2.1 and 5.3.2.2 are considerably simpli­
fied. Equations 5.1 04 through 5.117 simplify, and the form of the resulting
analysis of variance table is illustrated by Table 5.8.

TABLES.S

Nested Mixed Effects Analysis of Variance
Table with Dq = D and bl = b

Source

aj

Etij)k

elf SS MS

a(b-l) SSp MSp

ab(o -1) SSE MS.

ElMS)

bo •rfl + oOH + -=-1 ~ 1rj2
a i-I

rfl+ OUH
rfl

F

MSp/MS.
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Note from Table 5.8 that the coefficients for up are the same in both
E[MSa] and E[MSp]; that is, k l = k3 = n. Thus, an exact test of the null
hypothesis given by Equation 5.146 or 5.147 can be performed by comput­
ing the ratio

F = MSalMSp

The null hypothesis is rejected at the a level of significance if F is greater
than or equal to FI-a(a-l,ab-a), which is obtained from Table A.6.
The null hypothesis Ho: up = 0 is tested exactly as described in Section
5.3.1.1. Estimates of the variance components t? and up are computed by
applying Equations 5.118 and 5.119, where k3 = n.

When nij = nand bi = b, both estimators of Ili, given by Equations
5.148 and 5.156, reduce to the estimator

_ 1 b D

Y· = y. Ibn = - ~ ~ y"k
1.. 1.. bn~~ 1J

j-I k-I

which has variance given by

(5.183)

u2 + nup
Var(yd = bn

Thus, Var(yd is estimated by

A _ MSp
Var(y·)= --

I.. bn

E[MSp]

bn
(5.184)

(5.185)

which has a(b-l) degrees of freedom.
When computing confidence intervals for individual Ili or for contrasts,

the degrees of freedom, d't or df, in Equations 5.164, 5.165, 5.166, 5.177,
and 5.181 are replaced by a(b -1). The same is true for the hypothesis
testing criteria given by Equations 5.180 and 5.182.

Duncan's multiple range test, presented in Section 5.1.4.3, can be
readily applied for comparing all possible pairs of the sample means Y..
when the nij and bi are constant over the experiment. The only modifica­
tions to the method presented in Section 5.1.4.3 are that Yi)s used in place
of Yi., MSp/bn is used in place of MSWithin/n, and a(b-1) is used in place
of N -a. Note, however, that the approximate procedure described by
Equations 5.58 through 5.60 does not apply directly. In such cases, it is
recommended that Scheffe's procedure be applied to test for differences
between all possible pairs of means.
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5.4 ANALYSIS OF VARIANCE WITH TWO-WAY
CROSSED CLASSIFICATIONS

The conceptual definition of a two-way crossed classification experi­
mental design is that two factors are studied by including all combinations
of two or more levels of each factor in an experiment. Then a random
sample of observed or measured values of a response variable is taken at
each combination of the factor levels. Experimental data obtained in this
manner provide information for assessing the effects of the levels of each
factor on the response variable and for assessing how the two factors inter­
act to affect the response variable. The reader is referred to Chapter 7 for
guidance on designing and conducting an experiment with two factors.

The term "crossed classification" is used to distinguish the factorial
type of experimental designs, such as those described in Section 7.3, from
the nested or hierarchical type of experimental designs, such as those
described in Sections 5.3 and 7.6. Some of the basic concepts underlying
the two-way crossed classification are introduced and discussed in Section
7.3.1. The randomized complete block design introduced in Section 7.2.7,
however, is also a two-way crossed classification, as are some other special
experimental designs.

This section provides computational formulas for performing an analy­
sis of variance using data from a general two-way crossed classification
design with equal sample sizes at all combinations of the factor levels. The
specific use and interpretation of the computed quantities in parameter
estimation and hypothesis testing depend upon whether the effects of the
factors are assumed to be fixed or random. Thus, estimation and hypothe­
sis testing methods are presented for three sets of assumptions:

1. Both factors have fixed effects.
2. Both factors have random effects.
3. One factor has rIXed effects and the other has random effects.

5.4.1 Computational Formulas
Assuming that the two factors are referred to as factor A and factor B,

the data from a two-way crossed classification design can be displayed as
shown in Table 5.9. The linear model that characterizes the observed or
measured response values is

Yijk = f.L + ai + {3j + a{3ij + Eijk

i = 1,2, ... , a

j = 1,2, , b

k = 1,2, ,n

(5.186)
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The terms in this model are defined as follows:

11-=

£Xj=

Ejjk =

the overall mean
the main effect of the ith level of factor A averaged over the
levels of factor B
the main effect of the jth level of factor B averaged over the
levels of factor A
the effect of the interaction of the ith level of factor A with
the jth level of factor B
the effect of random error on the kth observed or measured
response taken at the ith level of factor A and jth level of fac­
tor B.

TABLE 5.9

Sample Data Layout for a Two-Way
Crossed OassificatioD Design

II

Factor B Ie,.
21

Factor A ------:.._--------Ie,.

Ylli

Yll2
YI2l
YI22

Ylbl

Ylb2

a

Yall

Yal2

Ya21

Yill
Yabl

Yab2

Yaln Ya2n Yabn
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In this section, it is assumed that n > 0 observed or measured
responses have been taken at each of the ab combinations of the levels of
factor A and factor B. The corresponding experimental design is referred
to as a balanced, complete design. The resulting data from such an experi­
ment are often called balanced data.

In many experimental situations, it is not possible to perform a bal­
anced, complete experiment. When this happens, the resulting data are
called unbalanced if different numbers of observed or measured responses
are taken at the ab factor level combinations. If any of the ab factor level
combinations ,have no response values, the experimental design is said to
be incomplete. The general analysis of variance methods for unbalanced
and/or incomplete two-way designs is presented in textbooks on linear
models, such as Bancroft (1968), Hocking (1985), Milliken and Johnson
(1984), and Searle (197 I), but these methods are not discussed in this
section. A variety of statistical computer software packages are available
that include algorithms for performing an analysis of variance with either
balanced data or unbalanced and/or incomplete data. The use of such
computerized algorithms is highly recommended.

Regardless of whether the £ri and {3j in Equation 5.186 are assumed to
be fixed or random effects, the two-way crossed classffication analysis of
variance requires computation of the following quantities.

n

Yij. = ~ Yijk
k-I

b

Yi.. = ~ Yij.
j-I

a

Y.j. = ~ Yij.
i-I

a b

Y... = ~ ~ Yij.
i-I j-I

a y2 2
SSa = ~ -!::. - Y...

i-I bn abn

b 2 2

SS - ~ Y.j. Y...
fJ-~--

j_1 an abn

(5.187)

(5.188)

(5.189)

(5.190)

(5.191)

(5.192)

(5.193)
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a b y2 y2
SS -~~ ij.... (5.194)Subclus-' - - -

i-I j_1 n abn

SSap = SSSubclus - SSa - SSp (5.195)

SSE = SSTotal - SSSubclus (5.196)

dfSubclass = ab-1 (5.197)

dfa = a-I (5.198)

dfp = b-l (5.199)

dfaP = (a-l)(b-l) (5.200)

df, = ab(n-1) . (5.201)

MSsubc1ass = SSSubclus/dfSubclass (5.202)

MSa = SSa/dfa (5.203)

MSp= SSp/dfp (5.204)

MSaP = SSaP/dfaP (5.205)

MS, = SS,/df, (5.206)

When n = 1, the quantities SSE and df, are zero, and MS, is undefined.
Thus, in the following sections, variance estimates and hypothesis tests
that require these quantities are not possible unless n > 1.

5.4.2 The Fixed Effects Model

Assume that the levels of factors A and B are specifically chosen by
the experimenter, and that all inferences and conclusions resulting from an
analysis of the experimental data will be confmed to these particular factor
levels. In this case, the aj, flj, and aflij in Equation 5.186 are assumed to be
fIXed effects. The linear model given by Equation 5.186 can be rewritten
as

Yijk = #tij + Eijk

where

(5.207)
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and it is assumed that Yijk is a random observation from a population with
mean #£ij and with variance r? for each combination of i and j. That is,
changing the levels of factors A and B may cause the population mean to
change, but it has no effect on the variance of the measured responses. For
the purpose of testing hypotheses and constructing confidence intervals, it
is assumed that Yijk - N(#£ij,r?).

The overall hypothesis that aj, fJj, and afJij have no effect on the popu­
lation mean is equivalent to the hypothesis that the subclass means #£ij in
Equation 5.207 are equal. This can be expressed formally as the
hypotheses

Ho:#£ij = #£i'j' for all if * i and/or jf * j

HA : #£ij * #£i'j' for some if * i and/or jf * j

(5.208)

Some authors, such as Bancroft (1968), advocate testing Ho at the 0.25
level of significance. This is accomplished by computing the statistic

MSSubclassF=--­
MSE

(5.209)

where MSSubclass and MSE are given by Equations 5.202 and 5.206, respec­
tively. Hois rejected at the 0.25 level of significance if

(5.210)

where FO.7S(dfsubclass,dfE) is obtained from Table A6. Note that this test is
analogous to the one-way fixed effects analysis of variance test for equal
class means presented in Section 5.1.1, where in this case, a class is a par­
ticular combination of the levels of factors A and B.

If Ho is rejected, then the conclusion is that the #£ij are probably not
equal, which implies that some of the effects aj, fJj, and afJij are not negli­
gible, and thus, further testing is justified. The philosophy advocated by
Bancroft (1968), however, is that if Ho is not rejected at the 0.25 level of
significance, then there is insufficient justification for further testing. It
should be noted that testing at the 0.25 level of significance will result in
detecting smaller differences among the subclass means than testing at,
say, the 0.10 or 0.05 level. In fact, whether or not the #£ij are unequal, test­
ing at the 0.25 level of significance makes it more likely that Ho will be
rejected than if a smaller level of significance is used. Note also that it is
quite possible in practice to reject the hypothesis of equal subclass means
at the 0.25 level of significance, and then proceed to test the effects aj, fJj,
and afJij only to find that none of them is significant at a level smaller
than 0.25.
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Other authors, such as Scheffe (1959), Searle (1971), Hicks (1982),
Kempthorne (1973), and Graybill (1976) consider directly testing the indi­
vidual subhypotheses:

1. Ho : £ri = 0, for all i

HA : ai * 0, for some i

2. Ho : {Jj = 0, for all j

HA : {Jj * 0, for some j

3. Ho : a{Jij = 0, for all i and j

HA : a{Jij * 0, for some i and j

(5.211)

(5.212)

(5.213)

A useful step in testing these subhypotheses is the construction of an anal­
ysis of variance table, as illustrated in Table 5.10. From the E[MS] col­
umn of Table 5.10, note that if all ai = 0, then E[MSa] reduces to q2; if
all {Ji = 0, then E[MSp] reduces to q2; and if all a{Jij = 0, then E[MSaP]
reduces to q2. If any of the effects aj, (Jj, or a{Jij are not zero, the
corresponding mean squares will tend to overestimate q2 by the quantity
shown in the E[MS] column. Thus, a large value of an F statistic in the F
column of Table 5.10 indicates that the corresponding null hypothesis may
be false.

Specifically, Ho in Equation 5.211 is rejected at the a level of signifi­
cance if

(5.214)

Ho in Equation 5.212 is rejected at the a level of significance if

(5.215)

Hoin Equation 5.213 is rejected at the a level of significance if

(5.216)

In these tests, the quantities FI-a(dfa, dfE), F1-a(dfp, dfE), and
FI-a(dfaP, dfE) are obtained from Table A.6. If any of the above
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hypotheses are rejected, the next phase of the analysis involves estimation
and comparison of means.

If the hypothesis Ho: ai = 0 is rejected, the implication is that the
value of the population mean probably depends on the level of factor A.
The nature of this dependence can be explored further by estimating the
means

(5.217)

The estimator of Pi. is the "row average" (referring to Table 5.9) given by

The variance of Yi.. is

which is estimated by

-yo = y. IbnI.. I..

Var(yd = rflIbn

Var(yd = MS./bn

(5.218)

(5.219)

(5.220)

Note that Var(yd is constant for all levels of factor A. Individual
100(I-a)% confidence intervals for the means ILL are given by

(5.221)

where tl-a /2(df.) is obtained from Table AS. Simultaneous confidence
intervals for the a means Pi. with an overall confidence level of (I-a) are
constructed by applying Scheff6's method and are given by

(5.222)

where F1- a(b-l,df.) is obtained from Table A6. Comparisons among the
means are made by applying the procedures presented in Sections 5.1.4.2,
5.1.4.3, and 5.1.4.4. Note, however, that in all equations given in those
sections, Yi.. replaces Yi., MS. and df. replace MSwithin and N - a, and bn
replaces ni or n.
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If the hypothesis Ho: {3j = 0 is rejected, the implication is that the
value of the population mean depends on the level of factor B. This can be
explored further by estimating the means

(5.223)

The estimator of "".j is the "column average" (referring to Table 5.9) given
by

The variance of y'j. is

which is estimated by

-yo = y./an.J. .J.

Var(Y.jJ = t?/an

(5.224)

(5.225)

(5.226)

Note that Var(Y.jJ is constant over all levels of factor B. Individual
lOO(l-a)% confidence intervals for the means "".j are given by

(5.227)

where tl-a/2(dfE) is obtained from Table A5. Simultaneous confidence
intervals for the b means "".j with an overall confidence level of (I-a) are
constructed by applying Scheff6's method and are given by

(5.228)

where F1-a(b-l,dfE) is obtained from Table A6. Comparisons among the
means are made by applying the procedures presented in Sections 5.1.4.2,
5.1.4.3, and 5.1.4.4. Note that in the equations given in those sections, Y.j.
replaces Yi., b - 1 replaces a-I, MSE and dfE replace MSWithin and N - a,
and an replaces ni or n.

When the hypothesis of no interaction is rejected, that is, when
HO:a{3ij = 0 is rejected, interpretation of the effects of factors A and B
may not be straightforward. This is because when factors A and B
interact, the effects corresponding to the levels of factor A are different
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for each level of factor B, and vice versa. Thus, comparisons among the
row averages Yi.. or the column averages Y.j. may be meaningless or
misleading. In such cases, the cell averages or subclass averages (referring
to Table 5.9) must be examined.

Recall from Equation 5.207 that each observation Yijk is from a popula­
tion with mean Ilij and variance Ul. The means Ilij are estimated by the
subclass averages

The variance of Yij. is

which is estimated by

Yij. = Yii.!n

Var(Yij) = Ul/n

Var(Yij,) = MS./n

(5.229)

(5.230)

(5.231)

Individual 100(l-a)% confidence intervals for the means Ilij are given by

(5.232)

where tl-a/2(df.) is obtained from Table A5. Simultaneous confidence
intervals for the ab means Ilij, with an overall confidence level of (l-a),
are constructed by using Scheff6's method and are given by

Yij. ± .J(MS./n) (ab-1) FI-a(ab-I,df.) (5.233)

where FI-a(ab-I ,df.) is obtained from Table A6.
Comparisons can be made among the ab subclass averages using

methods analogous to those presented in Sections 5.1.4.2, 5.1.4.3, and
5.1.4.4. One of the simplest and most effective methods of comparing the
subclass means and interpreting interactions and factor effects, however, is
to plot the subclass averages as discussed in Section 7.3.1. When con­
structing such plots, the scales of each axis should be carefully chosen.
This is because lines and curves can be made to look nearly parallel or
quite diverse, depending upon the scales of the axes. Also, for this same
reason, such plots should not be used as the sole basis for determining
whether or not interaction is present. The analysis of variance test given by
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Equation 5.216 should be performed first. If the hypothesis Ho: afjij = 0 is
rejected, then plots of the subclass averages provide useful insight into the
nature of the interaction. Then it may be desirable to apply Scheffe's
method to test hypotheses about any notable patterns in the subclass
averages.

5.4.3 The Random Effects Model
Consider the case where the levels of factors A and B are assumed to

be randomly selected from larger populations of factor levels, and any con­
clusions from an analysis of the experimental data are to be extended to
these populations. In this case, the observed response values in Table 5.9
are represented by the model in Equation 5.186. That is,

Yijk = P + ai + fjj + afjij + Eijk

i = I, ...,a

j = 1, ,b

k= I, ,n

where ai, fjj, and afjij are random effects. The terms in the random effects
model are defined as follows:

afjij =

Eijk =

the overall mean
a random observation from a population with zero mean and
with variance O'~
a random observation from a population with zero mean and
with variance 0'1
a random observation from a population with zero mean' and
with variance O'~
a random observation from a population with zero mean and
with variance r?

It is also assumed that the ai, fjj, afjij, and Eijk are mutually uncorrelated.
Thus, each observation Yijk is from a population with mean p and with
variance

(5.234)

For the purpose of hypothesis testing, it is further assumed that ail fjj, afjij,

and Ej'k have normal distributions; thus, Yijk is assumed to have a
N(p,O'! + 0'1 + O'~ + r?) distribution. This assumption, however, is not
required for estimation of the variances or the overall mean p.
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The objectives of an analysis of variance with the random effects model
are:

1. To test the hypotheses that O"~ = 0, O"p = 0, and 0"1 = o.
2. To estimate the variance components O"~, O"p, and O"aP'
3. To estimate and perhaps test a hypothesis about the population

mean JI..

After computing the quantities specified by Equations 5.187 through
5.206, the results are summarized in an analysis of variance table, such as
Table 5.11. The hypotheses to be tested are

1. Ho : 0"2 =0a
(5.235)

HA : 0"2 >0a

2. Ho : O"p =0
(5.236)

HA : O"p >0

3. Ho : O"~P = 0
(5.237)

HA : O"~ > 0

TABLE 5.11

Analysis of Variance Table for a Two-Way
CrosSed Oassification with a Random Effects Model

Source elf SS MS E[MS) F

Factor A a-I SSa MSa ~ + n er~ + bDIT; MSa/MSa6
Factor B b-I SSp MSp ~ + n er~ + an erj MSp/MSa6
Interaction of

factors A and B (a-I) (b-I) SSa6 MSa6 ~+ner~ MSa6/MS.

Experimental error ab(n-I) SSE MS. ,r
Total abn-I SSrota1

The expected mean square column of Table 5.11 provides guidance in
determining which mean square should appear in the denominator of each
F statistic. Note that if O"~ = 0, E[MSa ] is identical to E[MSaP]. That is,
when O"~ = 0, MSa and MSap are independent estimators for the same
quantity. If O"~ > 0, however, then MSa estimates the quantity given by
E[MSa ] which is greater than E[MSap]. Thus, the hypothesis Ho in Equa­
tion 5.235 is rejected at the a level of significance if
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MSa
F = -S- ~ F1-a[a-l, (a-1) (b-1)]

MaP
(5.238)

Similarly, the hypothesis Ho in Equation 5.236 is rejected at the a level of
significance if

MSp
F = MS

aP
~Fl-a[b-l, (a-I) (b-1)] (5.239)

Next, note that if O'~ = 0, then E[MSaP] = E[MSE]. If O'~ > 0, however,
then E[MSaP] > E[MSE]. Thus, the hypothesis Ho in Equation 5.237 is
rejected at the a level of significance if

MSaPF= MS
E

~Fl-a[(a-I)(b-1),ab(n-1)] (5.240)

In these tests, the quantities Fl-a[dfnumerator,dfdenominator] are obtained from
Table A6.

Estimates of the variance components O'~, O'i, O'~ and r? are computed
by equating the MS quantities with the corresponding E[MS] expressions
and then solving the resulting four equations. This yields the estimators

&2=MSE

.. 2 MSp - MSaP
O'p =

an

Var(Yijk), given by Equation 5.234, is estimated by the quantity

which has approximate degrees of freedom given by

(5.241)

(5.242)

(5.243)

(5.244) .

(5.245)
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(5.246)

. -

where df is rounded to the nearest integer.
If applying Equations 5.242 through 5.244 results in a negative esti­

mate for any of the variance components, then the estimate is set to zero.
This is logical, because a negative estimate could only result if the
corresponding F statistic is less than one, in which case the corresponding
null hypothesis is not rejected, and there is insufficient evidence to con­
clude that the particular variance component is larger than zero.

It is important to note that if n = 1, r? and u~ cannot be separately
estimated, and the null hypothesis that u~ = 0 cannot be tested, unless a
prior estimate of r? is available. With n = 1, however, it is still possible to
estimate u~ and up and to test the hypotheses that they are zero.

An estimator for the overall mean JJ. is given by

f .. = Y...Iabn (5.247)

which is the overall average of the observations. The variance of Y... is
given by

Var(y..,) =

and is estimated by

bnu~ + anup + nu~p + r?
abn

E[MSaJ + E[MSp] - E[MSatt]

abn
(5.248)

Var(y..,) =
MSa + MSp - MSatt

abn
(5.249)

which has approximate degrees of freedom

df* =
[abnVar(f.,)]2

MS 2 MS 2 MS2
__a + __p + att
a-I b-l (a-l) (b-l)

(5.250)

where df* is rounded to the nearest integer.
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If it is assumed that y... is from a normal distribution, then an approxi­
mate lOO(1-a)% confidence interval for the overall mean Il is given by

(5.251)

where tl- a /2(df*) is obtained from Table A5. Also, hypotheses about Il are
tested by applying methods analogous to those presented in Section 4.2.2.
The test statistic is given by

Y... - IJ.O
t= ~;===:=.

.JVar(Y.J
(5.252)

where IJ.O is a hypothesized value of Il, and t is compared with a value from
Table A5 with degrees of freedom df*.

5.4.4 The Mixed Effects Model
Consider now the situation where factor A has fixed effects and factor

B has random effects. In this case, the model given by Equation 5.186
characterizes the observed response values, that is,

Yijk = Il + ai + {3j + a{3ij + Eijk

i = 1, ... ,a

j= 1, ,b

k = 1, ,n

where ai is a fixed effect, but {3j and a{3ij are assumed to be random
effects.

In presenting the mixed effects model, there are at least two different
assumptions that can be made about the interaction effects a{3ij' Both
Searle (1971) and Hocking (1985) provide comparative discussions of two
particular assumptions that result in different expected mean squares, vari­
ance component estimates, and denominators for the F statistic for testing
the hypothesis that oJ = O. As both authors point out, however, both
assumptions or slight modifications of them appear frequently in statistical
textbooks and literature. Typically, an author will adopt one assumption
and will not mention any others. The approach selected for presentation in
this chapter is consistent with a number of statistics texts, such as Ostle
and Mensing (1979), Hicks (1982), and Snedecor and Cochran (1980),
and should provide useful results that are reasonably sound for most appli­
cations. The choice of this particular approach, however, is not meant to
imply that it is preferred over all others.
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The terms in the mixed effects model are defmed as follows:

326

IL = the overall mean
JIi = IL + aj is the population mean for the ith level of factor A; that .

is, aj is a fIXed effect
flj = a random observation from a population with zero mean and

with variance oJ
afljj = a random observation from a population with zero mean and

with variance u~
Ejjk = a random observation from a population with zero mean and

with variance u'l.

Thus, each observation is assumed to be from a population with mean iii
and with variance

(5.253)

The objectives of the mixed effects analysis of variance are
1. To estimate and compare the means JIi.
2. To estimate uj, u~, and u'l.
3. To test the hypotheses that uj and u~ are zero.

After applying Equations 5.187 through 5.206, the resulting quantities
are used to construct an analysis of variance table, such as Table 5.12.
The hypotheses to be tested are

1. Ho : aj = 0, for all i

HA : aj :F: 0, for some i

2. Ho: up = 0

HA : up > 0

3. Ho: u~ = 0

HA : u~ >0

(5.254)

(5.255)

(5.256)

The E[MS] column of Table 5.12 provides guidance in determining
which mean square should appear in the denominator for each F statistic.
Note that if aj = 0, for all i, then E[MSa] = E[MSaP]. That is, when all
aj = 0, MSa and MSaP are independent estimators for the same quantity.
If any aj :F: 0, however, then E[MSal > E[MSaP]' Thus, MSaP is the
denominator of the F statistic, and the hypothesis Ho in Equation 5.254 is
rejected at the a level of significance if
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MSa
F = MS~ ~Fl-a[a-l, (a-l)(b-1)] (5.257)

Note that if tlj = 0, then E[MSp] = E[MS,]. Thus, MS, is the
denominator of the F statistic, and the hypothesis Ho in Equation 5.255 is
rejected at the a level of significance if

MSp
(5.258)F= MS ~Fl-a[b-l,ab(n-l)],

TABLE 5.12

Analysis of Variance Table for a Two-Way
Crossed Oassification with a Mixed Effects

Model (tit Fixed and tJJRaadom)

Soan:e dr SS MS ElMS) F

bn • MS../MS..-Factor A a-I SS.. MS.. g2 + u~ + -=r ~ 1Ij2
ai_I

Factor B b-I SS~ MS~ g2 + auj MS~/MS,

Interaction of
factoR A and B (a-I) (b-I) SS..- MS..- g2+u~ MS..-/MS,

Experimental error ab(n-I) SS, MS, ,r
Total abn-I SSrClla1

Similarly, the hypothesis Ho in Equation 5.256 is rejected at the a level of
significance if

MS~
F = MS, ~ F1- a[(a-l)(b-1), ab(n-1)] (5.259)

Estimates of the variance components are obtained by equating MSp,
MS~, and MS, with the corresponding E[MS] expressions and then solv­
ing for rr'-, tI~ and tlj. This yields the estimators

(5.260)

(5.261)
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.. 2 MSp - MSE
trp =

an
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(5.262)

If application of Equation 5.260, 5.261, or 5.262 results in a negative esti­
mate, the estimate is set to zero. The estimated variance of an individual
observed value Yijk is given by

Var(Yijk) = o-J + o-~ + q2 (5.263)

with approximate degrees of freedom given by

(5.264)

If the hypothesis Ho: ai = 0 is rejected, it is of interest to estimate and
compare the means f.Li. corresponding to the levels of factor A. The estima­
tor of f.Li. is the row average (referring to Table 5.9) given by

-yo = y. Ibn1.. 1..

The variance of Yi.. is given by

(5.265)

Var(yd (5.266)

and is estimated by

.. _ MSp - MSE + aMS..p
Var(y' ) = --=.:------:.--~

1.. abn

which has approximate degrees of freedom given by

[abn Var(Ydl2
df* = ------::..------::....::;,:.-=-------

MSp (aMS..p)2 MS:--+ +---
b-l (a-l)(b-I) ab(n-I)

Note that Var(y..> and df* are constant for all levels of factor A.

(5.267)

(5.268)
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Individual approximate 100(1 - a)% confidence intervals for the
means #li. are given by

(5.269)

where tl-a/2(df*) is obtained from Table A5. Simultaneous confidence
int-rvals for the a means iii. with an overall (1 -a) confidence level are
obtained by applying Scheff6's method, which gives

Yi.. ± .jVir(Yi..)(a-I)F1-a(a-l, d"f*) (5.270)

where F1-a(a-l,df*) is obtained from Table A6.
Comparisons among the means are made by applying the procedures

presented in Sections 5.1.4.2, 5.1.4.3, and 5.1.4.4. Note that in the equa­
tions given in those sections, Yi.. replaces Yi.> MSaP and (a - I) (b - 1)
replace MSWithin and N - a, and bn replaces ni or n. This approach to
comparing the means is only valid when the comparisons are contrasts of
the means, where a contrast is defined by Equations 5.46 and 5.47.
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CHAPTER 6

Regression Analysis
6.0 INTRODUCI10N

In nuclear material accounting, situations often arise where a variable
of interest cannot readily be measured directly, but an estimate of its value
can be inferred through relationships with one or more other variables that
can be easily measured. For example, suppose that it is necessary to deter­
mine the volume of plutonium nitrate solution in a storage tank. Measur­
ing this volume directly is difficult; however, the height of solution in the
tank is more easily measured. Then, given the relationship between height
and volume, the volume is obtained indirectly by measuring the height of
solution in the tank. The development of a quantitative description of tank
volume as a function of height is an example of a calibration problem.

The exact functional relationship between two or more variables is usu­
ally unknown. However, an approximating equation can often be developed
by collecting data on the relevant variables across the range of interest and
then fitting a function to the data. The process of postulating an appropri­
ate functional form, estimating the parameters in this equation from the
collected data, and evaluating the adequacy of the fitted equation is known
as regression analysis.

As noted above, one or more variables related to the variable of inter­
est can often be used to develop a regression equation. If the development
is successful, these independent variables can then be used to estimate or
predict a value for the variable of interest (dependent variable). Many
nuclear material accounting applications of regression analysis use only
one independent variable and one dependent variable, as in the above plu­
tonium nitrate tank calibration problem. The primary applications of
regression analysis in nuclear materials accounting pertain to calibration.
Chapter 15 includes detailed presentations of several calibration problems.

6.1 AN OVERVIEW OF REGRESSION AND
CORRELATION

In this chapter, correlation refers to the strength of a linear relation­
ship between two variables.t Regression refers to the process of identifying

tThe concept of correlation with more than two variables (multiple and partial correla­
tion) docs occur, but it is not discussed here. The discussion here is restricted to the correla­
tion betwccn two variables.

Preceding page blank 331
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an approximating equation relating a dependent variable to one or more
independent variables, estimating the unknown coefficients in the equation,
and evaluating the adequacy of the resulting equation for predicting values
of the dependent variable.

In this chapter, to be consistent with other texts on linear models and
regression analysis, upper and lower case x and yare not used to distin­
guish between a random variable and an observed value. Instead, lower
case x and yare used for both; whereas an upper case X with an under­
score (i.e., ~) is used to denote a matrix.

6.1.1 Correlation
The correlation (strength of a linear relationship) between two vari­

ables x and y is measured by the population correlation coefficient (Sec­
tion 2.6), which is given by

~Pxy=
(Ix (ly

(6.1)

where (lxy is the population covariance of x and y, and (Ix and (ly are the
population standard deviations of x and y. It can be shown that
-1 :E; Pxy :E; 1,

where

Pxy = 0 indicates that x and yare uncorrelated,t i.e., there is no lin­
ear relationship between them

Pxy = 1 indicates that x and y have perfect positive correlation, i.e.,
all possible (x,y) pairs lie on a straight line with positive slope

Pxy = -1 indicates that x and y have perfect negative correlation,
i.e., all possible (x,y) pairs lie on a straight line with negative
slope

An estimator of Pxy is given by

Pxy=

tNote that two variables being uncorrelated does not imply that the variables are statisti­
cally independent. It means only that there is no linear relationship; a relationship of some
other type may exist. However, if two variables are statistically independent, they are also
uncorrelated.
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where (XioYi) is the ith (x,y) pair, and n is the number of (x,y) pairs in the
sample. The estimator Pxy is called the sample correlation coefficient. How­
ever, in practice, the terms "correlation" and "correlation coefficient" are
often used when referring to the sample correlation coefficient. That con­
vention is followed in this book when no confusion results from doing so.
Some example scatterplots of bivariate data [observed (x,y) pairs1and the
corresponding sample correlation coefficients are displayed in
Figure 6.1.

6.1.2 The Regression Process

The major steps in the regression process are outlined below. For sim­
plicity, they are presented for the case where there is only one independent
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Figure 6.1 Example ec:atterplots with sample correIadoa coefIicleats.
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variable. However, they readily extend to situations with more than one
independent variable. .

1. Formulate an experimental design for collecting the data to be used
in developing the regression equation.t In designing such an experiment, a
set of values of the independent variable must be chosen, and one or more
values of the dependent variable are to be observed or measured at each
value of the independent variable. The values of the independent variable
should cover the range of interest and reflect the purpose of the analysis.
The experiment must include at least as many distinct values of the
independent variable as there are unknown parameters in the regression
equation (see Steps 4 and 5). The experiment should also include the col­
lection of more than one dependent variable observation at some of the
independent variable values to provide an estimate of the experimental
error variance. These replicate observations are of great value in assessing
whether the fitted regression equation adequately represents the experi­
mental data. Additional discussion of experimental design is given in
Chapter 7.

2. Investigate the relationship between the dependent and independent
variables with a scatterplot of the data. This could indicate, for example,
whether a linear or curvilinear equation should be chosen to represent the
unknown function.

3. Specify the measurement error structure inherent in the dependent
and independent variables. In classical regression methods it is assumed
that values of the independent variable are known without error and only
the dependent variable is subject to error. While this assumption is seldom
strictly valid, it is often reasonable because in many practical situations
independent variable errors are much smaller than dependent variable
errors. Regression techniques do exist for the case where there are signifi­
cant errors in both the dependent and independent variables; however, they
are somewhat more complicated (see Section 6.2.4.3). Other error struc­
ture questions of concern include the following:

a. Are the errors in the dependent variable statistically dependent; i.e.,
will a given observation tend to have a large (or small) error if the previ­
ous observation had a large (or small) error, or will successive errors tend
to have the same sign?

b. Do the dependent variable errors have a constant variance over the
independent variable range of interest, or does the error variance change
with the value of the observation?

Specifying the error structure is very important in determining the correct
model fitting (parameter estimation) technique in Step 5.

tA designed experiment is not a necessity for a regression analysis; often in practice, only
data from undesigned experiments are available. However, without a well-designed set of
experimental data, the results of a regression analysis may be inconclusive and/or inadequate.
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4. Write down the mathematical model that represents the form of the
regression equation indicated in Step 2. This model should include the
error structure specified in Step 3 and the parameters to be estimated in
Step 5. For example, suppose that variables x and yare approximately
linearly related, values of x are assumed to be known without error, and
values of yare subject to errors that are independent and identically nor­
mally distributed. Then an appropriate mathematical model is given by

Yi = fJo + fJl Xi + fi

where

Yi = an observed value of y at x = Xi

fJo, fJl = unknown regression parameters (coefficients) to be estimated
from the (x,y) data

fi = error associated with Yi; the fit i =- 1, 2 ... , n, are assumed
to be independent and identically normally distributed with
mean zero and variance r?

5. Choose the appropriate model fitting technique (ordinary, weighted,
or nonlinear least squares) and estimate the parameters (coefficients) in
the regression equation. For the linear example above, the estimated
parameters are ~o and ~h where the hat n indicates an estimate of the
unknown true parameter. The least squares estimation techniques are dis­
cussed in detail later in this chapter.

6. Check the adequacy of the fitted regression equation obtained in
Step 5 and the underlying assumptions. This should include an analysis of
variance, a test for lack of fit, and an analysis of residuals (a residual is
the difference between an observed value of the dependent variable and the
corresponding value predicted from the fitted model). These analyses aid
in the detection of outlying or influential data points and can indicate
whether a modification of the form of the regression equation is required.

7. If necessary, modify the form of the regression equation or perform
a transformation of the dependent variable and go to Step 4. Note that if
a dependent variable transformation is performed, the error structure will
likely change.

8. When the final regression equation is obtained, quantify the error
introduced by using the regression equation to predict (indirectly measure)
the dependent variable based on knowledge of the independent variable.t

The above steps are presented as a brief overview of the regression pro­
cess and are discussed in more detail in subsequent sections of this chapter.

tIn calibration problems, the dependent variable in the regression equation usually
becomes the independent variable in application (see Chapter IS).
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This overview is intended to provide an appreciation of the many necessary
steps in a thorough regression analysis. In practice, however, many of these
steps are often incorrectly overlooked.

In performing a regression analysis, remember that the hypothesized
regression model is often just a model that is tentatively adopted because
the true equation is unknown. In fitting the model to the collected data,
however, it is implicitly assumed that the regression model is correct; thus,
this assumption must be checked. This check may result in either adopting
the tentative model as adequate or rejecting it (with more work required).

6.2 SIMPLE LINEAR REGRESSION BASICS

Simple linear regression refers to a regression between one dependent
and one independent variable, where the relationship between the two vari­
ables is a straight line. This section uses an example with a simple error
structure to introduce and illustrate some of the concepts presented in the
regression steps of Section 6.1.2. Detailed discussions of these steps for
other error structures are presented in subsequent sections.

6.2.1 An Example

The following example is adopted from Jaech (1973). The data are
from an undesigned experiment, and there are no replicate observations as
suggested in Step I of the previous section. The data in this example are
used throughout this chapter to illustrate the various estimation and
hypothesis testing methods.

Example 6.1 The following data consist of measurements for total
23SU made by an NDA instrument on I-gal containers known to contain
specified amounts of 23SU.

x= g or 235U y = net counts

10 890
15 1234
20 1491
25 1815
40 2896
50 3718

The dependent variable (y) and independent variable (x) are defined as:
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y = net counts produced by the NDA instrument
x = known amount of 23SU in a given container

337

It is assumed that the random error variance associated with the depen­
dent variable y is constant over the range of the data. Although this
assumption may not be realistic for all situations that involve counting
data (i.e., counting data are often from a Poisson distribution where the
variance is equal to the mean), it is made in this example for simplicity of
illustration. A regression equation with y as a function of x is to be
developed.

Example 6.1 is actually a special type of regression problem known as
a calibration problem. A relationship between amount of 23SU and counts
on the NDA instrument is required so that the amount of 23SU may be
measured indirectly with the NDA instrument. The regression equation is
obtained by fixing values of x and then observing y, but it is actually
implemented by observing y and predicting the x value that corresponds to
it. This section presents methods for developing a regression equation for y
as a function of x. The calibration applications of regression are discussed
in detail in Chapter 15.

A scatterplot of the data from Example 6.1 is displayed in Figure 6.2.
Although there is an indication of slight curvature, it appears that a
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Fipre 6.2 Scatterplots of data from Example 6.1.
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straight line might adequately explain the relationship between grams of
23SU and net counts on the NDA instrument.

6.2.2 Model and Error Structure

The error structure for Example 6.1 is specified in the problem descrip­
tion. The amount of 23SU in each container (x) is assumed to be known
without error (or the error is relatively small compared to the error in the
number of counts). The number of counts (y) is subject to error; the errors
are independent and have a constant variance over the range of interest.

The mathematical model, representing a hypothesized linear relation­
ship and a specified error structure, is given by

where

Yj = fJo + fJIXj + Ej

Yj = observed net counts for container i
fJo = true unknown intercept of the line
fJI = true unknown slope of the line
Xj = 23SU content of container i in g
Ej = random error in Yj

(6.3)

For subsequent discussions, the following assumptions are made:
1. Ej is a normally distributed random variable with mean zero and

variance rIl.
2. Ej and Ej' i =I: j, are independent (and hence uncorrelated). Thus,

E[yil = fJo + fJIXj and Var[Yj] = rIl.
While these assumptions are often reasonable, they should not be arbitrar­
ily applied. Statistical procedures for examining these assumptions are con­
sidered in Section 6.4. However, nonstatistical consideration of the error
structure inherent in the system plays a significant role in formulating
correct assumptions.

So far, Steps 1 through 4 of the regression process outlined in Section
6.1 have been considered. The next step is the selection of a method for
estimating the parameters fJo and fJI'

6.2.3 Ordinary Least Squares

It would be most unusual if all the data points (XioYj) in a scatterplot,
such as Figure 6.2, fell exactly on a straight line. Generally, if a straight
line is drawn through the points in a scatterplott the points will vary about

tTbis means that a straight line is drawn such that the data points are not either all above
or all below the line. It is possible that none of the data points fall exactly on the line. In
such a case, at least one data point must be above and at least one data point must be below
the line:
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the line, but most of them will not fall on the line. It is desirable to choose
a line through the data points that minimizes the variability of the points
about the line. The least squares criterion provides a technique for doing
so.

Figure 6.3 is an enlarged portion of Figure 6.2 with a line drawn
through the data points (XioYi)' Each value of x (Xj) has a corresponding
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predicted Y value (Yi) lying on the line and an observed Y value (Yi)' The
quantity Yi - Yi is referred to as the ith residual; hence,

D

SSRaidual = ~ (Yi - 9i)2
i-I

is called the residual sum of squares, where n is the number of data points
(Xi,Yi)' The least squares criterion defines the line that results in the smal­
lest value of SSRaidual' The line associated with the smallest residual sum
of squares is called the least squares line. Note that the least squares cri­
terion is valid for fitting any equation where Yis expressed as a function of
one or more independent variables; it is not restricted to straight lines.

Parameter estimates ~o and ~l are obtained from the least squares cri­
terion by minimizing SSRaidual, where Yi = ~o + ~IXi for a linear equa­
tion; that is,
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minimized with respect to Po and PI by calculus techniques. This is dis­
cussed in greater detail in most texts on linear models or regression analy­
sis, such as Graybill (1976) or Draper and Smith (1981). The resulting
estimators are given by

and

n

~ (Xi - X)(Yi - y)
.. i-I

{JI =-------
n
~ (Xi - X)2
i-I

(6.4)

where

n n
X= ~ xiln and y= ~ Yiln

i-I i-I

(6.5)

Note that when the errors Ei are normally distributed, the least squares
estimators are also maximum likelihood estimators.

Example 6.2 Using the data from Example 6.1, fit a simple linear
regression equation relating Y(net number of counts) to x (g of 23SU).

The following intermediate results are obtained from the data given in
Example 6.1:

n

~ Xi = 160
i-I
n
~ xl = 5450
i-I

n

~ XiYi = 404,345
i-I

n
~ Yi = 12,044
i-I
n
~ yl = 30,042,502
i-I

n=6
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Then the coefficient estimates are computed from Equations 6.4 and 6.5,
which give

PI = 6(404,345) - (160)(12,044) = 70.286
6(5450) - (160)2

and

Po = 12,044 - 70286 [ 1601= 133.0406 . 6

and the fitted least squares regression line is

y= 133.040 + 70.286 x

Before a fitted regression equation is used to make predictions for
unobserved data points, it should be evaluated to determine how well it fits
the observed data. Regression is ail iterative procedure that should con­
tinue until any model inadequacies or data anomalies are resolved. Evalua­
tion techniques are discussed in Section 6.4. First, however, other regres­
sion models are introduced and discussed, with a general development in
Section 6.3.

6.2.4 Other Regression Models

Often in regression situations with one independent variable, a straight
line will not adequately represent the unknown true relationship. Likewise,
when there is more than one independent variable, an equation linear in
the independent variables may not adequately represent the unknown true
relationship. Sometimes curvilinear models are needed that incorporate
algebraic functions of the independent variables. The independent vari­
ables, and any new variables generated by functions of them, are called
predictor variables. A regression problem with more than one predictor
variable is called a multiple regression problem.

The other aspect of a regression model (besides the functional form) is
the assumed error structure. Generally, the independent variables are
assumed to be known without error. This class of regression problems
(including various assumptions about the error structure of the dependent
variable) is considered in detail in Section 6.3. However, there are situa­
tions where both independent and dependent variables are subject to con­
siderable error. This situation is discussed briefly in Section 6.2.4.3.



342 QiAPTER 6 REGRESSION ANALYSIS

6.1.4.1 Simple and Multiple Regression Equations

A wide variety of functional forms is used to formulate regression
models. For illustrative purposes, a list of several common equations is
given in Table 6.1.

TABLE 6.l

Several Common Regression Equations

Name

1. Hyperbola

2. Exponential

3. Geometric

4. Quadratic

S. Cubic

6. Linear-2 independent
variables

7. Quadratie-2 indepen­
dent variables

Equation

I I
Y== R + R or - "" Po + PIX

""0 ""Ix y

Y== pofJforlogy == logfJo + (logfJl)x
fJ

Y == fJoX I orlogy -logPo + fJllogx

y "" Po + PIX + P2x2

Y... fJo + PIX + P2x2 + P3x3

y - fJo + fJlxl + P2X2+ fJI1X~ + fJ22xl
+ fJI2xlx2

Some nonlinear regression equations can be fitted using simple linear
regression techniques by employing algebraic transformations, as in the
first three equations in Table 6.1. Equations of this type are said to be in­
trinsically linear. The fourth and fIfth equations in Table 6.1 represent
members of the class of polynomial equations with one independent vari­
able. The last two equations illustrate polynomial equations with more
than one independent variable. While the equations in Table 6.1 by no
means include all useful forms, they do illustrate some commonly used
forms of simple and multiple regression equations.

6.1.4.1 Transformations of the Dependent Variable

In regression analysis, where ordinary least squares is used to estimate
the regression equation parameters, the usual error assumptions are that
the errors are independently and identically normally distributed with
mean zero and a common variance u'-. The assumption of normally dis­
tributed errors is not necessary for least squares estimation of the parame­
ters. However, when the errors in the dependent variable are not normally
distributed, the ability to make inferences from the regression analysis is
restricted. When the errors do not have a common variance, ordinary least
squares should not be used to estimate the parameters (one option is to
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use weightcii least squares; see Section 6.3.2). In both of these
situations-nonnormally distributed errors or heterogeneous error
variances-it is sometimes possible to obtain approximately normal errors
or homogeneous error variances through transformations of the dependent
variable.

Transformations to stabilize several types of heterogeneous variance
situations are displayed below. If a transformation is appropriate, y'
(rather than y) is used as the dependent variable.

Variance proportional to E[y): y' = ../Yory'''../Y + JY+T
Standard deviation proportional to E[y): y' = log y

Standard deviation proportional to (E[y])2: y' = .!.
y

For a more detailed discussion of these and other transformations, see
Draper and Smith (1981).

In practice, nonnormality and heterogeneous variances often occur
simultaneously. Fortunately, the transformations that help stabilize
variances are often useful in correcting for nonnormality. It is a wise pol­
icy, however, to check the residuals (discussed in Section 6.4;5) to make
sure the transformation is effective in both stabilizing variances and
providing an approximately normal distribution of the errors.

6.2.4.3 Errors in Both Variables

Consider a simple linear regression where both the dependent and inde­
pendent variables are subject to error. As in Equation 6.3, the model

(6.6)

is assumed, but now

(6.7)

where the xi' are fixed by the experimenter, Xj is the true value of xi', and
ej is the random error associated with Xj. By substituting Equation 6.7 into
Equation 6.6, the model becomes

(6.8)

with error structure assumptions Ej - N(O,O';), Cj - N(O,O';), and
Cov(Ej,ej) = 0. Then Equation 6.8 can be written as
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(6.9)

This model is similar in both form and error structure to the model in
Equation 6.3, and hence flo and fll are estimated by ordinary least squares
as in Section 6.2.3. For more information on this model, see Berkson
(1950) or Draper and Smith (1981). Applications of this model to calibra­
tion are considered in Chapter 15.

In the multiple regression situation where each of several independent
variables is subject to error, the discussion of regression becomes more
complicated (see Seber, 1977).

6.3 GENERAL MULTIPLE LINEAR REGRESSION

Simple linear regression is introduced in Section 6.2, where it is
assumed that the errors are independent with a constant variance. The
possibility of other error structure assumptions is mentioned, as are many
other simple and multiple regression equations that might be used. This
section presents a general framework for a large class of regression
problems.

6.3.1 The General Linear Regression Model

Recall that a regression model is composed of an assumed functional
form and an error structure. Consider the class of models in which the
predictor variables Xh X2, ••• , Xp_1 are known without error, and the
functional form is linear in the regression parameters; that is,

p-I

Yj = flo + ~ fljxjj + Ej
j-I

(6.10)

This class of models can be represented in a general form by using matrix
notation.t This general linear regression model is given by

where

y= X~+ E- - -

! = an n X 1 vector of observable random variables
~ = an n X p matrix (n > p) of known fixed numbers
ff = a p X 1 vector of unknown regression parameters

(6.11)

tReaders unfamiliar with matrix notation should refer to a text on matrix algebra, such
as Graybill (1969), Searle (1966), or Searle and Hausman (1970).
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.! = an n X 1 vector of unobservable random variables
(representing errors in 1 )

El.!] = Q

Cov l.!] = ~ (the variance-covariance matrix)

Note that Equation 6.11 is Equation 6.10 written in matrix notation for
i= I, 2, ... , n; that is,

YI 1 XI,I XI,p_1 f30 EI

Y2 1 X2,I X2,p-1 f31 E2

= +

Yo 1 Xn,l '" Xn,p-I
f3p-1 En

nXI nXp pXI nXI

The variance-covariance matrix ~ is

ul UI2'" Uln

UI2 ui U2n

where u? is the variance of Ej, i = I, 2, ... , n, and Ujj is the covariance
of Ej and Ej (see Section 2.6.3).

The general linear model given by Equation 6.11 has many special
cases, depending upon the error structure assumptions. The following two
special cases are of particular interest in nuclear material control
applications:

Case 1: .! - N(Q, ~1)
~ unknown and Ej, i = I, 2, ... , n, are independent Q is
the n X n identity matrix)

Case 2: .! - N(Q, ~ y)

~ unknown and y is an n X n matrix of known constants (if
the Ej are independent, then yis a diagonal matrix)
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Estimation of the regression parameter vector fl. for each of these cases is
considered in the following section.

6.3.2 Parameter Estimation
As discussed in Section 6.2.3, the least squares criterion requires

minimization of the residual sum of squares, given by

n

SSResidual = ~ (Yi - Yi)2
i-I .

or in matrix notation

(6.12)

where i = ~ D· The least squares estimators for fl. for Cases 1 and 2 are
presented below.

Case 1: Ordinary Least Squares

(6.13)

Case 2: Weighted Least Squares

Here, the ordinary least squares estimator given by Equation 6.13 does
not apply directly. Instead, estimates are obtained by transforming the
observations I to new variables ~ that meet the Case 1 assumptions; that
is,

(6.14)

or

(6.15)

where

~-I = inverse of the symmetric matrix ~ where ~ PI = Y

Q= ~-I~

f = random vector with E[f] = 0 and Cov[f] = tfll
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Then the estimator for fl is given by

347

(6.16)

A common weighted least squares (Case 2) application occurs when
the errors are assumed to be independent but they do not have a constant
variance. In this situation, the matrix y is diagonal, so that the
variance-eovariance matrix is

u~ O· . 0

o ul 0

o O· .. u;

where Var[Ej] = u{ Because the Uj2 are seldom known, estimates are
substituted in practical applications. Estimates may be obtained from prior
information or from replicate observations. If estimates of the u? cannot
be obtained prior to the regression analyses, it may be necessary to make
the erroneous assumption that y = 1, proceed with the regression analysis,
and then attempt to learn something about the form of V by examining
the residuals. Note that the application of ordinary least squares to a situ­
ation where weighted least squares should be used will yield unbiased coef­
ficient estimates, but the estimates are not minimum variance. For a more
detailed presentation of weighted least squares regression, see Draper and
Smith (1981). Graybill (1976) provides considerable theoretical coverage
of the general linear regression model.

Matrix notation has been adopted in the literature to simplify the gen­
eral representation of regression models and the associated computations in
a regression analysis. Note that a change in the number of predictor vari­
ables or observations does not change the matrix notation. However, when
there are more than one or two predictor variables, the required computa­
tions become tedious and impractical to do by hand. Computer packages
that perform these regression calculations are widely available, but care
should be exercised in choosing a package to ensure that it is appropriate
for the application at hand.

6.4 EVALUATING A FITTED REGRESSION EQUATION

This section introduces statistical techniques for evaluating how well a
fitted regression equation represents a given set of data. The techniques
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presented are for multiple regression in general but are illustrated by using
the data from the simple linear regression problem presented in Example
6.1.

6.4.1 Regression Analysis of Variance
As discussed in Chapter 5, analysis of variance (ANOVA) methods are

applied to study the sources of variability that affect a dependent variable
in a set of data by partitioning the total sum of squares into components
that correspond to the sources of variability. For regression, the partition­
ing can be written as

[
Total sumI [ Sum of s.quares I [Residual sumI
ofsquares: = explained by the regression + of squares

or

SSrotal = SSRcg + SSRcsidual

For Case 1 (Section 6.3.1) this is given by

D D D

~ (Yi - y)2 = ~ (Yi - y)2 + ~ (Yi - Yi)2
i-I i-I i-I

(6.18)

Computational formulas for the components in Equation 6.18 are given by

and

SSRcsidual = SSTotal - SSRcg

For the simple linear regression model, given by Equation 6.3, the formula
for SSRcg reduces to the form
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I.t (Xi - i)(Yi _ y)!2
\-1= -=--------~

o
~ XiYi­
i-I n

I0 ]2
~Xi

t X?- i-I

i-I n

For Case I, Equation 6.18 partitions the total variability in the
observed Yi values into one component that is accounted for by the fitted
regression model and one that the fitted model does not explain. From this
partitioning, a statistic that quantifies the usefulness of the fitted regres­
sion equation is given by

(6.19)

This statistic is referred to as the coefficient of determination and
represents the fraction of the total variability in the observed Yi explained
by the fitted regression model. The closer R2 is to I, the better the fitted
regression model represents the observed data.

Any sum of squares (88) has associated with it a number called its.
degrees of freedom (df). This number indicates how many independent
pieces of information involving Ylo Y2, ••. , Yo are used to compute a sum
of squares. From the components in Equation 6.18 an ANOVA table is
constructed, such as the one displayed in Table 6.2 for a regression equa­
tion with p parameters. (For a simple linear regression with an intercept
term, p = 2.) The mean squares (M8) are obtained by dividing each sum
of squares by its corresponding degrees of freedom.

The residual mean square, denoted by S2, provides an estimate of the
variance about the fitted regression model, based on n - p degrees of
freedom. This variance includes components due to both pure error (exper­
imental error observed from replicates) and the lack of fit of the regression
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TABLEU

Analysis o( Variance (ANOVA) Table (or a Regression
Equation with p Parameters

Source III ss MS

D SSreg
Regression p - 1 ~ (Yi - y)2

i-I p-I
D SSResiclual

Residual n-p ~ (Yi - Yi)2 S2
i-I n-p

D

Total n - 1 ~ (Yi - y)2
i-I

equation fitted to the data. Statistical techniques for testing lack of fit are
considered in Section 6.4.4.

6.4.2 F-Test for Significance of Regression

While the R2 statistic provides a quantitative measure of how much
variability is explained by a fitted regression model, it does not indicate
whether the amount explained is statistically significant. The question of
statistical significance is answered by testing the hypothesis

Ho: fJi = 0, for all i=l, ... , p - I

against the .alternative

HA : at least one fJi ::;: 0, i=l, ... , p - I

When Ho is true, the test statistic

(6.20)

has an F-distribution with (p - 1) and (n p) degrees of freedom (the
F-distribution is introduced in Section 3.5.1). If F ~ FI-a(p - I,
n - p), found in Table A6, the null hypothesis is rejected; that is, the fit­
ted regression equation accounts for a statistically significant portion of
the total variability. This implies that HA is true; that is, at least one of
the fJi ::;: O. Note that the test statistic in Equation 6.20 is only valid for
testing the above hypothesis when there is no significant lack of fit (see
Section 6.4.4).
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Example 6.3 The regression analysis that began in Examples 6.1 and
6.2 is continued by calculating the quantities in the ANOVA table and the
coefficient of determination R2. Determine whether the fitted regression
line in Example 6.2 explains a significant portion of the variability. Use
the a = 0.05 level of significance.

By using the quantities computed in Example 6.2, the component sums
of squares in Equation 6.18 are computed as

[
D 1

2

D .~ Yi 2

SS = ~ .2 - 1-1 = 30042502 - (12,044) = 5 86617933Total .6J YI "6' , .
i-I n

[404,345 - (l60)(~2,044)r_
= I I -5,845,796.73

5450 _ (160)2
, 6

and

SSReaidual = SSTotal - SSRcg = 20,382.60

The resulting ANOVA table is given below.

Source df

Regression 1
Residual 4

Total 5

ss

5,845,796.73
20,382.60

5,866,179.33

MS

5,845,796.73
S2 = 5,095.65

The test statistic, computed from Equation 6.20, is
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F = MSReg = 5,845,796.73 = 1 14721
S2 5,095.65 ,.

The value Fo.9s(l,4) = 7.71 is obtained from Table A6. Because F
exceeds 7.71, the null hypothesis Ho: f31 = 0 is rejected in favor of the
alternative HA: f31 ¢ 0 (i.e., the fitted regression equation accounts for a
statistically significant portion of the total variability).

By substituting quantities from the ANOVA table into Equation 6.19,
the coefficient of determination is

R2 = SSReg = 5,845,796.73 = 0.997
SSTota! 5,866,179.33

Thus, the fitted linear regression equation explains 99.7% of the variability
in the observed y values.

6.4.3 Sampling Distribution of H
Because regression parameters are estimated from experimental or

sampling data, the least squares estimator Bfor the unknown coefficient
vector has a sampling distribution. For either Case 1 or Case 2, the ele­
ments of the vector B(the individual estimators Pi) are jointly distributed
(see Section 2.6.3) and have a multivariate normal distribution. It was
noted in Section 6.3.2 that D, whether defined by Equation 6.13 for Case 1
or by Equation 6.16 for Case 2, is an unbiased estimator for the unknown
coefficient vector fl, provided that the specified form of the regression
model is correct. If so, the distribution of Bhas a mean vector E[Bl = fl.

For Case 1, where Cov~l = all (see Section 6.3.1), Dhas a p-variate
normal distribution with mean vector fl and p X P variance-covariance
matrix given by

Cov[Dl = al(~,~)-l

Var[Pol

Cov[Po,Pll

Cov[Po.Ptl··· Cov[Po.Pp-ll

Var[Ptl

. CoV[Pp-2,Pp-tl

Cov[Po.Pp-tl··· CoV[Pp-2,Pp-tl Var[Pp-tl (6.21)
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For the simple linear regression model with unknown coefficients f30 and
f3.. Equation 6.21 has the form

D D

q2 ~ xl -Ul ~ Xi
i-I i-I

D D

n ~ (Xi - xi n ~ (Xi - x)2
i-I i-I

= D

-Ul ~ Xi
Uli-I

D D

n ~ (Xi - x)2 ~ (Xi - x)2
i-I i-I

That is,

and

D

-Ul ~ Xi

Cov[~o,P.]= D i-I

n ~ (Xi - X)2
i-I

When Ul is unknown, the variances and covariances are estimated by sub­
stituting S2 for Ul in Equation 6.21, when it is appropriate to do so (s2 is
an unbiased estimator for Ul only when the fitted equation does not have a
significant lack of fit; see Section 6.4.4). Thus, for the simple linear
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regression model, estimators for the variances and covariance of Po and PI
are given by

That is,

=

n
n ~ (Xi - x)2
i-I

n
n ~ (Xi - X)2
i-I

(6.22)

and

var[PI]= _n_..:..
s2
__

~ (Xi - X)2
i-I

For Case 2, where Covl!] = a2y (see Section 6.3.1), ~ has a p-variate
normal distribution with mean vector t!. and p X P variance-eovariance
matrix given by

(6.23)

When a2 is unknown, the appropriate estimator for Case 2 is given by
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(6.24)

which is then substituted for rfl in Equation 6.23.
For either Case 1 or Case 2, ~ has a multivariate normal distribution

and each element Pi has a marginal distribution that is normal with mean
fJi and variance Var[Pi]' Thus, the significance of the individual coefficient
estimates Pi can be investigated by testing the hypothesis

against the alternative

When Hois true, the test statistic

(6.25)

has a Student's t-distribution with (n - p) degrees of freedom. Thus, if
llil ~ tl-a/2(n - p), found in Table AS, then Ho is rejected and the
parameter estimate is said to be significantly different from zero, which
implies that the true value of fJi is probably different from zero.

Care must be taken in applying these tests to the individual coefficient
estimates because of the correlations among the estimates. In practice
(assuming that more than one coefficient has been estimated), only the
coefficient estimate with the smallest t statistic is a candidate for deletion
from the regression model. If this candidate coefficient is found to be non­
significant, the model is refitted with only the remaining coefficients being
estimated. At this point, the individual tests are applied again, and the
least significant coefficient estimate is eliminated. This process continues
until all remaining coefficient estimates (if any) are statistically signifi­
cant. Because the estimates are usually correlated, however, removing one
coefficient from the model can cause others that have already been
removed to become significant. This would not be detected if the above
procedure were implemented. Stepwise regression methods such as those
discussed in Draper and Smith (1981) are often used to select an adequate
submodel from a hypothesized full model form.

Methods are available for simultaneously testing the significance of
several coefficient estimates. The most common method uses a full vs.
reduced model concept [sec Draper and Smith (1981) for details of this
method].
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Example 6.4 Continuing with the regression analysis started in
Examples 6.1, 6.2, and 6.3, test whether ~o and ~I are different from zero
at the a = 0.10 level of significance.

By applying Equation 6.22 with s2 = MSRcaidual from Example 6.3,
the variance estimates are computed as

VA [pA ] = 5095.65 (5450) = 3911 4607
ar 0 6(1183.33) .

and

VA[pA ] = 5095.65 = 4 3062
ar 1 1183.33 .

For each coefficient estimate, a test statistic is computed from Equation
6.25, which gives

-,=1=33=.0=4=0= = 2.13
J391 1.4607

and

70.286 = 33.87
J4.3062

With a = 0.10, the value 10.95(4) = 2.13 is obtained from Table AS.
Because 10 = 2.13 and tl > 2.13, ~o and ~I are significantly greater than
zero. The significance of ~o is interesting. It is logical in this example to
expect Po to be zero; that is, x = 0 g of 235U should produce zero counts
on the NDA instrument if the background adjustment is made correctly.
Because ~o is significantly greater than zero, perhaps the NDA instrument
was incorrectly adjusted for background. Another possible explanation is
that the assumed model is incorrect and ~o is biased by the effect of one or
more predictor variables not incorporated in the model.

6.4.4 Testing for Lack of Fit

During a regression analysis, a regression equation is fitted to the data,
based on an assumed model form. This fitted equation should not be
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blindly accepted as the correct model but only tentatively considered. If
the true model is substantially different from the assumed model, then the
fitted model should have a significant lack of fit. This lack of fit can be
investigated by partitioning the residual sum of squares into its component
parts; that is,

[
Residual sum] [pure error I [Lack of fit ]

of squares = sum of squares + sum of squares

or

SSReaidual = SSPE + SSWF (6.26)

Note that a significant lack of fit will inflate the residual sum of squares
and hence, the residual mean square. If a prior estimatet of r? (the pure
error variance) is available, it can be compared with the residual mean
square by performing an F-test. If the residual mean square is significantly
greater than the prior estimate of r?, there is a significant lack of fit and
the model is deemed inadequate.

If no prior estimate of r? exists but replicate observationst have been
taken on y at one or more values of x, these replicates can be used to com­
pute an estimate of r? Because such an estimate is often more reliable for
the current problem at hand than a prior estimate, provisions for replicate
observations should be made when designing the experiment that produces
the data. Experimental design is the topic of Chapter 7, and the reader is
referred there for additional details.

Additional notation is required when replicate observations are present
in the data. Consider a simple linear regression: suppose that there are m
different values of x, and at the ith of these values, Xi> there are ni > 1
replicate observations. Then

Ylh Y12, , Yln, are nl replicate observations at Xl

Y2h Y22, , Y2n, are n2 replicate observations at X2

Ymh Ym2, ... , Ymn. are nmreplicate observations at Xm

tA prior estimate is one obtained from previous experience with the situation being
studied.

tReplicate observations must be genuine repeats and not just repetitions of a reading or
measurement. When collecting the data, replicates should be randomly interspersed with and
treated as any other observations (sec Chapter 7 for details).
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m
n== ~ni

i-I

is the total number of observations on y. The pure error sum of squares is
obtained by pooling the corrected sum of squares of the Yij at each Xi; that
is,

m D1

SSPE == ~ ~ (Yik - yi
i-I k-I

where

D1

Yi == ~ Yik/ni
k-I

This sum of squares has degrees of freedom given by

m
dfpE == ~ (ni - I) == n - m

i-I

Thus, the pure error mean square is

(6.27)

(6.28)

and is an unbiased estimator for r? (the common variance of the errors)
irrespective of whether or not the assumed model form is correct.

Subtracting the pure error sum of squares from the residual sum of
squares yields the lack of fit sum of squares; that is,

SSLOF == SSRcaiduai - SSPE

which has degrees of freedom

dfLOF == dfRcaiduai - dfPE == m - p

(6.29)

When replicate observations are available, the information in Equations
6.26 through 6.29 can be used to create an expanded ANOVA table as
shown in Table 6.3. The degrees of freedom for this table are based upon
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TABLE 6.3

Expanded ANOVA Table

Source elf SS MS

m 0. SSrell
Regression p - 1 ~ ~ (Yilt-yi

i-Ik-I p-I

m 0, SSResidual
Residual n - p ~ ~ (Yilt - YiIt)2

i-Ik-I n-p

Lack of fit SSResiduai - SSPE
SSLOF

m-p
m-p

m 0; SSPE
Pure error n-m ~ ~ (Yilt - Yi)2

i-Ik-I n-m

m 0.

Total n - 1 ~ ~ (Yilt"'" y)2
i-Ik-I

a model with p predictor variables (including the constant term), and ni
replicates at the itb set of predictor values, for i = I, 2, ... , m.

An F-test for lack of fit is performed by computing the test statistic

MSLOFF = --=-=.:..
MSPE

(6.30)

and comparing it with FI-a(m - p,n - m) found in Table A6. If F is
greater than or equal to the table value, it indicates that the assumed
model form does not adequately represent the true model. Otherwise, the
assumed model is accepted as adequate, and the residual mean square can
be used as an estimate of rfl.

Note that the pure error sum of squares in Equation 6.27 is equivalent
to the within class sum of squares given by Equations 5.16 and 5.20 for
the one-way ANOVA. To apply the ANOVA methods from Chapter 5,
each distinct set of values of the predictor variables is treated as a class.
(In Example 6.5 below, each value of x is treated as a class, so there are
m = 6 classes.) Then the between class sum of squares given by Equa­
tions 5.15 and 5.19 includes all variations in y that are accounted for by
varying the levels of the predictor variables. This includes the regression
sum of squares and the lack of fit sum of squares; that is,
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SSBetween = SSReg + SSLOF

Thus, the necessary components for a lack of fit test can be obtained from
computer software packages by making two passes through the data. The
first pass is a regression analysis which yields SSReg, SSReaiduab and their
degrees of freedom. The second pass is a one-way ANOVA which yields
SSBetween, SSPE, and their degrees of freedom. These quantities are then
used to fIll in the ANOVA table as shown in Table 6.3.

Example 6.5 Consider the problem described in Example 6.1, but
assume that two independent counts were taken at each Xi value as follows:

x= g of 235U Y = net counts

10 890, 905
15 1234, 1216
20 1491, 1511
25 1815, 1798
40 2896,2886
50 3718,3740

Fit a simple linear regression model to the 12 data points and determine
whether there is significant lack of fit at the ex = 0.05 level.

A scatterplot of the 12 data points is displayed in Figure 6.4. Although
there is a hint of curvature, a simple linear equation of the form
y = fJo + fJlX is fitted to the data. By applying Equations 6.4, 6.5, 6.23,
and 6.24, the least squares coefficient estimates and their estimated vari­
ances are computed as

Po = 131.39

Var[po] = 1812.2049

PI = 70.39

Var[p Il = 1.9881

By applying Equation 6.25, the test statistics for Po and PI are

t_ = 131.39 = 3 09 d t = 70.39 = 49.92
-0 42.57 . an I 1.41

Both values exceed to.mOO) = 2.23; that is, both estimated parameters
are significantly greater than zero at the ex = 0.05 level.
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The expanded analysis of variance table, with quantities computed
according to Table 6.3, is given by

Source df SS MS

Regression 1 11,724,646 11,724,646

Residual 10 47,219 4,721.9

Lack of fit 4 46,308 11,577.0

Pure error 6 911 151.8

Total 11 11,771,865

The test statistic for lack of fit is computed from Equation 6.27, which
gives

MSLOP
F=--""­

MSPE

11,577.0 = 76 3
151.8 .

Because F is larger than FO•9S( 4,6) = 4.53, the fitted simple linear regres­
sion model exhibits a significant lack of fit. Note that even though the
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simple linear regression model explains 99.6% of the variability in y (i.e.,
R2 = 0.996), the unexplained variability cannot be attributed solely to
experimental (counting) error. The conclusion is that a lack of fit exists
and the equation y = 131.39 + 70.39x does not adequately fit the data.
Thus, the assumed linear model given by Equation 6.3 may not be appro­
priate; perhaps some other model form should be considered, depending on
the desired prediction accuracy.

A significant lack of fit implies that the assumed model form is inade­
quate, and a new model form must be specified. Residual analysis tech­
niques discussed in the next section are helpful in choosing appropriate
modifications of the assumed model. As with any hypothesis test, a nonsig­
nificant lack of fit does not prove that the assumed model is adequate. The
interpretation of a nonsignificant lack of fit depends upon the size of the
experimental error variance UZ relative to the size of deviations from the
true model form that would be of concern to the practitioner. The power
of the test is also affected by the number of degrees of freedom for lack of
fit and for pure error. However, with these considerations in mind, if a
nonsignificant lack of fit is interpreted as implying that the hypothesized
model form is adequate, then residual analysis is still appropriate to check
the error structure assumptions of the model.

6.4.5 Examining Residuals

Residuals are defined as the differences

.. . Irj = Yj - Yh 1 = , 2, ... , n (6.31)

where Yi is an observation and jl is the associated predicted value
obtained from the fitted regression equation. Intuitively, the residuals are
the parts of the observations that the fitted regression equation does not
explain. Thus, for a fitted regression equation with a significant lack of fit,
examination of the residuals may suggest appropriate modifications to the
model form. For a regression equation with no significant lack of fit, each
rj may be thought of as an observed random error if the model form is cor­
rect. Because the form of the equation is assumed to be correct in this
case, the residuals can be examined to see whether they support the
assumed error structure of the model. For example, a commonly assumed
error structure has independent errors with zero mean and a constant vari­
ance UZ, and the errors are assumed to have a normal distribution. The
residuals should tend to Confirm these assumptions, or at least should not
contradict them.
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6.4.5.1 Plotting Residuals

Plotting the residuals can be very helpful in checking the validity of the
assumed model. Some useful ways of plotting the residuals rj (or the
standardized residuals discussed in Section 6.4.5.2) are:

1. In a histogram or probability plot.
2. Against the fitted values Yj.
3. Against the independent variables Xjj'
4. In observation order, if known.

Histogram or probability plot. If an assumed model is correct, the his­
togram of residuals should resemble a normal distribution with mean
zero.t An alternative is to form a normal probability plot of the residu­
als and then observe whether the points fall approximately on a straight
line. The probability plot is preferred over the histogram when the number
of data points is not large. Both the histogram and the probability plot
require a subjective judgment; however, Filliben (1975) presents an objec­
tive test based upon the normal probability plot. Other tests for normality
are discussed in Chapter 9.

Residuals's. tl. Several possible patterns that might be observed in a
scatterplot of the rj's vs. the corresponding Yj'S are shown in Figure 6.5.
These plots indicate, respectively, that the following conditions prevail:

1. Satisfactory behavior of the residuals (no anomalies).

(1)

(2)

(3)

(4)

Fipre 60S Example residualllCatterplot patterDa.

tNote that the average of the residuals will be zero if the regression model includes a con·
stant term ({3o).



364 CHAPTER 6 REGRESSION ANALYSIS

2. Variance of the errors is not constant. For this example, the variance
increases as the value of the dependent variable increases. Either applica­
tion of weighted least squares or a transformation of the dependent vari­
able is needed (see Sections 6.3 and 6.2.4.2).

3. Error in analysis. This can be caused by incorrectly omitting from
the model either a constant term or a linear term involving an independent
variable.

4. The model form is inadequate. Curvature terms (squares and/or
cross products of independent variables) should be added to the model.
Alternatively, there may be a need for a transformation of the Xjj and/or Yj
before performing the regression (see Sections 6.2.4.1 and 6.2.4.2).

Note that combinations and variations of the anomalies 2, 3, and 4 can
occur in practice.

Residuals 'so independent 'ariables. Here a scatterplot is formed for
each independent variable Xj by plotting the rj's against the corresponding
xij's. The possible patterns illustrated in Figure 6.5 and discussed above
still apply. These plots accommodate an examination of the model with
respect to each independent variable and sometimes provide guidance in
correcting deficiencies due to a particular Xj'

Residuals,s. obsenation order. Plotting the residuals rj against their
observation order is helpful in detecting unsuspected trends or variations in
the data over time. Again, referring to Figure 6.5, the horizontal pattern 1
suggests no time effect, while patterns 2, 3, and 4 would indicate unac­
counted for time effects in the error variance or the form of the model.

Other residual plots. If a regression analysis yields a fitted equation
with a significant lack of fit and the above residual plots do not help
resolve the problem, other residual plots may be helpful. It is often enlight­
ening to plot the residuals against other variables that were not controlled
during the experimentation. For example, observations may have been
obtained with several supposedly similar measuring instruments, but there
may be an instrument effect that could help explain some of the previously
unexplained variability in y. In general, residuals should be plotted in any
reasonable way that the experimenter or data analyst feels might provide
some insight into the cause of nonrandom or unusual patterns in the
residuals. For additional techniques and more detailed discussions, see
Cook and Weisberg (1982) and Daniel and Wood (1980).

Summary. The subjective residual plotting procedures presented above
are quite useful; in applications, their subjectiveness seldom hinders their
utility. However, many objective statistical analysis techniques exist for the
examination of residuals. Some of these are presented in Section 6.4.6.
The interested reader may also want to refer to Anscombe (1961),
Anscombe and Tukey (1963), or some of the other references given in Sec­
tion 6.4.6.
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Example 6.6 Continuing Example 6.5, analyze the residuals and
modify the regression equation accordingly.

The residuals and other pertinent information are displayed in Table
6.4. Plots of the residuals (ri) against the predicted values (Yi) and against
the independent variable (Xi) are displayed in Figures 6.6 and 6.7, respec­
tively. The pattern of the residuals is very similar in the two plots, because
there is only one independent variable in this example. Each scatterplot
shows a definite curvature indicating that additional terms should be
added to the model to account for this curvature; thus, an Xi2 term is
considered.

TABLE 6.4

nata with Predicted Values and Residuals from
the Fitted Simple Linear Regression Model

..
Xi YI YI rl

1 10 890 835.3 54.7
2 10 905 835.3 69.7
3 15 1234 1187.2 46.8
4 15 1216 1187.2 28.8
5 20 1491 1539.0 -48.0
6 20 1511 1539.0 -28.0
7 25 1815 1891.0 -76.0
8 25 1798 1891.0 -93.0
9 40 2896 2946.8 -50.8

10 40 2886 2946.8 -60.8
11 50 3718 3650.7 67.3
12 50 3740 3650.7 89.3

The expanded model form is given by

Yij = flo + fllXi + fl2Xl + Eij

for i = 1, 2, ... , 6 and j = 1, 2. By using the least squares algorithm in
a statistical computer software package, the coefficient estimates, their
estimated standard deviations (i.e., the square roots of their estimated vari­
ances), and test statistics are as follows:

..
Jvir[Pil ti = PdJVar[Pilfli

flo 419.83 30.95 13.56
fll 45.665 2.46 18.56
fl2 0.408 0.04 10.20
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The lj statistics indicate that all coefficient estimates are significantly
greater than zero [e.g., for a = 0.01, to.99s(9) = 3.25]. The expanded
analysis of variance table, computed according to Table 6.3, is given
below.
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Source elf ss MS

Regression 2 11,768,113 5,884,056

Residual 9 3,752 416.9

Lack of fit 3 2,841 947.0

Pure error 6 911 151.8

Total 11 11,771,865

The test statistic for lack of fit, computed from Equation 6.30, is

F = 947.0 = 6.24
151.8

If the ex = 0.05 level of significance is chosen, the value
Fo.9s(3,6) = 4.76 is obtained from Table A6. Because 6.24 > 4.76, the
lack of fit is significant at the ex = 0.05 level. Note, however, that the
lack of fit is much less pronounced than in the simple linear model fitted
in Example 6.5.

Although the fitted quadratic model has statistically significant lack of
fit, the "practical significance" should be carefully considered before
proceeding with additional modifications of the model form. With
R2 = 0.9996, a statistically significant lack of fit may be of no real prac­
tical importance when the requirements of the intended use of the model
are considered. Note that the pure error mean square, MSPE, indicates the
limitation on the repeatability of the observed Yij values at a given Xi value.
For discussion purposes, note that

12.32 = 0 006
2008.33 .

That is, the estimated pure error standard deviation is about 0.6% of the
overall average of the observed y values. Note also that if the lack of fit is
ignored and the residual mean square is used as an estimate of the experi­
mental error variance, then the estimated relative standard deviation is

JMSRcsidual

y
20.42 = 0010

2008.33 .
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or 1.0%. That is, including the lack of fit deviations increases the
estimated relative standard deviation from 0.6% to 1.0%. Depending upon
the intended use of the fitted model, this may be acceptable. However,
omitting the x2 term from the model inflates the estimated relative stan­
dard deviation to 3.4%, which is almost six times the estimated relative
pure error standard deviation. Again, this may be acceptable for some
applications; but for this example, we conclude that the linear model is
inadequate and use the quadratic model.

The observed x and y values, the predicted values, and the residuals for
the fitted quadratic model are displayed in Table 6.5. A plot of the residu­
als from the fitted quadratic equation against x is shown in Figure 6.8.
(Because of its similarity to this plot, the plot of rj against Yi is not given
here.)

TABLE 6.5

Data with Predicted Values and Residuals from
the Fitted Quadratic Regression Model

Xi
..

YI Y. '.
1 10 890 917.3 -27.3
2 10 905 917.3 -12.3
3 15 1234 1196.7 37.3
4 15 1216 1196.7 19.3
5 20 1491 1496.4 -5.4
6 20 1511 1496.4 14.6
7 25 1815 1816.6 -1.6
8 25 1798 1816.6 -18.6
9 40 2896 2899.5 -3.5

10 40 2886 2899.5 -13.5
11 50 3718 3723.5 -5.5
12 50 3740 3723.5 16.5

There is an indication of an effect due to a higher power of x (as indicated
by the rough curve drawn through the points in Figure 6.8). However,
when a third-order polynomial is fitted to the data, addition of the cubic
term does not significantly reduce the lack of fit. In fact, a fourth-order
polynomial is required if the lack of fit must be reduced to a level that is
not statistically significant. This, along with the above considerations, sug­
gests that for practical purposes the fitted quadratic model adequately
represents the unknown true model form.

The next step involves checking the error structure assumptions. The
residuals plotted in Figure 6.8 do not appear to contradict the assumption
of a constant variance; however, with only two observed y values at each
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Xi> this conclusion is very subjective. A histogram and normal probability
plot of the residuals from the fitted quadratic equation are shown in Fig­
ures 6.9 and 6.10, respectively. For this example, there are insufficient
data (i.e., the sample size is too small) to reach any firm conclusions about
normality from these two figures. However, the test for
normality-presented by Filliben (1975) and based on the correlation coef­
ficent of the normal probability plot-was performed, and the result did
not contradict the assumption of normally distributed errors.
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Finally, the assumption of independent errors should be tested. (See
Section 6.4.5.3 and Example 6.8).

6.4.5.2 Standardized Residuals

While the previously discussed residual plots help identify extreme
residuals, they do not give all the information required for some situations.
It can be helpful to consider standardized residuals, obtained by dividing
each residual by its estimated standard deviation. The resulting stan­
dardized residual is given by

(6.32)

where

ri = the residual from the ith data point
s = the square root of the residual mean square of the regression,

assuming the fitted equation has no significant lack of fit
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-
The hii, i = 1, 2, ... , n, are the diagonal elements of the so-called hat
matrix tI= ~(~' LO-I~, (see Hoaglin and Welsch, 1978) and are given
individually by

(6.33)

where ~ is the ith row of ~. For a simple linear regression model,
Equation 6.33 simplifies to the form

1
1] 1 (Xj - x)2h·· = [1,x·] (X,X)-I = - + ---:;-~

n 1 -- Xj n D

~ (Xj - x)2
j-I

The interested reader can work through the algebra by noting the form of
the (~,~-I matrix in Equation 6.22. The standardized residuals can be
plotted in the same manner as any of the residual plots discussed in the
previous subsection.

In addition to graphical displays of the standardized residuals, approxi­
mate hypothesis tests can be applied. If the fitted regression equation does
not have a significant lack of fit and the assumption of normally dis­
tributed errors appears reasonable, standardized residuals can be compared
with tl-a /2(n - p), obtained from Table AS, to determine whether an rj*
is farther away from zero than would be expected by chance alone. Any
observation corresponding to a significantly large rj* should be investigated
to see whether there is an explanation for the large value. Note that, by
chance alone, approximately l00a% of the standardized residuals are
expected to be greater than tl- a /2(n - p) or less than -tl-a /2(n - p).

Lund (197S) presents an outlier te$t for the largest standardized resid­
ual. If rj* exceeds the critical table value, the corresponding observation is
determined to be an outlier. Critical values for Lund's test are given in
Table A9.

Example 8.' Investigate the standardized residuals from the linear
and quadratic fitted equations in Example 6.6.

The standardized residuals for both the linear and quadratic equations
were obtained from the output of a statistical computer software package
and are displayed in Table 6.6. The values for the quadratic equation can
also be calculated by using the intermediate computer re~ults tabulated in
Example 6.9. Using an approximate t-test (the t-distribution critical values
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TABLE 6.6

Standardized Residuals from the Fitted
Linear and Quadratic Equations

Stanclardized
residuals from
IiDear equadoo

StaDdanIizecl
residuals from

quadratic: eqaadoo

10 890 0.89 -1.66
10 905 1.13 -0.75
15 1234 0.73 1.97
15 1216 0.45 1.02
20 1491 -0.73 -0.28
20 1511 -0.43 0.77
25 1815 -1.15 -0.08
25 1798 -1.41 -1.02
40 2896 -0.80 -0.19
40 2886 -0.96 -0.74
50 3718 1.18 -0.35
50 3740 1.56 1.07

to.m(lO) -= 2.23 to.m(9) - 2.26
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Figure 6.11 Stanclardized residuals from the fitted IiDear equadoo
'so the iDdepeudent ,ariable.

are given at the bottom of Table 6.6), none of the standardized residuals
for either equation appears to be significantly different from zero at the
a = 0.05 level of significance. Because the critical values of Lund's
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procedure, given in Table A9, are larger than all of the standardized
residuals in Table 6.6, none of the residuals is classified as an outlier.

Plots of the standardized residuals against the independent variable x
for both the fitted linear and quadratic equations are displayed in Figures
6.11 and 6.12, and are very similar in appearance to Figures 6.7 and 6.8.
In this example, examination of the standardized residuals conveys essen­
tially the same information as the unstandardized residuals. With the
standardized residuals, however, it is easier to see their relative sizes and
relationship to zero at a glance.
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Figure 6.12 StaDdardized residuals from the fitted quadratic equa-
tion n. the indepeodent ,ariable.

6.4.5.3 Serial Correlation

In applications of regression, the observational errors are often assumed
to be independent, or at least pairwise uncorrelated. Situations where this
assumption is not valid are often detected by plotting the residuals against
the observation order. However, it is also desirable to apply statistical tests
that detect departures from this assumption. Two such tests are considered
in this section; they are the runs test and the Durbin-Watson test.

If observational errors are not independent, there are many ways that
they might be related. They might be serially correlated; that is, the corre­
lations between errors which are s steps apart (Ps) are always the same.
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Assuming that the fitted regression equation under examination has no sig­
nificant lack of fit, the residuals can be thought of as the observed errors
from the correct model (i.e., a sample of the observational errors). In this
situation, it is reasonable to investigate the residuals for serial correlation.

The correlation between residuals one (or two, three, ...) step(s) apart
is called the lag-l (or lag-2, lag-3, ...) serial correlation. The lag-s serial
correlation is displayed by plotting each residual except the first s of them
against the residual s steps preceding it. Calculating the sample correlation
coefficient (see Equation 6.2, Section 6.1.1) for these pairs of residuals
yields the lag-s serial correlation coefficient PS'

It is possible to obtain both positive and negative serial correlations. A
positive serial correlation results when successive residuals tend to be alike.
This is common, for example, when a measurement instrument drifts in
one direction; that is, it becomes progressively more biased over time.
Negative serial correlation results when successive residuals are different.
This occurs, for example, when a system is subject to holdup (i.e., in suc­
cessive measurement periods material alternately builds up and then is
recovered).

The runs test. When the observation order of a set of residuals is
known, it is sometimes evident that groups of positive or negative residuals
occur in unusual patterns. If the underlying error structure really consists
of independent errors, a random pattern of positive and negative residuals
would be expected when the residuals are plotted in observational order.
Thus, a certain number of runs of positive and negative residuals would be
expected if indeed the assumption of independence is true. A run of posi­
tive (or negative) residuals is a sequence of successive residuals that are all
positive (or negative). Fewer runs than the expected number would indi­
cate the possibility of positive serial correlation among the observational
errors, while more runs than the expected number would indicate the pos­
sibility of negative serial correlation.

It is of interest to test the hypothesis

Ho: Errors are independent

against the alternative

HA : Errors are not independent

Let

n1= the number of positive residuals
n2 = the number of negative residuals
n = n1 + n2 = the total number of residuals

U* = the number of runs of positive and negative residuals
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Given nl and n2, Ho is rejected if the number of runs U* is too large or
too small. The details of the runs test are given in Section 9.1.

The Durbin-Watson test. The Durbin-Watson test is designed to detect
a certain type of serial correlation. The hypotheses for this test are stated
as

Ho :Ps = 0)
H

. - s S = 1, 2, ... , for some P ::F 0, -1 :e: p :e: 1
A 'Ps - P

(6.34)

The alternative hypothesis HA specifies the presence of serial correlation
which is either +1 or -1 (if P = +1 or -1) or which decreases in
absolute value with increasing lag (if -1 < P < 1 and P ::F 0). The
two-sided test of Hoagainst HA consists of computing the test statistic

D*=

n
~ (rj - rj_t)2
i-2

(6.35)

and comparing it to lower and upper critical values (dL, du) found in
Table AI0 for significance levels of 0.05, 0.025, or 0.01. The critical
values are given for various numbers of observations n, and for k = 1, 2,
3, 4, 5 predictor variables Xj' It is assumed that the residuals ri, given by
Equation 6.31, are obtained from fitting a model of the form

Ie

Yi = Po + ~ Pj xij + Ej

j-I

(6.36)

by the least squares method to a set of experimental or sampling data,
where Xj, j = 1, 2, ... , k, are the predictor variables. Many simple and
multiple regression models, including polynomial models, can be written in
this form.

The two-sided Durbin-Watson test for serial correlation is as follows:

If D* < dL or D* > 4 - dL, reject Ho at significance level 2a.}
If D* > du and D* < 4 - du, do not reject Ho at significance

level2a.
Otherwise, the test is inconclusive.

(6.37)
"

One-sided tests (p > 0 or p < 0) are discussed in Draper and Smith
(1981) and Durbin and Watson (1951).



376 CHAPTER 6 REGRESSION ANALYSIS

The possibility of obtaining an inconclusive result from the Durbin- .
Watson test is not attractive. Based on an approximate test from Durbin
and Watson (1971), Draper and Smith (1981) suggest that an inconclusive
result be replaced with rejection of Ho, with the understanding that the
actual probability of a Type I error is somewhat larger than the originally
specified level.

Example 6.8 Continuing Example 6.6, assume that the observation
order of the 12 observations is as given in Table 6.7, and that the residuals
rj are from the fitted quadratic regression equation. Determine whether the
assumption of independent errors appears reasonable.

TABLE 6.7

Obsenation Order and Number
of Runs for the Fitted
Quadratic Equation

Number
or

Order llf YI rl nms

I 15 1216 19.3
2 50 3718 -5.5
3 10 905 -12.3
4 25 1815 -1.6
5 40 2896 -3.5 2
6 20 1511 14.6 3
7 25 1798 -18.6 4
8 50 3740 16.5 5
9 10 890 -27.3

10 40 2886 -13.5 6
11 15 1234 37.3 7
12 20 1491 -5.4 8

First, consider the observation sequence plot of the residuals displayed
in Figure 6.13. No time related effect is apparent.

Now consider the runs test for serial correlation in the residuals. There
are U* = 8 runs in the signs of the residuals as shown in Table 6.7, with
n, = 4 positive residuals and n2 = 8 negative residuals. The critical
values, given in Table All, are used to test the hypothesis

Ho: number of runs observed is as expected
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against the alternative

HA : too few or too many runs are observed
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Note that when Ho is true, the probability of observing 8 or more runs is
given by

Pr[U ~ 8] = 1 - Pr[U ~ 7] = 1 - 0.788 = 0.212

and the probability of observing 8 or fewer runs is given by

Pr[U ~ 8] = 0.929

Thus, observing 8 runs in the signs with n. = 4 and n2 == 8 is not un­
usual enough to reject Ho (if a ~ 0.2). It is concluded that the resid­
uals (and hence the errors) do not appear to be serially correlated
according to the runs test.
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For illustration only, the Durbin-Watson test statistic is computed by
applying Equation 6.35 which gives

D

~ (ri - ri_I)2
D* = _i-_2 _

D

~ rr
i-I

9954.05 = 2.66
3748.20

However, because Table AI0 begins with n = 15 and we have n = 12,
the Durbin-Watson test is not applicable to this example.

To conclude this example, the time order plot and the runs test seem to
indicate that the assumption of independent errors is reasonable.

When significant serial correlation is found by the runs test or the
Durbin-Watson test, the basic method of analysis is weighted least squares
(Section 6.3.2). However, this requires obtaining the weight matrix Y
(Equation 6.17). Draper and Smith (1981) provide a method for develop­
ing an estimate of y.

6.4.6 Detection of Outliers and
High Leverage Observations

When fitting a regression equation to data, an outlying observation can
significantly affect parameter estimates obtained by least squares estima­
tion. If the observed y value is quite different from what would normally
be observed under similar conditions (e.g., the difference may be due to an
instrument failure or transposition of numbers in recording the observa­
tion) and if it significantly affects the least squares coefficient estimates,
then an erroneous fitted equation can result. Such an outlying observation
should be detected, its effect on the coefficient estimates determined, its
cause determined and corrected if possible, or a decision should be made
about whether to retain it as part of the data.

It is also helpful to detect data points that may influence the regression
analysis due to the values of the independent variables. A point with inde­
pendent variable values considerably removed from other values in the
data set is said to have high leverage and may be quite influential in fitting
an equation to the data, especially if the observed y value is unusual.

As an illustration of the concepts of high leverage and outlying obser­
vations, consider the four (x,y) scatterplots in Figure 6.14. In (a), there

. are no high leverage or outlying observations. In (b), there is an outlying
observation that does not have high leverage; while in (c), there is a high
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leverage observation that is not outlying. Finally, in (d), there is an obser­
vation that is outlying and has high leverage.

There are many techniques for detecting outlying or influential data
points. It is sometimes possible to detect outlying observations by viewing
a plot of y vs. the independent variables or any of the previously discussed
residual plots. However, this becomes very difficult when there are several
independent variables; quantitative techniques that are more objective are
required in these situations. Whichever technique is used, outlying or influ­
ential observations should not be removed from the data set unless trace­
able to an assignable cause, such as a faulty instrument or a transposition
or keypunch error. Some "outlying" observations are actually correct and
provide valuable information.

6.4.6.1 Detecting High Leverage Points

In this subsection, a measure of the leverage exerted on Yi by Yi is
presented. This leverage depends only upon the values of the independent
variables. Substantial leverage implies that Yi (regardless of its observed
value) has a significant impact on Yi and possibly on the coefficient esti­
mates in the fitted regression equation. Although leverage of a data point
is discussed in terms of the impact of the observed Yi, this impact dePends
on the xij values. A point has high leverage only when one or more of the
independent variables have extreme values.
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The measure of leverage for the ith data point is given by hii, the ith

diagonal element of the hat matrix given in Equation 6.33. Hoaglin and
Welsch (1978) suggest that a value of hii is large (note that 0 :::e; hii :::e; l)
if

(6.38)

,
where n is the number of data points and p is the number of coefficients in
the regression model. Because the hat matrix does not involve the Yio this
test for points with high leverage involves only the x values of each data
point. High leverage indicates that a point has the potential for unduly
influencing the parameter estimates. However, the observed y value is con­
sidered in determining whether the point is actually influential.

6.4.6.2 Measures of Influence

The effect of any data point on a fitted regression equation (its influ­
ence) can be measured by deleting the point from the data and refitting
the equation. One measure of influence based on this concept, presented
by Cook (1977), proposes that the measure of influence of the ith data
point be the distance

(6.39)

where

~ = the n X p matrix of predictor variables
~ = the p X 1 vector of least squares parameter estimates

obtained by fitting the equation to all data
~(j) = the p X I vector of least squares parameter estimates

obtained by fitting the equation to the remaining data after
omitting the ith data point

S2 = the residual mean square from the fitted equation based on all
data points

p = the number of unknown coefficients in the regression equation

A reduced form of Equation 6.39, suitable for computation, is given by

(6.40)
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where rj* is the ith standardized residual given by Equation 6.32 and hii is
given by Equation 6.33. A large OJ value compared to the remaining OJ
(j :;:. i) values indicates that the ith observation is influential. Note that OJ
can be large if either rj* is large or if hii/( 1 - hii) is large; a large rj*
indicates an unusual Yj value, while a large hii/( 1 - hii) indicates a data
point with high leverage values of the independent variables. A further dis­
cussion of OJ can be found in Cook (1977) or Cook (1979). Alternative
approaches to evaluating influence are given by Belsley, Kuh, and Welsch
(1980).

A point that has high leverage and whose y value is an outlier signifi­
cantly affects the least squares parameter estimates. If an assignable cause
is identified, the questionable point should either be corrected or deleted
from the data set, after which the equation should be refitted. Even when
an assignable cause (such as faulty equipment) is not identified, it may be
enlightening to perform the regression analysis with the point omitted so
that the results with and without the questionable point can be compared.

Example 6.9 Continuing the analysis of the quadratic regression
equation obtained in Example 6.6, investigate the possibility of high lever-
age points or influential observations.

The hii, rj*, and OJ values for each of the 12 data points are displayed
in Table 6.8.

TABLE 6.8

Data with Influence and Leverage Measures
for Fitted Quadratic Equation

YI
A

lit. r.- n.Xi YI rl

1 10 890 917.3 -27.3 0.356 -1.66 0.51
2 10 90S 917.3 -12.3 0.356 -0.75 0.10
3 IS 1234 1196.7 37.3 0.143 1.97 0.22
4 IS 1216 1196.7 19.3 0.143 1.02 0.06
5 20 1491 1496.4 -5.4 0.144 -0.28 0.00
6 20 1511 1496.4 14.6 0.144 0.77 0.03
7 25 1815 1816.6 -1.6 0.212 -0.08 0.00
8 25 1798 1816.6 -18.6 0.212 -1.02 0.09
9 40 2896 2899.5 -3.5 0.210 -0.19 0.00

10 40 2886 2899.5 -13.5 0.210 -0.74 0.05
11 SO 3718 3723.5 -5.5 0.436 -0.36 0.03
12 SO 3740 3723.5 16.5 0.436 1.07 0.29

By using the comparison criterion of hii given by Equation 6.38, with
n = 12 and p = 3, there are no hii values larger than 2P/n = 0.50.
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Thus, there are no points where the Xj or x? values have extremely high
leverage.

Cook's distance (Dj ) is extreme for i = 1 compared to the remaining
data points; thus, the first data point is deemed influential. Because it is
not a high leverage point, however, it appears to be influential as a result
of an unusual y value and should be investigated further.

6.4.7 Model Validation
So far, several techniques have been discussed for evaluating a fitted

regression equation. All of these techniques are based on statistics calcu­
lated from the data set used to fit the model. Because a major use of
regression in nuclear material control applications is for making predic­
tions, the final test of the fitted equation's predictive ability should be
based on a data set that was not used to fit the equation. Intuitively, this
model validation process is very simple: a number of data points represen­
tative of the range of the independent and dependent variables should be
collected and the observed y values compared with the values predicted by
the fitted regression equation. If the predicted y values are satisfactorily
close to the observed values, then the model is deemed valid.

Sometimes it is not practical or possible to obtain additional data for
model validation. In such cases, prior to model fitting, the complete data
set is split into two subsets by some reasonable criterion. One subset is
used to carry out the regression analysis and model development process,
as discussed in the previous sections of this chapter. Once a satisfactory
prediction equation has been developed, the other data subset is used to
validate it; that is, to see how well it predicts. There is no unique or best
approach to this problem. However, some possibilities are briefly intro­
duced below.

The PRESS procedure, introduced by Allen (1971), can be used for
model validation. This procedure involves leaving out one observation, fit­
ting the model to the rest of the data, predicting the y value for the omit­
ted observation, and computing the residual y - y. The omitted observa­
tion is then returned to the data set, and the process is repeated until each
observation has been left out. The sum of squared residuals is then com­
puted. This statistic is a valuable aid when choosing from among several
candidate models; that is, a "best" model that has been validated over the
data set can often be identified. Also, the individual residuals can be
examined for inconsistencies.

Geisser (1975) considers a procedure similar to PRESS, but he extends
the concept to leaving out m observations and using the n - m remaining
observations to fit the model. The m omitted observations are then used to
validate the fitted model.
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The practice of using half the data to develop a prediction model and
the other half to validate it has been popular for many years. The
DUPLEX algorithm, discussed by Snee (1977), splits the data according
to a criterion which guarantees that the properties of the determinant of
~'~ are similar for both the modeling half and the validation half of the
data. Snee recommends that a data set should not be split in half unless
the total sample size n is larger than 2p + 25, where p is the number of
unknown coefficients in the model to be fitted.

6.5 USING A FI'ITED EQUATION
While the data collection, parameter estimation, and model evaluation

are all important components of a regression analysis, using the fitted
equation is often the ultimate goal. The primary uses of a fitted equation
are for prediction and interpretation of an underlying relationship. Predic­
tion is of primary importance in nuclear material accounting. Methods for
interpretation (response surface analysis) are presented by Myers (1976).

Using a fitted equation to predict y values at specified values of the
predictor variables is quite easy. A predicted value is obtained from

(6.41) .

where Yk is the predicted value, Bthe vector of coefficient estimates, and
~ is the vector of specific values of the predictor variables.

A predicted y value from a fitted equation is an observed value of a
random variable due to errors from several sources (see Section 6.5.2), and
therefore it has a sampling distribution with a mean and variance. The
variance of a predicted value is dependent upon how the prediction is to be
interpreted. The same predicted value Yk could be interpreted either as a
prediction of a single observation or as the mean of many observations
taken at a particular set of independent variables. The variance of a mean
is smaller than the variance of a single observation. The estimated variance
of Yk, when interpreted as a mean prediction at ~, is given by

(6.42)

When Yk is interpreted as the prediction of a single observation, the
estimated variance is given by

(6.43)
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In Equations 6.42 and 6.43,

!k = the p X 1 vector of known predictor variables for which a
prediction Yt is desired

~ = the n X p matrix of predictor variable values for the data set
used to fit the equation

s2 = the residual mean square from the fitting the regression equa­
tion under investigation

Because simple linear regression is of particular interest in nuclear
material control applications, the simplified forms of Equations 6.42 and
6.43 for a simple linear regression (Yt = Po + PI Xt) are given by

(6.44)

and

(6.45)

Whether Yt is interpreted as the prediction of a mean or of a single
value, a 100(1 - a)% confidence interval for the true value is given by

(6.46)

where Var[hl is given by either Equation 6.42 or 6.43, depending upon
the interpretation of Yt, and t l - a/2(n - p) is obtained from Table AS.
Note that the confidence interval given by Equation 6.46 is for the
unknown true value of Yt corresponding to a single vector ~. To construct
simultaneous 100(l-a)% confidence intervals for all pOssible sets of
independent variable values, the appropriate formula is

(6.47)

where FI-a(p,n - p) is obtained from Table A6.
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Example 6.10 Using the fitted quadratic equation from Example 6.6,
predict the Yk value for Xk = 19 and estimate its variance. Then construct
95% confidence intervals for the true value of Yk' assuming first that Yk is a
predicted mean and then assuming that Yk is a predicted individual value.

The predicted value of Yk at Xk = 19 is computed as

= 419.83 + 45.665(19) + 0.408(192) = 1434.75

If this Yk is interpreted as a mean prediction when Xk = 19, then Equa­
tion 6.42 is applied to compute VarFit(Yk) = 56.10. If Yk is interpreted as
the prediction of a single observation at Xk = 19, then
Varprcd(Yk) = 473.06 is obtained by applying Equation 6.43.

Equation 6.46 yields 95% confidence intervals where Yk = 1434.75,
a 0.05, and 10.975(9) = 2.26:

Yt as the prediction
ora mean

1434.75 ± 2.26 (7.49)
1434.75 ± 16.93
(1417.82, 1451.68)

Yt as the prediction or
a single obsenation

1434.75 ± 2.26 (21.75)
1434.75 ± 49.15
(1385.60, 1483.90)

Note that if simultaneous 95% confidence intervals were of interest, appli­
cation of Equation 6.47 yields:

Yk as the prediction
or a mean

1434.75 ± .J56.l0(3)(3.86)
1434.75 ± 25.49
(1409.26, 1460.24)
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CHAPTER 7

Experimental Design
7.0 INTRODUCTION

The subject matter in most chapters of this book is oriented toward
applications of statistical estimation and hypothesis testing. Because
hypotheses are tested and parameters are estimated using data from exper­
iments, the manner in which an experiment is performed is extremely
important. An experiment is an action or process used to collect data. The
plan which specifies the method and the order in which an experiment is
performed is referred to as the experimental design.

The statistical design of experiments is a process by which data collec­
tion is planned, organized, and conducted so that the questions motivating
the data collection can be answered by a statistical analysis of the data.
This defmition indicates that there are three basic aspects to an experi­
mental problem: the design or planning of the experiment, the collection of
data during the experiment, and the statistical analysis of the data (taking
into account any departures from the original design). These subjects are
closely related because the method of analysis depends directly upon the
design actually employed and the data collected. It is often impossible,
however, to salvage valid conclusions from an undesigned or poorly
designed experiment, no matter which statistical analysis methods are
applied.

The principles of experimental design have many applications in
nuclear material control problems. Two major areas of application are
calibration work and the investigation (and estimation) of the extent to
which specified factors contribute to a total measurement uncertainty. As
an illustration of the second area of application, consider a situation where
sampling variability and analytical variability both contribute to the total
measurement uncertainty in determining the percent uranium factor for a
can of U02 powder. Experimental design principles can be applied so that
data are collected in a manner which accommodates separate estimation of
the contributions of sampling and analytical variability to the total mea-
surement variability. _

Analysis of variance methods, including those presented in Chapter S,
are applicable to the analysis of data from the experimental designs
presented in this chapter. Thus, computational formulas and specific
details of hypothesis testing and parameter estimation are not given in this

387
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chapter for each design. Instead, references are made to specific sections
of Chapter 5 and to other texts where the reader can find appropriate
computational formulas and statistical methods for analyzing data from a
given design. Computer software packages are available for analysis of
data from designed experiments. Although such packages are highly
recommended, care must be exercised in choosing one that is well suited to
the application at hand.

Section 7.1 presents the major steps involved in designing an experi­
ment. In the remaining sections of this chapter, some commonly used
experimental designs are presented. It should be noted that the experimen­
tal design concepts and plans presented in this chapter are necessarily lim­
ited because an entire book would be required for a more complete
presentation. The intent of this chapter is to introduce a few basic princi­
ples of experimental design and to briefly describe several specific designs.
For some of the less sophisticated designs, enough information is presented
for the reader to use them without additional reference material. Some of
the more sophisticated designs are only briefly introduced, however, with
the expectation that a reader should refer to the given references to utilize
the designs. Thus, this chapter gives an introduction to experimental
design, an appreciation for its importance, and references that provide
detailed discussions of individual topics, including guidance for more com­
plicated applications than those presented here.

7.1 EXPERIMENTAL DESIGN BASICS

The structure of an experimental design is defined in terms of
replication, randomization, experimental units, and isolation. Each of these
is considered below.

Replication is the repetition of all or part of an experiment. For exam­
ple, in the instrument calibration problem described in Example 6.5, each
quantity of 235U is measured twice by the NDA instrument. If the experi­
ment is defined as the measurement of the six 235U standards, then the
experiment is replicated twice. Replication has many -advantages. It allows
the experimenter to estimate the experimental error variance, which is an
important quantity in the analysis of variance methods as applied to exper­
imental data (Chapter 5). Replication improves the precision of results
obtained from the statistical analysis of the experimental data. It is also
helpful in detecting gross errors in the data.

Randomization refers to the random determination of the order in
which individual runs or trials of an experiment are to be performed and
to the random allocation of experimental units to the individual runs or
trials. Experimental units are items or individual portions of material to be
tested or measured during an experiment. The investigation or measure­
ment of a single experimental unit is referred to as a run or trial.
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Randomization supports the assumption of most statistical analysis tech­
niques that the observations (or errors) are independently distributed ran­
dom variables. Randomizing an experiment also helps to evenly distribute
the effects of factors not studied or controlled in the experiment, so that
they can be treated as part of the random experimental error. This reduces
the chance of an uncontrolled factor biasing a particular set of experimen­
tal results.

Isolation refers to the structuring of the experimental design so that the
quantities of interest (e.g., the overall mean, main effects, and/or variance
components, as defined in Chapter 5) can be separately estimated and
tested. As an illustration, consider an experiment to compare two methods
of sampling plutonium nitrate solution from a storage tank. It is believed
that sampling variability and variability in the analytical method for
measuring the plutonium concentration may affect the results. The experi­
mental design must be structured so that the effects of sampling, the sam­
pling method, and the analytical method can be isolated from each other
and separately estimated.

Now that some of the building blocks of an experimental design have
been introduced, consider the design of an experiment from a broader
viewpoint. The design of a particular experiment can be summarized in the
following major steps, all of which must be completed before the experi­
ment is conducted:

1. Definition of the specific experimental objectives.
2. Determination of the required number of observations that must be

taken to achieve either a specified power of the analysis of variance tests
or a specified level of precision of parameter estimates.

3. Defmition of the experimental procedure.
4. Review of the results of Steps 2 and 3 with budget and facilities

considerations to assess feasibility.
5. Identification of an appropriate statistical analysis procedure.

Each of these steps is discussed below.
Step 1. Dermition of experimental objectives. First, a clear statement is

needed of the problem being investigated. The statement of the problem
should include the identification of the dependent or response variables to
be studied and the independent variables or factors that may affect them.
The specific objectives of the experiment should be clearly stated in terms
of these response variables and factors.

Several questions should be answered to help defme the experiment.
Can the dependent variables be measured? If so, how accurately and
precisely and with what kind of instrument? If not, what type of response
is expected (yes/no, ranks, etc.)? How are the levels of independent vari­
ables (factors) to be selected? Is each factor to be held constant, to
assume certain specified levels, or to assume levels chosen at random from
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all possible levels? If a factor is to be varied over several levels, are the
levels to be defined quantitatively or qualitatively? Are the levels of a fac­
tor appropriate and adequate for the isolation, estimation, and testing of
its true effect on the response variable?

Step 2. Determination of the number of obsenatioDS to be taken. Con­
siderations affecting the number of observations to be taken include the
size of differences to be detected (in comparative studies), the precision
required of an estimate (in estimation studies), the amount of variation
expected in experimental results, and the probabilities of TYpe I and TYpe
II errors that will be tolerated in the analysis of variance tests. Often,
however, the overriding considerations are time, money, and available
facilities. This is discussed further under Step 4.

Step 3. Defmition of the experimental procedure. The randomization
procedures to be used in the experiment must be specified. Is the whole
experiment to be completely randomized? Is the experiment to be per­
formed in portions necessitating randomization among the portions and
within each portion? Recall that randomization involves randomizing the
order of individual trials of the experiment as well as randomly assigning
experimental units to the trials.

Step 4. Assessment of feasibility. Designing an experiment is often an
iterative process. In the initial phases of planning an experiment, Steps 1,
2, and 3 might be completed. Then the required costs, manpower, and
facilities must be compared with the budget and available resources. If the
requirements exceed what is available, then the scope of the experiment
must be reduced or the objectives must be modified so that a smaller, less
expensive experiment is adequate. Example 4.3 illustrates this idea.

Sometimes Steps 1, 2, 3, and 4 must be repeated several times before a
fmal experimental plan is approved for implementation. When an experi­
mental design is modified, however, it is important that all parties involved
understand the properties and limitations of the associated hypothesis tests
and parameter estimates. Power curves or OC curves are helpful in illus­
trating the effect of changing an experimental design.

Step 5. Identification of an appropriate statistical analysis procedure.
An appropriate statistical analysis procedure for the proposed experimental
design should be identified and reviewed to verify that it is possible to
analyze the experimental data in such a way that all quantities of interest
can be estimated and/or tested without restrictive qualifications and
assumptions. If this cannot be verified, then the results from Steps 1
through 4 should be reviewed to determine how the experimental design,
the objectives, or both must be modified to accommodate a meaningful,
worthwhile analysis of the data.

This chapter presents several tYpes of experimental designs. These
designs are characterized mainly by the number of factors (independent
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variables) and the randomization procedure used. Most of the designs are
multipurpose; that is, they are useful for comparing levels of fIxed effects
factors, estimating variance components of random effects factors, and
estimating parameters in regression equations. The designs in the following
sections are presented so that they are accessible to a nuclear material
accounting experimenter. The experimenter is expected to consider the
defInition of the problem and its objectives so that an applicable experi­
mental design can be chosen from among those discussed in the following
sections, or, if necessary, from the references given.

7.2 DESIGNS FOR SINGLE
FACfOR EXPERIMENTS

In this section, designs are considered for experiments involving one
dependent (response) variable and one independent variable (factor).
These designs could be applied to a simple linear regression problem or to
several types of analysis of variance (ANOVA) applications. For example,
an experiment might consist of measuring a known standard repeatedly at
each of several times to determine whether an instrument requires adjust­
ment. For this experiment, the single factor is time. Another experiment
might consist of selecting a sample of U02 powder from each of several
cans. Each sample is split into two aliquots, and the aliquots are randomly
assigned to two different laboratories for analysis. Here the analysis capa­
bilities of the two laboratories are to be compared, where "laboratory" is
the single factor under investigation. Note that another factor (can of
U02) exists in this experiment. Factors of this type, whose variability is
accounted for in the statistical analysis but is not of primary concern, are
referred to as blocking factors. The use of blocking factors in single factor
experi'llental designs is discussed in Sections 7.2.2 and 7.2.3.

7.2.1 Completely Randomized Designs

A completely randomized design for a single factor experiment imposes
no restrictions on randomization of the experimental runs, or if applicable,
on the experimental units or material assigned to each run. This design is
appropriate when there are no blocking factors (the experimental units or
material are homogeneous) and when no trends in the response over time
are expected. If the experimental units are not homogeneous and one or
more blocking factors can be identified, the designs discussed in Sections
7.2.2 or 7.2.3 provide increased power or sensitivity of hypothesis tests.
Cochran and Cox (1957) point out that complete randomization may also
be appropriate when an appreciable fraction of the units is likely to be de­
stroyed or fails to respond, and in small experiments where the increased
power of hypothesis tests from designs incorporating blocking factors does
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not outweigh the loss of error degrees of freedom due to blocking; that is,
the error mean square is not reduced.

The statistical model for a completely randomized single factor design
is given by

where

Yij = It + ai + Eij

i =1,2, ,a

j =1,2, ,n

(7.1)

Yij = the jth observation at the ith level of the factor of interest
It = the overall mean
ai = the effect of the ith level of the factor
Eij = the random experimental error affecting Yij

The development and statistical analysis of a completely randomized
single factor design is illustrated in the following example. The computa­
tional formulas used in this example are presented in Section S.1.1.

Example 7.1 Consider an experiment that consists of making non­
destructive measurements for percent of plutonium on mixed oxide pellets.
Assume that 21 pellets from a batch of homogeneous pellets are to be
measured using three similar but distinct nondestructive assay (NDA)
instruments (seven pellets by each instrument). The purpose of the experi­
ment is to compare the three instruments by testing the hypothesis that
they produce equivalent results. Set up a completely randomized design for
this experiment, and test the hypothesis of interest at theO.OS level of
significance.

For a completely randomized design, the seven pellets measured by
each instrument are assumed to be replicate observations. Further, it is
assumed that the 21 pellets are selected at random from a batch of homo­
geneous pellets. Let Yij represent the measured response from the trial of
the experiment for the jth replicate using the ith instrument, where i = 1,
2, 3 and j = 1, 2, ... , 7, as illustrated in Table 7.1. The order in which
the 21 trials should be run is determined by randomly selecting integers
between 1 and 21, one at a time and without replacement (procedures for
doing so are discussed in Chapter 11), and assigning them to the trials.
One possible outcome of this process is illustrated in Table 7.1, which
shows that Y23 would be measured first, Y36 second, ... , and Y24 last. The
measured percent Pu values for this experiment are given in Table 7.2.
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TABLE 7.1

Summary of One Possible Completely
Randomized Experimental Design

393

Replieate 1 2 3

Icleatificatioa or the trials

1 YII Y21 Y31
2 Y12 Y22 Y32
3 YI3 Yn Y33
4 Y14 Y24 Y34
5 YI5 Y25 Y35
6 YI6 Yu Y36
7 YI7 Y27 Y37

ODe po8Ilbie completely raDdomlzed I'lIII order·

1 10 11 20
2 19 14 9
3 12 1 4
4 6 21 13
5 15 17 5
6 18 16 2
7 3 8 7

·Pellet identification numbers are given.

TABLE 7.2

Percent by Weight of Po in
Mixed Oxide Pellets

IDstrumeDt
Replieate 1 2 3

1 2.51 2.53 2.50
2 2.46 2.50 2.46
3 2.47 2.50 2.47
4 2.49 2.53 2.53
5 2.51 2.49 2.53
6 2.45 2.42 2.50
7 2.47 2.45 2.45

Yj, 2.480 2.489 2.491
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The analysis of variance results are displayed in Table 7.3. The calcu­
lation of the entries in the ANOVA table is discussed in Section 5.1.1
(Table 5.2). Table A6 does not give a value of Fo.9s(2,18); however, the
values Fo.9s(2,15) = 3.68 and FO.9S(2,20) = 3.49 are given and can be
used with linear interpolation to compute

(20-18) _
Fo.9s(2,18) == 3.49 + (3.68 - 3.49) (20-15) - 3.57

Because F = 0.23 < 3.57, there is no indication that the instruments are
different. In fact, F = 0.23 is somewhat low, which suggests that the
experimental error variance may be inflated. This topic is considered
further in Example 7.2 in the following section.

TABLE 7.3

One-Way Fixed Effects ANOVA Table
for a Single Factor Experiment

Source df

Instruments 2
Error 18

Total 20

ss

0.00050
0.01957
0.02007

MS

0.00025
0.00109

F

0.23

It should be noted that, because F = 0.23 is less than both Fo.9s(2,15)
and FO.9S(2,20), the interpolation is not necessary to determine the out­
come of the hypothesis test. The interpolation was carried out, however,
for illustration.

Although simple to set up, the principal objection to a completely ran­
domized design is that it can result in less powerful ANOVA tests and
wider confidence intervals for means than other designs. Because the ran­
domization is not restricted in any way, all of the variation among experi­
mental units enters into MSErroro the estimate of the experimental error
variance. If the variability among experimental units is quite large, the
effects of the factor being investigated might not be detected. This idea
was discussed in connection with the paired t-test in Section 4.4.
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7.2.2 Randomized Complete Block Designs
In many experimental problems. it is advisable to isolate variability

arising from extraneous sources through the use of blocking factors. A
raadomized complete block design isolates extraneous variability from one
source (with one blocking factor). The essence of this design is that the
experimental units are divided into homogeneous groups called blocks. In
experimental design terminology, the term "complete" means that each
block includes at least one observation at every level of the factor being
investigated. Randomized incomplete block designs are discussed briefly in
Section 7.2.4.

Grouping experimental units into homogeneous blocks tends to mini­
mize experimental error variability within each block. Then, if the experi­
mental units within a block are randomly assigned to the levels of the fac­
tor being investigated, the variability within blocks and the variability
between blocks can be separately estimated. To illustrate this, suppose that
in Example 7.1 the 21 pellets actually come from seven different batches
(3 pellets from each batch). With a completely randomized design, the
between-batch variability is included in the estimate of the experimental
error variance, in addition to the variability among pellets within the
batches. A randomized complete block design would allow the between­
batch variability to be isolated and separately estimated so that it does not
enter into the estimate of the experimental error variance.

The randomization of the experimental units in a randomized complete
block design is carried out within the blocks. That is. the experimental
units within a block are randomly assigned to the levels of the factor being
investigated. At least one experimental unit within each block must be
assigned to each factor level.

The principle of randomization is also applied in determining the run
order of the experimental trials. The recommended approach is to random­
ize the order of trials within blocks. where all observations within a block
are taken before moving on to the next block. The order in which the
blocks are run should also be randomized if possible. This procedure
achieves the objective of minimizing within-block variability while any
time-related effects are isolated indirectly through the blocking variable.

The classical statistical analysis technique for a randomized complete
block design is the two-way crossed classification ANOVA. introduced in
Section 5.4. where "blocks" are the second factor. The model is given by

Yijk = Jl + ai + {3j + a{3ij + Eijk

i = 1.2, , a

j = 1,2 , b

k = 1,2 ,n

(7.2) .
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where

Yijk = the observation of the kth replicate at the ith level of the factor
of interest in the jth block

p = the overall mean
ai = the effect of the ith level of the factor of interest
fJj = the effect of the jth block

afJij = the interaction of the ith level of the factor and the jth block
Eijk = the random experimental error affecting Yijk

In this formulation, there are n ~ 1 replicate experimental units (or n ~ 1
replicate measurements on a single experimental unit) at each factor level
within each block. That is, a balanced, complete experiment (Section
5.4.1) is assumed. Methods for analyzing data from unbalanced and/or
incomplete experiments are not presented in this text.

Note that there are several possible ways of analyzing the data,
depending upon whether the factor of interest and the blocking factor are
fixed or random effects factors. If the experiment is not' replicated (if
n = 1), then an assumption of no interaction is required to test the effect
of the factor of interest when both factors are fixed or when the factor of
interest is random and the blocking factor is fixed. The assumption of no
interaction is not required to test the effect of the factor of interest if both
factors are random or if the factor of interest is fixed and the blocking
factor is random. If the experiment is replicated, no speculative assump­
tions about the interaction need to be made because the interaction effect
can be tested. A test for a blocking factor effect is usually of little interest
because the blocks are structured and used in a nonrandom fashion. See
Scheffle (1959) for a further discussion of this topic. Snedecor and
Cochran (1980) present a technique for determining whether blocking is
effective compared to the completely randomized design.

The paired t-test (Section 4.4) is a special case of the randomized com­
plete block ANOVA, where there are only two levels of the factor of inter­
est and each pair of observations defines a block. The interested reader
can refer to Montgomery (1976), Cochran and Cox (1957), or Hicks
(1982) for additional discussions of randomized complete block designs.
Nonparametric analysis techniques for the randomized complete block
design are discussed in Section 9.4.1. An example of a randomized com­
plete block design is now considered.

Example 7.2 For the nondestructive instrument problem described in
Example 7.1, assume that only seven pellets are to be measured, with each
pellet being measured by each of the three instruments. Set up a random-
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ized complete block design to compare the three instruments. For instruc­
tional purposes, the data given in Table 7.2 are utilized, where each row
now corresponds to the measurements taken on a single pellet.

The pellets are the blocks in this experiment. If each of the seven pel­
lets is measured once by all three instruments, the design has complete
blocks. Assuming that the pellets (blocks) are a random sample of pellets
from a batch, they are measured in the order in which they were selected
from the batch. This is equivalent to randomizing the run order of the
blocks. Then the order in which the three instruments are used to measure
a single pellet is randomized. Using the Yij notation, one possible random­
ized run order is displayed in Table 7.4.

TABLE 7."

One Possible Randomized Run Order for a
Randomized Complete Block Design

Order
Block (pellet) IIlstrumeuts Meuared
ran order· are used respoase

3 Y31
I Yu
2 Y21

2 I Y12
3 Y32
2 Yn

3 3 Y33
2 Y23
I YI3

.. 2 Y24
I YI4
3 Y34

5 I Y15
2 Y25
3 Y35

6 I Y16
3 Y36
2 Y26

7 3 Y37
2 Y27
I Y17

•Assume that pellets are randomly selected
from a batch of pellets.
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The appropriate model is Equation 7.2, where aj is the effect of the ith

instrument, flj is the effect of the jth pellet, afljj is the interaction effect of
the ith instrument and jth pellet, and Eijk is the effect of random experimen­
tal error on the kth measurement taken on the jth pellet with the ith instru­
ment (n = I in this example).

The appropriate method of statistical analysis is the two-way crossed
classifications analysis of variance, presented in Section 5.4, where instru­
ments is a fixed effects factor and the blocking factor, pellets, is a random
effects factor. The ANOVA results for this example are displayed in Table
7.5. The entries are calculated as discussed in Section 5.4.1. Note that
because this experiment was not replicated, the experimental error and
interaction effects cannot be separately estimated.

TABLE 7.5

Two-Way ANOVA Table for a
Randomized Complete Block Design

Source df SS MS F

Instruments 2 0.00050 0.00025 0.42
Blocks (pellets) 6 0.01253 0.00209
Error 12 0.00704 0.00059

Total 20 0.02007

-

As seen from the SS and MS columns in Table 7.5, a considerable por-
tion of the total variability is due to the variability between blocks (pel­
lets). Thus, the error mean square is reduced, and a larger F-ratio is
obtained for testing the hypothesis of instrument equivalence than in
Example 7.1, where the between-pellet variability is not isolated; however,
because F = 0.42 < FO•9S(2,12} = 3.89, the observed differences among
the three instruments are not statistically significant.

7.2.3 Latin Square Designs

The previous section illustrates that the randomized complete block
design isolates one extraneous source of variability in the experimental
units by imposing a single restriction on the randomization; specifically,
each level of the factor of interest occurs once within each block. Latin
square designs isolate two extraneous sources of variability through the use
of two blocking factors. Interest is still centered on one factor, but the two
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blocking factors and their levels are chosen so that they account for major
sources of variation in the response variable. This results in a more power­
ful test of the hypothesis that the factor of interest has no effect on the
response variable. The Latin square design is not always appropriate
because it assumes that there are no two-factor or three-factor interactions
among the blocking factors and the factor of interest.

A Latin square design requires that the number of levels of both block­
ing factors be the same as the number of levels of the factor of interest. If
this common number of levels is represented by p, the resulting design is
called p X P Latin square design. For a Latin square, capital letters A, B,
C, ... are often used to represent the levels of the factor of interest.t For
example, one possible 3 X 3 Latin square is represented by

Levels of 1st

Levels of 2nd
blocking factor

blocking factor 1 2 3

1 A B C
2 B C A
3 C A B

The blocks might be determined by such factors as batch of material,
method of analysis, laboratories, or day of the week.

Note in the 3 X 3 example above, that the distinctive feature of a
Latin square design is that each letter appears exactly once in each row
and in each column. This feature defines the two restrictions on random­
ization that isolate two extraneous sources of variability. It may appear
that there is no place for randomization of the experimental units in a
Latin square design. However, randomization does have a place and is
implemented by randomly selecting one of the many possible squares of a
given size. As seen in Table 7.6, the number of possible Latin squares of a
particular size increases quite rapidly as the size increases; thus, the ran­
dom selection of a Latin square may not be a simple task. Fisher and
Yates (1953) discuss a procedure for directly generating a random Latin
square design. Cochran and Cox (1957) also discuss how to select a ran­
dom Latin square design.

The principle of randomization is also applied in the specification of
the run order for the individual trials. For a Latin square design, the

tThis convention is common in texts on experimental design. It differs, however, from the
usual notation for multifactor experiments, where capital letters are often used to represent
the factors while integers are used to represent the levels of each factor.
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TABLE 7.6

Standard Squares and Numbers of Latin
Squares of Various Sizestt

SIze 3X3 4X4 5X5

Example of a ABC ABCD ABCDE
standard square BCA BCDA BAECD

CAB CDAB CDAEB
DABC DEBAC

ECDBA

6X6 ,Xp

Number of standard
squares

Total number of
Latin squares

12

4

576

56

161,280

ABCDEF
BCFADE
CFBEAD
DEABFC
EADFCB
FDECBA

9408

8,128,851,200

ABC P
BCD A
CDE B

PAB ... (P - I)

pl(p-I)lx
(number of

standard squares)

tThis table is adapted from one presented by Montgomery (1976).
iA standard Latin square is one in which the fUlt row and column contain the letters

in alphabetical order.

p X P = p2 trials should be run in completely random order if possible.
This ensures that any uncontrolled sources of variability are evenly
distributed over the experiment.

The appropriate statistical analysis procedure for a Latin square design
is a three-way analysis of variance, where all interactions are assumed to
be negligible. This is an extension of the two-way ANOVA presented in
Section 5.4.1. Computational details of the three-way ANOVA are not
presented in this text, however. The model for this design is given by

Yiik! = II- + £Ii + Pj + 'Yk + Eijk2

i = 1,2, ,a

j = 1,2, , a

k= 1,2, ,a

2 = 1,2, , n

(7.3)

where

Yijk2 = 2th replicate observation at ith level of the factor of interest
and at jth and kth levels of the two blocking factors

~ = overall mean
£Ii = effect of ith level of the factor of interest
Pj = effect of jth level of the first blocking factor

'Yk = effect of kth level of the second blocking factor
Eijk2 = the random experimental error affecting Yijk2
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Although the model indicates that replication is possible with a Latin
square design, it is not required for hypothesis testing because all interac­
tions are assumed to be negligible. The development and statistical
analysis of a Latin square design is illustrated in the following example.

Example 7.3 In a particular fuel fabrication facility, three different
NDA instruments are used to measure the 23SU content of cans of highly
enriched uranium scrap. At anyone time, anyone of three operators
may use anyone of the NDA instruments. Set up a Latin square design
to determine whether any significant differences exist among the three
instruments.

"Instruments" is the factor of interest, while "operators" and "cans of
scrap" are the two blocking factors. Three cans of scrap are measured by
each operator with each instrument to yield a 3 X 3 Latin square design.
The three cans of scrap are the experimental units; they are randomly
assigned to the three rows of the Latin square. The· three operators are
randomly assigned to the three columns of the Latin square. The three
instruments are randomly assigned to the designations A, B, and C. Then
one of the 12 possible 3 X 3 Latin squares is randomly selected. Suppose
the following square is selected:

Operator

Can of scrap 1 2 3

I B A C
2 C B A
3 A C B

For example, the "B" in the upper left hand corner of the square indicates
that the first operator uses the second NDA instrument to measure the
first can of scrap.

The order in which each of the nine trials is performed is completely
randomized. One such possibility is given by the following table:

Operator

Can of scrap 1

I 8
2 6
3 4

2 3

5 2
3 7
I 9
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Suppose that the following results (in kilograms of 235U) are obtained:

Operator

Can of scrap 1 2 3

1 12.42 12.31 12.68
2 13.75 13.62 13.50
3 11.70 12.13 11.91

The results from a three-way analysis of variance are displayed in
Table 7.7. A major portion of the total variability in the data is due to
differences among cans of scrap. The different operators also account for

TABLE 7.7

Three-Way ANOVA Table for Latin Square Design

Source elf

Instruments 2
Cans of scrap 2
Operators 2
Error 2

Total 8

ss

0.185356
4.564156
0.009489
0.001088
4.760089

MS

0.092678
2.282078
0.004745
0.000544

F

170.36

some of the total variation. The F-ratio for differences among instruments
is F = MSlnstrumcnts/MSError = 170.36 and is significant at the a = 0.01
level because it exceeds FO.99 (2,2) = 99.00 obtained from Table A6.

Note that the Latin square design is also appropriate for problems
where three noninteracting factors with the same number of levels are of
interest; that is, it is not necessary that two of the factors be blocking fac­
tors. The three-way ANOVA procedure is computationally. the same; it
partitions the total sum of squares into components due to the three fac­
tors, regardless of whether they are independent variables being studied or
blocking factors. Note also that the Latin square design is a special case of
the fractional factorial designs discussed in Section 7.4.
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7.2.4 Other Designs
This section briefly introduces several other experimental designs for a

single factor experiment, with references for the interested reader.
A Graeco-Latin square design isolates three extraneous sources of vari­

ability by using three blocking factors. The factor of interest and the three
blocking factors must all have the same number of levels. This design is
discussed by Montgomery (1976), Cochran and Cox (1957), and Hicks
(1982), among others.

A randomized incomplete block design is one where there are more
treatments (levels of the factor of interest) than can be run in a single
block. Discussion of these designs is provided by Montgomery (1976),
Hicks (1982), Cochran and Cox (1957), and Fisher and Yates (1953).

Youden square designs are incomplete Latin square designs in which
the number of levels of one blocking factor is less than the number of lev­
els of the other blocking factor and the factor of interest. A table of
Youden square designs is provided by Davies (1956). Discussion of
Youden square designs is provided by Montgomery (1976), Hicks (1982),
and Cochran and Cox (1957).

7.3 FACfORIAL DESIGNS FOR
MULTIFACfOR EXPERIMENTS

In Section 7.2, all of the experimental designs considered were for
investigating the effect of a single factor on a measured response variable.
In this section, factorial designs are introduced for the simultaneous study
of the effects of two or more factors. In a factorial design, if there are a
levels of factor A, b levels of factor B, and c levels of factor C, the experi­
ment will include all of the (a) (b) (c) different combinations of the factor
levels. Because of this multiplicative method of counting the number of
possible factor level combinations, the notation a X b X c is often used to
represent a particular factorial design.

Factorial experiments are more efficient in the use of experimental
resources than experiments that investigate several factors one at a time.
For the same amount of effort, factorial designs provide information about
factor interactions that cannot be obtained by investigating factors one at
a time. Thus, the designs discussed in this section are preferred over one­
at-a-time investigation of each factor using designs such as those discussed
in Section 7.2.

7.3.1 Effects and Interactions
The effectt of a factor is defined as the change in response produced

by a change in the level of the factor. Because more than one factor is

tThc term "cffect" is oftcn used interchangcably for both fixed and random cffects. This
convcntion is followed hcre; howcvcr, for instructional purposes, thc present discussion applies
only to fixed cffects.
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being varied in a factorial experiment, there are three basic categories of
effects that can be evaluated: they are main effects, simple effects,
and interaction effects. These are defined and illustrated in the following
discussion.

Consider the results of the 2 X 2 factoriai experiment displayed in
Table 7.8.

TABLE 7.8

Results of a 2 X 2 Factorial Experiment

Faetor A
1 %

Factor B 1

2

15.

11
25

26

The main effect of factor A is the difference between the average response
at the first level of A and the average response at the second level of A,
which is computed as

Main effect of A = (25 ~ 26) _ (15 ~ 17) = 9.5

That is, changing factor A from level I to level 2 has resulted in an
average increase of 9.5 in the measured response. Similarly, the main
effect of factor B is computed as

Main effect of B
(17+26)

2
(15 ~ 25) = 1.5

That is, changing factor B from level 1 to level 2 has resulted in an aver­
age increase of 1.5 in the measured response.

In some experiments, the difference in response between the levels of
one factor is not the same at all levels of the other factors. This occurs
when there are interactions among the factors; that is, the factors interact
in their effect on the response variable. Consider the results of the 2 X 2
factorial experiment displayed in Table 7.9. At the first level of factor B,
the simple effect of factor A is

Simple effect of A at B1 = 20 - 10 = 10
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TABLE 7.9

Results of a 2 X 2 Factorial Experiment with
. Interaction and Nonsignificant Main Effects

Factor A
1

Factor B
1
2

10

25

20

8

At the second level of B, the simple effect of factor A is

Simple effect of A at B2 = 8 - 25 = -17

Because the effect of factor A depends on the level of factor B, there is an
interaction between factors A and B. Note that the simple effects of factor
Bare

SimpleeffectofBatAI = 25 - 10 = 15

and

SimpleeffectofBatA2 = 8 - 20 = -12

Clearly, the effect of factor B depends on the level of A.
When two or more factors interact, their main effects may be meaning­

less, and extreme caution must be used in interpreting analysis of variance
results. For example, using the data from Table 7.9, the main effects are

Main effect of A = (20; 8) _ (10 ~ 25) = -3.5

and

M · ft' f (25 + 8) (10 ~ 20) = 1.5alOe Jecto B = 2 -

Depending on the size of the experimental error variance, these main
effects might be deemed nonsignificant. Then it might be tempting to con­
clude that factors A and B have no effect on the measured response; how­
ever, examination of the simple effects indicates that such a conclusion is
erroneous. Thus, in this example, knowledge of the interaction and exami-
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nation of the simple effects is more useful than knowledge of only the
main effects.

Although interactions may tend to mask main effects, they do not
always preclude interpretation of main effects. Consider the data in
Table 7.10. The simple effects are

Simple effect of A at BI = 12 - 5 = 7

Simple effect of A at B2 = 20 - 30 = -10

Simple effect of B at Al = 30 - 5 = 25

and

Simple effect of Bat A2 = 20 - 12 = 8

and the main effects are

Main effect of A = (12 + 20) _ (5 + 30) =;= -1.5
2 2

and

Main effect ofB = (30 + 20) - (5 + 12) = 165
22'

The simple effects indicate that there is an interaction. The main effect of
factor A, -1.5, is quite small relative to the simple effects and may be
negligible, depending on the size of the experimental error variance. The
main effect of factor B, 16.5, is meaningful, however. This illustrates that
the presence of interaction does not always preclude interpretation of main
effects.

TABLE 7.10

Results or a 2 X 2 Factorial Experiment with
Interaction and a Significant Main Effect

Factor A
2

Factor B 1

2
5

30

12
20

Effects and interactions are sometimes more easily visualized by con­
sidering plots of the data, such as those in Figs. 7.1, 7.2, and 7.3 for the
data from Tables 7.8, 7.9, and 7.10, respectively. The slope of each line in
the plots represents a simple effect, distances between lines (at their mid-
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points) represent main effects, and the parallelism (or lack thereof) of
lines within a. plot indicates the degree of interaction between the two
factors.

The calculation of effects and the data plots illustrated in the previous
example can readily be extended to more complex factorial designs. Note,
however, that these techniques are not intended to provide objective tests
of significance for main effects or interaction effects. It is necessary to use
analysis of variance techniques, such as those discussed in Chapter 5, to
analyze the data from factorial designs and to perform hypothesis tests on
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main effects and interaction effects. Note that a factorial design must be
replicated to allow complete testing of all interactions. If higher-order
interactions can be assumed negligible, however, their sums of squares and
degrees of freedom can be combined to provide an estimate of the experi­
mental error variance that can be used to test the significance of main
effects and lower-order interactions.

7.3.2 2k and 3k Designs

In many types of multifactor experiments, interest centers on investi­
gating only two or three levels of each factor. The multiplicative notation
2 X 2 X .,. X 2 and 3 X 3 X ... X 3 naturally leads to the
shorter exponential notation 2k and 3k, where k is the number of factors.
The 2k and 3k designs are valid for both fIxed and random effects factors.
They are k-way crossed classifications, which are extensions of the two­
way crossed classifications discussed in Section 5.4. For factors with fIxed
effects in a 2k design, the levels are often chosen to bound the range of
interest for each factor and are referred to as "high" and "low" levels. A
2k fIxed effects design is adequate when the effects of the factors are
linear; that is, as the level of a factor is increased, the response variable
either increases or decreases as a linear function of the factor levels. A 2k

design also provides information for isolating and testing two-factor,
three-factor, and up through k-factor interactions. For factors with fIxed
effects in a 3k design, an intermediate value of each factor (in addition to
high and low values) is included. A 3k fIxed effects design allows the inves­
tigation of curvature in the relationship between the response variable and
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the factor levels. For random factors in these designs, the levels are
randomly selected from a population of possible levels, a.nd the purpose of
the experiment is to estimate and test for significance of the variance
comppnents.

The statistical analysis procedure for a 21t or 31t factorial experiment is
the k-way analysis of variance, which is an extension of the two-way
analysis of variance discussed in Section 5.4. Regression analysis of fixed
effects factorial designs is also appropriate. The emphasis of the following
two subsections is on the designs themselves and not the method of
analysis.

7.3.2.1 21t Designs

The 21t factorial design is appropriate for investigating the effects of k
factors on a response variable, where only two levels of each factor exist or
are of interest. It is also appropriate when the factors under study have
several (or a continuum) of possible levels, but only a broad overview of
the situation (such as that provided by investigating only two levels of each
factor) is required. One example of this second area of application is a
screening experiment, where the purpose is to determine which factors and
interactions are important for further investigation in a more detailed
study. Another example is a regression application, where it is known that
the relationship between the response variable and each of the factors is
linear. (If it is not linear or if a test for nonlinearity is desired, a 31t design
or other design with more than two levels of each factor is often used.) In
this case, interactions among the factors indicate that the linear relation­
ship between the response variable and the levels of a given factor changes
with the levels of the other factors. This is illustrated above in Figs. 7.2
and 7.3.

Table 7.11 displays 21t factorial design layouts for k = 2, 3, and 4. In
performing these experiments, random assignment of experimental units to
the factor level combinations is required, and the order in which the trials
are run must be randomized. Replication of at least one factor level com­
bination (and preferably the entire experiment) is required to investigate
all main effects and interactions. With no replication, it is possible to sta­
tistically test the hypotheses of no main effects or lower-order interactions
if some of the higher-order interactions are assumed to be negligible. This
practice is not generally recommended, however, unless prior experimenta­
tion or scientific theory supports the nonexistence of the higher-order
interactions.

Table 7.12 lists the number of trials required for one complete replicate
of each 21t design for k = 2, 3, ... , 10. For five or more factors, the
number of trials in a 21t design is rather large. Designs based on two levels
per factor, but which involve fewer trials, are discussed in Section 7.4.1.
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TABLE 7.11

Layouts for 22, 23, and 24 Factorial Designst

Facton
Trial

1
2
3

4 - 22

A

+

+

B C

+
+

D

5
6
7

8 - 23

9
10
11
12
13
14
15

16 - 24

+

+

+

+

+

+

+
+

+
+

+
+

+
+
+
+

+
+
+
+

+
+
+
+
+
+
+
+

tThe fltSt (or low) level of a factor is represented
by "-" and the second (or high) level by "+". This
abbreviated notation is commonly used in experimental
design texts and literature.

TABLE7.U

Number of Trials for One
Replicate of a 2k Design

Number of facton
(k)

2
3
4
5
6
7
8
9

10

Number of trials
(1~

4
8

16
32
64

128
256
512

1024
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Example 7.4 A laboratory manager is asked to investigate a certain
laboratory procedure that is always performed by one of two technicians
using one of two instruments. Design a 22 factorial experiment to estimate
and test for significance of the main effects due to instruments and techni­
cians and the effect of interaction between instruments and technicians.

Because only the two technicians and two instruments are of specific
interest, the effects of technician and instrument are fIXed effects.
Although a single replicate of a 22 design is sufficient to estimate the main
effects and two-factor interaction for instruments and technicians, replica­
tion is required to perform statistical tests. Suppose that a 22 design repli­
cated three times is chosen. Referring to Table 5.10 in Section 5.4.2, this
will yield an estimate of the experimental error variance cfl with 8 degrees
of freedom. Assume that a single sample of experimental material is
divided into 12 aliquots which are randomly assigned to the 12 trials listed
in Table 7.13. The design (including randomized run order) is summa-

TABLE 7.13

22 Design ReplicateclThree Times

Radom
Trial IIIItrumeat TedmiclaD 18 order

1 1 1 10
2 2 1 7
3 1 2 11
4 2 2 S
S 1 1 8
6 2 1 4
7 1 2 3
8 2 2 9
9 1 1 1

10 2 1 6
11 1 2 12
12 2 2 2

rized in Table 7.13. The two-way analysis of variance methods for the
fIXed effects model, presented in Section 5.4.2, would be used to analyze
the data from this experiment.
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The "-" and "+" notation introduced in Table 7.11 can be utilized in
a convenient procedure for estimating and testing main effects and
interaction effects from a balanced 2k factorial experiment, where all fac­
tors have fIxed effects. To introduce and illustrate the procedure, consider
some hypothetical data from a 23 factorial experiment with two replicates
at each combination of the factor levels. The factor levels, the correspond­
ing replicate values, and the totals and averages of the replicates are
arranged in the format shown in Table 7.14.

TABLE 7.14

Example of Data from a 23 Experiment

A B C Rep6cates Totals Ayerages

13, 10 23 11.5

+ 19,23 42 21.0
+ 2,6 8 4.0

+ + 10,7 17 8.5
+ 14, 17 31 15.5

+ + 11,7 18 9.0
+ + 4,1 5 2.5

+ + + 13,9 22 11.0

The "-" and "+" are then treated as -1 and 1, and Table 7.14 is
expanded by constructing interaction columns as shown in Table 7.15. For
example, the elements of the AB column are computed by multiplying the
corresponding elements of the A and B columns.

TABLE 7.15

Expanded 23 Data Table

A B C AB AC BC ABC Ayerages

+ + + 11.5
+ + + 21.0

+ + + 4.0
+ + + 8.5

+ + + 15.5
+ + + 9.0

+ + - + 2.5
+ + + + + + + 11.0

The main effects and interaction effects are estimated by assigning the
"-" and "+" signs in a given column to the corresponding averages and
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then summing. The sum is then divided by the number of "+" signs. For
example, the estimated main effect of A is computed as

Main effect of A = -11.5 + 21 - 4 + 8.5 - 15.5 + 9 - 2.5 + 11
4

The estimated ABC interaction effect is computed as

ABC interaction effect
-11.5 + 21 + 4 - 8.5 + 15.5 - 9 - 2.5 + 11

4

The estimated effects are displayed in Table 7.16.

TABLE 7.16

Estimated Effects for
23 Example

Estimated
Source effect

A 4.00
B -7.75
C -1.75
AB 2.50
AC -3.00
BC 2.25
ABC 5.00

To statistically test the hypotheses that the true main effects and
interaction effects are zero, an estimate of the experimental error variance
rfl is required. One of the underlying assumptions in the analysis of vari­
ance is that the experimental error variance is constant over all factor level
combinations. When this assumption is valid, and when the experiment has
been replicated at least twice, an estimate of the experimental error vari­
ance is computed by applying the one-way analysis of variance formulas
presented in Section 5.1.1. For the present example, the eight factor level
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combinations are treated as the classes in the one-way analysis of variance
context. There are 2" = 8 classes with n = 2 replicate values in each
class. Let Yij denote the jth replicate in the ith class. Then, Equation 5.20 is
applied to the replicate data and the totals displayed in Table 7.14, which
gives

8 2 1 8
SSWithin = ~ ~ YG - - ~ yt.

i-lj-l 2 i-I

= (132 + 102 +... + 132 + 92
) - ~ (232 + 422 + ... + 222

)

= 2270 -1. (4440) = 50
2

The degrees of freedom are

df = 2"{n - 1) = 8(2 -1) = 8

Thus, the estimate of the experimental error variance is

q2 = MSWithin = 50/8 = 6.25

Next, note that each average in Table 7.14 has variance u'-/n = u'-/2.
Because each effect estimate in Table 7.15 is a linear combination of the
2" = 8 averages, with all of the linear coefficients being either - 1/4 or
1/4, the variance of each estimate is

f [1.]2 (u'-/2) = 8[1.]2(u'-/2) = u'-
i-I 4 4 4

This is estimated by

~ = 6.:5 = 1.5625

and the estimated standard deviation of each effect estimate is

["2]~~ = J1.5625 = 1.25

Note that for any complete 2" factorial experiment with n replicate
values at each combination of the factor levels, the variance of each effect
estimate is
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Var{effect estimate) = n;-2

416

(7.4)

A test statistic t is computed for each of the effect estimates in Table
7.15 by letting

Effect estimate
t = ------=~~'----'---:-:--~--

Estimated standard deviation of effect estimate

Effect estimate='-------
1.25

(7.5)

For a specified significance level a, the hypothesis of no true effect is
rejected if either

or (7.6)

where t l - a / 2[2k(n - 1)] is obtained from Table AS.
For the present example, let a = 0.05. Then, 10.975(8) = 2.31 is

obtained from Table AS. A summary of the computed test statistics is
given in Table 7.17. Note that factors A and B have estimated main

TABLE 7.17

Hypothesis Test Results

Estimated Test
Source effect statistic Reject He

A 4.00 3.20 Yes
B -7.75 -6.20 Yes
C -1.75 -1.40 No
AB 2.50 2.00 No
AC -3.00 -2.40 Yes
BC 2.25 1.80 No
ABC 5.00 4.00 Yes

effects that differ significantly from zero at the 0.05 level of significance.
Also, the estimated AC and ABC interaction effects are significantly dif­
ferent from zero at the 0.05 level. The conclusion is that the corresponding



true effects are probably not zero. The interpretation of this analysis
should be supported by interaction plots such as those shown in Figs. 7.1,
7.2, and 7.3.

7.3.2.2 3k Designs

The 31t factorial design is appropriate for investigating the effects and
interactions of k factors, where three levels of each factor are considered.
It may be that only three levels exist or that three (out of several or a con­
tinuum) are chosen to be studied because previous experimentation or
physical laws suggest that the relationship between the response variable
and the factors is nonlinear in the factor levels. With fixed effects, includ­
ing three levels of each factor provides adequate data to estimate and test
for significance of both linear and quadratic (second-order curvature) rela­
tionships between the response variable and the factor levels. The interpre­
tation of interactions is more complicated than for the 21t designs, and data
plots-analogous to Figures 7.1, 7.2, and 7.3-are valuable aids. The low
and high levels of each factor are analogous to those discussed for the 21t

designs in the previous section. It is desirable to choose the intermediate
level of each quantitative factor to be halfway between the high and low
levels. For some applications, the halfway point is chosen on a logarithmic
scale.

Table 7.18 displays the layouts for the 32 and 33 factorial designs. The
number of trials for one replicate (31t) increases substantially as the
number of factors increases, as shown in Table 7.19. Designs that are
based on three levels per factor but involve fewer trials than the 31t designs
are called fractional designs and are briefly discussed in Section 7.4.2.

In performing any 31t experiment, randomization must be employed
both in assigning experimental units to the trials and in determining the
run order of the trials. Replication of at least one of the factor level com­
binations (and preferably the entire experiment) is required to statistically
test the significance of all main effects and interaction effects. When there
is no replication, main effects and lower-order interaction effects can be
statistically tested if some higher-order interaction effects can be assumed
to be negligible. This practice is not generally recommended, however,
unless prior experimentation or scientific theory supports the nonexistence
of the higher-order interaction effects.

Example 7.S In the recovery of uranium from spent reactor fuel, a
solvent extraction process is used to remove uranium from the dissolved
fuel, leaving the fission products behind. Factors believed to be of impor­
tance in this process are percent by volume of extractant and acidity of the
solution. The levels of the factors to be investigated are as follows:
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Factor Level

% Extractant Low 10
Intermediate 20
High 30

Acid molarity Low 2
Intermediate 5
High 8

TABLE 7.18

Layouts for 3%, 33, and Factorial Designst

F.cton
Trial A B C

I
2 0
3 +
4 0
5 0 0
6 + 0
7 +
8 0 +

9 ... 32 + +
10 0
11 0 0
12 + 0
13 0 0
14 0 0 0
15 + 0 0
16 + 0
17 0 + 0
18 + + 0
19 +
20 0 +
21 + +
22 0 +
23 0 0 +
24 + 0 +
25 + +
26 0 + +

27 ... 33 + + +

tThe first (or low) level of a factor is
represented by "-", the second (or middle) level
by "0", and the third (or high) level by "+".
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TABLE 7.19

Number of Trials for One
Replicate of a 3k Design

NlDber or facton NlDber or trials
(k) (3~

2 9
3 27
4 81
5 243
6 729
7 2187
8 6561

Develop a 32 factorial design for testing the effects of the two factors and
their interaction.

A 32 design with two replicates is displayed in Table 7.20. Trials 1
through 9 are the first replicate, and trials 10 through 18 are the second
replicate. Referring to Table 5.10, the replication will yield an estimate of
the experimental error variance r? with 9 degrees of freedom. The two-

TABLE 7.10

32 Design Replicated Twice

" Acid RaDdom
Trial extractut molarity ... order

1 10 2 3
2 20 2 17
3 30 2 5
4 10 5 10
5 20 5 1
6 30 5 14
7 10 8 16
8 20 8 8
9 30 8 13

10 10 2 9
11 20 2 11
12 30 2 7
13 10 5 12
14 20 5 6
15 30 5 4
16 10 8 18
17 20 8 2
18 30 8 15
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way analysis of variance methods for the fIxed effects model, presented in
Section 5.4.2, would be used to analyze the data from this experiment.

7.3.3 Mixed Level Factorial Designs

For some experimental situations, a design with an equal number of
levels for all factors, such as a 21e or 31e design, is not appropriate. This
poses no problem because factorial designs are quite general, only requir­
ing at least two factors and at least two levels per factor. Recall that a
factorial experiment is one in which all levels of each factor are combined
with all levels of all other factors. That is, if there are k factors and the
ilb factor has aj levels, then a single replicate of the al X a2 X .... X ale
factorial experiment consists of (al)(a2)(a3) ... (ale) factor level combina­
tions. For example, in an experiment with k = 3 factors, suppose that
two factors have 3 levels and the other factor has 4 levels. Then a single
replicate of the 3 X 3 X 4 experiment has (3)(3)(4) = 36 factor level
combinations. The principle of randomization should be applied in assign­
ing experimental units to the trials and in determining the run order of the
trials during the experiment. A mixed-level factorial design is illustrated in
the following example.

Example 7.8 Referring to Example 7.5, suppose that a fourth level of
the percent extractant factor (40%) is to be included in the experiment.
The layout for a single replicate of a 4 X 3 design is displayed in Table
7.21.

A considerable amount of literature exists on the subject of factorial
designs, too much to be exhaustively referenced here. Interested readers
can refer to such texts as Box et al. (1978), Montgomery (1976), Hicks
(1982), Cochran and Cox (1957), or Davies (1956) for additional general
discussions of the design and analysis of factorial experiments.

7.4 FRACI10NAL FACTORIAL DESIGNS
As the number of factors or the number of levels per factor increases

in a factorial design, the number of trials required for a complete replicate
of the design can rapidly outgrow the available resources of an experi­
menter. Tables 7.12 and 7.19 illustrate this point for the 21e and 31e fac­
torial designs.
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TABLE 7.21

Single RepUcate of a 4 X 3 Design

Trial

I
2
3
4
5
6
7
8
9

10
11
12

%
extractaDt

10
20
30
40
10
20
30
40
10
20
30
40

Acid
molarity

2
2
2
2
5
5
5
5
8
8
8
8

In some experimental situations, it is reasonable to assume that some
of the interaction effects are negligible. Often, in these situations, main
effects and nonnegligible interaction effects can be estimated and tested by
performing only a fraction of the complete factorial experiment. Fractional
factorial designs are the topic of this section. t

The reduction in the size of an experiment afforded by a fractional fac­
torial design has its consequences. Because fewer trials of the experiment
are being run, the precision of main effect, interaction effect, or variance
component estimates is reduced. Also, to estimate and test some effects, it
is necessary to assume that other specific effects are negligible. Estimates
of the effects of interest may be misleading if any of the effects assumed
to be negligible are in fact significant. This is because fractional factorial
designs are chosen in such a way that two or more effects will have the
same estimator (within multiplication by -1). Such effects are indistin­
guishable from each other because they cannot be isolated and separately
estimated and tested. Fixed effects that have the same estimator (within
multiplication by -1) are said to be confounded or a1iased. Consequently,
effects that are confounded are called aliases. The number of confounded
effects for a certain fractional factorial design depends upon the number of
factors and the fraction of the full factorial chosen.

In the following subsections, fractions of 2k, 3k, and mixed-level fac­
torial designs are considered. Although a complete discussion of the pro­
cedures for generating these fractional designs and determining the associ-

t Although the fIXed effects terminology is used in this section, fractional factorial designs
are also applicable for estimating variance components for factors with random effects.
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ated alias structures is not presented, some illustrative guidelines are given
for fractions of 2k factorial designs. The interested reader is referred to
Montgomery (1976), Hicks (1982), Cochran and Cox (1957), or Davies
(1956) for the details of the development of these designs and analysis of
the resulting experimental data.

7.4.1 Fractions of 2k Designs

A fractional factorial comprised of a 1/2P fraction of a 2k design is
referred to as a 2k- p fractional factorial design. Table 7.22 displays some
summary information for several 2k- p designs. One of the items summa­
rized in Table 7.22 is the best achievable resolution of each size of design.

TABLE 7.12

Summary or Properties or
Several 2k-, Designs

Number of Frac:tioo Number of Best achie,.ble
factors (It) (~') trials (2'-') resoIutioD

3

4

5

6

7

8

~ 4 III

~ 8 IV

~ 16 V
14 8 III

~ 32 VI
14 16 IV
~ 8 III

~ 64 VII
14 32 IV
~ 16 IV
Vt6 8 III
~ 128 VIII
14 64 V
~ 32 IV
V16 16 IV

This system of classifying designs by their resolution was developed by Box
and Hunter (1961a, 1961b) and is explained as follows:

Resolution m Designs. These are designs in which no main effect is
aliased with any other main effect, but main effects are aliased with two­
factor interactions, and two-factor interactions are aliased with each other.

Resolution IV Designs. These are designs in which no main effect is
aliased with any other main effect or two-factor interaction, but two-factor
interactions are aliased with each other.
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Resolution ~ V Designs. These are designs in which no main effect or
two-factor interaction is aliased with any other main effect or two-factor
interaction, but two-factor interactions may be aliased with three-factor
interactions (Resolution V), and so on.

Note, however, that the resolutions displayed in Table 7.22 are the best
achievable resolution for a given size fraction of a particular 2k factorial
design. Not all of the possible fractions of a given size have the same res0­

lution. In fact, choice of the defining contrast (discussed below) determines
the alias structure and the resolution of the resulting fractional factorial
design.

Examples of particular 24- 1, 25- 1, and 25- 2 designs and their associ­
ated alias structures are displayed in Tables 7.23, 7.24, and 7.25, respec­
tively. In presenting the alias structure in each of these tables, a relation­
ship such as I = ABCD is given. This is technically referred to as a

TABLE7.D

A Particular 24- 1 Designt

TrIal A B C D

1
2 + +
3 + +
4 + +
S + +
6 + +
7 + +
8 + + + +

AIiues (I - ABCD)

A-BCD AB -CD
B-ACD AC- BD
C-ABD AD- BC
D-ABC

tOne-half replicate of a 24 design.

derIning contrast and is used to select a fractional factorial design with a
particular alias structure. Thus, in Table 7.23 the defming contrast
I = ABCD implies that the four-factor interaction ABCD must be
assumed to be negligible with respect to experimental error to unbiasedly
estimate the overall mean. To unbiasedly estimate and test the main
effects, the three-factor interactions must be assumed to be negligible.
Three of the six two-factor interactions are estimable if the corresponding
aliased two-factor interactions are assumed to be negligible.
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TABLE 7.24

25- 1 Designt

Trial A B C D E

1
2 + +
3 + +
4 + +
5 + +
6 + +
7 + +
8 + +
9 + +

10 + +
11 + +
12 + + + +
13 + + + +
14 + + + +
15 + + + +
16 + + + +

Aliues (I - ABCDE)

A - BCDE AB - CDE BD - ACE
B - ACDE AC - BDE BE - ACD
C - ABDE AD - BCE CD - ABE
D - ABCE AE - BCD CE - ABD
E - ABCD BC'" ADE DE - ABC

tOne-half replicate of a 2sdesign.

TABLE 7.25

25-:Z Designt

Trial A B C D E

1
2 + +
3 + +
4 + + +
5 + + +
6 + + +
7 + + +
8 + + + +

Aliues (I = ABE - CDE - ABCD)

A ... BE ... BCD'" ACDE AC ... BD = ADE ... BCE
B ... AE - ACD'" BCDE AD ... BC = ACE = BDE
C'" DE = ABD "" ABCE
D ... CE ... ABC - ABDE
E=AB-CD - ABCDE

tOne-fourth replicate of a 2sdesign.

423
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To illustrate the selection and interpretation of a particular confound­
ing scheme, at the intuitive level, consider the development of the 24- 1

design in Table 7.23. First, it is instructive to construct a table with main
effect and interaction effect columns for the full 24 factorial (analogous to
Table 7.15 for the 23 design). This is displayed in Table 7.26. A one-half
replicate of a 24 factorial design with defining contrast I = ABCD is
determined by selecting the rows of Table 7.26 that have a "+" in the
ABCD column. The corresponding elements of the A, B, C, and D
columns give the factor level combinations of the fractional design. The
result (which is the expanded table for the design given in Table 7.23) is
displayed in Table 7.27, where the alias structure can be examined. For
example, Table 7.23 indicates that A = BCD, and examination of Table
7.27 reveals that the elements of the BCD column are identical to the ele­
ments of the A column. Thus, the estimators of the main effect A and the
interaction effect BCD are identical. In fact, the aliased effects can be
easily identified by comparing the columns of Table 7.27.

Note that if all rows of Table 7.26 with a "-" (rather than a "+") in
the ABCD column had been chosen, the resulting design would also be a
one-half replicate of a 24 factorial design with the same alias structure as
the design in Table 7.27. The only difference is, for example, the elements
in the BCD column are equivalent to the elements in the A column multi­
plied by -1. There is no real advantage to choosing "+" instead of "-"
elements (or vice versa) in the ABCD column. Either of the one-half repli­
cates would suffice for a given application.

TABLE 7.26

Expanded Table for a FuU 24 Factorial Design

A B C D AB AC AD Be BD CD ABC ABD ACD BCD ABCD

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + + + + + + + + + +
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TABLE 7:1.7

One-Half Replicate of a 24 Factorial with I = ABCD

A B C D AB AC AD Be BD m ABC ABD Am 8m ABm

+ + + + + + +
+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + +
+ + + + + + +

+ + + + + + + + + + + + + + +

Consider now the one-fourth replicate of a 25 factorial given in Table
7.25. The defming contrast is I = ABE = CDE -= ABCD. Thus, in
choosing this design from an expanded table, all rows would be selected
that simultaneously have a ,,+" in the ABE, CDE, and ABCD columns.
There are four possible one-fourth replicates, and all of them have the
same alias scheme. The four one-fourth replicates can be identified as
follows:

One-fourth replicate ABE CDE

I + +
2 +
3 +
4

That is, one of the one-fourth replicates has a "+" in both the ABE and
CDE columns, one has a "+" in the ABE column and a "-" in the CDE
column, and so on. As with the one-half replicate, there is no advantage in
choosing one of the possible one-fourth replicates over the others because
they all provide the same information, and they all have the same alias
structure.

As with full factorial designs, it is necessary to apply the principle of
randomization in assigning experimental units to trials and in determining
the run order of the trials of a 2k- p fractional factorial experiment. This is
illustrated in Example 7.7.

Example 1.1 Consider a study to investigate the effect on laboratory
analysis results due to varying the levels of five factors. The five factors
are as follows:
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Factor description Factor name

Sampling method A
Sample preparation technique B
Mixing time C
Instrument D
Technician E

The laboratory cannot afford to run 25 = 32 trials, and a design requir­
ing fewer runs is of interest. Past experience indicates that the three-,
four-, and five-factor interactions are probably negligible and that the
instrument factor (factor D) does not interact with factors A, B, or C. Set
up a fractional factorial design for this experiment and outline the
ANOVA table.

The 25- 1 fractional factorial design shown in Table 7.24 requires only
16 trials. Because it is reasonable to assume that the three-, four-, and
five-factor interactions, as well as the AD, BD, and CD interactions, are
negligible, all main effects and the remaining two-factor interactions can
be estimated and tested as illustrated in the ANOVA table outline in
Table 7.28. Note in Table 7.28 that the sums of squares and degrees of

TABLE 7.18

ANOVA Table Outline for 25- 1 Designt

Source or Variation elf SS MS

A 1
B 1
C 1
D 1
E 1

AB 1
AC 1
AE 1
BC 1
BE 1
CE 1
DE 1

Error 3
Total IS

tExample 7.7.

freedom for AD, BD, and CD are combined to provide a sum of squares
with three degrees of freedom for error.
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In conducting the 25- 1 fractional factorial experiment, the trials shown
in Table 7.24 are run in random order. Upon collection of the data, the
remainder of the ANOVA table in Table 7.28 could be fllied in by using
the five-way ANOVA, which is an extension of the two-way ANOVA
presented in Section 5.4.2.

7.4.2 Fractions of 3k Designs

The concept of fractional replication also applies to the 3k designs,
where a 1/3P fraction of a 3k design is denoted by 3k- p• Fractional replica­
tion of 3k designs is especially attractive because a complete replicate can
require a large number of trials for even moderate values of k.

The details of how to develop 3k- p designs are not considered here.
Texts on experimental design, however, such as Montgomery (1976),
Hicks (1982), Cochran and Cox (1957), or Davies (1956), provide the
necessary details and guidance for implementing these designs. A publica­
tion by Connor and Zelen (1959) includes an extensive selection of 3k- p

designs for 4 E:; k E:; 10.

7.4.3 Fractions of General Factorial Designs

When some or all of the factors in a factorial experiment have more
than two levels, the details of determining fractional replicates can be
somewhat sophisticated. Because there are so many possible cases, no
attempt is made to treat this subject here. Kempthorne (1973) discusses
fractions of the general factorial designs, including a brief discussion of
mixed level designs. Cochran and Cox (1957) discuss one-half replicates of
3 X 25 and 4 X 24 designs which allow estimation of main effects and
all (or nearly all) two-factor interactions.

7.4.4 Blocking with Fractional Replicates

Experimental situations sometimes arise where the experimenter can
afford to run a complete factorial design, but it is not possible to run the
entire design under homogeneous conditions. For example, suppose that in
a given situation a 25 factorial design is appropriate. Suppose, however,
that it is impossible to run all of the 25 = 32 factor level combinations on
the same day and that runs made on different days will use different
batches of material. One option available to the experimenter is to run a
different fraction of the 32 factor level combinations each day for several
days. This situation is not as bleak as it may first appear. If the fractions
are properly chosen, it may be possible to salvage most of the information
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that would have been obtained from a full factorial experiment run under
homogeneous conditions.

The recommended approach to this type of situation is to determine
which effects (preferably interaction effects) can be realistically assumed
negligible. Then a defining contrast is chosen and is used to split the full
factorial into fractions. Each fraction is then run as a block, and the
effects that appear in the defining contrast are confounded with the blocks.
All other effects are estimable if it can be assumed that they do not
interact with the blocks. This is often a reasonable assumption, but it
should be carefully considered before implementing this technique.

Suppose that in the situation described earlier, the experimenter can
run eight factor level combinations per day, and he is willing to assume
that the ABE, CDE, and ABCD interaction effects are negligible. He can
then use the defining contrast I = ABE = CDE = ABCD to fmd the
corresponding four one-fourth replicates of the 25 factorial design. He
would then randomly assign a different one-fourth replicate to each of four
days and randomize the order that the factor level combinations are run
within a day. Note that, for illustration, the same defming contrast is used
here as in Table 7.25.

To determine the four one-fourth replicates, Table 7.29 is constructed.
The ABE and CDE columns are examined and the factor level combina­
tions are assigned to blocks as follows: block 1 has all factor level combi­
nations with ABE = "+" and CDE = "+", block 2 has ABE = "+"
and CDE = "-", block 3 has ABE = "-" and CDE = "+", and
block 4 has ABE = "-" and CDE = "-". Then all factor level combi­
nations in block 1 would be run on one day, all those in block 2 would be
run on a different day, and so on. It is important to emphasize that the
blocks should be randomly assigned to four different days and the factor
level combinations within a block must be run in a randomized order.

In the analysis of variance, the sums of squares and degrees of freedoin
for ABE, CDE, and ABCD would be pooled to provide a sum of squares
for blocks, with three degrees of freedom. The remaining 28 effects, how­
ever, could be directly interpreted if it can be assumed that they do not
interact with blocks. Because there is no replication, some of the interac­
tion effects would have to be assumed negligible to perform statistical
tests. For example, if all four- and five-factor interaction effects are
assumed negligible, their sums of squares and degrees of freedom could be
pooled to form a sum of squares for experimental error with five degrees
of freedom.

This procedure can be extended to accommodate situations where
several replicates of a full factorial design must be run, but only a frac­
tional replicate can be run at one time or under homogeneous conditions.
Hicks (1982) gives some details and guidelines for the design and analysis
of such experiments.
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TABLE 7.29

Blocking in One-Fourth Replicates or a 25 with
Defining Contrast I = ABE = CDE = ABCD

A B C D E ABE CDE Block

4

+ - + 2

- + + 2

+ + 4

+ + 3

+ - + + + 1
- + + + + 1

+ + + + 3

+ + 3

+ - + + + 1

- + + + + 1

+ + + + 3

+ + 4

+ + + + 2

+ + + + 2

+ + + + 4

+ + + 1

+ - + + 3
- + + + 3

+ + + + + 1

+ + + 2

+ - + + 4
- + + + 4

+ + + + + 2

+ + + 2

+ - + + 4

- + + + 4

+ + + + + 2

+ + + + + 1

+ - + + + + 3
- + + + + + 3

+ + + + + + + 1

429



430 CHAPTER 7 EXPERIMENTAL DESIGN

7.5 MULTIFACfOR EXPERIMENTS WITH
RANDOMIZATION RESTRICTIONS

Single factor experiments with restrictions on randomization are dis­
cussed in Sections 7.2.2, 7.2.3, and 7.2.4. There are also many multifactor
experimental situations in which it is either necessary or advisable to re­
strict randomization.

7.5.1 Randomized Complete Block and Latin Square
Designs for Multifactor Experiments

Consider an experiment whose purpose is to simultaneously compare
two different sample preparation methods and two different chemical
analysis techniques. A 22 factorial design (replicated eight times, for
example) is used if the experimental material is homogeneous and one
technician will perform the whole experiment. Suppose, however, that
there is not enough material in one batch to perform all 32 trials of the
experiment and that it is necessary to use material from four batches.
Here, batch is a blocking factor and restricts complete randomization of
the 32 trials. Suppose that two complete replicates of the 22 factorial are
run using material from a single batch and that these eight trials are com­
pletely randomized within each batch. The resulting design is a random­
ized complete block design with two replicates at each combination of
batch, sample preparation method and chemical analysis technique.

Suppose further that not one but four technicians will perform the
experiment. Thus, technicians is a second blocking factor. Because the
number of levels of the two blocking factors (4) is the same as the
number of treatment combinations of the two factors of interest (22 = 4),
a Latin square design for a factorial type experiment could be used. This
would require, however, an assumption of no interaction between techni~

cians and batches of material (which seems reasonable) and no interac­
tions between these blocking factors and the factors in the factorial experi­
ment (sample preparation methods and chemical analysis techniques). Two
replicates of a 4 X 4 Latin square would yield the 32 total trials desired.

Details of the development and statistical analysis of multifactor ran­
domized complete block and Latin square designs are found in such texts
as Montgomery (1976) or Hicks (1982).

7.5.2 Split-Plot Designs

In some multifactor designs involving randomized complete blocks, it
may be infeasible or impossible to completely randomize the order of the
trials within blocks. This often results in a so-called spUt-plot design, as
illustrated in the following example.
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Example '.8 A fuel fabrication facility must test the effects of sinter­
ing time and temperature on the density of U02 pellets. Three levels each
of sintering time and temperature are to be investigated. The experiment is
conducted for each of three lots of pellets in turn by heating the furnace to
one of the temperature levels and sintering three pellets for each of the
three sintering times being studied. The process is repeated for each of the
other two temperature levels.

The three lots of pellets are blocks in this experiment. If each of the
3 X 3 = 9 trials in a block could be run in completely random order,
this would be a randomized complete block design; however, this is not
possible. For any given lot of U02 pellets, the three trials associated with
the first temperature are run, then the three trials associated with the
second temperature are run, and finally those associated with the last tem­
perature are run. The three temperature levels are referred to as plots.
Each sintering time within a plot is a subplot or split-plot. This terminol­
ogy is derived from agricultural experiments where each of several levels
of a factor is tested on each of several plots of land. The plots are split
into subplots to investigate levels of another factor.

Two particular aspects of this design are worth noting. First, the plots
define a restriction on randomization within a lot (block) of U02 pellets.
That is, plots are the levels of a second blocking factor. Second, the plots
correspond directly to levels of the temperature factor. Thus, if there are
any uncontrolled factors that vary as the temperature levels are changed,
the effects of these uncontrolled factors are confounded with the tempera­
ture effects. Another way of saying this is that the temperature main
effect is completely confounded with the plot effect.

Although there are two restrictions on randomization, it is not com­
pletely restricted. Nine pellets ar~ randomly selected from each lot and are
randomly assigned to each of the nine trials (time-temperature combina­
tions). The order in which the levels of temperature are applied should be
randomized. It may seem more natural to consider the lowest temperature
first, followed by the next two higher temperatures in turn. This order,
however, may aggravate any existing problems due to the confounding of
temperature with plots. Running the temperature levels in random order
helps to distribute evenly some of the uncontrolled factors that may
contribute to the plot effect. Within a single plot, pellets are to be sintered
for three different lengths of time. Here, theory suggests that the three
sintering times should be observed at random and not in order. Practically,
however, it is easier to observe the three times in order. If the times are
fairly long, it may be that an experimenter would put the three pellets into
the furnace simultaneously and then remove each one when its time is up.
This more practical scheme would not evenly distribute the effects of any
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uncontrolled factors that vary along with time. Thus, interpretation of the
time effect would require an assumption that the effects of such uncon­
trolled factors are negligible.

To illustrate the previous discussion of randomization, assume that nine
pellets are randomly selected from each lot and are randomly assigned to
each of the nine trials within a block (lot of pellets). One possible run
order, which employs the restricted randomization discussed previously, is
displayed in Table 7.30. With this run order, block (pellet lot) number 2

TABLE 7.30

Example of Restricted Randomized RUn
Order for Split.Plot Design

BIoc:b (IoU of UOz pellets)

1 2 3

Temperature
leYeIs 1 2 3 1 2 3 1 2 3

Sintcring
times

1 10 17 14 6 2 7 21 26 22
2 11 16 15 4 3 9 20 27 24
3 12 18 13 5 1 8 19 25 23

is run first, followed by blocks I and 3. The run orders of plots (tempera­
ture levels) within blocks and split-plots (sintering times) within plots are
also determined at random.

The model for this design is given by

Yijk = P. + ai + fJj + afJij

+ 'Yk + a'Yik + fJ'Yjk + afJ'Yijk + Eijk

i = 1,2, ,a
j = 1,2, ,b
k= 1,2, ,c

(7.7)

where

Yijk = the observed density of a pellet from lot i for sintering tem-
perature j and time k

p. = overall mean density of pellets in all lots
ai = effect of lot i on density
fJj = effect of sintering temperature j on density

'Yk = effect of sintering time k on density
Eijk = the effect of random experimental error on Yijk
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and aflij' a'Yik, fl'Yjko and afl'Yijk are the associated interaction terms.
Because this experiment is not replicated, the experimental error variance
(1: cannot be estimated.

The split-plot design is often used by necessity rather than by choice.
Having the plot effect confounded with a treatment effect is usually not a
desirable design property. It may be, however, that such a design is the
only feasible or cost-effective method of gathering data in a particular
situation.

Further discussions of the development and statistical analysis of split­
plot designs may be found in most experimental design texts, such as
Montgomery (1976), Hicks (1982), and Cochran and Cox (1957).

7.6 NESTED (HIERARCHICAL) DESIGNS

In many nuclear material accounting experimental situations the levels
of one factor (say factor A) are not identical over the levels of another
factor (say factor B). Then factor A is said to be nested in factor Band
the resulting design is referred to as a nested or hierarchical design.

Methods for analysis of experimental data from nested designs are
presented in Section 5.3. Some of the experimental design considerations
are illustrated in the following example.

Example '.9 An experiment is being· planned where four samples are
to be randomly drawn from each of three randomly selected containers of
ammonium diuranate (ADU) scrap, with three uranium analyses· per­
formed on each sample. The purpose of the experiment is to provide data
for estimating variance components for containers, sampling, and chemical
analysis. This experimental layout is displayed below.

I
ADU Containers

2 3

Samples I 2 3 4 I 2 3 4 I 2 3 4

Analyses
1
2
3
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There are three factors in this experiment: ADU containers, samples,
and analyses. Each of these factors is assumed to have random effects.
Although four samples are taken from each container, the samples differ
from container to container. Thus, the factor "samples" is said to be nested
within the factor "containers." Likewise, "analyses" are nested within
"samples." Thus, this particular experiment is referred to as a nested (or
hierarchical) experiment. Because the factors have random effects, the
variance components for these factors are of interest in estimating the con­
tribution of each factor to the total uncertainty in the uranium analysis
results.

The model for this problem is given by Equation 5.101, which is
repeated here for conveni~nce; that is,

where

Yijk = JL + ai + fJ(i)j + E(ij)k

i = 1,2, , a
j = 1,2, , b
k = 1,2, , n

(7.8)

Yijk = observed percent uranium from analysis k on sample j from
container i

JL = overall mean percent uranium in population of ADU
containers

ai = effect of ith container
fJ(i)j = effect of jth sample within ith container
E(ij)k = effect of kth analysis within jth sample and ith container

In developing this nested design, the principle of randomization is
incorporated both in assigning experimental units to and in determining
the run order of the various trials. In this experiment, the experimental
units are subsamples of the original samples taken from each container.
Because of the three-stage random sampling, it is not essential to ran­
domly assign the subsamples to trials; randomization of the run order suf­
fices for this problem. Note, however, that random assignment of experi­
mental units may be required in other experiments. The run order of all
3 X 4 X 3 = 36 trials should be completely randomized. One such
possible randomized run order is shown in Table 7.31.

Suppose that the data displayed in Table 7.32 are obtained by perform­
ing the experiment. The nested ANOVA techniques presented in Section
5.3.1 are used to obtain the results displayed in Table 7.33. The F-ratios
indicate that the variance components /T&ntainers and /T~plea are both
greater than zero. The quantity /TLalYJeI represents the variability due to
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TABLE 7.31

One Possible Randomized Run Order for Nested Experiment

ADU COIItaiDen

I 2 3

Samples I 2 3 4 I 2 3 4 I 2 3 4

Analyses
1 21 18 3 11 33 26 17 31 1 13 23 7
2 20 12 36 16 8 6 25 14 34 4 19 32
3 5 35 30 15 10 24 27 2 29 9 28 22
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TABLE 7.32

Uranium Analysis Results in Percent Uranium
for Nested ADU Experiment

ADU c:ontainers

I 2 3

Samples I 2 3 4 I 2 3 4 1 2 3 4

Aulyses
1 44.3 33.8 42.3 38.2 24.1 27.3 22.7 25.6 79.8 76.4 77.0 75.4
2 44.2 33.0 42.7 37.9 24.2 26.7 22.9 25.9 80.2 76.2 77.4 75.8
3 44.4 33.3 42.5 38.3 24.5 26.9 22.8 26.0 79.7 76.8 77.3 75.9

TABLE 7.33

ANOVA Table for Two-Stage Nested ADU Experiment

Soaree df ss MS F

Containers 2 17,519.444 8759.722 8759.722
- 287.35

30.485

Samples within containers 9 274.365 30.485 ~:s -508.08

Analyses within samples 24 1.447 0.060

Total 35 17,795.256
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individual analyses and experimental errors and cannot be statistically
tested.

The purpose of this experiment is to estimate the variance components
due to sampling containers from the population, sampling material from
within containers, and analysis of the sampled material. By applying the
variance component estimation method discussed in Section 5.3.1.1, the
expected mean squares are derived and used to calculate the desired vari­
ance components. The expected mean squares (Table 5.4) are summarized
as follows:

Source

Containers

Samples

Analyses

ElMS]

ulnalyses + 3U§amplcs + 12u&ntainen

ulnalyses + 3U§amplcs
2UAnalyses

By equating these expected mean squares to the calculated mean squares
in Table 7.33, the variance component estimates are computed as follows:

a-lnalyses = MSAnalyses = 0.060

.. 2 _ MSSamp1cs - MSAnalyses
USamplcs - 3

30.485 ~ 0.060 = 10.142

and

.. 2 _ MSContainen - MSSamp1cs
UContainen - 12

8759.722
1
; 30.485 = 727.436

An estimate of the total variance of Yijk is given by

Var(Yijk) = 727.436 + 10.142 + 0.060 = 737.638

The estimated standard deviations for analyses,samples, and containers
are computed as the square roots of the variance component estimates;
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they are 0.245, 3.185, and 26.971% uranium, respectively. The estimated
standard deviation of Yijk is

.JVar(Yijk) = .J737.638 = 27.159 %uranium

An experiment with nested factors might involve only factors with ran­
dom effects or it might include factors with fixed effects as well. The cal­
culation of ANOVA tables and the estimation of variance components and
means for such designs are discussed in Section 5.3. Additional discussion
of the development and statistical analysis of nested designs is found in
Montgomery (1976) or Hicks (1982).
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CHAPTER 8

Statistical Sampling of
Finite Populations
8.0 INTRODUCTION

Two common activities in nuclear material accounting are the determi­
nation of the special nuclear material (SNM) content of an inventory and
the verification of prior location and content information for various con­
tainers (items) within an inventory. Often these activities are performed by
physically inspecting all containers or locations of SNM within a facility.
This complete census approach can be time-consuming and expensive. In
some cases, it may be possible to satisfactorily estimate the desired infor­
mation by inspecting only a small portion (sample) of all containers or
locations of SNM in a facility by using statistical sampling techniques.

Statistical sampling also plays an important role in other nuclear mate­
rial accounting problems, for example:

1. Isotope or element factors are often provided by lot (or batch) for a
group of SNM containers. These are calculated by estimating the factor
for each of several containers sampled from the lot and then using the
mean of the sample values to estimate the true mean factor for the lot.

2. In the production of fuel pellets, the fuel producer must control the
uranium content of the product. Because destructive analysis is required to
verify the uranium content of the pellets, it is not possible to measure
every pellet in a particular batch. A sample of pellets is taken from the
batch and analyzed, and a hypothesis is tested about the mean uranium
content of all pellets in the batch.

In the above discussion and examples, the populations being sampled
are finite. Most of the statistical methods considered in the previous
chapters assume that a random sample is taken from an infinitely large
population, or a population large enough to be treated as infinite. In
nuclear material inventory control, however, the population of interest is
often a finite number of containers that are being stored at various loca­
tions within a facility. The statistical sampling techniques presented in this
chapter are applicable when the population under investigation is finite.

The concept of a sample is that a portion of all possible objects or
observations (elements) is considered. The set of all possible objects or
observations is referred to as the population. A sample is a subset of the
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objects or observations selected from the population. There are a number
of statistical sampling techniques that can be used to select a sample from
the population. A sampling plan is a series of steps required to select a
sample, including problem formulation, selection of one or more basic sam­
pling techniques, specification of precision requirements, calculation of
required sample size, and development of a protocol for selecting the sam­
ple from the population.

Sections 8.1 and 8.2 present a brief introduction to six basic sampling
techniques and discuss the steps required to develop a sampling plan. Four
of the basic sampling techniques, with some variations and extensions, are
presented in greater detail in Section 8.3. These sections explain how to
develop sampling plans that are based on some of the basic sampling
techniques. They also provide formulas for estimating population means
and totals and the standard errors of the estimates and formulas for deter­
mining required sample sizes. Sampling for verification purposes in nuclear
material management is presented with examples in Chapter 17.

The statistical sampling literature has developed a special notation for
use in equations. In many cases, this notation differs from the notation
used for similar concepts in other chapters of this text. One major differ­
ence is the use of upper-case letters to denote some population parameters
and lower-case letters to denote the corresponding sample estimators and
estimates. For example, the population mean is denoted by X and the sam­
ple mean is denoted by x. Because the notation varies within the statistical
sampling literature, it was necessary to choose one convention and then use
it consistently. The notation used by Levy and Lemeshow (1980) was cho­
sen for this chapter. Unfortunately, this may cause some confusion when
the reader refers to other chapters of this text. With this caveat in mind,
however, the material presented in this chapter should provide valuable
guidance in developing and implementing sampling plans and in computing
parameter estimates from the resulting data.

The sampling and estimation methods presented in Section 8.3 are
from the classical sampling theory literature, and most of them were origi­
nally developed for survey sampling of human populations. The theory
underlying each of these methods is based on the assumption that the
value of the variable or characteristic of interest can be measured or other­
wise determined without error for each sampled object. Unfortunately, this
assumption is not valid for the types of nuclear material management
applications mentioned above where, for example, the contents (or some
characteristic of the contents) must be determined for containers that have
been sampled from those on inventory. In such applications, the problem of
selecting a sample of containers from those on inventory can usually be
solved by applying one or more of the finite population sampling tech­
niques presented in Section 8.3. However, the steps of subsampling, mea­
surement, and/or analysis of the material within each container are sub­
ject to errors that should not be ignored.
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Consequently, in many applications, the overall sampling and analysis
is an application of multistage sampling, analogous to the nested or hierar­
chical experimental designs discussed in Sections 5.3 and 7.6, except that
the first stage of sampling (containers) is from a finite population, and the
remaining stages of sampling are from populations that are conceptually
infinite (i.e., all possible subsamples of material from each container and
all possible analyses of each material sample). Thus, all stages of sampling
must be carefully designed using either the methods presented in this
chapter or those in Chapter 7, and the variances from the error sources at
each stage must be taken into account in interpreting any parameter esti­
mates or inferences that are based on the sampling data.

With the exception of two-stage cluster sampling (Section 8.3.2.2), no
multistage sampling techniques are presented in this chapter. It should be
noted, however, that the methods presented in Section 8.3 and those in
Chapter 7 can be used as "building blocks" in developing an overall (mul­
tistage) sampling and analysis plan. That is, a different sampling tech­
nique might be used at each stage of sampling. For most practitioners, the
only difficulty with multistage sampling plans is that estimation formulas
are not always readily available. This should not preclude the use of mul­
tistage sampling, because familiarity with the basic sampling techniques is
sufficient to formulate a sampling plan that is tailored to a specific appli­
cation. Cochran (l977), Levy and Lemeshow (l980), Yamane (l967),
and other books on sampling provide discussions and estimation formulas
for some multistage sampling plans. For cases not found in a book or other
reference, estimation formulas and a protocol for implementation of the
plan can be derived by a statistician with training in sampling theory.

8.1 BASIC SAMPLING TECHNIQUES

The word sampling has two meanings in nuclear material management.
It is used in a statistical context to refer to the selection of a subset from a
population, such as inventory items, record entries, or containers that are
to be (or have been) inspected. It is also used in a physical context to
describe a small portion of bulk material that is analyzed in a laboratory
or otherwise measured or tested. Thus, for example, a sample of uranium
oxide drums is selected from those on inventory and a sample of powder
from each is sent to the laboratory for analysis.

Random sampling is a method or protocol for taking a sample from a
group of distinct items. A random sample is not a haphazardly selected
sample, but is chosen by a prespecified procedure that sometimes uses ran­
dom numbers to determine which items will be selected. A haphazard or
seemingly purposeless choice is generally insufficient to guarantee random­
ness because of subjective, and usually unconscious, biases inherent in per­
sonal choice. Samples are random only if drawn according to the require­
ments of the definitions given below. No matter which method is used to
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select a sample, an unambiguous statement of that method is a necessary
part of any subsequent interpretation of the data derived from the sample.

In principle, a portion of the contents of an item or container is also
chosen randomly from all possible similar portions within the container. In
practice, however, this is not often workable because of the logistics of
handling large containers. For example, consider drawing a 5-g sample
from a drum of uranium oxide powder. In principle, the drum would be
completely divided into 5-g sections, one would be chosen randomly, and
then by some mechanical means that one section would be removed from
the drum. In practice, however, the contents of the container must be
made as nearly homogeneous as possible so that a sample taken from any
location is equivalent to a random sample. Thus, the population of all pos­
sible 5-g samples that could be selected from this container is a conceptual
population and is probably best treated as an infinite population.

The following brief descriptions provide introductions to six basic tech­
niques for sampling from finite populations. Four of these techniques (sim­
ple random sampling, stratified random sampling, cluster sampling, and
probability proportional to size sampling) are presented in greater detail
and with estimation formulas in Section 8.3.

1. Simple Random Sampling: A procedure in which all possible samples
of some fixed size have an equal chance of being chosen. Elements may be
chosen from the population with replacement (an element may be chosen
more than once) or without replacement (an element may be chosen only
once).

2. Systematic Random Sampling: A procedure in which an element is
randomly selected from among the first k elements of the population, and
then every subsequent kth element following the first is included in the
sample. For example, if k = 10, and the third element is initially
selected, then the 3rd, 13th, 23rd, 33rd, ••• , elements are in the sample.

3. Stratified Random Sampling: A procedure in which a population is
divided into mutually exclusive and exhaustive strata and a sample is ran­
domly selected from each stratum. The strata are formed so that the ele­
ments within each strata are as homogeneous as possible with respect to
the characteristic(s) being measured, but the variability between strata is
maximized; that is, the strata are chosen to be as different as possible with
respect to the characteristic(s) being measured. Then by taking a random
sample (of at least one element) from each stratum, this technique (when
the stratification is successful) tends to give better coverage of the popula­
tion than simple random sampling.

4. Ouster Sampling: A procedure in which groups (clusters) of popula­
tion elements are selected instead of individual elements. Clusters are often
chosen by simple random sampling or by probability proportional to size
sampling (defined below). Multistage cluster sampling involves sampling of
subclusters or individual elements from within clusters chosen at the previ­
ous stage(s) of sampling.
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5. Probability Proportional to Size (PPS) Sampling: A procedure in
which population elements or clusters of elements are randomly chosen
with probabilities of selection proportional to size. "Size" is usually a
measurable characteristic associated with the relative importance of a pop­
ulation element, for example, an amount of SNM, or a count of the num­
ber of elements within a cluster.

6. Sequential Sampling: A procedure in which a decision rule is applied
sequentially to sample elements. The concept of sequential sampling and
hypothesis testing is presented in Section 4.6 along with examples.
Sequential sampling may be conducted with any of the sampling
techniques described above. It is useful because, on the average, it requires
smaller sample sizes than nonsequential sampling techniques. There are
three basic types of sequential sampling:

a. Simple Sequential Sampling: A test of significance is performed
after each sample element is selected.

b. Curtailed Sequential Sampling: This is simple sequential sampling
where a maximum sample size is specified.

c. Multistage Sequential Sampling: Sample elements are selected in
small groups or stages, and the groups are sequentially selected and
tested. The number of stages may be curtailed.

Simple sequential sampling is advantageous when samples are difficult or
expensive to collect or analyze. Multistage sequential sampling is typically
used when sample analysis is time consuming but samples can be analyzed
together in batches.

As explained in Section 8.0, each sampling technique discussed above
should be considered as a basic or "building block" technique. The process
of designing a sampling plan takes into consideration the strengths and
weaknesses of the basic sampling techniques and then combines them into
a plan best suited to the problem and its underlying constraints. Some of
the fundamental strengths and weaknesses of the above six basic sampling
techniques are given in Table 8.1.

Several of the comments in Table 8.1 concern the estimation of param­
cters based on data collected by a sampling technique. These comments
refer to situations where estimates of parameters, such as a mean and vari­
ance, are required. Comments about the feasibility and the effort required
for a specific sampling technique are general and apply to most
applications.

8.2 DEVELOPING A SAMPLING PLAN

The major steps in developing a sampling plan are outlined below with
comments on their interrelationships.

I. Formulate the problem. A nuclear material accounting problem
should be stated so that the data to be collected are meaningful and are
directly applicable to the investigation and solution of the problem.
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CHAPTER 8 STATISTICAL SAMPLING

2. Identify the population and its characteristics. The definition of the
population of interest follows from a formulation of the problem. Charac­
teristics of the population to be studied (such as number and variety of
SNM containers, storage method, range of SNM content per container,
and so on) should be known. A list of population elements should be
available.

3. Specify the conditions of the problem. If the problem is to detect a
loss in the overall inventory, the values desired for the loss detection goal,
probability of detection, and probability of a false alarm (concluding there
is a loss when, in fact, there is not) should be specified. For the estimation
of a quantity, such as an isotope factor or the total quantity of SNM in an
inventory, the required closeness of the estimate to the true value and the
desired probability of this closeness being achieved must be stated.

4. Specify the measurement model and assumptions. A statistical model
and its assumptions are specified on the basis of measurement techniques
to be used. An estimate of the population variance (or variance com­
ponents in the case of multistage sampling plans) is required to calculate
the required sample size (see Chapter 14 for a discussion of measurement
models).

S. Identify the appropriate statistical methods. Identify the statistical
tests or estimation procedures and basic sampling technique(s) required to
solve the problem formulated in Step 1. The formulas for calculation of
required sample size (or sizes) depend on the basic sampling technique(s)
and the test or estimation method to be utilized.

6. Perform preliminary preparations if required. The population charac­
teristics may indicate that stratified or cluster sampling techniques should
be employed. If so, the strata or clusters within the population must be
identified. A listt and count of the elements in each stratum or cluster
should be developed.

7. Calculate the required sample size. The sampling distribution associ­
ated with the statistical method identified in Step 5 provides the basis for
a sample size formula. A sample size is obtained by substituting the prob­
lem requirement values from Step 3 into the appropriate sample size
formula. For sequential sampling, the sample size:\: is dependent upon
intermediate results.

8. Allocate the sample size. Once sample size (or sizes) is determined,
a protocol is developed whereby the sampling techniques (discussed in Sec­
tion 8.l) are used to allocate the sample size among elements, strata, or
clusters of the population.

tFor clUster sampling, only a list of the population elements within sampled clusters is
required. A complete listing over all clusters is not essential.

*Expected sample sizes can be computed for most sequential techniques.
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9. Select the sample. The specific units (containers, clusters, or batches
of containers) are selected according to the allocation and protocol (sam­
pling plan) developed in Step 8.

The sampling plans considered in Section 8.3 are described primarily in
terms of Steps 5 through 8, although the other steps are discussed as nec­
essary. Also, for most applications of fmite population sampling in nuclear
material control, the SNM will be in drums, cans, cylinders, buckets, or
other such containers. Therefore, in Section 8.3, such items in a popula­
tion are sometimes referred to as containers.

8.3 SAMPLING PLANS FOR ESTIMATING
MEANS AND TOTALS

Many nuclear material accounting activities have a goal of estimating
a population mean or total from a sample. For example, an estimate of the
total amount of SNM in a facility is required at inventory time. An esti­
mate of the mean element or isotope factor may be needed for a batch of
U02 powder held in many containers. Because of sampling and measure­
ment errors, standard error estimates and confidence intervals are needed
along with the point estimate of a mean or total. (The standard error is
defmed in Chapter 3 as the standard deviation of a parameter estimator.)

The required sample size for estimating a population mean or total is
indirectly determined by specifying how close the estimate must be to the
true value and the probability that this closeness will be achieved. Let x be
the sample estimate of a mean or total and X be the true but unknown
mean or total. In practice, closeness can be specified by placing a limit E

on the relative difference between x and X; that is,

Ix-XI ~
X "",E

(8.1)

Because of sampling and measurement variability, Equation 8.1 cannot
always be satisfied, but a probability 1 - 'Y can be specified with which
it is expected to be satisfied; that is

(8.2)

The sample estimator x is a function of either the sum or a weighted
sum of the measured values for the sampled objects. Thus, in many appli­
cations, x can be assumed to be approximately normally distributed (see
Section 2.6.2.1 for a discussion of this concept), so that Equation 8.2 can
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be written in terms of the cumulative distribution function (cdf) of the
standard normal distribution. This requires a value for the population vari­
ance of the characteristic of interest. In multistage sampling applications,
values of the variance components for each stage of sampling are required.
In practice, however, the population variance is usually unknown, so an
estimate is substituted based on prior experience or a preliminary sample.
For multistage sampling, estimates of the variance components are substi­
tuted. This results in an expression that is a function of the sample size (or
sizes in multistage sampling), the population variance (or variance com­
ponents in multistage sampling), and the precision requirements E and 'Y.

For the single-stage sampling applications of the techniques presented
in this section, required sample size formulas are derived from Equa­
tion 8.2. The derivations do not include cost considerations, and they
follow the same basic logic as the derivation of Equation 3.28 in Section
3.5.2. As mentioned in Section 8.0, however, the sampling techniques
presented in this section were developed under the assumption that the
true value of the variable or characteristic of interest can be measured or
otherwise determined without error for each sampled object. Because this
assumption may not be valid in most nuclear material management appli­
cations, the sample size formulas presented .in this section should be
applied with caution.

In fact, unless the variance components for subsampling, measurement,
analytical, and other errors are negligible compared to the variance in the
true values among the objects in the population, application of the sample
size formulas presented in this section could underestimate the required
sample size and lead to an inadequate sampling plan. When the variance
components for these sources of error are not negligible, a multistage sam­
pling plan may be appropriate. In such cases, sample size requirements for
the various stages of sampling can be derived from Equation 8.2; the
methods involved are trial-and-error and/or iterative in nature, and they
are not presented in this chapter.

To present some of the basic finite population sampling techniques and
illustrate their implementation, each technique (except two-stage cluster
sampling) is presented as a single-stage sampling technique, where it is
assumed that subsampling, measurement, analytical, and other errors are

. negligible. If this assumption is not valid, the formulas for estimating a
population mean or total can still be used, but the formulas for the stan­
dard error estimates will tend to underestimate the true standard error of
the estimator of a mean or total.

It is very difficult to fmd realistic nuclear material management exam­
ples where this assumption is strictly valid for single-stage sampling of a
fmite population. Thus, rather than presenting contrived examples that sat­
isfy this assumption, some realistic examples are presented that probably
do not satisfy the assumption. However, with this caveat in mind, the
examples serve to illustrate implementation of the techniques.
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8.3.1 Simple Random Sampling Plans

Simple random sampling is usually easy to perform and yields simple
formulas for the estimator of a population mean or total, its standard
error, and the sample size required to meet specified precision require­
ments. To select a simple random sample without replacement, assign each
element in the population a number from I to N, where N is the number
of elements in the population. Next, select n of these numbers by some
random process such as a table of random numbers, or a calculator or
computer with a random-number generator (see Sections 2.5.1 and 11.3.1).
Sampling without replacement means that each element identification
number chosen to be in the sample can appear in the sample only once.
Once the n distinct numbers are chosen, the population elements
corresponding to these numbers are taken from the population as the
sample.

The estimators for a population mean and total and their estimated
standard errors under simple random sampling (without replacement) are
as follows:

Population Mean, X
D

~ Xi
_ i-I
x=-­

n

SE(x) = IN - nlY, a-
nN x

Population Total, X'

x/=Nx

where

n = number of elements in the sample
N = number of elements in the population
x = estimator for the population mean
x' = estimator for the population total
..Xi = value of the variable of interest for the ith sample element

SE = estimated standard error

(8.3)

(8.4)

(8.5)

(8.6)

u =x

D

~ (Xi - i)2
i-I
.----- = sample standard deviation

n-I
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Approximate two-sided 100(1 - a)% confidence intervals for the pop­
ulation mean and total are given, respectively, by

Population Mean, X

Population Total, X,

x' ± ZI-a/2 SE(x')

(8.7)

(8.8)

where zl-a/2 is obtained from Table A3. Additional comments concerning
these confidence intervals and the validity of the approximation are given
in Section 8.3.5.

The sample size necessary to achieve prespecified precision require­
ments ")' and E for both mean and total estimators is given by

where

2 .. 2
(ZI-'Y/2) N(CV)

n = ----2--'-'--:..-2-----2
(ZI-'Y/2) (CV) + (N - l)E

(8.9)

cv=

E=

")'=

Uxx = an estimate of CV, the population coefficient of va~-

ation, from previous knowledge or the most recent
~ sample estimate

Ix'-X'Imaximum relative difference limit on· . or
~-XI ~

X
probability that the absolute relative difference between the
sample estimate and population value is greater than E

Equation 8.9 is from Levy and Lemeshow (1980), and the details of its
development can be found in the literature review by Piepel and Brouns
(1982). This formula provides a required sample size for simple random
sampling without replacement.

Equations 8.3 through 8.6 are based on simple random sampling with­
out replacement. In nuclear material accounting applications, there is gen­
erally no advantage to sampling with replacement when simple random
sampling is used. Thus, sampling with replacement is not discussed here.
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Example 8.1 A fuel fabrication facility has 1000 trays of high­
enriched (HEU) fuel pellets, with each tray containing between 1.4 and
1.6 kg of 235U in HEU. An estimate of the total 23SU content of the trays
of pellets is required, and it must be within 10 kg of the unknown true
population value with probability 0.95. In the last complete inventory, a
similar group of pellet trays had a mean 23SU content of 1.5 kg per tray
and a standard deviation of 0.058 kg.

In this problem, the population to be sampled is the 1000 trays of pel­
lets. Assume that the average amount of 23SU per tray is still approxi­
mately 1.5 kg, so that the total amount of 235U in the 1000 trays is
approximately 1500. For the estimate to be within 10 kg of the population
value, Equation 8.1 gives E e 10/1500 = 0.0067. For probability
0.95, "Y """ 0.05, and the quantity Z(1-'Y/2) = 1.0.975 = 1.96 is obtained
from Table A3. The coefficient of variation from the last complete inven­
tory is CV = (0.058)/(1.5) = 0.0387. By substituting these values of E,

"Y, and CV into Equation 8.9, the required sample size is

n= (1.96)2(1000)(0.0387)2 = 113.71 e114
(1.96)2(0.0387)2 + (999)(0.0067)2

A sample of 114 trays was selected by simple random sampling without
replacement and the 23SU content of each was measured, yielding

114
~ Xi = 170.56
i-I

and

Ux = 0.059

By substituting these values and those of Nand n into Equations 8.5,
8.6, and 8.8, an estimate of the population total and its estimated standard
error are computed as

and
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l
~

.. .. _ 1000-114
SE(x') = N SE(x) = 1000 (114)(1000) (0.059) = 5.20

An approximate 95% confidence interval for X', the total 235U content
of all trays of pellets in the population, is computed from Equation 8.8,
which gives

1496.14 ± (1.96)(5.20)

or

(1485.95,1506.33)

Thus, we are 95% confident that the total 235U content of this population
is between 1485.95 and 1506.33 kg. Note that the half-width of this confi­
dence interval is 1.96 (5.20) = 10.19 kg, which is in very close agree­
ment with the precision requirement of 10 kg.

Example 8.2 A batch of U02 powder is stored in 30 cans, and an
estimate of the mean uranium factor for the batch is needed. An estimate
within 1% of the true batch mean is required with probability 0.98. Past
information suggests that CV = 0.0195. How many cans should be
sampled?

Equation 8.9 provides the sample size necessary to meet the precision
requirements (-y = 0.02 and E = 0.01), and yields the value

n= (2.33)2(30)(0.0195)2 = 12.48
(2.33)2(0.0195)2 + (29)(0.01)2

Thus, 13 of the 30 cans must be selected by simple random sampling with­
out replacement in order to meet the specified precision requirements.

8.3.1.1 Limitations of Finite Population Sampling Methods

It was emphasized previously that the finite population sampling tech­
niques presented in this chapter were developed under the assumption that
the value of the variable or characteristic of interest can be determined
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without error for each sampled object. It was also emphasized that this
assumption is rarely, if ever, valid in nuclear material control applications.
Therefore, the techniques presented in this chapter are rarely applicable as
"stand-alone," single-stage sampling methods. Instead, they are applicable
as building block techniques in an overall multistage sampling and analysis
plan. At this point, it is instructive to discuss the implications of applying
one of these techniques, by itself, in the presence of subsampling, measure­
ment, and/or analytical errors.

Consider a situation like the one described in Example 8.2. Suppose
that n cans of U02 powder are selected by simple random sampling from
the N = 30 cans on inventory. If the true percent uranium could be
determined without error for each can in the sample, then the sample
mean i, computed from Equation 8.3, would have variance given by

~1
2N - n O'Cans

Vart(i) = N -n-

where O'&na is the variance of the true percent uranium values among the
N = 30 cans on inventory. Note that Vart(i) approaches zero as n
approaches N. That is, if all N true percent uranium values are in the
sample, then the sample mean is the population mean, and therefore has
zero variance. In other words, if n = N, the population mean would be
known without error.

In practice, however, the true percent uranium could not be determined
without error for each can in the sample. Suppose that a powder sample is
taken from each of the n cans in the sample and that an analysis is per­
formed on each powder sample. Then Xi is the observed percent uranium
value for the ith can. If i is computed from Equation 8.3, the variance of i
is given by

~I
2 2 2

Var (i) = N - n O'Cana + O'Samp + 0'Ana!
2 N n n n

where O'~p and O'lna! are the variance components for subsampling and
analysis. Because by definition variance components are non-negative,
Var2(i) is a larger quantity than Vart(i), where the subsampling and ana­
lytical errors were assumed not to exist. If n is set equal to N, note that
only the first term in Var2(i) is zeroed out, leaving a nonzero variance.
This conflicts with the theory of fmite population sampling.

For this example, the square of the true standard error of i, SE2(i), is
equal to Var2(i). However, if Equation 8.4 is applied to compute an
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estimate of SE(X), the square of this estimate actually estimates the
quantity

Thus, SE2(x) underestimates SE2(x) = Var2(x) because it incorrectly
underestimates, by a factor of (N - n)/N, the contribution of the vari­
ance components for subsampling and analysis (e.g., for N -= 30 and
n = 13, (N - n)/N = 17/30 = 0.567).

This exercise demonstrates that application of a fmite population sam­
pling method when the assumptions are not valid (i.e., ignoring the sub­
sampling and analytical error variances in this example) can lead to
underestimation of the standard error of the sample mean (or total). The
degree or extent of underestimation depends upon the true values of the
variance components that are inherently being assumed to be negligible. If
in fact they are very small, then the underestimation of the standard error
may be of little practical concern. However, this should be investigated
and demonstrated before it is assumed to be true.

8.3.2 Ouster Sampling Plans
Clusters of containers occur in nuclear material facilities due to physi­

cal storage methods (containers are often stored on shelves, racks, or other
devices which naturally group the containers into clusters). Records for
each container usually identify only the cluster (room, shelf, etc.) where it
is located and not the position of the container within the cluster. Thus,
treating clusters as the population elements to be selected according to a
sampling plan, and then sampling all containers from each sampled cluster
may provide savings in the time and cost required to locate individual con­
tainers. See Harkness (1977) for a detailed discussion of container location
effort.

There are many types of cluster sampling. The technique mentioned
above, where all containers in a selected cluster are sampled, is called
one-stage cluster sampling. With two-stage cluster sampling, only a portion
of the containers within each selected cluster are sampled. For both one­
and two-stage cluster sampling, any of the other sampling techniques can
be used to select the clusters or containers within clusters. For example,
simple random sampling or PPS sampling is often used to select clusters in
one-stage cluster sampling (or the fIrst stage of two-stage cluster sam­
pling). These same sampling techniques are also commonly used for select­
ing containers from clusters in the second stage of two-stage cluster sam­
pling. One- and two-stage cluster sampling plans based on simple random
sampling are discussed and variations of them are considered.
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8.3.2.1 Simple One-Stage Ouster Sampling

With simple one-stage cluster sampling, clusters are selected from the
population of clusters by simple random sampling. The estimators for a
population mean and total and their estimated standard errors are as
follows:

Population Mean, X

Population Total, X'

m
M ~xi

j-I
i=--­

mN

[ I[ I
~

.. _ M M-m ..
SE(x) = N.Jii1 M - 1 /Tclu

x'=Ni

SE(x') = N SE(x)

(8.10)

(8.11)

(8.12)

(8.13)

where

x= estimator for the population mean
x' = estimator for the population total
m = number of clusters in the sample
M = number of clusters in the population

N;

xi = ~ Xij = total value for the ith sample cluster
j-I

xij = value of the variable of interest for the jth container in the ith

cluster

N j = number of containers in cluster i
M

N = ~ N i = total number of containers in the population
j-I

I! (xi - Xelu)21~ I I~
.. i-I M - 1 h' ed d d
/Tclu = _ 1 M = t e esbmat stan ar

m deviation of the cluster totals

Xelu = ! xi'Jm = sample average of the cluster totals
i-I
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Simple one-stage cluster sampling does not require that the number of
containers within each cluster be the same. In fact, the total number of
containers sampled, given by

is a random variable and depends upon which clusters are chosen. This
scheme gives equal weight to each cluster, regardless of the number Ni of
containers within each cluster. Other schemes can be employed that choose
clusters with unequal weights; typically the weights are proportional to
some measure of size (such as the number of containers per cluster).
Probability proportional to size (PPS) sampling plans for containers or
clusters of containers are discussed in Section 8.3.3.

With simple one-stage cluster sampling, the number of clusters neces­
sary to achieve prespecified precision requirements "y and E for estimates of
the mean and total is given by

(8.14)

where m and Zz-a/2 are previously defined and where

CVc1u = ~Iu the population coefficient of variation among cluster
Xelu totals (CVclu is an estimate from previous knowledge

or a sample estimate)

M , - 2
~(Xi - Xelu)

2 i-I
O'c1u = ------ = population variance among all cluster totals

M

N.

x{ = ~ Xij = population total for the ith cluster
j-l

Xij = value of the variable of interest for the jth container in the ith

cluster

M
Xe.u = ~ xi1M = true mean of the cluster totals

i-I

E = maximum relative difference limit on lx' ~,X'I

"y = probability that the absolute relative difference between the
sample estimate and population value is greater than E.
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Example 8.3 A fuel fabrication facility inventory of low-enriched
uranium (LEU) is in 600 containers of U02 powder. The containers are
stored on 20 moveable racks that hold 30 containers each. Each container
holds 12 to 13 kg 235U. Summary information for a complete census of the
racks from the previous production run is given in Table 8.2.

TABLEU

Measured 235U Content of ZO Racks of
U02 Containers from a Previous Production Run

1
2
3
4
5
6
7
8
9

10

376.851
375.685
376.583
375.848
374.302
370.217
374.122
372.565
374.794
376.176

11
12
13
14
15
16
17
18
19
20

374.651
375.640
375.499
372.475
374.228
377.162
374.400
374.891
372.365
376.243

An estimate of the total amount of 23SU is required and must be within
0.5% of the unknown true value with probability 0.99. Determine the num­
ber of racks (clusters) that must be sampled using simple one-stage cluster
sampling to meet the precision requirements.

The number m of racks (clusters) to be sampled from the M = 20
must be determined for the precision requirements E = 0.005 (0.5%) and
"y = 0.01 (7.0.995 = 2.58). The required sample size is given by Equation
8.14, where an estimate of CYau is obtained from the information given in
Table 8.2; that is,

- 2 - 2
(CY )2 = 0/20)[(376.851 - Xetu) + + (376.243 - Xetu) ]

clu [0/20)(376.851 + + 376.243)]2

= 2.925 = 0.00002083
(374.735)2

Then the required number of racks to be sampled, calculated from
Equation 8.14, is

m= (2.58)2 (20) (0.00002083) = 4.52
(2.58)2 (0.00002083) + (19)(0.005)2
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Thus, 5 of the 20 racks should be chosen by simple random sampling with­
out replacement, and every container on each of the sampled racks must
be measured.

-Assume that the five racks selected have total (the sum of the mea­
sured values for all 30 containers on each rack) 23SU contents of 374.148,
376.492, 375.305, 373.198, and 374.315 kg. Then the desired estimate of
the population total is obtained by applying Equation 8.12, which gives

M ~ xiIj-I
x' = Nx= N'-~":"-'­mN

= 600 120 (374.148 + 375.492 + 375.305 + 373.198 + 374.315)]
5(600)

= 7489.832 kg

The standard error estimate is computed from Equation 8.13, which gives

An approximate loo(l - a)% confidence interval for X' could be com­
puted by substituting x' and SE(x') into Equation 8.44 (see Section 8.3.5).

8.3.2.2 Simple Two-Stage Ouster Sampling

Simple two-stage cluster sampling is used to select m clusters from the
population of M clusters by simple random sampling and then to select nj
of the Nj containers within each cluster also by simple random sampling.
This type of plan is not as economical as a simple one-stage cluster sam­
pling plan because time is required to locate specific containers within
each cluster. However, it does provide the flexibility of examining, at least
partially, more clusters when the total number of containers in the sample
is fixed. Also, when the containers within clusters are homogeneous, a
more precise estimate may be obtained (perhaps more economically) by
taking a sample of the containers within each of a larger number of clus-



SECTION 8.3 ESTIMATING MEANS AND TOTALS

ters than by measuring all containers within each of a smaller number of
clusters.

For simple. two-stage cluster sampling, the estimators for a population
total and mean and their estimated standard errors are as follows:

Population Total, X'

M I0, NiX;]
x'= - 2;--

m j-I nj

.. M(M - m) 1m
, - 2SE(x') = _ 2; (Xj - Xciv)

m(m 1) j-I

M m Nj(Nj - nj) ° I x;]21~+-2; 2; Xi'--
m j-I nj(nj - 1) j_1 ~ nj

Population Mean, X

_ ·X'
x=-

N

.. 1"
SE(x) = - SE(x')

N

where
_.

M = number of clusters in the population
m = number of clusters in the sample
N = number of containers in the population
Nj = number of containers in the ith cluster
nj = number of containers sampled from the ith cluster
n = total number of containers in the sample

(8.15)

(8.16)

(8.17)

(8.18)

0,

Xj' = 2; Xjj = total value of all the containers sampled from the ith

j-I sample cluster
Xjj = value of the variable of interest for the jth container in the

ith cluster
m

Xciv = 2; xj'/m = sample average of the cluster totals
j-I

Sample size formulas to achieve prespecified precision levels E and 'Y
with simple two-stage cluster sampling require choosing the number m of
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clusters to sample in the first stage and the number nj of containers to
sample (in the second stage) from the ith cluster chosen in the first stage.
The formulas require more detailed information than is presented in this
section, so they are not given here. Refer to Levy and Lemeshow (1980),
Cochran (1977), or Yamane (1967). Beetle (1978) provides additional
discussion of two-stage cluster sampling in nuclear material control
applications.

8.3.3 Probability Proportional to
Size (PPS) Sampling Plans

With probability proportional to size (PPS) sampling plans, the proba­
bility of selecting a particular container or cluster of containers for inclu­
sion in the sample is based on some measure of size. The "size" of a con­
tainer or cluster might be its SNM content or its strategic value. The
choice of how size is measured depends on the specific application.

The development of a sampling plan with PPS is as follows. The first
requirement is a listing of all containers or clusters in the population. In
addition to information concerning the identity and location of all con­
tainers or clusters, the listing should include the size and cumulative size
for each container or cluster in the population (see Example 8.4). The
sizes should be expressed in appropriate size measurement units so that the
size of each container or cluster is an integer. Denote the total number of
size units in the population by N*, an integer. Each container is associated
with one or more size units, and each size unit is given an identification
number between 1 and N*. That is, a container or cluster of size y is asso­
ciated with a particular set of y consecutive integers. Thus, each container
or cluster has an identification set of integers.

Sampling begins by randomly selecting a number between 1 and N*.
Then the containert whose identification set contains the chosen random
number is included in the sample. The same procedure used to select the
first container could be used over and over, with the possibility that one or
more containers might be chosen more than once. This is referred to as
sampling with replacement. Sampling without replacement does not allow
a container to be chosen more than once.

Sampling with replacement is easy to perform and provides a relatively
simple theoretical background for the development of the desired estimat­
ing formulas. Allowing a container to be sampled more than once* can
reduce the number of different containers in the sample. This is desirable
because sampling costs are reduced, but it is undesirable because for a

tTo simplify the discussion from this point on, the development will be presented for a
population of containers. The development holds equally well for a population of clusters.

*When a specific container is selected more than once, it is not necessary to remeasure it.
Its one measurement result is given increased influence in the fmal population estimate due to
its multiple selection.
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ftxed sample size the variance of the estimator of the population mean or
total is larger than the cOrresponding variance for sampling without
replacement.

8.3.3.1 PPS SampHng with Replacement

The estimators for a population total and mean and their estimated
standard errors under PPS sampling with replacement are as follows:

Population Total, X,

(8.19)

I I 1
21~.. 1 D x·

SE(x' ) = ~ .2. - x'
n(n - I) j-I 8j

(8.20)

Population Mean, X
_ X'
x=-

N
(8.2I)

.. 1"
SE(x) = - SE(x')N

(8.22)

where

Xj = value of the variable of interest for the ith sample container
N = number of containers in the population
n = number of containers in the sample

8j = ~~ = probability of selecting the ith container to be in the sample

Yj = "size" of the ith container (in size measurement units)

N
N* = ~ Yj = total size of the population (in size measurement units)

j-I

(8.23)n=

An approximate required sample size (for estimating a population
mean or total) to achieve precision requirements E and "y for PPS sampling
with replacement is given by

N [X' .1
2

(ZI-'Y/2)2.~ 8j ~ - X,
I_I 81
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where

E = maximum relative difference limit on lx' ~,X'I or Ii ;~'I
"y = probability that the absolute relative difference between the sample

estimate and population value is greater than E

In applications of Equation 8.23, the user is cautioned that the
required sample size n can be driven to infmity by allowing E to approach
zero. Thus, it is possible for Equation 8.23 to yield a required sample size
n that exceeds the population size N. This demonstrates an undesirable
property of sampling with replacement; that is, in order to meet specified
precision requirements, a sample size much larger than the population size
may be required to ensure that adequate information from the population
is included in the sample.

In nuclear material management applications, it would be ludicrous
to take a sample that is larger than the population size N, especially when
there is no guarantee that all N containers would be included in the sam­
ple. Thus, if Equation 8.23 yields a value of n ~ N (or even if n < N,
but n is moderately large relative to N), it is an indication that sampling
without replacement would be a better strategy. In such cases, the sam­
pling technique described in Section 8.3.3.2 should be considered.

Equation 8.23 is not immediately useful because it involves X' and Xi

for i = I, 2, ... , N, that is, the unknown population total and its com­
ponents. However, reasonable estimates from prior knowledge (such as
from a recent census) may be substituted into Equation 8.23 to get an
estimate of n. Also, it can be shown that the true population standard
error of the estimator x' is given by

so that Equation 8.23 can be written in the form

Therefore, all that is needed to apply Equation 8.23 is an estimate of
X', say x", and an estimate of SE(x"), say SE(x"), obtained from a previ­
ous sampling of the population where the sample size was n'. Then by sub­
stituting x", SE(x"), and n' into the right hand side of Equation 8.23, the
approximate required sample size is given by
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With an appropriate change of notation, Equations 8.19 through 8.23
are applicable to single-stage PPS cluster sampling with replacement. The
subscript i refers to the ith cluster, while nand N are replaced with m and
M. The estimators for a population total and mean and their estimated
standard errors are as follows:

Population Total, X'

m X..
x'= 2;_1-

j-I mOj

.. 1 1m Ixi' 121~SE(x') = 2; - - x'
m(m - 1) j-I OJ

Population Mean, X
_ x'
x=-

M

.. 1 ..
SE(x) = - SE(x')

M

where

(8.24)

(8.25)

(8.26)

(8.27)

M = number of clusters in the population
m = number of clusters in the sample

N;

xi = 2; Xij = total value of all containers in the ith cluster
j-I

N i = number of containers in cluster i
Xij = value of the variable of interest for the jth container in the ith

cluster
OJ = YdM* = probability of selecting the ith cluster to be in the sample
Yi = "size" of the ith cluster (in size measurement units)

M
M* = 2; Yj = total size of the population of clusters (in size measure­

ment units)
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An approximate required sample size analogous to Equation 8.23 is given
by

(8.28)

Equation 8.28 gives the number of clusters that must be sampled to meet
the specified precision requirements. The caution and the discussion fol­
lowing Equation 8.23 are pertinent to applications of Equation 8.28.

Example 8.4 Cobb, Sapir, and Kern (1978) present a reference inven­
tory for a large plutonium critical facility, where fuel plates are stored in
one- or two-row drawers in the reactor cell, or in canisters in a vault. A
summary of this inventory is displayed in Table 8.3. In this example, the
drawers and canisters are considered as clusters of fuel plates.

TABLE 8.3

Reference Facility Inventory

Drawen Pa,q Plates

Reactor: 1008 (I-row) 569 3024
576 (2-row) 651 3456

1584 1220 6480

Caaisten Pa,q Plates

Vault: 636 (full) 1772 8684
5 (partial) 8 45

641 1780 9729

Totals: M - 2225 X' - 3000 N - M* - 16,209

By sampling clusters of fuel plates with a PPS cluster sampling plan,
estimate the total Pu content of the inventory to within I% with probabil­
ity 0.95. Use the number of fuel plates N j in each cluster as the measure
of cluster size. Note that 8j, the probability of selecting the ith cluster, is
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given by 6i = NdN (because Yi = Ni and M* = N, where Ni is the
number of fuel plates in the ith cluster and N is the total number of fuel
plates in the inventory). Substituting NdN for 6i results in the following
formulas for this PPS single-stage cluster sampling problem:

N m X-'
x/=-1; _1

m i-I Ni

[
2

[ I 121~AN m x· X'
SE(x/) = 1; _1 --

m(m-1) i-I N i N

m

where

N,

xi = 1; Xij = total measured amount of Pu in the ith cluster
j-I

Xij = the measured amount of Pu in the jth container from the ith cluster

Because the individual cluster parameters xi' and Ni are not given by
Cobb, Sapir, and Kern (1978), average values computed from the sum­
mary information in Table 8.3 must be used. These are summarized
"below.

Number or Average Average
clusters xI' N1

1008 569 = 0.5645 3024 = 3
1008 1008

576 651 = 1 1302 3456 = 6
576 . 576

636 1772 = 2.786 8684 = 13.654
636 636

5
8 ~=9- = 16005 . 5
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The expression

from the required sample size formula is then evaluated by substituting X',
N, and the average values of xi' and Nj, which gives

16,209 [(1008)(3)I0.5645 - 3000]2
(3000)2 3 16,209

+ (576)(6)11.1302 - 3000]2
6 16,209

[ 1
2

2.786 3000
+ (636)(13.654) 13.654 - 16,209

+ (5)(9)[ 1.600 - 3000 11
9 16,209

= 16,209 (3.1903) = 0.00575
(3000)2

By substituting this value together with 'Y = 0.05 and E = 0.01 into the
sample size formula, the approximate required sample size (number of
clusters) is

m = (zl-'Y/2)2(O.00575) = (1.96)2 (0.00575) = 220.9 a: 221
~ (QOlf

The selection of the 221 clusters (drawers or canisters) to be sampled
proceeds as follows: 221 random integers between 1 and M* = 16,209
are to be randomly selected with replacement. Using a cumulative size
listing (number of fuel plates) such as that displayed in Table 8.4, the
clusters associated with the 221 random numbers can be determined. For
example, if 11 is one of the 221 random numbers chosen, cluster num­
ber 4 is in the sample because it contains the eleventh fuel plate. There
may be fewer than 221 clusters in the final sample due to the possibility of
some clusters being selected more than once. The clusters in the sample
would then be measured and the results used to compute the estimate of
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Example Cumulative Listing

487

QlISter
Dumber

I
2
3
4

2,225

Cumuladn Dumber
or plates

3
6
9

12

16,209

the total Pu content for the facility and its estimated standard error. A
confidence interval for the facility Pu content could be calculated by using
the formulas presented in Section 8.3.5.

8.3.3.2 PPS Sampllng Without Replacement

The formulas for PPS sampling without replacement are somewhat
more complicated than those for sampling with replacement, because each
time a container is chosen to be in the sample, the probability of selecting
each remaining container changes. Several simplified methods have been
proposed by Cochran (1977). The Rao, Hartley, Cochran (RHC) method
has several favorable features and is presented here.

The RHC method is carried out in two steps:
1. Split the population at random into n groups, of sizes Nit N2, ... ,

No, where
o
~Ng=N,-I

Values of the Ng are chosen to minimize the standard error of the
estimator of the population total or mean (this is discussed further below).

2. Draw one container from each group with probability proportional
to size sampling (within the group). The selection of a container within
each group is performed independently of the other groups.

These two steps lead to a simple computational procedure for the esti­
mates, because the probability of selecting any container remains fixed
throughout the sample selection. Other sampling methods that skip Step 1
may be easier to carry out, but they lead to more complicated estimation
formulas.
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For the RHC method, the estimators for a population total and mean
and their estimated standard errors are as follows:

Population Total, X'

SE(x') =

Population Mean, X

where

D X P
x'= ~ _I""_g

g_1 6g

D

~ Ni- N 12D X
g-I ~ P -!. - x'
N' - ~ Ni .-1 .[ i.

g-I

_ x'
x=-

N

A I A

SE(K") = - SE(x')
N

(8.29)

(8.30)

(8.31)

(8.32)

6 =g

p =g

Xg = value of the variable of interest for the container sampled from the
gth group

n = number of containers in the sample
N = number of containers in the population
Ng = number of containers in the gth group

6gj = :;; = probability of selection (over the population) of the jth con­
tainer from the gth group

Ygj = size of the jth container in the gth group

D Ng

N* = ~ ~ Ygj = total size of the population
g-I j-I

N.
~ 6gj = the sum of the probabilities of selection for all containers
j-I in the gth group
the 6gj value for the container selected from the gth group



SECTION 8.3 ESTIMATING MEANS AND TOTALS 469

The standard errors given by Equations 8.30 and 8.32 are minimized
by choosing the Ng such that

N
N1 = ... = No = - = R if R is an integer

n

N.1 = _... = Nk = [R] + 1 }
and

NH1 = ... = No = [R]

if R is not an integer, where
N = n[R] + k, 0 < k < n, and
[R] is the greatest integer in R

(8.33)

By implementing the RHC method, the sample is not selected with
PPS over the whole population directly, but within the randomly formed
groups. The method always provides an estimator for the population total
or mean with smaller standard error than the estimators that result from
sampling with replacement. Also, the standard error of the estimator
decreases as the correlation between the measure of size ygj and the true
value of Xgj for a given container increases; in fact, the standard error is
zero if the true value of Xgj and the measure of size Ygj are perfectly corre­
lated. This is helpful because the previous recorded values of containers
are often used as measures of size, so the measure of size and the current
value are often approximately equal or at least highly correlated.

An approximate sample size required to achieve prespecified precision
requirements E and 'Y for the RHC method is given by

n= (8.34)

where

i = 1, 2, ... , N is the index of the ith container in the population with­
out regard to groupings

Xi = value of the variable of interest for the ith container in the
population

c5j = the c5gi value, defined above, for the ith container in the population

and other quantities are as previously defined. This formula is based on
the optimal choice of the N j as presented in Equation 8.33. This formula
cannot be ~sed unless X' and the quantity
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(8.35)

are known or can be estimated. In practice, X, and J can often be replaced
by reasonable estimates to provide an approximate required sample size.

It is interesting to compare Equation 8.34 with Equation 8.23. Note
that if E is set equal to zero, Equation 8.34 reduces to n -= N, but Equa­
tion 8.23 yields n = 00. This is because sampling without replacement
guarantees that a sample of size n = N will include the entire population;
whereas sampling with replacement requires an infmite sample size to
guarantee that the sample includes the entire population. In general, sam­
pling without replacement requires a smaller sample size than sampling
with replacement to achieve the same precision.

For cluster sampling, a slight modification of the notation is necessary.
The estimator for the population total and its estimated standard error,
given by Equations 8.29 and 8.30, are modified to

and

where

~' = the total for the cluster sampled from the gth group
m = number of clusters in the sample
M = number of clusters in the population

Mg = number of clusters in the gth group

0li = ~ = probability of selection (over the population) of the jth
cluster from the gth group

Yli = "size" of jth cluster in the gth group

m Mg
M* = ~ ~ Yli = total size of the population

g-lj-l
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P =g

a =g

Mg
~ agj = the sum of the probabilities of selection for all clusters in
j-I the gth group

the agj value for the cluster selected from the gth group

The approximate required sample size formula, given by Equation 8.34, is
modified to the form

m=

where

m = approximate number of clusters that must be in the sample to meet
the precision requirements E and "y

i = 1, 2, ... , M is the index of the ith cluster in the population without
regard to groupings ','

xi = total for the ith cluster in the population
aj = the probability of selection of the ith cluster from the population

(see definition of agj above)

The quantity J, given by Equation 8.35, is modified to

[ 1
2M x,1

J = .~ aj _I. - X'
I-I 151

Example 8.5 Consider the large plutonium critical facility described
in Example 8.4. Develop a PPS single-stage cluster sampling plan without
replacement (using the RHC method) for estimating the total Pu content
of the inventory. The precision requirements are "y = 0.05 and E = 0.01
as in Example 8.4.

The required sample size is calculated from Equation 8.34 with the
appropriate cluster notation substituted. When the cluster notation is sub­
stituted, the quantity J (given by Equation 8.35) is equal to the summa­
tion in Equation 8.28. Thus, from Example 8.4, J is approximated by



472 CHAPTER 8 STATISTICAl SAMPlING

51,711.6, and the total number of clusters is M = 2225. Then for
l' = 0.05, Zo.97S = 1.96, and the approximate required number of
clusters is

m = (1.96)2 (2225)(51,711.6) = 200.9
(2224)(3000)2(0.01)2 + (1.96)2 (51,711.6)

Thus, 201 clusters are to be sampled. Note that this required sample size
for PPS sampling without replacement is less than that required for sam­
pling with replacement in Example 8.4, where m = 221. This is
~xpected, because more clusters are necessary to meet the precision
requirements when sampling with replacement to compensate for the
potential loss of information due to clusters that may be sampled more
than once.

The next step in the RHC procedure is to randomly split the popula­
tion of M = 2225 clusters into m = 201 groups by implementing the
procedure described in connection with Equation 8.33 as follows. First,
note that

R = M = 2225 = 11.1
m 201

[R] = 11

m[R] = 201(11) = 2211

k = M -m[R] = 2225 - 2211 = 14

Then the population of 2225 clusters will be randomly split into 201
groups with the following sizes:

M I = ... = M I4 = 12

and

MIS = ... = M201 = II

This can be accomplished by randomizing the order of the integers from I
to 2225 and letting the first 12 be Group I, the second 12 be Group 2,
and so on. Assume that this has been done and that Group 1 consists of
the 12 clusters identified in Table 8.5.

One cluster is selected from this group by randomly choosing a number
.between 1 and 92. Then by using the cumulative size and cluster listing in
Table 8.5, the cluster associated with the number chosen is included in the
sample. For example, if the random number is 30, then cluster 1463 is
included in the sample. This procedure is repeated for each of the 201
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TABLES.S

The First Group of Ousters for the RHe Method
of PPS SampUng Without Replacement

Camalatbe
Ouster Size I1ze

ideatificatioa (No. plates) (No. plates) (&.)

1 15 3 3 3/16,209
2 173 3 6 3/16,209
3 462 3 9 3/16,209
4 628 3 12 3/16,209
5 937 3 15 3/16,209
6 1150 6 21 6/16,209
7 1280 6 27 6/16,209
8 1463 6 33 6/16,209
9 1754 15 48 15/16,209

10 1864 14 62 14/16,209
11 2148 14 76 14/16,209
12 2157 16 92 16/16,209

p. - 92/16,209

groups. An estimate of the population total and its estimated standard
error can then be calculated by using Equations 8.29 and 8.30, with the
modifications for cluster sampling.

8.3.4 Stratified Sampling Plans

It is often possible to stratify (partition into groups or classes) a popu­
lation of containers on the basis of some characteristic, such as the type or
amount of SNM in a container, or by measurement method (or variabil­
ity). If a heterogeneous population can be divided into several subpopula­
tions (strata) that are internally homogeneous with respect to the variable
of interest, the precision of the estimate of a population mean or total will
be improved compared to simple random sampling. However, the actual
improvement in precision depends upon whether the variable of interest is
correlated with the characteristic(s) used to stratify the population. If the
correlation is high, then stratification can successfully improve the preci­
sion (reduce the standard error) of the estimate of the population mean or
total. If the degree of homogeneity within each stratum is high, a precise
estimate of the stratum mean or total can be obtained from a small sample
within the stratum. Other properties of stratified sampling are listed in
Table 8.1.
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It may not always be possible to stratify a population of containers
according to type or amount of SNM. If, for example, types of SNM and
amounts in containers in a population vary widely, then the variance of a
population mean or total estimate based on nonhomogeneous strata could
be quite large, in fact, larger than the variance of estimates based on other
sampling techniques. In such a situation, some of the previously discussed
sampling techniques should be considered rather than the stratified sam­
pling techniques discussed below.

8.3.4.1 How to Stratify a Population

A goal of stratification is to define strata that are internally homogene­
ous with respect to the variable of interest. This is accomplished by identi­
fying one or more characteristics that are highly correlated with the varia­
ble of interest, and then using these characteristics as criteria for defining
the strata. In nuclear material accounting applications, characteristics such
as the type, amount, or measurement variability of SNM in a container
might be used in defining strata. Often, measurement variability is highly
correlated with the physical location of the container. This is because con­
tainers in the same location are usually measured by the same methods.
Gains in precision of estimates resulting from stratification will be largest
when the strata are considerably different from each other with respect to
the variable of interest. Also, the number of strata should be kept small
relative to the population size, because the total sample size required to
meet precision goals will increase as the number of strata increases.t The
task of stratifying a population depends on the characteristics of the popu­
lation; a general procedure is outlined in Table 8.6.

The determination of group and subgroup boundaries in the procedure
outlined in Table 8.6 has not been extensively discussed in the statistical
and nuclear material safeguards literature. If only one stratification varia­
ble, such as the "size" of a container, is to be considered, Cochran (1977)
suggests derming group boundaries by first generating a frequency distri­
bution* of the population values of the size variable, and then calculating
the square root of the frequency (Jf) and the cumulative Jffor each class
interval. Group boundaries are then selected so that they yield equal inter­
vals on the cumulative .Jf scale. For the case where two stratification vari­
ables are considered, such as size and type of SNM in a container, a simi­
lar procedure based on .Jf for each stratification variable is presented by
Thomsen (1977).

tThis criterion is presented from the practical standpoint that the costs of stratifying and
analyzing the resulting sample data increase as the number of strata increase. Cochran
(1977) and Hansen, Hurwitz, and Madow (1953) show that increasing the number of strata
can decrease the standard error of the estimator, but that often a point of diminishing returns
is reached very early (i.e., with a small number of strata), especially when cost is a major
consideration.

*See Chapters I and 2.
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TABLE 8.6

Procedure for Stratification of a Population of SNM Containers
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1. Obtain a complete list of all containers in the population. For each container, the list
should include:

a. the type of SNM contained

b. the approximate amount (isotope or element) of SNM

c. the enrichment of the SNM

d. location information

e. expected measurement error and whether it varies on an absolute or relative
basis.

2. Group the containers by some measure of ·size.· Size might be an approximate is0­
tope amount, element amount, or enrichment value for the container. This step is
facilitated by forming a histogram for the size variable and then choosing lJ'Oup
boundaries so that relatively homogeneous groups are obtained.

3. H there are different types of SNM (such as UF6 cylinders, U02 pellets, U02
powder, etc.) in the population, divide the groups generated in Step 2 into subgroups
by material type. If all containers in the population hold the same type of SNM, the
subgroups at this step are just the groups generated in Step 2.

4. If there are significant differences among measurement error variances for containers
within any Step 3 subgroup, subdivide that subgroup into smaller groups that are
homogeneous with respect to measurement error variance. This step can sometimes
alternately be performed by subdividing subgroups according to location, because
containers stored in the same location are often measured by the same instrument,
thus yielding the same measurement error variance for all containers at that location.

S. Following Step 4, the population has been stratified.t The characteristics or dermition
of each stratum should be recorded for future use.

tNote that Steps 2, 3, and 4 can be permuted. For example, one might prefer to stratify
rust by SNM type and measurement variability (Steps 3 and 4) and then stratify by size
(Step 2) last.

Another method of stratifying populations using one or more stratifica­
tion variables is to use cluster analysis, a statistical technique which forms
groups of homogeneous items (see Hartigan, 1975). Green, Frank, and
Robinson (1967), Golder and Yeomans (1973), and Jarque (1981) discuss
cluster analysis for stratification in specific problems.

Little appears in the literature about the effects of stratification when
it is based on two or more stratification variables. Thomsen (1977) sur­
mises from his work that

When one chooses to construct many strata, the gain from using two stratifying vari­
ables instead of one seems to be nontrivial when the correlations between the study
variable and each of the stratifying variables are of some size, and the correlation
between the two stratifying variables is small. Under the same conditions the results
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indicate that for a given number of strata, it is more efficient to use two stratifying
variables and make a few strata along each variable, as compared with using only the
best stratifying variable and make optimal stratification along this variable.

If the Table 8.6 procedure is considered in light of the above com­
ments, the three stratification variables-size, type, and measurement
variance-satisfy some of the conditions, but not others. In most nuclear
material control applications, the size variable is highly correlated with the
variable of interest (SNM content), and hence contributes to successful
stratification. While the type of SNM and the measurement variance may
not contribute as much as the size, they can aid in structuring the problem
to meet the assumptions required for specific techniques.

Given that the population is stratified, stratified sampling plans for
estimating a population mean or total are discussed below.

8.3.4.2 Stratified Random Sampling

Stratified random sampling is merely simple random sampling within
each stratum of the population. The estimators for a population mean and
total and their estimated standard errors are as follows:

Population Mean, X

"_ [L [NiI2[Si2j~i- nill~SE(x)= 2; - -
i-I N nj N j

Population Total, X'

x'=Nx

S"E(x') = N SE(x)

where

(8.36)

(8.37)

(8.38)

(8.39)

Xij = value of the variable of interest for the jth container in the ith

stratum
L = number of strata
N = number of containers in the population
Ni = number of containers in the ith stratum
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nj= number of containers sampled from the ith stratum
D,

~ (Xjj - Xj)2
2 j-I

Sj = ....::----- = sample variance of sampled containers within the
nj - 1 ith stratum

1 Dj

ii = - ~ Xjj = sample mean for the ith stratum
nj j_1

The sample size required to achieve prespecified ''Y and E for stratified
random sampling can be approximated by considering the equation

where

L (f.2(N· - n·)2 ,2_ 2 2 1 1 1

E (X) - (ZI-'Y/2) .~ Nj .(N. - 1)
I-I n1 1

(8.40)

E=

'Y=

(f~ =
1

, 1 ' d'ft' 1" lx' - X'I Ix- XImaXimum re atlve I Jerence Imlt on X' or X

probaLility that the absolute relative difference between the sample
estimate and population value is greater than E

N,

~(xij - Xj )2

j-I = population variance within stratum i
N j

Equation 8.40 is not immediately useful for two reasons, First, X, (the
population total) and (fl (the population variance within the ith stratum)
are unknown, Second, the total sample size n = 1:nj cannot be deter­
mined explicitly, Further, there are many possible sets of nj that satisfy
Equation 8.40, and anyone of the nonunique sets of nj might be
"better" than the others. In general, the best set depends upon the criterion
chosen to make the decision, One criterion is to allocate n among the
strata to minimize the population variance of the estimates x' or x, The
allocation of the n elements among the L strata is given by

where

Nj(fj
nj=n L

~ Nj(fj
j-I

(8.4l)
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(8.42)

To use Equations 8.41 and 8.42, the population parameters X' and O'i must
be replaced with reasonable estimates.

Equations 8.41 and 8.42 do not account for the cost of sampling and
measuring a container within a stratum. Cochran (1977) gives a cost func­
tion and related formulas that can be applied to determine a sample size
and optimum allocation among the strata to either minimize the variance
subject to a fIxed budget or minimize costs subject to sPecifIed precision
requirements.

Example 8.6 Suppose that the large plutonium critical facility in
Example 8.4, is considered to be a stratified population of containers as
follows:t

Number or
Stratum containers, N. Po, kg

I-Row reactor drawers 1008 569
2-Row reactor drawers 576 651
Full-vault canisters 636 1772
Partial-vault canisters 5 8

Total 2225 3000

Develop a stratified random sampling plan for estimating the population
total Pu, with precision requirements 'Y = 0.05 and E = 0.01.

The total sample size and its allocation among strata are calculated
from Equations 8.42 and 8.41. Assume that reasonable estimates for O'it

i = I, 2, 3, 4, in kg Pu are available from past data and are displayed
in Table 8.7. Then the required total sample size n over all strata is
computed from Equation 8.42, where

tIn this example the drawers and canisters are not considered to be clusters u in
Examples 8.4 and 8.5.
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±NlO'j El!5 (1008)2(0.047) + (576)2(0.104)

j-I N j - I 1007 575

+ (636)2(0.215) + (5)2(0.352) = 246 59
635 4 .

L
~ NjO'j El!5IOO8(0.047) + 576(0.104) + 636(0.215)
j-I

+ 5(0.352) = 245.78

±NrO'r El!5(1008)2(0.047)2 + (576)2(0.104)2

i-I N j - 1 1007 575

+ (6.36)2(0.215)2 + (5)2(0.352)2 = 38 69
635 4 .

This gives

n = (1.96)2(246.59)(245.78) = 222.03 El!5222
(0.01)2(3000)2 + (1.96)2(38.69)

TABLE 8.7

Estimates of 0'1 from Past Data

1 0.047
2 0.104
3 0.215
4 0.352

479

This total sample size of 222 containers (drawers or canisters) is allocated
to the strata by applying Equation 8.41 as follows:

= 222[ 1008(0.047)I= 42.8 El!543
nl 245.78

=222[ 576(0.104) 1= 54.1 El!5 54
n2 245.78
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= 222[ 636(0.215)] = 1235 == 124
n3 245.78 .

= 222[ 5(0.352)I= 1 6 == 2
14 245.78 .

Note that because of rounding in computing the nj, the total sample size is
223 rather than 222. A sample of size nj is to be taken from within the ith

stratum by simple random sampling. Following selection and measurement
of the samples, Equations 8.38 and 8.39 can be applied to compute an esti­
mate of the population total and its estimated standard error.

8.3.4.3 Other Stratified Sampling Plans

After a population has been stratified, there is no restriction on the
type of sampling techniques that can be used to obtain a sample from
within each stratum. However, for a particular application, sampling tech­
niques should be chosen that are best suited to the problem at hand.
Examples of a few stratified sampling plans that may be suited to nuclear
material control problems are as follows:

1. Probability proportional to size (PPS) sampling of containers within
strata.

2. Single-stage cluster sampling within strata, with clusters chosen by
either simple random sampling or by PPS sampling.

3. Two-stage cluster sampling within strata with the first-stage cluster
sampled as in (2) and the second-stage samples of containers from within
clusters chosen either by simple random sampling or by PPS sampling.

Many other sampling plans may also be suitable. In fact, it is not neces­
sary to use the same sampling technique within all strata. For example, in
a particular application, simple random sampling might be most appropri­
ate for some strata, but PPS cluster sampling might be most appropriate
for other strata.

The main difficulty with using a technique other than simple random
sampling within all strata, or with mixing sampling techniques across
strata, is that formulas are not always readily available for computing esti­
mates of means, totals, and standard errors. Approximation of the sample
size(s) needed to meet specified precision requirements may also be diffi­
cult. However, these difficulties should not preclude use of this approach.
Familiarity with the basic sampling techniques is sufficient to formulate a
sampling plan tailored to a specific application. A statistician who special­
izes in sampling theory can then derive the necessary formulas.
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8.3.5 Confidence Intervals for Population
Means and Totals

481

Approximate two-sided 100(1 - a)% confidence intervals for the pop­
ulation mean (X) and total (X') for each of the sampling plans in Sections
8.3.1 through 8.3.4 are given by:

and

where

x=
x' =

SE(x) =
SE(x') =

X± Zl-a/2 SE(x)

x' ± Zl-a/2 SE(x')

sample estimate of the population mean
sample estimate of the population total
estimated standard error of x
estimated standard error of x'

(8.43)

(8.44)

and where Zl-a/2 is obtained from Table A3. The confidence intervals
given by Equations 8.43 and 8.44 are approximate because the value
ZI-a/2 is obtained from the standard normal distribution and not from the
actual distribution of x' or x. Because x' and xare computed by summing
over observed values of a random variable, the normal distribution approx­
imates the actual distributions of x' and x, and the accuracy of the approx­
imation improves as the sample size increases. For more detail, see the dis­
cussion of the Central Limit Theorem in Section 2.5.2.1.
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CHAPTER 9

Nonparametric Methods
9.0 INTRODUcnON

This chapter presents nonparametric statistical methods that are coun­
terparts to some of the parametric methods presented in the previous
chapters, such as t-tests, analysis of variance, and correlation. The basic
distinction is that parametric procedures require specific assumptions
about the probability distributions from which empirical observations arise;
the most common distributional assumption is that the observations are
from a normal distribution. Nonparametric methods require less restrictive
distributional assumptions. When specific parametric assumptions are true,
however, this relaxation of assumptions usually results in less powerful
hypothesis tests than would result if the appropriate parametric methods
were used. But when the parametric assumptions are not true, the
parametric methods can yield misleading results, while the nonparametric
methods can provide valid results. Another advantage of nonparametric
methods is that the practitioner can determine the exact probabilities of
the Type I and Type II errors for most nonparametric hypothesis testing
methods. For many specific types of problems, Conover (1980) provides
in-depth comparisons of alternative nonparametric methods with each
other and with their parametric counterparts.

Nonparametric techniques are useful in situations where the probabil­
ity distribution from which the observations were taken is either unknown
or is known not to be normal. While many parametric techniques are
fairly robust (not sensitive to incorrect assumptions), some are not. Thus,
in some situations, nonparametric statistical methods are preferred. Even
so, because of a general limited awareness, nonparametric methods are not
used as extensively as they could be in nuclear material accOunting (and
many other) applications.

Most of the methods presented in this chapter are based on replacing
observations by their ranks or by zero-one (yes-no or plus-minus) values.
The procedures based on ranks or zero-one data are more robust than their
parametric counterparts because interval or ratio data are transformed to
ordinalt data; thus, outlying observations are not given undue weight.

tSee Section 1.1 for a discussion of nominal, ordinal, interval, and ratio measurement
scale data.
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When interval or ratio data are transformed to ordinal data, however,
some information is sacrificed; this is why nonparametric hypothesis test­
ing methods are generally less powerful than their parametric counterparts
when. the parametric assumptions are valid.

The above discussion introduces nonparametric statistical methods as
alternates to the parametric methods when distributional assumptions are
not satisfied. This characterization is certainly appropriate for problems
where the underlying probability distribution is some continuous distribu­
tion other than the normal distribution. For other situations, however, even
the assumption of a continuous distribution may not be appropriate. As
discussed in Section 1.1, data may be measured on a nominal or ordinal
scale, as opposed to an interval or ratio scale. In some cases the
parametric methods may not be applicable and nonparametric methods
(such as those presented in this chapter) provide the only valid approach
to making inferences from the data.

The reader is cautioned that nonparametric methods are not completely
free of distributional assumptions. Most nonparametric procedures require
that measured values be independent and/or identically distributed. In
many safeguards applications, such as those involving inventory differences
or measurements with particular types of multiplicative error structures,
these assumptions are frequently inappropriate. As with parametric
methods, the assumptions underlying nonparametric methods should be
carefully checked before they are applied.

Sections 9.1 through 9.4 present nonparametric techniques for testing
hypotheses about locationt and/or dispersion (variance) of one or more
populations, where the samples from the populations can be either related
or independent. These techniques are the nonparametric analogs of the
hypothesis testing and analysis of variance methods presented in Chapters
4 and 5. Section 9.5 discusses nonparametric correlation techniques. Sec­
tion 9.6 covers methods for testing distributional assumptions, such as the
assumption of normality.

9.1 SINGLE SAMPLE OR MATCHED PAIRS
A test for randomness of observations in a single sample is introduced

in this section. Methods are also presented for testing hypotheses about
location using data from a single sample or using matched pairs.

9.1.1 A Test of Randomness: The Runs Test
Most parametric and nonparametric techniques are based on the

assumption of random samples. Inferences about populations are based on

tIn this chapter, the term "location" generally refers to a measure of central tendency,
such as the mean or median. Although this term is adopted from the "location parameter"
terminology of probability distributions, not all location parameters are related to the concept
of central tendency.
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samples collected from the population; if the samples are not randomly
selected from the populations under study, erroneous and misleading con­
clusions could be reached. Because the assumption of a random sample is
an important one, it should be checked in most applications. The runs test
is a procedure that can be used to check this assumption.

Consider a series of observations recorded in the order they were
observed. Replace each observation by a "+" if it is greater than the
sample median (Section 1.2.3) and by a "-" if it is less than or equal to
the median.t A random series of observations should produce a randomly
intermixed string of plus and minus signs such as

+++--+-++---+

The randomness of patterns such as

+++++++------

or

+-+-+-+-+-+-+

would be highly suspect. The runs test for randomness uses the number of
runs (sequences of the same sign) of plus or minus signs. If there are too
many or too few runs compared to the number that would be expected
from a random sample, the null hypothesis of randomness is rejected.
Under the null hypothesis of randomness, the number of runs is a random
variable that has a probability distribution, and the statistical test of the
hypothesis is based on comparing the observed number of runs with quan­
tiles of this distribution.

Let n be the total number of signs (observations), with nl plus signs
aDd n2 minus signs (nl + n2 = D). For nl and D2 ~ 10, Swed and
Eisenhart (1943) I calculated probabilities for the Dumber of runs U. A
table of these cumulative probabilities, compiled by Draper and Smith
(1981), is given in Table All in Appendix A. Let the observed Dumber of
runs for the sample under investigation be U·. Then, for a specified signif­
icance level a, the null hypothesis of randomness is rejected if

a
Pr(U~U·)~ ­

2

tTesting for randomness is a special application of the runs test. Reference values other than
the median arc used for other applications.
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or if

a
Pr(U ~ U*) = 1 - Pr(U ~U* - 1)~­

2

where Pr(U ~ u) is obtained from Table All for n1 and n2 ~ 10.

(9.1)

Example 9.1 To estimate an average percent by weight uranium
value for a production lot of U02powder, analyses are made on 14 samples
drawn as the powder was produced. The percent uranium values (in order)
are:

87.590,87.588,87.595,87.603,87.601,87.582,87.580,

87.597,87.599,87.609,87.601,87.610,87.611,87.615

Test the hypothesis that. these observations are a random sample from the
production lot. Use the runs test with the a = 0.05 level of significance.

Because there are an even number of observations, the median is calcu­
lated as the average of the middle two (ordered) observations 87.599 and
87.601, yielding a median of 87.600. The observations are replaced by
"+" or "-" depending on whether they are greater than 87.600 or less
than or equal to 87.600, respectively. For example, the first three values
are less than 87.600, and they are replaced with minus signs. The fourth
and fIfth values are greater than 87.600, and they are replaced with plus
signs. This process yields the sequence

---++----+++++

There are n1 = 7 plus signs and n2 = 7 minus signs, with U* = 4 runs.
Then, by using Equation 9.1 and Table 11,

Pr(U ~ 4) = 0.025

and

Pr(U ~4) = 1 - Pr(U ~ 3) = 1 - 0.004 = 0.996

Because Pr(U ~ 4) = 0.025 ~ 0.05/2 = 0.025, the null hypothesis of
randomness is reje(,ted at the a = 0.05 level of significance. Fewer runs
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were observed than would be expected if the null hypothesis of randomness
were true. This implication of nonrandomness is important from an
accountability viewpoint, because an average percent uranium factor for
the lot has less meaning when the observations are not a random sample
from the production lot.

When n\ and n2 > 10 for the runs test, exact critical values are not
provided because a normal approximation to the actual distribution is sat­
isfactory. In such cases, the statistic

z* = _U_*_-....,ILc--+_a
(j

(9.2)

has an approximate standard normal distribution where IL and (j are the
actual mean and standard deviation of the discrete distribution of U under
the null hypothesis of randomness. It can be shown that

and

Also,

q2 = 2n\n2 (2n\n2 - n\ - n2)

(n\ + n2)2 (n\ + n2 - 1)

{

0.5 when testing for "too few runs"

a = _ 0.5 when testing for "too many runs"

(9.3)

(9.4)

The 0.5 or -0.5 in Equation 9.2 is a continuity correction that helps to
compensate for a continuous distribution being used to approximate a dis­
crete distribution (e.g., Section 2.5.2.2).

A two-sided test of randomness with significance level a is performed
by comparing the test statistics Z*too many and z*too few against the stan­
dard normal values Za/2 and z\-a/2, obtained from Table A3. Note that
Z*too many is obtained by substituting a = -0.5 into Equation 9.2 and
Z*too few is obtained by using a = 0.5. The null hypothesis of randomness
is rejected if either Z*too many> Z\-a/2 or Z*too few < Za/2'
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Example 9.2 For a problem similar to that in Example 9.1, analyses
on 25 samples were performed with nl = 12, n2 = 13, and U* = 17. Test
the hypothesis of randomness for the associated sample at the a = 0.10
level of significance.

The normal approximation is used with the test statistic Z* computed
from Equation 9.2, where

2(12)(13) + I = 13 48
12 + 13 .

= 12(12)(13)[2(12)(13) -:- 12 -13]1~
(12 + 13)2 (12 + 13 - l)

= .J5.97 = 2.44

Then

and

Z*toomany =

Z*toofew =

17 - 13.48 - 0.5 = 1.24
2.44

17- 13.48 + 0.5 = I 65
2.44 .

The values 20.05 = -1.65 and 20.95 = 1.65 are obtained from Table A3.
Because Z*too few = 1.65 > -1.65, the "too few" test does not lead to rejec­
tion of the null hypothesis. This is logical, because there are more runs
(17) than the expected number (13.48). Also, because Z*toomany= 1.24 <
1.65, the null hypothesis of randomness is not rejected. Thus, it is appro­
priate to calculate an average percent uranium factor for the production
lot based on these observations.



SECTION 9.1 SINGLE SAMPlE OR MATCHED PAIRS

Another application of the runs test is to test for serial correlation
(autocorrelation) in a sequence of observations. This application is dis­
cussed in Section 6.4.5.3 and by Draper and Smith (1981). Other tests for
randomness besides the runs test are presented by Lehmann (1975) and
Conover (1980).

9.1.2 Single Sample Tests of Location

This section presents two nonparametric methods for testing hypotheses
about location based on a single sample: the sign test and the Wilcoxon
signed ranks test. These tests can be applied to investigate the validity of
the assumption that a sample comes from a population with a specified
value m of the median;t that is, to test the hypothesis

Ho: Median = m

against the alternative

HA : Median '* m

(9.5)

These tests are the nonparametric analogs of the single sample t-test
presented in Section 4.2.2.

9.1.2.1 De Sign Test

It is assumed that a random sample has been taken from a single popu­
lation and that the characteristic of interest is measured on at least an
ordinal scale (Section 1.1 ). Each observation is compared to the
hypothesized value m of the median and is replaced with a ..+" if the
observation is larger than m, and with a .. - " if it is smaller than m.
Observations equal to the median are discarded and the sample size n' is
correspondingly reduced.* Let n represent the reduced sample size.

The test statistic T* is the total number of plus signs. A two-sided test
is performed by determining whether this observed number of plus signs is
too large or too small compared to the number that would be expected
when the null hypothesis is true. When Hoin Equation 9.5 is true, the ran­
dom variable T defined as the "number of plus signs" has a binomial dis-

tThe sign test and Wilcoxon signed ranks test can also be applied to test hypotheses about
the mean if the underlying probability distribution is symmetric.

*Lchmann (1975) refers to the sign test with observations equal to the median discarded
as a conditional sign tcst and notcs that it results in a more powerful tcst than the random
tiebrcaking rule often recommended for applications of the sign test.
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tribution (Section 2.4.2) with p = 1h and sample size n. When n > 20, the
normal approximation to the binomial (Section 2.5.2.2) is used to approxi­
mate the distribution of T.

The sign test is performed as follows. For a specified value of a, the
null hypothesis is rejected if

a
Pr(T~T*)~ ­

2

or

a
Pr(T~T*)= I-Pr(T~T* -l)~­

2
(9.6)

For the one-sided alternative HA: Median> m, reject Ho if Pr(T ~ T*) ~
a. For the one-sided alternative HA: Median < m, reject Ho if Pr(T ~ T*)
~ a. If n ~ 20, the cumulative binomial distribution (Table AI) is used to
find the above probabilities. If n > 20, the normal approximation to the
binomial (Section 2.5.2.2) is used.

Example 9.3 Periodically, an NDA (gamma scan) instrument is
checked for bias by measuring the grams 235U in a solid waste barrel
working standard (with an assigned value of 2.40 g). During a 6 month
period, the standard is measured 12 times with the following results.

2.92,2.35,2.44,2.21,2.58,2.65,

2.73,2.04,2.42,2.62,2.17,2.39

Test the hypothesis that the population median is equal to 2.40 g. Use the
sign test with the a = 0.10 level of significance.

Each observation is replaced by a "+" or "-" depending upon
whether it is greater than or less than 2.40. The following sequence results

+-+-+++-++--

The sample appears to be random, which can be verified with the runs
test; thus, the sign test is applicable. The total number of plus signs is
T* = 7. Using Equation 9.6 and the cumulative binomial distribution
(Table A I) with n = 12 and p = Ih, the values for the two-sided test are
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P(T ~ 7) = 0.8062

P(T ~ 7) = 1 - P(T ~ 6) = 1 - 0.6128 = 0.3872

491

Because 0.8062 > 0.05 and 0.3872 > 0.05, the null hypothesis is not
rejected at the a = 0.10 level of significance. There is no significant indi­
cation that the NDA instrument is biased relative to the working standard.

9.1.2.2 The Wilcoxon Signed Ranks Test

The Wilcoxon signed ranks test can be used as a test of location for a
single population, although it has other uses as well. The measure of loca­
tion can be either the median or the mean, as discussed below. Let X..

X2, ••• , xn' be a random sample of n' observations of the random variable
X, where the characteristic of interest is measured on at least an ordinal
measurement scale and X has a symmetric distribution. It is of interest to
test the hypothesis

Ho: Median (or Mean) = m

against the alternative

HA : Median (or Mean) =1= m

(9.7)

Note that a hypothesis about the mean is equivalent to a hypothesis about
the median when the distribution of X is symmetric.

The sample observations are ordered from smallest to largest, and the
quantity dj = m - Xj is computed for each observation Xj, i = 1, 2, ... ,
n'. Omit from further consideration all observations yielding dj = 0 (i.e.,
where Xj = m). Denote the number of nonzero dj values by n and the
absolute value of dj by Idj I. Ranks from 1 to n are assigned to the Idj I
values (assign the rank of 1 to the smallest Idj I and n to the largest). If
two or more Idj Ivalues are equal, each value is assigned a rank equal to
the average of the ranks that would otherwise have been assigned. Then,
let R j = 0 if dj is negative, and R j = the rank of Idj I if dj is positive. The
test statistic is given by
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(9.8)

A value of W* that is either too small or too large indicates that the null
hypothesis should be rejected. Specifically, Ho is rejected at the a level of
significance if W* exceeds WI-a/2 or if W* is less than Wa/2, where wp is
obtained from Table A12. For the one-sided alternative HA: Median (or
mean) < m, reject Ho if W* > WI-a' For the one-sided alternative HA:

Median (or Mean) > m, reject Ho if W* < Wa •

Use of the Wilcoxon signed ranks test to test a hypothesis about lOca­
tion using data from a single population is illustrated in the following
example.

Example 9.4 Use the Wilcoxon signed ranks test and the data from
Example 9.3 to test the hypothesis that the median is 2.40 g. Use the a =
0.10 level of significance.

The ordered observations, the differences d j = 2.40 - Xi> the ranks of
the Id j l and the values of R j are displayed in Table 9.1. The test statistic,
computed from Equation 9.8, is

12
W*= ~Rj=30

j-I

TABLE 9.1

Obsenations and Ranking Results

RaDk
Xj eJ.-2..w-Xj 011"1 lit

2.04 0.36 11 11
2.17 0.23 8 8
2.21 0.19 6 6
2.35 0.05 4 4
2.39 0.01 1 1
2.42 -0.02 2 0
2.44 -0.04 3 0
258 -0.18 5 0
2.62 -0.22 7 0
2.65 -0.25 9 0
2.73 -0.33 10 0
2.92 -0.52 12 0
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For n = 12 and a = 0.10, the values wo.os = 18 and WO.9S =
[12(13)2] - 18 = 60 are obtained from Table A12. Because 18 < 30 <
60, the null hypothesis is not rejected at the a = 0.10 level of significance.
There is insufficient evidence to conclude that the median differs from
2.40.

Two single sample nonparametric methods have been considered for
testing hypotheses about location: the sign test and the Wilcoxon signed
ranks test. These are counterparts of the single sample t-test discussed in
Section 4.2.2. There is a hierarchy in the assumptions required for these
three tests. The sign test assumes a random sample from the population.
The Wilcoxon signed ranks test adds the assumption that the distribution
is symmetric about the median (or mean). The t-test adds the assumption
that the distribution is normal. The choice of which test to use should be
based on how realistic the assumptions of each test are for the problem at
hand. If the assumptions for a given test are valid, that test is more power­
ful for detecting deviations from Ho than the tests lower in the hierarchy
(i.e., tests requiring less restrictive assumptions).

9.1.3 Matched Pairs Tests for Comparing Locations

A common task in nuclear material control involves verifying prior
information on a population of SNM containers. One such task is to inves­
tigate the possibility of a shipper-receiver difference; another involves an
inspector verifying operator data. A common quality control situation
involves a comparison of two analytical laboratories (or instruments, tech­
nicians, etc.) by having them each measure identical samples of several
items. The appropriate statistical test for these situations is one that com­
pares location parameters (means or medians) on the basis of paired
observations.

The parametric method for testing the hypothesis of equal locations
using paired observations is the paired t-test (Section 4.4). The paired t­
test is conducted by taking the difference between the paired observations
and then performing a single sample t-test by using the differences as
data. The nonparametric matched pairs tests of location are conducted in a
similar manner; that is, depending on the assumptions made, either the
sign test or the Wilcoxon signed ranks test can be applied to the differ­
ences between the paired observations. Note that when the differences are
used as data, they replace the dj in the Wilcoxon test, and when the signs
of the differences are used as data, then the sign test is applied. Applica­
tion of the Wilcoxon signed ranks test with paired observations is illus­
trated in Example 9.5.
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Example 9.5f When plutonium nitrate solution is being loaded into a
recovery plant for further purification, samples are drawn from each con­
tainer and analyzed for percent plutonium using one of two different ana­
lytical methods. One analytical method is a direct assay, and the other
requires that a correction factor be applied. Periodically, the equivalence
of the two methods is checked. For this purpose, samples from 20 con­
tainers were recently analyzed by both methods. Using the resulting data
displayed in Table 9.2, test the hypothesis that the plutonium percentages
are the same for both analytical methods. Use the a = 0.10 level of
significance. .

TABLEU

Plutonium Concentration Data (% of Po)

Metllod I-MetIIod 2 Rubor
CoataiDer Metbod 1 Metbod 2 (~ 1..1 Rt

1 13.11 13.00 0.11 11 11
2 15.14 14.90 0.24 16 16
3 13.22 13.01 0.21 15 15
4 13.67 13.65 0.02 3.5 3.5
5 10.48 10.61 -0.13 12.5 0
6 15.37 15.11 0.26 19 19
7 12.37 12.40 -0.03 6 0
8 12.50 12.63 -0.13 12.5 0
9 11.46 11.71 -0.25 17.5 0

10 14.28 14.21 0.07 9 9
11 13.26 13.01 0.25 17.5 7.5
12 11.00 11.06 -0.06 8 0
13 12.74 12.75 -0.01 1.5 0
14 13.69 13.69 0 omitted omitted
15 10.43 10.40 0.03 6 6
16 11.38 11.30 0.08 10 10
17 12.26 12.27 -0.01 1.5 0
18 12.89 12.70 0.19 14 14
19 13.33 13.30 0.03 6 6
20 11.88 11.90 -0.02 3.5 0

The problem is to test the null hypothesis Ho: m, = m2 against the
two-sided alternative HA: m, '* m2, where mj is the unknown true median
percentage Pu for the ith analytic technique. The results arc obviously
paired, because a sample from each container was analyzed by both
techniques.

tTbe data for this example are from Jaech (1973).
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The percent Pu differences dj are given in Table 9.2. Suppose that
from past experience it is reasonable to assume that the dj have a sym­
metric distribution but the distribution is not normal. If the null hypothesis
is true, then the median of the dj is zero. Thus, the Wilcoxon signed ranks
test for a zero median is applied. In this case, note that the medians mj in
the hypothesis can be equivalently replaced by means #Lj. The ranks of the
Idj Iand the values of Rj are displayed in Table 9.2. The test statistic, cal­
culated from Equation 9.8, is

19
W· = ~ R j = 117

j-I

For the two-sided test with a = 0.10 and n = 19, the values WO.05 = 54
and WO.95 = 190 - 54 = 136 are obtained from Table A12. Because
54 < 117 < 136, the null hypothesis is not rejected at the a = 0.10 level
of significance. There is no significant evidence of a difference between the
unknown true medians of the measured values obtained by the two analyti­
cal methods.

9.2 TWO INDEPENDENT SAMPLES

This section presents nonparametric methods for comparing the loca­
tions and variances of two populations based on independent random sam­
ples selected from the populations. The corresponding parametric tests are
the two sample t-test (Section 4.3.2) for comparing locations, and the
F-test (Section 4.3.3) for comparing variances.

9.2.1 The Mann-Whitney Test for Comparing Locations

The Mann-Whitney test presented in this section is sometimes referred
to as the Wilcoxon test or as the Wilcoxon rank-sum test. Mann, Whitney,
and Wilcoxon each contributed to the development of this test; however,
the Mann-Whitney name is used in this text to avoid confusion with the
Wilcoxon signed ranks test.

The Mann-Whitney test assumes that random samples from twq popu­
lations are available and that these samples were obtained independently
from each other. Let x., X2, ••• , Xn denote the random sample of size n
from one population, and let y., Y2, .•• , Ym denote the random sample of
size m from the other population. Let N = n + m. Assume that the
measurement scale for the random variables X and Y is at least ordinal. It
is of interest to test the hypothesis
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Ho : P.X = p.y

against the alternative (9.9)

where J.Lx and IJ.y are the population means for the random variables X and
Y, respectively. It is assumed that the population distribution functions of
X and Yare the same except for a possible difference in means (loca­
tions). This implies equal variances; that is, u~ = ut. This assumption
should be investigated using the squared ranks test (Section 9.2.2).

The test is conducted by combining the samples from the two popula­
tions and ranking the combined sample using ranks 1 to N = n + m. If
several sample values are exactly equal (tied), assign to each the average
of the ranks that would otherwise have been assigned. Let R(Xi) and R(Yj)
denote the ranks assigned to Xi and Yj for all i and j. The Mann-Whitney
test statistic is the sum of the ranks assigned to the Xit; that is

n
W' = ~ R(Xi)

i-I
(9.10)

If there are more than a few ties, Conover (1980) presents an alternate
test statistic. The calculated W, is compared to percentiles wp obtained
from Table A13. If W' is too large or too small, then Ho in Equation 9.9
is rejected. More specifically, reject Ho at the a level of significance if
W, > WI-a /2 or if W' < Wa /2' For the one-sided alternative HA: p.x > p.y,

reject Ho if W' > WI-a' For the one-sided alternative HA: P.X < p.y, reject
HoifW' < wa •

Example 9.6 A facility producing U02 powder must check whether
the percent uranium factor for two batches of powder is the same. Eight
samples from each of the two batches are drawn and the percent uranium
determined. The data are displayed in Table 9.3. Use the Mann-Whitney
test with the a = 0.10 level of significance.

The validity of the assumptions underlying the Mann-Whitney test
should be checked. The samples from each batch were randomly and

tThe ranks assigned to the Yi could also be used, because the representation of the popula­
tions by X and Y is arbitrary.
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TABLE 9.3

Percent Uranium in UOl

Batch 1 Batch 2

86.4 86.2
86.8 85.8
87.5 86.1
88.2 84.8
86.0 87.1
86.9 86.5
87.7 85.7
86.8 86.7
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independently collected. Application of the runs test (Section 9.1.1) to
each sample indicated no significant nonrandomness. The assumption of
equal variances is substantiated in Example 9.7.

The Mann-Whitney test is performed by ranking the combined sam­
ples. This process is easier if the individual samples are ordered first. The
ranks are given in Table 9.4.

TABLE 9.4

Ranks of Combined Samples from Batches 1 and 2

Batch 1

86.0
86.4
86.8
86.8
86.9
87.5
87.7
88.2

CombiDed
rank

4
7

10.5
10.5
12
14
15
16

Batch 2

84.8
85.7
85.8
86.1
86.2
86.5
86.7
87.1

CombiDed
rank

1
2
3
5
6
8
9

13

Because there is only one tie (two equal values), the test statistic is
computed from Equation 9.10, which gives

8
W, = ~ (batch 1ranks) = 89

i-I

For n = m = 8 and a = 0.05, the values WO.05 = 50 and WO.095 = 86 are



498 CHAPTER 9 NONPARAMETRIC METHODS

obtained from Table A13. Because 89 > 86, Ho is rejected, implying that
the percent uranium factors for the two batches are different.

Recall that the parametric counterpart to the Mann-Whitney test is
the two sample t-test (Section 4.3.2.). If the population distributions are
actually normal, the t-test is more powerful than the Mann-Whitney test,
although the difference in power is small. For many nonnormal distribu­
tions, the Mann-Whitney test is more powerful than the t-test (also note
that the t-test is not strictly valid for nonnormal distributions). Thus, a
convincing argument could be made for always using the Mann-Whitney
test. It is certainly preferred if the distributions of X and Yare unknown
or if there is any doubt about the normality assumption.

9.2.2 The Squared Ranks Test for Comparing Variances

Suppose that it is of interest to test the hypothesis

against the alternative (9.11)

This section presents a method for testing Ho based on independent sam­
ples collected from two populations. Let Xlo X2, ••• , Xn and Ylo Y2, ••• , Ym

denote independent random samples of size nand m from two populations.
Let N = n + m. The measurement scale of X and Y must be at least
interval.

The squared ranks test of Ho was developed by Conover and Iman
(1978) and is conducted as follows. Compute

Uj = IXj - ~x I, i = 1, 2, ... , n

and

Vj = IYj - ~ I, j = 1, 2, ... , m

where ~x and ~y are the population means. If ~x and ~y are unknown,
substitute the sample means x and y (the test is still approximately valid).
Then assign the ranks 1 to N = n + m to the combined sample of Uj'S

and vj's. If any values of Uj and/or Vj are tied, assign to each the average
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of the ranks that would have been assigned had there been no ties. Let the
resulting ranks be denoted by R(Ui) and R(v).

If there are no ties, the test statistic is the sum of the squared ranks
assigned to the Ui; that is,

If there are ties, use the test statistic

(9.12)

T*= (9.13)

where

and

N D m
~ Rt = ~ [R(Ui)]4 +~ [R(Vj)]4
i-I i-I j-I

Exact percentiles wp of the distribution of T~ when no ties are prescnt
are given in Table A14. The distribution of T* when ties are prescnt is
approximated by the standard normal distribution, and wp is approximated
by Zp from Table A3. The two-sided test of Ho in Equation 9.11 is per­
formed by rejecting Ho at the significance level a when T~ (or T*) is less
than V!a/2 or greater than WI-a/2' For the one-sided hypothesis HA:
ITt> ITt, reject Ho if T~ (or T*) > WI-a' For the one-sided hypothesis

HA: ITt < ITt, reject Hoif T~ (or T*) < wa.

Example 9.' Apply the squared ranks test to the data in Example
9.6 to test the hypothesis of equal variances. Use the a = 0.10 level of
significance.
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Because the population means are unknown, the sample estimates i =
87.04 and y = 86.11 are used. The absolute values of the deviations and
their ranks in the combined sample are displayed in Table 9.5.

TABLE'.!

Deviations and Ranks

1.04
0.64
0.24
0.24
0.14
0.46
0.66
1.16

14
11
4.5
4.5
3
9

12
15

8
~ [R(uJJ2 - 816.5
i-I

1.31
0.41
0.31
0.01
0.09
0.39
0.59
0.99

16
8
6
1
2
7

10
13

8
~ [R(Vj)]2 - 679
j-I

Because there are ties in the data, Equation 9.13 is applied to calculate the
test statistic

T* = -.- ...:...81:...:6=.5_---=..;8(>..::.8.=..;16:..:.:.5:..-+...:.......::.6..:...:79;..!.)1~17-6 --.;;-;;-;,-

I(8)(8) (16)(15)(243 787.13) - (8)(8) [816.5 + 679121~
, 15 16

68.75
166.54 = 0.41

The values WO.05 = -1.65 and WO.95 = 1.65 are obtained from the stan­
dard normal distribution (Table A3). Because -1.65 < 0.41 < 1.65, Ho is
not rejected at the a = 0.10 significance level. There is no significant evi­
dence that the variances of the two populations are different.

Several other nonparametric tests for comparing the variances of two
populations exist. Three of these, the Siegel-Tukey test, the Freund-Ansari
test, and the Mood test are discussed by Bradley (1968) and briefly in
Conover (1971). The squared ranks test discussed here is more powerful
than the Siegel-Tukey and Freund-Ansari tests and is quite similar to the
Mood test.
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The parametric counterpart to the squared ranks test is the F-test
(Section 4.3.3). When the Xi and Yj are actually from normal distributions,
the F-test is preferred. Because the F-test is quite sensitive to departures
from the assumption of normality, the squared ranks test is preferred when
the distributions of X and Yare unknown or when the assumption of nor­
mality is in doubt.

9.3 SEVERAL INDEPENDENT SAMPLES

In this section nonparametric tests are presented for comparing the
locations and the variances of several populations based on independent
samples. The nonparametric tests for comparing locations are the median
test and the Kruskal-Wallis test. The parametric test corresponding to
these tests is the one-way analysis of variance (Section 5.1). The non­
parametric test for comparing variances is an extension of the squared
ranks test from Section 9.2.2. Its parametric counterparts are not
presented in this text.

9.3.1 Tests for Comparing Locations

Two nonparametric tests of location are considered in this section, the
median test and the Kruskal-Wallis test. The Kruskal-Wallis test has more
stringent assumptions than the median test and is based on the ranks of
the observations.

9.3.1.1 The Median Test

The median test is designed to investigate whether several samples
come from populations having the same median. Formally, it is of interest
to test the hypothesis

Ho : All populations have the same median

against the alternative

HA ; At least two of the populations have different medians

(9.14)

The median test assumes that the sample from each population is random
and that these samples are collected independently of each other. The
measurement scale for each random variable is assumed to be at least
ordinal. It is also assumed that if Ho is true, all populations have the same
probability of an observation exceeding the grand median (the median of
all the samples combined).

To conduct the median test, compute the grand median of the com­
bined samples. Let Oli be the number of observations in the ith sample that
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exceed the grand median and let 02i be the number less than or equal to
the grand median. Arrange the Oli and 02h i = I, 2, ..., k into a 2 X k
contingency table as follows:

Sample

1 2 k Totals

> Median

~I ~
a

~ Median b0 21 0 22
Totals nl n2 nk N

The test statistic is given by

N2 k od aN
X·=- 2; ---

ab j_1 nj b (9.15)

The exact distribution of x· is difficult to tabulate, but it can be satisfac­
torily approximated by the chi-square distribution with k - 1 degrees of
freedom. Reject Ho at the approximate significance level a if X· > Xl-a
(k - I), obtained from Table A4.

The chi-square approximation may not be very accurate if some of the
nj are small. Conover (1980) suggests that, in general, the approximation
may not be satisfactory if more than 20% of the nj's are less than 10 or if
any of the nj's are less than 2. An exception to this rule can be made for
larger values of Ie; if most of the nj's are about equal to each other, then
values of nj as small as 2 are allowed.

Example 9.8 A facility has four production lines that each create a
liquid waste stream. All four of the waste streams go to the same storage
area, where they are sampled and analyzed (uranium concentration in
ppm) for accountability purposes. The facility must test whether the four
waste streams are entering the storage area with the same uranium con­
centration. Random samples from the four waste streams are collected and
analyzed for uranium concentrations. The results are displayed in Table
9.6. Use the median test to test the hypothesis that there are no differ­
ences in the uranium concentrations of waste from the four production
lines. Use the a = 0.10 level of significance.

To apply the median test, the grand median of the combined samples is
found to be 23. Using this value, the following 2 X 4 contingency table
is developed as outlined earlier.
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Line

> 23
~ 23

Totals

1 2 3 4 Totals

LIJIIITIJ 15

~
10 8 9 8 35

The test statistic is calculated from Equation 9.15, which gives

* = (35)2 I£. +£+.f. + £1_ 35(15)
X (15)(20) 10 8 9 8 20

= 31.01 - 26.25 = 4.76

TABLEU

Uranium Concentration in ppm

13 34 17 33
23 16 26 30
23 20 11 23
14 3S 13 24
2S 17 24 32
22 30 22 20
3S 27 8 17
13 28 20 32
24 23
20

Because k = 4 and the nj are approximately equal, the chi-square
approximation is probably satisfactory. For a = 0.10, the value
x6.9oC3) = 6.25 is obtained from Table A4. Because 4.76 < 6.25, Ho is
not rejected. There is no significant evidence that the median uranium
concentrations for the four lines are different.

9.3.1.2 The Kruskal-Wallis Test

The Kruskal-Wallis test, like the median test, is used to compare the
locations of several populations. It assumes that a random sample of obser­
vations from each population is available, that there is mutual indepen-
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dence among the samples, and that the measurement scale is at least ordi­
nal. A final assumption is that either the population distribution functions
are identical or that only their means differ (this includes the assumption
that the variances of the populations are identical).

Let the random sample from the ith population be denoted by xii,
Xi2, ... , Xin, i = I, 2, ... , k. The total number of observations in all sam­
ples is obt~ined by summing the individual sample sizes; that is,

It

N= ~ni
i-I

Rank the combined samples (smallest to largest) from I to N. If several
observations are equal (tied), assign to each the average of the ranks that
would otherwise have been assigned. Let R(Xij) represent the rank assigned
to Xij, and let Ri be the sum of the ranks assigned to the ith sample; that is,

D;

Ri = ~ R(Xij) i = 1,2, ... ,k
j-I

To test the hypothesis

Ho : All k population distribution functions are identical

against the alternative

HA : At least two populations have unequal means

compute the test statistic

x' = --\-[± R~2 _ N(N+0
2

]
S i-I n1 4

where

N(N + 0/12 when no ties are present

1 [ N(N+l)2].-- ~ [R(Xij)]2 - when ties are present
N-l iJ 4

(9.16)

(9.17)

(9.18)
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While some tables of exact quantiles of the distribution of x' do exist, they
are rather limited. The chi-square distribution with k - 1 degrees of
freedom (Table A4) provides a satisfactory approximation to the distribu­
tion of x'. The null hypothesis Ho in Equation 9.16 is rejected at signifi­
cance level a if x' > x1-Jk - 1).

Rejection of Ho implies only that at least one population mean differs
from at least one other. The following multiple comparisons procedure can
be used to indicate which of the population means differ. It can be con­
cluded that the means of populations i and j are different if

[ I ~I I~Rj Rj N - 1 - X' 1· 1
- - - >tl-a /2(N-k) S2 - + - (9.19)
nj nj N - k nj nj

where t1- a / 2(N-k) is obtained from Table A5, x' is computed from
Equation 9.17, and S2 is computed from Equation 9.18. The a value
should be the same as that used in the Kruskal-Wallis test. This procedure
is repeated for all pairs of populations.

Example 9.9 For the data in Example 9.8, compare the mean ura­
nium concentrations of the four lines by using the Kruskal-Wallis test with
a = 0.10.

The results in Example 9.10 provide no significant evidence that the
variances of the four batches differ. Thus, it is plausible that the stricter
assumptions required for the Kruskal-Wallis test, as compared to the
median test, are satisfied.

The ranks of the combined sample observations are displayed in Table
9.7, where the Xjj values within each sample. are arranged in rank order.
The test statistic is calculated from Equation 9.17, where S2 = 104.47 is
obtained from the second formula in Equation 9.18 because ties exist in
the data. This gives

x' = 1 [(159.5)2 + (177.5)2 + (109.5)2
104.47 10 8 9
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TABLE 9.7

Combined Sample Ranks or Uranium Concentrations

lJDe 1 lJDe 2 lJDe 3 lJDe ..
xlJ Ruk x1,I Ruk x3j Raak ~ Raak

13 4 16 7 8 1 17 9
13 4 . 17 9 11 2 20 12.5
14 6 20 12.5 13 4 23 18.5
20 12.5 27 26 17 9 24 22
22 15.5 28 27 20 12.5 30 28.5
23 18.5 30 28.5 22 15.5 32 30.5
23 18.5 34 33 23 18.5 32 30.5
24 22 35 34.5 24 22 33 32
25 24 26 25
35 34.5

R.- 159.5 R2 - 177.5 R3 - 109.5 It. - 183.5

Because 6.54 > X6.~3) = 6.25, the null hypothesis is rejected at the ex =
0.10 significance level. This implies that the unknown true mean uranium
factor of at least one batch differs from that of at least one other. Note
that the Kruskal-Wallis test has detected a difference, whereas the median
test in Example 9.8 did not. This illustrates that the Kruskal-Wallis test
can be more powerful than the median test when the more stringent
assumptions are satisfied.

Because Ho was rejected, the multiple comparisons procedure can be
applied to indicate which of the means differ.

To apply the procedure, given by Equation 9.19, the quantity

= 16.35

is computed. Then application of Equation 9.19 to all pairs (i, j) yields the
following results:
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Populations I.!!- - !LI 16.35/J- + l]'" Significant
i j lit Dj I iii Dj at a=O.10

I 2 6.24 7.76 No
I 3 3.78 7.51 No
I 4 6.99 7.76 No
2 3 10.02 7.94 Yes
2 4 0.75 8.18 No
3 4 10.77 7.94 Yes

These results indicate that the unknown true mean uranium concentration
for line 3 is lower than the true mean concentrations for lines 2 and 4.

Both the median test and the Kruskal-Wallis test for comparing the
means of k populations have been considered. The Kruskal-Wallis test
requires the stringent assumption that all populations have identical distri­
bution functions, except for possibly different means (this includes the
assumption that the population variances must be identical). If these more
stringent assumptions are true, the Kruskal-Wallis test is more powerful
for detecting population location differences than the median test because
ranking the data retains more information than dichotomizing. However, if
the populations have different distribution functions, other than different
locations, then the Kruskal-Wallis test is not applicable and the median
test should be applied.

9.3.2 The k-Sample Squared Ranks Test for
Comparing Variances

Now consider a nonparametric test for comparing the variances of sev­
eral populations. It is of interest to test the hypothesis

Ho : All k populations have identical distributions except for
possibly different means

against the alternative

HA : At least two of the populations have unequal variances.

(9.20)
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The k-sample squared ranks test is an extension of the two-sample squared
ranks test presented in Section 9.2.2. Let Xii, Xi2 , , Xini denote a random
sample of size ni from the ith population (i = I, 2, k). Assume that the
k random samples are independent and that the measurement scale is at
least ordinal.

From each observation Xij, subtract its population mean iii, or its sam­
ple mean Xi if iii is unknown. Then combine all samples and rank the abso­
lute differences IXij - iii Ior IXij - Xi Ifrom smallest to largest, assigning
average ranks in case of ties. Denote the rank of IXij -iii Iby R(xjj). The
test statistic is given by

I [k S·2 1T*= -2 ~ _1 - N(s)2
D i-I ni

where

Dj = the number of observations in sample i

N = nl + n2 + ... + nk
ni

Si = ~ [R(Xij)]2
j-I

_ 1 k
S=- ~ Si

N i-I

D2= ~ [i i [R(Xij)]4 - N(S)2!
N I i-I j_1

If there are no ties, then D2and S simplify to

D2 = N(N + 1)(2N + 1)(8N + 11)/180

and

S = (N + 1)(2N + 0/6

(9.21)

The Dull hypothesis is rejected at the a level of significance if T*
exceeds X~-a (k - I), obtained from Table A4. Rejection of Ho indicates
that at least two of the populations have unequal variances, but it gives no
indication of which variances differ. Multiple comparisons among the k
populations are made by comparing two variances at a time. It can be con­
cluded that the variances of populations i and j differ if
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I [ 1
\2 [ 1\2Sj Sj N-I-T* I I

1
- - - >tl-a /2(N - k) D2 - +-
nj nj N - k nj nj

where tl-a / 2(N-k) is obtained from Table A5.

609

(9.22)

T*=

Example 9.10 By using the k-sample squared ranks test and the data
from Example 9.8, test the hypothesis that the variances of the uranium
concentrations of the four production lines are equal. Use the a = 0.10
level of significance.

The IXjj - Xj Iare computed and ranked as shown below." The sum of
the squared ranks Sj is then computed for each production line.

LIDe 1 IJne 2 1JDe3 u.e4
IXIJ-x.1 Rank Ix1,I- xzl Rank IX3j - x31 IlaDk 1~-x.1 IlaDk

8.20 28.5 8.12 27 1.22 4 6.62 23
1.80 6.5 9.88 33 7.78 26 3.62 12
1.80 6.5 5.88 21 7.22 25 3.38 11
7.20 24 9.12 31 5.22 17 2.38 9
3.80 14 8.88 30 5.78 20 5.62 18.5
0.80 1 4.12 IS 3.78 13 6.38 22

13.80 35 1.12 2 10.22 34 9.38 32
8.20 28.5 2.12 8 1.78 5 5.62 18.5
2.80 10 4.78 16
1.20 3

8." 3816.0 82 - 4413.0 83 - 3612.0 8. - 3067.5

The test statistic is calculated from Equation 9.21, where S = 425.96,
D2 = 144,556.49, and N = 35. This gives

I [(3816.0)2 + (4413.0)2
144,556.49 10 8

+ (361;.0)2 + (306;.5)2 _ 35(425.96)21 = 1.15'

Because 1.15 is less than X6.9oC.3) = 6.25, Ho is not rejected. There is no
significant indication that the uranium concentration variances for the four
production lines are different.
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9.4 SEVERAL RELATED SAMPLES

In this section, nonparametric tests are presented for comparing the
locations of several populations using related samples. These tests are
extensions of the matched pairs tests presented in Section 9.1.3. The
corresponding parametric method is the two-way analysis of variance using
data from a randomized complete block design (Section 7.2.2), which is an
extension of the paired t-test (Section 4.4).

9.4.1 Comparison of Locations for
Randomized Complete Block Designs

Randomized complete block designs, including the concept of blocking
in experimentation, are discussed in Section 7.2.2. Briefly, such designs
compare the means resulting from k ~ 2 different treatments, where the
observations are arranged in blocks. The blocks for these designs are
groups of k experimental units where the units within a group are similar,
but significant differences among the groups are expected in the experi­
mental data. An example of such a design in nuclear material control is
where identical samples from each of m items of SNM are sent to each of
k laboratories for analysis. The laboratories are regarded as the treatments
while the m items are the blocks. This type of application is illustrated in
Example 9.11.

It is of interest to test the hypothesis

Ho : There are no differences among the population locations
corresponding to the k treatment groups

against the alternative

HA : At least one of the k treatments tends to yield larger values
than at least one other.

(9.23)

Three nonparametric tests are presented for testing this hypothesis using
related samples data: the Quade test, the Friedman test, and the rank
ANOVA test.

9.4.1.1 The Quade Test

The Quade test is an extension of the matched pairs application of the
Wilcoxon signed ranks test. The major assumption is the independence of
the blocks; the results within one block do not influence the results within
other blocks.
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The Quade test is conducted as follows. Let Xij (i = 1, 2, ... , b; j =
1, 2, ... , k) be the observation from the itb block for the jtb treatment in a
randomized complete block design. Within each block, rank the observa­
tions Xil, Xi2, ... , Xjk from smallest to largest by assigning rank 1 to the
smallest value and k to the largest. In case of ties, assign average ranks.
Let R(Xij) be the rank assigned to Xij'

Next, calculate the sample range within each block, i.e.,

Rangei = maxiptum (xij) - min~um (Xij)
J J

Then rank the blocks from 1 to b according to the Rangei values. Use
average ranks in case of ties. Let Qi be the rank of the itb block.

The test statistic is given by

F* = (b - 1) BI (9.24)
AI-BI

where

I k
BI = - ~ Sl

b j_1

b

Sj = ~ Sij
i-I

The null hypothesis is rejected at the a level of significance if F* exceeds
FI-a[k-I, (b-l)(k-l)], obtained from Table A6. The F-distribution
approximates the exact distribution of F* with the approximation improv­
ing as the number of blocks b increases.

If the null hypothesis is rejected, pairwise differences are examined by
using a multiple comparisons procedure. It can be concluded that the loca­
tions resulting from treatments j and ~ are different if

(9.25)

where Sj, S2, A), and BI are as given above, and tl-a/2[(b-l) (k-l)] is
obtained from Table AS. Note, however, that this multiple comparisons
procedure should only be applied if the overall null hypothesis is rejected.
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Example 9.11 Three laboratories are each given a sample of PU02
from each of 10 containers and are asked to measure the percent pluto­
nium by weight in each sample. The results are displayed in Table 9.8.
Treat the containers as blocks, and use the Quade test to test the hypothe­
sis that there are no biases among the three laboratories. Use the a =
0.05 level of significance.

TABLE 9.8

Percent Po by Weight

eo.taIDer Lab 1 Lab 2 Lab 3

1 87.67 87.88 87.72
2 87.64 87.99 87.80
3 88.03 87.98 87.97
4 87.50 87.84 87.65
5 87.86 87.77 87.75
6 87.71 87.93 87.76
7 87.63 87.83 87.79
8 87.83 87.94 87.93
9 88.04 88.06 88.05

10 87.72 88.03 87.68

There is no reason to believe that the results for samples from any single
container have affected the results for any other container; hence, the
assumptions for the Quade test appear to be reasonable. The results of
ranking the observations within blocks (containers) and then ranking the
blocks are summarized in Table 9.9a. The calculated values of the Sij and
Sj are summarized in Table 9.9b.

Substituting the results from Table 9.9b into the equations for Al and
BI yields

Al = (-6)2 + (-9.5)2 + (2)2 + ... + (-9.5)2 = 768.0

BI = _1 [(-34.5)2 + (49.5)2 + (-15.0)2] = 386.55
10

Application of Equation 9.24 yields the test statistic value

F* = (b - l) BI = (10 - l) (386.55) = 9.12
Al - BI 768.0 - 386.55
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TABLE 9.98

Quade Test Calculations: Ranking Results

Within coatainer raDks
R(Xq)

Coatainer Range.nDk
(i) Lab 1 Lab 2 Lab 3 Range. QI

1 1 3 2 0.21 6
2 1 3 2 0.35 9.5
3 3 2 1 0.06 2
4 1 3 2 0.34 8
5 3 2 1 0.11 3.5
6 1 3 2 0.22 7
7 1 3 2 0.20 5
8 1 3 2 0.11 3.5
9 1 3 2 0.02 1

10 2 3 1 0.35 9.5

Table A6 does not give a value for Fo.9s(2,18). However, the values
Fo.9s(2,15) = 3.68 and FO.9S(2,20) = 3.49 are given and can be used with
linear interpolation to compute the approximate value Fo.9s(2,18) a:
3.49 + (3.68 - 3.49) [(20 - 18)/(20-15)] = 3.57. Because 9.12 >
3.57, the null hypothesis of no biases among the three laboratories is
rejected. It should be noted that because F* = 9.12 exceeds both
Fo.9s(2,15) and FO.9S(2,20), the interpolation is not necessary in order to
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make the decision to reject Ho. However, the interpolation was carried out
for illustration. Application of the multiple comparisons procedure, given
in Equation 9.25, indicates that Lab 2 tends to produce larger percent Pu
than Labs 1 and 3. The results are displayed in the following table.

[ ~.
Significant2b( Al - BI>

j 2 ISj - s21 te."s(18). ( b - 1 )( k - 1 ) at a=O.OS

1 2 84.0 43.23 Yes
1 3 19.5 43.23 No
2 3 64.5 43.23 Yes

9.4.1.2 The Friedman Test

The Friedman test is an extension of the matched pairs application of
the sign test. The major assumption required for this test is the same as
that for the Quade test (independence of blocks). Conover (1980) notes
that when there are six or more treatments, the Friedman test is more
powerful and is preferred over the Quade test.

The Friedman test of the hypothesis given in Equation 9.23 is con­
ducted as follows. Let Xij (i = 1, 2, ... , b; j = 1, 2 ... , k) be the observa­
tion from the ith block for the jth treatment in a randomized complete
block design. Then let

b
R j = ~ R(Xij)

i-I

wher~ the R(xij) are the ranks within the blocks (found in the same man­
ner as described in the previous section). The test statistic is given by

where

and

F'=
(b-l) [B2 - bk(k+02/4]

A2 -B2
(9.26)
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The null hypothesis is rejected at the a level of significance if F' exceeds
FI-a[k - 1, (b - 1)(k - 1)], obtained from Table A6. Note that the F­
distribution only approximates the exact distribution of F' with the approx­
imation improving as the number of blocks b increases.

If the null hypothesis is rejected, pairwise differences are examined by
applying a multiple comparisons procedure. It can be concluded that treat­
ments j and 2 have resulted in different locations if

(9.27)

where Rj, Ri , A2, and B2 are as given above, and tl-a/2[(b - l)(k - 1)]
is obtained from Table AS.

Example 9.12 Rework Example 9.11 using the Friedman test. The
within block ranks R(Xij) are displayed in Table 9.9a of Example 9.11.
From these, the following quantities are computed:

10
R I = ~ Ril = 1 + 1 + 3 + '" + 1 + 2 = 15

i-I

10
R2 = ~ Ri2 = 3 + 3 + 2 + ... + 3 + 3 = 28

i-I

10
R3= ~ Ri3 = 2 + 2 + 1 + ... + 2 + 1 = 17

i-I

10 3
A2= ~ ~ [R(Xij)]2 = 12 + 32+ 22+ 12+ ... + 32+ 12= 140

i-Ij-I
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The test statistic is computed from Equation 9.26, which gives

(10 - 0[129.8 -
10

°1(4)21

F' = 140 _ 129.8 = 8.65

The value Fo.9s(2,18) == 3.57 is obtained from Table A6 by interpolation
(Example 9.11). Because 8.65 > 3.57, Ho is rejected at the a = 0.05
level of significance. Application of the multiple comparisons procedure,
given in Equation 9.27, indicates that Lab 2 tends to produce larger per­
cent Pu values than Labs 1 and 3. The results are displayed in the follow­
ing table. These conclusions are identical to those reached in Example 9.11
where the Quade test was used.

2 IRj - R21
(10 (A, - S,)r Significant

j to..97S(18) . 18 at a = 0.05

1 2 13 7.07 Yes
1 3 2 7.07 No
2 3 11 7.07 Yes

9.4.1.3 The Rank ANOVA Test

The rank ANOVA test is the parametric two-way ANOVA test (Sec­
tion 5.4), where the observations from a randomized complete block design
(Section 7.2.2) are replaced by their ranks 1, 2, ... , bk. Tied observations
are replaced by their average ranks. Iman, Hora, and Conover (1981) and
Hora and Conover (1981) compare the robustness and power of the rank
ANOVA test with the parametric ANOVA, the Quade test, and the
Friedman test. The rank ANOVA test is more powerful than all of the
other methods for many situations. When the underlying distributions are
normal, the preferred method is the parametric ANOVA test performed
on the original data rather than the ranks. When the underlying distribu­
tion is uniform, either the Quade test or the Friedman test should be used.

Example 9.13 Rework Example 9.11 using the rank ANOVA test
with the a = 0.05 level of significance.
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The original data are displayed in Table 9.8 of Example 9.11. The
ranks of all observations are displayed in Table 9.10.

TABLE 9.10

Ranks of Percent Po Data

Ceatainer Lab 1 Lab 2 Lab 3

1 5 19 8.5
2 3 25 14
3 26.5 24 23
4 1 17 4
5 18 12 10
6 7 20.5 11
7 2 15.5 13
8 15.5 22 20.5
9 28 30 29

10 8.5 26.5 6

Performing a two-way ANOYA using the ranks in Table 9.10 as data (see
Section 5.4 for computational formulas) yields the following ANOYA
table.

Source elf SS MS F

Containers (blocks) 9 1236.8 137.4
Laboratories (treatments) 2 508.9 254.4 9.15
Error 18 499.8 27.8

Total 29 2245.5

The test statistic for comparing laboratories is F = 9.15, which is com·
pared with Fo.9s(2,18) = 3.57 obtained from Table A6 by interpolation.
Because 9.15 > 3.57, the null hypothesis is rejected at the a = 0.05 level
of significance. This agrees with the results of Examples 9.11 and 9.12.

9.4.2 Comparison of Locations for
Other Designs

Chapter 7 introduced several different types of experimental designs.
Conover (1980) presents the nonparametric Durbin test for comparing
treatments using data from a balanced incomplete block design. Crouse
(1968) and McDonald (1971) discuss nonparametric methods for analyz-
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ing data from a 2° factorial design. Tests for other specific designs are also
found in the literature. However, there are many experimental designs for
which specific nonparametric tests have not yet been developed.

Conover (1980) suggests a general approach for any experimental
design. This approach involves replacing the observations by their ranks
and then applying the parametric ANOVA technique appropriate for the
particular design [see Conover (1980) for details].

9.5 MEASURES OF RANK CORRELATION

This section presents the concept of nonparametric correlation. The
parametric analog of this concept is presented in Section 6.1.1, where the
sample correlation coefficient Pxy is introduced as a measure of the
strength of a linear relationship between two random variables X and Y. If
one or more of the observed data pairs (x, y) is an outlier, Pxy may provide
a misleading measure of the strength of the relationship. The impact of
outliers is greatly reduced if the measure of correlation is based on ranks
of the data. Two measures of rank correlation, Spearman's rho and
Kendall's tau, are presented in this section.

In replacing data by ranks, some information may be lost, such as
when interval or ratio scale data are reduced to the ordinal scale by the ,
rank transformation. Because of this potential loss, measures of rank cor­
relation are not thought of as measuring the strength of a linear relation­
ship, but as measuring the strength of dependence in general. Thus, mea­
sures such as Spearman's rho and Kendall's tau are often used to test for
statistical independence of the random variables X and Y. However,
Spearman's rho and Kendall's tau are insensitive to some types of depen­
dence. Thus, the use of these measures in testing for independence should
be augmented by graphical techniques.

Although Spearman's rho and Kendall's tau can be used as alternate
measures of correlation when the data are measured on the interval or
ratio scales, they are the only applicable measures when either or both of
the variables is measured on an ordinal scale.

9.5.1 Spearman's Rho

Assume that the data consist of a bivariate random sample of size n,
denoted by (XI> Yl), (X2, Y2), ..., (xo• Yo)' Let R(xj) be the rank of Xj com­
pared with the other observed X values, with R(Yi) similarly defined for
the observed Y values. In case of ties, assign the average of the ranks that
would have been assigned had there been no ties. This ranking procedure
assumes that the measurement scale for both X and Y is at least ordinal.

If there are no ties in the data for either X or Y, the measure of rank
correlation known as Spearman's rho is given by
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If there are ties in the data, p is given by
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(9.28)

Note that Equation 9.29 is just Equation 6.2 where the ranks R(Xi) and
R(Yi) replace the Xi and Yi values. Thus, -1 :l5; p :l5; 1.

It is of interest to test the hypothesis

Ho: There is no relationship between X and Y

against the alternative

HA : There is either a tendency for larger values of X to be
paired with larger values of Y or larger values of X to be
paired with smaller values of Y.

(9.30)

Ho is rejected if p > WI-a /2 or if p < Wa /2, where wp is found in Table
AlS for n :l5; 30. For larger n, an approximation is used as indicated in the
footnote to Table AlS. For the one-sided alternative, HA: larger values of
X tend to be paired with larger values of Y, reject Ho if P> WI-a' For the
one-sided alternative, HA: larger values of X tend to be paired with
smaller values of Y, reject Hoif P< wa •

Example 9.14 Two uranium-bearing solid waste barrel standards are
analyzed (counted) on the same day using the same NDA instrument on a
semi-monthly basis. If there are shifts over time in the bias of the counter,
the measurements (counts) from the two barrels should be highly corre­
lated. The data displayed in Table 9.11 were generated over a 6-month
period. Test the hypothesis of no relationship between the measurements
of the two barrels by using Spearman's rho with the a = 0.05 level of
significance.

To compute Spearman's rho, the measurement values for each barrel
are ranked. The ranks for both barrels are displayed in Table 9.12.



Because there are no ties in the data, Spearman's rho is computed from
Equation 9.28, whicJt gives

_= 1 _ 6[(12 - 1)2 + (8 - 8)2 +.,. + (4 - 4)2 ]
P 12(122 - 1)

= 1 - 6(252) = 1 - 0.88 = 0.12
12(143)
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For a = 0.05 and n = 12, the values WO.97S = 0.5804 and WO.02S =
-0.5804 are obtained from Table A15. Because -0.5804 < 0.12 <
0.5804, Ho is not rejected. There is no indication of a dependence in the
counts from the two barrels; thus, there is no significant evidence of shifts
over time in the bias of the counter.

9.5.2 Kendall's Tau

As with Spearman's rho, assume that the data consist of a bivariate
random sample of size n, denoted by (Xh YI), (X2, Y2) , ••• , (xo, Yo)' Two
observations, say (Xh YI) and (X2, Y2), are concordant if both members of
one observation are larger than their respective members of the other
observation (i.e., Xl > X2 and YI > Y2, or Xl < X2 and YI < Y2)' Let Nc
represent the number of concordant pairs out of the U) possible pairs of
bivariate observations. A pair of observations (Xh YI) and (X2, Y2) is
discordant if XI > X2 and YI < Y2, or if XI < X2 and YI > Y2' Let Nd repre­
sent the number of discordant pairs. If XI = X2 or YI = Y2, the pair of
points is neither concordant nor discordant. The identification of the num­
ber of concordant and discordant pairs is simplified if the data points (Xi,
Yi) are sorted according to increasing values of X.

Kendall's tau is calculated as

Nc-Nd
T=

n(n -1)/2
(9.31)

As with the previously defined measures of correlation, -I E; T E; I. The
extreme values of -lor 1 are reached when all pairs are discordant or
concordant, respectively.

Kendall's tau may be used to test the hypothesis in Equation 9.30..
Some arithmetic is saved, however, by only calculating the numerator por­
tion of Equation 9.31; that is,

(9.32)

Quantiles of the distribution of T* are given in Table A16. The two-sided
test is performed by rejecting Ho at the a level of significance if T* >
WI-a /2 or if T* < Wa /2' For the one-sided alternative HA: larger values of
X tend to be paired with larger values of Y, reject Ho if T* > WI-a' For
the one-sided alternative HA: larger values of X tend to be paired with
smaller values of Y, reject Hoif T* < wa •
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The following example illustrates the procedures for calculating and
testing hypotheses with Kendall's tau.

Example 9.1S Test the hypothesis indicated in Example 9.14 by
using Kendall's tau with the ex = 0.05 level of significance.

The data pairs are sorted by the Xi values and the number of concor­
dant and discordant pairs are determined. The results are displayed in
Table 9.13. As a check, Nc + Nd + (number of pairs with ties) should
equal n(n - 1}/2. Because there are no ties, note that Nc + Nd =
n(n - 1}/2 = 66.

To illustrate the calculations summarized in Table 9.13, consider the
point (12.50, 10.12). Because the points in Table 9.13 are arranged with
the Xi'S in increasing order, only the points below (12.50, 10.12) in the
table are considered in attempting to identify concordant pairs. The con­
cordance or discordance of (12.50, 10.12) with points above it in the table
was evaluated when the procedure was applied to those points (Table
9.13). The points (12.61, 10.57) and (12.62, 10.17) form concordant pairs
with (12.50, 10.12). Points that form discordant pairs with (12.50, 10.12)
are those below it in Table 9.13, which have Yi values smaller than 10.12.
The points (12.54, 9.97) and (12.92, 9.76) form discordant pairs with
(12.50, 10.12). The results of applying this counting procedure are sum­
marized in Table 9.13.

TABLE 9.13

Calculation of KendaH's Tau

Number of Number of
eoaconIut pairs diIcordaIIt pairs

(Xt. yJ ia.oMag (Xt. yJ ia.oMDg (Xt. yJ

(12.17,9.79)
(12.21, 10.11)
(12.22, 10.22)
(12.34, 9.96)
(12.35, 10.08)
(12.44,9.94)
(12.48, 10.80)
(12.50, 10.12)
(12.54, 9.97)
(12.61, 10.57)
(12.62, 10.17)
(12.92,9.76)

10
5
2
6
4
5
o
2
2
o
o
o

Nc = 36

1
5
7
2
3
1
5
2
1
2
1
o
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Kendall's tau is calculated from Equation 9.31, which gives

= Nc - Nd = 36 - 30 =~ = 0.09
T n(n - 0/2 12(10/2 66
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For a = 0.05 and n = 12, the values WO.02S = -28 and WO.97S = 28 are
obtained from Table A16. Because T* = Nc - Nd = 6 falls between
- 28 and 28, the null hypothesis is not rejected at the a = 0.05 level of
significance. This is consistent with the results of Example 9.14.

9.6 GOODNESS-OF-FIT TESTS
As noted in the introductory comments of this chapter, the distinction

between parametric and nonparametric procedures is that parametric pro­
cedures require specific assumptions about the form of probability distribu­
tions from which the empirical observations arise. If these assumptions are
valid, the parametric techniques are preferred over the nonparametric
techniques. However, it is never known for certain whether or not assump­
tions about a probability distribution are valid. In some situations it is pos­
sible to apply statistical hypothesis testing techniques to investigate the
validity of an assumption. Hypothesis tests about the form of a probability
distribution are often referred. to as gooclness-of-fit tests.

There are two major categories of goodness-of-fit tests. Tests in the
first category compare observations from an unknown distribution with the
expected outcome of sampling from a particular distribution that has been
completely specified. The phrase "completely specified" means that both
the form and any parameters of the reference distribution are specified
without using the observations from the unknown distribution to estimate
them. Two goodness-of-fit tests of this type, the chi-square test and the
Kolmogorov test are presented in Sections 9.6.1 and 9.6.2, respectively.

Goodness-of-fit tests from the other major category compare observa­
tions from an unknown distribution with the expected outcome of sampling
from a family of distributions; a particular member of the family is chosen
for comparison on the basis of the observations from the unknown distribu­
tion. For example, it may be of interest to test whether a certain set of
observations is from a normal distribution. The specific normal distribution
is determined by estimating its parameters (the mean and variance) using
the observations from the unknown distribution. Tests of this type are the
Lilliefors test and the Shapiro-WOk test. These are presented in Section
9.6.3.

9.6.1 Chi-Square Test
The chi-square test can be used to investigate assumptions about both

discrete and continuous distributions. Let F(x) be the true cumulative dis-
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tribution function (cdf) of a random variable X (Section 2.2), and let
P*(x) be a completely specifiedt cdr. P*(x) is the hypothesized distribution
for the test; it is of interest to test whether the true cdf P(x) is the same as
the hypothesized cdf P*(x). Pormally stated, it is of interest to test the
hypothesis

Ho: P(x) = P*(x), for all x

against the alternative

HA : P(x) :#: P*(x), for at least one x

(9.33)

The test is conducted as follows. Let x.. X2, ••• , Xn represent a random
sample of n independent observations of the random variable X. These n
observations are grouped into c predetermined, mutually exclusive classes,
where OJ denotes the number of observations in class j {j = 1, 2, ... , c).
Let

Ej = Pj* n {j = 1,2, ... , n) (9.34)

where Ej = the expected number of observations in class j when Hois true;
that is,

Pj* = the probability of an observation x being in
class j when Hois true

The test statistic for the chi-square goodness-of-fit test is given by

(9.35)

An equivalent expression which is more convenient for use with a hand
calculator is

c 0 7
. J

x*= ~--n
j_1 Ej

(9.36)

The exact distribution of x* is difficult to use; however, it can be approxi­
mated by a chi-square distribution with (c - 1) degrees of freedom (the

tIf F·(x) is not completely specified. see the discussion at the end of this section.
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approximation improves as the sample size n increases). Thus, Ho in Equa­
tion 9.32 is rejected if X· > x~-Jc - I), obtained from Table A4.

The chi-square goodness-of-fit test, as presented thus far, is somewhat
arbitrary because no definite criterion for grouping the random sample
into classes is specified. It is likely that different groupings will yield dif­
ferent values of the test statistic and possibly different conclusions, e.g.,
rejecting or not rejecting Ho. Thus, before an example is presented, some
guidelines for grouping observations into classes are given. Cochran (1952)
suggests that none of the Ej should be less than I and no more than 20%
of the Ej should be smaller than 5. However, more recent studies by Yar­
nold (1970) and Siakter (1973) suggest that Cochran's guidelines may be
more restrictive than necessary. Yarnold (1970) states that if the number
of classes c is 3 or more, and if r denotes the number of expectations less
than 5, then the minimum expectation may be as small as 5r/c. Siakter
(1973) proposes that the number of classes can exceed the number of
observations, which implies that the average expected value can be less
than 1.0. In this text, we recommend that the observations be grouped in
such a way that Yarnold's (1970) criterion is satisfied. This may require
combining some groups if the Ej are small.

Example 9.16 A fuel fabrication facility routinely monitors its gas­
eous effluents by using an a-counter to measure the uranium content of air
filters. The a-counter output is the number of counts observed in I min,
which can be translated into a quantity of uranium given the appropriate
calibration relationship. The facility purchased a new a-counter and must
test the manufacturer's claim that the counter's random measurement
errors follow a normal distribution with a standard deviation of 10
counts/min for samples yielding between 200 and 400 counts/min. A
standard rated at 310 counts/min was measured 30 times, yielding the fol­
lowing counts:

317,316,314,316,278,313,300,317,287,325,
267,299,321,283,315,280,306,354,319,342,
270,351,314,284,316,331,296,304,300,326

Use the chi-square goodness-of-fit test to test the manufacturer's claim
at the a = 0.10 level of significance.

One possible way to group the observations is by choosing the class
boundaries to be the quartiles (Section 1.3.4) of the normal distribution
with mean 310 and variance 100, i.e., 102• By applying the methods
described in Section 2.5.2, these are defined as follows:
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Xo.2S = 310 + 10(Zo.2s) = 310 + 10(-0.67) = 303.3
Xo.SO = 310 + IO(Zo.so) = 310 + 10(0) = 310.0
Xo.7S = 310 + IO(Zo.7s) = 310 + 10(0.67) = 316.7

where the values Zo.SO = 0.00 and Zo.7S = 0.67 are obtained from Table
A3, and Zo.2S = -Zo.7S = -0.67. The observations are then grouped as
shown below. .

Obsened Expected
Oass Range frequency (OJ) frequency (11)

1 (-00, 303.3) 11 7.5
2 (303.3, 310.0) 2 7.5
3 (310.0, 316.7) 7 7.5
4 (316.7, 00) 10 7.5

The test statistic is computed from Equation 9.35, which yields

x* = (11 - 7.5)2 + (2 - 7.5)2 + (7 - 7.5)2 + (10 - 7.5)2 == 6.53
7.5 7.5 7.5 7.5

With a = 0.10 and c - 1 = 3, the value x~.~3) = 6.25 is obtained
from Table A4. Because 6.53 > 6.25, the manufacturer's claim is rejected.

Although the null hypothesis that the counts are from a normal distri­
bution with mean 310 and standard deviation lOis rejected, it is possible
that the data are from a normal distribution with a different mean and/or
standard deviation. This possibility is considered in Example 9.17
(presented after the following discussion).

In the above presentation of the chi-square test, the reference distribu­
tion F*(x) is completely specified. Conover (1980) discusses modifications
of the chi-square test when F*(x) is specified, except for the values of k
parameters. These modifications require first grouping the observations
and then estimating the k unspecified parameters by applying the method
of moments to the grouped data. The test then proceeds as outlined previ­
ously, except that the distribution of x* is now approximated by a chi­
square distribution with c - k - 1 degrees of freedom. This modified test
is illustrated in the following example.

Example 9.17 Use the data from Example 9.16 to test the hypothesis
that the measurements are from a normal distribution with unspecified
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parameters. Use the modified chi-square test with the a = 0.10 level of
significance.

Because no parameter values are specified, the data are arbitrarily
grouped into four classes as follows:

Oass aass midpoint, aass frequency,
Qass boundaries ml OJ

I 260 ~ Xi < 285 272.5 6
2 285 ~ Xi < 310 297.5 7
3 310~Xi<335 322.5 14
4 335 ~ Xi < 360 347.5 3

From Section 3.3.1, the method of moments estimates of the mean and
variance are computed as

4

p,= ~ Ojmj/n
j-I

= [6(272.5) + 7(297.5) + 14(322.5) + 3(347.5)]/30

= 309.167

and

4
i2 = (~Ojml!n) - p,2

j-I

= [6(272.5)2 + 7(297.5)2

+ 14(322.5)2 + 3(347.5)2Jj30 - (309.167)2

= 96114.588 - (309.167)2 = 530.35

The expected values Ej are then computed for a normal distribution
with mean 309.167 and variance 530.35 (i.e., standard deviation 23.03).
This is done for the four classes defined above and for the "tails" of the
distribution (classes 0 and 5). To illustrate the computations, consider
class 1. First, by applying the methods presented in Section 2.5.2 with
values obtained from Table A3, PI is computed as
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PI = Pr(260 :E; X < 285)

= P 1260 - 309.167 ~ Z < 285 - 309.1671
r 23.03 "'0: 23.03

= Pr( -2.13:E; Z < -1.05)

= Pr(Z <-1.05) - Pr(Z < -2.13)

= 0.14686 - 0.01659 = 0.13027

EI = npi == 30(0.13027) = 3.91

The other Ej values are similarly computed, and the results are displayed
below.

Class Boundaries PJ EJ

0 Xi < 260 0.01659 0.50
1 260 :E; Xi < 285 0.13027 3.91
2 285 :E; Xi < 310 0.36909 11.07
3 310 :E; Xi < 335 0.35269 10.58
4 335 :E; Xi < 360 0.11781 3.53
5 Xi~ 360 0.01355 0.41

Because the values of Ej for classes 0 and 5 are quite small, they are
combined with classes 1 and 4, respectively. The resulting values are tabu­
lated below.

Oass OJ EJ

Xi < 285 6 4.41
285 :E; Xi < 310 7 11.07
310 :E; Xi < 335 14 10.58

Xi~ 335 3 3.94
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The test statistic is computed from Equation 9.36, which gives

62 72 142 32

x* = -- +-- +-- + - - 30 = 3.40
4.41 11.07 10.58 3.94
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With a = 0.10 and c - k - 1 = 4 - 2 - 1 = 1, the value x6.~ I) =
2.71 is obtained from Table A4. Because 3.40 > 2.71, reject the hypothesis
that the measurements are from a normal distribution.

Note that in Example 9.16, application of the chi-square test led to
rejection of the hypothesis that the measurements are from a normal dis­
tribution with mean 310 and standard deviation 10. But this did not rule
out the possibility that the measurements are from a normal distribution
with some other parameter values. In the present example, however, the
modified chi-square test led to rejection of the hypothesis that the mea­
surements are from a normal distribution with unspecified parameters.

9.6.2 Kolmogorov Test
The Kolmogorov test, also known as the Kolmogorov-Smirnov test, can

be used to test goodness-of-fit for both discrete and continuous distribu­
tions. Let F(x) be the true cdf of the random variable X, and let F*(x) be
a completely specified cdf which is the hypothesized distribution. It is of
interest to test the hypothesis given in Equation 9.33. The Kolmogorov test
compares the empirical cumulative distribution function G(x) from the ran­
dom sample (Section 3.1.1) with the hypothesized cdf F*(x). The empiri­
cal cdf is a function of x, which equals the fraction of the observations Xj
that are less than or equal to x for each x, -00 < x < 00. If there is not
good agreement between G(x) and F*(x), then Ho in Equation 9.33 is
rejected.

The Kolmogorov test is conducted as follows. Let the test statistic T*
be the greatest (denoted by "sup" for supremum) absolute distance
between G(x) and F*(x); that is,

T* = sUPIF*(x) - G(x) I
x

(9.37)

The supremum requires comparing F*(x) to G(x) both just before and just
after each step in G(x). This is accomplished by computing both
IF*(xj) - G(Xj) I and IF*(xj) - G(xj-l)1 and then letting T* be the largest
of these absolute differences over all i = 1, 2, ... , n. For a completely
specified distribution, values of F*(xj) are computed by applying Equation
2.3 or 2.5. For a normal distribution F*(x) is defin¢ by Equations 2.33
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and 2.35, with computations illustrated in Example 2.5. Ho is rejected at
the a level of significance if T* exceeds WI-a' obtained from Table A17.

Example 9.18 Rework the problem outlined in Example 9.16 by
using the Kolmogorov test instead of the chi-square test. Use the a = 0.10
level of significance.

The empirical cdf and values of the cdf F*(x) for the hypothesized nor-
mal distribution N(310, (10)2) are displayed in Table 9.14. From Equation
9.37, the test statistic, T* = 0.222, is the largest value from the last two
columns of Table 9.14. With n = 30 and a = 0.10, the value WO.90 =

TABLE 9.14

Empirical and Hypothesized cM Values

Ordered
Obsenadon .a1aes orx

IlIIIIIber (xJ G(xJ F·(xJ IF·(xJ - G(x.)1 IF·(xJ - G(~-I)I

1 267 1/30 0.000 0.033 0
2 270 2/30 0.000 0.067 0.033
3 278 3/30 0.000 0.100 0.067
4 280 4/30 0.001 0.132 0.099
5 283 5/30 0.003 0.164 0.130
6 284 6/30 0.005 0.195 0.162
7 287 7/30 0.01l 0.222 0.189
8 296 8/30 0.081 0.186 0.152
9 299 9/30 0.136 0.164 0.131

10 300
11 300 11/30 0.159 0.208 0.141
12 304 12/30 0.274 0.126 0.093
13 306 13/30 0.345 0.088 0.055
14 313 14/30 0.618 0.151 0.185
15 314
16 314 16/30 0.655 0.122 0.188
17 315 17/30 0.691 0.124 0.158
18 316
19 316
20 316 20/30 0.726 0.059 0.159
21 317
22 317 22/30 0.758 0.025 0.091
23 319 23/30 0.816 0.049 0.083
24 321 24/30 0.864 0.064 0.097
25 325 25/30 0.933 0.100 0.133
26 326 26/30 0.945 0.Q78 0.112
27 331 27/30 0.982 0.082 0.115
28 342 28/30 1.000 0.067 0.100
29 351 29/30 1.000 0.033 0.067
30 354 1 1.000 0.000 0.033
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0.218 is obtained from Table A17. Because 0.222 > 0.218, Ho: F(x) =
F*(x) is rejected at the a .,; 0.10 level of significance. This indicates that
the measurements are probably not from the normal distribution with
mean 310 and standard deviation 10. This is consistent with the conclusion
reached in Example 9.16.

Examples 9.16 and 9.18 are based on the same data to allow compari­
son of the results. Both the chi-square test and the Kolmogorov test result
in rejecting Ho at the a = 0.10 level of significance. In general. Conover
(1980) suggests that the Kolmogorov test may be preferred over the chi­
square test if the sample size is small. because exact critical values are
readily available for the Kolmogorov test. Conover also states that the
Kolmogorov test is more powerful than the chi-square test for many situa­
tions. For further details and comparisons, see Slakter (1965).

9.6.3 Tests for Normality

The introduction to this section mentions a class of goodness-of-fit tests
that do not require the hypothesized distribution F*(x) to be completely
specified. Two tests of this type are presented for testing the hypothesis
that the data are from a normal distribution with unspecified parameters.
These are the Lilliefors test. and the Shapiro-WOk test. For each of these
tests. F*(x) is a normal distribution. where fJ. and u'l are not specified. The
observations Xi are used to estimate fJ. and u'l.
9.6.3.1 De Lilliefors Test for Normality

The Lilliefors test for normality. developed by LiUiefors (1967), is a
modification of the Kolmogorov test. It is of interest to test the hypothesis

Ho : The random sample comes from a normal distribution with
unspecified mean and variance

against the alternative

HA : The distribution is not normal

(9.38)

The test is conducted as follows. Let Xlt X2, ••• , Xn represent the values of
a random sample of n independent observations of the random variable X
with unknown cdf F(x). Compute the standardized sample values

Zj=
Xj-X

s
0=1,2.... ,n)
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where i and s are the sample mean and sample standard deviation, respec­
tively. The test consists of letting F*(z) be the standard normal cdf and
then comparing it to the empirical cdf of the Zj's, denoted by G(z). The
Lilliefors test statistic is the greatest difference between F*(z) and G(z);
that is,

T* = sup IF*(z) - G(z)1
7

(9.39)

T* is the largest of all values 1F*(Zj) - G(Zj)1 or IF*(Zj) - G(Zj_I)I.
Values of F*(Zj) are obtained from Table A3. Ho is rejected at the a level
of significance if T* exceeds WI-a' obtained from Table A18.

Example 9.19t Percent uranium values for 17 cans of ammonium
diuranate (ADU) scrap are as follows:

35.5 78.2 29.4
79.4 37.1 29.8
35.2 48.4 28.4
40.1 28.6 23.4
25.0 75.5 77.0
78.5 34.3

Use the Lilliefors test to test the hypothesis that these observations are
from a normal distribution. Use the a = 0.05 level of significance.

For the 17 observations, the sample mean and standard deviation are
i = 46.11 and s = 21.83. The ordered Xi and the corresponding values of
Zj, F*(Zj), G(Zj), IF*(Zj) - G(Zj)1 and IF*(Zj) - G(Zj-I)1 are displayed in
Table 9.15.

From Table 9.15, the Lilliefors test statistic is T* = 0.257. For n =
17 and a = 0.05, the value WO.95 = 0.206 is obtained from Table A18.
Because 0.257 > 0.206, the null hypothesis of normality is rejected at the
a = 0.05 significance level. This indicates that the observations are proba­
bly not from a normal distribution.

9.6.3.2 The Shapiro-WOk Test for Normality

The Shapiro-WOk test for normality was developed by Shapiro and
Wilk (1965, 1968). The test requires a table of coefficients to compute the
test statistic in addition to a table of critical values.

tThe data for this example are from Jaech (1973).
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TABLE 9.15

Lilliefors Test Computations

Ordered

Xf It F*(zJ G(zJ IF*(zJ-G(zJl !F*(zJ-G(It-I)1

23.4 -1.04 0.149 1/17 0.090 0.149
25.0 -0.97 0.166 2/17 0.048 0.107
28.4 -0.81 0.209 3/17 0.033 0.091
28.6 -0.80 0.212 4/17 0.023 0.036
29.4 -0.77 0.221 5/17 0.073 0.014
29.8 -0.75 0.227 6/17 0.126 0.067
34.3 -0.54 0.295 7/17 0.117 0.058
35.2 -0.50 0.309 8/17 0.162 0.103
35.5 -0.49 0.312 9/17 0.217 0.159
37.1 -0.41 0.341 10/17 0.247 0.188
40.1 -0.28 0.390 11/17 0.257 0.198
48.4 0.11 0.544 12/17 0.162 0.103
75.5 1.35 0.911 13/17 0.146 0.205
77.0 1.42 0.922 14/17 0.098 0.157
78.2 1.47 0.929 15/17 0.047 0.105
78.5 1.48 0.931 16/17 0.010 0.049
79.4 1.53 0.937 1 0.063 0.004

The Shapiro-Wilk test of the hypothesis given in Equation 9.38 is con­
ducted as follows. Let Xl> X2, •••, Xn represent the values of a random sam­
ple of n independent observations on the random variable X. Order the
sample observations from smallest to largest

where x(i) denotes the ith order statistic (i.e., the ith ordered observation).
Then the test statistic is given by

(9.40)

where

b = ±aj (x(n-j+O - x(i»
i-I

s = the sample standard deviation
k = n/2 if n is even or (n- 1)/2 if n is odd
aj = coefficients (which depend on n) obtained from Table A19

The null hypothesis of normality is rejected at the a level of significance if
W· is less than the critical value Wa obtained from Table A20. This table



QiAPTER 9 NONPARAME1'RIC METHODS

includes critical values for n ~ 50. Critical values for larger values of n
are not available. One of the other tests for normality is recommended
when the sample size is larger than 50.

In addition to the original articles by Shapiro and Wilk, detailed
descriptions of the Shapiro-Wilk test are given by Conover (1980), Hahn
and Shapiro (1968), and Jaech (1973). The reader is referred to these
sources for additional examples and discussion.

Example 9.20 Rework the problem outlined in Example 9.19 by
using the Shapiro-Wilk test.

The ordered data and other computational steps are summarized in
Table 9.16. The sample standard deviation is 21.83. The values of aj are
obtained from Table A19 for n = 17.

TABLE 9.16

Calculations for Shapiro-Wilk Test for Normality

Ordered
data, r'l x'"-I+I) x'"-I+I) - r'l 8t 8t x'"-I+I) - sf'>

1 23.4 79.4 56.0 0.4968 27.8208
2 25.0 78.5 53.5 0.3273 17.5106
3 28.4 78.2 49.8 0.2540 12.6492
4 28.6 77.0 48.4 0.1988 9.6219
5 29.4 75.5 46.1 0.1524 7.0256
6 29.8 48.4 18.6 0.1109 2.0627
7 34.3 40.1 5.8 0.0725 0.4205
8 35.2 37.1 1.9 0.0359 0.0682

9 35.5 b - 77.1796
10 37.1
11 40.1
12 48.4
13 75.5
14 77.0
15 78.2
16 78.5
17 79.4

The test statistic is computed from Equation 9.40, which gives

W* = {77.1796)2 = 0.781
(17 - 1){21.83)2



REFERENCES

With n - 17 and a- 0.05, the value WO.05 - 0.892 is obtained from
Table A20. Because 0.781 < 0.892, the null hypothesis is rejected. This
indicates that the observations are probably not from a normal distribu­
tion. This agreeswith the conclusion. reached in Example 9.19. .. . \

In this presentation of. goodness-or-fit .tests, three tests have . been
applied to test the hypothesis that the observations in a random sample are
from an unspecified nomal distribution. These .are the ·modified chi-square
test, the Lilliefors test and theShapir~Wilktest. The question ariSes as to
whicl1 of these tests to use in practice. . .

Based on power comparison studies by Shapiro, Wille, and· Chen· (1968)
and LeBrecque (1977), the Shapir~Wilk test appears to be superior t~ the
~hi-square and Lilliefors tests ininany situations. Althoughth~r~···arc

diff~rences in power among these tests, in practice these differences are
probably of ·little concern. The reason goodness-of-fittests for.··normality
are performed· is usually to determine whether the assumptions underlying
parametric statistical analysis techniques are valid. Ifagoodness-of-fit test
casts doubt on the validity' of the normality assumption" use of non-
parametric techniques is recommended. .. .. . .

It is important to note that in practice, .observations probably never
come from a distribution that can be exactly characterized bya particular
(hypothesized) distribution. As a consequence, aIniostanygoodness~of-fit

test will result iit rejection of the null hypothesis if the number of o~serva­

tions is very large. Thus, the outcome of such a test should be carefully
interpreted. Goodness-of-fit tests provide a criterion for determining
whether the agreement between the true and hypothesized distributions is
close enough that the hYI:oothesized distribution provides a satisfactory
approximation to the true distribution. If the approximation is deemed sat­
isfactory, then statistical methods based on the hypothesized distribution
can be applied with some assurance that the results (inferences) are valid.
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CHAPTER 10

Simultaneous Inference and
Detection of Outliers

10.0 INTRODUCI10N

In this chapter, the statistical concept introduced in Chapter 5 with
the Duncan, Bonferroni, or Scheffe procedures is further expanded. This is
the concept·of simultaneous inference, also called multiple comparisons. In
the analysis of variance when the null hypothesis of no differences among
group means is rejected, possible alternative hypotheses are often examined .
so that those best explaining the data can be selected. However, using data
to suggest hypotheses and/or using the same data many times to test
hypotheses violates the required assumptions of independent data sets and
a priori hypotheses. The question that immediately arises is whether the
same results would be obtained if the experiment were repeated. By ran­
domness alone, many data sets will have some anomalies that appear to be
significant. The techniques of simultaneous inference protect against find­
ing, by chance, a spurious result due to a particular pattern of randomness
that is manifest in only one data set. This chapter presents some of the
statistical concepts that form the foundation of simultaneous inference.

This chapter also presents statistical methods that are used to test for
outliers in a set of data. An outlier is an observed or measured value that
is unusually large or small compared to other values obtained under the
same conditions, or when compared with prior knowledge of the range of
values that would be expected under similar conditions. Statistical methods
for detecting outliers involve simultaneous inference because the need for
such methods is determined after examining the data set. Although there
is overlap in the underlying philosophy and theory of simultaneous infer­
ence and testing for outliers (e.g., the same set of data might be used
repeatedly to test various hypotheses suggested by the data), the subject of
testing for outliers is broad enough and sufficiently important to be treated
separately.

As with many of the other topics presented in this book, a large body
of published literature exists for both simultaneous inference and testing
for outliers. Thus, this chapter is intended to be a brief introduction to the
topics. The reader interested in studying either of these topics in greater
detail should consult some of the listed references.

537
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10.1 THE SIMULTANEOUS INFERENCE PROBLEM
Often, in practice, a single set of data is used to investigate many

issues. For example, suppose that data are available on the percent 23SU in
20 batches of uranium oxide. A production supervisor is interested in com­
paring individual batches with specifications, making comparisons among
batches, and comparing groups of batches that might be blended. An
inspector, on the other hand, is interested in comparing results of verifica­
tion measurements with the operator's values for the 20 batches. Thus, not
only will multiple statistical comparisons be performed, but the particular
comparisons to be made will be chosen after the data are reviewed.
Although such practices violate the assumptions underlying statistical test­
ing, it is understandable that the production supervisor and the inspector
are interested in extracting as much information as possible from these
data. On the other hand, if a multiplicity of tests is applied to the same
data set, the chances increase of finding at least one statistically significant
difference even if no true differences exist. Before taking action on the
basis of results from one of a multiplicity of tests, allowance for the possi­
ble errors in using a multiplicity of tests must be made.

Suppose that verification data are available on 20 batches of uranium
oxide. Each batch is tested at the 0.05 significance level to check whether
the percent 235U agrees with the operator's values. The difference between
the two estimates for one of the batches is found to be significantly differ­
ent from zero at the 0.05 significance level. The 0.05 significance level
implies that, in the long run, a Type I error will be made 5% of the time
in the inference from a test. If 20 such tests are performed, it is expected
that one significant difference would be found when no true differences
exist. However, the probability that one or more Type I errors will be
made in such a situation is 1- (0.95)20 = 0.64 (Section 10.2.1). In this
example, the correct approach is to simultaneously make the 20 compari­
sons in such a way that the simultaneous inference can be made with an
overall Type I error probability of 0.05. The procedures of simultaneous
inference provide statistical tools for making multiple tests at a specified
overall significance level. In the example above, rather than performing 20
tests each at the 0.05 significance level, one test of 20 comparisons would
be performed with an overall 0.05 significance level.

10.1.1 Error Rates

When a number of statistical statements are considered simultaneously,
they are collectively called a family of statements. The statements can be
significance statements from hypothesis testing, statements about confi­
dence intervals, or a combination of these. Let N be the number of state­
ments in the family, and let n be the number of incorrect statements in the
family. The error rate of the family is n/N. The error rate is a random
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variable whose distribution depends upon the test statistics used and the
kinds of statistical statements in the family. To use the concept of error
rate to assess the collective statistical significance of statements in the
family, a summary criterion is needed that does not depend upon the dis­
tribution of the error rate. Two such criteria are (1) the probability of a
nonzero error rate, and (2) the expected error rate. In simultaneous infer­
ence, probabilities associated with one or both of these criteria are fixed,
and then individual statements within the family are adjusted so that the
probabilities are satisfied. More details on this approach to simultaneous
inference are given in Miller (l966).

The first criterion, the probability of a nonzero error rate, is defined
equivalently as the probability that nlN or n is greater than zero. To have
a specified probability of a nonzero error rate for a large family, the prob­
ability of an error for each statement in the family must be much smaller
than that specified for the family. The simultaneous significance level is
equal to the probability of the nonzero error rate.

The Bonferroni inequality gives a bound on how much the individual
statement probabilities have to be reduced to yield a specified probability
of a nonzero error rate. The Bonferroni inequality is

Pr(StS2'" SN) ~ 1 - [Pr(S;) + Pr(Si) + ... Pr(SN)] (lO.I)

where Sj is a statement in a family of size N, and S; is its complement.
This inequality can be used to determine how much to adjust probabilities
corresponding to individual statements to achieve an upper bound on the
simultaneous (collective or overall) significance level.

Example 10.1 Suppose that there are three material control areas
within a nuclear fuel facility. Each control area has been tested separately
for material balance. From this evaluation, the probability is 0.98 that no
material is missing from Area 1, 0.96 for Area 2, and 0.975 for Area 3.
What is the plant-wide probability that no loss has occurred?

Let Sj represent the statement that no loss has occurred from Area i.
Then S; is its complement, the statement that a loss has occurred. Because
Pr(S.) = 0.98, it follows that Pr(S;) = 0.02. Likewise, Pr(Si) = 0.04
and Pr(S3) = 0.025. Pr(S.S2S3) is the simultaneous probability that no
loss has occurred from any of the three material control areas. Applying
the Bonferroni inequality, given by Equation 10.1,
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Thus, the Bonferroni inequality indicates that the probability is at least
0.915 that there is no plant-wide loss.

This example illustrates how the Bonferroni inequality provides a
bound on the probability for a simultaneous statement. There are other
inequalities available that result in tighter bounds than the Bonferroni, for
example that of Gabriel (l978). These are often more difficult to imple­
ment, and the Bonferroni inequality has been found to be close to the true
value if the Pr(Si) are small and N is not too large. In many safeguards
applications, however, N may be quite large, making the Bonferroni in­
equality too conservative.

The second criterion for assessing the overall error rate in a family is
the expected error rate. The expected error rate has the desirable property
of being the average of the marginal error rates. The expected error rate
for Example 10.1 is the average of 0.02, 0.04 and 0.025; that is, 0.028.
This average is interpreted differently than the 0.915 bound obtained from
the Bonferroni inequality. One minus the expected error rate,
(l - 0.028) = 0.972, is a measure of average performance over the
three material control areas; the Bonferroni value 0.915 is a lower bound
on the probability that no loss has occurred in any of the three control
areas.

10.1.2 Allocation of Error
The two criteria presented in the previous section for assessing simulta­

neous probabilities give methods for combining probabilities of individual
statements within a family into a single probability for the entire family.
This process can be used in reverse; that is, a probability for the family
can be specified and the criteria can be used to determine bounds on prob­
abilities of individual statements. This reverse process is typically used for
comparing group means in analysis of variance applications (Section
5.1.4). In an analysis of variance, the family is typically large, such as the
number of possible ways of comparing group means. Rather than making
all possible comparisons, this problem is typically solved in the following
way: (1) a subset of the family of probability statements is chosen (such as
those statements that include only pairwise comparisons of means), and
(2) the probability is allocated equally among the statements in the subset.

Example to.2 Consider a situation similar to the one described in
Example 10.1; that is, a nuclear fuel fabrication facility has three material
control areas. Assume that inventory balances are performed by a single
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team which inventories one control area in each of three successive
months. It is necessary to report a plant-wide possible loss as soon as it is
detected rather than to wait until all three inventories are completed. A
protocol is needed that results in a plant-wide false alarm rate (signifi­
cance level) of 0.1 O. Using equal allocation of error and the Bonferroni
inequality, the protocol calls for an alarm whenever any single inventory
shows a discrepancy at the 0.033 significance level, calculated as follows:
Let Sj represent the event of no alarm in Area i when in fact, no material
is missing. The plant-wide probability of no alarm when no material is
missing is Pr(SlS2S3) = 0.90. The required false alarm rate can be
assured by setting the right-hand side of Equation 10.1 equal to 0.90. For
equal allocation, Pr(S;) = Pr(S2> = Pr(S3)' By using Equation 10.1,
0.90 = 1.0 - [Pr(S;) + Pr(S;) + Pr(S3)] = 1.0 - 3Pr(Sj). Solving
for Pr(Sj) gives Pr(Sj) = (1.0 - 0.9)/3 = 0.033 for i = 1,2,3.

The equal allocation concept illustrated in Example 10.2 can be gen­
eralized. Let 1/4 be the simultaneous (family) significance level desired
and assume that n statistical tests are to be made within the family. Then
if the significance level of each of the tests is at most O/4)/n, the Bonfer­
roni inequality is satisfied. This is the rule used in Section 5.1.4 for com­
paring group means.

There are often compelling reasons for not equally allocating the
errors. In Example 10.2, suppose that one of the control areas contains
only containers of fuel pellets and another only uranium oxide powder and
scrap in containers. It is reasonable to assume that a given quantity of ura­
nium pellets is easier to divert than uranium oxide powder or scrap. Thus,
the protocol should allocate the error to provide greater protection against
loss of pellets; that is, a larger significance level (resulting in a more sensi­
tive test) should be used for this area.

The choice between expected error rate or nonzero error rate as a basis
for allocating errors depends on the purpose of allocation and upon con­
vention. Statisticians conventionally use a nonzero error rate for each data
set analyzed, and use an expected (average) error rate for multiple data
sets. As an example, a regional inspector who has responsibility for con­
trolling SNM at several facilities might require using a nonzero error rate
criterion for no diversion of material for each facility and an expected
error rate criterion among facilities within the region.

10.2 SIMULTANEOUS INFERENCE METHODS

The family of statements that are considered simultaneously can be of
two types: those containing correlated statements or those containing
independent statements. When statements of a family are known to be
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independent, exact simultaneous significance levels can be derived. If corre­
lations or dependencies are present, they influence the significance level,
and only bounds can be found for simultaneous significance levels.

Many situations in nuclear material control are composed of indepen­
dent statements. There are two easily identifiable situations in which inde­
pendence is evident. First, independence is assumed when groups of data
are separated in time or space. For example, an inspector might wish to
make a simultaneous statement about the inventory of fuel assemblies at
two power plants in his region. The inventories of these two power plants
are assumed to be independent. Second, independence is sometimes
achieved by removing common factors from data sets. For example, if con­
centrations in evaporation ponds have annual cycles due to weather condi­
tions, cyclic effects are removed by subtracting an appropriate function of
time. Then measurements on evaporation ponds are compared by methods
for independent data.

In addition, when a number of independent tests of significance are
reviewed, it sometimes happens that none are individually significant, but
the aggregate gives the impression that simultaneously the individual levels
of significance are consistently lower or higher than would be obtained by
chance alone. Some of the techniques presented in this section yield exact
probability statements for independent aggregates. As mentioned previ­
ously, however, correlations will influence the significance levels. There­
fore, if independence cannot be assumed, or if there is some doubt about
independence, the methods that allow for correlations should be used.

10.2.1 Repeated Normal Statistics
When the data are assumed to be normally distributed, and when the

standard deviation is known theoretically (or has been estimated to an
accuracy that has led to the use of a value as a theoretical result) rather
than computed from data, the normal distribution is used to construct
confidence intervals for means or for a linear combination of means. Con­
sider a family of N confidence interval statements with each confidence
interval derived from a normal distribution. Let Sj represent the event that
the ith confidence statement is true, for i = 1, 2, ... , N, and assume that
the confidence intervals are constructed at the l00Pi% confidence level.
Then the nonzero error rate for the ith statement is 1 - Pj. If the Sj are
not assumed to be independent, then a lower bound for Pr(SIS2" . SN) is
given by Equation 10.1, which can be expressed in the form

N
Pr(SIS2' .. SN) ~ 1 - ~ (l - Pi)

i-I

Thus, an upper bound for the probability of a nonzero error rate for the
family is
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N
PER = 1 - Pr(SIS2' .. SN) ~ ~ (I - Pi)

i-I

However, if the Si are independent, then

and the probability of a nonzero error rate for the family is

If all Pi are equal, say Pi = p, Equation 10.3 becomes 1 - pN.

(10.2)

(10.3)

Example 10.3 Suppose that the quality control staff at a fuel fabrica­
tion plant keeps the scale used to weigh fuel pellets calibrated so a fuel
pellet weight obtained from this scale has probability 0.95 of being within
0.1 g of the true weight of the pellet. What is the confidence level for the
statement that all 10 pellets sampled from any tray of pellets will have
their weights reported to within 0.1 g of their true weights?

If the intervals are independent and the scale readings are independent,
the nonzero error rate (computed from Equation 10.3) is
1 - (0.95)10 = 0.40, and the simultaneous statement can be made at
the 60% confidence level.

If a new scale is purchased and a pellet weight read from the new scale
has probability 0.995 of being within 0.1 g of the true pellet weight, then
Pr(SIS2'" SIO) = (0.995)10 = 0.951, and the quality control staff can
be 95% confident that all 10 sample pellet weights from any tray will be
simultaneously accurate to within 0.1 g of their true weights.

10.2.2 Bonferroni t Statistics

Whenever the standard deviation is estimated from data being ana­
lyzed, Student's t-distribution is used instead of the normal to construct
confidence intervals for means. In Chapter 3, it is shown that a
l00(l-a)% confidence interval for the mean, based on a sample of size n,
is constructed as x ± tl- a /2(n - 1)(s/J'D), where x and s are the sam­
ple mean and sample standard deviation, and tl-a /2(n - 1) is obtained
from Table A5.
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The principle of equal allocation of errors (Section 10.1.2) can be used
to make a simultaneous confidence statement for k samples. Let Xio Sio and
nj be the mean, standard deviation, and sample size of the ith sample,
i = 1, 2, ... , k. The sample results may be correlated. The formula

(10.4)

gives a confidence interval for the ith mean with a simultaneous confidence
level greater than or equal to 100(1-a)% over the k samples. This proce­
dure results in individual confidence intervals that are wider than those
that would result if 1{1-a/2)(nj - 1) had been used.

10.2.3 Studentized Maximum Modulus
A number of studentized statistics are found in the simultaneous infer­

ence literature. All methods based on studentized statistics require special
tables, and many of the tables are not conveniently available. The studen­
tized maximum modulus method, named for the distribution from which
tabled values are derived, is presented here because a good table of
modulus values has been published by Bechhofer and Dunnett (1982).

For the studentized maximum modulus method, all sample groups in
the family of statements must be independent and must have the same
standard deviation. Thus, this procedure differs from the repeated normal
procedure that requires known standard deviations and from the
Bonferroni t procedure that allows different standard deviations estimated
from the data. The studentized maximum modulus gives shorter confi­
dence intervals than the Bonferroni t intervals and is used when the vari­
ances can be assumed to be equal.

Consider N samples with means XIt X2" .. , XN and sample sizes nit
n2 ... nN, and with unknown underlying variance r?-. Let s2 (the within­
class mean square in analysis of variance terminology) be an independent
estimate of r?- with JI degrees of freedom. A simultaneous set of N confi­
dence intervals with a simultaneous confidence level of at least
100(1 - a)% is constructed from the formula

(10.5)

where ma,N,. is found in a table of the studentized maximum modulus,
such as that in Bechhofer and Dunnett (1982).

10.2.4 Chi-Square Sums
Two theorems from mathematical statistics allow the chi-square distri­

bution to be applied to simultaneous inference problems where the state-
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ments of a family are known to be independent. The first of these
theorems and an example of its application are presented below.

Theorem 10.1 The sum of independent chi-square variables is also a
chi-square variable, with degrees of freedom equal to the sum of the
degrees of freedom of the individual variables in the sum.

Example 10.4 Suppose that a regional inspector is interested in the
accuracy and precision of six scales used to weigh fuel pellets at facilities
in his region. On each trip to each facility he weighs and records the
weight of the same calibration standard.t The first step in his data analy­
sis is to apply the chi-square goodness-of-fit test (Section 9.6.1) to deter­
mine whether the weighing errors for each scale are normally distributed.
The six chi-square values (and associated degrees of freedom) are 6.8(4),
8.3(5), 7.8(5), 6.5(4), 10.1(6), and 7.2(4). Individually, each of the
goodness-of-fit tests is significant at a level between 0.1 and 0.2
(Table A4); thus, at the 0.05 level of significance, no single scale shows a
lack of normality in weighing errors. However, because all six of the chi­
square values have similar levels of significance, these results should be
further investigated. If the results were due to chance alone, it is expected
that the significance levels would be more widely distributed between zero
and unity. Summing the chi-square values gives 46.7 with 28 degrees of
freedom, which is significant at the 0.025 level (Table A4). This indicates
that the weighing errors for the scales are probably not all from normal
distributions.

This example illustrates how sometimes a simultaneous test detects
effects that are too subtle to be found by individual tests. Note, however,
that these results do not indicate the cause of the overall lack of fit. The
inspector will have to design a more sophisticated experiment to determine
how the weighing error distributions differ from a normal distribution.

The second theorem allows extension of this chi-square sum technique.

Theorem 10.2 The square of a standardized normal variable is a chi­
square distributed variable with one degree of freedom.

Many test statistics, such as those used in nonparametric tests
(Chapter 9), are either asymptotically normally distributed or can be
transformed to be approximately normally distributed. For example,

tNote that these data may not be rounded. See Jaech (1974).
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Student's t-distribution with degrees of freedom greater than 30 is ade­
quately approximated by a standard normal distribution. Whenever several
test results are available and each is a standardized normal variable,
Theorem 10.2 followed by Theorem 10.1 can be used to make a simulta­
neous probability statement about the pooled test results.

Example 10.5 In Example 9.2, assume that measurements of mean
percentage U02 in lots of uranium oxide powder are tested for randomness
using the sign test, and that sample sizes are large enough to use the nor­
mal approximation given in Equation 9.2. Further assume that five
batches are tested, each having a different mean percentage U02, so the
data cannot be combined. The standard normal deviates from testing for
too many runs are found to be 1.46, 1.51, 1.60, 1.39, and 1.54. Individu­
ally, these tests indicate nonrandomness at significance levels between
0.055 and 0.082 (Table A3). Thus, the individual hypotheses of random­
ness would not be rejected at the typically chosen 0.05 significance level.
Note, however, that the test statistics and their significance levels are quite
similar, and by chance alone, it is unusual to observe five independent test
statistics with practically the same significance level. By Theorem 10.2, the
square of each standard normal deviate has a chi-square distribution with
one degree of freedom. Squaring and summing these standard normal devi­
ates yields 11.28 which, by Theorem 10.1, is an observation from
the chi-square distribution with 5 degrees of freedom. The value
X6.9s(5) = 11.1 is obtained from Table A4. Because 11.28 > 11.1, the
five runs tests simultaneously indicate nonrandomness at the 0.05 level of
significance.

10.2.5 Fisher's Method
Fisher (1970) showed that a function of the significance level associ­

ated with a statement has approximately a chi-square distribution with two
degrees of freedom. This, in combination with Theorem 10.1, forms the
basis of Fisher's combination of probabilities test of significance. Let Pi
represent the probability (significance level) associated with the ith state­
ment in a family of n independent statements. Then the quantity

n

x2 = - 2 ~ In (Pi)
i-I

(10.6)

has approximately a chi-square distribution with 2n degrees of freedom.
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This result can be used to test whether the collective results of multiple,
independent hypothesis tests indicate an overall outcome that would be
unlikely to occur if each of the individual hypotheses were true.

Example 10.6 Consider the situation described in Example 10.5. The
significance levels from Table A3 associated with the five standard normal
variables given in that example are 0.072, 0.066, 0.055, 0.082, and 0.062.
By applying Equation 10.6,

x2 = -2[ln(O.072) + In(O.066) + In(O.055)
+ lnCO.082) + In(O.062)] = 27.1

This chi-square value has 10 degrees of freedom. The value
x6.9S<10) = 18.3 is obtained from Table A4. Because 27.1 > 18.3, we
conclude that the individual outcomes of all five tests should not have been
so extreme (near statistical significance) if the individual hypotheses
of randomness were true. This is the same conclusion reached in
Example 10.5.

10.3 MULTIVARIATE STATISTICAL METHODS

Multivariate analysis is concerned with statistical procedures that are
used when multiple variables are measured on each of a number of experi­
mental units. These general procedures are analogous to univariate statisti­
cal tests and allow for a correlation structure among the multiple vari·
abIes. A comparison of some multivariate methods and other statistical
techniques for use in certain nuclear material accounting situations is
given by Picard, Goldman, and Shipley (1982) and Telford (1982). In
nuclear material management, an experiment might consist of taking an
annual inventory, and the variables are inventory differences for each stra­
tum within the inventory or each control area. (Typical strata of an inven­
tory of a fuel fabrication plant might be uranium hexafluoride, uranium
oxide powder, pellets, scrap powder, scrap pellets, sludges, air ftlters, solid
waste, liquid waste, fuel rods, and fuel assemblies.) The multivariate statis­
tical tests are used to test for significant differences between such inven·
tory differences or to compare an inventory to some standard.

10.3.1 Hotelling's T2-Test

Hotelling's T2·test is an extension of Student's t-test (Section 4.2.2).
To extend Student's t-test to a multidimensional random variable, each Xi
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is replaced by a vector of measurements !j with p components. This vector
is assumed to follow a multivariate normal distribution, discussed in Sec­
tion 2.6.4.2, with a nonsingular covariance matrix. The null hypothesis is

and the two-sided alternative is

For example, ILj might be the expected yearly inventory difference for the
ith stratum of an inventory, and the Cj'S might be zeros. Then the null
hypothesis is that the expected inventory difference for each stratum is
zero, and the alternative is that not all of these expected values are zero.
The n replicate observations might be quarterly inventories.

The mean vector I!: and the covariance matrix ~ of a multivariate dis­
tribution are discussed in Section 2.6.3. Sample estimates Kand ~ can be
calculated from the formulas given in Section 3.6.1., Let E represent the
vector containing elements Cj. The null hypothesis is rejected if

T2 = n (x-C)'S-l(x-C) > p(n - 1) F1- (p, n-p) (10.7)
- - - - - n-p a

where Fl-a(P, n - p) is obtained from Table A6. Note that n > p obser­
vations are required for this test method.

Example 10.7 Consider a low enrichment fuel fabrication plant with
a three strata inventory: uranium hexafluoride feed material, pellets, and
scrap. Inventories are required annually, but informal inventories are taken
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quarterly. Use Hotelling's T2·test to test the null hypothesis that the
annual expected inventory difference for each stratum is zero. Use the
a = 0.05 level of significance. In this situation, there are n - 4 replicates
and p = 3 strata or components. The data are given in Table 10.1.

TABLE 10.1

Quarterly Inventory Differences (kg)

Quarter
Strata 1 2 3 ..
Feed 17.2 15.0 -11.7 7.2
Pellets -1.0 0.3 12.6 -2.7
Scrap 4.9 -3.1 -3.5 3.6

The sample vector of average inventory differences for this year by
stratum is

[

6.9]
K= 2.3

0.5

and the sample covariance matrix is

1
172.58 -81.09 30.501

§ = """81.09 48.66 -21.34
30.50 -21.34 19.31

The inverse of the sample covariance matrix is

1
0.0287 0.0542 0.01461

§-l = 0.0542 0.1423 0.0716
0.0146 0.0716 0.1079

The statement of the problem for this example implies that the vector c
has all zero elements. Thus, the left-hand side of Equation 10.7 is -
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or

[

0.0287 0.0542

T2 = 4[6.9,2.3,0.5] 0.0542 0.1423
0.0146 0.0716

0.0146] [6.91
0.0716 2.3 = 16.52

0.1079 0.5

With numerator degrees of freedom p = 3, denominator degrees of free­
dom (n - p) = I, and a = 0.05, the value 216 is obtained from
Table A6. Thus, the right-hand side of Equation 10.7 is

P~: := ~~ F1-a(p, n - p)= 3\3) (216) = 1944

Because 16.52 < 1944, the null hypothesis of zero inventory differences by
strata is not rejected at the 0.05 level of significance.

On occasion, the covariance matrix is available from historical data or
from theoretical considerations. In such a situation, this matrix is assumed
known rather than estimated. Then the right-hand side of Equation 10.7 is
replaced by the quantile of a chi-square distribution for the desired signifi­
cance level with p degrees of freedom. In Example 10.7, the computed T2

value is 16.52. With three degrees of freedom and a = 0.05, the value
X6.9S(3) = 7.81 is obtained from Table A4. Note that if the covariance
matrix had been assumed known rather than estimated, the null hypothesis
would have been rejected, leading to the opposite conclusion from that
reached in the example. This illustrates the decrease in sensitivity that
results from the use of estimates of the covariance matrix based on small
samples.

A significant T2 statistic gives no indication of which of the components
(strata) led to the rejection of the null hypothesis. Inherent in Hotelling's
T2-test is a way of controlling the simultaneous significance level for all
possible tests on linear combinations of means. Linear combinations are
described by use of a vector of coefficients~' = [alt a2, ... , ap]. In Exam­
ple 10.7, the second stratum can be isolated for hypothesis testing by using
the coefficients [0, I, Ol, and the sum of all strata inventory differences
can be tested using the coefficients [I, I, 1]. The simultaneous tests of all
possible hypotheses of the form

Ho : ~'l!:=~'E

HA: ~'l!:*~~
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can be performed by comparing the absolute value of the statistic

a' (x -C).Jii
t(a) = - - - -

- ~a'Sa

with the critical value

551

(10.8)

If t(~) exceeds the critical value, the null hypothesis is rejected at the a
level of significance.

Example 10.8 Using the data from Example 10.7, test the hypothesis
that the sum of all strata inventory differences is zero. In this case, ! is a
vector of ones and E is a vector of zeros. The value TJ.9s(3,l) =
[(3)(3)/(1)] FO.9S(3,l) = 1944 is computed in Example 10.7; thus,
T\_Q = ~1944 = 44.1. The denominator of Equation 10.8 is computed as

Then

1

172.58
a'Sa=[I,I,I] -81.09
- -- 30.50

-81.09 30.50] [II
48.66 -21.34 1 = 96.69

-21.34 19.31 1

6.91
[1,1,1] 2.3.J4

t~) = 0.5 = 19.4 = 1.97
~96.69 9.83

Because 1.97 < 44.1, the null hypothesis is not rejected at the 0.05 level of
significance.

Because Equation 10.8 is a simultaneous test for all possible choices
of !, the components of ! can be chosen after the data are examined. If one
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of the strata in Example 10.7 had yielded a negative inventory difference,
the total absolute inventory difference would be computed by assigning a
value of - 1 rather than 1 to the corresponding element of .!. To test the
hypothesis that the total absolute inventory difference does not exceed 5
kg, set .!',£ -= 5. Because .! '(K - ,£) = .!'K- .!',£, it is not necessary to
assign any values to the components of ,£, and the numerator of Equation
10.8 becomes (.!'K - 5).Jii.

10.3.2 Extensions of Hotelling's T2•Test

Hotelling's statistic given by Equation 10.8 can be extended to give
multivariate confidence regions for means. Another extension allows two
multivariate mean vectors to be compared. The null hypothesis for this
extension is Ho: ~ 1 = ~ 2. This version of Hotelling's statistic might be
used to compare inventory differences (such as those described in Example
10.7) for changes between years. The extension to more than two samples
results in the one-way multivariate analysis of variance, which might be
used to compare inventory differences for many years. Samples from
several years at each of several facilities could be analyzed using a two-way
multivariate analysis of variance. For the details of these methods, the
reader is referred to texts on multivariate statistical methods, such as
Morrison (1976), Kshirsagar (1972), and Anderson (1984).

10.4 TESTING FOR OUTLIERS

Sometimes there are observations present in a sample that appear to be
inconsistent with other sample observations. Such values may be an
extreme manifestation of the randomness inherent in the data; they may
be the result of such mistakes as deviations from protocol, calibration
errors, computational errors, or errors in transcribing data; or they may be
an indication of uncommon factors of practical importance, such as mal­
functioning equipment, material diversion, or altered records. A data ana­
lyst is sometimes tempted to discard apparently erroneous values because
the loss in precision caused by removing a few good values is small com­
pared to the loss in accuracy that may be caused by keeping even one bad
value. This section provides methods that introduce statistical objectivity
into identifying inconsistent data values.

The subject of statistical methods for identifying outliers has received
much attention in the published literature. Some of the more recent publi­
cations include a comprehensive survey paper by Beckman and Cook
(1983), books by Barnett and Lewis (1985) and Hawkins (1980), and sec­
tions of books by Kinnison (1985) and Huber (1981). The methods
presented in this section are only a small subset of those found in the pub­
lished literature. For additional methods and more detailed presentations,
the reader should consult the above references.
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Statistical tests for outliers generally have three uses: (1) to screen
data routinely in preparation for analysis, (2) to identify the need for a
detailed study of the process that generated the data, and (3) to find
observations that may be of special interest just because they are extreme.
The analyst is faced with two problems. The first is how to ascertain
whether apparently discrepant values are aberrations, or outliers, rather
than an inherent manifestation of random variation in the data. The sec­
ond is to ascertain how much effect deletion or inclusion of suspected
observations will have on statistical results and inferences.

Objective statistical procedures are needed for several reasons,
including the following:

1. Retaining a value that is aberrant may exert a dominating, and
potentially nullifying, effect on the statistical analysis.

2. Values incorrectly determined to be aberrant may contain valuable
information, and their deletion may weaken or bias results.

3. Existence of observations indicated to be outliers by statistical tests
may be due to incorrect assumptions about data structure rather than aber­
rations in the data.

4. An outlier may represent the most meaningful aspect of the data,
and an objective basis for isolating such information is important. Exam­
ples are an inventory difference from a set of inventory differences that is
significantly large, or a response to a cancer treatment from a battery of
treatments that shows a result significantly better than the rest. In this
sense every statistically significant result is an outlier.

5. The Type I error rate, the probability of incorrectly concluding that
a data value is an outlier, should be controlled to a small and pre-assigned
value.

In most outlier tests, the errors are assumed to be normally distributed.
The normality assumption is based to some extent on habit and tradition,
but there is also theoretical support based on the Central Limit Theorem·
and empirical support from experience with measurement results. If the
normality assumption is invalid, the number of false positives (Type I
errors) may be significantly increased. Skewed distributions characteristi­
cally yield excess data values that are either large or small. The lognormal
is a skewed distribution that yields more small than large values. For the
lognormal case, the outlier test is performed on the logarithms of the data
values. In other nonnormal cases, normality may be exactly or approxi­
mately introduced by transforming the observations. Robust and non­
parametric methods are available in the literature for detecting outliers
when no transformation to approximate normality can be found or when
the data are from a discrete distribution. There are also important outlier
tests based on the uniform distribution. For the details of these and other
outlier detection techniques, the reader should refer to Barnett and Lewis
(1985), Beckman and Cook (1983), and Hawkins (1980).
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Statistical methods for detecting outliers involve simultaneous inference
because such methods are inherently a posteriori; that is, the need for such .
a method is determined after examining the data set and the same data set
might be used repeatedly to test for outliers. As noted in previous sections
of this chapter, the Type I error rate must be adjusted to take this into
account. A wide variety of outlier detection methods is available in the
statistIcal literature. Many of these are devised for special problems, such
as outliers from a regression line. The material covered in the following
sections includes: (1) the simplified outlier tests of Dixon (1950), (2) a
set of tests taken from the literature and presented in an article by Grubbs
(1969), and (3) tests based on studentized residuals by Beckman and
Trussel (1974) which are a generalization of the earlier work of Thompson
(1935). The first two sections are based on the model Yi = J.L + Eit which
considers an observation to consist of the sum of an expected value and a
random error. The last section is based on the general linear regression
model introduced in Section 6.3.1.

10.4.1 Methods of Dixon

One of the most commonly used procedurell for identifying outliers is
attributed to Dixon (1950). The tests are based on order statistics, and
their properties are derived by using the theory of order statistics from a
normal distribution. If a sample of size n is arranged in ascending order so
that x(1) ~x(2) ~ ... ~ x(n), then x(i) is called the ith order statistic in the
sample. In particular, x(1) and x(n) are the smallest and largest observations
in the sample. The most sensitive test statistics for determining whether
either the smallest or largest value is an outlier are as follows for different
sample sizes:

Desig-
n SmaUest Largest nation

3-7 (X(2) - x(l»/(X(D) - x(l» (X(D-I) - X(D»/(X(J) - X(D» rIO

8-10 (x (2) - x(J»/(X(D-1) - x(I) (X(D-I) -X(D»/(X(2) - X(D» rll

11-13 (x(3) - x(J»/(X(D-1) - x(I) (X(D-2) - x(D»/(X(2) - X(D» r21

14-25 (X(3) - x(1»/(X(D-2) - x(I) (X(D-2) - x(D»/(X(3) - X(D» r22

Critical values for these test. statistics by sample size are given in
Table 10.2. For the column headed by PIOO(l-a), the probability is a that
the test statistic will exceed the tabulated value, under the assumption that
the sample comes from a normal distribution.

To excise all aberrant values, Dixon (1950) suggests repeated use of
the test statistics rIO, ru, r2h or r22, treating the first suspected observation
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TABLE 10.2

Criteria for Testing for Extreme Valuest

Statistic D P7I p. P,. Pt5 P,. p" p".5

3 0.684 0.781 0.886 0.941 0.976 0.988 0.994
rIO 4 0.471 0.560 0.679 0.765 0.846 0.889 0.926

5 0.373 0.451 0.557 0.642 0.729 0.780 0.821
6 0.318 0.386 0.482 0.560 0.644 0.698 0.740
7 0.281 0.344 0.434 0.507 0.586 0.637 0.680

8 0.318 0.385 0.479 0.554 0.631 0.683 0.725
ru 9 0.288 0.352 0.441 0.512 0.587 0.635 0.677

10 0.265 0.325 0.409 0.477 0.551 0.597 0.639

11 0.391 0.442 0.517 0.576 0.638 0.679 0.713
r21 12 0.370 0.419 0.490 0.546 0.605 0.642 0.675

13 0.351 0.399 0.467 0.521 0.578 0.615 0.649

14 0.370 0.421 0.492 0.546 0.602 0.641 0.674
rll 15 0.353 0.402 0.472 0.525 0.579 0.616 0.647

16 0.338 0.386 0.454 0.507 0.559 0.595 0.624
17 0.325 0.373 0.438 0.490 0.542 0.577 0.605
18 0.314 0.361 0.424 0.475 0.527 0.561 0.589
19 0.304 0.350 0.412 0.462 0.514 0.547 0.575
20 0.295 0.340 0.401 0.450 0.502 0.535 0.562
21 0.287 0.331 0.391 0.440 0.491 0.524 0.551
22 0.280 0.323 0.382 0.430 0.481 0.514 0.541
23 0.274 0.316 0.374 0.421 0.472 0.505 0.532
24 0.268 0.310 0.367 0.413 0.464 0.497 0.524
25 0.262 0.304 0.360 0.406 0.457 0.489 0.516

tReproduced from Dixon (1953), with permission from the Biometric
Society.

as being from a sample of n observations, the second as being from a sam-
ple of n - 1 observations, and so on. In practice, this procedure does not
necessarily eliminate the same extremes or even the same number of
extremes as other techniques. This is not surprising, because the process
only guarantees that under the null hypothesis, values that are not really
outliers (false positives) will be excised lOOa% of the time on the average.
The various outlier tests tend to handle alternative hypotheses differently,
so the same observations may not be judged to be outliers when different
tests are applied. In particular, all values tested to be aberrant may be
eliminated in one step if the set of the smallest number of values to form a
homogeneous group is correctly gauged.

It should be noted that if Dixon's test method is applied more than
once to a single set of data, then there is simultaneous inference, and the
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overall significance level is larger than that specified for each individual
test. Tietjen and Moore (1972) address the problem of repeated applica­
tion of a test method to a single set of data. They also present techniques
for simultaneously testing either the k largest values or the k most extreme
(largest and/or smallest) values with a specified level of significance.

Example 10.9 Ten ordered observations of cladding thickness (in
inches) on fuel rods are 0.0284, 0.0285, 0.0285, 0.0285, 0.0286, 0.0286,
0.0286, 0.0289, 0.0292, and 0.0298. The suspicious observation is x(lO) =
0.0298, the highest value. Because n = 10, compute

0.0292 -10.0298 = 0 429
0.0284 - 0.0298 .

From Table 10.2, the probability that a value of rll greater than 0.429
would occur by chance is about 0.08, so this observation would be rejected
at the 0.10 level of significance but not at the 0.05 level. Following recom­
mendations given by Dixon (1953), this value would be eliminated if the
presence of aberrant observations was a relatively common occurrence. In
this case, it might be desirable to continue by testing the largest of the
remaining 9 observations by computing

0.0289 -'0.0292 = 0 375
0.0284 - 0.0292 .

This value is not significant at the 0.10 level of significance, so no further
observations would be eliminated, even if aberrant observations are known
to occur frequently. .

10.4.2 Grubbs'Treatment of Outliers

Grubbs (1969) published a comprehensive article on outliers. The cases
covered involve testing the largest, the smallest, the two largest, the two
smallest, and the largest and smallest observations together, as well as
repeated testing at one end or both ends of an ordered sample. Cases are
also covered where the degrees of freedom in the estimated standard devia­
tion exceed the sample size and for the special limiting case where the
standard deviation is known. The methods of Dixon and the associated
tables are included and discussed by Grubbs (1969). The statistics in Table
10.3 occur in one or more of the cases.
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TABLE 10.3

Statistics Used to Test for Outliers

Statistic

o
x= ~xJn

i-I
Sample average (Equation 1.1).

o
~ (~_X)2

S2 = ~i-....:.I--::-­
n-I

s =.j;2

SS = (n - 1) S2

o 0,

~ '12- }; XI /0

i-I i-I
n-!

Sample variance (Equation 1.8).

Sample standard deviation.

The sample sum of squared deviations (SSSD).

o I0 I'SSI,2'" ~ Xj2 - ~ XI /(0 - 2)
i-3 i-3

The SSSD omitting the two
smallest observations.

The SSSD omitting the two
largest observations.

.Jf);=

o

,J.;"~ (Xi - X)3
i-I Sample coefficient of skewness.

Sample coefficient of kurtosis.

w -= x(O) - x(l) Sample range of values.

Outlier problems that are handled by Grubbs (1969) and the
corresponding recommended approaches are given in Table 10.4. Grubbs
(1969) makes some important and insightful remarks on outliers. In
particular,

When the skilled experimenter is clearly aware that a gross deviation from prcscn'bcd
experimental procedure has taken place, the resultant observations (sic) should be dis­
carded, whether or not it agrees with the rest of the data and without recourse to sta­
tistical tests for outliers. If a reliable correction procedure, for example, for tempera­
ture, is available, the observation may sometimes be corrected and retained.

Although our primary interest here is that of detecting outlying observations, we
remark that the statistical criteria used also test the hypothesis that the random sam­
ple taken did indeed come from a normal or Gaussian population.
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CHAPTER 10 SIMUlTANEOUS INFERENCE

The calculation of the critical points for statistics such as T 11 Tn, Jf);,
b2, w/s, SSI,2, and SSn-l,n involves the theory of order statistics from a
normal distribution. Conceptually, the processes for determining critical
values are not difficult. Computations can be difficult, however, and the
solutions can require numerical methods or Monte Carlo methods (Fergu­
son, 1961).

It is important to note that if more than one of the tests in Table 10.4
is applied to a set of data, or if one of the tests is applied more than once
to a set of data, then there is simultaneous inference and degradation of
the overall level of significance. When more than one of the tests is to be
applied to a single set of data, the Bonferroni inequality (Equation 10.1)
can be applied to control the overall (simultaneous) .level of significance.
For example, if four of the test methods are to be used, then setting the
significance level of each test at a/4 will result in an overall significance
level that is less than or equal to a. As noted in Section 10.4.1, Tietjen
and Moore (1972) address the problem of repeated application of a single
test method to a set of data. They also introduce techniques for simultane­
ously testing either the k largest values or the k most extreme (largest
and/or smallest) values with a specified level of significance.

Example 10.10 The statistics T1 and Tn from Table 10.4 are fre­
quently recommended for testing extreme observations, particularly if n is
relatively large. For the data in Example 10.9, the sample mean is
x = 0.02876 and the sample standard deviation is s = 0.000435, so that

T IO = (0.0298 - 0.02876)/0.000435 = 2.39

Entering Table A21 and noting there was no prior reason to test the larg­
est as opposed to the extreme deviation in either direction, this value is sig­
nificant at almost the 2(0.01) = 0.02 level for n = 10 and is apparently
more aberrant than was indicated by the Dixon test based on ratios. How­
ever, the Dixon test is less affected by lack of symmetry in the data.

10.4.3 Studentized Residual Approach

A general procedure for assessing whether one or more of the observa­
tions in a least squares regression are outliers is given by Beckman and
Trussel (1974). The method is based on studentized residuals and has the
following useful characteristics:
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1. It is of wide generality.
2. It includes some other methods, such as those of Thompson (1935)

and Grubbs (1969), as special cases.
3. It can be computed rather easily using results from standard regres­

sion software.

The procedure is particularly useful in pinpointing outliers in inter­
laboratory experiments when the analysis is based on a linear model.
Obtaining good estimates of the variances of random errors of measure­
ment is very important for safeguards data. Experience has shown that
outliers seriously and adversely affect the process of estimating mea­
surement variances. The method presented in this section is effective in
eliminating outliers and thus enhancing the variance estimation process.

The general linear regression model is defined in Section 6.3.1. The
computational methods for estimating the coefficients in the model are
given in Section 6.3.2. The standardized residuals ri* and the elements hij
of the hat matrix are defined in Section 6.4.5.2 for a model that has been
fitted to a set of data. Methods for plotting and approximate methods for
statistically testing the standardized residuals to identify outliers in regres­
sion data are presented in Section 6.4.5.2.

Another approach to examining residuals is to eliminate the ith observa­
tion from the fitting process and then determine the itb standardized re­
sidual, so the estimated residual is independent of the observation. Because
the observation and the variance estimate are independent, the resulting
studentized residuals 71i have a Student's t-distribution with n - p - 1
degrees of freedom under the null hypothesis. This process would impose a
computational burden if it were not for the fact that the 71i and rj* are
related by the identity (see Beckman and Trussel, 1974).

*~--1 I~71' = r·
1 1 *2

n - p - rj
(10.9)

When testing n studentized residuals, the overall Type I error rate
should be controlled by using methods of simultaneous inference. Critical
values corresponding to an error rate a' = 1 - (1 - a)lfD, which for an
individual test will ensure an overall error rate a, usually cannot be deter­
mined directly from tables of Student's t-distribution. To facilitate screen­
ing for outliers on residuals obtained when fitting a linear model contain­
ing p parameters to n observations, Table A28 gives adjusted critical
points for 71j computed from the approximation to the Student's t­
distribution presented by Fisher and Cornish (1960). Because this approxi­
mation allows the computation of tl - a (df) directly from Zl _ a of the
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standard normal distribution, the approximation is convenient for use in
computerized programs that include screening for outliers in. routine
processing.

In summary, the method of using studentized residuals to test for
outliers in regression involves the following steps:

1. Obtain the usual regression results.
2. Calculate the hij values, or the H matrix.
3. Determine the predicted response variables 9io the residuals ri =

Yi - 9io and the standardized residuals ri*'
4. Compute the studentized residuals 71io which have a Student's

t-distribution under the null hypothesis of (a) a correct structure for the
expected value in the regression model, (b) independent errors that are
normally distributed, and (c) no outliers. .

5. Compare I 71i Iwith the appropriate critical value from Table A28 to
test for outliers.

As with previous procedures, the process should be iterated until, at the
fmal iteration, no outliers are found.

Example to.11 The following data represent determinations of the
plutonium content of each of 10 samples by four laboratories:

Laboratory Sample

Sample 1 2 3 4 average

1 1.32300 1.38000 1.36900 Missing 1.35733
2 1.37400 1.40300 1.39600 Missing 1.39100
3 1.35400 1.39000 1.23000 1.37000 1.33600
4 1.37300 1.39500 1.38400 Missing 1.38400
5 1.70000 1.60100 1.58400 1.60700 1.62300
6 1.51000 1.54000 1.51600 1.56700 1.53325
7 1.42300 1.46100 1.45700 1.46500 1.45150
8 1.39800 1.43800 1.44200 1.46300 1.43525
9 1.41000 1.45700 1.42600 1.43700 1.43250

10 1.29500 1.32700 1.32400 1.41000 1.33900

Laboratory
average 1.41600 1.43920 1.41280 1.47414

This is a randomized block design (Section 7.2.2), where the samples are
blocks and the laboratories are treatments. Because of three missing
values, however, least squares regression methods were used to fit a linear
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model with 13 parameters to the 37 observations. The 13 parameters
include a constant value, 3 laboratory effects, and 9 sample effects. Least
squares regression techniques for fitting analysis of variance models involve
some special considerations (primarily concerned with defming the ~

matrix and the ~ vector) that are not presented in this book. The reader is
referred to Chapter 9 of Draper and Smith (1981) for details.

The predicted values, residuals, standardized residuals, and studentized
residuals from the fitted model are displayed in Table 10.5. From Table

TABLE 10.5

Modeling Results with AU 37 Data Points Included

No. Sample Lab YI Y. Y.- Y. f.· 'h

1 1 1 1.323 1.35067 -0.02767 -1.00 -1.00
2 1 2 1.380 1.37387 0.00613 0.22 0.22
3 1 3 1.369 1.34747 0.02153 0.78 0.77
4 2 1 1.374 1.38433 -0.01333 -0.37 -0.37
5 2 2 1.403 1.40753 -0.00453 -0.16 -0.16
6 2 3 1.396 1.38113 0.01487 . 0.54 0.53
7 3 1 1.354 1.32131 0.03269 1.12 1.12
8 3 2 1.390 1.34451 0.04549 1.55 1.60
9 3 3 1.230 1.31811 -0.08811 -3.01 -3.73

10 3 4 1.370 1.36007 0.00993 0.35 0.34
11 4 1 1.373 1.37733 -0.00433 -0.16 -0.15
12 4 2 1.395 1.40053 -0.00553 -0.20 -0.20
13 4 3 1.384 1.37413 0.00987 0.36 0.35
14 5 1 1.700 1.60831 0.09169 3.13 3.99

IS 5 2 1.601 1.63151 -0.03051 -1.04 -1.04
16 5 3 1.584 1.60511 -0.02111 -0.72 -0.71
17 5 4 1.607 1.64707 -0.04007 -1.40 -1.43
18 6 1 1.510 1.51856 -0.00856 -0.29 -0.29
19 6 2 1.540 1.54176 -0.00176 -0.06 -0.06
20 6 3 1.516 1.51536 0.00064 0.02 0.02
21 6 4 1.567 1.55732 0.00968 0.34 0.33
22 7 1 1.423 1.43681 -0.01381 -0.47 -0.46
23 7 2 1.461 1.46001 0.00099 0.03 0.03
24 7 3 1.457 1.43361 0.02339 0.80 0.79
25 7 4 1.465 1.47557 -0.01057 -0.37 -0.36
26 8 1 1.398 1.42056 -0.02256 -0.77 -0.76
27 8 2 1.438 1.44376 -0.00576 -0.20 -0.19
28 8 3 1.442 1.41736 0.02464 0.84 0.84
29 8 4 1.463 1.45932 0.00368 0.13 0.13
30 9 1 1.410 1.41781 -0.00781 -0.27 -0.26
31 9 2 1.457 1.44101 0.01499 0.55 0.54
32 9 3 1.426 1.41461 0.01139 0.39 0.38
33 9 4 1.437 1.45657 -0.01957 -0.68 -0.68
34 10 1 1.295 1.32431 -0.02931 -1.00 -1.00
35 10 2 1.327 1.34751 -0.02051 -0.70 -0.69
36 10 3 1.324 1.32111 0.00289 0.10 0.10
37 10 4 1.410 1.36307 0.04693 1.64 1.70
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A28 with n = 37 and p = 13, the critical value for 'l7i at the 0.05 signifi-
cance level is 3.64. Thus, the underlined observations 9 and 14 have sig-
nificant 'l7i values and are suspected of being aberrant. Note that. the third
largest residual is less than Jh of the critical value.

After eliminating points 9 and 14 from the data, the model was refitted
to the 35 remaining points and Table 10.6 was produced. The value '1735 =
5.52 exceeds 3.66, the critical value at the 0.05 significance level. By elim-
inating this observation and refitting the model to the 34 remaining points,

TABLE 10.6

ModeUng Results with Points 9 and 14 Removed

No. SuIpIe Lab fl 91 fl-f, rl'- 'It

1 1 1 1.323 1.33675 -0.01375 -1.10 -1.11
2 1 2 1.380 1.37404 0.00596 0.48 0.47
3 1 3 1.369 1.36121 0.00779 0.62 0.62
4 2 1 1.374 1.37042 0.00358 0.29 0.28
5 2 2 1.403 1.40771 -0.00471 -0.38 -0.37
6 2 3 1.396 1.39488 0.00112 0.09 0.09
7 3 1 1.354 1.34126 0.01274 1.03 1.03
8 3 2 1.390 1.37855 0.01145 0.92 0.91
9 3 4 1.370 1.39419 -0.02419 -1.97 -2.13

10 4 1 1.373 1.36342 0.00958 0.77 0.76
11 4 2 1.395 1.40071 -0.00571 -0.46 -0.45
12 4 3 1.384 1.38788 -0.00388 -0.31 -0.30
13 5 2 1.601 1.59640 0.00460 0.37 0.36
14 5 3 1.584 1.58357 0.00043 0.03 0.03
15 5 4 1.607 1.61203 -0.00503 -0.41 -0.40
16 6 1 1.510 1.50458 0.00542 0.41 0.40
17 6 2 1.540 1.54187 -0.00187 -0.14 -0.14
18 6 3 1.516 1.52904 -0.01304 -0.99 -0.99
19 6 4 1.567 1.55751 0.00949 0.73 0.72
20 7 1 1.423 1.42283 0.00017 0.01 0.01
21 7 2 1.461 1.46012 0.00088 0.07 0.06
22 7 3 1.457 1.44729 0.00971 0.74 0.73
23 7 4 1.465 1.47576 -0.01076 -0.83 -0.82
24 8 1 1.398 1.40658 -0.00858 -0.65 -0.64
25 8 2 1.438 1.44387 -0.00587 -0.44 -0.43
26 8 3 1.442 1.43104 0.01096 0.83 0.83
27 8 4 1.463 1.45951 0.00349 0.27 0.26
28 9 1 1.410 1.40383 0.00617 0.47 0.46
29 9 2 1.457 1.44112 0.01588 1.20 1.21
30 9 3 1.426 1.42829 -0.00229 -0.17 -0.17
31 9 4 1.437 1.45676 -0.01976 -1.52 -1.17
32 10 1 1.295 1.31033 -0.01533 -1.16 -1.17
33 10 2 1.327 1.34762 -0.02062 -1.55 -1.61
34 10 3 1.324 1.33479 -0.01079 -0.82 -0.81
35 10 4 1.410 1.35326 0.04674 3.61 5.52



SECTION 10.4 TESTING FOR OUTlIERS 665

Table 10.7 was produced, in which no studentized residual exceeds 3.67,
the critical value at the 0.05 significance level.

The effect of this screening on the residual sum of squares and the sig-
nificance of the fit can be seen by examining the analysis of variance
tables displayed in Table 10.8, which also show the additional variance
explained by each successive set of effects and the residual variance. Note
that because of missing values, the variance explained by laboratories and
samples is dependent on the order in which the effects are estimated.

TABLE 16.7

ModeUng Results with 3 Outliers Removed

No. Sample Lab YI 11 YI- YI fl- 111

1 1 1 1.323 1.33688 -0.01388 -1.70 -1.79
2 1 2 1.380 1.37379 0.00621 0.76 0.75
3 1 3 1.369 1.36134 0.00766 0.94 0.94
4 2 1 1.374 1.37054 0.00346 0.42 0.42
5 2 2 1.403 1.40745 -0.00445 -0.54 -0.53
6 2 3 1.396 1.39500 0.00100 0.12 0.12
7 3 1 1.354 1.34503 0.00897 1.11 1.12
8 3 2 1.390 1.38194 0.00806 0.99 0.99
9 3 4 1.370 1.38702 -0.01702 -2.15 -2.38

10 4 1 1.373 1.36354 0.00946 1.16 1.17
11 4 2 1.395 1.40045 -0.00545 -0.67 -0.66
12 4 3 1.384 1.38800 -0.00400 -0.49 -0.48
13 5 2 1.601 1.59979 0.00121 0.15 0.15
14 5 3 1.584 1.58734 -0.00334 -0.41 -0.40
15 5 4 1.607 1.60487 0.00213 0.27 0.26
16 6 1 1.510 1.50741 0.00259 0.30 0.29
17 6 2 1.540 1.54432 -0.00432 -0.50 -0.49
18 6 3 1.516 1.53187 -0.01587 -1.84 -1.97
19 6 4 1.567 1.54950 0.01750 2.11 2.32
20 7 1 1.423 1.42566 -0.00266 -0.31 -0.30
21 7 2 1.461 1.46257 -0.00157 -0.18 -0.18
22 7 3 1.457 1.45012 0.00688 0.80 0.79
23 7 4 1.465 1.46765 -0.00265 -0.32 -0.31
24 8 1 1.398 1.40941 -0.01141 -1.33 -1.35
25 8 2 1.438 1.44632 -0.00832 -0.96 -0.96
26 8 3 1.442 1.43387 0.00813 0.94 0.94
27 8 4 1.463 1.45140 0.01160 1.39 1.42
28 9 1 1.410 1.40666 0.00334 0.39 0.38
29 9 2 1.457 1.44357 0.01343 1.55 1.61
30 9 3 1.426 1.43112 -0.00512 -0.60 -0.59
31 9 4 1.437 1.44865 -0.01165 -1.40 -1.43
32 10 1 1.295 1.29488 0.00012 0.02 0.01
33 10 2 1.327 1.33179 -0.00479 -0.58 -0.58
34 10 3 1.324 1.31934 0.00466 0.57 0.56
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TABLE 10.8

Analysis of Variance Results mustrating
the Effect of Removing Outliers

Sam or 14laare5 « Mean IIqlW'e Frado

• - 37
Mean 75.9161 1 75.9161
Samples 0.278997 9 0.0309997 24.27
Laboratories 0.0191909 3 0.00639697 5.01
Residual 0.0306547 24 0.00127728

• - 35
Mean 71.6259 1 71.6259
Samples 0.177128 9 0.0196809 74.94
Laboratories 0.0332411 3 0.0110804 42.19
Residual 0.00577768 22 0.000262622

• - 34
Mean 69.6382 1 69.6382
Samples 0.175746 9 0.0195273 173.82
Laboratories 0.0376067 3 0.0125356 111.58
Residual 0.00235921 21 0.000112343

The elimination of 3 of the 37 observations has reduced the residual
variance by a factor of 10 and has greatly enhanced the significance of the
differences among samples and laboratories. The latter is important
because of the increased confidence in the estimates of the between­
laboratory biases obtained from the data, as well as confidence in the abil­
ity of the method to characterize process variability.
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CHAPTER 11

Simulation
11.0 INTRODUCflON

Simulation is a science (or discipline) that includes a large class of pro­
cedures for problem solving by defining and analyzing models of complex
processes or systems. Briefly, simulation involves developing a representa­
tive model of a process or system and then manipulating and experiment­
ing with the model on a computer to improve understanding of the process
or system. For example, if the model is a valid representation, it is possible
by experimenting with the model to observe how changes in certain param­
eters might affect the operation or response of the process or system.

In nuclear material research and management, there is an emphasis on
developing models to describe and analyze production, measurement, and
quality control systems. Many of these models could be manipulated on a
computer to investigate the effects on the response or output of the system
due to changes in components of the system. Thus, simulation analysis is
potentially a valuable tool for nuclear material research and management
but is not currently as widely utilized as it could be.

An important tool in simulation modeling and analysis is the genera­
tion of random numbers that can be transformed to represent a random
sample from a specified probability distribution. This enables the study
and evaluation of complicated functions of random variables which may be
difficult or impossible to investigate analytically. Simulation methods that
involve generating random deviates are commonly called Monte Carlo
methods. For simplicity, however, this distinction is not emphasized in this
chapter.

Section 11.3 provides an introduction to generating random deviates
from a few specific probability distributions. Although Section 11.3
comprises a major portion of this chapter, it is limited in scope and con­
tent. It illustrates, by simple examples, how simulation techniques that uti­
lize random deviate generation can be applied to investigate the properties
of the statistical procedures presented throughout this book. Although
most of the examples presented have straightforward analytical solutions,
the general concepts illustrated can be generalized and extended to aid in
solving problems that are difficult (or practically impossible) to solve
analytically.

It must be emphasized that this chapter is not intended to be a com­
prehensive guide to simulation modeling and analysis. Its purpose is only

Preceding page blank 569
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to bring simulation to the attention of the practitioner in nuclear material
management and to provide references where detailed presentations can be
found. Thus, this chapter provides a brief overview of some selected topics
in simulation, but no attempt is made to introduce all relevant simulation
techniques or to provide detailed discussions of all the necessary steps in a
simulation study (e.g., variance reduction techniques to improve the effi­
ciency of a simulation study are not discussed). Many excellent texts that
provide detailed presentation and guidance have been written on simula­
tion; among these are Bratley, Fox, and Schrange (1983); Fishman (1973);
Kliejnen (1975); Law and Kelton (1982); and Rubinstein (1981).

11.1 THE ROLE OF SIMULATION
The philosophy behind developing and using system models in comput­

erized simulation studies is that a simulator can be viewed as an artificial
laboratory. That is, once a system is modeled and implemented on a
computer, experiments can be performed using the model. These experi­
ments, or simulations, permit inferences about a system (I) without build­
ing it, if it is only a proposed system; (2) without disturbing it, if it is an
operating system that is costly or unsafe to experiment with; and (3) with­
out destroying it, if the object of an experiment is to determine system
limitations. In these ways, simulation studies are useful for design, proce­
dural analysis, and performance assessment. Even when it is feasible to
experiment directly with a system, experimenting with a computerized sim­
ulation of a system is often faster, easier, and/or cheaper than experiment­
ing with the system. However, it must be emphasized that the validity of
inferences made from the results of a simulation study depend on how
closely the computerized model represents the operation of the system.

Simulation often has been viewed as a method of last resort, only to be
employed when all other approaches fail. However, recent advances in sim­
ulation methodologies, availability of simulation software packages, and
technical developments in electronics and computers have made simulation
one of the most widely used tools in systems analysis, operations research,
and the development and implementation of new statistical methods. Some
advantages of simulation are:

1. Through simulation, it is possible to study the effects of certain
informational, organizational, and environmental changes on the operation
of a system by making alterations in the model of the system and then
observing the effects of these alterations on the system behavior and
response.

2. A detailed observation of the system being simulated may lead to a
better understanding of the system and to suggestions for improving it,
which otherwise would be unobtainable.

3. The experience of designing a computer simulation model is some­
times more valuable than the actual simulation itself, because the knowl-
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edge gained in designing a simulation model frequently suggests changes
in the system being simulated. The effects of these changes can then be
tested via simulation before implementing them on the system.

4. Simulation of a complex system can yield insight into which vari­
ables are more important than others in the system and how these vari­
ables interact.

5. Simulation can be used to experiment with new situations about
which there is little or no information in order to prepare for results of
implementation on the system.

6. Simulation can serve as a preservice test to try out new policies and
decision rules for operating a system, without running the risk of experi­
menting on the system.

7. When new elements are introduced into a system, simulation can be
used to anticipate bottlenecks or other problems that could arise in the
behavior of the system.

8. For certain types of stochastic problems (i.e., problems involving
random variables), a simulated sequence of events may be of particular
importance and may provide more valuable information than an analytic
study involving only expected values.

9. Simulations can be performed to verify analytical solutions, to
obtain approximate solutions when analytic solutions are difficult or
impossible to obtain, and to try out new statistical methods to determine
their properties and applicability in specific situations.

11.2 CONSIDERATIONS IN SIMULATION
MODELING

In nuclear material research and management there is an emphasis on
the development of symbolic or mathematical models to describe and ana­
lyze production, measurement, and quality control systems. These models
range from pictorial maps of a production line to systems of differential
equations describing chemical reactions. These models lend themselves to
study by simulation because they can be manipulated rapidly and
inexpensively on a computer to investigate the effects of changes in
components of the system on the response or output of the system.

The development of a valid system model for use in simulation is often
a major task and may require the expertise of mathematicians, statisti­
cians, computer scientists, and other specialists, in collaboration with plant
personnel who are knowledgeable about the operation and behavior of vari­
ous aspects of the system. However, it is important for users to understand
some of the considerations that go into model development so they can
appreciate the uses and limitations of simulation. This section discusses
some of the steps in developing and using a model. Specific details and
illustrations are not provided, however, and the reader is encouraged to
consult some of the texts listed in the references.
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11.2.1 Types of Models
Simulation models are theoretically classified in two ways: as stochastic

or deterministic models, and as discrete or continuous models. In practice,
models are also classified by the way in which the form of the model is
derived and the source of the values of the parameters. There are three
types of models that are identified on the basis of these criteria. In this
section, the theoretical characteristics are discussed first, and then the
practical aspects are presented.

A stochastic model is one that includes randomness in the output so
actual data are approximated. Randomness is introduced by incorporating
random deviates in sections of the model where uncertainty occurs in the
process being modeled. The topic of random deviate generation is intro­
duced in Section 11.3. A deterministic model is one that is not stochastic.

To illustrate the concept of deterministic models, consider Newton's
law of motion, .

f=ma

This is a mathematical model that characterizes the motion of an object of
mass m acted upon by a force r. This model is deterministic because, for
example, the acceleration a produced by the force r is exactly determined
by rearranging the equation to the form a = f/m. A more complicated
deterministic model,

d = vt - 0.5gt2

determines the distance d traveled in time t. by an object thrown vertically
with initial velocity Y, where g is the acceleration due to gravity. Both of
the above are deterministic models in the sense that they exactly determine
the state of a physical process.

However, it is not always possible to derive a deterministic model for a
physical process. Consider the simple process of tossing a coin. Theoreti­
cally, Newtonian mechanics could predict whether the coin will land with
head or tail facing up (given initial velocity, spin, height, etc.), but in
practice, not all factors that might affect how the coin lands can be speci­
fied in advance. Thus, a stochastic model of the process is constructed by
assuming that each toss of the coin is a random trial which does not
depend on the outcome of previous trials and that the coin is not weighted
to favor its landing in a particular way. The resulting stochastic model for
each toss of the coin is specified by

Pr (Head) = 0.5

Pr (Tail) = 0.5
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For a sequence of n tosses of the coin, a stochastic model for the number
of heads (X) is given by the binomial pdf (Equation 2.20), with p = 0.5.
Although this stochastic model cannot be used to determine exactly what
will happen in a single trial or in a sequence of trials, useful information
can be gained about the physical process by studying such a model.

Discrete models occur when the model output can assume only a count­
able number of values at the time of each event. Models of many
manufacturing processes are discrete because the output is measured by
the number of finished items. However, the input to such a model does not
have to be discrete. For example, nuclear fuel fabrication starts with a
continuous flow of UF6 powder and ends with discrete fuel rod assemblies.
Continuous models are those in which the output changes continuously
over time and can assume any value in some range at any given point in
time. Models of the conversion process of UF6 into U02 are continuous
models.

In practice, almost all models are a combination of discrete and contin­
uous parts. A model of a nuclear fuel fabrication facility is an example of
such a combined model. Input to the plant arrives as cylinders of UF6
powder and components for fuel rod assemblies. The inventory of these
items is modeled with a discrete system. When the UF6 cylinders are
removed from inventory, their contents are fed into a continuous chemical
process that produces U02• A continuous system model of the chemical
process can then be used to predict output rate or to fmd the conditions
which optimize yield. The blending of powders for fuel pellets is also
modeled continuously. The pressing, sintering, inspecting, and storing of
fuel pellets are discrete, but they are modeled as a continuous system
because the number of pellets is too large to be directly counted in prac­
tice. The options are to model total weight or number of pellets with a
continuous model, or to model the number of trays or racks of pellets with
a discrete model. Fuel rod assembly, inspection, and inventory are modeled
with a discrete system because the items are countable. Scrap inventory
requires a combination of discrete and continuous models; barrels and
drums of scrap powder, pellets, and liquids are modeled continuously by
weight or discretely by the number of containers. Inventory of defective
fuel rods is modeled discretely. Finally, recovery of uranium from scrap is
modeled continuously.

Some components of a model of a fuel fabrication facility are stochas­
tic and some are deterministic. Inventory models of UF6 cylinders or fuel
assemblies are deterministic because these items can be counted, and it is
assumed there are no counting errors. (In practice, accurate counting of
fuel rods is a large task which may delay reconciliation of inventory by
hours or even days). The amount and uranium content of UF6 powder in a
cylinder and the input to the chemical system that produces U02 are sto­
chastic because there may be errors in the chemical analyses and weigh-
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ings. The chemical system is modeled stochastically; the randomness comes
from small variations in such variables as temperature, flow, and the con­
dition of the machinery. Modeling a chemical system is extremely com­
plex. It involves many factors-some not identified, some not understood,
some not controllable-with complex interrelationships. The pellet produc­
tion model, whether continuous or discrete, is stochastic because the num­
ber of pellets is too large to count accurately, and the weighing of trays or
buckets of pellets is subject to error. Models of the number of barrels of
scrap on inventory are deterministic, but models of scrap content are sto­
chastic because the heterogeneous nature of scrap does not allow accurate
assay of drum content.

The methods used to determine the form of the model and to obtain
values of the model parameters provide another way to classify models.
These two considerations give rise to the following three types of models:

1. The form of the model is known from theory and the parameters
have known values. The theory on which the models are based does not
have to be unequivocally established and accepted. The parameters may
not be theoretical values but may have been established to a high degree
of accuracy through experimentation, so the parameters are treated as
known values. This is the most reliable type of model for simulation use.

2. The form of the model is known based on theory, but the parame­
ters are estimated from experimental data. This type of situation is more
common than that given in (1).

3. The form of the model is developed to approximate reality; the
model is empirically determined and is highly dependent in form on the
data available to create the model. The parameters may be estimated from
the same data used to determine the form of the model. This is the least
reliable type of model for simulation use, but it probably is the type used
most frequently.

Whether a model is of form (l), (2), or (3), it can be used to some
advantage in a simulation study. Many instances involve predicting a
response or several responses corresponding to a given set of prescribed
conditions or estimating the uncertainty associated with a response or sev­
eral responses. The response is calculated from the model, and the uncer­
tainty is calculated by either error propagation techniques or by simulation
methods, depending on the complexity of the model.

Because the validity of results obtained from using a model depends on
the quality of the model, methods of model development are important.
Not every attempt to model a process is completely successful. However,
the success in specifying the model form and in estimating its parameters
determines the quality of a model. A good quality model is the first step
toward answering research questions using simulation.
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11.2.2 Development of a Model and Study Plan

The first developmental activity is to design and implement the simula­
tion model. The specific tasks in this activity are not discussed in detail in
this section. However, excellent discussions are found in many simulation
textbooks, such as Bratley, Fox, and Schrange (1983); Emshoff and Sisson
(1970); Meier, Newell, and Pazer (1969); and Naylor et al. (1966).
Assuming that these tasks are completed, the next activity is model verifi­
cation. A verified model is one that has been shown to represent the sys­
tem or process as the designer intended. Verification is an important activ­
ity. Without satisfactory and explicit verification, it is possible to have a
model that appears to work satisfactorily but gives answers that are erro­
neous. Bratley, Fox, and Schrange (1983) and Fishman and Kiviat (1967)
suggest techniques for verification, including statistical methods, that go
far beyond the practices of simple comparative analysis and manual check­
ing of calculations.

Bratley, Fox, and Schrange (1983) and Fishman and Kiviat (1967)
also describe model validation methods. Some additional suggestions on
validation techniques are provided by Naylor (1971). Validation is one of
the most critical activities performed in any simulation study. It is also one
of the most difficult to accomplish satisfactorily. A validated model is one
that has been shown to be a reasonable abstraction of the system it is
intended to represent. The usual approach to validation is to run the model
with historical data and compare model results with actual system results
for the same historical period. However, such comparisons may not be pos­
sible if the model is experimental or predictive in nature. It also may be
difficult to make a statistical comparison of results when such a compari­
son is appropriate because of the requirement that equilibrium be reached
before results are measured. It may take considerable time to reach equi­
librium with the computer simulation model, while the real-world system
might never exist in a state of equilibrium, thereby severely complicating
the comparison.

The next developmental activity is designing and planning the experi­
mentation to be done with the simulation model. This includes specifying
the information to be determined and the desired accuracy of that infor­
mation. The two classes of experimentation are exploration of system
behavior and optimization of system parameters. Exploration of system
behavior is undertaken in an attempt to explain the relationship between
results and the controllable parameters of the simulation. Optimization is
performed to fmd the combination(s) of parameter levels that minimize or
maximize the results of the simulation. Experimental designs like full fac­
torials, fractional factorials (Chapter 7), or special-purpose response sur­
face designs-such as those presented by Myers (1976}-are appropriate
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for exploratory experimentation. For optimization, optimum-seeking tech­
niques are available, and though in some cases they cannot guarantee a
global optimum, they can provide very useful results. Hunter and Naylor
(1970) give a good outline of experimental designs for simulation studies,
and Schmidt and Taylor (1970) have a good discussion on simulation
optimization techniques. Bohachevsky, Johnson, and Stein (1986) intro­
duce a generalized simulated annealing method for optimization of func­
tions (possibly constrained) that have many local extrema.

11.2.3 Operational Activities

At the stage in the simulation process when the model has been
designed, implemented, and studied, and its use has been planned, the
remaining step is to carry out the actual simulation experiment. This must
include tactical design of the experiments to be performed, such as
determining how many simulation runs to execute and how to collect data
from each run. This involves establishing initial conditions for model vari­
ables and estimating parameters so the simulated system will reach a state
of equilibrium as soon as possible. Criteria for recognizing equilibrium
must also be determined so data can be gathered without being biased by
transients from the startup of the run. Other considerations are the sample
size required for data collection and the techniques to be used to compare
alternative systems (if this is the study objective). In the latter case, rela­
tive results from the simulation runs will be of interest. Such methods as
using the same sequence of random numbers for each run can be applied;
this will reduce the residual variation between sets of results and thus
reduce the length of the simulation runs themselves.

In the simulation runs the model is run for the specified time, the
parameters are changed, and the model is run again. This process is
repeated until the experimentation is completed and is followed by an
analysis of the simulated data. Techniques such as regression analysis
(Chapter 6) and analysis of variance (Chapter 5) are widely used for
interpreting simulation data, depending on the original objectives.

If the objectives have been met, the simulation study is completed at
this point. Because simulation is often a trial-and-error process, however,
the objectives may not have been satisfied, which leaves two general alter­
natives available. The first is to modify the model to facilitate discrimina­
tion among simulated systems and then rerun the experiment. The second
alternative is to use the original model but alter the design of the experi­
ment, using new search techniques or more extensive experimental designs.

11.3 GENERATION OF RANDOM DEVIATES

Stochastic simulations require methods of generating random deviates
from predetermined distributions. The most common methods require gen-
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erating random deviates from the uniform distribution (Section 2.5.1) and
then transforming these to deviates from the desired distribution.
Independent random deviates that are uniformly distributed on the interval
oto 1 inclusive, denoted by [0,1], are called random numbers and provide
the basis for generating random deviates from other distributions. In this
section, methods of generating random numbers are discussed and the
techniques used to obtain random deviates from a few commonly used dis­
tributions are given. Some numerical examples are provided to illustrate
how random deviates are used to solve specific problems by simulation
analysis. Most of the example problems are easily solved by methods
presented in previous chapters. They are used here for simplicity of illus­
tration, however, to compare simulation results with analytic results. It is
hoped this demonstrates the utility and power of simulation as a tool for
solving more complex problems.

Note that the methods presented in this section for generating random
deviates are not necessarily the most currently developed or the best tech­
niques available. This brief presentation is intended to lend some intuitive
understanding of the subject of generating random deviates. On!y a few
probability distributions are addressed. For further guidance, the reader is
encouraged to consult some of the referenced texts, especially the more
recent ones [e.g., Bratley, Fox, and Schrange (1983) or Law and Kelton
(1982)].

11.3.1 Random Numbers

No numerical algorithm generates a truly random number; for further
discussion of this concept, see Kolata (1986). However, hardware­
dependent algorithms are available that produce numbers close enough to
randomness to be used in simulation. Before a sample of random numbers
is used, it is important to ascertain that (1) the random numbers are dis­
tributed uniformly; (2) the random sample, in the order in which it is gen­
erated, does not contain serial correlations; and (3) the runs in the random
sample are of random length and number. If multiple random samples are
generated for use, it is also important to ensure that the samples are
independent. An overview of problems associated with random number
generation is given by Marsaglia (1968), and methods of generating and
testing random numbers are presented in Kennedy and Gentle (1980).

A random number generating algorithm widely used on computers is
the congruential generator, symbolically given by:

Zj+l 0= (aZj + b)(mod c), i = 0,1,2,3, ...
(1Ll )
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Here Zo is a seed ,alue provided by the user and ri is the ith random num­
ber, standardized to be in the interval [0,1]. The seed value, Zo, is chosen
to be a large odd positive integer within the constraints of the hardware
being used. It is advantageous to be able to repeat a simulation exactly;
thus, the value of Zo always should be recorded. Equation 11.1 denotes that
the unstandardized random number Zj+ 1 is equal to the remainder of
(aZj + b) divided by c, where Zj is the previous unstandardized random
number, and where a, b, and c are constants. The period of a generator is
the number of random numbers generated before the series repeats itself.
The constants a, b, and c are chosen so that the period is as long as possi­
ble while retaining the independence of the numbers. Typically, c = 2B,

where B is the number of bits per word for the computer being used. The
constant b is chosen to be a small, positive integer relatively prime to c, so
that the greatest common factor of band c is unity. The constant a is cho­
sen to be a = 1 + 4k where k is a positive integer.

Before the availability of computers, tables were used to generate ran­
dom numbers. Although tables of random numbers are not widely used
now, they are discussed here for completeness. Tables of random numbers
are generated so that all digits (0 through 9) appear with equal probability
at any position in the table, and so that no recognizable patterns (serial
correlations and run length or number) exist in prescribed sized groups of
random numbers. A well-known table of random numbers was published
by the Rand Corporation (1955). While random number tables are useful
for randomization of a small sampling plan or experimental design, they
should not be seriously considered for use as the random number generator
in a simulation study of any size.

To use a table of random numbers, a random starting place is selected.
This is done by arbitrarily pointing to a location on an arbitrary page and
taking the first appropriate digits as the starting page, row, and column. If
a table has 50 pages, the first 2 digits >00 and ~50 determine the starting
page. If a table has 100 rows and 100 columns, each numbered 0 to 99,
the next 2 digits ~99 determine the starting row, and the succeeding 2
digits ~99 determine the starting column. In this manner, the starting
place in the table is located for generating one sample of random numbers.
The sample of random numbers is then obtained by following the
column(s) down the rows of the table and recording the numbers in the
order they appear.

After a population of objects is numbered from 1 to N, a random num­
ber table is used to select a random sample of size n by letting n digits
selected from the table identify the objects to be in the sample. If a combi­
nation of digits does not correspond to an object in the population, the
combination is discarded. For example, suppose a random sample of size
n = 10 from a population of size N = 46 is required. Two-digit random
numbers are selected, ignoring any combinations >46 or equal to 00. If
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sampling is with replacement, the first 10 random numbers within the
acceptable range selected from the table specify the sample. If sampling is
without replacement, each acceptable number is used only the first time it
is encountered. Thus, in the previous example, if sampling is without
replacement and the combination of digits 06 is encountered twice, it is
used only the first time. A total of II random numbers (not counting other
unallowable pairs of digits that are >46 or equal to 00) are then selected
so that the sample size is n = 10. Finally, the observed random numbers
determine which objects from the population are to be included in the
sample. For example, if the first 2 random numbers are 06 and 25, then
the 6th and 25th objects are 2 of the 10 objects included in the sample. A
more computer-oriented discussion of this application appears in Section
2.5.1.

To generate random numbers on a hand-held calculator, the directions
accompanying the calculator must be followed. For most hand-held calcu­
lators, generating distinct multiple samples of a given size requires provid­
ing a new seed value for each sample. If a new seed value is supplied, a
random sample should be tested to assure that the random numbers are
uniformly distributed, that they are not serially correlated, and that the
lengths and numbers of runs are random. Tests of independence should
also be used to assure that multiple random samples are independent. The
reader is cautioned that at the time this book was being prepared, there
was considerable debate over the randomness and validity of random num­
ber generators on hand-held calculators.

11.3.2 The Uniform Distribution
The uniform distribution is described in Section 2.5.1. Random

numbers with multiple digits and a decimal point in front of the leading
digit are approximately uniformly distributed with parameters a = 0 and
fJ = 1. Such random numbers are said to be random deviates from the
unit uniform distribution. Note that the uniform distribution is defmed as a
continuous distribution, but random numbers are actually discrete. Thus,
random numbers with a decimal point in front of the leading digit are only
approximately uniformly distributed. A random deviate x from a uniform
distribution with parameters a = a and fJ = b, where a < fJ, is obtained
from a unit uniform random deviate r by the transformation

x = r(b-a) + a (11.2)

For example, if the 5 digit random number 34974 is chosen randomly
from a table of random numbers, then the number 0.34974 is a random
deviate from the unit uniform distribution. A random deviate x from the
uniform distribution with a = 9 and fJ = II is obtained by applying
Equation 11.2, which gives x = (0.34974) (11-9) + 9 = 9.69948.
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The following example illustrates one of the many practical problems
that can be solved via simulation using uniform random deviates.

Example 11.1 Consider the problem of evaluating a definite integral

b1 f(x)dx
a

where f(x) may be difficult to integrate. To compare the example results
with analytic results, consider evaluating the probability that an observed
value of the random variable X from the standard normal distribution will
fall in the interval -1.3 ~ X ~ 1.6. The desired probability is obtained by
evaluating the integral

1.6 1 [ -x
2

]--exp -- dxf1.3 .fh 2

Of course, this integral can be directly evaluated analytically or Table A3
can be used. However, the following solution illustrates how simulation can
be used to approximate the value of integrals that are difficult to work
with analytically.

The first step is to construct a rectangle that "frames" the function in
the region of the integration. The base of the rectangle is a horizontal line
from a to b, so that the width of the rectangle is defined by the limits of
integration to be

W=b-a

The height H of the rectangle must be chosen so that the function f(x) is
inside the rectangle over the range a ~ x ~ b. The area of the rectangle is
then

A = WH = (b-a)H

For the standard normal example, the width of the rectangle (pictured
below) is W = 1.6 - (-1.3) = 2.9, and the base of the rectangle is a
line along the horizontal axis connecting the points x = -1.3 and
x = 1.6. The maximum value of f(x) on the range -1.3 ~ x ~ 1.6 occurs
at x = 0, where f(x) = l/.fh = 0.3989. Thus, the height of the framing
rect~ngle must exceed 0.3989; for this example, H = 0.5 is chosen. The
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area of the rectangle is A = 2.9(0.5) = 1.45. In the rectangle pictured
below, the shaded region is the probability to be evaluated.

The next step is to generate a large number, say N, of pairs of uniform
random deviates (x,y), where x is from the uniform distribution over the
interval [-1.3,1.6] and y is from the uniform distribution over the interval
[0,0.5]. Each pair (x,y) is obtained by generating two independent unit

I- W=2.9 -I
0.5

T
f(x) H=O.5

0
-1.3 1.6

x

uniform random deviates rl and r2' and then using Equation 11.2 to
compute

x = rl[ 1.6 - (-1.3)] + (-1.3) = 2.9rl - 1.3

and

y = r2(O.5 - 0.0) + 0.0 = 0.5r2

The function f(x) is then evaluated for each observed value of x. Let n
denote the number of pairs where y ~ f(x). Then the value of the definite
integral is approximated by

nA = n(b-a)H = n(1.45)
N N N

For this example, N = 1000 pairs (x,y) were generated on a computer
using the method described previously. Results for the first five pairs are
tabulated below for illustration. Of the N = 1000 pairs, there are n =
601 pairs where y ~ f(x). Thus, the approximate value of the integral of
interest is

60~~5) = 0.8715

Note that the actual value of the integral, obtained by using Table A3,
is 0.8484. For many applications, the accuracy of this approximation
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Fl F2 X Y f(x)

0.5825 0.4014 0.3893 0.2007 0.3698t
0.7950 0.5618 1.0056 0.2809 0.2406
0.5540 0.5484 0.3068 0.2742 0.3806t
0.1593 0.2563 -0.8380 0.1281 0.2808t
0.6839 0.0436 0.6833 0.0218 0.3159t

ty ~ f(x)

would be satisfactory. However, a more accurate approximation can be
obtained by increasing N.

A second simulation method, that may be more accurate for some
functions than the method described previously, is based on the approxi­
mation

The method involves approximating the integral by generating a large
number N of uniform random deviates x from the interval [a,b], where the
N deviates are substituted for the Xi in this formula.

For the standard normal example, N = 1000 uniform deviates x were
generated from the interval [-1.3, 1.6] as discussed previously. Then the
function f(x) was evaluated at each of the x values, and the N = 1000
f(x) values were summed, giving 2:f(x) = 290.45. The approximate value
of the integral of interest is then

(b-a) ~ f(x) =~ (290.45) = 0.8423
N i-I 1000

Note that this is much closer to the actual value 0.8484 than the approxi­
mation obtained by the rectangular method, and increasing N will improve
the accuracy of this approximation.

11.3.3 The Normal Distribution

The normal distribution is described in Section 2.5.2. A method for
generating random deviates from the normal distribution was first intra-
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duced by Box and Muller (1958). The Box-Muller technique is a method
still in wide use, even· though much faster algorithms are currently avail­
able. The mathematical development of this method is not presented here,
only the results necessary for its implementation. For more details, see
Bratley, Fox, and Schrange (1983), Law and Kelton (1982), or Kennedy
and Gentle (1980).

Two independent random deviates, Zl and Z2, from the standard normal
distribution are obtained by generating two unit uniform random deviates,
rl and r2, and then letting

and (11.3)

Because Zl and Z2 are independent random deviates from the normal distri­
bution with mean 0 and standard deviation 1, they can be transformed into
two independent random deviates, Xl and X2, from a normal distribution
with mean Il and standard deviation u by the transformation

x = uz + Il (11.4)

An improvement on the Box-Muller method, which eliminates the trig­
onometric calculations, was introduced by Marsaglia and Bray (1964).
It has become known as the polar method, and was found by Atkinson and
Pearce (1976) to be as much as 31% faster than the Box-Muller method,
depending on which computer is used. More recently, a very fast algorithm
for generating random deviates from the normal distribution was
developed by Kinderman and Ramage (1976). Although somewhat more
complicated, this algorithm proved to be 30% faster than the polar method
in a series of experimental comparisons. The details of these newer
methods are not presented here, and the Box-Muller method is used
throughout the remaining sections of this chapter to generate random devi­
ates from the normal distribution.

Example 11.2 To illustrate the Box-Muller technique, suppose that it
is of interest to generate a random sample of size n = 20 from a normal
distribution with mean Il = 20 and standard deviation u = 0.5. The first
step is to generate 10 pairs of independent unit uniform random deviates
(r"r2). Then Equations 11.3 and 11.4 are applied with Il = 20 and u =



684 QiAPTER 11 SIMULATION

0.5. These steps were performed on a computer and the results are sum-
marized below.

rl r2 II 12 XI X2

0.143624 0.154317 1.11432 1.62463 20.5572 20.8123
0.961072 0.528347 -0.27734 -0.04~93 19.8613 19.9750
0.285263 0.423452 -1.40419 0.73276 19.2979 20.3664
0.833866 0.405667 -0.49998 0.33673 19.7500 20.1684
0.268445 0.982856 1.61239 -0.17436 20.8062 19.9128
0.239110 0.896121 1.34393 -1.02738 20.6720 19.4863
0.110780 0.206207 0.56995 2.01881 20.2850 21.0094
0.460185 0.487190 -1.24186 0.10017 19.3791 20.0501
0.503274 0.710657 -0.28674 -1.13623 19.8566 19.4319
0.625828 0.353656 -0.58692 0.77000 19.7065 20.3850

The 20 values in the last two columns are the equivalent of a random sam­
ple of size n = 20 from a normal distribution with mean II. = 20 and
standard deviation u = 0.5.

Another method for generating random normal deviates, which is much
less efficient than the methods discussed previously, is based on the Cen­
tral Limit Theorem (Section 2.5.2.1) which states that the sum of a large
number of variables from any distribution is approximately normally dis­
tributed. If the expected value of such a sum is subtracted from the
observed sum and this difference is divided by the standard deviation of
the sum, a deviate with approximately the standard normal distribution is
obtained.

To apply this method, generate a large number, say Ie, of unit uniform
random deviates rl through rk' When k is sufficiently large, the quantity z,
given by

z

k
~ rj - kJ2
i-I (11.5)

approximates a random deviate from the standard normal distribution.
According to the rules of thumb presented in Section 2.5.2.1 for applying
the Central Limit Theorem, k = 12 is adequate, and Equation 11.5

. reduces to the form

12

Z = ~ rj - 6
j-I
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A random deviate x from a normal distribution with mean Il and standard
deviation (1 is then obtained by applying Equation 11.4. This method is not
recommended for general use and is presented only for information and
illustrative purposes.

Example 11.3 To illustrate the method based on the Central Limit
Theorem, suppose that it is of interest to generate a random sample of size
n = 3 from a normal distribution with mean Il = 20 and standard devia­
tion (1 = 0.5. First, 3 random samples of 12 unit uniform deviates are gen­
erated. Then, to each sample, Equation 11.5 is applied with k = 12, and
Equation 11.4 is applied with Il = 20 and (1 = 0.5. These steps were car­
ried out on a computer with the following results.

Sample 1 Sample 2 Sample 3

0.993458 0.873662 0.742130
0.172875 0.986846 0.203562
0.339441 0.486923 0.857184
0.834880 0.282859 0.822082
0.296872 0.790098 0.400560
0.624603 0.291086 0.248743
0.700297 0.033209 0.453487
0.844989 0.716828 0.877085
0.517123 0.619234 0.372241
0.170803 0.899237 0.326297
0.162543 0.392950 0.036732
0.677929 0.655703 0.072874

~rl: 6.3358 7.0286 5.4130
z: 0.3358 1.0286 -0.5870
x: 20.1679 20.5143 19.7065

The last row, labeled x, is a random sample of size n = 3 from a normal
distribution with mean Il = 20 and standard deviation (1 = 0.5. Note that
for about the same effort, the Box-Muller method would have produced
36 random normal deviates.

Although simulation can be used to study quite complicated problems,
the following relatively simple example illustrates one of the basic types of
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problems where a simulation analysis can provide useful information. The
example problem is solved analytically in Chapter 4.

Example 11.4 In Example 4.3, a sampling plan is developed for
monitoring the percent uranium in batches of U02 powder. For a given
batch, the plan is to select randomly n = 7 powder samples and determine
the percent uranium in each sample. Then, if the computed value of the
test statistic

Z= X-87.6
0.03/../7

is less than or equal to -1.65, the null hypothesis Ho: JL ~ 87.6 is rejected
at the 0.05 level of significance in favor of the alternative hypothesis HA:

JL = JLA < 87.6. The plan was developed to meet the requirement that the
power of the test must be at least 0.90 whenever the true mean is as small
as JLA = 87.565.

The points for constructing a power curve for this plan are determined
analytically and tabulated in Example 4.3. Suppose that it is of interest to
verify these power calculations by simulation analysis.

When the value of the mean is JLA' the test statistic Z follows a normal
distribution with mean (JLA - 87.6)/(0.03/../7) and standard deviation 1.
Thus, a simulation analysis to approximate the power of the test when the
mean is JLA is carried out in the following steps:

1. Set the value of JLA, and generate N random deviates from the nor­
mal distribution with mean (JLA - 87.6)/(0.03/../7) and standard devia­
tion 1.

2. Count the number of deviates, say n, which are less than or equal to
-1.65.

3. The approximate power of the test when the mean is JLA is 1- fJ ==
niNo The accuracy of this approximation improves as N increases. Thus, a
large value of N should be used.

4. Repeat steps 1, 2, and 3 for each value of JLA to be studied.

For this example N was chosen to be 10,000, and the Box-Muller tech­
nique was used on a computer. The results are summarized below. Note
the close agreement between the probabilities in the 1- fJ column above
the corresponding probabilities obtained analytically in Example 4.3.
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II-A D DIN a: 1-11

87.550 9968 0.9968
87.555 9904 0.9904
87.560 9705 0.9705
87.565 9257 0.9257
87.570 8404 0.8404
87.575 7074 0.7074
87.580 5419 0.5419
87.590 2243 0.2243
87.600 495 0.0495
87.800 65 0.0065

11.3.4 The Chi-Square Distribution

The chi-square distribution, discussed in Sections 2.5.4 and 3.5.1, is the
underlying distribution of the sample variance computed from the observa­
tions in a random sample from a normal distribution. Thus, in simulation
modeling and analyses, it is often necessary to generate r:andom deviates
from the chi-square distribution with II degrees of freedom.

One approach is to generate II random deviates Zj from the standard
normal distribution and compute the quantity

•
x = ~ Zj2

i-I
(11.6)

Then x is a random deviate from the chi-square distribution with II degrees
of freedom.

Although this method yields satisfactory results, it is much slower for
large II than necessary. A quicker method makes use of the fact that the
chi-square distribution with II degrees of freedom is a gamma distribution
(Table 2.5, Section 2.5.4) with), = 1/2 and r = 11/2. Then x can be
obtained directly from the gamma generation methods presented in most
texts on simulation or random number generation. See, for example, Brat­
ley, Fox, and Schrange (1983); Law and Kelton (1982); Fishman (1973);
or many of the other texts listed in the references.

When a random sample of size n is drawn from a normal distribution
with unknown mean II- and unknown standard deviation (1, the quantity

(11.7)
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is an observation from the chi-square distribution with n-I degrees of
freedom, where S2 is the sample variance. Thus, to generate a sample vari­
ance S2 for a specified sample size n and specified value of u'-, generate a
random deviate x from the chi-square distribution with n-I degrees of
freedom. Then substitute x, u'-, and n-I into Equation 11.7 and solve for
S2. This gives

There is a simpler method for generating S2 for a sample of size n
from the N(#t,u'-) distribution. First generate n random normal deviates
from the N(#t,u'-) distribution by applying the Box-Muller or an equivalent
method. Then compute S2 directly. Note, however, that this method
requires more calculations than the method presented above, and thus is
slightly slower.

Example 11.5 In Example 4.9, a sampling plan is defined that
ensures a power of at least 0.80 when the true value of u'- is twice as large
as the hypothesized value 0'5 = (0.2 kg)2. The plan requires that a random
sample of size n = 20 containers be drawn and individually weighed. The
test statistic

2 _ (n _1)S2 _ 19 S2
X - (0.2)2 - (0.2)2

is computed, where S2 is the sample variance computed from the observed
container weights. If x2 ~ 27.2, the null hypothesis Ho: 0' ~ 0.2 kg is
rejected at the 0.10 level of significance in favor of the alternative
hypothesis HA: 0' = 0'A > 0.2 kg. It is of interest to verify that the power
of the hypothesis test is at least 0.80 when O'Jj(O.2)2 = 2.

When HA is true, the quantity

is an observation from the chi-square distribution with n-I degrees of
freedom. Note that the test statistic x2 is obtained by multiplying the
above quantity by O'Jj(O.2)2. That is,
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This means that when HA is true, the test statistic X2 is equal to an obser­
vation from the chi-square distribution multiplied by the quantity
ulJ(0.2)2.

In this example, ulJ(0.2)2 = 2. Thus, the power of the test is deter­
mined from simulation analysis by completing the following steps:

1. Generate n-1 = 19 random deviates, Zl through Z19, from the
standard normal distribution, and compute a chi-square deviate x using
Equation 11.6. Then compute a new deviate y = (ulJ (6)x = 2x.

2. Step 1 is repeated M times, where M is chosen to be quite large.
3. Count the number, say m, of deviates y that are greater than or

equal to 27.2. The approximate power of the test is I-fJ ;;: m/M.

These steps were carried out on a computer with M = 5000. There
were m = 4021 deviates y that were greater than or equal to 27.2. Thus,
the power of the test when ulJ(0.2)2 = 2 is approximately

I-fJ ;;:4021/5000 = 0.8042

This verifies that the proposed plan meets the specified power requirement.

11.3.5 The Central and Noncentral
Student's t Distributions

Explicit forms of the central and noncentral Student's t distributions
are not given in any of the previous chapters, even though they play an
important role in statistical inference. A random variable X is said to have
the (central) Student's t distribution with" degrees of freedom if X can be
expressed as the ratio of a standard normal random variable to the square
root of a chi-square random variable with " degrees of freedom divided by
its degrees of freedom (Equation 3.25). This definition provides a method
for generating a random deviate from the (central) Student's t distribution
with " degrees of freedom.

The procedure is to generate " + 1 random deviates Zj from the stan­
dard normal distribution and compute the quantity

(11.8)



690 QiAPTER 11 SIMULATION

Then x is a random deviate from the Student's t distribution with "
degrees of freedom.

To illustrate this method, suppose that it is of interest to generate a
random deviate from a Student's t distribution with " = 9 degrees of free­
dom. In the table of numbers in Example 11.2, the column headed ZI

includes 10 random deviates from the standard normal distribution. If
these deviates are labeled ZI through ZlO, then applying Equation 11.8
gives

x

110 I~.2; Zi2j9
1-2

= 1. 11432/.J8.99835/9 = 1.11442

which is a random deviate from the Student's t distribution with " = 9
degrees of freedom.

To generate a random deviate x from the noncentral Student's t distri­
bution with " degrees of freedom and noncentrality parameter X, Equation
11.8 is modified to the form

(11.9)

For example, to generate a random deviate from the noncentral Student's t
distribution with " = 9 degrees of freedom and noncentrality parameter
X = 1.0, the results from the previous example are used in Equation 11.9
to compute

x= 1.11432 + 1.0 = 2.11451
.J8.99835j9

Example 11.8 In Example 4.6, a sampling plan is developed based
on an approximate sample size formula with a sample estimate substituted
for the unknown standard deviation. The objective is to determine the sam­
ple size n required to ensure that the power of the hypothesis test is at
least 0.90 when the true mean percent uranium in a batch of U02 powder
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is as small as ILA = 87.565. The plan developed in Example 4.6 is to ran­
domly select n = 9 powder samples from a given batch, determine the
percent uranium in each sample, and compute the test statistic

x- 87.6t ="'::'::'--'-:::::-'-
S/.J9

If t ~ -1.860, the null hypothesis Ho: IL ~ 87.6 is rejected at the 0.05
level of significance in favor of the alternative hypothesis HA: IL = ILA <
87.6.

It is assumed that the observed percent uranium values for the n = 9
powder samples are a random sample from a normal distribution with
unknown mean IL and unknown standard deviation (1. If Ho is true, the test
statistic t is an observation from the central Student's t distribution with
II =8 degrees of freedom. If HA is true, t is an observation from the non­
central Student's t distribution with II = 8 degrees of freedom and with
noncentrality parameter X = (ILA - 1LQ)/«(1/.Jn} = 3(ILA - 87.6}/(1.

Although (1 is unknown, one goal of the process manager is to control (1
so that (1 ~ 0.03. Although this level of control has not yet been estab­
lished, it is believed that (1 will not exceed 0.033 for any batch of U02
powder.

It is of interest to investigate the power of the hypothesis test for the
mean percent uranium under the proposed plan when ILA = 87.565, for
values of (1 ranging from 0.030 to 0.033. This can be accomplished using
simulation analysis, by generating random deviates from the noncentral
Student's t distribution as follows:

Consider only the values (1 = 0.030, 0.031, 0.032, and 0.033. For each
value of (1, perform the following steps:

I. Generate nine random deviates, Zl through 2:9, from the standard
normal distribution. Set X = 3(87.565 - 87.6}/(1 = -0.105/(1, and
use Equation 11.9 to compute the random deviate

x=

2. Step 1 is repeated M times, where M is chosen to be large.
3. Count the number, say m, of deviates x which are less than or equal

to -1.860. The power of the test, when ILA = 87.565 for the specified (1,
is then approximately 1 - fJ == m/M.

These steps were carried out on a computer with M = 10,000 for
each of the four values of (1. The results are tabulated as follows:
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(f m 1 - {J === mjlO,OOO

0.030 9361 0.9361
0.031 9218 0.9218
0.032 9064 0.9064
0.033 8894 0.8894

These results indicate that the power of the test is greater than or equal to
0.8894 when the true mean percent uranium in a batch is #LA = 87.6 and
(f ~ 0.033. Strictly speaking, the proposed plan is adequate (i.e.,
1 - fJ ~ 0.90) only if (f ~ 0.032. However, for practical purposes, a
power of 0.8894 may be satisfactorily close to 0.90; if so, the proposed
plan is satisfactory for (f ~ 0.033.

11.3.6 The F Distribution
If Xl and X2 are independent random deviates from chi-square distribu­

tions with degrees of freedom 111 and 112, respectively, then

XI/Ill 112 Xl
x=--=--

X2/112 111 X2
(11.10)

is a random deviate from the F distribution with 111 and 112 degrees of free­
dom. Thus, to generate a random deviate X from the F distribution, Xl and
X2 are generated as described in Section 11.3.4 and are substituted into
Equation 11.10.

Example 11.7 In Example 4.14, a sampling plan is developed for
testing the hypothesis

against the alternative

at the 0.10 level of significance. The plan requires taking independent ran-
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dom samples of size nl = 14 measurements using the rapid method and
n2 = 7 measurements using the standard method. The test statistic

is then computed, and if F ~ 2.89, Ho is rejected in favor of HA• This plan
should provide a test with power at least 0.80 when tTl/tTl = 5. However,
the sample sizes were obtained by interpolating in Table A6, and it is of
interest to verify that the proposed plan is adequate.

This is accomplished by simulation analysis as follows.
1. Generate a random deviate XI from the chi-square distribution with

JlI = 13 degrees of freedom.
2. Generate a random deviate X2 from the chi-square distribution with

Jl2 = 6 degrees of freedom.
3. Apply Equation 11.10 to compute the random deviate

xd13 6xI
x=--=--

X2/6 13x2

Then compute the deviate

tTl
y=-x=5x

tT?

4. Steps 1, 2, and 3 are repeated M times, where M is chosen to be
large.

5. Count the number, say m, of deviates y that are greater than or
equal to 2.89. The power of the test is then approximately 1 - fJ ;;;:m/M.

These steps were carried out on a computer with M = 5000. There were
m = 4003 deviates y which were greater than or equal to 2.89. Thus, the
power of the test is approximately

1 - fJ ;;;:4003/5000 = 0.8006

when tTl/ tT? = 5. This verifies that the proposed plan meets the power
requirement.

11.3.7 The Multivariate Normal Distribution

Some stochastic modeling applications involve multiple random vari­
ables that may be correlated. In simulating such a model, it is necessary to



594 CHAPTER 11 S1MULATJON

generate correlated random deviates. Section 2.6.3 discusses the general
case of k jointly distributed random variables and provides definitions of
the k-element mean vector I!: and the k-by-k symmetric variance;-eovari­
ance matrix ~. One of the joint distributions used extensively in simulation
modeling is the multivariate normal distribution. The general k-variate
normal distribution is not explicitly defined in any of the previous
chapters, but a detailed presentation of the two-variate (or bivariate) nor­
mal is given in Section 2.6.4.2.

To generate a k-element random vector ! from the k-variate normal
distribution with mean vector I!: and varian~variance matrix ~, the fol­
lowing steps are required:

1. Obtain a k-by-k matrix ! such that !'! = ~. The matrix ! can be
obtained by performing a Cholesky square root factorization of the matrix
~. Graybill (1976) gives detailed instructions for performing a square root
factorization.

2. Generate k independent random deviates, Zl through Zk, from the
standard normal distribution, and arrange them in a k-element vector ]:.
That is,

Z=

3. Compute the k-element vector! from the formula

(11.11)

The resulting vector ! is the equivalent of a random vector from the k­
variate normal distribution with mean vector I!: and variance-eovariance
matrix ~. If steps 2 and 3 are repeated N times, a random sample of N
k-variate vectors from this distribution is generated.

11.3.8 The Binomial Distribution

The binomial distribution is described in Section 2.4.2. A random devi­
ate x from a binomial distribution with parameters nand p is generated by
selecting n unit uniform random deviates and counting the number that
are less than or equal to p. Symbolically, the steps of the procedure are as
follows:

1. Generate n unit uniform random deviates rj, i = 1,2, ... , n
2. Let Zj = 1 if rj ~ p and Zj = 0 if rj > p

n
3. Then, x = ~ Zj .

i-I
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For example, let n = 8 and p = 0.75. Eight unit uniform random deviates
were generated with values 0.12236, 0.95493, 0.21108, 0.04151, 0.58625,
0.58944, 0.98795, and 0.86085. The corresponding values of Zj are 1, 0, 1,
1, 1, 1,0,0, and the resulting binomial random deviate is x = 5.

11.3.9 Functions of Random Variables

Sections 2.7 and 3.6 address the topic of functions of random variables.
In general, interest is focused on a random variable Y which is a known
mathematical function of one or more random variables. This is expressed
as

Y = h(X.,X2, ••• ,X.J (11.12)

where the individual Xi are random variables from perhaps different distri­
butions, and h is a known mathematical function of the variables Xi'

Because the distributions of the individual random variables Xi are
known, a random deviate from the (perhaps unknown) distribution of Y is
generated as follows. First, generate one random deviate Xi from each of
the individual distributions. Then substitute the random deviates Xi for the
random variables Xi in Equation 11.12. Theresulting quantity, given by

(11.13)

is a random deviate from the distribution of Y. Repeating this procedure
N times provides the equivalent of a random sample of size N from the
distribution of Y.

Because the exact distribution of Y is usually unknown, the purpose of
conducting a simulation study may be to characterize this distribution. A
histogram, together with the sample mean and sample standard deviation,
provides an initial characterization which may be adequate for some appli­
cations. Additional statistics (such as percentiles and higher sample
moments) provide a more thorough characterization which may be
required, for example, to "fme-tune" a hypothesis testing procedure. A
characterization of the distribution of Y could indicate, for example,
whether or not the normal distribution provides a satisfactory
approximation for a given application. The goodness-of-fit tests presented
in Chapter 9 can be applied to simulated data for this purpose.

Note that correlations among any of the random variables Xi must be
taken into account when generating the deviates Xi' This is accomplished
by using multivariate techniques such as the one presented in Section
11.3.7.
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Example 11.8 In Example 2.11, the amount of 23SU in a con­
tainer is measured by determining the net weight of the powder and draw­
ing a sample of powder for analysis of percent uranium and percent 23SU.
The following random variables are of interest:

Xl = net weight of U02 powder with mean III and measurement variance
CTl

X2 = ratio of uranium to U02 (i.e., proportion uranium) with mean Il2 and
measurement variance CTi

X3 = ratio of 23SU to uranium with mean Il3 and measurement variance CT1

Y = XIX2X3 = amount of 23SU in the container with mean Ily and vari­
ance CT}

The following parameter values are assumed:

III = 20.0 kg
Il2 = 0.876
Il3 = 0.0425

CTl = 0.05
CT2 = 0.001
CT3 = 0.0002

It is further assumed that Xlo X2, and X3 are uncorrelated, so that all
covariances are zero. Then, using the Taylor series approximation method,
described in Section 2.7.2, the approximate mean and variance of Yare
computed in Example 2.11 to be

and

CTy === 0.0041 kg 23SU

Suppose that in addition to the previous assumptions, it can be
assumed that Xlo X2, and X3 follow normal distributions. It is of interest
to investigate the distribution of Y and to obtain approximations of Ily and
CT} by simulation analysis. To do this, the following steps are necessary:

1. Generate three independent random deviates Xlo X2, and X3' where Xl

is from the normal distribution with mean 20.0 and standard deviation
0.05; X2 is from the normal distribution with mean 0.876 and standard
deviation 0.001; and X3 is from the normal distribution with mean 0.0425
and standard deviation 0.0002.

2. Compute the deviate
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3. Steps 1 and 2 are repeated N times, where N is chosen to be quite
large.

4. Use the resulting N deviates to compute a sample mean Y and a
sample standard deviation S.

5. Because the distribution of Y is of interest, a histogram can be plot­
ted using the N deviates.

These steps were carried out on a computer with N = 5000. The
resulting estimates of p,y and fry are

Y = 0.74455

and

S = 0.004079

These values agree with the approximations obtained in Example 2.11,
where no particular distributions were assumed for X.. X2, and X3• A his­
togram constructed from the N generated y values follows.

Middle of
intenal

0.730
0.732
0.734
0.736
0.738
0.740
0.742
0.744
0.746
0.748
0.750
0.752
0.754
0.756
0.758

Number of
obsenatioDst

1 *
12 *
34 **

104 ******
258 *************
567 *****************************
832 ******************************************
904 **********************************************
888 *********************************************
703 ************************************
416 *********************
185 **********
70 ****
24 **
2 *

tEach * represents 20 observations, so that each row of *s represents the number of
observations rounded up to the nearest multiple of 20.

Suppose that it is of interest to further characterize the distribution of
Y by computing sample percentiles. The 100pth percentile can be easily
determined by arranging the N deviates in ascending order and then locat-
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ing the Npth ordered deviate. To illustrate this, consider determining the
5th and 95th percentiles of the distribution of Y. When the 5000 deviates
are arranged in ascending order, the 5th percentile is the 5OOO(0.05)th or
250th ordered deviate, which is 0.73797. The 95th percentile is the
5000(0.95)th or 4750th ordered deviate, which is 0.75117.

When the distribution of Y is unknown and there is some doubt about
applicability of the normal theory techniques, simulation can be used, for
example, to characterize the distributions of the sample mean and sample
standard deviation under different sampling schemes. This would aid, for
example, in determining required sample sizes and rejection limits for
hypothesis tests about Ityand Uy.
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CHAPTER 12

Elements of Decision Theory

12.0 INTRODUCTION
Decision theory combines elements of the theory of games and statisti­

cal hypothesis testing and is based on the principle that statistical pro­
cedures should be judged by their consequences. As developed by Wald
(1950) and others, decision theory is a complex theoretical tool for mathe­
matical statisticians. However, the basic principles of decision theory can
be applied to the nuclear material accounting area without the necessity of
invoking its full mathematical generality. This chapter is limited to an
explanation, in a safeguards context, of how decision theory can be used to
reach a decision in the face of uncertainty. Because of its limited scope,
this chapter does not consider the relationship between decision theory and
game theory or hypothesis testing. Introductory expositions of decision the­
ory can be found in Chernoff and Moses (1959), Ferguson (1967), and
Pratt, Raiffa, and Schlaifer (1964). Davis (1970) provides a nontechnical
introduction to game theory. Luce and Raiffa (1958) present the central
ideas and results of game theory and related decision-making models unen­
cumbered by technical mathematical details. Blackwell and Girshick
(1954) wrote a graduate level text that presents statistical decision theory
from a game-theoretic point of view.

Decision theory has been applied to nuclear material management
problems in a game theory context. Tingey (1979) observes that the com­
monly used approach to nuclear material inventory control tends to ignore
the cost consequences of such occurrences as a false alarm or a process
shutdown. He defines the total risk associated with an action as a function
of measurement variability and the cost of an incorrect result. He then
chooses a sampling plan that optimizes a combination of total risk and
probability of detecting a true diversion. Opelka et al. (1979) review the
conclusions ofa peer review group convened to evaluate the applicability
of game theory to the analysis of inventory differences. Moglewer (1978)
uses game theory to validate the inventory difference concept for detecting
unauthorized diversion of nuclear materials. He finds that game theory
leads to strategies that are quite different from strategies based on classi­
cal statistical methods. Avenhaus (1978) discusses how a diverter of
nuclear materials might choose a strategy for deciding which items to fal­
sify in order to maximize the probability of not being detected. He then

Preceding page blank 601



602 aiAPTER 12 ElEMENTS OF DECISION THEORY

discusses how the inspector should select samples in order to minimize the
diverter's maximum probability of nondetection. Seaver et al. (1984) inves­
tigates the feasibility of applying game theory to the analysis of inventory
differences.

This chapter begins with a short discussion of the distinction between
decision theory and decision analysis, as used in the safeguards literature.
This is followed by a section on definitions. Most of the chapter is a
detailed discussion of an illustrative example that explains the principles of
decision theory.

12.1 DECISION ANALYSIS

The term decision analysis has appeared in the nuclear material man­
agement literature since the late 1950s. More recent citations are Hakkila
et al. (1977), Shipley (1978, 1980), and Bennett (1982a). Decision analy­
sis is to be distinguished from the statistical decision theory introduced in
this chapter. Decision theory (but not decision analysis) is discussed in
many statistical textbooks.

Decision analysis as used in the nuclear material management litera­
ture is an organized plan for collecting data, analyzing it, and arriving at
conclusions (Bennett, 1982b). It differs from decision theory in that the
tools described in this chapter, such as loss functions and strategies, are
not commonly used. The tools of decision analysis are hypothesis testing,
data analysis, and sampling. This book provides the necessary background
for decision analysis but does not discuss plans of action for evaluating a
problem situation and determining a strategy for the resolution of that
problem situation. In the applications chapters of this book (Chapters 13
through 17), many examples of such plans of action are discussed. Most of
these are rather'obvious combinations of the statistical principles presented
in the previous chapters. The list of additional reading materials for this
chapter includes papers that discuss this type of decision analysis.

12.2 DEFINITIONS

There are two kinds of uncertainty that need to be considered here.
One kind is due to randomness or statistical phenomena. This is the ran­
domness that explains how dice fall, the way a flipped coin falls, or which
hands are dealt in a game of cards. This randomness is described with sta­
tistical distributions, such as those discussed in Chapter 2. Most of this
text is devoted to the statistical aspects of this kind of uncertainty. For
example, some measurement errors, production lot variability, and sam­
pling errors are of this kind. The other kind of uncertainty arises when it
is not known which statistical laws of randomness actually apply to a given
situation. In Chapter 6, regression model validation and other approaches
to finding the correct model are discussed as methods to reduce the magni-
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tude of this second kind of uncertainty. In statistical terminology, this sec­
ond kind of uncertainty is "ignorance of the state of nature." In nuclear
material safeguards, the state of nature is whether or not a diversion has
occurred and, if so, what diversion strategy was used. Hypothesis testing
aids in deciding whether or not a hypothesized state of nature is correct in
the face of the uncertainty caused by randomness in the available informa­
tion (Section 16.2.2).

In hypothesis testing there are two a'allable actions, either to reject or
not to reject the hypothesis. In the decision theory approach described in
this chapter, there may be many available actions or decisions that can be
made. The consequences of taking an action depend upon the true state of
nature. The loss function measures the cost or gain of taking specified
actions for all possible states of nature. The loss function is typically
displayed in a loss table, where all possible actions are listed on one axis
and all possible states of nature on the other. The entries in the table are
the cost of each combination of action and state of nature. Given a loss
table, it would be easy to select the best action if the state of nature was
known. To gain information to assess the state of nature, an experiment
may be performed which yields data. A strategy tells how to use such data
to make a decision.

12.3 AN ILLUSTRATIVE EXAMPLE

The principles of decision theory are illustrated by detailed discussion
of the following example.

12.3.1 Statement of the Problem

One part of the nuclear material inventory of any fuel fabrication facil­
ity is the scrap and contaminated waste generated during the manufacture
of fuel rods. These scrap and waste materials are usually stored in drums,
which are used to transport these materials for disposal. A facility may
want to dispose of these drums in the most economical way. Suppose that
drums with a surface exposure rate of 5 Rlh or less can be sent to a low­
level disposal site at a cost of 580 per drum. Drums with a surface expo­
sure rate over 5 Rlh must go to a high-level waste site at a cost of 5350
per drum. Each drum must be measured, and a decision must be made as
to where to send it. If a high-level drum is sent to a low-level site, there is
a 50% chance that the error will be detected and a fme of $450 will be
incurred. Suppose further that a simple radiation meter can be used for
scanning the surface of the drums, or the drums can be sent to a contrac­
tor for accurate scanning at a cost of 550 per drum. A strategy must be
devised which minimizes disposal costs.

This is not yet a complete statement of the problem, but the situation
described so far, in terms of its decision theory structure, entails two states
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of nature: each drum either contains high-level waste or it contains low­
level waste. There are three available actions: a drum can be sent to a
low-level waste site, it can be sent for accurate measurement, or it can be
sent to a high-level waste site. Also, some information is available on costs
associated with the various actions. Thus, a table of the loss function for
this situation can be constructed. Denote by N I the state of nature of a
drum containing low-level waste and by N2 the state of nature of a drum
containing high-level waste. Denote by Al the action of sending a drum to
a low-level site, by A2 the action of sending a drum for accurate measure­
ment, and by A3 the action of sending a drum to a high-level site. Table
12.1 describes the loss function.

TABLE 12.1

Loss Function for Waste
Disposal (DoUars)

Action

State of nature

N1 (low-level)
N2 (high-level)

80 130 350
440 400 350

The entries in this table are determined as follows. If a drum is truly
low-level and it is sent to a low-level site, the cost is $80 as described
above. If a low-level drum is sent for accurate analysis, the cost is $50 for
the analysis plus $80 for disposal, a total of $130. A low-level drum sent
to a high-level site will cost the same as a high-level drum, which is $350.
If a high-level drum is accurately analyzed first, a $50 analysis cost is
added for a total of $400. If a high-level drum is sent to a low-level site,
an adjustment must be made for the 50% chance of getting caught, the
fine, and the cost of correct disposal. To estimate this loss, the principle of
expectation described in Chapter 2 is applied. The high-level drum will be
accepted for $80 at the low-level site with probability 0.50. The probability
is also 0.50 of having to pay the $450 fine plus $350 for correct disposal.
The expected loss is then 0.5 ($80) + 0.5 ($450 + $350) = $440.

Suppose that the choice of actions is based upon the reading from the
simple radiation meter applied to the surface of each drum. These read­
ings, of course, contain random measurement error. For now, assume there
is no prior knowledge of drum contents; such knowledge is used in more
sophisticated analyses. Assume that a drum will be sent to a low-level site
if the radiation meter registers less than 4 Rlh and to a high-level site if
the meter registers above 6 R/h. If the reading is between 4 and 6 Rlh,
the drum will be sent for accurate analysis. The probability of any specific
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reading on the meter depends upon the true state of nature. By having
samples of all kinds of drums accurately analyzed, estimates of the proba­
bilities of the various readings can be obtained. Suppose that the results of
such an exercise are given in Table 12.2. Here, XI represents a reading
less than 4 Rlh, X2 a reading between 4 and 6 Rlh, and X3 a reading
above 6 R/h. The probabilities in this table could have also been estimated
from historical records, simulations of the waste production, or even edu­
cated guesses of drum contents.

TABLE 12.2

Probabilities of Observing a Radiation Meter
Reading of Xj When Nt Is the True State of Nature

Reading
State of
uture

0.65
0.10

0.25
0.30

0.10
0.60

12.3.2 Choosing a Strategy

The next step is to decide how to respond to the radiation meter read­
ing. This response plan is called the strategy. There are three possible
actions: A lo A2, and A3• There are also three possible readings: X lo X2,
and X3• A strategy is a rule that determines which action, Ai, to take
based on the observed reading, Xj . Many strategies are obviously ridicu­
lous or counterproductive, but for completeness all must be listed. In this
example, there are 27 possible strategies; they are denoted by SI through
S27 and are displayed in Table 12.3.

Strategy 1 ignores the data and sends everything to the low-level waste
site. Strategy 27 also ignores the data and sends everything to the high­
level site. Strategy 6 intuitively appears to be the best, but may actually
cost more than some other strategy because of the cost of accurate analy­
sis. Strategy 9 avoids the cost of an accurate analysis by sending question­
able drums directly to the high-level waste site.

The next step is to compute the expected loss associated with each
strategy. Information from the preceding three tables is used with the
principles of expectation discussed in Chapter 2. The expected loss for a
strategy is defined as the risk associated with using that strategy. As an
illustration, consider Strategy 5. For this strategy, action Al is taken if XI
is observed, and action A2 if either X2 or X3 is observed. When N I is the
state of nature, XI is observed with probability 0.65 and X2 or X3 with
probability 0.25 + 0.10 = 0.35. With this strategy, action A3 is never
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The algorithm for these computations can be visualized as follows.
Make two copies of Table 12.3; in the first copy replace the Ai'S with their
values for the first state of nature found in Table 12.1, and in the second
copy use the values for the second state of nature in Table 12.1. Of course,
in the general problem there would be n states of nature, and n copies of
Table 12.3 would be made. Next, replace the Xi's in these two tables by
their values found in Table 12.2, again using the appropriate state of
nature. Then multiply each entry within the table by the Xj value for its
row, and sum down the column for each strategy. These sums are the
numbers found in Table 12.4.

Table 12.4 gives the expected loss for every possible combination of
strategy and state of nature. Accordingly, the choice of strategy should
depend only on the numbers in Table 12.4. But how is this choice to be
made? It is clear from Table 12.4 that the best strategy depends on the
state of nature. If N1 is true, Sl minimizes the expected loss and if N2 is
true, S27 minimizes the expected loss. However, if Sl is used and N2 is
true, or if S27 is used and N1 is true, the expected loss will be maximized.
In other words, the best strategy for one state is the worst strategy for the
other state.

A number of criteria have been suggested for choosing a strategy from
Table 12.4. The minimax criterion chooses the strategy which minimizes
the maximum expected loss. The criterion assumes that the worst will
always happen; that is, whatever strategy is chosen, the true state of
nature will be that state which maximizes the risk. Hence, each strategy is
evaluated by the maximum expected loss over the states of nature, and the
minimax criterion seeks to minimize this loss. Referring to Table 12.4, if
strategy Sl is chosen, the maximum expected loss is 440.0, if strategy S2 is
chosen, the maximum expected loss is 416.0, and so on. The maximum
expected loss is minimized (at 350.0) if S27 is chosen. Hence, S27 is the
minimax strategy and the minimax risk is 350.0. From Table 12.3, S27

corresponds to always taking action A3• Always sending a drum to a high­
level site therefore minimizes the maximum expected loss regardless of the
state of nature.t In general, the minimax strategy consists of always tak­
ing a particular one of the available actions; that is, no other action is ever
taken.

Because the minimax criterion is a conservative criterion that assumes
the worst will always happen, it ignores the information available in the
radiation meter readings. It also ignores any prior information about the
relative likelihood of the states of nature. By taking this likelihood into
account, it is possible to reduce the average risk to a value below the
minimax risk.

tThis conclusion follows directly from Table 12.1 without the necessity of constructing
Table 12.4.
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Suppose that state N( and state N2 are judged to be equally likely.
Then the risk of using any strategy is simply the average of the expected
losses for N( and N2 from Table 12.4. These average losses are displayed
in Table 12.5. From Table 12.5, the best strategy (i.e., the strategy that
minimizes the risk) is S3 with a risk of 246.50. This strategy is to send
low-level and also questionable drums to the low-level site and avoid the
cost of accurate analysis by taking a chance on being caught; high-level
drums are sent to the high-level site. Strategy S27, sending everything to
the high-level site, is expected to cost 1.42 times as much as strategy S3, so
the conservative minimax strategy is expected to be 42% more expensive.

TABLE 12.5

Risk for Each Strategy if Nt and
N1 Are Equally Likely

Strategy Risk Strategy Risk Strategy Risk

1 260.00 10 274.25 19 343.25
2 250.50 11 264.75 20 333.75
3 246.50 12 260.75 21 329.75
4 260.25 13 274.50 22 343.50
5 250.75 14 265.00 23 334.00
6 246.75 15 261.00 24 330.00
7 280.25 16 294.50 25 363.50
8 270.75 17 285.00 26 354.00
9 266.75 18 281.00 27 350.00

What about the "logical" strategy, S6' of sending the questionable drums
for accurate analysis? The risk of S6 is 246.75, just 0.1% higher than the
risk of the best strategy; this raises the question of whether this slight

. extra loss should be incurred in order to avoid the repercussions resulting
from having drums rejected by the low-level dump site. Such additional
considerations could be included in the analysis by increasing the cost
associated with having a drum rejected.

12.3.3 Weighting of Losses and Bayes Strategies

Averaging the losses over the states of nature is not the only way to
derive a single value of risk for each strategy. Note that, with two states of
nature, averaging is equivalent to a weighted sum in which each state of
nature has a weight of 0.5. Any combination of weights that sum to unity
would result in a weighted average over the states of nature. For example,
if it is judged that the fuel fabrication plant in the example generates
twice as many low-level drums as high-level drums, and if the process is
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stable, the weights should be 2/3 for state N 1 and 1/3 for state N2. Using
these weights to sum over the columns of Table 12.4 yields the risks given
in Table 12.6.

TABLE 11.6

Risk for Each Strategy if
N. Weight = ;J and N1 Weight = Ih

Strategy Risk Strategy Risk Strategy Risk

1 200.0 10 220.3 19 314.0
2 195.3 11 215.7 20 309.3
3 200.0 12 220.3 21 314.0
4 204.3 13 224.7 22 318.0
5 199.7 14 220.0 23 313.7
6 204.3 15 224.7 24 318.3
7 236.0 16 256.3 25 350.0
8 231.0 17 251.7 26 345.3
9 236.0 18 256.3 27 350.0

With these weights, the best strategy is S2' to send drums with low and
questionable readings to the low-level disposal site and to send all drums
with high readings for accurate analysis. The "logical" strategy, S6' now
has an average loss 5% higher than the minimum loss achievable with S2'

In general, any prior judgement about the relative likelihoods of N 1

and N2 corresponds to nonnegative weights on N 1 and N2 which sum to
unity. This set of weights forms a prior distribution on the states of nature.
A strategy (there might possibly be more than one) whose weighted aver­
age loss is a minimum is called a Bayes strategy with respect to the given
prior distribution, and the minimum weighted average loss is called the
Bayes risk for the given prior distribution.

If the prior judgement about the states of nature is accurate, then the
optimal strategy is the Bayes strategy for the given prior distribution.
However, if the prior judgement is inaccurate, then the corresponding
Bayes strategy may not be optimal, Le., its risk may be larger than the
risk of using a Bayes strategy corresponding to the correct prior distribu­
tion. For example, suppose it is incorrectly believed that N 1 and N2 are
equally likely and, as a consequence, S3 is chosen. If N 1 is really twice as
likely to occur as N2, then Table 12.6 applies and S2 is the corresponding
Bayes strategy. If S3 is used, its average loss of 200.0 is 2.4% higher than
the minimum Bayes risk achievable with S2. Similarly, if the minimax
assumption holds and N2 always occurs, then the expected loss due to
using S3 is 386.0, or 10.3% higher than the minimax risk if the optimal
strategy S27 had been used. Hence, before adopting a Bayes strategy based
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on a particular prior distribution, the validity of the prior distribution
should be evaluated and a sensitivity analysis of the consequences of using
an inaccurate prior distribution should be performed.

A typical source of prior information is the records that are kept about
drums; however, there is often no assurance that the records are correct. If
information on individual drums is available, the methodology presented in
this chapter could be applied to each drum rather than to all drums as a
group. This would, of course, require a substantial increase in the compu­
tational effort.

It should be noted that simple averaging (equal weights) assumes that
all states of nature are equally probable. This weighting scheme has a spe­
cial name; it is called the Doninformative prior distribution, and it is often
used when no information is available about the states of nature.

12.3.4 Admissible Strategies

For all the prior distributions discussed so far, the best or close-to-best
strategies are those indexed by the numbers 1 through 6. In some sense,
these strategies seem to be better than all others, regardless of the prior
distribution. This is investigated further below.

Because for the above example there are two expected losses for each
strategy, one corresponding to each state of nature, a strategy can be
represented by a point on a graph with coordinates representing the
expected losses. Let the abscissa be the expected loss when N I is the state
of nature and let the ordinate be the expected loss when N2 is the state of
nature. Plotting the data in Table 12.4 produces Figure 12.1.

A desirable strategy is one where both expected losses are small. As
illustrated by Figure 12.1, no single strategy simultaneously has the small­
est loss for both states of nature. It can also be seen from this figure that
the strategies plotted in the upper right are never as good as others. For
example, SI4 should never be used because S3 has a smaller expected loss
regardless of which state of nature is true; we say that S3 dominates S14'
Of the 27 strategies, the only ones that should be considered are Slo S2, S3'
Ss, S6, S9, SIS, S18, and S27. These strategies are called admissible because
they are not dominated by any other strategy. The other strategies are
called inadmissible because each is dominated by one or more admissible
strategy.

So far, the number of strategies to be considered has been reduced
from 27 to the 9 admissible strategies. The choice among the admissible
strategies still depends upon the prior distribution, but only 9 weighted
averages, rather than 27, need to be computed and compared.

12.3.5 Mixed Strategies
It is possible to reduce the number of strategies to be considered even

further, to a subset of the set of admissible strategies. To see this, consider
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the segmented curve connecting the seven "outside" points along the left­
hand side and bottom of Figure 12.1. These correspond to the admissible
strategies Sit S2, S3, S6, S9, S18, and S27' The points corresponding to the
other two admissible strategies, Ss and S15, lie slightly inside this seg­
mented curve. Even though Ss and SIS are not dominated by any other
strategies, intuitively it seems it is possible to do better. For example, con­
sider the two strategies bracketing SIS, i.e., S6 and ~. Define a new kind
of strategy in which a coin is tossed. If it comes up heads, S6 is chosen; if
it comes up tails, S9 is chosen.t This new kind of strategy is called a mixed
or randomized strategy because it is a random mixture of two pure
strategies. (A pure strategy is one that takes a unique action for each pos­
sible observation; the pure strategies are listed in Table 12.3.) For each
state of nature, the expected loss is simply a weighted sum of the losses for
S6 and S9 with weights 1/2 and 1/2. Thus, if NI is the state of nature, the
new strategy has expected loss (1/2) (119.5) + (1/2) (174.5) = 147.0.

tFrom Table 12.3, this strategy is equivalent to the following: If XI is observed, choose
AI; if Xz is observed, choose Az if the coin comes up heads or A] if the coin comes up tails; if
X3 is observed, choose A].
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Similarly, if N2 is the state of nature, the expected loss is (1/2) (374.0) +
(l/2) (359.0) = 366.5. If this new strategy, denoted by S·, is plotted in
Figure 12.1, it dominates SiS. Similarly, a weighted sum of S2 and S3 can
be found that dominates Ss. Thus, Ss and SIS can be dropped from the set
of admissible strategies, leaving only seven rather than nine 'strategiesfor
consideration. _ _

Mixed strategies have the somewhat disconcerting property that the
action taken may depend upon a completely irrelevant random choice, e.g.,
a random number generator. However, the strategies must be judged only
by their consequences, which are the risks or expected losses under both
states of nature. With this criterion, mixed strategies can result in lower
risks than some pure strategies.t

Note that mixed strategies fall on a straight line connecting the two
pure strategies being mixed. The location along this line where the new
strategy falls depends upon the mixing weights. If both weights are 1/2,
the new strategy is located in the middle of the line. If the weights are 2/3
for S6 and 1/3 for S9, the new strategy is located 2/3 of the way along the
line and closer to S6' If all possible weights summing to unity are used, the
resulting set of mixed strategies corresponds to the line segment connecting
86 and 89. If line segments are drawn connecting all consecutive pairs of
pure admissible strategies as in Figure 12.1, the resulting segmented curve
represents all the admissible strategies.

12.3.6 Choosing a Bayes Strategy

For a given prior distribution of the states of nature, the problem is to
choose a Bayes strategy from among the admissible strategies. Because
every point on the segmented curve in Figure 12.1 corresponds to an
admissible strategy, there are an infmite number of such strategies. Conse­
quently, a graphical approach will be used.

The first step is to represent the overall weighted average loss for an
arbitrary strategy S by a line. Let LI(S) represent the expected loss for
strategy S and state of nature N 10 and let L2(S) represent the expected
loss for the same strategy and state of nature N2. These expected losses
are displayed in Table 12.4 .for the 27 pure strategies. Also, let 1 - wand
w be the weights assigned to NI and N2, respectively, by the prior distri~

bution of the states of nature. The weighted average loss or risk for
Strategy S is then

(12.1)

The objective is to find the strategy which minimizes this weighted sum.

tHowever, it will be shown later in this section that Bayes strategies can always be chosen
to be pure strategies.
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Equation 12.1 can be rearranged in the form

1L2(S) = - R(S)
w

(1 - w) L1(S)
w

(12.2)

In this form, it can be seen that Equation 12.1 represents a family of
straight lines, all with the same negative slope. These lines are parallel and
differ only in their intercepts. Lines A and B on Figure 12.2 are two such
lines for the family with w = 1/2. The segmented curve in Figure 12.2
labeled "Admissible Strategies" has been copied from Figure 12.1.

A Bayes strategy can be graphically determined by drawing a line on a
loss plot (such as Figure 12.1 or 12.2) with slope -(1 - w)/w and then
moving that line, while retaining its slope, up and to the right until it first
touches the segmented curve of admissible strategies. The point (or points)
first touched by the line is the set of Bayes strategies for the given value
of w. For example, suppose that w = 1/2. In Figure 12.2, line A is drawn
with slope -(1 - 1/2)/(1/2) = -1.0. Note that in Figure 12.2, the axes
are broken and are scaled so that one unit on the vertical (N2) axis is
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twice as long as one unit on the horizontal (N1) axis. Now, move line A
up and to the right, retaining its slope, until it first touches the curve of
admissible strategies. The result is line B, which first touches the curve of
admissible strategies at the point representing S3' Note that line B does
not touch S6' although it is close. Hence, for w = 1/2, the unique Bayes
strategy is S3' In the discussion of Table 12.4 it was noted that for w =
1/2, the best strategy is S3 with an expected loss of 246.5, and that S6 has
an expected loss of 246.8, just 0.1 % higher.

If w were 0.51 rather than 0.50, then line B in Figure 12.2 would pass
through both S3 and S6, and any mixed strategy on the line connecting S3
and S6 would be a Bayes strategy for w = 0.51. However, the pure strat­
egies S3 and S6 would also be Bayes strategies. Hence, whether unique or
not, a Bayes strategy can always be chosen to be a pure strategy.

Table 12.6 displays the results for the prior distribution leading to
weights of 2/3 for N 1 and 1/3 for N2, and the best strategy is S2. Here,
the value of w is 1/3, so the slope is -(1 - w)/w = -(2/3)/(1/3) =
-2.0. Line C in Figure 12.2 is the Bayes strategy line with a slope
of -2.0. It shows graphically that S2 is the preferred strategy under this
prior distribution.

While the graphical display of losses and strategies is very helpful iri
understanding the relationship of strategies and is almost essential in pick­
ing the set of admissible strategies, it is generally easier to determine the
Bayes strategy by actually computing the risks for the admissible strat­
egies. This avoids the inaccuracies of graphical analysis. Plots like Figure
12.2 help to illustrate the effects of different prior distributions. A compar­
ison of line B with w = 1/2 and line C with w = 1/3 shows that as
drums of low-level waste become relatively more abundant, the Bayes
strategy line becomes more vertical. Similarly, if high-level waste becomes
relatively more abundant, the line becomes more horizontal. For example,
the line on Figure 12.2 connecting points S6 and ~ has a slope of -0.273,
which corresponds to a 0.79 prior probability for the abundance of high­
level drums. Also, as previously noted, the line connecting S3 and S6
corresponds to a 0.51 prior probability for high-level drums. Thus, we can
conclude that S6, previously designated as the obvious or logical strategy,
is the best strategy only if the relative abundance of high-level waste
drums is between 51 and 79%.

From Equation 12.2, the intercept of the Bayes strategy line is equal to
R(S)/w. If a Bayes strategy for a given w is denoted by Sw, then'
R(Sw) = Rw is the Bayes risk and Rw is w times the intercept of the
Bayes strategy line when it first touches the curve of admissible strategies.
If the Bayes risk Rw is plotted against w for 0 ~ w ~ 1, there will be a
unique value of w, say w*, which maximizes Rw• The weights 1 - w* and
w* form the least favorable distribution on N 1 and N2 because they maxi­
mize the Bayes risk. For the example, w* = 1 and the least favorable
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distribution places all its weight on N2. The corresponding Bayes strategy
is S27, which is the minimax strategy.

This result is true in general. The minimax strategy is the Bayes strat­
egy for the least favorable distribution, i.e., the minimax risk is the maxi­
mum Bayes risk. Consequently, if the prior distribution for the states of
nature is unknown, then the mtnimax strategy should be considered. The
minimax strategy is appealing because it does not require any information
about the prior distribution of the states of nature; thus, it is sometimes
advocated as a reasonable alternative to the noninformative prior
distribution.

12.3.7 The Regret Approach

An alternative to the loss function approach presented in Section 12.3.1
is the regret approach. The regret approach focuses on the incremental
cost of not knowing the true state of nature instead of the absolute cost.
For example, suppose that N I is true. Then from Table 12.1, the loss could
be held to $80 by taking action AI' If action A2 is taken instead, then the
incremental cost of not knowing that N I is true is $130 - $80 = $50.
The regret function is defined as the difference between the cost of the
action taken and the cost of the optimal action for the given state of
nature. The regret function for the example, based on Table 12.1, is given
by Table 12.7.

TABLE 12.7

Regret Function for Waste Disposal (Donars)

Action
State of _tare

N 1 (low-level)
N2 (high.level)

o
90

so
SO

270
o

The minimax regret strategy is the strategy that minimizes the maxi­
mum regret. From Table 12.7, the minimax regret strategy is A2. This is
different from the minimax strategy A3, which is based on the absolute
losses given by Table 12.1. It can be argued that A2 is preferable to A3
because using A2 involves an incremental cost of only $50 over the cost of
using the optimal strategy, regardless of which state of nature is true,
while using A3 leads to an incremental cost of $270 if N I happens to be
true.

Based on Table 12.7, the expected regrets for each strategy and state
of nature can be tabulated exactly as in Table 12.4, and figures similar to
Figures 12.1 and 12.2 can be drawn. In fact, the use of the regret function
instead of the loss function leads to a simple shift of the points in Figure
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12.1, so the segmented curve corresponding to the admissible strategies
touches both axes. It then follows that the Bayes strategy which minimizes
the expected regret for a given prior distribution is precisely the same as
the Bayes strategy which minimizes the expected loss.

In contrast to the loss function approach, where the minimax strategy
(S27) is the same whether or not the radiation meter readings are made,
the minimax regret strategy depends on the radiation meter readings. It
can be shown that the minimax regret strategy is a mixture of S3 and S6'
with weights 0.63 and 0.37, respectively, and the minimax expected regret
is 31.6. This is a 37% reduction from the minimax regret of 50 from
Table 12.7. However, as for the loss function approach, the minimax
regret is the same regardless of which state of nature is true. This is a gen­
eral property of minimax strategies.

12.4 DISCUSSION

The example presented in Section 12.3 conveys the basic elements of
the decision theory approach. There are six basic components of a typical
statistical decision-making problem:

1. The state of nature.
2. The permissible actions.

'3. The losses or consequences of the actions.
4. The experiment that yields data.
5. The strategies of how to respond to the data.
6. The prior probabilities of the states of nature.

It should be noted that some problems may have no experimental data, or
the prior probabilities may not be known.

The tabular approach to examining all possibilities can be prohibitively
complex in situations that involve many states of nature, many kinds of
data observations, or many possible actions. The decision theory approach
can be formulated and a solution obtained in a purely mathematical way.
However, the tabular approach presented here has been found to be
adequate for a wide variety of real problems.

. This approach to decisions, in its rigorous mathematical form, can be
extended to provide a mathematical foundation for all statistical hypothe­
sis testing and parameter estimation methods. There is an obvious analogy
between the null and alternate hypotheses and the two states of nature.
The losses are analogous to specifying costs of making Type I and Type II
errors (Section 4.1.2), and the actions and strategies are analogous to the
test statistic and the critical values used in hypothesis testing.
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CHAPTER 13

Nuclear Material Accounting
13.0 INTRODUCI10N

The preceding chapters presented the fundamentals of probability and
the common statistical methods of processing and analyzing sets of numer­
ical data. The remainder of this book is devoted to the application of these
methods to nuclear material accounting. This chapter explains material
accounting practices and the use of statistics in both controlling the mea­
surement results needed for nuclear material accounting and evaluating
the results of the accounting process.

For the benefit of readers without material processing or material
accounting experience, the appendices to this chapter provide information
on the structure of a typical nuclear material accounting system and a
brief description of the most common measurement procedures. This infor­
mation is presented at a very elementary level, but it is intended for
readers without training or experience in these areas. It will help provide a
background that is important for understanding the models used in subse­
quent chapters to defme procedures for estimation and evaluation of mate­
rial accounting results.

13.1 THE MATERIAL ACCOUNTING PROCESS

13.1.1 Basic Material Accounting Practices

Maintaining a record of possessions is a universal practice. All acquisi­
tions are added to the inventory records and all removals, sales, losses, dis­
cards, and other disbursements subtracted. Manufacturing and mercantile
establishments maintain such inventory records to have a current book
inventory. An accurate book inventory is needed for many activities:

1. Planning and scheduling production.
2. Scheduling supply orders.
3. Making sales commitments.
4. Calculating monthly profits and net worth.
S. Complying with legal obligations, such as reporting profits and net

worth.

Periodically, business establishments also perform a physical inventory;
i.e., they make a complete check of all material on hand. The purpose is
to check the accuracy of the book inventory and make corrections as
appropriate.

619
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Maintaining a book inventory of materials and reconciling it to a phys­
ical inventory is the essential principle of all material balance accounting.
In the nuclear material area, material balance accounting provides tests of
the effectiveness of the other material control methods as well as providing
for periodic adjustments of the records. The other material control
methods are physical protection of the facility and material and personnel
control and surveillance. Typical methods of control are personnel access
controls, assigned custodianship of materials, monitoring of material and
personnel movements, and the use of alarmed storage areas and vaults.

Normally, book and physical inventories differ because of the accumu­
lated effects of unrecorded breakage, spoilage, pilferage, leaks, and other
losses, as well as bookkeeping mistakes and omissions in recording addi­
tions and removals or taking the inventory. Inventories of bulk materials
such as fuels and grain are also subject to errors in the measurements of
the quantities on hand. Consequently a book-physical inventory differ­
ence, or simply an inventory difference, is observed. On the basis of
experience or the value of the material, it may be possible to judge
whether the inventory difference is so large that it merits an investigation
into the causes. After significant discrepancies have been resolved, the
book inventory is adjusted to correspond to the physical inventory. The
inventory accounting of firms subject to federal regulatory agencies, such
as the Securities and Exchange Commission, must be reviewed annually by
independent auditors. This normally includes witnessing by auditors of the
physical inventory-taking process.

The model which describes this closed system of input-output account­
ing over a fixed time is

where

ID = BI + A - R - EI (13.1)

ID = inventory differencet
BI = beginning physical inventory
A = additions to the inventory
R = removals from the inventory, i.e., discards, known losses, and

shipments of products and by-products
EI = ending physical inventory

If the quantities on the right of the equation represent a complete and
exact determination of quantities added, removed, and in inventory, the
inventory difference will be zero. As noted previously, observed values of

tThe term "Material Unaccounted For" (MUF) is also commonly used, especially in
international safeguards, to express this difference between net transfers and inventory
change. In some usages, MUF denotes specifically the expected, rather than the observed,
inventory difference.
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the inventory difference will usually differ from zero because of accounting
errors, measurement errors, and unknown or unmeasured losses. This dis­
tinction between the observed and expected values of the inventory differ­
ence, defined by Equation 13.1, is essential to proper application of statis­
tical procedures to the observed differences.

Material accounting systems are similar to financial accounting sys­
tems. Financial accounting involves recording the information concerning
the economic resources of the firm, which are reflected in its assets, liabili­
ties, receipts, and disbursements. Inventory accounting is concerned with
the material resources of the firm as expressed by material flows and
inventory. The following are key elements of both accounting systems:

1. A unit record (source document) for every transaction.
2. Records of transactions and inventory status in the form of journals

and ledgers to record, classify, and summarize the data.
3. Double-entry procedures to provide internal control and help prevent

errors in the records.

Financial accounting systems have account categories such as assets, liabil­
ities, and sales. Material accounting systems have analogous account cate­
gories such as material type, material location, shipments, and receipts.
These accounts may include financial value information as well as the
quantities of material.

Computerized accounting systems provide a great deal of information­
handling capacity and flexibility that can be used to record supporting
information as well as basic accounting data. Many inventory accounting
systems are essentially real-time systems in that the information about the
material is updated almost immediately after completion of each transac­
tion affecting the material status. Such systems are generally accessed
directly from remote, manually operated terminals and, in some cases,
automatically by instruments that identify and measure the quantities of
material.

13.1.2 Nuclear Material Accounting

Nuclear material accounting retains most of the basic accounting prac­
tices characteristic of the systems generally used for property accounting.
The unique aspects of accounting for nuclear material arise primarily
because of complexities in handling and measurement due to the special
character of nuclear material.

The accounting system required at a nuclear facility is not greatly
affected by the nuclear characteristics of the material. Some characteris­
tics of the accounting system, such as its size, whether it is computerized,
and the types of documents used, depend on the type of facility, number
and type of transactions to be handled, types of materials, the information
needs of management, the internal controls needed, and legal requirements
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imposed by regulatory agencies. The system should provide a continuous
book inventory of the nuclear material possessed by the facility and gener­
ate reports of receipts, shipments, discards, losses, and material status as
required.

In some cases, nuclear material can be accounted for as uniquely
defined items, such as reactor fuel elements and other fixed units of
nuclear material. When the accounting involves material processed in bulk
form, however, transfers and inventories must be based on the quantities in
batches of this bulk material. The measurements of those batch quantities
are an important element of nuclear material accounting. The measure­
ments are usually supported by a measurement control system that serves
both the nuclear material accounting system and the production opera­
tions. It provides the information needed to assure the quality and validity
of the nuclear material accounting data. Through the measurement control
system, the loss detection sensitivity of the material balance system is
improved, measurement and product quality are enhanced and, most
importantly, figures of merit can be established for both the products of
the facility and the nuclear material control and accounting system.

A frequent consequence of the difficulty of direct measurement of cer­
tain nuclear material flows, such as wastes and process effluents, is that
the material balance concept may sometimes be used to provide a by
difference value for some of the quantities entering into the material bal­
ance model. This means of accounting should be avoided because it leads
to a less meaningful inventory difference estimate. If the quantity of
nuclear material remaining in the inventory at any location in the facility,
or that contained in a discard, is determined by difference, the capability
of the material accounting system to detect a loss or a gross measurement
error at the location in the facility can be substantially reduced or even
destroyed.

13.2 IMPLEMENTATION OF NUCLEAR
MATERIAL ACCOUNTING

The effective application of the concepts of material accounting to
nuclear material requires an understanding of the function, design, process
characteristics, and material flows of the specific facility; the nature of the
accounting systems available to describe these facilities; and the measure­
ment systems required to determine the nuclear material content of the
material flows and inventories. Correct application of statistical methods in
connection with nuclear material accounting requires familiarity with the
facility and process characteristics, accounting principles, and measure­
ment problems that are basic to the implementation of nuclear material
accounting at a given facility.



SECTION 13.2 NUCLEAR MATERIAL ACCOUNTING 623

13.2.1 Facility Design and Process Flow

The types of facilities with sufficient special nuclear material (SNM)
to require a formal material accounting system range from research
laboratories to uranium refineries and processing plants for spent nuclear
fuel. Table 13.1 gives a list of the common types of facilities to which
nuclear material accounting procedures are applied and the functions and
accountability characteristics of each. Commonly, two or more of these
facilities are incorporated into a single production plant or complex.

TABLE 13.1

Common Types of Facilities Subject to Formal
Nuclear Material Accounting Requirements

Type or Facility

Uranium refmery

Uranium conversion

Uranium enrichment

Nuclear fIssion
reactor

Fuel material
conversion

Uranium-fuel
fabrication

FlIIICtion

Purify uranium ore
concentrates

Convert uranium oxides
to hexafluoride (UF6)

Isotopically enrich
UF6

Generate neutrons for
research or thermal
energy for commercial
use

Convert UF6 to fuel
grade oxide (U02)

Fabricate reactor fuel,
either low, intermediate
or high enrichment

Characteristics

Natural uranium, only; a wet chemical
process with high flow to inventory
ratio; large liquid waste volumes and
little scrap recycle

May process uranium of several enrich­
ments including natural uranium; a
chemical process of primarily
gas phase methods; high flow to
inventory ratio

Wide range of uranium enrichments; gas
phase, continuous processing; large
in-process inventory; low waste
volumes; considerable solid scrap to
reprocess

All special nuclear material (SNM) in
encapsulated item forms; generally no
waste or scrap in non-item form

Chemical processes, both wet and dry,
may be batch or continuous flow
process,or a combination; may process
several enrichments; moderately high
inventory/flow ratio

Product may be pellets, rods or pins,
plates or assemblies. Generally batch
processing. Dry powder and
mechanical/metallurgical processing;
moderate inventory/flow ratio; small
waste quantities; large scrap
quantities

(Table continued on next page.)
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TABLE 13.1 (cont'd)

Type of Facility

Uranium-plutonium
fuel fabrication

Chemical reprocessing

Research laboratory

Pilot plant operations

Critical facility
operations

Scrap processing

Function

Fabricate U02-PU02
(mixed oxide) reactor
fuel

Recover uranium and
plutonium (optional)
from spent fission
reactor fuel

Develop basic knowledge
or methods of processing
or fabrication of
fuel materials, fuel
material rerming, fuel
fabrication or recovery

Test nuclear process
operations on a
semiplant scale

Test nuclear reactivity
of critical assemblies;
develop basic
criticality data

Recover and purify
nuclear material from
production and research
scrap

Characteristics

Dry powder and mechanical-metallurgical
processing or wet chemical
processing; generally batch processing;
moderate inventory/flow
ratio; all processing in glove-box or
remote operation enclosures; large
scrap recycling; small quantites of
waste; product may be pellets; rods or
pins, plates or assemblies

May be high, intermediate, low, or
depleted enrichment; no segregation
of enrichments within those classes;
primarily wet chemical processing;
continuous or batch/continuous combi·
nation; products are oxides of uranium
and plutonium; most of process is
remotely operated; large volumes of
radioactive waste; moderate scrap
quantities either moderate or low
inventory/flow ratio

May be wet chemical or metallurgical
and ceramic experimentation on a small
scale; large inventory to flow ratio;
may be several kinds and forms of
nuclear material and batch operations;
small waste quantities and relatively
large scrap quantities

May be chemical, metallurgical, or
ceramic process or some combination;
generally large inventory to flow
ratio; intermittent operations, either
batch or continuous; comparatively
large scrap and waste generation

Generally only sealed items rather
than bulk SNM handling unless the
facility also fabricates specimens and
assemblies for test; high inventory to
flow ratio; may combine features of
research and critical facilities

Similar to chemical reprocessing
except that rlSSion products and high
radiation levels are not involved
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The following information is necessary for establishing an accounting
system:

1. A diagram of the nuclear facility and its operations (for a manufac­
turing facility, a process flow diagram is recommended).

2. The types of nuclear material and typical quantities in the inventory
and flows at the key operating points;

3. Typical batch and lot sizes.

This information forms the basis for determining key elements of the
accounting system:

1. The logical subdivisions of the facility for material balance account­
ing, such as material balance areas (MBA) and item control areas
(ICA).t

2. The key measurement points and the measurement methods used.
3. The sources of uncertainty affecting the observed inventory

differences.

The facility characteristics given in Table 13.1 are some of those hav­
ing an appreciable effect on the accounting system. The enrichment of the
uranium is mentioned because the accounting and reporting requirements
for high-enrichment materials are generally more stringent than those for
lower enrichments. In addition, material of different enrichments is
separated in the accounts as well as in the process (except that limited
commingling may be accepted in scrap recovery). The processes described
in Table 13.1 are also identified as batch or continuous because their
accounting data collection methods usually differ. For example, batch
processes generally result in many more items for bulk measurements than
continuous processes. In addition, samples and laboratory analyses for
batch operations are traceable to predictable and relatively constant quan­
tities, namely production batches and lots, whereas material sampled from
continuous processes is usually associated with time intervals rather than
batches of material. ,

A simplified diagram of a nuclear material manufacturing process is
shown in Figure 13.1 to illustrate the type of process information neces­
sary to design an accounting system. The principal processing steps are
blocked out, and the main nuclear materials are shown on the flow lines.
The key measurement points are also shown.

The two storage areas shown, Cylinder Storage and Scrap Storage, are
usually regarded as individual ICAs, and their inventories are accounted
for separately. The receiving and shipping area would be an MBA in

tThe term "item control area" (ICA) is applied when only uniquely identifiable items,
such as sealed or tamper-safed containers whose contents have been previously determined by
measurement of SNM, are stored in the area, and accounting by item identification only is
adequate. The significance of MBAs and ICAs is that all inputs and outputs are measured,
and book inventories are maintained of each MBA and ICA.
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which the containers received and shipped are checked by gross weight,
seal, and container identification and samples are taken for laboratory
analyses. The remainder of the process diagrammed in Figure 13.1 may
constitute just one MBA in which bulk materials are processed. It is
bounded by the UF6 inputs to the hydrolysis step and the following
outputs:

1. UF6 heel returns.
2. Samples to the laboratory.
3. Liquid waste.
4. Filters and solid scrap to scrap storage.
5. U02 powder product.
6. Waste removals from work areas (contaminated tools, gloves, plas­

tic, and paper) and airborne powders from the drying,· calcining, and
reduction areas (the waste removals are not shown in this diagram).

13.2.2 The Accounting System
In the United States, material accounting requirements are specified by

three agencies:
1. The Nuclear Regulatory Commission for facilities, individuals, or

organizations licensed under Title 10, Part 70, of the Code of Federal
Regulations.

2. The Department of Energy for its own facilities and the contractors
to the Department of Energy.

3. The Department of Defense for its own facilities.

The accOunting practices and measurement and control procedures that
prevail in the nuclear industry reflect the requirements of these federal
agencies.

Source data forms provide the mechanism for entering transactions
data into a journal and, subsequently, into a ledger. The following source
data forms for nuclear material accounting are typical:

1. Nuclear Material Transaction Report (DOE/NRC Form 741).
2. Receiving Report.
3. Shipping Report.
4. Waste Discards (a shipping report may be used).
5. Internal Transfers.
6. Project Transfers.
7. Physical Inventory Report.
8. Journal Entry.
9. Analytical Request and Report Form.

All of these forms except the first are generally created at each facility to
satisfy its particular needs. They are usually prenumbered sequentially to
facilitate record keeping and the traceability of information through the
accounting system.
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The ledger consists of the inventory, ownership, project, material
type, receipts and shipments accounts, and possibly others. Common
transactions that affect the ledger balances are receipts, shipments, dis­
cards, transfers, and adjustments to the inventory. The adjustments
category may include changes for the following reasons:

1. Inventory differences.
2. Shipper-receiver differences.
3. Measurement and bookkeeping errors.
4. Bias corrections.
5. Radioactive decay and fission or transmutation.
6. Change of enrichment, such as by commingling of materials.
7. Change of ownership or project number.

Facilities using an electronic data processing system can achieve nearly
real-time accounting but a time lag between completion of a transaction
and the updating of the accounts may be several days to 1 or 2 weeks,
depending primarily on how data are entered into the system and how fre­
quently the facility management chooses to update the data base. Another
reason for time lags is that element and isotopic composition measure­
ments by chemical and mass spectrometry methods usually require a day
or two before the results are obtained. The time lapse for isotopic analysis
data may be more than a week if the analyses are performed off site.

Internal controls for the bookkeeping system should be maintained to
minimize mistakes and omissions. All changes to the accounts must be
based on authorized and signed paperwork. To help detect mistakes, the
accounting procedures may provide that no one person handles a transac­
tion from beginning to end. When transfers are made that involve changes
in custodial responsibility or changes in location, two individuals should
confirm the accuracy of the transaction. These are generally the person
initiating the transaction and the person receiving the material.

Referring to Figure 13.1, note that the following material movements
generate accounting source data:

1. Receipt of a cylinder of UF6• (This generates a receiving report.
The identity and gross weight are recorded and compared to the shipper
data on the Form 741 to verify the correctness of the transaction record.
Analytical data are confirmed later.)

2. Return of an empty UF6 cylinder with heel to the supplier. (This
generates a shipping report.)

3. Sample sent to the laboratory. (The laboratory maintains a sample
log or subsidiary ledger to account for its inventory of samples.)

4. A UF6 cylinder is transferred to cylinder storage. (Some facilities
may keep a storage log, and the centralized accounting system may not
keep records distinguishing UF6 receipts from UF6 storage.)

5. A UF6 cylinder is transferred to the process. (An Internal Transfer
Form is used.)



SECTION 13.2 NUCLEAR MATERIAL ACCOUNTING 629

6. An "empty" cylinder is transferred from the process to storage.
7. A container of product (V02) is transferred from the process to a

storage area (leA) or another process.
8. Scrap is transferred to scrap storage.
9. Liquid waste is transferred to a treatment or disposal facility.t

13.2.3 Measurement Systems

The accounting entries that permit the determination of the quantities
of nuclear material in shipments, receipts, discards, and inventories are
obtained by measurement. Numerous measurement methods are used, and
they are applied to a large variety of material types. The methods fall into
four categories: bulk measurements, nondestructive assays (NDA), chemi­
cal analyses, and isotopic analysis. Material sampling must also be
included in any discussion of the measurement system because it affects
the errors in chemical and isotopic analyses, even though it is not itself a
measurement method.

The nuclear materials measured are likely to include relatively pure
compounds and alloys of the uranium and/or plutonium, production inter­
mediates (consisting of at least some mixtures and low-purity forms of the
elements), production scrap, wastes in solid and liquid forms, solutions
covering a wide nuclear material concentration and purity range, and
encapsulated items such as fuel rods, plates, and assemblies. Appendix 13B
contains a brief description of the common measurement systems used and
their characteristics.

The terms item, batch, and stratum as used in nuclear material
accounting have specific meanings that may not be the same as the
common understanding of the terms among engineers and production
managers. An item is an object or container whose content can be uniquely
determined and accounted for or transferred as an entity. A vessel or tank
containing nuclear material in a solution can be designated as an item.

A batch is a quantity of material with a common element concentra­
tion or element factor. A batch may consist of many items, each having a
unique weight or volume associated with it.

The term lot is commonly used in manufacturing for a quantity of
material that has had uniform process treatment and was produced as a
single entity. It may have a uniform composition identified by a single con­
centration factor. The term lot, however, is not specifically used in nuclear
material accounting.

tLiquid wastes may be handled in several ways: (1) accumulation in holding tanks and
transfers by batches, (2) continuous transfer to holding tanks in another area and analysis by
batches, and (3) continuous transfers to another area with continuous monitoring of flow
volume and uranium concentration. In the latter case a periodic Internal Transfer or Waste
Discards form will be prepared at designated intervals, such as daily, to record the total
transactions for that period. .
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The term stratum is applied to a collection of batches of like material
that are in the same component of the material balance equation, i.e., the
beginning inventory, receipts, removals, or ending inventory. Examples of
strata are batches of U02 powder in beginning inventory, a group of simi­
lar cylinders of UF6 in receipts, and a set of containers of U02 grinding
powder in ending inventory. Within a stratum the number of items per
batch should be similar, and the procedures for weighing or volume mea­
surement and the sampling and measurement systems for determining
chemical and isotopic concentration should be identical. These conditions
are important to the variance calculations necessary for planning inspec­
tions and evaluating inventory differences.

13.3 THE ROLE OF STATISTICS
Statistical methods have been especially useful in determining the

effectiveness of nuclear material accounting because of the unique prob­
lems of material handling and measurement. The initial use of statistical
techniques was to evaluate the uncertainty in the reported amount of
nuclear material received, produced, shipped, lost, discarded, or otherwise
added to or removed from inventory. Statistical methods were developed to
estimate and control measurement error and other sources of uncertainty
in the data which are the input to the accounting process and to determine
the consequent uncertainty in the accounting results. More recently, statis­
ticians have extended their concerns to the effect of these uncertainties on
the inferences and decisions possible from the accounting results. The basic
issues are the power of the accounting system to detect process anomalies
and, conversely, the assurance provided by the accounting results that such
anomalies are absent and the accounts are correct.

There is a strong analogy between the role of statistics in material
accounting and its role in determining the reliability and/or effectiveness
of any complex system. Methods are required for controlling and estimat­
ing "component" reliability and also for combining these into a measure of
"system" reliability that appropriately reflects the system's effectiveness.
The approaches used and the problems encountered are those which nor­
mally arise when statistics are used to evaluate performance or establish
optimal decision processes.

The following sections present an overview of the statistical approach
to the analysis and evaluation of nuclear material accounting results. The
discussion is in three parts:

1. Modeling the effect of measurement errors on accounting results
and deriving formulas for variance estimation.

2. Estimating and controlling measurement uncertainty.
3. Estimating losses and formulating decision criteria using observed

inventory differences.
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The ultimate concerns of all the statistical procedures are the power of the
accounting system to detect· anomalies and, in the absence of anomalies,
to provide assurance that the nuclear material has been accounted for
adequately.

13.3.1 The Effect of Measurement Uncertainty

An observed inventory difference is a complex combination of
thousands, or even tens of thousands, of individual measurements, each of
which may contain one or more measurement errors. To determine the
variance in an observed inventory difference from the variances of the
error effects present, it is necessary to model the accounting process in sta­
tistical terms. This model is the connection between the inherent capability
of the accounting and measurement system and the adequacy of the deci­
sions based on the accounting results. Chapter 14 deals with the detailed
procedures for describing the many possible error variances and determin­
ing their contribution to the variance in the observed inventory difference.

The modeling process starts with the simple expression for an inventory
difference in terms of receipts, removals, and beginning and ending
inventories given by Equation 13.1. For some purposes it is convenient to
consider receipts minus removals as a single component called net transfer
or inventory change. Following the terminology of Section 13.2.3, at the
next level each of these components is considered to consist of one or more
strata containing similar material, which implies the same measurement
procedures and hence comparable measurement error variances. Strata, in
turn, consist of batches and items, which, for modeling purposes, are deter­
mined by the fact that they are associated with unique random mea­
surement effects. These unique effects may still, however, be a combina­
tion of effects from several primary sources. For example, one stratum of
an ending inventory may consist of 100 containers of U02 powder divided
into two batches of 50 items each. The uranium content of each container
is determined by multiplying its individual recorded weight by a uranium
concentration for each batch. The weight contains a random error effect
combining errors in gross and tare weighings, and the uranium concentra­
tion contains a single random error effect combining the sampling and
analytical errors for five random samples from the 50 containers.

Once the individual quantities that contribute to the observed inventory
difference are known, each can be expressed in terms of its expected value
and associated random error effects. Then, the associated variances can be
combined on the basis of the error effects present in each level. This pro­
cess of expressing the inventory difference as a linear combination of error
effects rather than observations accomplishes three purposes:

1. It ensures proper cancellation of the contribution of identical effects
which appear with opposite signs.
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2. It ensures proper recognition and treatment of the occurrence of
identical random effects in more than one result.

3. It ensures the recognition and definition of a minimum number of
basic random variables associated with the effects present.

The expression of the inventory difference in terms of independent error
effects rather than correlated errors in item quantities greatly simplifies
the application of the formulas of Chapter 2 for determining the properties
of functions of several random variables to the calculation of the variance
of the inventory difference.

13.3.2 Estimating and Controlling Measurement
Uncertainty

Chapter 15 gives detailed procedures for estimating error variances
from measurement data. The application of statistics to a measurement
system has two principal objectives. The first is to establish and maintain a
state of control over the measurements, in the same sense that a quality
control program is applied to identify and remove assignable causes of
variability from a production process. This encompasses procedures for
eliminating gross errors of measurement and known sources of bias. The
second objective is to evaluate the inherent uncertainty of the measure­
ment system. Statistical methods are required, both to provide assurance
that the measurement system is performing as expected and to estimate
the error variances necessary for the evaluation of system performance.

13.3.2.1 Measurement Control Programs

International guidelines for State Systems of Accounting and Control
recommend that a measurement control program be capable of "ensuring,
inter alia, that the adequacy of routine operation of the measurement sys­
tems is confirmed; that measurement systems are recalibrated at appropri­
ate intervals; that random and systematic errors t are properly estimated
for propagation so that the limits of measurement uncertainties associated
with MUF can be established; and that clerical errors are, so far as practi­
cable, detected and corrected." (IAEA, 1980).

Measurement control programs are frequently focused on the process
of measurement rather than the data produced. From the point of view of
the data production process, this is probably a correct emphasis. There is
an old quality control adage that says, "You can't inspect quality into the
product." From the view of the user of the da,ta, however, operational
errors arising from deficiencies in accounting and in recording and report­
ing data are just as important as measurement errors. Operational errors
that influence data quality include deficiencies in procedures, such as the

t The terminology in this quotation differs from that used in the subsequent chapters of
this book (Section 14.2.1).



SECTION 13.3 ROLE OF STATISTICS 833

existence of unmeasured losses, unmeasured inventory, and mistakes in
recording due to misplaced or miscounted items. Other operational errors
include mistakes in the computation, tabulation, and reporting of the infor­
mation, and errors due to accounting deficiencies such as incomplete mate­
rial descriptions or the incomplete or erroneous definition of MBAs. The
nature of the errors arising from these operational and accounting defi­
ciencies can range from gross errors or mistakes to biases resulting from
longstanding procedural deficiencies, such as might arise from the
existence of unmeasured waste losses.

Data quality must continuously be monitored at key control points and
periodic audits of the complete system must be provided. Statistical sam­
pling and control techniques are important for designing such a system.
All source documents, ledgers, journals, and reports in the material
accounting records system need to be monitored for errors in calculation
and transcription. Tests need to be designed into the accounting system
that check the completeness, consistency, and accuracy of the data
received. No system can guarantee that no mistakes exist or that all mis­
takes are found and corrected. The system should be designed, however, to
control the magnitude and frequency of the errors so that the cumulative
effect is inconsequential to the results obtained. This is possible only if the
system is designed to provide timely identification of the reason for lack of
control rather than mere indication (after the fact) that a problem exists.
Procedures are necessary to ensure that effects on the material balance
due to accounting errors are identified and corrected.

Statistical techniques can contribute to the program for monitoring and
controlling the measurement procedures as well as the accounting
processes. A thorough measurement control program should monitor all
sources of measurement error needed to estimate the measurement uncer­
tainty in the accounting results. Sufficient measurement control data
should be obtained during each material balance period to independently
estimate the variance components for each source of measurement error or
to confirm that existing estimates are representative of the current per­
formance of the measurement system. Measurement control data collected
during earlier periods should not be combined with current data if statisti­
cal tests indicate that the two sets of data came from different populations.
It cannot be assumed that data collected in the past are applicable to cur­
rent measurements. Frequent monitoring, distributed uniformly over the
time that the measurements are made, tends to ensure that measurement
data reflect current conditions.

A measurement control program must include calibration and stan­
dardization procedures designed to produce results that are free of bias.
The two principal requirements for an effective program are the existence
of adequate reference standards and the necessary procedures for ensuring
that the measurement methods are continuously monitored against these
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standards. The statistical methods used in connection with procedures for
calibration, standardization, recalibration, and the determination of bias·
corrections or bias correction factors are derived from standard regression
and hypothesis testing methods. There is an extensive literature available
on the application of statistics to calibration problems.

The program for routine testing of a measurement process using refer­
ence standards will vary with the nature of the measurement and with the
circumstances under which the measurement is made. For each measure­
ment method, the checks should be frequent enough that errors in calibra­
tion or changes in bias correction factors will not become a significant part
of the measurement uncertainty. Some measurement systems must be
checked daily. Others may be very stable and need much less frequent
recalibration, as is usually true for scales and volume measurement tanks.
The frequencies required can be determined from an analysis of historical
information on calibration stability and the sensitivity of the material bal­
ances to biases in that particular measurement process and to the variance
of the calibration. Calibration of a measurement tank or an instrument not
readily accessible for recalibration should be sufficiently thorough that the
variance of the calibration will be small compared to the uncertainty in the
entire measurement process. In high throughput processes, calibration vari­
ances can dominate the total measurement variance of a material balance,
so that the optimization of the standardization and calibration procedures
for the measurements involved can become an important element in the
control process. The maximum desired calibration variance for any
particular application should be estimated to provide design guidance for
the calibration. This can usually be done by making a statistical projection
of the effect of the calibration variance on the total variance of the
ultimate accounting result, Le., a typical material balance or typical quan­
tity of nuclear material in a shipment.

Effective calibration, particularly in the case of NDA devices, may
require in situ experiments or special destructive measurements to establish
its validity. This is particularly true in the case of equipment used to moni­
tor the nuclear content of heterogeneous wastes or to make in-line mea­
surements of liquid waste streams. Some general guidelines for control of
measurement biases through effective calibration and bias monitoring have
been published by Brouns, Merrill, and Roberts (1980). That publication
also provides references to other literature on recommended calibration
methods and sources of standard reference materials for calibrating the
common measurement systems used in nuclear material accounting. The
common sources of measurement bias for several of the measurement sys­
tems are discussed in Appendix 13B.

13.3.2.2 Estimating Measurement Variability

Measurement errors for nuclear material can occur in either the deter­
mination of bulk amounts or constituent concentrations. The easiest and
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most precise bulk measurements are the mass determinations. The most
difficult, and hence generally least precise, bulk measurements are the vol­
ume determinations, particularly when they must be made in irregular
tanks or are associated with a continuous flow such as a waste stream.
Analytical determinations of concentration are most precisely made on
high-purity material that is relatively homogeneous. For relatively hetero­
geneous materials, such as many wastes, nondestructive methods which
determine the total isotope or element content may be preferable to the
use of elaborate schemes to obtain a sufficiently reproducible sample for
precise analysis, even though an NDA method is generally less precise
than a destructive analysis method.

It is important to recognize that from a particular set of data used to
compute one or more safeguards indices, such as an inventory estimate or
an inventory difference, it may not be possible to estimate, either individu­
ally or collectively, all of the individual contributions of the measurement
errors to the estimated value of an index and its variability. A situation
may arise in which the presence of an error source in the data is known,
but estimation of its contribution is impossible from the data used to com­
pute the index. This, for example, may be the case when it is known that a
constant effect of unknown magnitude and direction is present because
established values of quantities such as disintegration rates or standard
concentrations of reagents are used in determining all results. This possi­
bility may be accounted for by associating a variance component with the
single flXed effect, even though no specific confirmation of the contribution
to the total variance of the index is possible from current accounting or
measurement control data. On the other hand, there may be unknown con­
tributions to the error that have not been identified and, therefore, cannot
be estimated or controlled statistically either from current accounting data
or through a designed measurement control program. The possible contri­
bution of such effects must be determined from technical considerations.

All of the statistical techniques used to estimate variance components
associated with measurement error have the common feature that more
than one independent measurement is required. The replicate data used to
estimate these quantities should be independent and should include all rou­
tine procedural steps. All steps in the measurement procedure-including
sampling, sample preparation, and analysis-should be replicated and
should follow accepted procedures as closely as possible. It may even be
necessary to separate the measurements in time or to have them made by
different persons to ensure that all contributions to the measurement
uncertainty are included in routine checks.

This necessary replication of measurement results can seldom be justi­
fied on the basis of the increased precision obtained by the replication, and
therefore it must be recognized that the replicate analyses represent work
done purely for the purposes of estimation and control. They allow an
"inspection" of the quality of the analytical results produced. Most pro-
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grams, however, correctly emphasize the maintenance of a controlled and
effective measurement system rather than relying on an inspection process
to ensure product quality. Although the latter can measure whether or not
the measurement system is in a state of control, only the former can
ensure that good measurements will be produced.

The variance components associated with errors of measurement can be
estimated using data from the calibration procedures, standardizations,
and methods testing necessary in establishing and controlling measurement
procedures, as well as by independent replicate measurements done specifi­
cally for error estimation. The analysis of reference standards should be
distributed throughout the time that the analytical method is being applied
to ensure that the absence of bias is being continuously monitored or that
estimated corrections are representative of all the results. Standards used
for monitoring measurement biases should closely simulate process samples
in form and composition so that the results are not affected by differences
in composition between standards and process materials. Again, every
effort should be made to perform all measurements of standards by pro­
cedures identical to those used for routine measurements.

13.3.3 Inferences from Material Accounting

Chapter 16 deals with the contribution of statistical methods to the
inferences possible from nuclear material accounting results. These infer­
ences are usually concerned with possible losses or diversions, or the assur­
ance provided that loss or diversion did not occur. In the case of a single
observed inventory difference and its associated estimated error variance,
or a standard error of the estimate, methods and procedures from Chapter
4 for forming confidence intervals and testing hypotheses are directly
applicable. Tests for cumulative inventory differences and other loss esti­
mators based on more than one observed inventory difference are more
complex because of the sequential nature of the testing procedure and the
need to take into account the dependence between observed inventory
differences, particularly consecutive inventory differences that depend on a
common physical inventory.

The key statistical quantities associated with successive material bal­
ances are the initial inventory, the net transfers, and the ending inventories
for each of n successive material balance periods. These 2n+1 quantities
are complex linear combinations of individual accounting entries, each of
which may be a linear or multiplicative combination of several measured
quantities. Dependencies may exist both because two or more of these
quantities involve identical entries and because one or more entries have a
common fixed error effect. An example of the first cause of dependency
would be the use of an identical measurement of the content of a UF6 cyl­
inder as part of a net transfer and one or more subsequent ending inven­
tories. An example of the second is the use of an NDA method with a
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ftxed calibration bias to determine accounting entries for both receipts and
physical inventories. Error propagation problems arise in determining the
contribution of the operational procedures and measurement processes to
the variability in, and dependence between, the estimates of the physical
inventories and net transfers and the resultant inventory differences.

Statistical methods are also effectively applied in the verification of
accounting data. Domestic regulatory bodies are concerned with confirm­
ing the quality of the accounting and measurement systems. Additional
problems arise in international safeguards where not only the quality but
the validity of the data are subject to question. Chapter 17 presents statis­
tical procedures for both types of problems, with particular emphasis on
the use of sampling plans for both evaluation and validation. Validation is
studied both as a two-stage process of confirming reported results and then
using the validated results for loss estimation and as a single-stage estima­
tion problem based on the combination of accounting results and data
obtained through verification procedures. In either case, the problem is
made more complex by the need to consider alternatives involving deliber­
ate falsification of reported data.





APPENDIX 13A

The Accounting System
13A.l INTRODUCfION

The material accounting system of a nuclear facility provides the man­
agement with timely and accurate information concerning the types and
quantities of nuclear material received and shipped, discarded or lost dur­
ing processing, and in the inventory at the facility. The records of the
accounting system should identify the location of each item, object, or
other defined quantity in the nuclear material inventory; the item and
batch identifiers needed to provide traceability to production and measure­
ment data; and other information needed for process and quality control,
production scheduling, and other management purposes. The information
maintained by the system should also permit identification of item error
effects, numbers of measurement replications, and other error path data
(Section 14.2.1). The accounting system achieves these things through a
system of source data forms, transaction journals, ledgers, and administra­
tive procedures for collecting and compiling the data. For a more extensive
treatment of nuclear material accounting than given here, the reader may
consult the NRC report by Korstad (1980).

As discussed in 13.1.2, the book inventory of a facility is maintained
by a conventional inventory accounting system that depends on the report­
ing and documentation of every transaction that affects the quantity or
location of any nuclear material on the inventory of the facility. This docu­
mentation is the primary source of the information needed by the individ­
ual responsible for nuclear material control. The information consists of at
least the following for each nuclear material receipt, transfer, shipment,
discard, loss, and inventory change:

1. Quantity of the element and isotope (if applicable).
2. Identities of the containers and batches.
3. Material type.
4. Origin and destination, if a change of location is occurring.

To evaluate these data the following additional information is needed:
1. The basis of the quantity values, such as the measurement methods

and specific instruments (scales, NDA instruments, etc.) used, and the
dates of the measurements.

2. The sampling and analytical patterns, i.e., number of samples per
batch and number of analyses per sample.

Preceding page blank 639
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3. The quality control data applicable to the measurement systems
used.

The sources of the accounting and statistical data are described for each
type of change in material status in this appendix.

13A.2 RECEIPTS

When nuclear material is received by a facility, the receiver (individual
or organization) is responsible for preparing a Receiving Report for the
person responsible for nuclear material control. This report is normally
prepared immediately with whatever information is available and amended
reports are prepared later if necessary. Such reports describe the material,
identify (usually by a numerical or alphanumerical code) the containers
and batches, give the quantities in each item and batch, and note the cur­
rent location of the material.

The receiver's quantity information is often reported to the accounting
office in two or three steps. The bulk measurements can usually be made
immediately upon receipt and reported at that time to the person responsi­
ble for nuclear material control, but the analysis results will be obtained a
day or more later. When the element and isotope concentration values
have been obtained, an amended receiving report should be issued.

The initial receiving report may give the quantity values obtained from
the shipper. An amended report issued later will add the receiver's
independently measured values. Some facilities accept all shipper's values
for which the shipper-receiver difference (SRD) is not statistically signifi­
cant. The receiver's measurements are made to verify the values and detect
any significant SRDs that must be investigated and resolved. Other facili­
ties record all receipts at their own values and record the differences
between them and the shipper values in the SRD account in the general
ledger.

Other statistical information needed for an analysis and evaluation of
the receipts data may be obtained in various ways. The Analytical Request
and Report Form generally gives the number of samples and what items
and batches they represent, and it may give the number of analyses per­
formed per sample, the methods, the analyst, the instruments used, and the
dates of the analyses. An alternative source of this information in many
facilities is a manual of standard procedures specifying sets of measure­
ment methods for the facility for each category of material routinely flow­
ing through the process. Unless exceptions are indicated, it is assumed that
the standard procedure is followed. The procedures specify the weighing
procedure; sampling method; analytical method; and number of weighings,
samples, and analyses to be obtained.

The data from which the statistician can obtain bias and variance esti­
mates for the receiver measurements are usually not available from the



SECTION 13A.5 WASTE DISCARDS 641

measurement data itself because insufficient replicate measurements are
made on individual items received. The statistician normally estimates the
measurement biases and variances applicable to a receipt from measure­
ment control program data.

13A.3 INTERNAL TRANSFERS

An internal transfer report is issued by the custodian of an item or
batch of nuclear material when the material is transferred to a different
custodian or to a different material balance or item control area. The
report will identify the item and batch numbers, type and quantity of
material, and the locations and custodians involved.

Usually the statistician does not need any information about the mea­
surements of the nuclear material in internal transfers unless the measure­
ment results will be used for a shipment or an inventory report. Most
internal transfers involve movements of material between processing areas
or from a process to temporary storage.

13A.4 SHIPMENTS

When a shipment is planned, a Shipping Report is prepared that
describes the material and quantities in sufficient detail for the accounting
office. The statistician may estimate the variance and the bias correction,
if any, for each item or batch in the shipment for the Nuclear Material
Transaction Report (DOE/NRC Form 741) on an individual shipment
basis. The variances are commonly calculated from standardized or aver­
age statistical parameters that have been preestablished for each type of
routine shipment. More detailed and specific statistical data, however, may
be needed for the variance estimates of some shipments for incorporation
into the variance of an inventory difference or to evaluate a shipper­
receiver difference. For these purposes, the variances of the element
factors, isotope factors, and masses on an item and batch basis will be
desired. If a standard procedure was not specified, as discussed in Section
13A.2, an Internal Transfer Report may provide such information as the
scale or NDA instrument number, date, and sample number, if any, and
the Analytical Report will provide such details for the analyses. In this
way the measurement information for the transaction is traceable, and the
statistician can calculate the variances when they are needed in the
preparation of a Shipping Report.

13A.5 WASTE DISCARDS

The nuclear material custodian who initiates the removal of items or
batches of waste from the facility prepares an appropriate report, which
will be referred to in this section as a "Waste Discards Report." This
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report provides the identity, quantity, point of origin (process or material
balance area), and disposition of the material. Solid waste-which may
consist of paper, plastic, gloves, rags, clothing, contaminated metals and
ceramic materials, and contaminated equipment-are generally packaged
in plastic bags, cans, or cartons at the point of origin, such as the work
station or hood. Then the packaged items are placed in 55-gal barrels or,
in the case of large metal objects and equipment, in cartons or crates, and
sealed in preparation for shipment to a disposal site. In most cases, the
filled barrels and large containers, rather than the smaller individual pack­
ages, are analyzed for the nuclear material content. This is generally done
by an NDA method based on gamma, neutron, or neutron coincidence
counting.

If the Waste Discards Report does not provide sufficient information
about the waste assay, the statistician will acquire this information from
the assay report. Since the types of wastes and the assay procedures used
are highly standardized in most facilities, the statistician will generally be
able to determine from the material type. description what assay method
and, probably, what instrument was used. The measurement control pro­
gram reports will provide the bias and variance monitoring data. The
statistican should know, however, what instrument performance controls
and techniques are being used. For example, an important concern in
NDA measurements is whether the size, shape, container type, and compo­
sition of the contained material in the reference standards being used and
in the unknown items being measured are nearly identical, because a mis­
match of the standards and unknowns is a common cause of NDA mea­
surement error. To help minimize such errors, wastes are usually segre­
gated by type of material when packaged.

Liquid wastes-such as process filtrates, evaporator condensates, and
wash water-may be collected in a holding tank and sampled for analysis
before being discarded or routed to a treatment facility. On the other
hand, they may be piped directly to a holding tank in a treatment facility
through an on~line monitor that will alarm if the concentration of the
nuclear material exceeds the upper limit for discarding. In any case, at
some point a Waste Discards Report is prepared for accounting records by
the responsible custodian or production supervisor to document the
removal of the batch of waste. This report may be issued for each batch
(probably each tankful) or for the accumulated discharges for a specified
period, e.g., for each shift. The statistician needs to know how the batch
quantity (mass or volume) was measured, how the batch was sampled, and
how the samples were analyzed. When methods are standardized the prin­
cipal concern will be simply what departures, if any, were made from the
standard procedures.

Two common characteristics of nuclear waste disposition that cause
accounting difficulties are large measurement uncertainties and loss of
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traceability to their exact source because of consolidation of wastes. The
assays of solid wastes may have a relative standard deviation up to 20 or
30% because of heterogeneity, fluctuating background radiation, and self­
absorption or attenuation of the radiation within the container. The assays
may also be biased because of significant differences between the matrix
or distribution of the nuclear material in the unknown and the reference
standards. The analyses of liquid wastes, which are generally done by
chemical analysis, can usually be performed with a relative standard
deviation of the order of 5%. The analyses can be biased, however, if the
analytical methods are not adequately controlled or if the liquids contain
nuclear material as suspended particles that are not detected in the
analysis.

The traceability issue arises because wastes from more than one pro­
cess area are commonly combined into one batch before the measurements
are made. This is less common for solid wastes than liquids. When com­
bined in this way the quantities of waste removed may need to be allo­
cated between various material balance areas.

Another accounting problem associated with waste removals is the loss
of material by unmeasured and, often, unknown paths. The loss mecha­
nisms may be airborne material· collecting in filters in the ventilation sys­
tem, accumulation of material in hidden spaces of equipment and on the
surface of ducts and work enclosures (which may be recovered eventually
when the equipment is removed and work enclosures disassembled and
cleaned or assayed), and material carried out on clothing to the laundry. It
would seem that all loss mechanisms are or can be accounted for by mea­
surements on all exhaust air filters, careful design of equipment and enclo­
sures to minimize material traps and enable area NDA measurements of
holdup, and routing of all sumps, flow drains, laundry waste and sinks,
including those in clothing change rooms, to retention tanks for analysis
before disposal. The practical situation, however, seems to be that small,
unmeasured losses still occur.

13A.6 PHYSICAL INVENTORIES
A physical inventory is taken with an organized list of the items and

batches of nuclear material on the book inventory. The items are checked
off as they are located, and the quantities are recorded for each item or
batch. The previously determined element and isotope quantity values
given in the book inventory for items that are encapsulated or sealed with
tamper-indicating seals are normally accepted without remeasurements.
Other items are measured by NDA or by a bulk measurement plus a sam­
ple taken for analysis.

After completing searches for missing material, if any, and investigat­
ing any other discrepancies, the inventory difference is calculated and the
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books adjusted to conform to the physical inventory. The total of the
adjustments, which is the inventory difference, is entered into the ledger in
an "ID Account."

To determine whether the inventory difference is statistically signifi­
cant, the variances of the item and batch quantity values are needed. The
basis for the variance estimates will usually be measurement control data
for the measurement methods and instruments used. Frequently, the statis­
tician can determine how many measurements were made, what methods
were used, and what measurement control data are applicable by consult­
ing the manual of standard procedures used for each type of material.
When an exception to the standard procedure is made, however, the statis­
tician must be aware of it and determine what measurement procedures
were actually used in the physical inventory by checking the analytical
reports and making personal contacts.

There are four common sources of accounting difficulty other than
measurement uncertainty in conducting and reconciling the physical
inventory:

1. Material that is overlooked in taking the inventory. It will be imme­
diately known if an item listed in the records is overlooked, but that is not
true if some of the bulk material that was to be packaged and measured
for the inventory is overlooked.

2. Misplaced material. This can occur because of a failure to document
a movement of material or because of a bookkeeping mistake.

3. Holdup that is poorly measured. Material held up in equipment,
pipes, tank bottoms (heel), and filters may be so inaccessible that the
measurements have a large potential error or that time-consuming clean­
out for measurement is necessary. In some cases the inventory teams make
an estimate of the quantity from mechanical or geometrical information or
historical clean-out data.

4. Holdup that is undetected. Material is often contained or held up in
locations unknown to or inaccessible to the inventory teams. The
discrepancy becomes part of the inventory difference.

13A.7 INVENTORY ADJUSTMENTS

This category of the nuclear material transactions may include adjust­
ments for inventory differences, SRDs, measurement and bookkeeping mis­
takes, bias corrections, radioactive decay, fission or transmutation, and
changes of enrichment. The sources and flow of information for these
adjustments are discussed individually.

13A.7.1 Inventory Differences and SRDs

After a physical inventory has been completed, the appropriate inven­
tory accounts are adjusted to the physical inventory values and the inven-
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tory difference is posted to the ID account. When an inventory difference
is to be corrected after the end of the accounting period and an inventory
account is also affected, the correction should be posted to the inventory
account and a Prior Period Adjustments account instead of the current ID
account, to avoid an error in the inventory difference estimate for the cur­
rent period. Some facilities, however, record all adjustments in the current
accounting period, maintain separate records of the effect on inventory dif­
ference, and apply a correction at the end of the accounting period.

SRDs are handled in a variety of ways. Some facilities accept and
record the shipper's values for all received material unless the SRD is sta­
tistically significant. Other facilities record both shipments and receipts at
their own values and record the SRDs in the SRD account. If an SRD is
statistically significant, however, it is investigated and eventually resolved
by a mutually acceptable procedure. Then the Shipments or Receipts
account, whichever is affected, is adjusted to the accepted value unless the
adjustment is made after the close of the accounting period, in which case
the adjustments are posted to the SRD account and to a Prior Period
Adjustments account. Some licensees do not use a Prior Period Adjust­
ments account, however, but make corrections to the ID account at the
end of the accounting period.

13A.7.2 Measurement and Bookkeeping Mistakes
and Bias Corrections

Adjustments to the accounting records are necessary when mistakes
and statistically significant biases are discovered after the material quan­
tity data have been entered into the accounts. It is important that the
adjustments result in a best estimate of the true material balance when the
books are reconciled to a physical inventory. This may be accomplished in
several ways.

Some facilities do not alter the existing accounting records but main­
tain an auxiliary record of all mistakes and biases. From that record,
corrections can be made, if necessary, to the inventory difference to
remove the cumulative effect of the errors. The auxiliary record can also
be used to correct for errors in the book values of the quantities of mate­
rial in shipments and other removals during the material balance period. A
feature of this accumulation of error corrections is that some cancellation
of error effects occurs and the fmal adjustments may be small.

An alternative way to handle each adjustment is to make corrections in
every account affected by the error. This is rarely carried as far as correct­
ing the records of each item or the tags on the items, however, because
that would entail a great amount of paperwork. For example, hundreds of
items are sometimes affected by one bias correction. A more common
approach is to make the adjustment for the effect of an error as a single
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entry in each account affected. That corrects the error in the inventory of
the facility as well as in that account and avoids carrying it into the inven­
tory difference at the close of the material balance period. If such an
accounting correction has been made, it is not necessary to correct the
book value of a batch of material as long as the material remains in the
facility. The material balance is not affected by transferring material from
one material balance area to another, although operators may correct book
values when entering such a batch into a process to avoid errors in process
yield or input-output data.

Unless book and tag values are corrected, auxiliary records of the error
or bias in each batch value must be kept to help ensure that shipping
reports and discard reports can be corrected. If a batch is split between
shipments, it will also be necessary to allocate the error between the
shipments.

13A.7.3 Radioactive Decay and Fission or Transmutation

Decay adjustments are calculated from nuclear constants whose bases
and uncertainties are derived from the published literature. Fission and
transmutation adjustments are based on reactor operating information
(flux, exposure time, and neutron energy) and physical constants. For­
tunately, the decay adjustment is a minor one for most facilities and is
likely to have a minor impact on the variance of the inventory. The
fission and transmutation adjustments apply only to nuclear reactor
operations.

13A.7.4 Change of Enrichment

This adjustment is a shift of a material quantity between enrichment
categories in the accounts and has a minor effect on the variances of the
quantities. If the enrichment change is measured, the measurement vari­
ances are estimated in the usual manner from the backup measurement
control data.



APPENDIX 138

Measurement Systems
13B.l INTRODUCTION

This appendix gives a brief and elementary overview of the measure­
ment systems commonly used in the nuclear industry for material account­
ing. Most determinations of nuclear material content use measurements of
the bulk amount of nuclear material and the concentration of the specific
element and/or isotope desired. Bulk measurements may require the deter­
mination of the mass or volume of the material or the measurement of
flows. Content can be determined by sampling and chemical analysis or
directly by nondestructive assay (NDA). When more than one isotope of
an element is present as in the case of enriched uranium, isotopic analysis
may also be required. Each of these types of measurement is discussed in
the following sections.

13B.2 MASS MEASUREMENTS

All mass measurement systems are based on comparison of the gravita­
tional force acting on the unknown mass with the gravitational force act­
ing on a known mass. The forces are measured by supporting the known or
unknown masses on a force-sensing device or system. The net gravitational
force is the measured force less the effect due to buoyancy.

Weight is defmed by

W=mg (13.2)

where m is mass and g is the acceleration due to gravity. The value for g
varies with altitude, latitude, and local variations in the density of the
earth. Weighing systems based on direct comparison with mass standards
such as the mechanical beam balance are not affected by variations in
gravity. Systems based on indirect comparisons such as load cells or elec­
tronic force-compensated scales that are calibrated in one place and used
in another, however, may be biased by a significant amount. For example,
the value of g is 981.624 cm S-2 in Quiet Harbor, Alaska, and
979.053 cm s-2 in Miami, Florida. This range could result in a difference
of 2.6 parts per 1000. Calibrating the instrument at the place of usage
removes this source of error.

647
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Scales read directly in mass units, and calibration by the user consists
of adjusting the instrument to read the exact value of a weight of known
mass. Known masses (standard weights) that are "certified" to meet the
accuracy tolerances recommended by the U. S. National Bureau of Stan­
dards are available commercially. Three common classes of "certified"
standard weights are:

1. Class S, a "laboratory precision" class.
2. Class P, a "laboratory routine" class.
3. Class C, an "industrial routine" class.

The accuracy tolerances of these classes are about 2.4, 20, and 50
milligrams per kilogram, respectively. The accuracy of the standard
weights, if protected from damage, will not significantly limit the accuracy
of accountability scales as they are used in practice.

Most of the scales or balances used for nuclear material measurements
fall in one of the following categories: t

1. Mechanical beam balances. .
2. Load cell scales.
3. Electronic scales.

Mechanical beam balances are inherently very sensitive and can be
designed to achieve high accuracy. This type of balance is available in
capacities ranging from a few grams to thousands of kilograms and, there··
fore, can be used for nearly all SNM accounting applications. Load cell
scales are compact and less subject to corrosion or damage by shock or
vibration than mechanical beam balances. Remote operation is relatively
simple, and they are readily adaptable for read-out at a remote location.
These types of scales are now used most often for the mass range above
5 kg.

Common load cell scales in use by the industry are based on hydraulic,
pneumatic, or strain-gauge sensors. A hydraulic scale measures weight by
determining the hydraulic pressure generated when the unknown mass is
placed on a piston in a hydraulic capsule. The pressure, which is propor­
tional to the weight, is read out on a Bourdon tube or other pressure­
indicating device. Typically, the unknown load is supported on three or
more hydraulic capsules, and the net pressure is summed using a hydraulic
totalizer.

The pneumatic scale is similar to the hydraulic scale. In this system,
the load is supported on a diaphragm, and the weight is determined by
measuring the air pressure required to support the unknown mass.

In strain-gauge load cells, weighing is done by measuring the change in
length of a metal column or the deflection of a metal beam when sub-

tThe terms "balance" and "scale" arc commonly interchanged in usage and should be
taken to have an identical meaning in this discussion.
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jected to the weight of the unknown mass. Measurement of the change in
length or deflection is performed by measuring a change in electrical
resistance of strategically placed strain gauges on the column or beam.

Electronic scales are widely used in nuclear facilities for applications
requiring capacities ranging up to about 50 kg. Like strain-gauge load
cells, the output signal is electrical and, therefore, can be readily adapted
to a digital reading system or direct input into a computer data base sys­
tem. Also, the functions of taringt and zeroing can be automated. These
features eliminate some of the sources of error related to human error and
personal bias.

Some high precision balances used in laboratories are capable of
weighing up to 100 g with a standard deviation of 0.05 mg or one part
per 2,000,000. To realize this capability, however, the balance must be in
excellent condition, and the operator must be skillful. Standard deviations
of from one part in 20,000 to one part in 200,000 are available in rapid
weighing, direct digital reading electronic and mechanical scales and bal­
ances. Multikilogram scales can be obtained with similar design features
and standard deviation capabilities of one part in 20,000 or better. Routine
weighings in nuclear processing areas, where most nuclear material weigh­
ings are made, however, are not usually so precise. Standard deviations
greater than 0.1% relative are common. Some scales must be located in
glove boxes or cells in processing lines where the environmental conditions
are not ideal. The effects of dust or corrosive vapors will often increase the
standard deviation of a scale considerably unless the scale's mechanical
parts are frequently cleaned and repaired. Few, if any, of the higher­
precision weighing devices are designed for such environments.

Since a scale may not be strictly linear, it should be calibrated over its
range of intended usage. The accuracy of scales is monitored with refer­
ence standard weights to detect changes in performance. Bias of mechani­
cal scales may be caused by corrosion or accumulations of dust on the pan
or platform or moving parts, a nonlevel or unstable scale support, and
damage to mechanisms such as the knife-edged pivots. Bias of load cell
scales can be caused by hysteresis (which means that the response is
affected for a short time after a change in load; i.e., return to equilibrium
is delayed) and by a load cell creep phenomenon, as well as by the effects
of dust and corrosion. Bias of electronic scales can be caused by electronic
instability, mechanical damage, dust, and corrosion. Load cell and
electronic scales, however, are not as vulnerable as mechanical scales to
dust, corrosion, and mechanical effects like vibration and shock.

Statisticians should be aware of the potential sources of error in weigh­
ings. Some points to check are:

tCounterbalancing part of a load, such as that of an empty container, to return the scale
reading to a set value such as zero.



650 APPENDIX 138 MEASUREMENT SYSTEMS

1. Whether the scale has any drift, either long or short term, such as
may be caused by temperature changes or accumulation of dust on the pan
or working parts (drift sometimes leads to bias between gross and tare
weighings and between input and output weighings for a process or MBA).

2. Whether the scale accuracy is affected by temperature changes or
vibration or drafts that occur where it is used.

3. Whether the scale is moved often or subjected to occasional shock,
such as when a heavy drum is set down nearby (these may change the
level of the scale, shift the position of working parts, or damage parts, par­
ticularly knife-edge fulcrums).

13B.3 VOLUME MEASUREMENTS

Most measurements of the volume of a process liquid are based on
measurement of the liquid level in a calibrated tank. There are several
techniques: sight gauges, differential pressure gauges (manometers or pres­
sure gauges), time domain reflectometry, conductivity probes, inductivity
coils, resistance wire elements, ultrasonic gauges, and capacitive transduc­
ers. The most widely used are sight gauges and differential pressure
gauges. Sight gauges and similar techniques, such as a graduated scale on
a transparent tank (glass or plastic) or a transparent wall panel in a tank,
are not subject to many sources of error. External sight glasses, however,
can have a different liquid level than the tank if the liquid in the sight
glass has a different density than that of the liquid in the tank. This
occurs if either the temperatures or the solution composition in the tank
and sight glass differ. The relationship between the densities and the liquid
heights in the sight glass and tank is

P2 h2h l =-- (l3.3)
PI

where

hi = height of liquid in the tank
h2 = height of liquid in the sight glass
PI = density of the liquid in the tank
P2 = density of the liquid in the sight glass

Differential pressure gauges (sometimes called pneumatic probes) are
widely used for remote liquid level measurements, as is required with
liquids in high radiation zones. The differential pressure may be measured
with a liquid-filled manometer or an electronic pressure gauge (trans­
ducer). The liquid level is determined by measuring the difference in
hydrostatic pressure between a point near the bottom of the tank and the
space above the liquid. The equation relating the liquid height and the
pressure difference is

(l3.4)
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Ap = the differential pressure
g = acceleration due to gravity

and hi and PI are as previously defmed (Equation 13.3). If a liquid-filled
manometer, sometimes referred to as a V-tube manometer, is used to
measure the Ap, Equation 13.3 applies.

Liquid volume measurement tanks are calibrated by adding accurately
measured volumes of liquid to the tank in increments and measuring the
liquid height after each addition. The methods for deriving the relationship
of the volume to the liquid height from calibration data are described in
Sections 15.1.3 and 15.1.4 of Chapter 15. If the tank is uniform in cross
section, the equation will have the linear form

(13.5)

where h and V refer to the liquid height and volume, respectively, and f30
and f31 are calibration constants. If the form is nonlinear, the best fit to
the data may be obtained with a quadratic or cubic equation or a set of
two or more linear equations, each representing a segment of the tank.

The equation for calculating volume is V = (h - f3o)jf31 and, if the
differential-pressure method is used to determine the height of the liquid
h, the equation becomes

V = (Apjgp - f3o)jf31 (13.6)

To apply this equation, the density of the liquid in the tank, p (Equations
13.3 and 13.4), and the temperature at the time Ap is measured must also
be known.

One of the important steps in a calibration is determining the capacity
of the portion of a tank below the zero reading of the liquid level gauge,
which is commonly referred to as the "tank heel." After a tank has been
put into service in a remote location, it may not be feasible to empty it
completely, which is required for a heel measurement.

Failure to recalibrate heels may lead to inventory error because insolu­
ble sediment may collect in the tank. The tank may also change dimen­
sions upon aging, loading, or temperature cycling. A tank must be recali­
brated whenever any internal hardware such as heating or cooling coils,
suction pipes, and stirrers are replaced. In addition, a periodic recalibra­
tion is needed to ensure that the tank walls have not sufficiently distorted
to invalidate the calibration equation. Potential sources of bias in volume
measurements are:

1. An imprecise or biased calibration, such as if the volume increments
added or the liquid heights are not measured accurately, not enough cali-
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bration runs (replications) are made, or the temperature of the calibrating
fluid was not constant.

2. A change in tank dimensions after calibration.
3. A development of a bias in the liquid level gauge, such as by a

movement of the scale on a manometer, a change of density of the
manometer fluid, a difference in liquid density between the tank and sight
glass contents, and, in the case of electronic instrumentation, drift or
instrument malfunction of one of the components.

4. Failure to correct for temperature effects on gauges or the densities
of the fluids in the manometer and the tank (Equation 13.3).

13B.4 FLOW MEASUREMENTS

Liquid flow measurements generally have poorer relative precision than
volume and mass measurements (flowmeter measurements of volume
delivered can be expected to have standard deviations in the 1 to 3%
range). Therefore, flowmeters have not often been used for accountability
measurements, although they are widely used for process control measure­
ments. With the increasing emphasis on near-real-time accounting and a
more prompt detection of losses, however, flow measurements will come
into more common use for nuclear material accounting.

Flow measurements fall into two general categories. The first, which
also has the greatest precision, is the measurement of discrete volumes per
unit time. An example of this type of meter is the common gasoline pump.
Other examples are the positive displacement pump (the most precise
example of this type of flowmeter), the rotating disk, t the rotary vane, and
the piston types.

The second category is the velocity or rate type of meter which mea­
sures the rate of flow in a continuous stream. Within this general category
are subcategories of meters including variable head meters (orifice, venturi
tube, pitot tube, flow nozzle, changing area), variable area meters (rotame­
ter, flow drag force, air lift), and velocity and current meters (turbine,
thermal, laser-doppler, electromagnetic, and vortex).

Flowmeters are calibrated by passing a known or measured volume of
liquid through them at a constant rate in a measured time period. The
potential sources of error in calibrations are a pulsating flow or swirling
liquid (often caused by pipe bends near the meter inlet), air entrainment,
and biased measurements of the calibration volumes. The first two sources
of error also apply to measurement applications. In addition, electrical or
electronic components and recorders can become biased. Periodic
recalibrations are necessary because of the possibilities of wear of moving
parts, crud buildup, and leakage of air into the system upstream of the
flowmeter.

tA sealed disk that "wobbles" with the flow of liquid.
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13B.S CHEMICAL ANALYSIS
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Chemical analyses are generally the most precise and accurate of the
methods available with which to determine the concentration of an element
in nuclear materials. The primary reasons for this are as follows:

1. The material samples can be prepared for analysis by dissolving or
pulverizing them to render them homogeneous and separating interfering
constituents,

2. The quantity taken for the measurements can usually be near the
optimum amount for a precise analysis.

3. The measurements are made in a controlled environment in which
the apparatus and instruments can be maintained in an optimum operating
condition.

The analytical methods for uranium and plutonium concentrations are
the most important ones in nuclear material accounting. In some instances,
other element concentrations must be measured to make a correction for
interferences with a uranium or plutonium determination.

13B.S.l Determining Uranium Concentrations

The gravimetric and titration methods are the most widely used analyt­
ical procedures for uranium for nuclear material accounting as well as
quality control measurements. A gravimetric method is based on measure­
ment by weighing. The usual weighing form of uranium is the oxide U30 g,

which is stable in air and does not absorb or lose oxygen at temperatures
up to at least 900°C. Furthermore, this oxide is easy to prepare as
stoichiometric U30 g, i.e., having the quantitative chemical composition
indicated by its formula. Most solutions, salts, oxides, and organic com­
pounds of uranium can be converted directly to U30g by heating them in
air at a temperature of about 900°C. This is referred to as an "ignition."
A hydrogen reduction followed by ignition in air is used for maximum
accuracy with some compounds of uranium.

The gravimetric method is limited to fairly pure compounds of ura­
nium. Nonvolatile impurities up to about 0.05% by weight are permissible
if corrections are made for the weight of the impurity. The concentrations
of the impurities are determined by a spectrographic analysis, which is
usually performed on the "high grade" uranium compounds in the process
for other purposes as well. The principal sources of error in this method
are weighing errors; failure to achieve stoichiometric U30 g, which can be
caused by using an ignition temperature that is too low or too high; and
error in measurement of the impurity concentrations for corrections.

For the direct ignition method, the uranium weight factor ("element
factor") is calculated as follows:

U
- W(F-C)g

f-
s

(13.7)
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Ur = the uranium factor
W = the number of grams of ignited oxide
F = the nonstoichiometry factor (ratio of stoichiometric U30 g,

determined by the hydrogen reduction method, to the uranium
oxide obtained by the direct ignition method)

C = the correction for the sum of the weights of impurity oxides,
expressed in grams per gram of the ignited oxide

g = the gravimetric factor, 3UjU30 g, calculated from the molecu­
lar weights of U and JhOg, corrected for the isotopic composi­
tion of the uranium

s = the grams of sample taken for analysis

The F factor is necessary for the highest accuracy. The ignition procedure
should also be periodically checked using a standard reference uranium
compound, such as one of those available from the U. S. National Bureau
of Standards.

There are several titrirnetric methods for uranium determinations. They
are based on a controlled reduction and oxidation sequence of reactions of
uranium ions in an acid solution. The quantity of reagent required to just
oxidize the uranium ions is measured, and the quantity of uranium in the
sample is calculated from the known reaction stoichiometry. In the case of
the coulometric titration method, a controlled electro-reduction is carried
out and the "reagent" is coulombs of electricity.

The principal steps for a typical assay of a uranium oxide sample are
as follows:

1. Blend the sample. (If it is a granular material, pulverize it first to a
fine powder.)

2. Select an analytical subsample to contain between 100 and 300 mg
of uranium and weigh it accurately. (Some methods can accept smaller
sample sizes.)

3. Dissolve the sample in an appropriate acid, add sulfuric acid, and
then evaporate off all acids except sulfuric.

4. Reduce the uranium by adding a measured slight excess of an
appropriate reagent.

S. Carry out a catalyzed oxidation of the excess reductant.
6. Titrate the uranium with an oxidizing agent (a chromate solution) of

known concentration until the oxidation end point is reached. t
7. Measure the weight or volume of reagent used.

tThe endpoint may be detected visually by the color change of a chemical dye that is sen·
sitive to a trace of excess oxidant or electrically by observing an abrupt voltage or current
change of an electrode at the endpoint. The electrical indicator method is commonly
automated.
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8. Calculate the concentration of uranium in the sample as follows:

666

U = NV(atomicweightofU)/2
net weight of sample in g

(13.8)

where

U = grams of uranium per gram of sample
N = concentration of dichromate in the titrant in gram equivalents

per milliliter of solution (assuming volume measurements used)
V = volume of titrant required to reach the endpoint

The reason for describing the steps of the titration procedure is to show
the complexity of a typical analytical titration and the many possible
sources of error. They are:

1. Incomplete dissolution of the sample.
2. Weighing errors.
3. Volume measurement errors for the reagents and titrant.
4. Faulty standardization of the titrant.
5. Variation of chemical reaction rates and stoichiometry, as may

be caused by improper quantities of reagents or reaction timing and
temperatures.

6. Contamination of equipment or reagents.
7. Changes in composition of samples between sampling and analysis.
8. Operator mistakes in detecting the endpoint or making reagent

additions.
9. Interferences by other constituents of the sample that react with one

or more of the reagents.

The most likely causes of bias are faulty operations, such as incomplete
sample dissolutions or timing of reaction steps-use of a working standard
that is miscalibrated or has changed composition; change in compositions
of samples before analysis; and chemical interferences in the samples. The
chemical interferences with which analysts must be concerned vary with
the specific titration method used. For the "Davies-Gray" method, which is
very widely used, vanadium, manganese, molybdenum, ruthenium, and
some of the precious metals are typical of the troublesome elements. When
any of these are present in concentrations high enough to cause interfer­
ence, the analytical procedure is modified to prevent the interference. A
description of the various procedural alternatives that may be used to
avoid chemical interferences is beyond the scope of this discussion. The
reader may consult other manuals, such as that by Rogers (1983).

Very low concentrations and small amounts of uranium are determined
by methods more sensitive than titration, such as colorimetric and
fluorometric methods. The latter is used most widely, especially for dis­
cardable waste solutions.
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Uranium is one of the few inorganic species having sufficient natural
fluorescence to permit analysis by measuring its fluorescent intensity.
Uranium atoms emit a green light when they absorb ultraviolet radiation.
The fluorescent intensity varies considerably with the form of the uranium
and the matrix.

Two methods of fluorometric analysis for uranium have been developed
that achieve high sensitivity and sufficient reproducibility for analysis.
They are both used in the nuclear industry for analysis of very dilute solu­
tions such as process effluents. The older method is the fused-pellet
method in which uranium salts are fused in a sodium fluoride pellet to
enhance the fluorescence (some other pellet materials can also be used).
The other method is the pulsed-laser-excitation method. In the latter
method the sample is added to a neutral solution containing a pyrophos­
phate salt as a fluorescence enhancer. Optical instruments with an ultra­
violet light source and a photomultiplier tube detector are used in both
methods for the quantitative measurements. The calibration of the instru­
ment is accomplished by measuring portions of a solution containing
known amounts of uranium and fitting an equation of response voltage
versus uranium quantity by the method of least squares.

The principal sources of error in fluorometric analysis are as follows:
1. Instrument drift or instability.
2. Errors in sample volume measurements.
3. Uranium contamination of the fusion pellet, the fusion crucible, or

the solutions and containers used.
4. Poor control of fusion temperature or time.
5. The presence of interfering constituents, known as quenching agents

in the samples.

Many elements cause fluorescence quenching. The analyst must know
when these are present or potentially present and use a suitable variant of
the procedure to avoid or correct for the quenching factor. Further infor­
mation is given by Rogers (1983).

13B.5.2 Determining Plutonium Concentrations

The chemical and coulometric titration methods for plutonium are very
similar to those for uranium. The same sequence of operations and the
same sources of error are applicable. The primary methodological differ­
ences are the oxidation and reduction reagents used, the method of detect­
ing the titration endpoint, and the kinds of materials that cause chemical
interferences. When using the amperometric method, which is a widely
used procedure, the plutonium results will be high if chromium, manga­
nese, cerium, americium, vanadium, or a few other elements are present.
Uranium does not interfere. On the other hand, the results will be low if
lead, barium, calcium, selenium, or thallium are present in substantial
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quantities. There are method modifications, however, that eliminate most
of the interference and in some cases, a chemical separation before analy­
sis is used. [See Rogers (1983) for further discussion and references.]

The coulometric method for plutonium is often used because it requires
a much smaller sample size (5 to 15 mg of plutonium is about optimum)
than the chemical method. The presence of iron causes high results and a
correction is applied that is based on a separate determination of the iron
concentration. Some interfering materials that cause low results are zirco­
nium, tantalum, niobium, organic materials (such as those leached from
ion exchange resins), fluorides, and phosphates. When any of these are
present in any appreciable quantity, the procedure is modified to prevent
the interference.

Plutonium analysis bias can also occur if sample solutions are evap­
orated to excessive dryness, which increases the likelihood of forming plu­
tonium compounds that are very difficult to redissolve, or if the acidity of
the samples is too low, which increases the possibility of creating an
unreactive polymeric form of plutonium. With the amperometric method,
failure to completely oxidize the plutonium or to destroy all excess oxidiz­
ing agent before the titration will also cause biased results.

Small quantities of plutonium, such as occur in waste solutions, are
generally determined by alpha counting. The isotopic-dilution method, uti­
lizing a mass spectrometer, is also applicable down to moderately low lev­
els, but because of cost, the method is used only when an analysis more
precise than a-counting is wanted.

Minute amounts of plutonium can be determined by the alpha-counting
method since the specific activity of 239pu is 1.36 X 1011 alpha disin­
tegrations per minute per gram and alpha counters with background count
rates of less than one count/minute and nearly 50% geometry can be used.
Semiquantitative determinations of plutonium can be made without cali­
bration of the alpha counters and without exact knowledge of the specific
activity of the plutonium (which varies with isotopic composition). Alpha
counters are generally calibrated with a standard solution of plutonium, a
standard alpha source calibrated with a special absolute alpha counter, or
a standardized alpha source of 241 Am calibrated by alpha-gamma coin-

~ cidence counting. The main causes of error in the analysis are self­
absorption and scattering losses from counting discs with too much solid
material or very uneven deposits of plutonium. Other causes are imprecise
calibration of the counter and incorrect isotopic data for the plutonium.

13B.S.3 The Isotopic-Dilution Method of Analysis
In the isotopic-dilution method, a known amount of a tracer isotope of

the element to be determined is added to a known amount of sample, the
element is separated after steps have been taken to ensure that the tracer
and sample constituents are in the same chemical form, and an isotopic
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analysis is performed using a surface ionization mass spectrometer. The
measured isotopic dilution of the tracer is used to calculate the original
concentration of the element in the sample. The method is applied to ura­
nium using 233U tracer and to plutonium using 242pU tracer. About 1 mg
of uranium and 0.01 mg or less of plutonium are suitable for an analysis.
The method can be applied simultaneously to uranium and plutonium.

One form of the equation for the isotopic dilution analysis for uranium
is

C = Ct (R _ R ) 238 100 vol or mass of tracer solution taken
• m t 233 P vol or mass ofsample solution taken

where

Cs = concentration of U in the sample
Ct = concentration of lJJU in the tracer

Rm = 238U j 233U atom ratio in the mixture
R t = 238U j 233U atom ratio in the tracer
P = wt. isotopic percentage of 238U in the sample uranium

The Rt value for the stock tracer material and the P value for the sample
are determined by isotopic analyses. If the sample is high enriched ura­
nium, the 23SU j 233U ratios rather than 238U j 233U may be used for the cal­
culations to improve the precision.

The calibration of the method consists of establishing the concentration
Ct of the tracer isotope, 233U, in the tracer stock solution and the isotopic
ratio, Rb for the 238U j 233U ratio of the tracer. The Ct value is determined
by analysis of a standard reference solution of uranium whose concentra­
tions of uranium and 238U are known. Such a standard reference solution
is prepared by dissolving a weighed quantity of a standard reference mate­
rial, such as pure U308, and making it up to a known volume or mass of
solution. The isotopic ratio is determined by mass spectrometry if it was
not provided by the calibration laboratory that certified the standard refer­
ence U308. An accurate tracer calibration is very important. This is done
by "analyzing" the standard reference solution in the same manner as
unknowns.

The potential causes of error in the isotopic dilution method of deter­
mining uranium and plutonium concentrations are:

1. Errors in measuring the volumes or masses of the sample and tracer
solutions.

2. Faulty calibration of the tracer solution.
3. Changing concentration of the tracer solution, such as by evapora­

tion.
4. Failure to achieve complete chemical and isotope homogeneity of

the mixture.
5. Inaccurate isotopic ratio measurements.
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There are several calibration requirements associated with the isotopic
analysis instrumentation. Section 13B.8 contains a summary of these.

13B.6 SAMPLING
Analytical results are of little value when the composition of the sam­

ples analyzed are not representative of the material from which the sample
was withdrawn. The representativeness of a sample depends on both the
homogeneity of the material being sampled and the sampling method.
Samples of homogeneous material tend to be representative regardless of
what portion of the material is taken as the sample. When the homogene­
ity of a material has not been firmly established, however, the method of
sampling must be planned with care. The general principle is that to be
representative, every portion of the bulk material must have an equal
chance of being included in the sample. t That is not always easy to
achieve in practice. When it cannot be made part of the sampling plan, the
material must be blended until homogeneous before sampling.

Bulk nuclear materials are sampled in a variety of ways. The following
methods are typical:

1. Grab or dip sampling-dipping or scooping a portion of the material
from the top of the container. A petcock method of withdrawing a sample
of liquid from a tank is equivalent to grab sampling.

2. Thief sampling-a closed bottle or tube is lowered into the liquid or
powder to the desired level and then opened for filling.

3. Core sampling-an open-ended tube is inserted into the liquid or
powder to the desired depth, then withdrawn with the sample that fills the
tube. For liquids and free-flowing solids, a check valve is attached to the
lower end to close the tube and retain the sample while the sampler is
withdrawn.

4. Flowing-stream sampling-a stream splitter, outlet, or petcock with­
draws a small portion of a moving material from a pipe, conveyer, chute,
or spout. The withdrawal is continuous or at regular intervals during a
given time for a sample representing the material transferred during that
time. Automatic mechanical devices of many kinds are used. Some with­
draw a quantity that is proportional to the flow rate of the material and
are called proportional samplers. One type of flowing stream sampler,
referred to as a spinning disc sampler, is a rotating device that captures a
small increment (a complete cross-sectional portion) of a flowing stream at
frequent intervals.

5. Riffle sampling-a quantity of a free-flowing material is subdivided
by a splitter into smaller portions, one of which is taken as the sample for
analysis. The method is commonly used in laboratories to select a repre­
sentative analytical sample from a larger sample of the plant material.

t This docs not guarantee a small sampling random error but simply ensures that the
expected sample composition is the mean of the bulk material composition.
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Grab or dip sampling is the simplest and most inexpensive method, but
it should not be used for nonhomogeneous materials. The flowing-stream
and riffle-sampling methods are least subject to sampling errors with such
materials. The other methods must be used with discretion when the mate­
rial is not homogeneous because if a random selection of the sampling
position for thief and core samplers is not made, the samples may be non­
representative of the material. Even a core sample from a can of powder
can be nonrepresentative if the probe does not reach to the bottom or if
some part of the contents (e.g., the outer circumference) is never probed.

The most effective way to avoid both random error and bias in sam­
pling is to blend the material to a homogeneous state before sampling.
Liquids are easily blended by stirring, air bubbling, or convection (by dif­
ferential heating). Some process liquids, however, are not blended when
sampled because of cost, time constraints, or equipment limitations. Other
common constraints are a lack of stirring equipment in storage
vessels~specially those with constrained geometries for nuclear criticality
prevention-and mixing difficulties with solutions in evaporators, extrac­
tion columns, and tanks filled with neutron-absorbing material such as
borated raschig rings.

Powders, fuel pellets, metals, and alloys may have significant composi­
tion differences between containers, between batches, or between lots. In
nuclear fuel fabrication, uranium and plutonium oxide powders are
blended before pellet formation to create homogeneity within lots. Cans or
trays of pellets from the lot are also cross-blended before fuel rod loading.
These kinds of materials, however, might be sampled for inventory
accounting purposes at intermediate stages of the process when they have
not been blended. In those cases, the sampling plan must make provisions
for the nonhomogeneity problem. The most common solution is to with­
draw many subsamples from the batch, such as one from each container,
and composite the subsamples for the analyses.

Analysts must also be aware of potential sources of sampling error that
can take effect after the primary sample has been taken from the bulk
material. There are two classes of such errors:

1. Inadequate protection of the sample to prevent composition changes
while awaiting analysis.

2. Failure to attain homogeneity of the sample before withdrawing the
portion to be used for an analysis.

Protection of the sample, which is usually a containment issue, is the joint
responsibility of the person who prepared the sampling plan and the person
who withdraws and packages the sample. The analyst, however, should be
alert to containment problems and should notify the recipients of the
analytical results of any observed deficiencies. Analysts should know if
incoming samples are composites of subsamples that could differ in compo-
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sition and blend them accordingly. In addition, if the sample contains
granular or agglomerated material, it may be necessary to pulverize the
material before blending it. If blending is not complete, the portion of the
sample taken for analysis may not be representative of the whole. Analyses
of two separate portions will reveal such a problem.

13B.7 NONDESTRUCTIVE ASSAY

Nondestructive Assay (NDA) is the measurement of a characteristic of
an item that can be performed without altering the item. Most NDA
methods used in the nuclear industry are based on comparison of the radi­
ation or the heat generation from an unknown quantity of the element of
interest to the radiation from a known quantity of the element. Both
passive and active measurement techniques are used, where passive NDA
means that the characteristic radiation spontaneously emitted by the iso­
topeis measured, whereas active NDA means that the radiation emitted is
induced by an external source, generally a neutron source. Most of these
two classes of methods are based on quantitative measurement of gamma
ray, X-ray, or neutron radiation, including coincident neutron and coin­
cident gamma-neutron radiations. Another type of NDA method is
calorimetry, in which the heat production rate from radioactive decay of a
nuclide is measured and related to the quantity of the nuclide in the item.

One of the key features of these NDA methods is that they are used to
measure the total quantity of specific isotopes of uranium or plutonium in
an item or container of material rather than concentration. (Measurements
can be performed on representative samples of the material and concentra­
tion values for the element of interest obtained, but these are not discussed
here.)

An NDA method instead of a destructive analysis method is most com­
monly used when one of the following circumstances exists:

1. A more rapid or economical assay than can be achieved by a
laboratory analysis is needed. This is common for process control
measurements.

2. Destructive analysis or sampling is either not feasible or is too
costly. Assay of fuel rods is an example.

3. A representative sample is not obtainable because the material is
very heterogeneous. Typical examples are production and laboratory
wastes and certain scrap materials.

Although chemical analysis methods are capable of greater accuracy and
smaller standard deviations for uranium and plutonium concentrations
than NDA methods, some NDA methods are close competitors when the
material form and composition are known and are very consistent. In most
applications, the standard deviations of NDA methods are much larger
than those typical of the chemical methods. It must be recognized, how-
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ever, that when material heterogeneity is a cause of poor NDA accuracy, a
conventional chemical analysis may not be better unless the material is
first blended sufficiently to permit representative sampling. This would
often require pulverization or dissolution of the entire quantity to prepare
it for sampling. In many of the applications of NDA, the larger uncertain­
ties can be accepted because either the category of material involved is not
a major component of the material balance or the assay results will even­
tually be backed up by other analyses.

NDA data will often be very precise; that is, the measurement-to­
measurement data for a single item will be extremely reproducible. The
main contributions to reproducibility are instrumental stability and the
reproducibility of the counting geometry. The assay result, however, may
be biased, or the item-to-item error in assays of different items of the
same category (i.e., all subject to the same set of calibration data) may be
large. There are several important causes of this kind of error:

1. The presence of materials in the items that strongly absorb (attenu­
ate) the radiation to be measured or the stimulating radiation (e.g., the
source neutrons for an active NDA method) so that large attenuation
corrections are required.

2. Variable quantities of radiation absorbers from item to item.
3. The presence of dense forms (agglomerates or large particles) of the

nuclide being measured, causing self-attenuation.
4. Nonuniform distribution of the nuclide and matrix materials, partic­

ularly for NDA instruments that do not compensate by integrating the
count rates over many positions of the target, e.g., by rotating the item
while counting.

5. A mismatch between the average composition of the items and that
of the calibration standards.

The NDA methods for uranium and plutonium determine the quanti­
ties of specific isotopes, not the element quantity itself. For example, pas­
sive gamma assay of uranium is based on the 185 keV emissions of 23SU,
and the passive neutron count assay of plutonium is based on the combined
neutron emissions by spontaneous fission of 240pu and the a, n reactions
with the light elements present, where the primary alpha source is 239pu.
Therefore, the isotopic composition of the element must be known to cal­
culate the element quantity from an NDA result, or the calibration stan­
dards must be made up of quantities of the element having an identical
isotopic composition.

Calibration of NDA methods requires material standards that are very
similar to the unknowns to be measured. This similarity extends to the
composition, distribution, material form and container size, shape, mate­
rial, and wall thickness. Calibration standards are prepared by mixing
known quantities of uranium or plutonium with matrix material like that
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of the unknowns to be measured. These are packaged in the same type of
container as used for the unknowns. Furthermore, the uranium or pluto­
nium should have the same chemical form and particle size as that
expected in unknowns. Standards are constructed for each type of
unknown expected, and the range of uranium or plutonium contents should
span the full range of intended use.

13B.8 ISOTOPIC ANALYSIS

The usual method for determining the isotopic compositions of uranium
and the transuranium elements is mass spectrometry. A mass spectrometer
utilizes electrostatic and magnetic field interactions with charged particles
to separate the particles according to mass and to measure the quantity at
each mass. The sample size required for an analysis is 10-8 to 10-5 g of
uranium or plutonium, depending on the sensitivity of the instrument. Two
types of mass spectrometers, the gas-source instrument and the surface­
ionization instrument, are used routinely for uranium isotopic analysis.
The gas instrument is used for UF6 samples and is currently utilized pri­
marily in uranium isotope enrichment plants where lar.ge numbers of such
analyses are required. In the remainder of the nuclear industry, as well as
in most nuclear research establishments, the more versatile surface­
ionization instrument is used.

Samples for isotopic analysis by surface ionization are dissolved in an
acid, and the element (uranium or plutonium) is purified to eliminate
other elements that may interfere with a precise analysis. A dilute, slightly
acid solution (nitric acid) of the element is prepared, and a fraction of a
drop of the solution is dried and ignited on a tungsten or tantalum fila­
ment. The filament is placed in the source of the mass spectrometer and
heated to a temperature that causes a steady emission of positive ions of
the element. All of the isotopes of the element appear in the ion beam in
the same ratios as they occur in the sample. t The mass spectrometer sys­
tem is calibrated by running isotopic standards that are obtainable from
the U. S. National Bureau of Standards. Direct ion ratio determinations
by surface ionization mass spectrometry are very nearly correct without
the use of calibration standards, but such a procedure is not considered
sufficiently accurate for nuclear material accounting.

Four potential sources of isotopic analysis bias are:
1. Miscalibrated or nonlinear electronic circuitry in the ion collector,

amplifier, and readout systems.
2. Isotopic discrimination (isotopic fractionation) occurs in ion produc­

tion and in focusing the isotope beams, and electron multiplier detectors
have slightly different response sensitivities for different isotopes.

t A small isotopic fractionation occurs ~ the ion source, but a correction factor derived by
calibration is applied.
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3. Interferences by extraneous ions having the same mass values as the
element isotopes and impurities that cause erratic ion production rates or
high vapor pressures in the source region, resulting in beam scatter and
poor resolution.

4. Contamination of filaments, laboratory glassware, or reagents by
the same element but with a different isotopic composition.

Isotopic analysis bias is avoided by monitoring the instrument perfor­
mance frequently with a reference isotopic standard. In addition, cer­
tain components of the instrument are calibrated and tested periodically.
Tests are made to demonstrate that the sensitivity ranges of the detector
amplifier are accurate and linear, the electron multiplier gain is constant,
and the discrimination correction factor of the detector system has
not changed. Most of these tests and calibrations are made with isotopic
standards.
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CHAPTER 14

Modeling Measurement Variability
14.0 INTRODUCfION

A brief description of the modeling proc:ss for describing the effect of
measurement variability on a material balance, or one or more components
of the material balance equation, was given in Section 13.3.1. In this chap­
ter, a more complete description is presented of the basic statistical con­
cepts involved in modeling and estimating the effect of the presence of
measurement error on accounting results.

14.1 MODEL~G MEASUREMENT SYSTEMS
Working down through the accounting and measurement processes is

necessary before the experiments (in this case, mostly measurement pro­
cedures) that generate the basic random variables can be specified. In Sec­
tion 2.2, a random variable is defined as "a numerically valued function
defined over a sample space." In simpler terms, it is a rule which assigns a
numerical value to each possible outcome of an experiment. For our pur­
poses, the experiment is the application of a measurement system to an
item containing nuclear material, and the numerical value is the measured
content in appropriate units. The concept of a random variable is a useful
and convenient way of describing the nondeterministic, or stochastic,
nature of the measurement process. The important idea is that measure­
ments are not perfectly repeatable. This chance behavior of random vari­
ables can be described in part by specifying their expected values and
variances, or completely by specifying a distribution function. Repeated
runs of the experiment produce observed sample values of the random
variable from which the behavior of the random variable can be estimated.

14.1.1 The Basic Approach
Table 14.1 is a collection of definitions pertinent to modeling measure­

ment systems. The definitions of the American National Standards Insti­
tute (ANSI NI5.5-1982, Statistical Terminology and Notation for
Nuclear Materials Management) are given along with references to the
appropriate section of this book and the ANSI N15.5 standard. Usually
the two definitions carry essentially the same meaning. They are provided
here because they reflect the understanding of these terms in the nuclear
industry.
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TABLE 14.1

ANSI nermitions Relative to Modeling
Measurement Systems

ANSI
Text N150S

Definition Ieetioa Ieetioa

1. Population: A collection of objects or events. 3.0 2.3.1.1

2. Random variable: A ,ariable that takes on any 2.2 2.3.1.5
one of the values in its range according to a
specific, but usually unknown, probability distribution.

3. Parameter: An unknown constant that is associated 3.0 2.3.1.10
with, or is used to characterize, a distribution or
density function.

4. Estimator: A function of a sample (Xl> X2, •••• XD) 3.0 2.3.6.1
used to estimate a population parameter.

S. Expected value: The value obtained by multiplying 2.3 2.3.1.12
the value of a random variable by the value
of the density function of the random variable
and summing or integrating the product over the
range of the random variable.

6. Sample: (a) A collection of elements selected 8.0 2.3.3.2
from a population according to some sampling plan.
(b) To select or choose a collection of elements
from a population.

7. Estimate: (a) A particular value, or values, 3.0 2.3.6.2
realized by applying an estimator to a particular
realization of a sample, i.e., to a particular
setof sample values (Xl> X2' ••• , x,). (b) To use
an estimator.

8. Uncertainty: A concept used to describe the 2.3.13.12
inability of a measurement process to measure exactly
the true value sought.

9. Error: A deviation from the true value sought. 14.1.3 2.3.13.3

10. Random error: (a) The deviation of a random 14.2.1 2.3.13.7
variable from its expected value. (b) A deviation
which occurs "randomly" (according to a probability
distribution) over replicate measurements.

11. Bias: (a) The deviation of the expected value of a 14.2.1 2.3.13.8
random variable from a corresponding correct value.
(b) An error which remains constant over replicate
measurements (synonyms: deterministic error, fixed
error, systematic error).

(Table 14.1 continued on next page).
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TABLE 14.1 (Coot'd)

ANSI
Text N15.5

DermitiOD sectiOD section

12. Variance: (a) (population) The expected value of 2.3 2.3.5.1
the square of the difference between a random variable
and its expected value. (b) (sample) The sum
of the squared deviations from the sample mean
divided by one less than the number of values involved.
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The basis for the application of statistics to material accounting rests
on this approach to modeling measurement systems. Quantitative conclu­
sions about the real world of material accounting depend on the statistical
populations (Definition 1) resulting from the application of the measure­
ment systems to process items or measurement control standards. Each
such application generates a random variable (Definition 2). Each random
variable can be characterized by a distribution function with certain popu­
lation parameters (Definition 3). Depending on the reasons for collecting
data, estimators (Definition 4) are selected to help answer the questions of
interest. The expected values (Definition 5) of the estimators can be deter­
mined from general statistical theory. The quantities of major interest in
safeguards are the means and variances of the random variables. Much of
this modeling process can be done without looking at any measurement
data. The distributional assumptions involved can be checked after the
data have been collected, or past experience can be used to provide reason­
able starting assumptions.

The actual work of determining numerical values for the parameters
that describe the populations, or their means and variances, is done by col­
lecting samples (Definition 6) of observations from the populations of pos­
sible measurements on process items and standards. These outcomes of the
measurement process serve as the only connection with the true quanti­
ties present. For process items, only a sample of size one may be available
from the population of possible measurements, like the weight of the U02
in a can of U02 product. On the other hand, 15 or 20 measurements of a
measurement control standard weight may be taken during an accounting
period. Such measurements taken over time make it possible to determine
whether or not the weighing system is generating random variables from
the same distribution-Le., whether or not each observation comes from a
distribution with the same expected value and variance which is character­
istic of the weighing system. Sample estimates from such data can be com­
pared with standard values, or possibly historical values, of the parameters
of the distribution to determine whether or not the weighing system is out
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of statistical control. Procedures for estimation and control of mea­
surement parameters are the subject of Chapter 15.

The process of working up from the variation in the basic measured
values to the variability in the estimated inventory difference recognizes
that the accounting process is an estimator of an observed value of the
inventory difference, which is a function of the basic measurement random
variables and is, therefore, itself a random variable. Similarly, the
estimated variance of the estimated inventory difference is also an
observed value of a random variable derived from other random variables
through algebraic relationships determined by the operational definition of
the inventory difference estimator. Although the statistical distributions
associated with the basic measurement errors are frequently well charac­
terized, analytical characterization of the distribution of the inventory
difference may be difficult without numerous simplifying assumptions.
Definitions 9 through 12 of Table 14.1 characterize specific errors of
measurement in the measurement models and their behavior.

In summary, the basic operational steps involved in modeling and
estimating the effect of measurement variability on a material balance or a
material balance component are:

1. Observing and analyzing the measurement operations involved in
the accounting process, and modeling both individual determinations of
material quantity and their combination into accounting results in terms of
the measurement error effects.

2. Deriving from this model algebraic expressions for the variability in
the accounting results in terms of the parameters (usually expected values
and variances) describing individual measurement errors.

3. Specifying the manner in which the parameters characterizing the
measurement errors can be obtained from measurements on process items
and control standards, or by other experiments specifically designed to iso­
late and estimate individual sources of measurement error.

The estimation procedures used in step 3 to characterize measurement
error are not necessarily unique to material accounting. Under appropriate
conditions the results can be extended to other uses of the measurement
procedures involved, instead of being restricted to a specific material
balance.

This chapter deals with the definition of the error effects associated
with measurement systems, their propagation through the accounting pro­
cess, and the derivation of appropriate estimators of the uncertainty in
material accounting results. If an exact model of the specific measurement
and accounting system is required, this process can become quite complex.
Because of this, a somewhat simplified generic model of the effect of
measurement uncertainty on accounting results was developed that pro­
vides an adequate approximation for most evaluation purposes. This model



SECTION 14.1 MODELING MEASUREMENT SYSTEMS 669

is the basis of the procedures described in the rest of this chapter. Appen­
dix 14A contains a specific example of a more complete modeling process.
The need for more precise estimates in specific applications may warrant
such exact treatment. The adequacy of the generic treatment can only be
validated by periodic comparison with a more exact treatment.

14.1.2 The Accounting Process

As noted in Section 13.3.1, an observed inventory difference is usually
a complex combination of measurement results on a wide variety of pro­
cess materials involved in a particular production process. These results
and the measurement uncertainty they contain must be described so as to
expedite the correct and complete determination of estimates of the total
variability in the basic material balance components. Two different
descriptions are needed, a description of the accounting process and a
description of the error structure in the measurement results. Rarely are
both descriptions needed at any given step in the modeling process, but it
is necessary to recognize their existence and keep the distinction clear.
Even with careful definition of the notation used, it is frequently difficult
to maintain clarity with respect to the particular structure involved in a
given description or analysis.

The three basic measurement results that may be involved in determin­
ing the quantity present in a given unit of nuclear material are the bulk
amount (weight or volume) of material, the concentration of the element
being accounted for and, when required, the concentration of a particular
isotope of the element. These results will be designated by Ylo Y2, and Y3,
respectively. The accounting process is carried out on the amounts
XI = Y2YI or X2 = Y3Y2YI of element and isotope, respectively. A given
inventory difference will involve only one of these quantities, and the
breakdown into measurement results is necessary only to determine the
measurement uncertainty, not to describe the accounting process.

Occasionally an additional subscript is needed to show that observed
results are differences between individual measurements-i.e., a net weight
as a difference between a gross weight and a tare weight, a net count as a
difference between a total count and a background count, or a net transfer
as a difference in the content of a tank before and after the transfer. Con­
versely, there will be instances when the element or isotope amount is
measured directly by nondestructive assay (NDA) rather than determined
from separate measurements of bulk amount and concentration. When an
isotope amount is measured directly, as may be the case with NDA, the
element amount is determined by dividing the measured amount of isotope
by the isotope concentration factor.

To characterize the accounting structure and associated measurement
error effects, it is most convenient to use the notation for the analysis of
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variance with nested hierarchical models (Section 5.3). Because by defmi­
tion a stratum is a collection of similar material for which the observed
results are obtained using a fIxed set of measurement procedures, it is the
natural unit whose uncertainty can be determined in terms of a fIxed set of
measurement error variances. Any of the amounts or concentrations in the
previous paragraph may be determined on the kth item in the jth batch in
the ith stratum. When it is necessary to distinguish between a subscript
indicating the type of measurement and the subscripts designating a par­
ticular item, batch, or stratum, a comma will be used to separate the sub­
scripts. Thus, YI,23I designates the bulk weight of the fIrst item of the third
batch of Stratum 2; and XI,I2 designates the amount of element in the
second batch of Stratum 1.

As with the estimation processes for an analysis of variance with nested
hierarchical models, the number of items and total amounts of material in
the batches and strata play an important part in the analysis. In this chap­
ter the notation used in Section 5.3 and defIned in Section 5.1.1 is modi­
fIed slightly by eliminating the dots used to indicate the absence of the
subscript in the sum or average over a particular subscript. For nested
hierarchical models, there should be no confusion because the order of
summation is always the reverse of the hierarchical order. Thus, if Xl,ijk is
the amount of element in the kth item in the lh batch of the ith stratum,
then xl,ij is the total amount in all items in the jth batch of the ith stratum
and Xl,i is the total content of all batches in the ith stratum. Again note
that in considering a single inventory difference involving either the
amount of element or the amount of isotope, but not both, the initial sub­
script and the comma could be dropped because no confusion would result.
N ij and N j designate the number of items in the jth batch of the ith stratum
and in the ith stratum, respectively; and ai will designate the number of
batches in th~ ith stratum, so that

a,

Nj=~Nij
j-I

14.1.3 The Error Structure

(14.1)

The result of a measurement process will always differ to some degree
from the true value of the characteristic being measured. This difference,
usually referred to as a measurement error, arises from a combination of
individual error effects associated with the various components of the
measurement process. These sources of error, or sources of variability,
must usually be considered individually to determine the cumulative vari­
ability in a measurement result.

It is usually impossible to specifIcally identify and account for all fac­
tors which might affect a measurement process. This does not imply that
the contributions of some factors should be ignored, but rather that they
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be combined with others for consideration in the statistical analysis. A nat­
ural way to classify factors is according to the component of the mea­
surement process with which they are associated. Some measurement pro­
cess components which are frequently used to characterize individual
sources of variability are the following:

1. Material sampling: Samples of material are physically removed
from a bulk amount to measure the element or isotope concentration (or
some other characteristic of interest). The value of the concentration
obtained depends upon the particular sample of material chosen.

2. Statistical sampling: A subset of items to be measured is selected
from the population of items for which the total amount is required (Sec­
tion 8.1). The measurement result for the characteristic of interest which
will be applied to the whole population is affected by the sample of items
selected.

3. Analytic technique: The measurement obtained from a measure­
ment process may depend upon the analytic technique or procedure used
to measure the material.

4. Instrument: The instrumentation used to obtain a measurement may
affect the result. Variations in results may occur due to variations in line
voltage, temperature, etc.

5. Analyst or Operator: The people operating a measurement process
may affect resulting measurements. All four of the sources discussed above
might involve human operators or analysts. Depending upon the magnitude
of the human effects, it mayor may not be preferable to separate them
from their process component counterparts.

6. Calibration: Using a calibration equation or procedure to indirectly
measure a quantity of interest in a measurement process affects the mea­
surement obtained.

7. Environmental conditions: The environment surrounding a measure­
ment process may affect measurements.

Each of these sources for an individual measurement can be associated
with each measurement involved in determining the accounting result for a
particular item.

As noted previously, generic treatments of the error structure do not
specifically identify all of the individual sources in every model of the
error structure used to determine the variability in the accounting process.
Jaech (1973) uses a breakdown based on five general measurement opera­
tions normally associated with each individual item amount: bulk weight or
volume determination, sampling for element, analysis for element, sam­
pling for isotope, and analysis for isotope. Later treatments (Argentisi,
Casilli, and Franklin, 1979; IAEA, 1982; Messinger, Lumb, and Tingey,
1981) were based on only three sources of variability-bulk measurement
method, sampling procedure, and analytical procedure-because, as noted
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earlier, any given calculation of variability in accounting results involves
only element amount or isotope amount. Also, the determination of ele­
ment or isotopic concentration can frequently be considered as a single
source of variability combining sampling and analysis.

14.2 MEASUREMENT ERRORS

In this section, a model of the error effects associated with a specific
item amount is formulated. The combination of these effects to determine
the variability in accounting totals will be considered later.

14.2.1 Random Errors and Biases
The simplest possible model for a single measurement on a single item

is

(14.2)

where IL is an unknown parameter representing the true value of the mea­
surement and Ii is the error of measurement. If Ii is assumed to be a ran­
dom variable whose expectation is fJ, then the observed result can be writ­
ten as

(14.3)

where E is a random variable whose expectation is zero and fJ is an un­
known constant deviation of the measurement from the true value. For the
specific stipulation of the nature and extent of the measurement process or
procedures producing the set of y values with respect to which the
expectation is defined, E is the random effect (Defmition 10, Table 14.1)
and fJ the bias, or systematic error (Defmition 11). The difficulty in distin­
guishing between these two types of contributions to the measurement
error arises from the difficulty in determining those parts of the measure­
ment operation, time periods or external conditions which together defme a
specific random variable with constant expectation and variance or with a
specified distribution. The error in a weighing operation may have a dif­
ferent expectation from day to day depending on temperature. In that
case, the error distribution for a week's results is not the same as for a
given day's results. The variance in the errors associated with an analytical
procedure may differ depending on the operator carrying out the pro­
cedure, so that the error distribution for the results obtained by all opera­
tors will differ from that for the single operator assigned to the operation
on a given day. The problems of interpretation caused by this complexity
are discussed more completely in Section 14.3.1.
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Generally, the more inclusive the treatment of the sources of variability
in a measurement process becomes, the smaller will be the residual fixed
effect and the larger the fraction of the error assignable to the various
sources of random effects included in the difference ~. The traditional
underestimation of measurement error from repeated measurements is gen­
erally due to the lack of replication in the measurement process of all
sources of error in the measurements that contribute to the total variabil­
ity. Conversely, the errors in the average or sum of repeated measure­
ments, for which not all sources of variability are replicated, will in gen­
eral be larger than if all measurement operations were repeated for each
measurement.

Suppose that a specific measurement process or operation represented
by the simple linear model of Equation 14.3 is repeated on a series of
items with true values ILk, k = 1, ... , N. Then

(14.4)

where by definition, E(Ek) = 0 for all k. When the specific distribution of
the error effects is not known, it has been customary to consider either the
effects Ek or the relative effects 17k = Ek/(lLk + (3) arising from the repli­
cation of an identical measurement operation during a specific time period
as identically distributed random variables. When the replicated errors are
relative, substituting Ek = 17k(lLk + (3) in Equation 14.4 gives

(14.5)

If Var(Ek) = cJl and Var(17k) = fJ2 for all k, Equations 14.4 and 14.5 are
the models for replicated measurements with constant absolute variance
and constant relative variance, respectively. The variability in the error has
been described in terms of the expectation f3 and either the variance cJl or
the variance fJ2. When a specific distribution is known or can be reasonably
assumed, an exact treatment is possible, although in some cases it may be
complex. For example, if all or part of the error is the result of counting
random emissions, as is frequently the case in NDA measurements, that
part of the error due to the random varlation in the number of emissions
in any given time period will have a Poisson distribution. In this case
Var(Ek) = ILk, and the errors have neither constant relative nor constant
absolute variance.

The parameter f3 could also have been assumed to be a constant multi­
ple f3'lLk of the true value rather than an absolute quantity. In this case
Equation 14.5 becomes
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(14.6)

Taking the natural logarithms of both sides,

For fl' and 17k small relative to 1,

In Yk a: In ILk + fl' + 17k

(14.7)

(14.8)

Thus, constant relative effects in the original measurements are approxi­
mately equivalent to constant absolute effects in the logarithms of the
measurement results. This relationship is particularly convenient when
estimating relative error variances from repeated measurements because
the methods of Chapters 5 and 6, based on linear additive models, can be
applied directly to the logarithms of the measurement data.

A more general model of replicated measurements allows for identi­
cally replicated error effects that contain both absolute and relative com­
ponents. The appropriate model is

(14.9)

This model is probably the most realistic portrayal of the actual situation
with respect to the error in safeguards measurements. The possible pres­
ence of both absolute and relative random error effects increases the com­
plexity of procedures for determining the expected variability in account­
ing results. Most of the existing treatments assume relative measurement.
errors associated with each of the various sources of variability, but exten­
sions to accommodate both relative and absolute components are not diffi­
cult. When choosing models for estimating error variance components
from available control data, the choice should be made on the basis of
which assumption leads to a more nearly constant variance for each of the
classes of random effects in the additive model. Some of the combinations
which frequently occur are:

1. An additive combination of absolute effects.
2. An additive combination of relative effects.
3. A multiplicative combination of relative effects.

Sometimes it may be necessary to use the general model of Equation 14.9
and perform a non-linear analysis if none of these assumptions is appropri­
ate. Regardless of the model chosen to represent the available data from
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which the variance components are to be estimated, it is the individual rel­
ative or absolute variance components resulting from the analysis which
are used to compute the variability in the accounting results.

The assumption of relative error variances as the basis for calculating
the total variability is largely a matter of convenience, although in general
the errors in chemical analytical measurements tend to be relative rather
than absolute. The actual accounting results are determined as products of
bulk quantities, element concentration, and isotopic concentration. It was
noted previously that relative error effects have an approximately additive
effect on the logarithm of the results. Thus, relative error variances will
propagate approximately additively if the equations of Section 2.7 are used
to deal with products. As will be seen in the next section, this simplifies
the process for estimating the total uncertainty in an accounting quantity
due to the several measurements involved in a single accounting result.
The validity of this assumption can be enhanced by associating the relative
error variances with strata within which differences in the item amounts
are small. In this case, there is little difference in whether absolute or rela­
tive errors are assumed. When ILk = IL for all k, Equation 14.9 reduces to

(14.10)

where IL' = fJ + IL( 1 + fJ/) and E'k = lL'nk + Ek. It follows that under
this condition, the variance components associated with relative and
absolute sources of bias effects and random error effects cannot be
estimated separately, and are indistinguishable when estimating total vari­
ability. Finally, when the variations in the true measurements are large,
most measurement operations are designed to maintain the relative, rather
than the absolute, error of measurement in the varying bulk quantities or
concentrations.

Throughout the entire process of modeling the contribution of error
sources to the total variability and estimating individual components, the
compromise is between realism in the modeling of individual sources of
measurement error and the difficulty of deriving exact expressions for the
total variability arising from the complex variety of error sources which
affect an accounting result.

14.2.2 Errors in Item Amounts
The amount of element or isotope present in an accounting unit is usu­

ally the product of two or three measurement results, each of which may
be affected by more than one source of measurement error. The problem
of multiple contributions to a single result is considered first, and then the
combination of measurement errors into the total error in an item amount
is considered.
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For a given measurement result the errors {J, {J', E, or 71 may be a com­
bination of effects arising from various parts of the measurement opera­
tion. For example, the element concentration Y2 may contain errors due to
sampling, aliquoting, extraction, titration, or chromatography. In this case

(14.11)

where the E2q are random variables with zero expectation contributing to
the total error in an individual measurement result. If these contributions
are assumed to be independently distributed, then it follows from Equation
2.123 that

(14.12)

A similar result holds approximately for independent sources of relative
error in a single measurement if the errors are small. If

1 + 712 = IIq (I + 712q)

then neglecting products of two or more 71'S leads to the result

Again, from Equation 2.123 it follows that

The bias effects {J and {J' combine additively, so that

(14.13)

(14.14)

(14.15)

(14.16)

is the total bias effect from the combined contributions of absolute bias
effects, and

(14.17)
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is the approximate combined contribution of the relative bias effects when
they are small relative to unity.

In determining the errors in the amount of material in an accounting
unit the two quantities of interest are usually

XI= YIY2

For the case of relative effects, applying Equation 14.6 to each Yp gives for
either Xl or X2

For small Ep and {3p', expanding and dropping terms containing products of
two or more errors leads to the approximate result

(14.18)

This result also can be obtained by noting that

so that applying Equation 14.8 to each In Yp,

Exponentiating, and remembering that eX ~ 1 + x for x small, produces
the result given in Equation 14.18.

Because Il = np IIp is the product of the true values of the measure­
ment results, and hence the true amount of material present in an item,
Equations 14.14, 14.17, and 14.18 can be combined to obtain

x ~1l(1 + (3' + 77)

=Il + 1l{3' + 1177

where x is the amount of element or isotope in a single item, and

(14.19)
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fJ' a;; ~p ~q fJ~

fJ a;; ~p ~q fJpq

(14.20)

(14.21)

This result greatly simplifies the statistical treatment of the accounting
combination of unit quantities into accounting totals to be considered in
the next section. In the first place, the total error can be considered as the
sum of the corresponding individual error effects for all error sources
affecting a particular estimated amount without regard to the particular
measurement involved. In the second place, the only distinction between
the treatment of element amounts and isotopic amounts becomes the
sources of variability present; hence, the general treatment of error combi­
nation need not distinguish between the amounts Xl and X2 with respect to
the formulas and techniques required.

In summary, the relative error in the amount of element or isotope in
each item is approximately an additive combination of relative measure­
ment errors arising from the particular set of sources of measurement vari­
ability r = 1,2, ... , m affecting that amount. Equations 14.20 and 14.21
can be rewritten in the form

,(14.22)

and

(14.23)

14.2.3 Errors in Stratum Totals
In this section the consideration of error effects is extended to a single

stratum containing N j = N items. If the stratum consisted of a single
batch of N items (or of N batches with N j = I for all batches) whose
content had been determined by measurement operations replicated in
identical fashion for each item, then from Equation 14.19 it followst that
each item amount Xk could be represented by the additive model

(14.24)

From Equations 14.22 and 14.23 this equation can be written

(14.25)

tFrorn now on, the approximations in Equations 14.19 through 14.23 will, be replaced by
equalities.
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where p; is the relative bias effect due to the rth source of error, and 77rlt is
the relative random effect in item Xit due to the rth source of error. For the
observed stratum total Xi = X = 2;1t XIt,

(14.26)

or, adopting the same notational convention with respect to sums of the
true amounts ILIt as for the observed amount XIt,

x = IL + IL P' + ~r ~It ILIt 77rlt (14.27)

However, this ideal state of affairs is seldom present in actual accounting
measurements, and the assumption of distinct and separate error effects
associated with each item, for each of the m sources of measurement error,
is seldom justified. Instead, many parts of the measurement
procedures-such as the calibration of standard solutions, NDA instru­
ments, and scales and tanks for volume measurements-are only per­
formed at intervals, and the random effects associated with their replica­
tion will apply to a number of items. A similar situation arises when
measurement results of element or isotope concentration are based on a
limited random sample of items, or a composite sample of aliquots from a
number of items. In that case, the random effect of the sampling and
analytical procedure is constant for the group of items randomly sampled,
or from which aliquots were composited, because a single fIxed element or
isotopic concentration will be applied to that group of items.t Thus, while
the total error in an observed item amount is the total of r independent
random effects, the combined error in the stratum total will generally
contain many dependent or identical effects. Failure to recognize this
dependency can result in a serious underestimation of the error in a
stratum total if error propagation is applied directly to supposedly
independent errors in item amounts.

Two approaches to the problem are possible. One is to apply the for­
mulas of Section 2.7.1 to the item amounts in the stratum total, taking
into account the dependencies between them. This is the usual error propa­
gation approach. The second is to write the observed stratum total as the
sum of the true total and a linear combination of independent error
effects, and then apply the formulas to these independent contributions to
the total error. The coeffIcients of individual effects will be the number of
items containing each effect in the case of absolute effects, and the sum of

tRandom effects such as these have been called "short term systematic errors" (Jaech,
1973, p. 8I) to indicate that they behave like systematic errors, or biases, for a limited part
of a data set.
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the item amounts for items containing each effect in the case of relative
effects. In either case, a general treatment requires that for each error
source the items be separated into classes corresponding to each indePen­
dent replication of a measurement operation which gives rise to a unique
error effect. For example, the items in a stratum could be classified
according to the analytical result used to determine the material content of
the item. This concept has been used to define the meaning of a "batch"
(IAEA, 1982). The same items could be classified according to the scale
used to determine bulk weight, in which case the associated "random"
effect would be the "bias" in replicate measurements on that particular
scale. Note that the random selection of an error effect in this case is with
respect to a scale calibration, so that the same set of effects will apply
until the scales are recalibrated or replaced.

In general, for each measurement error source r there will be a differ­
ent classification of the N items in the stratum into ar batches, where
batch j(r) contains Nj(r) items whose observed content contains the error
effect 17j(r), j(r) = 1, ... , 8r. The ar random error effects 17j(r) apply to
the sums Xj(r), with expected value #Lj(r) of the measured amounts present in
the Nj(r) items in batch j(r). This notation is used to indicate that the spe­
cific index j(r) is applicable only within the rth error source. Note that
2:j(r)Nj(r) = Nand 2:j(r)#Lj(r) = #L for all r. Thus, Equation 14.27 can be
r~writte~ as

x = #L + #L{3' + ~r ~j(r) #Lj(r) 17j(r) (14.28)

Note that where a source is completely replicated, it is possible to define
ar = Nand Nj(r) = 1, or ar = 1 and Nj(r) = N. Whether the replica­
tion of a particular measurement operation is considered as performed on
every item in a stratum containing one batch, or on N batches of one item
each, does not affect the result. The latter is the natural limiting case of
the general formulation.

Example 14.1 The situation with respect to the error contribution to
the stratum total is best illustrated by a simplified example. Suppose that
the stratum under consideration consists of 16 containers of uranium
nitrate. Each was weighed separately on the same scale, so there are 16
errors associated with the individual determinations of gross weight. The
tare weights of each container before ftlling were independently deter­
mined on a second scale. Four analytical determinations of uranium con-
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centration were made on composite samples from each successive set of
four containers. Between the third and fourth chemical analysis the analyt­
ical procedure was recalibrated, and between the 14th and 15th tare
weight determinations the scale was recalibrated. There are six sources of
error effects: (1) gross weight determination, (2) tare weight determina­
tion, (3) sampling for analysis, (4) analysis, (5) calibration of the analyti­
cal procedure, and (6) calibration of the scale used to determine tare
weights.

For this example,

m=6

al = a2 = a3 = 16

a.=4

as=~=2

Nj(l) = Nj(2) = Nj(3) = 1 for j = 1, ... , 16

Nj(4) == 4forj = 1, ... ,4

Nl(s) = 12, N2(s) = 4

Nl(6) = 14, N2(6) = 2

Table 14.2 shows the tabulation of the errors affecting each item for each
source. In addition, there will be six relative bias effects fll" ... , fl6'
corresponding to the constant error contribution from each source con­
tained in the 16 observed item amounts in the stratum.

The key consideration is that while there are 12 independent error
effects in each estimated item amount, there are not (12)(16) == 192
independent effects in the stratum total. The actual number is

or

6 + (16 + 16 + 16 + 4 + 2 + 2) == 62



From Equation 14.28, the stratum total x can be written in the form

i X = #L+ #Ltl; + #Ltli + #Ltl; + #Ltl~ + #Ltl; + #Ltl"

+ #LI 171(1) + + #L161716(l)

+ #LI 171(2) + + #L16 1716(2)

+ #LI 171(3) + + #L16 1716(3)

+ (#LI + #L2 + #L3 + #L4)171(4) + (#LS + #L6 + #L7 + #LS)172(4)

+ (#L9 + #LIO + #Lll + #L12)173(4) + (#L13 + #L14 + #LIS + #L16)174(4)

+ (#LI + + #L12)17I(S) + (#L13 + ... + #L16)172(S)

+ (#LI + + #L14)171(6) + (#LIS + #L16)172(6)

N
The error in the observed total x = ~ Xk has been expressed as a linear

k=1
combination of independent contributions from the measurement opera-
tions actually performed.
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There is no reason why the transformation of an accounting result
from a linear combination of item amounts into a linear combination of
unknown true values and relative error effects cannot be extended from
stratum totals to more complex combinations of accounting results. The
only change is that the coefficients of the individual effects will be more
complex combinations of the true item amounts involving more than one
stratum or more than one inventory difference component. Such combina­
tions will be considered in Section 14.3.5.

There are cases where the error effects associated with a given batch of
item amounts are themselves combinations of a number of effects due to
replicate measurement operations. Th:: simplest example is when a mea­
surement on an individual item is replicated, and the mean result applied
to the item amount. A more complex example is the situation where a sin­
gle result, such as a concentration factor, is subject to several sources of
error, each of which involves replicated measurement operations not
uniquely associated with specific subsets of items. Because the assumption
here is that the effects of individual measurement operations are additive,
it is sufficient for the treatment of expected variances of stratum totals in
the next section to consider that each effect may be the result of br repli­
cations of the measurement operation for each of the ar batches.

14.3 EXPECfED VALVES AND VARIANCES
OF ACCOUNTING RESULTS

In the preceding section, a linear model was developed expressing the
error in a stratum total due to measurement as a linear combination of the
errors arising from individual measurement operations. In this section, the
results of Section 2.7 will be applied to this model to derive the expected
value and variance of the error due to measurement in strata, component
totals, and inventory differences from the assumed or estimated means and
variances associated with the errors in individual measurements.

14.3.1 Assumed Properties of Error Effects

Each of the ar error effects nj(r) associated with a source of variability r
is assumed to be the mean of br independent measurement errors with
expected value zero and common variance fJl, so that

(14.29)

The expectation is over the replicate measurement operations involved, not
the item amounts to which an individual error effect applies. In general,
the total number of identically distributed random variables for each
source is ar br, not N.
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Just as with the combination of item amounts into stratum totals, there
are computational problems associated with the fact that individual ran­
dom effects may affect item amounts in more than one stratum, or item
amounts in the same stratum in successive inventory differences. In Exam­
ple 14.1, the effects associated with Source 5 (recalibration of the analyti­
cal procedure) will apply to any item amounts in other strata or in subse­
quent material balance periods for which the element concentrations were
determined using the same analytical procedure and the same standardiza­
tion. Similarly, the calibration error in a particular scale, such as that con­
sidered in Source 6 of the example, will apply to all unit amounts weighed
on that scale until the scale is recalibrated, leading to an independent
replication of the calibration error. As before, failure to correct for the
positive covariance between the errors in totals for different strata induced
by such infrequent replication of some part of the measurement operation
will result in underestimating the variances of accounting results involving
the combination of stratum totals. This problem is considered explicitly in
Section 14.3.5 and Examples 14.5 and 14.6.

The situation with respect to the combined effect of the biases fJ; is
much more complex. One can consider each of these contributions to the
total error during a particular accounting period as a random effect which
was simply not replicated during the period in question-i.e., the calibra­
tion period and accounting period were the same. For example, consider
the two scales used to obtain gross and tare weights in Example 14.1. For
each scale the routine weighing is one source of measurement error and
the calibration of the scale is a second source. The calibration is only
repeated periodically, and the calibration of the scale used to determine
gross weights was not repeated during the determination of the content of
the 16 items in the particular stratum for the particular material balance
period. This means that the error effect fJl' in the stratum total due to the
gross weight operation is actually the sum of any residual bias effect due
to the calibration process~.g., a bias in a standard-and an error effect
associated with the present calibration of the scale used to determine gross
weights. If this calibration is considered as a seventh source of uncertainty
in the stratum total, then

fJ; = fJ; + 711(7)

where the single random error effect 711(7) has a variance Of = E(71~(7),
comparable to the variance ol of the two effects 711(6) and 712(6) associated
with the calibration of the scale used to determine tare weight, and the
effect fJ; is comparable to the effect fJ~. Because calibration or standard­
ization processes are designed to eliminate existing biases in an instrument
or procedure, or to establish an unbiased measurement process, the expec­
tation is that the dominant random error of calibration will be a signifi-
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cant part of the bias effect pi. In this case, the constant effect associated
with source I contains an observed value of a random variable whose
variance is essentially identical to that of the two replicate random error
effects 711(6) and 712(6) included in Table 14.3 for source 6.

Other sources of measurement variability, such as those listed in Sec­
tion 14.1.3, contribute in a somewhat different fashion to the constant
error effects in a stratum total. It is well known that consistent differences
will exist between measurement results obtained by different people at dif­
ferent times under different physical and environmental conditions. At any
given time, or over any short period of time, the set of error effects due to
such sources may be fixed. For example, the subset of technicians in a
given analytical laboratory at a given time will determine a set of error
effects uniquely associated with each operator. This set will change only
gradually as personnel are replaced, or perhaps as the individuals become
more skilled. Specialized instruments, such as a mass spectrometer or a
calorimeter, may be operated by the same person over an entire material
balance period. The random effect associated with that particular operator
may be fixed for all results determined using element concentrations based
on calorimetric analysis or for isotopic concentrations based on mass spec­
trometric analysis. If different operators are assigned to these instruments
on different shifts there will be three such error effects, each associated
with a different operator or, equivalently, with a different shift. Instrumen­
tal readings may vary over time because of the aging of components, and
scale readings can vary with temperature and humidity. These changes
produce effects in the measurement results that are serially correlated
rather than independently replicated on a periodic basis.

Finally, unknown and unrecognized constant effects will remain in the
measurement operation even after every attempt has been made to remove
them through calibration, standardization, and other measurement control
programs. The ideal measurement system minimizes such sources of error,
which are usually indistinguishable from the process variations and mate­
rial losses that the accounting system is designed to discover.

In this and later chapters, values of the variance due to measurement
variability in accounting totals will be derived assuming that the individual
contributions Pr' to the total bias P' in a stratum total are random effects
that arise from specific measurement operations but are constant for all
items in the particular set of accounting results under consideration. The
assumption that the Pr' are random variables, rather than fixed but un­
known constants, can be justified by noting that the measurement process
which leads to the Pr' will be repeated many times, leading to different
biases each time. It is the conglomerate of such processes that we are
interested in evaluating. This assumption is analogous to considering the
p/ simply as another level of additive effects-i.e., as random variables
such that E(P/) = 2:r E(Pr') = 0 and
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,(14.30)

Because of the specialized nature of these effects, their variances have
been designated by a different lower case Greek letter to distinguish
the nature of these single effect contributions. More generally, it could
be assumed that the m effects fJr' were associated with m addition­
al "sources" of random error, r = m+I, ... , 2m with 1lm+1 =
1lm+2 = ... = a2m = I-i.e., each replicated once during the period in
question. This is consistent with the concept that the measurement system
applied to individual accounting items is a combination of individual
operations replicated with different frequencies designed to produce,
insofar as possible, unbiased estimates of accounting totals. Each replica­
tion of each operation produces a random contribution to the mea­
surement error whose variance reflects the relative variability associated

. with the operation.
For the analogous situation of a two-level hierarchical analysis of vari­

ance model involving sources within strata and subgroups within sources,
the standard analytical procedures would require the assumption that the
fJr' effects corresponding to sources were independently and identically dis­
tributed. The treatment here does not require this assumption because the
intent is only to reflect the contribution of the variance of each random
effect to the variance of the stratum total, not to estimate a variance
associated with this level of effect. The concern here is only with the pro­
cess of deriving variances of stratum totals in terms of variances associated
with known sources of variability in the measurement operations. The
problems involved in estimating the component variances 8r2 and fJl associ­
ated with the various sources of measurement variability are considered in
Chapter 15.

14.3.2 Expected Value and Variance of
Stratum Totals

The expected value and variance of a stratum total can be obtained
directly by applying the results given in Section 2.7.1 to the error structure
defined in Section 14.2.3, and the expected values and variances of the
random error effects from each source of variability defined in Section
14.3.1. The definition of the stratum total x in Equation 14.28, with fJ'
given by Equation 14.22, is a linear function of the form given in Equation
2.121. The random variables are the m random effects fJr', which are com-

m
bined additively to obtain fJ', and the ~ llr random effects nj(r)' All of

r-l
these effects are assumed to be independent and because their expected
values are assumed to be zero, the expected value of the product of any
two different effects is zero. The coefficients are the sums #Lj(r) of the true
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item amounts associated with each replicated random effect 77j(r) and the
true stratum total p, associated with each random effect (3r' not replicated
within the stratum. Hence, Equations 2.122 and 2.123 can be used to
obtain directly, for the stratum total x,

E(x) = p, + p,E({3') + ~r ~j(r)ILj(r) E(77j(r» (14.31)

(14.32)

Equation 14.32 is valid only under the assumption of identical distributions
for the effects 77j(r) within each source of measurement variability with
variances given by Equation 14.29.

Assuming, as in the previous section, that E({3') = ~ E({3r') = 0 and
that E(77j(r» = 0 for all r, it follows from Equation 14.31 that E(x) = p,.
These assumptions are consistent with the recommendation in a study of
deficiencies in the statistical analysis of inventory differences (Byers et aI.,
1983) that insofar as the measurement process is concerned, "an attempt
should be made to estimate and correct for all potentially significant
biases. To the extent that this is accomplished, the estimator of inventory
difference will be free of 'fixed' errors or biases."

There has been some controversy over these assumptions, but they
seem reasonable with respect to an effective and well-controlled measure­
ment system. There are two different problems involved. The first is the
existence of strata which cannot be measured directly, such as material in
processes at the time of an inventory. The estimation of these quantities
from historical data or subsequent measurement can be considered simply
as another source of measurement error, even though the estimation pro­
cess may be indirect and highly variable. The second problem is the exis­
tence of unknown and unrecognized process losses or measurement biases.
These represent a lack of complete control of the accounting and measure­
ment process, and their discovery and elimination is a primary concern of
the material accounting process. Their existence detracts from the ability
to discover accidental losses or deliberate diversions. Their effect on the
interpretation of inventory differences is discussed further in Chapter 16.

Example 14.2 Continuing Example 14.1, assume:

E ((3;) = 0
Var({3;) = E({3?) = 8;

r = 1, , 6
r = 1, , 6
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E (11j(l) = 0 j= 1, ... , 16
Var(l1j(l» = E(l1j~l) = al j= 1, ... , 16

E (l1j(2» = 0 j= 1, ... , 16
Var(l1j(2» = E(l1jh» = a1 j= 1, ... , 16

E (11j(3» = 0 j= 1, ... , 16
Var(11j(3» = E(l1jh» = as j= 1, ... , 16

E (l1j(4» = 0 j= 1, ... , 4
Var(l1j(4» = E(l1j~4» = a1 j= 1, ... , 4

E (l1j(S» = 0 j= 1,2
Var(l1j(S» = E(l1jh» = a~ j = 1,2

E (l1j(6» = 0 j= 1,2
Var(l1j(6» = E(l1j~6» = a1 j= 1,2

The coefficients of the random effects in the expression for the stratum
total are as follows:

16

"'= ~ "'kk-I

"'j(l)= "'j(2) = "'j(3) = "'k, k = 1, ... ,16

"'1(4)= "'I + "'2 + "'3 + "'4
"'2(4)= "'S + P-6 + "'7 + "'8
"'3(4)= IL9 + "'10 + "'ll + "'12

"'4(4)= "'13 + "'14 + "'IS + "'16
12

"'I(S)= ~ "'k
k-I

"'2(S)= "'13 + "'14 + "'IS + "'16
14

"'1(6)= ~ "'k
k-I

"'2(6)= "'IS + "'16

Substituting these expected values and variances in Equation 14.32 yields
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6

Var(x)= IL2~ (J;
r-I

16

+ (01 + oI + oj)~ ILl
k-I

Equation 14.32 can be written in the form

(14.33)

When written in this form it can be seen that the contribution to the
variance from each source of variability is an individual term, analogous to
the contribution of each class to the variance of the completely weighted
overall mean in the analysis of variance model for nested random effects
and unequal numbers considered in Section 5.3.1.2. If ji = NIL and each
source of measurement variability has the same absolute variance com­
ponents u} = IL2(Jr2 and ul = IL20r2 at the first and second levels of the
hierarchy (which correspond to biases and individual measurement effects,
respectively), then Equation 14.33 reduces to the form of Equation 5.136
with q2= 0, i = r, nij = Nj(r), ni. = N, n.. = mN, a = m, and bi = arbr.
As noted previously, when the concern is with estimating individual vari­
ance components associated with a given source of variability, the
emphasis is on classes of effects with constant variance. When computing
the expected variability in a stratum total, all sources of variability should
be included without regard to their degree of replication and consequent
estimability from the accounting results.

14.3.3 Calculating the Variance of
Stratum Totals

Equations 14.32 and 14.33 contain two sets of unknown parameters,
the true content of the individual items and the true variances of the ran-
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dom error effects contributing to the variability in the estimated amounts
of nuclear material. Knowledge of the unknown true amounts is required
only because the random error effects are assumed to be proportional to
the true content. However, assuming identically distributed absolute effects
would require knowing not only the true values IJk of the item amounts,
but also the values of the individual measurements which enter multiplica­
tively into their computation.

Consider first the bias in the estimation procedure introduced by the
use of measured amounts instead of true amounts, assuming the relative
variance components 8r

2 and or2 are known. The variance computed using
measured rather than true item amounts will be designated by Var'(x)
rather than Var(x). This distinction is necessary because only the item
amounts, and not the relative error variance components, are estimated. If
in Equation 14.32 the quantities IJ and IJj(r) are replaced by x and Xj(r),
respectively, the variance actually computed is

Because for any random variable, E(X2) = [E(X)]2 + Var(X), it fol­
lows that

E[Var'(x)] = Var(x)+ Var(x) ~r8;+ ~r(o;jbr) ~j(r) Var(xj(r»

For all r, ~j(r) Xj(r) = x. Therefore, ~j(r)Var(xj(r»~Var(x), because there
must be at least one other source of variation with effects common to two
or more of the measurement totals Xj(r) unless all other sources are com­
pletely nested within r, in which case the equality holds for that particular
r. Hence,

E[Var'(x)] ~ Var(x) + Var(x)[~r 8; + ~r 0;jbr]

Thus, on the average, using observed rather than true values to compute
the variance of the total will inflate the estimate by a relative amount less
than the sum of the relative variances for each individual source. Because
these relative variances are usually quite small (e.g., a relative standard
deviation of 1% or 0 = .01 corresponds to a variance 02 = .0001), this
source of error is usually quite small.

The situation with respect to the replacement of the variances ol and
8l by estimates is much more complex. It was noted in the previous sec­
tion that estimation of the variance components associated with specific
error sources is possible only if (1) the measurements contain replicate
effects arising from the error source whose variability is being estimated;
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and (2) the measurements are on items with known true values or the
same unknown true value. These conditions do not normally hold for rou­
tine production measurements. Not only is the true content not known, but
replicate measurements are not usually made on production items. Infor­
mation concerning measurement variability can be obtained from repeated
measurements on individual production items for those sources usually
replicated in such measurements. Otherwise, estimates must be obtained
from planned replication on production items of certain classes of error
effects, or from the calibration, standardization, and monitoring pro­
cedures used to establish and control the measurement system. There are
two basic concerns over the use of the latter to compute the variability
in the accounting results. The first is whether the variance components
present in standardization and control procedures are comparable to those
present in actual accounting measurements. The second is the difficulty in
establishing the quality of the estimates, which may be based on a wide
variety of both contemporary and historical data analyzed by a number of
different direct and indirect statistical techniques. .

The wide variation in suggested approaches to the calculation of the
variability in accounting results can be described in terms of the complex­
ity of the assumed error sources and the degree of simplification in the
form of the error structure made for computational purposes. These ele­
ments are not entirely independent, as simplification in the assumed error
sources may be a means of simplifying the computations required. The
treatment in the preceding section allows for as many sources of measure­
ment variability as can be identified, and a completely general association
of the item amounts with each random error effect due to each source.
However, the assumption that each error source produces random effects
proportional to the true values of the item amounts to which they apply is
relatively restrictive, as was discussed in Section 14.2.1. A more general
treatment would allow for a more complex characterization of the errors in
an estimate of the item amount that involved both the true amount present
and the actual measurement procedure. Franklin (1984) points out the
general form required and illustrates its application to an NDA determina­
tion involving the combination of several counting measurements, each of
which has a variance proportional to the total count. Such treatments, of
course, presume a detailed knowledge of the specific measurement pro­
cedure. The distinction is between detailed treatments of the error struc­
ture that are possible for specific plants with well-defmed processes and
measurement procedures, and generic treatments that have been used to
characterize measurement systems generally and to simplify the treatment
of individual facilities. In addition to the example given in Appendix 14A,
a good example of the complete treatment of the measurement error struc­
ture in a specific facility is given in NUREG/CR-3221 (Stirpe, Goldman,
and Gutmacher, 19~3). This treatment includes not only the system design
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and error structure for the accounting process, but also the evaluative pro­
cedures to be considered in Chapter 16.

As noted in Section 14.1.3, most generic treatments define three parts
of the measurement process-bulk measurement method, sampling, and
analysis-as primary sources of measurement error in a specific material
balance. Where accounting is for an isotope rather than an element, sam­
pling and analysis of the isotope must be included for a total of five pri­
mary sources. Within each primary source, most generic treatments
(Jaech, 1973) distinguish three classifications of the errors according to
the degree of replication of the particular measurement operation: "ran­
dom" effects replicated independently for each item; "short-term sys­
tematic" effects, which are replicated periodically and have a common
effect on groups of items within a stratum; and "long-term systematic"
effects common to all items in a stratum. All of these effects can be
treated as observations of random variables in the statistical sense, and the
above classification is just one way of recognizing the disparity in the
replication of the various operations or procedures contributing to the
measurement error. Jaech (1973, p. 185) notes that although he defines
only 15 types of error components (random, short-term systematic, and
long-term systematic contributions from each of five primary parts of the
measurement process), "there are generally many more separately identi­
fied components in a given operation." Similarly, although the AMASS
procedures (Messinger, Lumb, and Tingey, 1981; and Lumb, Messinger,
and Tingey, 1983) consider only nine generic sources (three primary mea­
surement operations and three levels of replication), later applications of
this generic structure consider for a specific example the multiple sources
of error within each generic source (Tingey and Lumb, 1984).

Given that the assumption of constant variance of the relative error
effects from a given source is acceptable, there is no theoretical difficulty
in treating the specific individual contributions to the variance of a stra­
tum total from an arbitrarily large number of sources. The reasons for the
restricted classifications of the previous paragraph are primarily the
practical difficulties of (1) computing the totals of those specific item
amounts contained in the accounting result to which a specific error effect
applies; and (2) obtaining individual estimates of the variances of the ran­
dom effects from each source. Considering the latter first, the question is
again one of generic or specialized treatment of a particular application.
For a given facility and process, experiments can be defined and carried
out to obtain individual estimates of the applicable variances. Chapter 15
considers a selection of procedures of this type. However, general treat­
ments of measurement capability used in the design of evaluative pro­
cedures and safeguards approaches are based on historical compilations of
error variances for a limited set of generic sources and material types and
known capabilities of analytical procedures (Reilly and Evans, 1977;
Hakkila et aI., 1980; Rogers, 1983; DeBieve, 1984).
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The primary simplification of the variance computation procedure has
been with respect to the totals J'j(r) required to compute the coefficients
~j(r) J'j~r) of the individual variance components in Equations 14.32 and
14.33. Jaech (1973) gives rules for the computation of these coefficients
("C" coefficients, in his terminology) for the 15 generic error sources
noted previously. The problem is that these computations require a record
system that makes it possible to associate the item amount for each item
in a particular accounting total with the specific measurement operations,
or sources of error, affecting that item. The computation can be greatly
simplified by assuming only error effects that are constant for all items or
unique to each item. In this case it is only necessary to know the sources
of measurement error, or "error path" (Argentisi, Casilli, and Franklin,
1979), associated with each item and the "random" and "systematic" error
variances defined by Jaech (1973) associated with each source. This
assumption eliminates the need for keeping track of the item amounts (or,
equivalently, the absolute contribution to the total error) associated with
each replication of a specific measurement operation. Other approaches
attempt to obtain the necessary information by associating the definition
of certain reporting units, usually called batches, with the replication of
one or several parts of the measurement operation. This use of terminology
normally associated with process operations to quantities determined by
measurement operations is natural in some instances, but on other occa­
sions may be quite artificial.

The most simplified computational approach appearing in the literature
(Messinger, Lumb, and Tingey, 1981; IAEA, 1982) is based on assump­
tions similar to those used in Section 14.3.2 to show the analogy between
the variance of an observed stratum total and the expected mean square
for the mean in an analysis of variance. The two assumptions are: (1) that
aU items have the same true value-i.e., J'k = Ii = J'/N for all N items in
the stratum; and (2) that all of the ar "batches" of items associated with
unique error effects contain the same number of items N r = N/ar• Under
these assumptions J'j(r) = J'/ar> and Equation 14.32 reduces to

(14.34)

This computational formulation is convenient because it is necessary only
to know the total amount of material J' in the stratum, not in any individ­
ual item. The relative variance applicable to this total (the term in the
square brackets in Equation 14.34) is quite generally obtained by summing
the relative variance divided by the number of replicate measurements over
all sources of measurement variability.

Numerous computational packages of varying degrees of sophistication
have been developed to carry out the error propagation required to com­
pute Var(x). One of the more complex is NUMSAS, developed for use in
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the European community (Argentisi, Casilli, and Franklin, 1979). Others
have been developed by various organizations in the United States, such as
Brookhaven and Los Alamos National Laboratories.

Example 14.3 Examples 3.3(a) and 3.5(a) of Volume 3, Part F of
the Safeguards Technical Manual (IAEA, 1982) consider a simplified
material balance for a fuel fabrication facility. The ftrst of 7 strata con­
sists of 12,000 containers of U02 powder, each nominally containing 20 kg
of uranium. These are divided into 80 batches of ISO containers each. The
amount of U02 is determined by weighing each individual container, but
the concentration factor used to convert bulk weight to uranium content is
determined by obtaining ftve samples at random from each batch and ana­
lyzing each sample for concentration factor. The error structure assumes
that there are six variance components: three associated with the individ­
ual relative error effects due to each bulk measurement, each sample
taken, and each chemical analysis; and three associated with constant rela­
tive effects over the entire stratum associated with each of these opera­
tions. The values of the ~r and 8ro and r = 1,2,3 are given as

~I = 0.000658

~2= 0.000531

~3 = 0.000433

81 = 0.000439

82 = 0

83 = 0.000571

From the description of the measurement operation,

al = 12,000
a2 = 80
a3 = 80

From Equation 14.34,

N 1 = 1
N2 = 150
N3 = 150

Var(x)= (240,000)2 [(0.000439)2 + (0.000571)2

+ (0.000658)2/12,000 + (0.000531)2/400

+ (0.000433)2/400]

= (240,000i(5.l99717 X 10-7)

= 29,950.37 (kg)2

which corresponds to a standard deviation of 173.06 kg of uranium.
Note that in this example, the error effects in the individual operations

contribute only 1.2097 X 10-9 to the total relative variance, correspond-
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ing to an absolute variance in the measured amount of (240,000)2 X
(1.2097 X 10-9) = 69.678 (kg)2, or a standard deviation of 8.35 kg.
This large difference emphasizes the importance of the assumptions con­
cerning the nature of the constant effects in determining the variance in an
accounting total.

The same result is obtained by the following approach, which follows
from the general result given in Equation 14.32. There are 2 error effects
associated with the entire stratum, 80 from each of 2 sources associated
with batches of 150 items, and 12,000 associated with each individual
item. The two sources associated with batches are each replicated five
times. Thus

Var(x)= (240,000)2 [(0.000439)2 + (0.000571)2]

+ (0.000658)2(12,000)(20)2

+ [(0.000531)2/5](80)(3000)2

+ [(0.000433)2/5](80)(3000)2

= 29,950.37 (kg)2

because 2:j(r) J.Lj~r) reduces to 80 (3000)2 for the case of 80 equal batches of
3000 kg each.

Because by definition strata usually consist of similar items, the more
crucial of the two assumptions required to obtain Equation 14.34 is the
assumption of equal numbers of items per batch or more generally, equal
numbers of items per replication of the measurement operation associated
with an error source. Procedures for replication of measurement operations
on individual items or for combining items into batches for measurement
purposes, such as the compositing of samples from four items for analysis,
usually satisfy the requirement for equal numbers of items per replication
and replications per item. However, error sources associated with process­
ing operations, material type, measuring equipment, standardization, and
calibration frequently involve replication which is quite nonuniform with
respect to both time and material throughout. The actual error associated
with the assumption of equal batch sizes is easily determined because the
approximation involved is the replacement of 2:j(r)J.L2j(r) by J.L2 / ar. The
difference between these two quantities is 2:j(r)(J.Lj(r),- iir)2, where iir =
J.L/ar. Thus, for a given error source, the underestimation of the variance in
the stratum total due to the assumption of equal batch sizes is directly
proportional to the variability in the batch sizes. In practice, this differ­
ence is usually small compared with J.L2/ar. Differences in the number of
items per batch and the true amount per item both contribute to the vari­
ability in batch content.
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Example 14.4 Suppose that in Example 14.3 a routine scale calibra­
tion program was instituted to eliminate the rather large contribution to
the variance of the observed stratum total due to the magnitude of the
variance component associated with the single constant error effect in the
determination of the bulk amount of U02 in each container. As a result,
the variance component 8? = (0.000439)2 was divided into two com­
ponents 8? and 0], 8? = (0.000110)2 and 0] = (0.000425)2. The variance
component 0] is associated with the individual biases in each successive
calibration, while 8? (= 8? - 0]) is the variance component associated
with the single constant effect corresponding to the remaining overall bias
in the combined calibration and measurement process. In cases like this it
is not necessary (and often not possible) to distinguish between the vari­
ance component 8r associated with a constant error effect in the bulk
measurement operation, and the variance component 81 associated with a
constant error effect in the calibration process. The single component
8? = 8? + 8] is sufficient. A similar situation holds for the errors of sam­
pling and chemical analysis associated with the measurement of element
concentration. This was the basis for the assumption of 82 = 0 in Example
14.3.

For the material balance period of Example 14.3, suppose that 11 cali­
brations were carried out, so that the 12,000 weighings involved 12 differ­
ent error effects due to calibration. Suppose also that the actual calibra­
tion schedule and the number of weighings associated with each of the 12
periods were as follows:

Calibration foUowing Number of items
Period weighing number weighed

1 850 850
2 2,250 1,400
3 3,425 1,175
4 3,910 485
5 5,465 1,555
6 6,125 660
7 7,100 975
8 8,620 1,520
9 9,275 655

10 9,980 705
11 11,225 1,245
12 12,000+ 775
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Because each container weighs a nominal 20 kg, the coefficient associated
with the variability c51 in the calibration process is

~j(4)#£j~4)= (20)2[{850)2 + (1400)2 + .,. + (1245)2 + (775)2]

= (20)2 (13,489,700)

= (73,456.65)2 (kg)2

The combined contribution of the single residual bias effect and the recali­
bration process to the variance is

#£20? + c51 ~j(4)#Ljh)= (240,000)2 (0.000110)2

+ (73,456.65)2(0.000425)2

= 1671.59 (kg)2

This compares to the previous contribution of

#£201 = (240,000)2(0.000439)2

= 11,100.73 (kg)2

associated with the bias effect in the uncalibrated weighing operation.
If the approximation in Equation 14.34 had been used, the contribution

of the ar = 12 single replications of the recalibration process would have
been computed as

The exact coefficient (73,465.65)2 has been replaced by the approximate
coefficient [(240,000)2/12] = (69,282.03)2. This reduction is relatively
small, even. though there is considerable variability in the number of
weighings associated with each calibration. In extreme cases, a single
restandardization or recalibration occurs near the beginning or end of a
period. The underestimation of the coefficient, and hence the contribution
to the variability of the error source, approaches a factor of one-half under
these circumstances.

The assumptions made and the degree of approximation tolerable in a
given situation are highly dependent on the specific accounting situation
and the purpose of the data processing and analysis. Control procedures
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involving frequent material balances across specific unit processes, where
the measurement operations are well defined and the accounting and
measurement control data are immediately available, may justify a precise
definition of the variance and the experiments necessary to estimate the
variance components due to all identifiable specific error sources. At the
other extreme, when the intent is to examine possible approaches to the
evaluation of reported inventory differences for major facilities at intervals
of 3 to 6 months, such precise defmitions of the sources of variability may
not be necessary. In the latter case, "historical" data are normally used to
determine the individual variance components contributing to the inventory
difference, and the process is generally described in generic terms, so that
approximate procedures may be completely adequate.

14.3.4 Variance of the Variance Estimator

In the previous section, the concern was with the adequacy of the
model used to relate the variance of a stratum total to the component vari­
ances. The validity of this relationship is determined primarily by the
exactness of the assumed error structure and the approximations used in
modeling. This section is concerned with the contribution of the variability
in the estimates of the individual variance components to the variability in
the estimated total variance. .

Two approaches can be used to compute the variance of the estimator
of the total variance. If in Equation 14.32 for u;=Var(x) the true vari­
ances 8; and 0; are replaced by independent unbiased estimates, Equation
2.123 of Section 2.7.1 can be applied to the resulting linear combination of
random variables if the relatively small effect of replacing Il and Ilj(r) by
their estimates is neglected. It follows that the estimator

(14.35)

has variance

From the discussion of the distribution of an estimator S2 of q2 with II

degrees of freedom in Section 3.5.1, it follows that for sampling from a
normal distribution

(14.37)
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Thus if the estimates 0;- and 8;- are based on degrees of freedom P; and Pr ,

r = 1, ... , m, respectively, .

This is simply twice the sum of the squares of the absolute contribution of
each source of variability to the total variance divided by the appropriate
degrees of freedom and is completely analogous to the usual formula for
the variance of a sum of independent variances.

To actually estimate Var(o-t) using Equation 14.38, it is again neces­
sary to replace the true variance components by their estimates. The
nature of the variability in the estimate of the variance resulting from this
procedure is best approximated by the method introduced in Sections
5.3.1.1 and 5.3.1.2 to determine the approximate degrees of freedom in a
combination of variance estimators. This approach derives an approximate
degrees of freedom for the linear combination of variance estimators which
can then be used in conjunction with Equation 14.37 to obtain the vari­
ance of the variance estimate. Moreover, this procedure makes it possible
to perform approximate tests of hypotheses concerning the variance in
accounting results. From Equation 3.54, the general formula for the
approximate degrees of freedom for an estimate j2 of the variance (fl,
where §2 = l:j aj ol and the ol are independent estimates of (Jl distributed
as chi-square with Pj degrees of freedom, is

If this general formula is applied to Equation 14.35, it follows that

_ ("'2)2/[~ ( 2"2)2/ ' ("'2 2 )2
P - (Jx ~r JL (Jr Pr + ~r Or ~j(r) JLj(r) /Pr]

This can be approximated by

(14.39)

(14.40)

(14.41)

where Vir«(J;) is obtained by replacing (J;- and 0;- by 8;- and gl, respec­
tively, in Equation 14.38.

The primary difficulty in using a chi-square distribution with degrees
of freedom P, given by Equation 14.40 to approximate the distribution of
Vir(x), is the frequent lack of information concerning the degrees of free­
dom Pr and P; in the individual variance estimates. Where the estimates of
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the component is based on long experience with a particular instrument,
such as a scale or an NDA device, the assumption of a known variance
component (infinite degrees of freedom, zero contribution to the variance
of the estimator) may be warranted. On the other hand, it is frequently
apparent from the nature of the available data on particular variance com­
ponents that the assumption that they are known is not warranted.
Whether or not the actual variance (or equivalent degrees of freedom)'can
be calculated, Equations 14.39 and 14.40 show that variance component
estimates based on small degrees of freedom may contribute a dispropor­
tionate amount of the variability in the estimates of the variance of stra­
tum totals. In particular, estimating the variance of a single constant error
effect from the deviation of an overall mean from a standard value can be
highly variable. This can be seen by looking at the 5% and 95% critical
values of x2 for 1 degree of freedom, whose reciprocals are the factors to
be applied to the squared deviation to determine the 90% confidence limits
on the true variance component (Section 3.5.1). The principal problem
arises from observed means that, by chance, fall close to the standard.
This possibility leads to the expectation that 5% of the time the true vari­
ance component will be underestimated by a factor of more than 254 when
the estimate is based on 1 degree of freedom. The situation is compounded
by the fact that the contributions associated with single random error
effects, whose absolute contributions to the total error are directly propor­
tional to the stratum total, tend to be the dominant contributions to the
total variance. Thus, it is particularly important that sound historical
experience be accumulated with respect to the expected variability due to
this type of effect.

14.3.5 Combining Variances for Strata
and Components

The procedures for individual strata developed in the preceding section
can be extended to any combination of strata or, more generally, any lin­
ear combination of individual item amounts. In particular, the extension is
easily made to major components of the inventory difference, such as
beginning and ending inventories; to the inventory difference itself; and to
the combination of similar strata, such as product shipments or measured
discards, over several material balance periods. The computation of the
variance estimator for a combination of several strata is a simple reappli­
cation of the equation for the variance of a linear combination of random
variables to the results for each stratum obtained using the procedures
developed in the previous section. The presence of common error effects
induces a covariance between the estimators of stratum totals which must
be taken into account. It is also possible that two components of the same
inventory difference, or the same component of successive inventory differ-
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ences, may contain identical item amounts. For example, an item may be
both received and carried in the ending inventory at the same value, or
may be carried at the same measured value in several successive inven­
tories. Because this corresponds to a complete rather than partial replica­
tion of the individual error effects corresponding to two item amounts, the
error in these item amounts will not contribute to the error in the inven­
tory difference. This problem can be eliminated by redefining the strata or
the components so as to eliminate the identical item amounts.

Generally, the estimate of an inventory difference, or a component
thereof, is a linear combination of Qstratum totals Xj of N j items. For the
inventory difference the general form is

(14.42)

where the Cj are either +I or - I depending on the sign with which a
particular stratum enters the material balance equation. For a single com­
ponent total x the Cj are either all +1 or all -1, so that when combining
stratum totals for the subset of strata within a component, the formula for
the component total is simply

x=~·x·
~1 1

(14.43)

In this case, the total number of different (but possibly not independent)
estimates of item amounts contained in the total is N = 2;j Nj, where N j

is the number of items in the stratum.
The item amounts contained in the inventory difference or a compo­

nent total may be affected by some or all of the m sources of variability.
A generalized treatment is necessary because, while these sources of varia­
bility need not affect all measurements, they are not always unique to a
stratum. The error effects are determined by the measurement operations
used to obtain the item amounts, not by the use of the item amounts to
obtain accounting results. A completely general treatment could also con­
sider the possibility of an error source affecting only some of the elements
in a stratum. This was not done in the preceding section because it is
inconsistent with the definition of strata in the material accounting sense
(Franklin, 1984), and can always be handled by redefining strata. Only
the presence of a given error effect in two or more strata will be examined
in the following development.

Consider first the situation in which not all of the N item amounts
involved· in a component contain a contribution from each error source.
Substituting the expression given by Equation 14.27 for each stratum total
Xj into Equation 14.43, the component total is given by
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x = ~j#Li + ~j#Lil1i + ~r ~ik #likl1rik (14.44)

where #Li = :tk#lik is the true material content of the ith stratum. For each
item amount Xik not affected by source r, l1rik = O. Hence, only some of
the N = :tjNj item amounts in the component total will be included in
one of the j(r) = 1, ... , ar subsets associated with a unique error effect
l1j(r) due to error source r. If Njj(r) is the number of item amounts in stra­
tum i containing an error effect j fro~ source r, then in general
:tjNjj(r) = Nj(r), the total number of item amounts in the component con­
taining the jtli effect from the rth source. Because it has been assumed that
a given source of variability will affect all item amounts in a given stra­
tum, :tj(r) Nij(r) = N j• The effects of P; and 'lj(r) associated with error
source r appear only in some subset i(r) = 1, ... , 2r of the 2 strata in
the component, and :tj(r)Nj = :tj(r)Nj(r)' Based on these definitions, the
extension of Equation 14.28 to a component total becomes

where

X= P. + ~r ~j(r~; + ~r ~j(r) l1j(r) ~j(r)#Lij(r)

= p. + ~rJL(r)P; + ~r ~j(r) l1j(r) p.j(r)

JL(r) = ~j(r)#Li

JLj(r) = ~i(r)#Lij(r)

(14.45)

(14.46)

and #Lij(r) is the sum of the expected values of the item amounts in the ith

stratum containing the error effect l1j(r)' The only differences between this
formulation for a component and that for a single stratum are that in gen­
eral, the coefficients JL(r) of the constant error effects P; will vary with r,
and that :tj(r)JLj(r) is not generally equal to p. but to JL(r) ~ p..

If, as in the case of a single stratum, Equation 2.123 is applied to
Equation 14.45,

(14.47)

If Var(x) had been obtained simply by summing Equation 14.33 for a sin­
gle stratum over the 2 strata, the result would have been

(14.48)
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The difference between Equations 14.47 and 14.48 is the cross product
terms of the form JLi,(r)JLi,(r)fJ/ and JLiJ(r)JLi,;(r)ar

2/br, which are the covari­
ances between the individual strata. For example,

(14.49)

Thus, there are two possible ways to compute component variances
when the same error effects are present in more than one stratum. The
first is to sum the items involving each specific error effect over all strata
in the component. The second is to add all of the positive covariances of
the form of Equation 14.49 to the sum of the variances of the individual
strata. The first approach is more straightforward, and is more easily
extendable to more complex situations.

This treatment is equally applicable to an inventory difference as well
as a component. If Equation 14.27 is substituted into Equation 14.42
rather than 14.43, the only change in the final result given in Equations
14.46 and 14.47 is that Equation 14.46 becomes

IL(r) = ~j(r) CVLj

ILj(r) = ~j(r) CiJLij(r)

(14.50)

Example 14.5 During two successive 6-month material balance
periods, 64 cylinders of fuel material containing 2 metric tons each of UF6
were added to the process at a low-enriched fuel fabrication facility. For
this simplified example, consider a combined measurement process applied
to each cylinder that is recalibrated after every eighth cylinder is mea­
sured. As in Example 14.4, the constant effects associated with individual
measurement and calibration will be combined into a single effect. Assume
a relative standard deviation of 151 = 0.5% for the individual measure­
ments, 152 = 0.1% for the individual calibrations, and 8i = .J81 + 81 =
0.05% for the single long-term residual effect. Then for the combined
input over the two periods, the estimated variance in the total can be com­
puted using Equation 14.34. Because the total input of 128 metric tons is
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assumed to consist of 64 equal item amounts of 2 metric tons each and 8
equal calibration batches of 16 metric tons each, al = 64, a2 = 8, and
bl == b2 == 1. The result is

Var (x) = (128)2 [(0.0005)2 + (0.005)2/64 + (0.001)2/8]

= 0.012544 (tons)2

so that the standard deviation of the estimate of the combined input is
112 kg.

If 34 cylinders were processed during the first material balance period
and 30 during the second, then the variances for the inputs Xl and X2 in
the first and second periods, respectively, can be computed using Equation
14.32. Because the final calibration batch of the first period consists of
two items and the first calibration batch of the second period consists of
six items,

Var(XI)= (68)2 (0.0005)2

+ [34(2)2] (0.005)2

+ [4(16)2 + (4)2] (0.001)2

= 0.005596 (tons)2 [5596 (kg)2]

and

Var(X2)= (60)2 (0.0005)2

+ [30(2)2] (0.005)2

+ [(12)2 + 3(16)2] (0.001)2

= 0.00481i (tons)2 [4812 (kg)2]

The increase 12,544 - (5596 + 4812) = 2136 (kg)2 between Var(x) and
Var(xI) + Var(x2) - is the sum of twice the covariance
(4000)(12,000)(0.001)2 == 48 (kg)2 due to the common calibration effect
on the last two items of the first period and the first six items of the sec­
ond period, and twice the covariance (68,000)(60,000)(0.0005)2 = 1020
(kg)2 due to the assumption of a common long-term constant effect during
the two periods.

Example 14.8 This example will consider the entire simplified
material balance for a fuel fabrication facility introduced in Example 14.3.
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The other six strata, in addition to the input stratum of V02 powder con­
sidered there, are as follows:

Stratum Description

2 An output stratum consisting of containers of
sintered V02 pellets.

3 An output waste stream consisting of containers
of solid waste measured by NDA.

4,6 Beginning and ending inventory strata consisting
only of containers of dirty scrap.

5,7 Beginning and ending inventory strata consisting
of containers of grinder sludge.

After eliminating any identical item amounts occurring in two different
strata that enter the inventory difference equation with opposite signs, the
contents of the strata were as follows:

Total amount
Stratum (kg U) Description

1 240,000 80 batches of 150 containers of V02 powder,
each container containing 20 kg of uranium.

2 238,800 47,760 trays of pellets, each tray containing
5 kg of uranium.

3 1,200 2,770 containers of solid waste, each containing
an average of about 0.433 kg of uranium.

4,6 7,200 6 batches of 300 containers of dirty scrap,
each container containing 4 kg of uranium.

5,7 4,000 4 batches of 200 containers of grinder sludge,
each container containing 5 kg of uranium.

As described in Example 14.3, the bulk amount in Stratum 1 is deter­
mined by weighing each container, but the concentration factor applied to
all containers in a batch is based on the analysis of five samples taken at
random from that batch. In Stratum 2, the uranium content of all trays is
based on the individual weight of each tray of pellets times a "pellet fac­
tor" determined from the random selection and analysis of 240 samples of
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5 pellets each. In Stratum 3, each solid waste container is individually
analyzed by NDA. In Strata 4 through 7, each container of dirty scrap
and grinder sludge is weighed separately, but these containers are arbi­
trarily batched into 6 batches of 300 and 4 batches of 200 containers,
respectively. Ten containers of dirty scrap and 12 containers of grinder
sludge are selected from each batch for sampling and analysis to
determine the concentration factor applied to all items in the batch.

The error sources and their descriptions are as follows:

Source ~ripdon

1 Weighing of containers in Stratum 1;
81 = 0.000439, 01 = 0.000658.

2 Sampling and analysis in Stratum 1;
82 = 0.000571,02 = 0.000685.

3 Weighing of pellet trays;
83 = 0.000175, 03 = 0.000877.

4 Sampling and analysis of pellets;
84 = 0.000341, 04 = 0.000568.

5 NDA measurement of total amount of
uranium in a container of solid waste;
8s = 0.0462, Os = 0.0577.

6 Weighing of dirty scrap or grinder sludg~;

86 = 0.00167,06 = 0.00250.'

7 Sampling and analysis of dirty scrap;
87 = 0.00896, 07 = 0.03284.

8 Sampling and analysis of grinder sludge;
88 = 0.01000,08 = 0.04998.

As discussed in Section 13.3.2.2, the specific values of the variance com­
ponents are computed primarily from data obtained from a control pro­
gram designed to establish and maintain the quality of the measurements.
Chapter 15 will describe the common techniques used for calibration and
standardization of measurement methods and the estimation of error vari­
ances. In this specific example, the variance components for the weighing
operations (Sources 1, 3, and 6) are derived from quality control checks on
the scales in routine use, which are carried out at least once per operating
shift, and periodic recalibrations by maintenance personnel. The variance
components for the sampling and analysis of powder and pellets (Sources 2
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and 4) are based on data from the required replicate analysis of standards
by laboratory personnel, and from the analysis of the variability of the ,
replicate samples taken to establish powder and pellet factors. The larger
contributions of the sampling variances in Strata 4 through 7 (Sources 7
and 8) are established from periodic experiments designed to produce sep­
arate estimates of sampling and analytical variance components. The
errors of NDA measurement (Source 5) are derived from data from con­
tinuing calibration checks against working standards and from experiments
designed to estimate the variance due to the distribution of the material in
the storage containers. This latter source of error is not obtained through
routine checks of a working standard and is the major source of uncer­
tainty in NDA measurements of this type.

Now consider the contribution to Var(x), as defmed by Equation
14.47, of each measurement error source. For r = I, al = 12,000, bl =1,
N I = I, #t(l) = 240,000, and #tj(l) = #tlk = 20 (which is the weight of
each individual item in Stratum I). Thus, the contribution from Source I
is

12.000
Varl(x)= (240,000)2(0.000439)2 + ~ (20)2(0.000658)2

k-I

= 1l,100.73 + 2.08

= 1l,102.81 (kg)2

For r = 2 (Sources 2 and 3, Example 14.3), a2 = 80, b2 = 5, N2
ISO

150, #L(2) = 240,000, and #tj(2) = ~ #tlk = 150(20) = 3000. The con­
k-I

tribution to the variance from this source is

Var2(x)= (240,000)2(0.000571)2 + 80(3000)2(0.000685)2/5

= 18,779.96 + 67.57

= 18,847.53 (kg)2

Note that the sum of these two contributions, except for a slight variation
in the last decimal because of rounding error, is exactly the result of
Example 14.3.

For r = 3, a3 = 47,760, b3 = I, and N3 = I, because each of the
47,760 trays is weighed individually. Hence #L(3) = 238,800, the amount
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in the single stratum affected by this source, and #Lj(3) = #L2k = S, the
weight of each individual item in Stratum 2. The contribution from Source
3 is therefore

Var3(X)= (238,800)2(0.000175)2 + 47,760 (5)2 (0.000877)2

= 1746.40 + 0.92

= 1747.32 (kg)2

Source 4 again applies only to Stratum 2. There is a single concentra­
tion factor corresponding to the one batch of N4 = 47,760 items, and
b4 = 240 is the number of replicate samples and analyses used to estab­
lish the constant concentration factor applied to all items in the batch.
Because the stratum and the single batch are identical,
1£(4) = #L1(4) = 238,800. Thus, the contribution from Source 4 is

Var4(X)= (238,800)2[(0.000341)2 + (0.000568)2/240]

= 6707.63 (kg)2

Source 5 is a single NDA measurement error applying to each of the
as = 2770 batches of one item each in Stratum 3; I£(S) = 1200 and
#Lj(S) = #L3k = 0.433 so that the contribution from Source 5 is

VarS(x)= (1200)2(0.0462)2 + 2770(0.433)2 (0.0577)2

= 3073.59 + 1.73

= 3075.32 (kg)2

Source 6 affects Strata 4, 5, 6, and 7. Strata 4 and 6 each contain
1800 containers weighed individually. Strata 5 and 7 each contain 800
containers weighed individually. Thus ~ = 5200, b6 = 1, and N6 = 1.
Because the beginning inventory strata enter the inventory difference with
positive signs, C4 = Cs = + 1 and the ending inventory strata are sub­
tracted, so that C6 = C7 = -1. Hence,

#Lj(6) = C4#L4k = +4 for j(6) 1 to 1800

#Lj(6) = CS#LSk = +5 for j(6) 1801 to 2600

#Lj(6) = C6#L6k = -4 for j(6) 2601 to 4400

#Lj(6) = C7#L7k = -5 for j(6) = 4401 to 5200

Thus,
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= 7200 + 4000 - 7200 - 4000

=0

~j(6)#Lj16)= 1800 ( + 4)2 + 800 ( + 5)2

+ 1800 (-4)2 + 800( -5)2

= 97,600

Var6(X) = (0)2(0.00167)2 + 97,600 (0.00250)2
= 0.61 (kg)2

709

The same constant relative error effect in equal beginning and ending
inventories contributes nothing to the variance of the inventory difference,
regardless of the magnitude of the effect.

Source 7 involves Strata 4 and 6. The total number of batches is
a7 = 12 (6 in Stratum 4 and 6 in Stratum 6), b7 = 10, and N7 =
300; ILj(7) = (+4)(300) = + 1200 for j(7) = 1 to 6, and ILj(7) = (-4)
(300) = -1200 for j(7) = 7 to 12. Thus,

1L(7)= C41L4 + C61L6

= +7200 - 7200

=0

and

~j(7)#Lft7) = 6 (l2oo)2 + 6( -1200)2

= 17,280,000

so that

Var7(X)= (0)2(0.00896)2 + (l7,280,OOO)(O.03284)2/10

= 1863.59 (kg)2

Similarly, Source 8 involves Strata 5 and 7, where as = 8, bs = 12,
and Ns = 200; ILj(S) = (+5)(200) = + 1000 for j(8) = 1 to 4,
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and #Lj(8) - (-5)(200) = -1000 for j(8) = 5 to 8; #L(8) = cS#Ls +
C7#L7 = 4000 - 4000 = 0, and

~j(8)#Lj~8)=4 (1000)2 + 4( -1000)2

= 8,000,000

Thus,

Var8(x)= (0)2(0.01000)2 + (8,000,000) (0.04998)2/12

= 1665.33 (kg)2

Combining the contributions from the eight sources, the variance in the
inventory difference is

8
Var(x) = ~ Varr(x)

r-l

= 45,010.14 (kg)2

which differs only because of rounding error from the value of 45,010.01
kg2 obtained in the Safeguards Technical Manual (IAEA, 1982; Vol. 3,
Part F). The standard deviation of the estimate of the inventory difference
is the square root of this estimated variance, or 212 kg.

Note that the existence of single random error effects, which are con­
stant throughout the period in the major process streams, dominates the
contributions of measurement error to the variance of the inventory differ­
ence in this example. Periodic calibration or standardization of the mea­
surement methods during the period could reduce the variance appreciably.
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APPENDIX 14A

An Example of Modeling
Measurement Variability
14A.l INTRODUCfION

Throughout this chapter the generic nature of the treatment of sources
of measurement variability is emphasized. The methods given to describe
and compute estimates of the total variability due to the identified error
sources are completely general. The extent to which it is necessary to
identify and take into account individual sources depends on the specific
application.

The following example describes the measurement process for deter­
mining the input to a scrap recovery operation and the specific sources of
error present. It also describes the modeling process for the variability due
to one part of the measurement process, the net weight determination.

14A.2 MEASUREMENT SYSTEM DESCRIPTION

An input accountability measurement system for a scrap recovery oper­
ation is shown in Figure 14A.1. Assume that the material to be processed
is dumped into a dissolver tray and dissolved with nitric acid, passed
through a filter and transferred to a holding tank by pulling a vacuum on
the holding tank. When the holding tank has accumulated about 35 kg of
solution, the solution is transferred over to the weigh tank. The weigh tank
is suspended from a load cell with a capacity of 98 kg. When the transfer
is completed, a gross weight reading is taken by observing the digital read­
out from the load cell. The digital readout is set to read to the nearest
20 g. After the gross reading has been taken, the solution is mixed by con­
necting an air hose to a valve at the bottom of the tank and air sparging
for 30 min to assure chemical homogeneity of the solution. Next, the two
sampling ports A and B of Figure 14A.l are rinsed by opening the ports
and drawing off some solution into a bucket. Two samples representing the
transfer are then taken by nearly filling a 4 oz (100 ml) plastic bottle
from each port. After the sampling process is complete, the solution is
transferred to the feed tank and the tare reading of the weigh tank taken.

Some other pertinent characteristics of the weighing process are:
1. About 35 kg of solution is contained in each transfer.
2. The uranium concentration is usually less than 10 gjkg so that less

than 350 g of uranium is contained in each transfer.

Preceding page blank 713
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Figure 14A.l Schematic of input accountability system.

3. Each transfer takes about 40 min (from holding tank, through
weigh tank, to feed tank).

4. The digital readout may fluctuate by as much as ± 60 g during the
gross and tare readings for three of the scales and by ± 20 g for the
fourth scale.

5. The tare weight is preset electronically at a nominal value of 3 to
6 kg. The actual tare of the empty tank is about 55 kg.

6. There is a 30-min interval between the taking of the gross and tare
readings.

Measurement control practice for the weight determination is to check
each scale daily with a 30 kg standard. The tare reading is set so that the
empty tank registers 3 to 6 kg on the readout. This reading is recorded,
the 30 kg test weight is placed on a platform hung from the valve tree at
the bottom of the tank, and the gross weight recorded. The data collected
from these check weighings are used to estimate error variances at the end
of each accountability period.

The operating practice for uranium concentration determinations is to
composite all samples from the A-port and all samples from the B-port,

I and draw an aliquot from each composite for analysis. The two results are
averaged and the result is the grams of uranium per gram of solution
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applicable to all the tankfuls run through a specific weigh tank for a spe­
cific job. Each job may have several pairs of composited samples depend­
ing on how many dissolver-weigh tank systems were used in processing a
particular batch of scrap.

The measurement control program for the uranium analysis contains
two procedures from which variance components associated with the
element analysis can be estimated. The first is used to control bias and
estimate the contribution of the calibration process. Working standard
solutions, prepared from NBS standards, are run about 40 times during an
accountability period. As many as 7 different standards, ranging from 1.9
to 11.7 g U/kg, may be used depending on the expected concentrations of
the process solutions to be measured on the day that the standard is run.
The second measurement control procedure involves replication in order to
estimate the measurement error variances for production measurements.
The usual practice is to select eight pairs of composite samples for each
weigh tank and determine the concentration of uranium in an aliquot from
each of the A and B composites of samples from transfers for the job run
through the weigh tank. The measurement results from these duplicate,
composited samples for each job are used to estimate the variability due to
the combination of sampling and analytical random errors. A second ali­
quot is taken from either the A or B sample composite container, and the
difference between the two results from a single composite is used to esti­
mate the random error for analysis only.

This description of the weighing and analysis operations identifies the
potential sources of error in determining the amount of uranium input to
the facility. There are six strata of concern corresponding to the following
types of scrap:

I. Filter sludge
2. Spilled or leaked solution
3. Process holdup in tanks and piping
4. Sample port rinse
5. Samples of solution
6. Recycle added to process through the accountability tank

This example concentrates on Stratum 6. In practice, a similar modeling
process would be required for each stratum.

There are numerous sources of variability for the weigh tank and con­
centration measurements. Load cell variations due to temperature, source
voltage fluctuations, and observer averaging to the nearest 20 g can be
sources of individual error effects in each measurement. Potential sources
of constant error effects include load cell hysteresis (delay in returning to
calibrated state after a load is applied), the age of the electronics in a cor­
rosive atmosphere, and operator reading bias (a "company man" may read
low to protect against shipper-receiver differences). Sampling errors due to
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lack of solution homogeneity can contribute several types of variability.
For example, rinsing sampling ports with the solution in the current tank­
ful is designed to eliminate serially correlated effects due to cross­
contamination with solution from previous tankfuls.

These sources of error do not all have to be explicitly modeled. How­
ever, their existence should be recognized so that sources included in the
modeled errors are understood and data collection experiments to estimate
the associated variability can be properly designed. The consideration of
models for the measurement control processes anticipates the techniques
described in Chapter 15 for estimating and controlling measurement
variability.

14A.3 MODELING THE WEIGHING OPERATION

For each stratum, the net weight and uranium concentration are the
measurement results Yt and Y2 necessary to determine the amount x of
uranium contained in each tankful. The division into strata corresponding
to various types of scrap is required because of expected differences in the
variability associated with the measurement of uranium concentration. The
following sections deal with the modeling of the measurement variability in
the net weight; this model will apply equally to all strata. Because only the
measurement of the bulk amount is considered, the "1" subscript on the
net weight measurement will be dropped. Finally, the development will
apply to all four weigh tanks, since the operating and control procedures,
and thus the error sources to be modeled, are the same in all systems.
However, the estimated variance components, and hence the estimated
variability in the net weight, may differ from system to system.

14A.3.1 Constructing the Error Model

Let Yk be the observed net weight for tankful (item) k processed in this
material balance period. As noted in the description of the measurement
system in the previous section, the net weight transferred is the difference
between a gross weight and a tare weight, so that

Yk = YGk - YTk

The observed gross and tare weights can be written as

YGk = ILGk + Aok

YTk = ILTk + ~Tk

(l4A.l)

(l4A.2)

where ILGk and ILTk are the true gross and tare weights of the kth tankful
and Aok and ~Tk are the associated weighing errors. Both the errors Aok
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and ~n may be modeled as the sum of a constant error effect associated
with a defined subset of Nj tankfuls (items) and a residual error effect
associated with the particular item, so that

~k = {30j + EOk

~n = {3Tj + En (l4A.3)

where j = 1, ... , a is the number of subsets weighed in a particular sys­
tem during the material balance period. This introduction of a constant
error effect associated with a defined subset is meaningful only if the
errors are not completely random but change systematically from time
period to time period or with other characteristics of the weighing proce­
dure. The particular classification into subsets associated with process jobs
(batches) is not particularly useful for modeling and estimating variability
due to weighing. Other classifications of the tankfuls (items) into subsets
(batches) associated with the measurement control program may be more
meaningful.

Since the gross and tare measurements on production tankfuls are not
replicated, error estimation must be based on data from current measure­
ment control programs or, when necessary, historical data from prior con­
trol programs or interlaboratory exchanges. In this specific example, the
measurement control data for weighing consist of results of check weigh­
ings, using a working standard weight of 30 kg, each day the weigh tank is
used, which may not be consecutive days. The procedure involves setting
and recording a pre-tare reading (including the platform and chains for
suspending the test weight), placing a 30 kg working standard weight on
the platform and recording the scale reading, removing the 30 kg weight
and recording the first post-tare reading, and recording the second post­
tare reading after waiting 5 min. This provides replication over time on a
single standard item.

The model for the gross weights obtained from the check weighing of
the 30 kg weight on day ~ is

(l4A.4)

where

" = true weight of the 30 kg working standard
"n = true tare weight on day ~

{302 = constant error in measuring gross weight of 30 kg working
standard on day ~

EG2 = random error in measuring gross weight of 30 kg working
standard on day ~
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In the single measurement of the gross weight of the standard on day 2,
fJ02 and E02 are not distinguishable. The distinction is that fJo2 is assumed
to remain fIxed for all gross weights determined on day 2, while Eo2 is dif­
ferent for each replicate measurement of a gross weight.

Another set of measurement control data is generated periodically
when the 30 kg working standard is compared with NBS certifIed class-3
weights on a pan balance. The model for the mth calibration weighing of
the 30 kg working standard is

Zm = p + fJc + Em (I4A.5)

where

p = true weight of the 30 kg working standard
fJc = constant effect associated with calibration of working standard
Em = random effect associated with calibration of working standard

Finally, two types of error are reported by NBS (Ku, 1969, pp. 43, 336)
for the value assigned to each class-S standard, so that

where

Zs = Ps + Es + IAsI

Zs = value assigned to a class-S standard
Ps = true value of the standard
Es = random error in NBS determination of Zs

IAsI = "reasonable bound" to the systematic error

(I4A.6)

The fInal set of data generated by the control program is comprised of
the duplicate tare measurements taken after each measurement of the
gross weight of the 30 kg working standard. The pre-tare data are not
used in the data analysis. These duplicate measurements not only allow the
direct estimation of random weighing error, but also enable a check for
any hysteresis effect. An appropriate model is

ZT21 = J!T2 + fJT2 + 6-r + ET21

ZT22 = J!T2 + fJT2 + ET22

where

J!T2 = true tare weight on day 2 (Equation 14AA)
fJT 2 = constant error in measuring tare weight on day 2

ET2lt ET22 = random errors in measuring tare weight on day 2
6-r = possible constant difference between fIrst and second tare

measurements
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Two specific sets of results derived from these duplicate measurements are
of interest. The differences

~ZT2 = zT21 - ZT22

= c5-r + (Em - ET22) (l4A.7)

provide the basis for a classical paired difference test to determine if a
hysteresis effect lh exists (Sections 4.4 and 15.3.2). If the hypothesis
c5-r = 0 (no hysteresis effect) is not rejected, the tare weight to be associ­
ated with the gross weight ZG2 (Equation 14A.4) will be the average

ZT2 = Ih (ZT21 + ZT22)

= l!T2 + {jT2 + (ET21 + ET22)/2 (l4A.8)

If the hypothesis 5T = 0 is rejected, the second post-tare reading is
assumed to have no hysteresis effect and

14A.3.2 Combining Errors and Taking Expectations

The quantity of interest to the material accounting process is the net
amount of material transferred. Under the assumption that all error effects
associated with net weight determination are independent of those associ­
ated with measurement of concentration, it was shown in Section 14.2.2
that the relative error effects-and hence, the relative variance
components~ue to net weight measurements are an additive part of the
total relative error effect. It follows from Equation 14.18 that the errors
are determined relative to the particular measurement involved, even
though they ultimately contribute to the relative error in the amount
transferred. The net effect is that in the present example, the impact of
the weighing operation on the variability in the net amount transferred can
be determined by estimating relative variance components with respect to
amounts weighed and applying them to amounts transferred. The problem
is further simplified in this particular example by the fact that net
amounts transferred are relatively constant.

From Equations 14A.1, 14A.2, and 14A.3, the net amount transferred
for tankful (item) k is

Yk = Yak - YTk

= ILk + {jj + Ek (l4A.9)
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where

ILk = ILGk - ILn = true net weight transferred
fJj = fJGj - fJTj = constant error effect associated with subset j of

the items measured
Ek = EGk - En = individual error effect in net weight of an

item due to individual error effect in gross and tare weight
measurements

Two approaches are possible to express model 14A.9 for a net weight
determination in terms of relative error effects. Both approaches are
applicable to either the constant error effects fJj or the individual error
effects fk, so the constant error effects will be used for illustration. The
first approach assumes a relative error effect fJj to be an observed value of
a single random variable which is applicable to the weighing of any abso­
lute amount of material associated with the subset j. Thus

fJGj = ILGkfJj

fJn = ILnfJj

and

R • •
~j = ILGkfJj - ILnfJj

= (lLGk - ILn) fJj

=ILkfJj (I4A.I0)

The second approach assumes that fJj is the difference of two absolute
errors fJGj and fJTj' each of which is an observed value on a random vari­
able whose distribution may depend on the weight of the material being
weighed. For gross and tare weights that are approximately constant, the
distributions of fJGj and fJTj (and hence the difference fJj) will be approxi­
mately the same. Because under these conditions the true net weight ILk is
also approximately constant, the relative error fJ; = fJj/ ILk will again be an
observed value of a random variable that is approximately identically
distributed for all weighings on a particular system. The first approach
justifies the transformation fJj = ILkfJj from absolute to relative error effect
on the basis that the constant error effect is truly relative. The second
approach justifies the same transformation on the basis that absolute and
relative errors will be proportional if the gross, !are, and net amounts
being weighed are equal for all measurements. This argument is a specific
example of one of the bases for the use of relative errors discussed in Sec­
tion 14.2.1.
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By a similar argument, it can be assumed that E = #Lkl1k for the indi­
vidual errors, and hence in terms of relative error effects Equation 14A.9
becomes

The quantities

Yk = #Lk + #LkfJ; + #Lkl1k

= #Lk(l + ~; + 11k) (l4A.I i)

are also of interest in using the data obtained by weighing the 30 kg
working standard. From Equations 14A.4 and 14A.8, if no hysteresis
effect is assumed,

Similar arguments also apply to the effects

~2 = ~G2 - ~T2

E2 = EG2 - (fT21 + fT22)/2

(l4A.12)

(l4A.l3)

so that Equation 14A.12 can be written in terms of the relative errors
~2 = ~dll and 112 = E2I11 as

(l4A.14)

If a hysteresis effect is present, and only the second tare reading is used,
the only change in this formulation is to replace (fT21 + fT22)/2 by fT22 in
Equation 14A.13. In this example the gross, tare, and net weights are
essentially unchanged for each determination of net weight, so the two
approaches to relative error deflnition produce completely equivalent
models for the error effects.

The precise pan-balance calibration of the working standard against
NBS standard weights modeled by Equation 14A.5 does not involve gross
and tare weight differences. The error ~c and the errors Em can be
expressed as relative errors by dividing them by the true value v of the
working standard, so that

(l4A.15)

where ~~ = ~c/v and '1m = Em/V.



722 APPENDIX 14A EXAMPLE MODELING MEASUREMENT VARIABILITY

The production results modeled by Equation 14A.1l, the daily system
calibration modeled by Equation 14A.l4, and the occasional calibrations
of the working standard modeled by Equation 14A.l5 constitute the avail­
able data from production measurement and the measurement control pro­
gram during a given material balance period. If the subset j of the produc­
tion measurements is chosen to represent one day's weighings, then the
constant error effects fJ~ of Equation 14A.15 (fJj of Equation 14A.9) are
equivalent to the constant error effects fJi in the daily calibration check
modeled in Equation 14A.14. With this identification it is possible, follow­
ing Section 14.2.1, to define three sources of variability in the net weight
determination:

1. Variability associated with repeated individual determination of a
gross or tare weight on a production sample or standard working standard.

2. Variability in the constant deviation from the standard value of all
weighings during a particular day.

3. Variability in the assignment of a standard value to the working
standard.

Using the notation of Section 14.2.3, these three sources will be identi­
fied by the indices

j(l) (= k) = I, -----, al = N
j(2) (= 2) = I, -----, a2
j(3) (= m) = I, -----, a3

where N is the number of weighing operations, a2 is the number of
operating days in the material balance period, and a3 is the number of
calibrations of the working standard that were in effect during the mate­
rial balance period.

There are two ways to use the observed data to correct the weight of
material transferred in an individual tankful. Both involve correcting the
production data on the basis of differences between the daily check mea­
surements and the assigned value of the working standard. From Equa­
tions 14A.12 and 14A.5, the absolute differences are

.!l~ = Z2 - Zm

= fJR - fJc + E2 - Em (l4A.16)

The first approach is to correct all the n2 weighings on a single day by the
individual difference .!l~. It then follows from Equations 14A.9 and
14A.16 that

Ak = Yk - .!l2m

= Ilk + fJj - fJ2 + fJc + Ek - E2 + Em (l4A.17)
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The key assumption at this point is that the constant error effect P2
associated with the check measurement on day 2 is identical to the con­
stant effect Pj in the subset of production measurements made on that day.
In that case

(l4A.18)

and the only remaining constant error effect is the possible long-term bias
Pc in the assignment of values to the working standard. This bias will
include any systematic error in the "reasonable bound" associated with the
NBS standard weights. The usual practice is to assume that the quality of
the pan-balance procedure and the NBS certification procedure is such
that this constant error effect is negligible.

In cases where immediate application of individual corrections is not
feasible, an alternate practice frequently used in material accounting is to
apply an after-the-fact correction to the total amount of material
transferred based on the average difference for the period between the
check weighings and the assigned value of the standard. From Equation
14A.16, the average correction over the a2 days in a material balance
period is

where

_ a,

Am = }; D.f.m/a2
2-1

= P2 - Pc + E2 - E3 (l4A.19)

(l4A.20)

(l4A.2l)

(l4A.22)

and em is the number of days the mth assigned value of the 30 kg standard
was used to determine D.f.m, so that
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(l4A.23)

Because in this case

it follows from Equations 14A.9 and 14A.l9 that

(l4A.24)

In this case P2 (the average of the constant daily error effects associated
with the check measurements) is not identically equal to the constant daily
error effects fJj associated with production measurements, even if the
assumption is made that on a given day the two effects are identical. The
variability associated with the deviations fJj - P2 of the constant daily
error effects from their average is still present in the results. On the other
hand, the variability associated with the average errors E2 and E3 will be
smaller than that associated with the E2 and Em of Equation 14A.18.

The analogous development, using relative error models, illustrates the
need for assuming either the universal applicability of the relative error
distribution to all weights or the equality of the amounts being measured.
If ~2m is determined from Equations 14A.14 and 14A.15, then Equation
14A.16 becomes

(l4A.25)

To combine this difference with the relative error model for Ylt given by
Equation 14A.II to produce the relative error model

(l4A.26)

comparable to the absolute model given by Equation 14A.17, requires that
either (l) ILIt = 1/ for all k or (2) the relative errors fJi, fJ~ 172, and 17m,
defined with respect to the standard value 1/, apply to all magnitudes of the
true contents ILIt of the production items measured. The first of these
assumptions is obviously untenable, but it emphasizes the need to have a
working standard whose weight is similar to the net weight of an individ­
ual operating transfer. In either case the equality fJi = fJi can be assumed,
either directly or as a consequence of the assumption fJj = fJ2, so that the
model reduces to the form
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tLk = ILk (1 + fl~ + 11k - 112 + 11m)

analogous to Equation l4A.18. A relative error model
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(l4A.27)

(l4A.28)

equivalent to Equation l4A.19 can be obtained following the definitions in
Equations l4A.l9 through l4A.22 because all the errors involved are rela­
tive to the constant true value " of the working standard. However, com­
bining this model with Equation l4A.ll to obtain

(l4A.29)

which is the relative error model analogous to the absolute error model
given by Equation l4A.24, requires the same assumptions used to develop
Equation l4A.26.

14A.3.3 Defining the Variance Components

This section considers the assumed statistical properties of the errors
associated with each source of variability present in the models of the pre­
vious section and defines the variance components for each source based
on the generic structures of Section 14.3.1. Consider as the first source the
variability associated with the replication of the weighing operation within
a short time period. A frequently justified assumption is that the errors
Em and En defined in Equation l4A.3 are each identically and indepen­
dently distributed for all k with expected values fllG and flIT, variances
ufG and UfT' and zero covariance. Then the differences Ek = EGk - En
are independently and identically distributed with expected value
fll = fllG - flIT and variance uf = ufG + UfT' If it is assumed that the
distribution of absolute errors in gross and tare weight determinations due
to this source is the same, then fll = 0 and uf = 2ufG = 2ufT' If the
relative errors 11m = Em/ILGk and l1n = En/JLn are each identically and
independently distributed with expected values fl;G and fl;T, variances 5fG
and 5fT, and covariance zero, then the relative errors 11k have expected
values

and variances

~2 _ 2 ~2 / 2 + 2 ~2 / 2IIlk - JLGk IIIG ILk ILn lilT ILk

(14A.30)

(l4A.3l)
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If it is assumed that P;G = P;T and orG = OrT' then the expected values

(I4A.32)

are constant for all k, but the variances

(I4A.33)

are still dependent on the ratios ILn./ ILk = Xk, and will equal a common
value or only if the ratios are constant. For a constant ratio Xk = X, the
common variance is

(I4A.34)

As X approaches zero, or approaches orGo The relative variability in net
weight will usually be somewhat larger than the combined relative vari­
ability in the gross and tare weights.

All these considerations affect the validity of the assumption that the
individual relative error effects associated with the weight of the material
in the n tankfuls transferred have the same expected value and variance.
The key criterion for the validity of this assumption, under a wide variety
of assumptions concerning the basic error structure, is the approximate
equality of the net weights for the n tankfuls transferred. However, the
specific assumptions concerning the error structure may have a significant
effect on the techniques used to estimate the error variance components
from available experimental or control data.

The only quantities in this example whose variability depends solely on
the variability in individual weighings are the absolute differences in tare
weights defined by Equation 14A.7. The sample variance of these differ­
ences is an estimate of 20'fT. It can be used to estimate or, the relative
variance in a single net weight due to this source, only under one of two
possible assumptions analogous to those discussed in connection with the
development of the relative error model (Equation 14A.26). One possibility
. h 22Th ,,2 2" 2 d ~2 ,,2/ 2 h .18 to assume t at O'IG = O'IT. en 0'1 = O'IT an vI =0'1 IL, were IL IS

the average value of the approximately equal net weights ILk. The second
possibility is to assume that the estimated relative error variance
8rT = arT/vi, where lIT is the average of the approximately equal tare
weights "T2 associated with the daily control checks, can be applied to all
weighings. Then both O[G and OfT in Equation 14A.34 can be replaced by
8[T to obtain the estimate
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where>. = P.T/P. is the approximately constant ratio of tare to net weights
for production items.

The ratio of the estimate obtained from the second approach to that
obtained from the first is [(1 + >.)2 + >.2]p.2/2vf. If JLG = p. + P.T is the
approximately constant gross weight, and P.T ;;;;; "T, then this ratio
reduces to (1 + .,2)/2, where .,=P.O/P.T is the ratio of gross to tare
weight. When the tare weight is small compared to the net transfer, this
ratio can be quite large. The two estimates are equal only for., = 1,
which corresponds to p. = O. This is the only condition under which the
gross and tare weighings can have equal absolute and relative errors. The
other extreme is the case where P.T is small compared to p.e;, in which case
the second approach gives much larger estimates of the relative error in a
net weight. The question is whether the first approach underestimates
because of the assumption that the absolute error in a large gross weight is
the same as the absolute error in a smaller net weight, or whether the sec­
ond approach overestimates because the large relative error with respect to
a small tare weight is not applicable to the larger gross weight. This is an
example of the general problem of extrapolating absolute or relative errors
considered in Section 14.2.1. As noted there, the true situation is usually
intermediate to the two extremes. The absolute variance of the gross mea­
surements will be higher than that of the tare measurements, but not by
the ratio (p.o/P.T)2.

A similar set of conditions applies to the definition of the expected
value fJ2 and the variance oi associated with the relative error effects
fJj = fJj/P.k derived from the absolute error effects fJOj and fJTj defined in
Equation 14A.3. There is no reason why the distribution of these constant
daily error effects should be the same at gross and tare levels on either a
relative or absolute basis. Futhermore, the nature of this source is such
that there is no way to distinguish between the expected value fJi associ­
ated with all individual weighings and the expected value fJ2 associated
with the constant effect in a day's measurements. In the notation of Sec­
tion 14.2.3, Equation 14A.9 could have been written

Yk = P.k + fJI + Ej(2) + Ej(l) (l4A.35)

emphasizing the hierarchical nature of the error effects. This is also
consistent with the fact that only a single long-term average error effect
can be estimated from the differences A2m defined in Equation 14A.l6. If,
analogous to Equation 14A.35, Equation 14A.16 is written as

A2m = fJI - fJ3 + Ej(2) + Ej(l) - Ej(3) (l4A.36)

where fJ3 = fJc and Ej(3) = Em refer to the third source of variability due to
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calibration of the working standard, it is apparent that this single long­
term bias effect depends on the constant error effect present in the calibra­
tion of the working standard. The variance estimate obtained from these
differences will contain contributions indistinguishable from the variance
of the individual error effects from all sources.

The preceding discussion of estimation possibilities also included an
implicit assumption that the error effects present in the check measure­
ments on the working standard have the same distribution as the
corresponding error effects in production measurements. It is necessary to
assume not only that the constant error effects present on a given day are
identical, as was done to derive Equation 14A.18 from Equation 14A.17,
but also that the variability in the constant error effects fJj and fJ2 and the
individual effects Ek and E2 can be represented by the same variance com­
ponents. Some implications of the latter assumption are discussed again in
Section 15.1.1 in connection with estimation procedures associated with
monitoring against standards. This assumption makes it possible to esti­
mate the variability in the total transfer using variance components
estimated from data obtained during the check procedure. In particular,
the variance u} of the daily constant error effects Ej(2) can be estimated by
subtracting estimates of uf and uj from the sample variance of the differ­
ences Ll2m (see Chapter 15) and uj can be estimated from historical vari­
ability in the values assigned to the working standard. Under the usual
assumptions, both estimates can be converted to estimates of the relative
variances o} and oj by dividing by ,,2.

As discussed in Section 14.3.1, the most difficult problem is to formu­
late appropriate assumptions concerning the properties of fJI(fJi) and
fJifJ;). It is reasonable to expect that, because of the nature of the pan
balance calculation and the care taken by NBS establishing standard
values, fJ; will be negligible. The only known variance component is the
estimate of the variance due to random error provided in the NBS certifi­
cation. Some idea of the variability in fJI can be obtained from historical
data on control checks for past material balance periods, but such data
build up slowly and the pertinence of past data can be questioned. Another
source of information may be differences in the long-term average bias
for different weighing systems of the same type. Such period-system com­
parisons are similar to the interlaboratory experiments discussed in
Chapter 15.

14A.3.4 Calculating the Total Variability
Using the procedures defined in Sections 14.3.2 and 14.3.3, the vari­

ance in the total weight of material transferred can be determined from
the error models derived in the preceding section for the two different
approaches to correction. The variance when no correction is applied
(iLk = Yk) is derived first from the model for Yk in Equations 14A.9 and
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14A.ll. The first approach to correction considered is an average correc­
tion, for which the appropriate models are Equations 14A.24 and 14A.29.
The second approach considered is the application of a daily correction
factor to individual weights, for which the appropriate models are given by
Equations 14A.18 and 14A.27.

Following the conventions established in Section 14.3, defme

as the true value of the total weight of material transferred during the
material balance period, #£j(2) = #£j as the total weight of the Nj(2) = Nj
transfers on each of the a2 days of the material balance period, and
#£j(3) = IJ.m as the total weight of material transferred during each of the
a3 periods corresponding to a particular assigned value of the working
standard. Then if model 14A.ll is written as

Yk = #£k (1 + p; + '7j(2) + '7j(l»

in analogy to Equation 14A.35, it follows from Equation 14.33 that the
variability in the total

N

y= ~ Yk
k-l

is given by

., N

Var(y) = #£2 8r + o} ~ #£jh) + or ~ #£f.
j(2)-1 k-l

(l4A.37)

where 8r is the variance component associated with the constant relative
effect pi. This model assumes that the accountability is based on the pro­
duction measurements without correction of any kind, so that the control
data are used only to provide estimates of 8r, oj, and or.

When the first approach to correction is used, the variability in the
corrected total is derived from Equation 14.29 as

., N

Var (y) = #£2(81 + or/a2 + oila2 + OVa3) + o} ~ #£jh) + or ~ #£f.
j(2)-1 k-l
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because the errors Pi and 132 have the same expectation p;. Tge purpose of
the average correction is to eliminate this constant effect, but the net
result has been to replace the contribution from this effect to the total
variability by a number of other (presumably smaller) variance com­
ponents associated with the control measurements. The advantage in this
procedure is that (Jr, a component difficult to estimate, has been replaced
by the presumably smaller quantity (Jr and other components which are
estimable from the control data. However, there is no assurance that the
procedure will decrease the total variability, particularly when there is sig­
nificant variation ~i from day to day in the constant daily effects.

Finally, if the second approach to correction is used and a daily factor
is applied, the variability in the total is derived from Equation 14A.27 as

[

a, D I a,
Var(y) = 11-

2 (Jr + ~r ~ II-jh) + ~ II-~ + ~r ~ 11-/<3)
j(2)-1 k-l j(3)-1

The net result of this daily correction has been to replace the day-to-day
variability in the constant error effects by the variance in a single observa­
tion of the working standard and the variance components associated with
the calibration of the working standards. This trade-off between the effect
of systematic errors and the variance in determining corrections is a well­
defined problem in connection with the treatment of measurement error.

REFERENCE

Ku, H. H. (Ed.), 1969, Precision Measurement and Calibration, NBS Special Publication
300, Vol. 1, U. S. Government Printing Office, Washington, D. C.



CHAPTER 15

Estimating and Controlling
Measurement Variability
15.0 INTRODUCTION

In the preceding chapter models were developed for determining the
effects of measurement errors on the results of the material accounting
process. Procedures were established for determining the net effect of com­
plex combinations of random error effects on the reported quantity of
material in individual items, batches, strata, and the major components of
the inventory difference. These procedures make it possible to express the
expected value and variance of quantities such as inventory differences,
shipper-receiver differences, and operator-inspector differences in terms of
the corresponding characteristics of the error components. To proceed with
the evaluation processes considered in Chapter 16, estimates of the mea­
surement error parameters must be obtained. This chapter presents
methods for obtaining such estimates. They represent a selection of those
methods found to be useful in safeguards applications, rather than a
comprehensive treatment of all possible techniques for estimating and con­
trolling measurement error.

In practice, a wide variety of data sources are generally drawn upon in
the course of estimating all of -the measurement error parameters for a
facility. The spectrum will range from data routinely taken in the facility
for purposes not directly related to error estimation or the safeguarding of
materials (e.g., process control data) to data from specially designed
experiments or studies conducted expressly for the purposes of obtaining
error estimates. Most of the data will normally come from three sources:
(1) methods development and testing, including interlaboratory exchange
programs; (2) the routine calibration of measurement systems, particularly
those using nondestructive assay (NDA) methodology; and (3) continuing
programs of measurement control for production measurements and labo­
ratory analysis. Care must be taken to determine that the estimates
obtained from these specialized sources remain valid under the conditions
associated with routine use.

Neither the nature of the data sources nor the purposes of the analysis
provide a completely appropriate basis for determining which statistical
estimation and control procedures to present and the order in which to
present them. Section 15.1 describes the calibration procedures required

731
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for indirect measurement. Section 15.2 examines methods for the analysis
of data from the routine testing' and monitoring of direct measurements
against known standards. The final section considers methods for estimat­
ing error variances from the replication of measurements on materials of
unknown content under laboratory or production conditions.

15.1 CALffiRAnON OF MEASUREMENT
SYSTEMS

The techniques used in the calibration of measurement systems and in
the control of routine measurements of concentration and bulk amounts
are closely related. Calibration methods are largely based on the regression
methodology of Chapter 6, while control techniques depend more on the
hypothesis testing and estimation procedures described in Chapters 3, 4,
and 5. Both applications depend to a large extent on the measurement of
standards for which assigned weights, concentrations, or amounts of mate­
rial have been established.

Calibration techniques relate a measured response, y, on an item to a
standard value, x, of the result to be determined in some functional way;
i.e., y = f(x). The quantities y and x need not be in the same units; x
might be in grams of 235U and y in count rate for an NDA instrument.
The process of calibration includes

1. Planning of the calibration data collection (number of standards,
placement of standards within the range, number of replicated measure­
ments on each standard, and number of repeated calibration runs).

2. Collection of the data.
3. Analysis of the calibration data.

Because the desired end result of the calibration process is to obtain esti­
mates of the parameters appearing in f(x), the data analysis problem is
one of estimation and testing for parameter estimate stability over time or
changing environmental conditions. In addition to the parameter estimates,
various error variance estimates also should be obtained from the analysis
of the calibration data. During the planning stage, sufficient replication of
standards measurements and calibration runs should be incorporated to
insure that all of the needed variances can be estimated.

Once the parameters have been estimated, the relationship is used to
relate a response for a production item, observed on the y scale, to an
estimated value on the x scale for that item. Statements about the stan­
dard error in this estimated value also are made, in part, on the basis of
the calibration data.

15.1.1 Single-Point Calibration of NDA Instruments

A calibration and measurement problem frequently encountered when
using NDA methods for materials control or safeguards activities can be



SECTION 15.1 CALIBRATION 733

described as follows. Suppose the range of values for the characteristic of
interest in the population to be measured is quite narrow. If a standard is
available having an appropriate value for the particular calibration, use it
for the population measurements. If such a standard is not available, it is
common practice to randomly select from the population one (or perhaps a
small number) of the process items and to make numerous, independent
NDA measurements on that item. The NDA measurements on the
selected "standard" item are interspersed among the measurements on the
other process items. Once the NDA measurements on all the items have
been completed, then the "standard" item is submitted for destructive
analysis using a more reliable method, such as chemical or mass spec­
trometric analysis. In many cases, the uncertainty in the assigned value for
the "standard" based on the destructive analysis results is quite small rela­
tive to the variability in repeated NDA measurements and almost can be
ignored. This general type of calibration approach is sometimes referred to
as the single-point calibration problem. Such single-point calibration data
are analyzed assuming a linear calibration model with a known intercept
at the origin. In the event that the characteristic in the population varies
over too wide a range and that such a simple model may not be adequate,
then more standards will be required to cover the calibration range and
more complicated models may need to be considered for describing the
calibration data.

The calibration model can be written as

Yj = f31L + Ej

where

Yj = the itb measurement of the standard using NDA
f3 = the slope of the calibration line
IL = the true value of the characteristic for the standard
Ej = the error in the itb NDA measurement; these errors are assumed

to be independent with expected value zero and common variance
(12

Let

n = the number of NDA measurements of the standard
y = the mean of the measurements on the standardt

lLo = the assigned value for the standard (may be based on destructive
analyses); assumed to have expected value IL and variance (16

tAs in Chapter 5, no distinction will be made in this chapter between the estimators Y
and S2 of the sample mean and variance defined in Section 3.4.1 and the mean y and vari­
ance S2 of a particular set of observations. As is customary in applied texts, the lower case
letters will be used.
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Then, because E(Yi) = E(y) = flp. and E(IJ.o) = p., the slope parameter,
fl, in this simple calibration model can be estimated by

(15. I)

The variance of this estimate is given approximately by (see Equation
2.127)

A point estimate of this variance (see Equation 3.51) is given by

(15.2)

where s2 is the sample variance of the measurements on the standard and
uJ is an estimate of O'J. The latter estimate cannot be derived from the
immediate calibration procedure, but must come from independent
knowledge of the variability in the procedure by which the standard value
was assigned.

If yp is the measured value of y on a process i!em, an estimate of the
value xp of the characteristic is given by xp = ypj fl. A simple extension of
the process used to obtain Equation 15.2 leads to the approximation

(15.3)

Again, an independent estimate of O'~ is required unless it can be assumed
that the measurement error variance on process items is the same as on
the standard, in which case O'~ = ~ and u~ can be replaced by s2. For a
single-point calibration, this assumption is tenable because the measure­
ments generally are made using a ftxed counting time and the standard is
often a process item.

Technically, if the assigned value of the standard is a random variable
whose range includes zero, then the variance of the estimate Pgiven by
Equation 15.1 will be inftnite because there will be some nonzero probabil-
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ity of a zero denominator. This situation is compounded in the case of the
estimate xp because now the estimate Pappears in the denominator of the
estimator. Similar situations exist for other uses of calibration equations
considered later in this chapter. In practice, this is seldom a concern for
two reasons. The first reason is that a calibration and estimation procedure
for which 0'0 is large compared to J.Lo, or for which SE(~) = ..JVi.r(J), the
standard errort of ~, is large compared to {J, is usually unacceptable.
However, it is important to recognize that such situations are possible,
especially with procedures involving working standards. The second reason
is that the calibration and estimation process is not truly carried out as a
single chance procedure, so that the range of values of J.Lo or ~ which
would be accepted for subsequent use to estimate ~ or xp, respectively, are
actually bounded away from zero.

Example 15.1 An active well coincidence counter operated in the
fast mode is to be used to measure the 23SU content (in g) of 2.8%
enriched U02 powder. The purpose of the measurement is to verify the
assigned content of containers in one stratum of a plant inventory where
all items are expected to have between 190 and 210 g of 23Su. There is no
standard available, so a container is randomly selected from the inventory
listing. The assigned value on the item tag for the selected container was
199.962 g of 23SU. Throughout the time period while the instrument was
used to measure items from that stratum of the inventory, a total of 12
NDA measurements was made on the "standard" container. Listed below
are the coincidence count rates for the measurements.

Real Coincidence Count Rate Measurement
Results on Standard (y~

34.112
32.891
33.581
32.946
31.312
33.355

33.773
32.797
32.225
33.631
33.650
33.280

tIn the rest of this chapter and in subsequent chapters, the term standard error, or stan­
dard error of estimate, is used to denote the square root of the variance, or standard devia­
tion, of the point estimator of a parameter (see Section 3.4). This emphasizes the fact that
the variances derived in Chapter 14 for accounting estimates, and in this chapter for the
parameters of measurement systems, are frequently complex functions of the variances of one
or more random variables. The estimates mayor may not involve replicate observations on
these random variables, and frequently the component variances are not estimable from the
data on which the estimate is based.
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For these measurement results

n= 12

y= 33.1294

S2= 0.5911

s= 0.7688

After all the NDA measurements were completed, the gross and net
weights of the powder in the selected container were determined, and five
random samples of the powder were selected and sent to the laboratory for
destructive analysis. The assigned value for the standard was calculated
using

Po = weI

where

w = net weight of the powder in the selected container
.C = the average concentration of uranium determined from the

five destructive analyses
T= the average weight fraction of 235U in the uranium

The actual assigned value obtained as a result of the weighing and analyti­
cal measurements was Po = 200.799 g 235U and the standard deviation
associated with the assigned value was estimated as uo = 0.5395 g.

From these results, the estimate P is calculated from Equation 15.1 as

p= 33.1294 = 0164988
200.799 .

From Equation 15.2, an estimate of the variance of P is

Vtlr(P)e:[ 1 12(0.5910 +[ 33.129412(0.5395)2
200.799 12 200.7992

= 1.418178 X 10-6

and the estimated standard error of P is
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For a container from inventory counted a single time (using the same
counting time used in the calibration) with measured coincidence count
rate of 31.376, the calculated 23SU content of the container is

" = 31.376 = 190.171
xp 0.164988 g

and the variance and standard error of that calculated value are estimated
as

V3r(i,) - [0.16~988 ]'<0.5911)

[ 1
2+ 31.376 (0.5911)

0.164988 12(33.1294)2

+ [ 31.
376 1

2
(0.5395)2

33.1294

= 21.7148 + 1.6231 + 0.2611

= 23.5990 (g)2

and

15.1.2 General Linear Calibration

A first extension of the single-point calibration in the previous section
is the case where the calibration relationship is linear and it cannot be
assumed that the line goes through the origin. This unrestricted linear cali­
bration model is used for many measurement systems. The following sec­
tions consider the procedures for general linear calibration under several
different assumptions.

15.1.2.1 Constant Variance in the Measured Responses

This section considers general linear calibration when the y variable
has constant variance over the range of x of interest. The calibration data
are assumed to consist of pairs of (Xi, Yi) observations, where the Xi are
fixed values of the ith standard, assumed to be known with negligible error.
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At any fixed value of x, y is distributed with mean value on the calibration
line and with unknown, but constant, variance. In many practical applica­
tions it is reasonable to also assume that y is normally distributed.

The model for general linear calibration with constant variance is

where

Yij = fJo + fJIJLi + Eij (15.4)

i = 1,2, , m standards
j = I, 2, , n replicate measurements on the ith standard

Yij = jth measurement of the ith standard
JLi = assigned value of the ith standard; usually assumed to be known

exactly but may have assigned variances
fJo = intercept parameter
fJ I = slope parameter
Eij = error associated with the jth measurement of the ith standard;

these errors are assumed to be independent with expected value
zero and common variance r?

Methods for calculating all of the required parameter estimates (intercept,
slope, and common variance) can be found in Sections 6.2.3 and 6.4.1.

There are two cases frequently encountered when a linear calibration is
used to estimate the nuclear material content of items or containers. In the
first case, a measurement is required at only a single point along the cali­
bration line to provide the desired material content estimate. An example
might involve an NDA instrument used to measure the 235U content of
reactor fuel pellets. As long as background radiation during a production
measurement is controlled at the same (ideally, very low) level as was
present during calibration, then only a measurement with the unknown
pellet in the instrument is required and a background measurement is not
needed. In the second case, measurements at two separated points on the
calibration line are required to obtain the desired material content esti­
mate. An example is the determination of the volume of liquid transferred
from an accountability tank. To determine the net amount transferred,
measurements with the tank full of liquid and after the transfer must both
be transformed to amounts of liquid using the calibration equation.

For the first case, if yp is the measurement system response on a pro­
cess item, then the value of the characteristic for the item can be
estimated using

(15.5)

where ~o and ~I are the estimates of the two calibration parameters. Once
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estimated from a given set of calibration data, t;.ese estimates are fixed
and will produce the same error effect due to calibration in all item results
having the same yp values. Using Equation 3.51, the variance of xp can be
approximated by

where

+ 2(yp - Po) CA (R R)
"3 ov ,..,0,""1

(31
(15.6)

Var(yp) =

Var(po) =
Var(PI) =

CCJV(PO,PI) =

estimated variance of the measured response for the
process item

estimated variance of the intercept estimate
estimated variance of the slope estimate
estimated covariance between intercept and slope estimates

The symbol Var(yp) is used for the estimated variance of the measurement
response for the process item to emphasize the fact that the random mea­
surement variance may be different during calibration than in routine
measurement of process items. From a regression analysis of the calibra­
tion data, the estimates Po, Ph Var(po), Var(PI), COV(PhPI), and the resid­
ual error variance are generally available (Sections 6.2.3 and 6.4.3). The
residual mean square from the regression analysis (Section 6.4.1) mayor
may not be a good estimate of Var(yp). During calibration, more care may
have been taken than is usual when making production measurements, or
more experienced personnel may have been used. Generally, an estimate
for Var(yp) should be obtained from current data from independent repli­
cate measurements on part (or all) of the process items measured. If the
residual variance estimate from the regression analysis is going to be used
for Var(yp), it is desirable to compare an independent estimate with the
residual variance (Section 4.3.3) to verify that it is, in fact, a valid esti­
mate for the measurement of process items.

For the second case, the notation Yu will be used for the upper mea­
surement response (height of liquid in tank before transfer) and Y2 for the



740 CHAPTER 15 ESTIMATING MEASUREMENT VARIABILITY

lower measurement response (height after the transfer). For the linear
model being discussed in this section, an estimate of the net material
transferred is given by

(Yu - Po) - (Y2 - Po)

PI
(I5.7)

Assuming that the variances for both the upper and lower measurement
responses are equal, and using Var(y) as the symbol for the estimate of
that variance, the variance of AX can be approximated by

(I5.8)

Example 1S.2 The scale calibration data in Table 15.1 were gen­
erated from information given in an IAEA manual (IAEA, 1980). One use
of the scale is the determination of the net weight of nuclear material
received at a facility by measuring the gross weight of a full container,
measuring the tare weight of the container with the same scale, and
obtaining the net weight estimate as the difference in these two measured
values. For this example, it is assumed that the calibration over the range
of intended use is linear and that the standard deviation of measurement
results throughout the range is constant.

Two standards were selected for the calibration; one with an assigned
value of 8878.0 g (corresponding to the gross weight of received con­
tainers) and one with an assigned value of 1591.7 g (corresponding to the
weight of empty containers). For this example, the assigned values are
assumed to be known without error. Each standard was weighed 10 times.
The order of weighing was randomized and the standard weighing proce­
dure followed. The 20 (xj, Yi) data pairs for the calibration measurements
are presented in the following table. The analysis will treat these data as
20 independent pairs. Because there are only two standard values, they
could have been analyzed as a two-point calibration with nl = n2 = 10
replications at each of the m = 2 assigned values of the standards (Sec­
tion 6.4.4). The residual variance in this case is simply the pooled variance
about the mean for each standard and estimates only measurement vari:
ability. No test of the assumption of a linear fit to the two points (XI> YI)
and X2' Y2) is possible.
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TABLE IS.1

Scale Calibration Data

Assigned ,alue Measured scale
Obserfadon or standard Xj (g) response YI (g)

I 8878.0 8882.1
2 1591.7 1589.2
3 1591.7 1587.1
4 1591.7 1593.1
5 8878.0 8880.4
6 1591.7 1588.4 (I688.4)t
7 1591.7 1584.5
8 8878.0 8876.3
9 8878.0 8893.6

10 1591.7 1594.0
II 8878.0 8887.0
12 1591.7 1592.4
13 1591.7 1587.5
14 1591.7 1583.8
15 8878.0 8884.1
16 8878.0 8874.9
17 1591.7 1582.5
18 8878.0 8883.8
19 8878.0 8876.7
20 8878.0 8888.6

tThis second value will be used in a later part
of the example.

For a linear regression analysis, the following calculated quantities are
needed:

n= 20

2;Xi = 104,697

2;Xf = 813,523,928.9

2;Yi= 104,710

2;XiYi= 813,890,720.25

2;Yf= 814,258,318.5

The estimated values for the slope and intercept are
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n~xy - (~x) (~y)

n~x2 - (~x)2

= 20(813,890,720.25) - (104,697)(10,470)
20(813,523,928.9) - (104,697)2

= 1.00112539972 = 1.0011254

~ = ~y _ P ~x = 104,710 _ I 00112539972 [ 104,6971
on In 20' 20

= -5.24129872

The residual error variance estimate is

= _I (814258318.5 _ (104,710)2
18 " 20

- (1.00112539972)' [813,523,928.9 - (I04i~97)'11

= 11
8

(462.252) = 25.6807 (g)2

The estimated variances and covariance of Po and PI are
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_ 25.6807 [1 + (104,697)2 I
- 20 20(813,523,928.9)-(104,697)2

= 3.9352

Var" - S2 [ 1 ] _ [ 20(25.68066667) I
({31) - ~(Xi-X)2 - 20(813,523,928.9)-(104,697)2

= 9.6744 X 10-8

- (25.68066667) (104,697)
20(813,523,928.9) - (104,697)2

= -5.0644 X 10-4

743

To demonstrate the use of this scale calibration equation, suppose that
a container of material is received for which the measured gross weight is
8875.2 g and the measured weight of the empty container is 1583.9 g.
Based on these measurements, the estimated amount of material received
is calculated from Equation 15.7 as

III = 8875.2 - 1583.9 = 7283.1
1.0011254

If it is reasonable to use 25.6807 as the variance estimate for measuring
both the gross and tare weights of process items, then from Equation 15.8

Var(M) ~2 [ 1.00:1254r(25.6807)

+ [ 7291.3 ]2 (9.6744 X 10-8)
(1.0011254)2

= 51.2466 + 5.1201 = 56.3667 (g)2
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and the estimated standard error in the estimated amount of material
received is 7.51 g.

The residuals ri calculated using Equation 6.31 and the standardized
residuals rj* calculated using Equation 6.32 are presented in Table 15.2
(see Section 10.5). The actual measured responses appear in the table of
calibration data. The predicted responses for the two standards are
1588.25 and 8882.75 g; in this case, they are the mean values of the lO
measurements on each standard.

TABLE 15.2

Scale Calibration Residuals
and Standardized Residuals

OMen_tioD fl fl·

1 -0.65 -0.135
2 0.95 0.198
3 -1.15 -0.239
4 4.85 1.009
5 -2.35 -0.489
6 0.15 0.031
7 -3.75 -0.780
8 -6.45 -1.342
9 10.85 2.257

10 5.75 1.196
11 4.25 0.884
12 4.15 0.863
13 -0.75 -0.156
14 -4.45 -0.926
15 1.35 0.281
16 -7.85 -1.633
17 -5.75 -1.196
18 1.05 0.218
19 -6.05 -1.258
20 5.85 1.217

The hii value (see Section 6.4.5.2) for the observations on the low standard
with the common Xi value 1591.7 was calculated as

[
0.153234 -1.972060XlO-5jl 1 )=01000

(11591.7) -1.972060 X lO-5 3.767176 X 10-9 1591.7 .

Note that the numerical values in the (X'X)-l matrix are exactly the quan­
tities in brackets used to calculate the estimates Var(po), Var(Pl), and
C(JV(PO,Pl) from s2 (see Section 6.4.3). The hii values for the observations
on the high standard are also 0.1, which reflects the two-point nature of
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the calibration. Plots of the standardized residuals in order of measure­
ment and for the two assigned standard values are shown in Figure 15.1.
Residuals, standardized residuals, and residual plots are usually provided
as part of the generalized regression routines contained in the statistical
software packages available for computers.
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Yagure 15.1 Residual plots for scale calibradon.

The rj* value for Observation 9 is somewhat high when compared with
the t value of 2.101 for 18 degrees of freedom and ex = 0.05. However,
by chance alone it would be expected that about 5% of the rj* values
would be larger than this value. There does not appear to be sufficient evi­
dence to justify the deletion of Observation 9 as an abnormal result. To
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examine the effect of an abnormal result on the analysis and the nature of
the ri* values with one outlier present, consider the same set of data with
the Yi value appearing in parentheses as the sixth observation. This could
have occurred if the 5 in 1588.4 had been misrecorded as a 6. All of the
detailed calculations for this second part of the example will not be shown.
The parameter estimates for the second analysis are

~o = 6.943212

~l = 0.999753

S2 = 527.347233

Var(~o) = 80.807730

Var~~l) = 1.986610 X 10-6

COV(PO'~l) = 1.039960 X 10-2

The standardized residuals were calculated using the results from the
analysis of the data set with one known outlier present and are presented
in Table 15.3. Because the (X'X)-l matrix remains the same for analysis

TABLE 15.3

Standardized Residuals
Data Set with One Outlier

Observation fl fl-

1 -M5 -0.030
2 -9.05 -0.415
3 -11.15 -0.512
4 -5.15 -0.236
5 -2.35 -0.108
6 90.15 4.138
7 -13.75 -0.631
8 -6.45 -0.296
9 10.85 0.498

10 -4.25 -0.195
11 4.25 0.195
12 -5.85 -0.269
13 -10.75 -0.493
14 -14.45 -0.663
15 1.35 0.062
16 -7.85 -0.360
17 -15.75 -0.723
18 1.05 0.048
19 -6.05 -0.278
20 5.85 0.269



SECTION 15.1 CALElRATION 747

of the revised data set, the hii values are the same for the calculation of
these new standardized residuals.

Because the recording error was large, 1688.4 when it should have
been 1588.4, the rj* value for the observation stands out clearly. With 11
of the other rj* values having absolute values less than 1.0, the value
greater than 4.1 is obviously different. This can be seen clearly on the resi­
dual plots of Figure 15.2 compared to Figure 15.1.
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Figure 15.2 ResiduaI plots for scale calibration with ODe outlier preseat.

15.1.2.2 Nonhomogeneity of Variance in the Responses

In linear calibration applications for which the variance of the y vari­
able is not constant over the range of x of interest, the analysis of the data
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to obtain parameter estimates (intercept, slope, and variances) can be
accomplished as long as the variances are known for the x values used. In
fact, the data can be analyzed when only the relative magnitudes of the
variances are known, e.g., the variance at X2 is 1.5 times the variance at XI>
the variance at X3 is 1.75 times the variance at XI> etc. The problem of cal­
ibration when the variance of the instrument (or measurement system)
response is not constant is encountered quite frequently for NDA measure­
ment methods where the response is related to the amount of the element
(or isotope) of interest. It is sometimes possible to adjust such variables as
counting times during the calibration data gathering runs so the resulting .

. data have equal variances over the range. Such adjustments require pre­
knowledge about the measurement system behavior, however, and this
knowledge must be used at the data collection planning stage.

The following example illustrates the weighted regression analysis
which should be used to obtain the calibration parameter estimates when
the measurement response variance is not constant throughout the calibra­
tion range.

Example 15.3 Assume that a high-level neutron coincidence
counter (HLNCC) was calibrated for neutron-multiplication-corrected
measurements of the mass of 240pu effective contained in PU02 samples.
Three standards were used for the calibration. Replicate 1000 s measure­
ments were made on the low and high standards and a single measurement
on the intermediate standard. The expected variance in the corrected real
rate was determined from expected counting rates for each standard. The
data have been synthesized from some HLNCC results in Krick (1980).
The results are given in Table 15.4.

Over the limited range of 240pu effective mass used for this calibration
exercise, it is expected that the corrected real rate R will be linearly
related to the 240pu effective mass. Because a constant counting time of
1000 s was used for all measurements, however, the variance of the
response would not be expected to be constant. The variances of the
responses due to the coincidence counting procedure are given in the
fourth column of Table 15.4. The weights Wi = 1/(I? are given in the last
column.

Using the methods presented in Section 6.3.2, Case 2, the weighted
least squares estimates were calculated. The model used is the same as the
one given in Section 15.1.2.1, with the important exception that Var(Eij) =
(If is assumed to change from response to response (Equation 6.17). The
calculations for this case are identical to those for unweighted linear
regression, except that weighted rather than unweighted sums and sums of
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TABLE 15.4

Calibration nata for a HLNCC Instrument
Using PU02 Standards

Z40pg err .
R

Obse"atioD (g) (eonnts/s) (T.2 WiI

1 97.45 531.26 63.372 0.0157798
2 97.45 536.71 63.372 0.0157798
3 584.3 3157.01 2221.81 0.0004501
4 97.45 551.16 63.372 0.0157798
5 292.3 1613.08 573.60 0.0017434
6 584.3 3109.82 2221.81 0.0004501
7 584.3 3204.48 2221.81 0.0004501
8 584.3 3133.61 2221.81 0.0004501
9 584.3 3205.44 2221.81 0.0004501

10 584.3 3173.29 2221.81 0.0004501
11 584.3 3072.59 2221.81 0.0004501
12 97.45 531.59 63.372 0.0157798

squares of standard values and responses are used. The corresponding sums
are shown it! the following table.

Unweigbted Weigbted
regression regression

n ~Wi

~Xi ~WiXi

~x? ~WiX?

~Yi ~WiYi

~XiYi ~WiXiYi

~Yi ~WiY?

For the data of this example, with x 240pu effective and y = R
~Wi = 0.0680133

~WiXi = 8.50151587

~WiX? = 1824.035927

~WiYi = 46.67768875

~WiXiYi = 9929.916456

~WiY? = 54,075.28424
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The following estimates are obtained:

Po = 13.9513

PI = 5.3789

S2 = 1.2029

Var(Po) = 42.3719

Var(PI) = 0.00157993

COV(PO'~I) = -0.197488

The linear calibration equation can be used to measure process containers
by solving for x. If Yp is the neutron-multiplication-corrected response on a
process item, then the predicted 240pu effective mass, xpis

Suppose that two containers of plutonium oxide powder were received in a
material balance area and that 1000 s measurements provided Yp values of
2172.87 and 2057.22. The same background information that provided the
measurement variances for weighting of the calibration data indicated that
these two measurements should have variances of 1250 and 1100, respec­
tively. The sum of the grams 240pu effective and the approximate variance
of this sum are needed. The sum can be estimated as

(Ypl + YP2) - 2~o = 4230.09 - 2(13.9513) = 781 24
x'um = PI 5.3789 . g

The variance of the sum is broken down into two components, the variance
associated with the new measurements and the variance due to the uncer­
tainty in the estimated calibration parameters. The component arising
from the new measurements can be estimated as

Var (" ) - 1250 + 1100 = 81.2234 ( )2
r Xsum (5.3789)2 g

and the component due to calibration uncertainty as



SECTION 15.1 CALIBRATION 751

= (4202.19)2 (0.00157993) + [ 2 ]2 (42.3719)
(5.3789)4 5.3789

+ 4(4202.19) (_ 0.197488)
(5.3789)3 .

= 33.3285 + 5.8580 - 21.3302

= 17.8563 (g)2

A measure of the total uncertainty is the sum of these two variance com­
ponents, 99.0797 (g)2, and the estimated standard error is 9.95 g or 1.27%
of the estimated sum.

Both the residuals calculated using Equation 6.31 and the standardized
residuals calculated using an equation analogous to Equation 6.32 for the
weighted regression case are presented in Table 15.5.

TABLE 15.5

Data and Residuals for HLNCC Calibration

ObsenatioD Yi •Xi Yi rj rj

1 97.45 531.26 538.125 -6.865 -0.994
2 97.45 536.71 538.125 -1.415 -0.204
3 584.3 3157.01 3156.843 0.167 0.004
4 97.45 551.16 538.125 13.035 1.888
5 292.3 1613.08 1586.204 26.876 1.176
6 584.3 3109.82 3156.843 -47.023 -1.070
7 584.3 3204.48 3156.843 47.637 1.084
8 584.3 3133.61 3156.843 -23.233 -0.529
9 584.3 3205.44 3156.843 48.597 1.106

10 584.3 3173.29 3156.843 16.447 0.374
11 584.3 3072.59 3156.843 -84.253 -1.918
12 97.45 531.59 538.125 -6.535 -0.946

Because the residual error standard deviation from the weighted regression
analysis is very close to the unit variance that would be expected if the
individual error variance used to obtain the weights were correctly
estimated, the standardized residuals were computed by a modification of
Equation 6.32 given by
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where o} is the variance of the standard measurement for the ith observa­
tion, and Var(Yi) is the variance of the predicted value, Yio for the ith obser­
vation. While it is generally of interest to examine all residuals and stan­
dardized residuals to detect possible outlier observations and to check for
lack of fit of the chosen model, in this example only the single measure­
ment on the intermediate standard (Xi = 292.3) provides information con­
cerning lack of fit. This limited amount of information from Observation 5
does not indicate lack of fit, because the r* value is only slightly larger
than 1.0 (for a = 0.10, 10.95(10) = 1.812). Because none of the r*
values are large, there is no indication of outliers in the data set.

15.1.2.3 Recalibration Procedures

All measurement systems need to be recalibrated on a routine schedule
because of the difficulties in assuring a stable measurement system over
extended periods of time. The need for frequent recalibration is especially
true for some of the NDA measurement methods. If the calibration rela­
tionship changes or shifts, it is important to understand the nature of the
changes or shifts, and to treat the calibration data in an appropriate way
to select the best estimates for the calibration parameters and the uncer­
tainty in the measurement of process items.

In this section, it is assumed that a linear model with unknown inter­
cept is adequate. The methods discussed can be applied to either the con­
stant variance or the nonconstant variance cases as long as sufficient infor­
mation is available in the nonconstant variance case to allow weighted
regression analyses to be performed. In most practical applications, the
calibration equation actually applied is the one based on the most recent
set of data. There may be quite a few ways in which the calibration
parameters could change over time. It could be that the parameters remain
constant within a time period and that random changes occur at the end of
each period. On the other hand, it could be that the parameters change
continuously over time. For this second type of change, the actual changes
might follow some smooth time series or the changes might occur errati­
cally or randomly as time progresses. An extreme example of such a situa­
tion might be where a recalibration within a matter of hours following a
previous calibration would exhibit changes in the parameter as large as



SECTION 15.1 CALIBRATION 753

those which would occur if a longer time had been allowed to elapse
between calibration runs.

Example 15.4 In calibrating an NDA system for the analysis of
uranium solid waste barrels based on gamma counting, the model
y = flo + fl,x is assumed, where y is the net counts per 100 s and x is
the grams of 235U in standard barrels. It is assumed that sufficient expe­
rience has been had with the system so that the standard deviation, O'h for
the measurement of the ith standard is known precisely for 100 s counts.
Data from the five most recent calibration runs are presented in
Table 15.6. For each run, six standard waste barrels were used and two
measurements were performed on each standard. The order of measure­
ment was randomized. Run 5 is the current calibration run. From these
data the results in Table 15.7 were obtained using weighted regression
analysis of each of these five sets and the combined data.

To check for changes in the calibration equation among the runs, the
analysis of variance shown in Table 15.8 was performed. In addition to
testing for differences among the runs, this analysis includes a test of the
adequacy of the linear calibration function. All of the quantities necessary
to construct the table can be obtained from analyses of variance for the
individual and combined regressions (Section 6.4.1) except the weighted
sum of squares of differences between replicates needed to obtain the sum
of squares "between replicate measurements." Specifically, the entries in
the table were obtained as follows:

1. The sum of squares due to the common regression is the sum of
squares explained by the weighted fit of a single calibration line to the
combined data from the five runs (see Equation 6.18 and Table 6.2).
The residual sum of squares from this combined fit is the combination of
the "residual from regression" and the sum of squares explained by the
differences "between intercepts" and "between slopes." Note that
(45.7356 + 22.9745 + 49.1637)/(4 + 4 + 50) = 2.0323, the resid­
ual error variance estimate previously obtained for the combined fit.

2. The residual from regression is the combined residual sum of
squares from the weighted fit of a straight line to each individual run,
which has a combined total of 5(l2 - 2) = 50 degrees of freedom. The
total regression is obtained by the difference between this combined resid­
ual and the total sum of squares.

3. The between intercepts sum of squares is obtained as the difference
between the total sum of squares for the combined runs and the sum of
the total sums of squares within each run.

4. The between slopes sum of squares is the difference between that
explained by "total regression" and the amounts explained by the "com-
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TABLE 15.7

Regression Results

755

Run

1
2
3
4
5

Combined

1111.53
1680.40
1698.96
950.91

1351.76

1358.71

2328.62
2407.08
2491.77
2527.44
2453.38

2441.66

Residual error
.arIaDce estimate

82

0.884456
1.427593
0.755366
1.499050
0.349909

2.032306

TABLE 15.8

Analysis of Variance Table for Differences Between Runs

Source df SS MS F

Common regression 1 28,549.3405 28,549.3405 -
Between intercepts 4 45.7356 11.4339 11.63
Between slopes 4 22.9745 5.7436 5.84

Total regression 9 28,618.0506 - -
Lack of fit 20 25.8375 1.2919 1.66
Between replicate measurements 30 23.3262 0.7775 -

Residual from regression 50 49.1637 0.9833. -
Total sum of squares 59 28,667.2143

mon regression" and the differences "between intercepts." Because the lin­
ear forms determining the slopes and the intercepts are not orthogonal, at
least one of the sums of squares constituting the total amount explained by
the individual regressions must be determined by difference.

5. The sum of squares between replicate measurements is determined
from the weighted sum of squares of the 30 differences between the two
measurements on each standard.

6. The lack of fit sum of squares is the difference between the "resid­
ual from regression" and the "between replicate measurements" sums of
squares.

If the weights correctly reflect the reciprocals of the variances of the
individual measurements, then the mean square between replicate mea­
surements would be expected to be 1.0. The observed value of 0.7776 is
actually less than this expected value, although not significantly, so there
is no reason to suspect unexpected measurement variability or the validity
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of the weights used. The F-ratio between the "lack of fit" mean square,
which represents the deviations of the average of the replicate measure­
ments from the individually fitted lines, and the mean square "between
replicate measurements" is also not significant, indicating the adequacy of
the linear calibration function. This is supported by the fact that the mean
square for the combined "residual from regression" has almost exactly the
expected value of 1.00. The remaining tests are performed using this resid­
ual mean square in the denominator of the calculated F-ratios because the
lack-of-fit test was not significant.

There is no point in this example in testing for the significance of the
"common regression" because the purpose of the calibration exercise is to
determine an assumed functional relationship. The question of interest is
whether or not there is evidence that a single calibration equation is ade­
quate for the combined data. Both the "between slopes" and "between
intercepts" F-ratios are significant at the 0.01 level, so there is evidence
that neither the slope nor the intercept remains constant from one calibra­
tion run to another. It is necessary to understand how the changes occur
before a good decision can be made concerning which calibration parame­
ter estimates to use when measuring waste barrels from the process during
the current time period. Two cases are presented here to illustrate some of
the considerations involved in the selection of appropriate estimates for the
calibration parameters.

For the first case, suppose that sufficient calibration and calibration­
check data and information have been accumulated over recent time
periods to demonstrate that the calibration is stable within each period and
that the changes occur between periods. An example of a system that
might behave in such a manner would be a stable measurement system
which has routine maintenance performed at the end of each month. This
routine maintenance might include replacement of some of the components
with new or reconditioned components. For measurement systems subject
to these types of changes, the calibration parameter estimates obtained
from the calibration run made during the current time period are
appropriate for use throughout that period. Because Run 5 is from the
current time period in this example, ~o = 1351.76 and ~1 = 2453.38 are
the parameter estimates to use when measuring waste barrels from the
process during the fifth time period. To estimate the 235U content, the
usual relationship

would be used with these values for ~o and ~1'
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There is some question concerning which numerical values to use for
the variances of Po and PI and the covariance between Po and PI when cal­
culating the variance of xdue to calibration. All five calibration runs tend
to confirm that the weights for the weighted regression analysis were
correctly assigned. Thus, the assigned value of c? = 1.0 should produce
better values for the needed variances and covariance than the sample esti­
mates obtained from any of the individual run estimates. To illustrate the
calculations for this case, suppose that two waste barrels were counted for
100 s each during the fifth time period and that 13,919 and 42,267 were
the recorded net counts. The sum of the 235U in inventory in the two waste
barrels is needed along with the random error variance for the sum and
the variance for the sum due to the uncertainty in the calibration parame­
ter estimates. The same historical information that provided the O'j values
used for assigning weights to the calibration data indicate that the random
measurement standard deviation for the first waste barrel should be
approximately 508 and for the second barrel approximately 928. Following
the same calculation procedures as in Example 15.3 (Section 15.1.2.2) the
estimate for the desired sum is

(l3,919 + 42,267) - 2(l351.76) = 21.80
2453.38 g

and the component of the estimated variance due to measurement error is

VA (A ) (508)2 + (928)2 = 0.1860( )2
arr Xsum == (2453.38)2 g

The component of the variance in the estimated sum due to uncertainty in
the calibration relationship is

+ [- Ypl + Yp1- 2~orVar(~il

+ 2 [ p,2] [ Ypl + Yp1- 2Po] Cov(Po, p,)
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As discussed previously, if it is assumed that r? = 1 the variances and
covariances depend only on the standard values and the weights common
to all runs, and are the same for each run. For an individual run involving
five duplicate responses, a computation parallel to that given in Example
15.2 produces the values

Var(Po) = 64,187.70

Var(Pl) = 1044.10

COV(PO,PI) = -6167.78

so the component of the estimated variance due to calibration is

Var,(x".,) '" [ - 245;.38r(64,187.70)

+ (53,482.5)2 (1044.10)
(2453.38)4

+ 4(53,482.5) (-6167.78)
(2453.38)3

= 0.04266 + 0.08243 - 0.08935

= 0.03574 (g)2

A second type of changing calibration is quite different from the previ­
ous case. For this second case, it is assumed that at any time the system is
recalibrated the parameter estimates from the repeated calibrations will
change randomly, and that the magnitude of these shifts can be described
by the variation observed in parameter estimates from the available cali­
bration runs. With these assumptions, an average calibration curve (in
some sense) could be used, supported by the additional assumption that
there is a true calibration curve which is fixed rather than variable, so that
the observed variability in the parameter estimates is due to the calibration
process. The changing calibration curves observed from the various cali­
bration runs might be the result of random short-term fluctuations in en­
vironmental conditions which affect the instrument response. Such factors
as day-to-day changes in the line voltage to an NDA instrument might
cause such behavior. The purpose of recalibrating such a system is to
obtain a better estimate of the average calibration curve and the variances
and covariances of the parameter estimates. It is generally recommended
that the repeated calibrations be spread out over time to permit monitoring
for nonrandom shifts or trends, should they occur.
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Obtaining the average, sample variances, and sample covariance of the
estimates ~o and ~" is straightforward when all of the repeated calibration
runs have the same design and are performed identically. If different
numbers of replicate measurements on the standards or different choices of
standards have occurred for some of the repeated calibration runs, then an
alternate weighted analysis approach to the one described below must be
used. The individual estimates of ~o and ~l for each run and for the com­
bined data were given in Table 15.7. The average value of the individual
estimates is, in this case of repeated runs with the same design, identical to
the estimates obtained from the combined data. The estimated variances
and covariance obtained from the five pairs of individual estimates are

Var(~o) = 111,675.40

Var(~l) = 5595.10

COV(~O'~l) = -298.86

For this case, the sum of the 235U in the two waste barrels would be calcu­
lated from the average (or, equivalently, combined) estimates as

Xsum =
(13,919 + 42,267) - 2(1358.71)

2441.66

53,468.58 = 2190
2441.66 . g

The component of the estimated variance due to measurement error would
be estimated as

Var (x ) == (508)2 + (928)2 = 0.1877 ( )2
r sum (2441.66)2 g

and the component of the estimated variance due to uncertainty in the cal­
ibration relationship as

Varc(xsum) == 4 2 (111,675.40)
(2441.66)

+ (53,468.6)2 (5995.10)
(2441.66)4

+ 4(53,468.6) (-298.86)
(2441.66)3

= 0.07493 + 0.48223 - 0.00439

= 0.55277 (g)2
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The estimates of the sum for the two cases agree within 0.1 g in 22 g,
or about 0.5%, and the measurement variances are essentially the same.
However, the variance component due to calibration uncertainties is con­
siderably larger in the second case, as would be expected because of the
inclusion of the variability between runs. There may be situations where
the two estimates for the sum would be in poorer agreement. As an exam­
ple, if Run 4 had been the most recent, the estimate for the sum in the
first case would have been 21.48 g as compared with an estimate in the
second case of 21.90 g. It is important to understand how changes are
occurring when a calibration curve is not constant from one run to
another, and to choose the most realistic estimates for the calibration
parameters.

15.1.3 Nonlinear Calibration

Many of the instrument and vessel calibration applications in safe­
guards can be handled adequately using methods of linear regression anal­
ysis. For some NDA instrument applications, however, the curve may
depart from linearity, depending on the range of standards covered by the
calibration. In the case of process vessel calibrations, the curve may be
nonlinear in a complex way, depending on the shape of the vessel and the
possible presence of internal piping or mixing equipment. In some cases,
the nonlinear calibration curve can be adequately represented using a
quadratic or possibly a cubic polynomial model, providing that the range
of the calibration can be restricted sufficiently or that the total range can
be broken into subranges to limit the curvature within individual calibra­
tion intervals. It is also possible that a simple transformation of one or
both of the variables in a nonlinear relationship will result in a linear rela­
tionship between the transformed variables. The example used in the fol­
lowing section was selected so that both the use of a quadratic calibration
model and the use of transformations can be demonstrated on the same
data set.

Small data sets are used in this chapter to illustrate various estimation
problems. The use of such sets should not be interpreted as a recommenda­
tion for sample sizes or numbers of standards to be used in any particular
application. Replicate measurements may be desirable on some or all of
the standards, and more than a single calibration run may be performed,
as considered in Section 5.2.3.2.

15.1.3.1 Simple Nonlinear Calibration
The fitting of simple nonlinear calibration models will be illustrated by

the following example.
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Example 15.5 A high-level neutron coincidence counter (HLNCC) is
used to measure the grams of 240pu effective in samples of PU02 based on
neutron coincidence counting (Krick, 1980, Appendix B). Six standards
were used to calibrate the instrument and 1000 s counts were obtained on
each standard. The data from single measurements on each standard are
given in the following table and are shown in Figure 15.3. These measure­
ments differ from those in Example 15.3 in that the count rates are not
corrected for neutron multiplication.

240pu effective
(g)

97.45
195.0
292.3
389.8
487.4
584.3

Real coincidence
response

(counts/s)

715.4
1609.4
2577.0
3553.6
4617.4
5811.8

7000

6000
"'" •

5000
"'" •

R 4000","

•
3000"'"

•
2000","

•
1000"," •

0 I I I I I I

100 200 300 400 500 600
m

FIgure 15.3 CoiDcideace COUDting results on six c:aUbratlon standards.

Also, an unknown sample was counted for which the measured response
was 2791.0 counts/so From other analytical measurements on the unknown
sample, it had an assigned value of 312.6 g of 240pu effective.
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First, a quadratic model will be used to fit these calibration data,
assuming

(15.9)

where

R= real coincidence response

m = 240pu effective

Using standard computational procedures, the following estimates were
obtained for the quadratic model:

Po = -84.00115299

PI = 7.958176756

P2 = 0.0035933502

Var(~o) = 2499.577872

Var(~I) = 0.112780025

Var(~2) = 2.324774213 X 10-7

COV(~O'~I) = -15.64001796

COV(~O'~2)= 2.058836758 X 10-2

COv(PltP2) = -1.585145973 X 10-4

The calibration equation can be rewritten as

(15.10)

The positive solution for m is

m=
-(31 + J{3( - 4{32({30 - R)

2{32

The estimated values ~o, ~lt and P2 were used, along with the observed it
value of 2791.0, to obtain an estimate mof 316.1368 g for the content of
the unknown sample. As in previous examples, Equation 3.51 can be used
to calculate the approximate variance of mdue to the uncertainty in the
estimated calibration parameters. There is also uncertainty in the predicted
value mdue to the random error in measuring R. This uncertainty will not
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be included in the following calculation but will be considered later when a
method of transforming the calibration data is illustrated.

To obtain an estimate for the variance of mdue to calibration uncer­
tainty using the Taylor's series approach, the following partial derivatives,
given in implicit form, are needed:

(15.11)

(15.12)

(l5.!3)

From Equation 3.51,

(15.14)

where the derivatives are evaluated at the estimates of m, fJh and fJ2' From
the estimate mobtained using Equation 15.10 and the estimates P2 and PI
previously calculated, estimates of the derivatives can be calculated from
Equations 15.11, 15.12, and 15.13 as -0.0977502, -30.902440, and
-9769.3997, respectively. Substituting these values along with the
estimated variances and covariances of Po, Ph and P2 into Equation 15.14,
the estimated variance of the estimate mis obtained as
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Varc(m) = 23.8837 + 107.7005 + 22.1879 - 94.4882

+ 39.3222 - 95.7106 = 2.8955 (g)2

SEC<m) = 1.7016 g

Direct solution of the .calibration equation for m is only practical for
linear and quadratic equations when polynomial models are used for non­
linear calibrations. Numerical solutions of the calibration equation, along
with numerical estimates of the variances of these estimates calculated
using the implicit form of the derivatives, are advised for higher order
polynomials.

Experience has shown that an appropriate transformation of one or
both variables may result in a more nearly linear relationship between the
transformed variables. A second possible benefit from making a transfor­
mation on the response variable is that it may result in increased homo­
geneity in the variances of the observed responses. For NDA calibration
data similar to the HLNCC data used in Example 15.5, both of these
objectives can be accomplished by taking natural logarithms of both
variables. A linear calibration model in the transformed variables can be
written as

In R= flo + fl\ln m

This is equivalent to assuming the power function relationship

(15.15)

(15.16)

where flo = /., between the untransformed variables. The calibration
data are plotted on a logarithmic scale in Figure 15.4, and it appears that
the transformed variables are very nearly linearly related. In this example
there should be some concern about whether the observed responses­
which range from about 700 to 580o-should be expected to have constant
variance. With no replication of measurements for the six standards, it is
not possible to really investigate this question nor to demonstrate stabiliza­
tion of the proposed variance through use of the transformation. However,
experience with other NDA calibration data sets similar to these HLNCC
data has indicated that a logarithmic transformation of the response varia­
ble often helps to increase the homogeneity of the variances.
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Figure 15.4 Transformed calibration data.
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From the computational procedures for unweighted linear regression,
using the logarithms of the standard values and coincidence responses, the
following estimates were obtained:

~o = 1.247461137

~l = 1.163022395

Var(~o) = 0.0011608119

Var(~l) = 0.0000356282

COV(~O'~l) = -0.000202221

Solving Equation 15.15 for In m yields
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[
lnR - Pol

m =exp 131

For the container of plant material with R = 2791.0, the estimate of the
240pu effective is m = 314.0057497 g. If the two-parameter form of
Equation 15.14 is used with

am _ [ -1] lIn R- PoI-- - exp
0130 131 131

the estimated variance and standard error of this estimate are

Varc(m) = (-269.9911464)2(0.0011608119)

+ (-1552.290147)2(0.0000356282)

+ 2( -269.9911)( -1552.2901)( -0.000202221)

= 84.617608 + 85.849873 - 169.503467

= 0.9640 (g)2

and

SEc(m) = 0.9818 g

(15.17)

(15.18)

In this simple calibration example, the model using the transformed data
appears to fit the data somewhat better than the quadratic and has a
smaller variance due to calibration uncertainty for containers in the range
of 314 g of 240pu effective.

In addition to the variance due to calibration uncertainty, there is also
a variance due to the random error of the response variable, R, when a
container is measured using the instrument. Because there were no repli­
cate measurements on any of the standards during the calibration run,
there is no direct measure of the variability of the measurement. However,
because a fixed counting time was used in all of the standards measure­
ments, and assuming that the logarithmic transformation did result in sta­
bilization of the variance, then the residual variance estimate from the
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regression analysis provides an estimate of the variance of In m. This con­
tribution to the variance of a predicted m is

[ 1

2am •
Varr(m) ~ ~ VarOn R) (15.19)

where the partial derivative with respect to In Ris equal to the negative of
the partial derivative with respect to flo, and the residual error variance
from the log-linear fit is used as an estimate of VarOn R). For the
unknown container, the estimate of this component of the variance turns
out to be

Varr(m) ~ (269.9911464)2(0.0000781836) = 5.6992

This component should be added to the component due to calibration as in
Example 15.4.

15.1.3.2 Multiple nata Sets

As noted in Section 15.1.2.3, all measurement systems need to be mon­
itored routinely for shifts in the calibration from one time period to
another. The monitoring over time of the calibration should be accom­
plished by routinely making at least one calibration check during each
time period. If the calibration shifts occur randomly over time, the calibra­
tion parameter estimates may be regarded as being randomly selected
from a population of parameters and the variability of the estimates can
then be more realistically measured from several calibrations obtained over
time than from a single calibration run (or from several calibration runs
made very close together in time). When the calibration shifts do not
occur randomly over time, decision rules need to be established either for
bias correction of the measurement results or for complete recalibration.

In this section, it is assumed that a quadratic model is adequate to
represent the nonlinear calibration curve over the range covered by the
standards used for calibration. The adequacy of this assumption has been
demonstrated in a number of applications, especially for NDA calibration
data sets. It is further assumed that there is a constant variance over the
range of calibration. The methods are demonstrated through an example
involving two similar sets of data. The first set is based on actual repeated
calibration runs made using an NDA instrument known as a stabilized
assay meter (SAM). Because an analysis of the actual calibration data did
not indicate a difference in the calibration curves among the runs and
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there were no replicate measurements made on the standards during the
individual calibration runs, a second set of calibration data was generated
to demonstrate a more in-depth analysis than was possible using the origi­
nal data. The synthesized data for the second example assumed the same
general model used in the analysis of the original data, but included ran­
domly imposed run-to-run differences in the calibration parameters.
Because experience with NDA calibration data has indicated that it is dif­
ficult to maintain constant variance (or constant relative variance) when
there is more than a factor of 10 difference between the assigned value of
the high standard and the assigned value of the low standard, the range of
standards used for the data in the second set was restricted to between
3.9761 and 40.18 g plutonium. It is frequently difficult to maintain con­
stant variance over the range of the standards, and when the range of the
standards used is too great, it may not be possible to find a simple calibra­
tion model to adequately describe the data.

Example 15.6 A stabilized assay meter (SAM) was calibrated using
six standards. Five different calibration runs were made within a period of
2 days. The following calibration data were obtained:

TABLE 15.9

SAM Calibration Data

AsaigDed ..IDe Net eounts
or the ltaadard

(g Pu) Ran 1 Ran 1 Ran 3 Ran 4 Ran 5

1.0019 653 680 577 606 687
1.9971 1293 1343 1362 1280 1318
3.9761 2779 2690 2704 2767 2792

10.571 6937 6822 6945 6909 6902
40.18 27,698 27,666 27,574 27,849 27,679

160.15 101,511 101,810 101,941 102,163 101,602

A model adequate to describe these calibration data is

In C = flo + fll (In g) + fl2 (In g)2

where

C = net counts
g = grams plutonium contained in the standards
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The following estimates for the three calibration parameters ({jo, {j\> (j2)
were found:

Run flo fll fl'1. Residual variance

1 6.4713 1.0438 -0.0090647 0.001355
2 6.5134 1.0018 -0.0020567 0.001146
3 6.4001 1.0994 -0.0176234 0.002971
4 6.4139 1.0842 -0.0147685 0.001523
5 6.5161 1.0114 -0.0042405 0.001603

Combined 6.4630 1.0481 -0.0095508 0.001577

To make a test for differences among the five calibration runs, the
analysis of variance shown in Table 15.10 was calculated:

TABLE 15.10

Analysis of Variance Table for Five Calibration Runs·

Source elf SS MS

Between runs 12 SSl = SS2 - SS3 = 0.016785 MS1 = 0.00139875
Residual (combined

data) 27 SS2 "'" 0.042579 MS2= 0.001577
Residual (5 individual

run models) 15 SS3 ... 0.025794 MS3= 0.0017196

·Transformed data using logarithms.

In this table, SS2 is the residual sum of squares and MS2 is the residual
variance estimate when a single calibration curve is fitted to the combined
data. SS3 = 3(0.001355 + ... + 0.001603) is the total residual sum of
squares from fitting calibration curves to the individual run data. Because
the mean square "between runs" (due to fitting 12 additional parameters
in the individual calibration models) is not significantly larger (F < 1)
than the residual variance estimate from the individual runs, there is no
evidence of significant differences among the calibration runs. For the time
period immediately following the five calibration runs, the best estimates
for the calibration parameters are those obtained from the analysis of the
combined data (from all five calibration runs). From the analysis of the
combined data, the following variance and covariance estimates were
obtained using the usual calculational procedures:
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Var(po) = 0.01504

Var(PI) = 0.01523

Var(P2) = 0.002883

COV(Po.PI) = - 0.0001771

COV(PO,P2) = + 0.00002737

COV(PhP2) = - 0.00004225

These variances and covariances can be used to calculate an estimate of
the standard deviation of the computed plutonium content for an actual
production item using methods similar to those used in Example 15.5 of
Section 15.1.3.1.

As with all measurement systems, the calibration for this measuring
instrument should be monitored during subsequent time periods following
the original calibration runs. If the monitoring consists of one new calibra­
tion run, an analysis of variance test analogous to the one used to test for
differences among the original runs can be used to check for a change in
the calibration equation.

Because there were no replicate measurements made on any of the
standards during any of the individual calibration runs, there was no esti­
mate of the pure error variance available from the original set of calibra­
tion data. Therefore, a good test for lack of fit of the model was not avail­
able. There is a strong indication, however, that the model used for the
calibration is not completely adequate to describe the observed calibration
data. The predicted net counts for the 10.571,40.18, and 160.15 standards
are 7,197, 27,004, and 102,455, respectively, based on the parameter esti­
mates from the analysis of the combined data. For these standards, the
predicted values are completely outside the range of observed counts from
the five calibration runs, an indication that the model is not adequate to
cover the entire range of standards used for the calibration. This observa­
tion illustrates the difficulty of finding a simple calibration model to ade­
quately describe the data when assigned values of the standards differ by
more than a factor of 10.

A second set of data will permit a demonstration of a lack-of-fit test, in
addition to a test for differences among several calibration runs. The data
were synthesized from the assumed model and the parameter values
obtained from an analysis of the observed calibration results for the
3.9761, 10.571, and 40.18 standards. Run-to-run differences in the param­
eters were randomly imposed and replicate measurements were generated
for each standard during each calibration run. For reasons discussed ear­
lier, the range of standards used was restricted, the lowest standard con­
taining 3.9761 g of plutonium and the highest standard 40.18 g of pluto­
nium. The synthesized data are presented in Table 15.11.
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Using the same calibration model as in the first example, the estimates
obtained for the parameters are given in the following table:

.. ..
P2 Residual varianceRun Po PI

1 6.7443 0.78147 0.042968 0.00014179
2 6.6028 0.90695 0.022845 0.00010718
3 6.7429 0.79585 0.039099 0.00006562
4 6.8249 0.71503 0.056005 0.00001906
5 6.8100 0.73976 0.049405 0.00004142

Combined 6.7450 0.78781 0.042064 0.00032055

The analysis of variance table for these calibration runs is presented in
Table 15.12. The analysis is quite similar to that of Example 15.4.

TABLE 15.12

Analysis of Variance Table for Five Calibration Roost

Source df SS

Total regressions 15 - 1 = 14 33.4689404

Common regression
(combined data) 3 - 1 = 2 33.4565001

Reduction due to fitting
additional parameters in
individual models 12 0.0124403

Residual from regression 35 0.0026255

Lack of fit 10 0.0006230

Between replicate
measurements 25 0.0020025

Total sum of squares 50 - 1 = 49 33.4715659

tTransformed using 10garithmS-5ynthesized example.

MS

MS1 = 16.72825005

MS2 = 0.00103669

MS3 = 0.00007501

MS. = 0.00006230

MSs = 0.00008010

All entries in the table are calculated from the logarithms of the observa­
tions. Beginning at the bottom of Table 15.12, the entries are calculated as
follows:
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1. The total sum of squares (33.4715659) is the sum of squares of the
deviations from the mean for the combined data. The degrees of freedom
(df) are the total number of observations minus one.

2. The sum of squares between replicate measurements (0.0020025)
was obtained by accumulating the sum of squared deviations of the repli­
cate measurements for each set of measurements from the mean for that
set. Because only two replicate measurements were routinely made in this
example, this quantity can be calculated by squaring the difference
between the paired results, accumulating oveT ::!11 standards and runs, and
then dividing by 2. The df in this case are one for each pair of replicate
measurements. More generally, the number is the total number of observa­
tions less one df for each set.

3. The lack of fit sum of squares (0.0006230) is obtained as the dif­
ference between the "residual from regression" sum of squares and the
"between replicate measurements" sum of squares. The df are also
obtained by difference.

4. The residual from regression sum of squares (0.0026255) is the
sum of the individual residual sums of squares from the analysis of each
run. The residual for each run has 10 - 3 = 7 df and the total has
5(7) = 35 df.

5. The reduction due to fitting additional parameters in individual
models sum of squares (0.0124403), which is due to fitting 12 additional
parameters after having fitted 3 parameters to the combined data, is again
obtained by difference. The total residual sum of squares from regression
and the sum of squares explained by the common regression are subtracted
from the total sum of squares. The df are the additional number of param­
eters estimated in the individual run calibration equations, and can also be
obtained by difference (49 - 35 - 2 = 12).

6. The common regression sum of squares (33.4565001) is calculated
directly from the combined data as described in Section 6.4.1, Equation
6.18. As shown in Table 6.2, it is the difference between the residual from
the common regression and the total sum of· squares, and has
p - 1 = 3 - 1 = 2 df.

As in Example 15.4, all entries are obtained from the regression analysis
of variance on the individual runs and the combined runs, except the sum
of squares between replicates. The mean squares are obtained by dividing
the sums of squares by the corresponding degrees of freedom.

To test for lack of fit, form the F-ratio MS4/MSs. In this example, the
calculated F is less than one, and there is no evidence that the chosen
model is inadequate for the calibration data being analyzed. In such a situ­
ation, MS3 is used as an estimate of the random error variance. The
F-ratio 16.73/.000045 for the common regression is very large, as would
be expected. To test whether there is a significant difference among the



774 CHAPTER 15 EST1MADIG MEASlII:MENT VARIABILITY

individual calibration equations, the F-ratio MS2/MS3 is used. The value
calculated for this F-ratio is 13.82. Because the 99% fractile for the
F-distribution with numerator df of 12 and denominator df of 35 is equal
to 2.74, the hypothesis of no difference among the calibration runs is
rejected, so there is evidence of differences between runs.

This second analysis demonstrates that with the added calibration data
from making replicate measurements on the standards, it is possible to test
for the adequacy of the chosen calibration model in addition to testing for
differences due to the different calibration runs. The ability to make both
types of test is important in many practical applications.

15.1.4 The Cumulative Error Model

The cumulative error model was introduced by Mandel (1957) to pro­
vide the correct treatment of a class of calibration problems for which the
usual least squares model is not appropriate. In the example which gave
rise to the model, a plastic specimen is tested for its resistance to abrasion
by subjecting it to the actions of an abrasive wheel for successive test
periods. The lengths of the test periods are measured without error. The
model used for the amount of wear is

(15.20)

where Xi is the total time of exposure prior to the ith measurement of wear,
Yi is the amount of wear, and ei is the error in Yi' Mter an exposure of Xi
units of time, the wear is Yt; after X2 units of time, the wear is Y2, where
X2 > XJ, Y2 ~ YJ, and so on. The error in Yi is cumulative and arises from
the variation in the amount of wear per unit of exposure time and not
from the variation in measuring the amount of wear. This model has been
particularly useful in material accounting in connection with the calibra­
tion of process vessels, where the dominating source of variation is often
the cumulative error in the measurement of the incremental additions of
liquid, not the instrumental response (Jaech, 1964).

Assume that the data from the study arise from i incremental addi­
tions starting with Xo = Yo = 0 resulting in the observation (XioyJ For
the particular conditions considered here, both the measured response and
the variance of the measured response after any incremental addition are
assumed to be proportional to the total added. This means that

(15.21)
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where the Ej = ej - ej-h i = 1, ... , n, are independent, and that

775

(l5.22)

where Ul is the incremental variance per unit of incremental addition. The
expression cumulative error model arises from the fact that the errors ej in
Equation 15.20 are the cumulative sums

of the independent errors in the increments.
From Equation 15.22 it follows that the quantities 11j = Ei/.JXj - Xj-l

would not only be independent but would have constant variance Ul. Divid­
ing Equation 15.21 on both sides by .JXj - Xj-l gives

(l5.23)

where

Yj -Yj-l
Zj=---;:.===-

.JXj - Xj-l

The transformed model Zj = tJtj + 11j can be fitted by the ordinary least
squares method of Chapter 6 because the Zj have equal variances and are
uncorrelated. The estimated slope of a first degree model that passes
through the origin is

since Yo = Xo = O. The variance of the estimate ~ is

.. Ul Ul
Var(tJ) = --2 = -

~tj Xn

(l5.24)

(l5.25)
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From ordinary least squares theory it is known that the residual variance
is estimated by

2 ..
~Zj - P~tiZj

n-l n-l

and thus the variance of 8is estimated by

When the model is of the form

i

= Po + {3IXi + ~ Ej
I

it can be shown that

Yn - YI
Xn -XI

Po = YI - PIXI

~ (Yi - Yi_I)2 (Yn - YI)2

Xi - Xi-I Xn - XI
S2 = ----'--..:.....:'----'-----'--

n-2

(15.26)

Var(8o) =

(15.27)

While the slope estimate 81 = (Yn - YI)/(Xn - XI) appears to make
no use of the intermediate data (Y2' X2), ... , (Yn,xn), this is not really the
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case because all values larger than Yi would not be what they are if a par­
ticular Yi had not been observed. The intermediate data are used, but they
are used implicitly and their information is manifest only in the cumula­
tive value Yn'

Consider the situation where y = fJx + E, E(y) = fJx, and the user has
to choose between model A, the constant variance, uncorrelated errors
model; and model B, the cumulative errors model. Mandel (1957) studied
the effects of choosing the wrong error model upon the slope estimate and
upon the estimated variance of the slope estimate. If the error is cumula­
tive but model A is incorrectly chosen, then the user calculates the slope
estimate and the estimated variance of the slope estimate with formulas
derived from the wrong model. In this case the slope estimate is unbiased
and even relatively efficient, but the estimate of the variance of the slope
estimate greatly underestimates (on the average) the true variance of the
slope estimate. This leads to confidence limits that are too small and tests
of hypotheses with high probabilities of Type I error. In the second case
the cumulative error model is assumed, but model A is correct. The slope,
residual variance, and slope estimate variance are all calculated by formu­
las from the model B case. In this case the slope estimate is unbiased but
very inefficient, and the variance of the slope estimate of the incorrectly
chosen model is overestimated. This produces inflated confidence limits
and hypothesis tests with little power.

It is clear that there are pitfalls associated with the misuse of each
model and that it is important to choose the error model correctly. Some
indication as to whether the errors are independent can often be obtained
if y is plotted against x. The data will tend to vary systematically rather
than randomly about the theoretical or fitted line if the cumulative model
is applicable. Figure 15.5 from Mandel (1957) illustrates this point. For 50
equally spaced values of x from 1 to 50, and 50 values of Ei taken from a
table of random normal deviates, the values Yi = 3Xi + Ei (independent

i
data) and Yi = 3Xi + .};. Ej (dependent data) are plotted. Note that

J-1
while systematic behavior may arise from dependent errors in the observa-
tions, such dependence is only one possible cause for systematic behavior.

As indicated, the cumulative error model may be particularly useful as
a method of vessel calibration. The rationale for its use is as follows. Con­
sider a vessel that can be emptied completely and has the same cross­
sectional area at all heights. The vessel is filled by independently weighing
the nominally equal amounts added to the vessel. The corresponding
manometer reading (here, the x value) is read exactly. If the errors in the
weight additions are independent with equal variances (in the case of equal
additions) or with variances proportional to the nominal weights added,
then a cumulative error model of the first degree is appropriate. In prac­
tice, the process vessel may have to be divided into different regions
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Figure 15.5 Comparison of independent 'so cumnlati,e data: n = 50 (from Mandel, 1957,
with permission~

because of heels originally present and because the cross-sectional areas
are not uniform throughout the tank. The tank does not necessarily have
to be a perfect cylinder where pipes and equipment do not intrude, but
within a region these cross-sectional areas should be the same. Determin­
ing just where the cross-sectional areas change can be difficult if based
only on the calibration data. The presence of heels can be accommodated
by the use of a linear model containing a constant term.

One advantage that the cumulative model has when different regions of
the vessel require different linear models is that the prediction line for the
cumulative error model goes through the end points. Suppose that one
region goes from (Xi,yi) to (Xj'Yj), j > i, and the next region goes from
(Xj'Yj) to (xk,yk),k > j. Then the prediction lines

Yj - Yi .
Y- Yi = --- (x - Xi), xi < X< Xj

Xj - Xi

Yk -yo
Y- y. = J (x - x'), x· < x < Xk

J Xk - Xj J J

have the point (Xj,yj) in common.
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Suppose that m calibration runs are made on a vessel that has no heel.
From the cumulative model it follows that if Yn." Yn.2' ... , Yn,m (the last
volume values for each run) are all at the same manometer reading Xn,
then they should have the common variance xn~' Then the variance
estimate

can be compared to

S2 = xn(sl + Sf +... + s'fn)/m

where Sj2 is the residual variance from the ith fitting. If Var(Yn) is signifi­
cantly larger than S2, the cumulative model does not hold. The more
interesting situation is that in which Var(Yn) is significantly smaller than
S2. This result indicates that the fluctuations from calibration point to cali­
bration point are due mostly to inherent variations in the process vessel
and not in the weights of liquid added, and that the uncertainties
associated with the cumulative model greatly overestimate the true
uncertainty associated with each prediction point. Suppose that both
manometer readings and measurements are made without error. Then in
the absence of transients that affect the shape of the process vessel, the
graphs of the calibration data (as irregular as they may appear to be)
should be perfectly superimposable on each other.

The cumulative error model can be extended to higher order polynomi­
als simply by differencing as before to make the errors uncorrelated and
dividing through by .JXj - Xj-l to make the variances equal. Then multi­
ple regression fitting procedures and all the associated tests and results can
be applied to the vectors (Zj, ti,h ti,2, ... , !i,1t), i = 1,2, ... , n.

1S.1.S Inverse Calibration
In the preceding sections, the calibration function has been estimated

by considering the known values of the quantity to be estimated as the
independent variable, and the observed instrumental or procedural
responses as the dependent variable. However, as has been noted, it is the
inverse of this calibration function that is used to determine the measure­
ment result from an observed response on a process item. For linear cali­
bration, this use of the calibration equation in the inverse form poses no
particular problem. Further, the direct determination of the variance of
the inverse estimate using the techniques illustrated in previous sections of
this chapter is also relatively straightforward for quadratic functions, as
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shown in Section 15.1.3.1 and by Jaech (1973). For cubic or higher-order
polynomials, however, it is difficult or even impossible to obtain an explicit
expression for the inverse function. The estimate itself and its approximate
standard error may be relatively easy to determine by numerical or graphi­
cal means, but it is difficult to study other distributional and statistical
properties in the absence of an explicit inverse equation.

An attractive approach to this problem is simply to invert the regres­
sion process, using the known values of the calibration standards as
dependent variables and fitting them to an appropriate function of the
measured responses. In an early article, Eisenhart (I939) argued that the
direct, or "classical," approach should be preferred. More recently, argu­
ments have been presented that the inverse approach should be preferred
on its own merits, not simply because it is convenient to use (Krutchkoff,
1967). This has stimulated a great deal of discussion and numerous
attempts to justify both "classical" and "inverse" methods on theoretical
grounds. A recent review of the application of calibration procedures to
tank calibration (Mullen, 1982) summarizes the arguments and gives
extensive references. Although the classical approach as presented in this
chapter seems to be favored, certainly no consensus has been reached.

Where a calibration function involving some form other than a simple
first or second degree polynomial is required, approximate techniques can
be applied to obtain the variances of the estimates. These techniques are
described by Mullen (I982) and are illustrated in Section 15.1.3.1. The
techniques are similar to those which have been used in nonlinear estima­
tion problems and should be used when the number of parameters in the
calibration function is greater than two or three.

15.2 MEASUREMENT CONTROL PROCEDURES

The use of known standards to obtain estimates of measurement error
parameters and to monitor measurement processes for bias is one of the
basic requirements of measurement control programs. The use of standards
to monitor the measurement error parameters will be discussed in this sec­
tion. To monitor measurement systems for bias, it is usually necessary to
make measurements on "known" standards. The significant characteristic
of such standards is that their values are assigned by a process that pro­
duces error effects which are negligible compared to the constant effects
present in the measurement system being monitored. In some instances, it
is only required that the systematic difference between the results from
two measurement procedures (or two applications of the same procedure)
be negligible-Le., that the procedures are not biased relative to one
another. With such a relaxed requirement, process materials may be used
in place of standards.
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There are a number of difficulties associated with the practice of
estimating measurement error variances using data from the measurement
of standards. This is particularly true of programs involving the destruc­
tive analysis of process materials to determine element or isotope concen­
trations. Standard materials have not always been available for all
measurement applications, or their costs have been a limiting factor in
their widespread usage. Also, known standards often are not completely
representative of the types of materials actually being measured from the
production process. There may be a number of factors, such as impurity
content levels or stability of the standard, that can affect the magnitudes
of the errors differently when measuring production samples and known
standards. It is often difficult to adequately disguise a standard when it is
submitted for analysis, and even the most conscientious analyst has prob­
lems being completely objective when it is known that the sample is not
typical of the process materials. Further, it may be obvious to the analyst
that certain steps in the measurement procedure-e.g., purification
steps-are not required when measuring standard materials, thus eliminat­
ing potential sources of bias and random error in the final reported result.
Consequently, error variances often tend to be underestimated when data
are obtained from the measurement of standards.

Nevertheless, the use of known standards does play a very important
role in the monitoring of measurement systems, as illustrated in
Appendix 14A. Some measurement systems can be designed so the con­
stant effects are small enough to be of no practical importance. For many
measurement systems, however, they cannot be ignored and frequently
they do not remain constant over time or changing conditions of measure­
ment. In these cases, a measurement control program is needed that stan­
dardizes the conditions under which measurements are made and monitors
the effect of changing conditions over time.

15.2.1 Monitoring Measurement Processes
Against Standards

In-plant control programs are usually based on a planned program for
the measurement of one or more standards. The replicate measurements
can be used to determine the need for bias corrections, estimate the correc­
tion factor or factors to be applied, and estimate the measurement error
variance components required to determine the variability in reported
results.

15.2.1.1 An Example of Routine Monitoring

An example of data from enrichment measurements obtained over time
on a standard will illustrate the methods for analyzing data which have
been collected to monitor bias.
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Example 15.7 Four NDA measurements of the percentage of
23SU in a sealed U02 standard having an assigned 23SU content
Ito = 3.046% with standard deviation 0'0 = 0.0006 are made each day.
The data for 10 successive days are listed in the following table.

Day Day Day Day Day
Obsenation 1 2 3 4 5

1 3.025 3.033 3.049 3.006 3.010
2 3.022 3.044 3.041 2.978 3.050
3 3.017 3.047 3.075 3.022 3.039
4 3.024 3.049 3.078 3.028 3.057

Total 12.088 12.173 12.243 12.034 12.156
Mean 3.022 3.043 3.061 3.008 3.039

Day Day Day Day Day
Obsenation 6 7 8 9 10

1 2.998 3.048 2.984 3.042 3.037
2 3.002 3.072 2.972 3.017 3.051
3 3.024 3.108 3.002 3.053 3.034
4 3.013 3.057 2.954 3.044 3.039

Total 12.037 12.285 11.912 i2.156 12.161
Mean 3.009 3.071 2.978 3.039 3.040

Grand total 121.245 Overall mean 3.031125 .

An appropriate model for these control data is analogous to the error
model developed for the bulk measurement calibration in Appendix 14A.
Three levels of error effects are assumed: deviations from a daily mean
value, deviations of the daily mean from an overall mean for the data set,
and a deviation of the overall mean from the standard value. The model
for a one-way analysis of variance appropriate for these data is given by
Equation 5.6 of Section 5.1.1, and the appropriate analysis for determining
variance components is given in Section 5.2.1. Because the daily sample
sizes are equal, no = n = 4, and there are a = 10 days in the analysis,
so that N = an = 10(4) = 40. From Table 5.3, Section 5.2.3, and the
calculational methods given in Section 5.1.1, the analysis of variance given
in Table 15.13 can be computed. This analysis of variance incorporates the
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TABLE 15.13

Analysis of Variance for Routine Monitoring Data

Source df SS MS E(MS) F

Deviation from
standard 0.008851 0.008851 r?- + 4 O'~ + 40(1£ - /I{)2 2.955

Between days 9 0.026952 0.002995 r?- + 4 O'~ 10.44

Within days 30 0.008615 0.0002872 r?-

test for an overall bias in this data set. The sum of squares for the single
deviation -0.014875 = 3.031125 - 3.046 of the overall mean from the
standard is given by 40( -0.0148752) = 0.008851. The remaining sums
of squares are obtained from Equations 5.19 and 5.20 using the sums

40

51 = ~ x6 = 367.544317
1

52 = ~ Tr = 1470.142809 = 367.53570225
~ 4 4

53 = T
2

= 121.245
2

= 367.508750626
40 40

where T j and T are the daily totals and grand total, respectively. Using the
mean squares between (M5B) and within (M5w) as estimates of their
respective expected values, which are linear combinations of the variance
components of interest, the estimates

q2 = 0.0002872, U= 0.0169

and

U~ = 0.002995 ~0.0002872 = 0.0006769, u
a

= 0.0260

are obtained for the variability within and between days. The calculated F
for testing the hypothesis that there is no difference in the day-ta-day devi­
ations from the overall mean is 10.44, which is significant at the 0.01 level
for 9 and 30 degrees of freedom. Therefore, there is good reason to con­
clude that the variability in the measurement method from day to day is
greater than the variability within a given day. This is also quite apparent
from Figure 15.6 where the data are plotted sequentially.
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Figure 15.6 Daily results of emicbment measurements on • standard.

The F-test for the deviation from the standard value is a test of the
null hypothesis that there is no long-term constant error effect in this data
set. There are two possible tests for this hypothesis, depending on whether
the interest is only in the 10 days represented by the data in the example,
or whether the 10 days are to be considered as a sample from a larger
population of days and the interest is in making inferences about this
larger population (Section 5.2.3). The calculated F in the analysis of vari­
ance table is for the second situation and is obtained by forming the ratio
MSM/MSB. The resulting value of 2.955 is not significant even at the 0.10
level, and there is insufficient evidence to conclude that a long-term effect
exists. For the alternate situation where the inferences are to apply to only
the 10 days represented by this particular set of data, the effects aj are
fixed and the second term in the expected mean square for the deviation
from the standard value drops out, so that the F-ratio would be calculated
as MSM/MSw. This second situation is not the usual one for most safe­
guards applications.

The following is an intuitive explanation for the difference in the
expected mean squares. When the days represented in the data are consid­
ered to be a sample from a larger population, there is uncertainty in X..
due to the finite sample of days. Even if there were no measurement varia­
bility within days-i.e., no deviations from the daily means-another
sample of days from the larger population would be expected to give rise
to a different estimate of the mean. However, when the sampled days
represent all of the days in the population of interest, the estimate of the
mean is fixed except for random measurement error.
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It is important from a practical point of view to compare the uncer­
tainty in measurement results when a bias correction has been made with
the alternative of reporting the result without a bias correction being
made. In addition to the technical problems there are almost always prac­
tical considerations, including the bookkeeping difficulties associated with
making corrections to results which have already been posted and the need
to allocate both money and effort over the entire spectrum of measurement
methods used for safeguards purposes. For some measurement methods,
there will be concern for only a single bias to be estimated and the need
for correction determined. Such a bias is represented by a single error
effect that is constant over the entire time period (or data set) of interest.
As indicated by the analysis of this example, however, there are usually
additional error effects which change with day-to-day operations, calibra­
tion periods, instruments, or other factors.

For the model involving a single intermediate source of variability used
to represent the above data from routine monitoring, the mean square
error (MSE) of a single future measurement y, uncorrected for bias, is
given by

MSE(y) = [(#t - p.o)2 + 0'6] + [~+ O'~] (15.28)

As pointed out in Appendix 14A, the problem in using this equation is
that even if we assume the standard value p.o to be unbiased, the expected
value of (#t - p.o)2 for a given data set must either be known from histor­
ical experience or estimated from a mean square with only one degree of
freedom (see Table 15.13). If a correction is made based on the difference
between the overall mean of the data set and the assigned value of the
standard, the bias term drops out of the mean square error if the assigned
value of the standard is unbiased. The variance of a corrected measure­
ment is given by

(15.29)

This variance can be estimated from the known variance of the standard
and the estimates u2 and u~ obtained from the data analysis. When the
difference between each daily mean and the standard value is used to
correct each day's results, the variance of a single future measurement
result is

~ .
Var(y) = - + 0'6 + ~

n
(15.30)
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The contribution of the variance component O'~ has dropped out of this
variance, but the contribution to the variability in the correction factor
from the within-days variability, c?In, is a factor of a larger than the con­
tribution c?IN from this source in Equation 15.29.

For the data of this example, a single correction to be added to future
results would be the difference 3.046 - 3.031125 = 0.0149 between the
assigned value of the standard and the overall mean. Substituting the esti­
mates of c? and O'~ obtained from the analysis of variance in Table 15.13
and the assigned standard error 0'0 of the standard into Equation 15.29, an
estimate of the variance of a single future measurement corrected in this
fashion is

VA ( ) = [0.0006769 + 0.0002782 + (0.0006)21
r y 10 40

+ [0.0006769 + 0.0002782]

= 0.0000750 + 0.0009551

= 0.0010301

and

SE(y) = 0.0321

The contribution of the variance of the assigned value of the standard is
negligible, and the contribution of the variance of the correction factor is
relatively small. If daily corrections are made based on the difference
between the assigned value of the standard and each daily mean (e.g.,
adding an amount 3.046 - 3.022 = 0.024 to all production measure­
ments made on day 1) the estimated variance is computed from Equa­
tion 15.30 as

VAr(y) = [0.00~872 + (0.0006)21 + 0.0002872

= 0.0000722 + 0.0002872

= 0.0003594

and

S"E(y) = 0.0190
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The largest decrease in this estimate is due to the elimination of the
between-day variability from the measurement itself. The contribution of
the variance of the assigned value is still negligible. The results of this
analysis indicate that to keep both the estimate of the inventory difference
unbiased and the uncertainty in the estimate small, it is desirable to rou­
tinely correct future measurement results using an estimate of the daily
bias. Making a single bias correction for the IO-day period does not sig­
nificantly improve the uncertainty.

The pattern of the data in Figure 15.6 is not at all unusual for mea­
surements on a standard made over time. Data of this type often show
apparent structure such as time trends, cyclical movements, abrupt shifts,
or other nonrandom behavior. When data are available for a sufficiently
long period of time, it may also be possible to demonstrate that there is a
significant average bias for the entire period. If the data used in this
example are unusual, it is because the daily averages do not appear to
show any nonrandom patterns, although 10 days is a relatively short time
for such patterns to occur.

Figure 15.7 shows the daily averages plotted on a control chart, which
can be used as one tool for routinely monitoring measurement systems for
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FIgure 15.7 Control chart for daUy .,eraps of measurements OD • staDcIard.
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bias. Construction of the control chart, using the procedures given in Sec­
tion 4.7.1.1 and based on the normal distribution, proceeded as follows:

1. The central (solid) line was drawn at the assigned value,
Ilo = 3.046, of the standard.

2. The estimated standard deviation of an observed daily average Yi.
based on four measurements per day was calculated using

[

.. 2 ]'h
SE(Yd = U~ + ~ + (1~ = 0.02737

The estimates uand ua obtained in this example were used in this calcula­
tion. These estimates are sometimes obtained from larger sets of available
data if the measurement method has been shown to be stable over the
longer period.

3. The warning limits were calculated using

Upper warning = Ilo + 1.96 SE (yd = 3.100
Lower warning = Ilo - 1.96 SE CYi'> = 2.992

where 1.96 is obtained from Table A3 so that the probability is 0.95 that
an observation will fall between the warning limits when the process is in
control.

4. The alarm limits were calculated using

Upper alarm = Ilo + 2.58 SE (Yi'> = 3.117
Lower alarm = Ilo - 2.58 SE (Yi'> = 2.975

where 2.58 is obtained from Table A3 so that the probability is 0.99 that
an observation will fall between the alarm limits when the process is in
control.

The use of these warning and alarm limits, instead of the three sigma lim­
its more common in quality control procedures (Section 4.7.1.1), is based
on standardized NRC procedures. When the approximate degrees of free­
dom in the variance estimates are known to be small, it may be desirable
to compute these limits using the appropriate values from the Student's t­
distribution (Table A5) rather than the normal distribution (Section
5.3.1). The measurement control data for the 10 days in the example data
set show no evidence of a serious lack of control or an appreciable constant
bias over the time period. Because one average is below the lower warning
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limit and 8 of the 10 averages are below the assigned value of the stan­
dard, there is some evidence that a small bias may be present, but more
data are needed to confirm this.

Data gathered to estimate or monitor bias also frequently contain
information about the random error variance of the measurement method.
As discussed in Section 15.1, however, there may be reasons why the ran­
dom variance estimates calculated from data obtained on standards under­
estimate the actual random variability when process materials are mea­
sured. Known standards often are not completely representative of the
types of process samples actually being measured. The degree to which the
standard fails to represent the process items or samples may vary widely.
When the measurement is a chemical analysis, the presence or absence of
certain impurities in the sample being analyzed can have an effect on the
error in the final result not found in the measurements on a standard.
When possible, it is desirable to obtain random error variance estimates
from independent, repeated measurements on actual process samples.
However, when a set of standards measurement data collected over time is
being analyzed for other purposes, such as testing for changes in the mea­
surement bias, the added effort of monitoring the random error variance
for measurements on the standard may be worthwhile.

Suppose that the analysis of a large amount of historical data for the
NDA instrument used to measure enrichment has resulted in a standard
deviation estimate of u = 0.015 when measuring U02 standards with
assigned percent 23SU values close to 3%. A relatively easy way to rou­
tinely monitor the random variability for this measurement procedure is
through the use of a control chart for the range or the standard deviation.
Procedures for constructing both types of control charts are given in Sec­
tions 4.7.1.2 and 4.7.1.3, but only the range chart will be illustrated here.
Using the values of DI and D2 from Table 4.3, the upper and lower
three-sigma control limits for the range when n = 4 are computed as

UCL = D2u= 4.698(0.015) = 0.0705

LCL = DIU = 0(0.015) = 0

Alternatively, the upper 5% and 1% points for the distribution of
the range when n = 4 are 3.630' and 4.400', respectively (Bennett and
Franklin, 1954, Table 10.7), from which the corresponding warning and
alarm limits are calculated as (3.63)(0.015) = 0.0544 and
(4.40)(0.015) = 0.0660. The observed ranges are as follows:
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Day Range

1 0.008
2 0.016
3 0.037
4 0.050
5 0.047
6 0.026
7 0.060
8 0.048
9 0.036

10 0.017

These observed ranges are plotted on the control chart shown in Figure
15.8. All are within the control limit and the alarm limit. One point is out­
side the warning limit, but this is not unusual for 10 points. While this
procedure does not provide conclusive evidence that the measurement
method was performing in a controlled state with respect to the random
variability when measuring process samples, it is one supporting type of
information because the performance while measuring the standard
appears acceptable.
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15.2.1.2 Continuous Monitoring Against a Standard

When intermediate-level variability is present as in the preceding
example, it is desirable to monitor and correct measurement results con­
tinuously if this process reduces the estimated variability in the process
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measurements. The basic models and estimates associated with such cor­
rection procedures are given in this section. The assumed models are

Xj=~+P+Ej

Yj = Tj + P + 7]j

where

Xj = ith measurement on the standard, i = 1, ... , n
Yj = measurement on the jth production item
Tj = true value of the characteristic for the jth item
P = common fixed effect for both standard and item measurements
Ej = individual error in standard measurement with variance ,;!
7]j = individual error in item measurement with variance 11;

~ = assigned value for the standard.

The estimate of the bias is

(15.31)

Let the bias-corrected result for the jth production item be

(15.32)

Then the variance component associated with using the estimated bias is
given by

2
.. I1f 2

Var(p) = - + 110
n

(15.33)

where I1J is the variance in the assignment of the standard value, and the
total variability in the bias-corrected result for the jth item is

, 11;
Var(y·) = 11 2 + - + 116

J " n
(15.34)

The covariance between yj and Yk when the same bias correction is used is

2

( • ') I1f + 2Cov Yj,Yk = - 110
n

Measurements using different bias corrections are independent.

(15.35)
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When the bias correction is not made on the measurement results for
production items, the mean square error can be used as a measure of
uncertainty. The mean square error for Yj is

(15.36)

In most practical situations, the true values of neither the bias nor 0': will
be known. The estimate Pcan be used for fJ and the estimate s2 for 0':,
where s2 is the sample variance for the n standard measurements. How­
ever, nof only is Phighly variable when estimated in this manner, but also
the expected value of ~ is not equal to fJ2' Rather

(15.37)

There appear to be three reasonable options for estimating fJ2:
l. Use p2(a biased estimator).

.. S2
2. Use fJ2 - - - 0'6 (an unbiased estimator).

n

3. Use p2 - £ - 0'6 whenever positive; use zero otherwise.
n

The third option is a compromise which, although the estimator is biased,
does eliminate the problem of negative estimates and has a smaller vari­
ance than the other two alternatives. From the standard measurement data
alone there is no direct estimate of 0':, but it is frequently a reasonable
assumption that the random variability in measurements is the same for
production items and standards, so that s2 can be used. When feasible,
this assumption should be checked by some replication of production
measurements.

An alternative to the extremes of always correcting for bias or never
correcting for bias is to correct only when a significant bias exists at some
significance level a. The argument for this procedure is based on the fact
that if fJ2 is small compared to ~ = 0'; = 0':, then the advantage of elimi­
nating the bias term fJ2 from the mean square error may be completely
negated by the introduction of a large contribution ~In into the uncer­
tainty of the bias-corrected results. In addition, the problems associated
with estimating fJ2 are greatest when it is small. Stewart (1975) has stud­
ied the ratio of the mean square error under the two extreme procedures
(disadvantage factor) as a function of the ratio fJI0', and gives recommen­
dations for optimal procedures.
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15.2.1.3 Procedures Involving Several Standards

There are several situations in which more than one standard will be
measured for purposes of estimation and monitoring of a measurement
method. Two of the more common applications are described in this sec­
tion. In the first type of application, a given scale is used to measure both
the gross and the tare weights of a container to determine the net weight
of material in the container. It is necessary to evaluate the bias for the
scale in both the gross and tare weight ranges in order to estimate the bias
for a reported net weight. In the second application, more than one stan­
dard is measured covering either the calibration range or a more limited
range of actual usage for the measurement method.

In the general case where there is no pattern to the biases over the
range of interest, the problem must be handled as a series of single stan­
dard studies (as presented in previous sections). When a pattern for the
bias over the range of usage-such as a constant bias or constant relative
bias-cannot be established through analysis of available data, bias esti­
mates need to be obtained in each of the subranges in which the measure­
ment method will be used. It is assumed in this section that any existing
bias is constant, on either an absolute or relative basis, over the range cov­
ered by the standards. For both applications, different standards may be
measured a different number of times during the period of interest and the
standards may have different variances associated with their assigned
values for the characteristic of interest.

The following notation will be used for the first application:

fJ.g = true value of the gross weight standard
Zg = assigned value of the gross weight standard
O'i = variance of the assigned gross weight standard value
fJ.t = true value of the tare weight standard
zt = assigned value of the tare weight standard

O't = variance of the assigned tare weight standard value
xg = average of ng measurements on gross weight standard
;(t = average of nt measurements on tare weight standard
s~ = sample variance of the measurements on the gross weight standard
Si = sample variance of the measurements on the tare weight standard
Yj = measured net weight for production item j

The estimated bias for a net weight determination is given by

(15.38)

An estimate of the variance of this estimated bias is
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(15.39)

where the first two variances in this expression are estimates that accom­
pany the standards or have been established on other grounds. If the two
sample variances are valid estimates of the measurement variances when
actual containers of material are weighed, the total variance of a bias
corrected net weight for a container of material is estimated using

where the bias corrected result is given by

yj = Yj - P

(15.40)

(15.41)

If the bias correction is not made, the mean square error of the reported
result, Yj, is slightly more complicated than was the case for a single stan­
dard (Equation 15.36). An estimate of the mean square error is

[

A s2 sf)
M~E(y.) = (s2 + sf) + {32 - &2 - &2 - -!. - -

J g g t n n
g t

(15.42)

The same concerns with the estimation of {32 are present as those discussed
in the example in the previous section.

Example 15.8 The standard values assigned to the gross weight
and tare weight standards referred to in Example 15.2 were:

Zg = 8878.0g

Zi = l591.7g

Assume O'g = O't = 0.97 g and that check weighings of these standards
yield the following information:

ng = 30
xg = 8881.3 g
Sg = 6.2 g

nt = 20
Xt = 1589.9 g
St = 4.9 g
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From these results the estimated bias (Equation 15.38) for a net weight is
computed as

p= (8881.3 - 8878.0) - (1589.9 - 1591.7)

= 3.3 - ( -1.8) = 5.1

If the bias estimate is applied as a correction to a net weight measurement
for a process item, an estimate of the variance of the corrected value is
given by Equation 15.40 as

6.22+ 4.92+ (0.97)2 + (0.97)2 + (6.2)2/30 + (4.9)2/20 = 66.8136

If the bias estimate is not applied, an estimate of the mean square error is
given by Equation 15.42 as

Because the estimated variance of the corrected value is smaller than the
mean square error estimate for the uncorrected value, it probably would be
advisable either to correct net weight measurements on process items or to
perform maintenance and recalibration of the scale to reduce the bias.

For the second application, the following notation will be used:

m = number of standards used to estimate bias
nk = number of measurements on standard k
""k = true value for standard k
Zk = assigned value for standard k

u5.t = variance of assigned value for standard k
Xk = average of the measurements on standard k
uf. = variance of the measurements on standard k
Sf = sample variance of the measurements on standard k

Because both the number of measurements, the variance of the assigned
value of the standard, and the variance of the measurements may be dif­
ferent from standard to standard, a weighted average should be used to
estimate the bias, so that

.. m m

f3 = ~ Wk(Xk - Zk)/ ~ Wk
k-I k-I

(15.43)
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(15.44)

The correct values of Wk are functions of the two unknown variances. If
the standards being used for the bias estimation originated with a national
or international standards organization, the certification statements that
accompany the assigned values for the standards usually give estimates
a-6.k of a-6,k' For other standards and for the measurement error variances,
sample estimates are needed to ensure that the weights used are approxi­
mately correct. If it can be demonstrated that the measurement variances
are approximately the same for all standards-i.e., tests show that the
hypothesis a( = til for all k is not rejected-then a pooled estimate, s2,
can be calculated using the measurement data obtained on all of the m
standards. The pooled estimate of the variance is given by

m
s2 = ~ (nk - l)s(f(N - m)

k=1
(15.45)

where N = ~k nk is the total number of measurements on all standards.

The variance of the estimate ~ is [~ wkj-I. If S2 is a valid estimate
k=1

of the measurement variance of measurements on production items as well
as standards, then an estimate of the variance of a corrected measurement
on a production item is given by

Var(yj) = s2 + [~ Wkj-l
k=1

(15.46)

where Wk is computed from Equation 15.44 using a6,k = a-6,k and a;' = s2.
The mean square error of an uncorrected measurement on a production
item is estimated as

(15.47)
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Example 15.9 Three standards are used in a laboratory to moni­
tor a mass spectrometric method for bias in the measurement of percent
235U. The assigned values for the three standards in percent 235U are
2.013, 3.009, and 4.949. The relative standard deviations for the assigned
values are each equal to 0.05%, Le., 00,1 = 00,2 = 00,3 = 0.0005. During
the time period of concern, the following measurements on these standards
were obtained:

Standard 1 Standard 2 Standard 3

2.013 3.008 4.953
2.017 3.013 4.957
2.015 3.010 4.949
2.013 3.017 4.946
2.011 3.009 4.951
2.015 3.008 4.958

3.014 4.945
3.010
3.011
3.006

Past experience in the laboratory has demonstrated that for this mass
spectrometric method, both the random errors and bias are constant on a
relative basis. From the discussion in Section 14.2.1, it is appropriate to
analyze these data using the logarithms of the measurements. The assigned
values for the three standards in this transformed scale, using natural loga­
rithms, are as follows:

Zl = Qn 2.013 = 0.699626

Var(zl) == 86,1 = (0.0005)2

Z2 = 1.101608

Var(z2) == 86,2 = (0.0005)2

Z3 = 1.599186

VAr(z3) == 06,3 = (0.0005)2

since the absolute variance of the transformed values is approximately the
relative variance of the original values. The sample averages and variances
for the natural logarithms of the observed results are as follows:

Xl = 0.700122

Sf = 1.084762 X 10-6
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X2 = 1.102139

sI = 1.181034 X 10-6

X3 = 1.599647

S5 = 1.042966 X 10-6

Because m = 3, nl = 6, n2 = 10, and n3 = 7, and, from Equation 15.45,

S2 = [5(1.084762) + 9(1.181034)

+ 6(1.042966») X 10-6/(23-3)

= 1.115546 X 10-6

the three weights can be estimated from Equation 15.44 as

1 = 2.2940 X 106

(0.0005)2 + [(1.115546 X 10-6)/6)

1 = 2.7658 X 106

(0.0005)2 + [(1.115546 X 10-6)/10)

1=2.4428 X 106

(0.0005)2 + [(1.115546 X 10-6)/7)

and

3

~ Wk = 7.5026 X 106

k-I

The estimated bias is then

~ = 0/7.5026) [2.2940(0.700122 - 0.699626)

+ 2.7658(1.102139 - 1.101608)

+ 2.4428(1.599647 - 1.599180»)

= 0.0037326/7.5026 = 0.0004975

Subtracting this estimated bias correction from the logarithm of the mea­
sured percent 23SU is equivalent to multiplying each measured result by
0.9995. If this correction is made for measurements of percent 235U in pro­
duction samples, and it is assumed that S2 is an estimate of the relative
measurement variance for routine analyses, the relative variance of
corrected results is estimated using Equation 15.46 as
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1
3 J- 1

S2 + ~ Wk = 1.1155 X 10-6 + (7.5026 X 106)-1
k=1

= 1.1155 X 10-6 + 0.1333 X 10-6

= 1.2488 X 10-6
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The estimate of mean square error for uncorrected results is, from Equa­
tion 15.47,

1.1155 X 10-6 + (0.00049752 - 0.1333 X 10-6) = 1.2297 X 10-6

There is little justification for the routine application of a bias correction
because the variances are essentially the same.

15.2.2 Interlaboratory Control Programs

In quite a few nuclear safeguards applications, more than one process­
ing facility or analytical laboratory is involved in some phase in the han­
dling of and the accounting for the nuclear materials. Most notably, this
multifacility (laboratory) involvement occurs when shipper-receiver differ­
ences are being examined for one or more shipments of material between
one facility and another. The need exists, therefore, for an extension to
more than one laboratory of the procedures for estimating and monitoring
bias for a measurement system which is operating under a fixed set of con­
trolled conditions within one laboratory. In cases where multiple samples
drawn from a single standard material (or solution) are distributed in
interlaboratory exchange or "round robin" studies, the primary purpose for
the exchange is often one of obtaining estimates of the measurement bias
existing in the participating laboratories and to determine whether these
estimates of bias deviate from zero or are different from one laboratory to
another.

The data collection plan given to each laboratory participating in such
round robin studies can vary from simple to complicated depending on the
need to identify and assess the relative importance of the factors or steps
in the measurement procedure that contribute to the total uncertainty of a
measurement result. In simple cases, the purpose of the study may be re­
stricted to estimation and evaluation of the biases present. A breakdown of
the contributions to the bias and random error terms due to the various
factors or steps in the measurement is not needed, and each laboratory
might simply be instructed to obtain n replicate measurements of the sam­
ple received. The instructions may specify the measurement method to use,
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the operating conditions under which the method is to be applied, and the
format to be used in reporting the measurement results. A simple linear
model for such data might be:

where

Xik = the kth measurement at the ith laboratory
i = 1,2, , m laboratories
k = 1, 2, , n replicate measurements

ILo = the assigned reference value for the standard
Pi = the bias effect for the ith laboratory
fik = the random error for the kth measurement at the

ith laboratory.

The data from a simple round robin study of this type can be analyzed
using the appropriate one-way analysis of variance techniques described
and illustrated in Section 5.1 or 5.2. Even when one or more of the partici­
pating laboratories does not obtain or report the requested number of
replicate measurements, the data they do provide can be analyzed using a
one-way analysis of variance for unbalanced data sets. The purpose of the
analysis is to determine whether there is evidence of an overall bias in the
measurement method which is common to all of the laboratories and
whether there is evidence of differences in the biases of the laboratories.

15.2.2.1 Shipper-Receiver Bias

It is a common situation in round robin studies in safeguards that the
particular laboratories participating in the study are the only laboratories
of interest and constitute the entire population for which inferences are
to be made. To illustrate, the three participating laboratories in a round
robin study might be a shipper's laboratory, a receiver's laboratory, and
a referee's (or inspector's) laboratory. The major objective of the study
in this case would be to examine the possibili~y of a bias between
the shipper's and receiver's laboratories. For such studies, the one-way
fixed effects analysis of variance of Section 5.1 provides the appropriate
methodology.

Example IS.10 Samples of NBS standard reference material 949d
were sent to each of three participating laboratories: a shipper's labora­
tory, a receiver's laboratory, and a referee's laboratory. Each laboratory
was instructed to analyze its sample 10 times for plutonium concentration
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and to report the individual results. The receiver's laboratory reported only
nine results. Table 15.14 summarizes the reported percent recoveries.

TABLE 15.14

Reported Percent Recovery

100.35
100.35
100.18
100.28
100.30
100.27
100.19
100.23
100.12
100.29

Totals 1002.56
xI. = 100.256

sl = 0.005649

Grand total = 2901.98

Receiver
xa

99.94
100.05
100.06
100.33
99.77
99.91

100.08
99.86

100.00

900.00
X2. = 100.000

s~ = 0.0257006

X.. = 100.0682759

Referee
xli<

99.65
99.92

100.13
99.77
99.98

100.21
99.99
99.77

100.12
99.88

999.42
X3. = 99.942

s1 = 0.032373

Using the procedures of Sections 5.1.2 and 5.1.1, the calculations for the
analysis of variance on these data, with a = 3, nl = n3 = 10, n2 = 9,
and N = 29, are as follows:

SSI = ~ x~ = 100.352+ 100.352+ ... + 99.882=290,397.2368
Ie

SS2 = ~ Tl + = 1002.56
2 + 900.00

2 + 999.42
2

= 290,396.6890
nj 10 910

SS3 = T
2

= 2901.98
2

= 290 396.135186
29 29 '

The resulting analysis of variance obtained from Equations 5.28 through
5.35 is

Source df SS MS

Between labs 2 0.5538 0.2769

E(MS) F

13.14

Within labs 26 0.5478 0.02107 u'-
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where ;:i= N
1 ±ni~iand~i=~+Pi' If the test of significance is made

i-I

at the 0.05 level, the critical value for the F-ratio with 2 and 26 degrees of
freedom is 3.37. There is evidence of significant bias between the three
laboratories based on this set of data.

In this example, the assumption of equal variances for the three sets of
. results could be questioned in view of the relatively small value of sl. A

simple approximate test of the homogeneity of several variances is given in
Bennett and Franklin (1954). The test statistic is

B = ~ (II In S2 - ~ IIi In sl)

where the sl are k independent sample variances based on IIi degrees of
freedom, S2 = ~ IIi sl/ II is the pooled estimate based on all k sample vari­
ances, II = ~ IIi, and

~(I/lli) - 1/11
C=I+ 3(k-l)

For IIi ~ 5, the distribution of P is satisfactorily approximated by a chi­
square distribution with k - 1 degrees of freedom. In this example,

C = 1 + ! [! + ! + ! - _1I
6 9 9 8 26

= 1.0515

and

111=9 Ins? = -5.1763

112=8Insf=-3.6613

113 = 9 In sf = -3.4304

II = 26 In s2 = -3.8599

so that

B = 26(-3.8599) - 9( -5.1763) - 8( -3.6613) - 9( -3.4304)
1.0515

=6.08

Because X6.95 (2) = 5.99, this result is just over the 0.05 level of signifi-
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cance, so that the assumptiofl of equal variances inherent in the procedures
of Sections 5.1.2 and 5.1.1 should be questioned. Differences in measure­
ment variability between laboratories in experiments of this type are not
unusual. To demonstrate the multiple comparison techniques of Section
5.1.4.4, it is assumed that the use of the pooled estimate given by the
mean square within laboratories is valid. The alternative approach would
be to form multiple pair-wise comparisons using the methods of Section
4.3.2.2, and interpret these multiple tests based on the procedures in
Section 10.2.

The study was planned to determine the possibility of bias between the
shipper's and receiver's laboratories. The contrast of interest is the bias
between the two laboratories

C1= (+ 1)~1 + (-1)~2 + (0)~3

so that

C - - 1002.56
1 = xl. - X2. = 10

900.00
9

= 100.256 - 100.000 = 0.256

Designating the mean square within laboratories by MSw, from Equation
5.51 the estimated variance of C1is

st = MS [ (1)2 + (-1 )2]
I w 10 9

= 0.02107(0.1 + 0.11111)

= 0.004448088

sc = 0.06669399
I

The hypotheses being tested can be written as

From Equation 5.53, the statistic to test this hypothesis is

C1 0.256
t = ~ = 0.06669399 = 3.838

I
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Because the calculated value of the statistic is larger than 10.975(26)
2.06 for the Student's t-distribution, the null hypothesis of no bias is
rejected.

Because the referee's results apparently agree with the receiver's, a sec­
ond contrast of interest is

C
IL2 + IL3

2 = ILl -
2

The hypothesis tested by this contrast is whether the shipper's laboratory
is biased relative to the average of the receiver's and referee's laboratories.
The hypotheses are written as

Again using Scheffe's test as described in Section 5.1.4.4, the test statistic
is computed as follows:

- +-
(:,2 = Xl. - X2. 2 X3. = 100.256 _ 100.000; 99.942

= 0.285

t. = MS [0)2 + (-1/2)2 + (-1/2)21
s , w 10 9 10

= 0.02107 [0.1527778]

= 0.00321903

sc = 0.056736,

t = 0.285 = 5.023
0.056736

The upper critical value for Scheff6's test is J(a-l)FI-a(a-I,N- a). In
this example, a = 3 (the number of laboratories) and N = 29, so that the
upper critical value for a = 0.05 is
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.J(3-1)(3.37) = .J2(3.37) = .J6.74 = 2.60

805

where FO•9S(2,26) = 3.37 is obtained from Table A6. Because the cal­
culated value of the test statistic exceeds the upper critical value, the null
hypothesis is rejected.

In summary, analysis of the data indicates that there is evidence of sig­
nificant differences between the three laboratories. The shipper's labora­
tory is biased high with respect to the receiver's laboratory and also with
respect to the average of the receiver's and referee's laboratories. It
appears that the main bias problem is in the shipper's laboratory because
both of the other laboratories have average recovery values very close to
100.

When there is no indication of a significant difference between the
laboratories (all Ili = ,.,,), there may still be a bias in the measurement
method. This bias can be expressed as

(3=,.,,-1J.O

where
,." = the mean of the population of Xik measurements

IJ.O = the assigned reference value of the standard

An estimate of the bias can be computed from the equation

(15.48)

where X.. is the grand average of the N standard measurements in the
study.

When only a bias for the measurement method exists, the model for
the measured result on the kth production item made in the ith laboratory
can be written as

and a corrected production result can be expressed as

(15.49)
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where

Tk = the true value of the characteristic for the kth item
'Iik =" the error effect for the measurement of the kth item in the ith

laboratory

The variance of a corrected result can be expressed as

(15.50)

where

fTr = the measurement variance when measuring process materials
. (or items) at the ith laboratory

rfl = the measurement variance when measuring the standard used
in the study

fT6 = the variance associated with the assigned value of the
standard

The mean square error for an uncorrected process sample result is

MSE(Yik) = fTr + fP

An estimate of the variance of a corrected result is

(15.51)

(15.52)

where

ur = an estimate of the measurement error for process samples at
the ith laboratory

MSw = the "within labs" mean square from the analysis of variance
N = the total number of standard measurements
u6 = an estimate of the variance associated with the assigned value

of the standard

Individual estimates of the measurement error variances are not obtained
from the analysis of variance procedure. Procedures for obtaining individ­
ual estimates are considered in Section 15.3. If it can be demonstrated
that the random error is the same for measuring process samples as it is
for measuring the standard (fTr = rfl), then the estimate given by Equa­
tion 15.52 could be written as
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(15.53)

An unbiased estimate of the mean square error for an uncorrected
value is given by

2 MSw ",2
MSE(Yik) = Uj + fJ2 - ~ - 0'0

If it has been shown that O'l = ~, this can be written as

" 1 "2 ",2
MSE(Yik) = MSw(1 - N) + fJ - 0'0

(15.54)

(15.55)

As noted in Section 15.2.1.2, one approach to determining the need to cor­
rect measurements on process samples has been to bias-correct whenever
the estimated mean square error for an uncorrected result is larger than
the estimated variance of a corrected result.

When an interlaboratory study indicates significantly different biases
between the laboratories, the above discussion holds for each individual
laboratory if Sis replaced by

( 15.56)

and N is replaced by nj.

15.2.2.2 Interlaboratory Exchanges

The analytical accuracy and precision of laboratories is often evaluated
by a program of interlaboratory exchanges of samples and standard-type
materials. The latter may be samples from a uniform batch of typical
process material or in-house standards that have been compared with
standard reference materials to establish an in-house acceptance value. By
mutual agreement, several laboratories will analyze the standard-type sam­
ples in round robin fashion and exchange the results for evaluation pur­
poses. Such a program was carried out for many years under the auspices
of the U. S. Department of Energy as the Safeguards Analytical Labora­
tory Evaluation (SALE) Program (New Brunswick Laboratory, 1983).

When samples from many different material types are distributed to
several laboratories, interest in most instances is centered on an evaluation
of data obtained at selected laboratories on a single material type that
closely approximates a particular material routinely measured for account-
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ing purposes. The data analysis and evaluation are generally carried out on
one material type at a time, even though data from several standard-type
materials are generated in the program. An example will be presented to
demonstrate the type of evaluation that can be made using this type of
data. To keep the example simple, so that the main features of the evalua­
tion process will be clear, the data set used has the same amount of data
from all laboratories. The evaluation process is equally applicable when
the data sets are unequal. Such unbalanced data sets are easily analyzed
with standard programs from statistical computing packages.

Example 15.11 Samples from a standard-type Pu oxide material are
distributed to seven laboratories for analysis of the percent plutonium by a
given analytical method. The assigned reference value for the material is
not known to the participating laboratories at the time the analyses are
performed. The reported percent Pu results have been coded by subtract­
ing 86 from each result. The coded results a..e presented in Table 15.15.

The following quantities are calculated as a preliminary step to obtain­
ing the sums of squares for an analysis of variance (see Section 5.1.1).

Q3 = 0.3182 + 0.3882 + ... + 0.4582

= 19.432358

Q2 = ~ (0.8642 + 0.3742 + ... + 0.9342)

= ~ (55.433274) = 18.477758

_ 1 ( 2 + 2 + 2)Q, -"9 1.932 6.022 ... + 3.892

= ~ (162.412966) = 18.045885111

Qo = 32.172
2

= 16429168
63 .

Using these quantities, the sums of squares are calculated using

SS between laboratories = Q, - Qo

SS between aliquots within laboratories = Q2 - Q,

SS between analyses within aliquots = Q3 - Q2

The analysis of variance table as given in Section 5.3.2.3 is presented in
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Table 15.16. In this case, up is the variance between aliquots and the O!j

are fixed effects associated with the laboratories in the study.

TABLE 15.16

Analysis of Variance for Interlaboratory Comparisons
of Plutonium Concentrations

Source de ss MS E(MS) F

Laboratories 6 1.6167171 0.2694529 r?- + 3lTp+ 3(3) 2:at/2 8.735

Aliquots 14 0.4318729 0.0308481 ~ + 3lTp 1.357
Analyses 42 0.9546000 0.0227286 ~

The estimates of r?- and up are

q2 = 0.02273

uJ = ~ (0.0308481 - 0.0227286)

= 0.00271

When, as in this example, the estimated value of up is relatively small
and the F-ratio between the mean squares for aliquots and analyses is not
significant [FO.9S(14,42) = 1.93], there are two possible approaches to the
testing of differences between laboratories. The first is to base the tests on
a variance estimate obtained by pooling the SS(analyses) and SS(aliquots)
and the df(analyses) and df(aliquots) to obtain a new estimate of
MS(analyses) under the assumption that up = O. For this example a
pooled mean square, MSp, of (0.4318729 + 0.9546)/(14 + 42) =

0.0247584 is obtained. Using this approach, the F-ratio of 10.883 between
the mean square for laboratories and the pooled mean square is used to
test the hypothesis of no differences between laboratories. The tabulated
value of FO.9S( 6,56) is 2.266, so there is evidence of significant differences
between laboratories. The alternative approach is to use the variance esti­
mate based on the mean square for aliquots to test differences between
laboratories regardless of whether or not the first test is significant.

The arguments for the two approaches are similar to those involved in
the decision to correct for bias. The pooled estimate will usually be based
on a substantially greater number of degrees of freedom, and hence, may
be more reliable. On the other hand, if up is not actually zero, the pooled
estimate will underestimate the true contribution of the aliquoting and
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analysis to the variability between laboratories. A useful rule of thumb has
been to pool whenever the F-ratio between the two estimates to be pooled
is both nonsignificant at the 0.05 level and less than 2. Alternatively, the
approximate test given in Section 5.3.1.1 can be used. In the remaining
parts of this example, the approach using the pooled mean square will be
used for further study.

Because evidence exists that the laboratories are different, the question
arises concerning which laboratories are similar and which ones are differ­
ent. Duncan's multiple range test can be applied to help identify which of
the population means differ. As in Section 5.1.4.3, the laboratory averages
are arranged in ascending order and values of R1'through R7 are calcu­
lated and used to compare and test the observed differences between
means.

Laboratory I 6 7 3 5 2
Average 0.2147 0.4122 0.4324 0.5326 0.5940 0.6691

4
0.7197

Using a = 0.05, the q values needed for calculating the Rp values were
obtained through simple linear interpolation from the tables for Duncan's
multiple range test. The values of q and the corresponding Rp values for
p = 2 to 7 are also listed as follows:

q(7,56) = 3.25
q(6,56) = 3.20
q(5,56) = 3.15
q(4,56) = 3.08
q(3,56) = 2.99
q(2,56) = 2.84

R7 = 0.1705
R6 = 0.1678
Rs = 0.1652
It. = 0.1615
R3 = 0.1568
R2 = 0.1490

The Rp values were calculated using Sy=~.0247584/9 = 0.0524493
obtained from the pooled estimate of r? The results for all of the compari­
sons between means are summarized in the following table.

Laboratory 1 6 7 3 5 2 4

1 ok diff diff diff diff diff diff
6 ok ok ok diff diff diff
7 ok ok diff diff diff
3 ok ok ok diff
5 ok ok ok
2 ok ok
4 ok
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As frequently happens with this type of data evaluation, the results are not
definitive. It is not clear whether Laboratory 3 belongs with Labora­
tories 6 and 7 or with Laboratories 5 and 2, nor whether Laboratory 5
belongs to the highest or next highest group.

This analysis indicates that all of the laboratories should examine their
use of this analytical method in an effort to detect a possible bias. If
Laboratory 4 were making the shipper's measurements and Laboratory 1
were making the receiver's measurements, significant shipper-receiver
differences would be highly probable.

15.3 ESTIMATES FROM REPEATED
MEASUREMENTS

The previous sections have been concerned with the estimation of error
parameters from the monitoring of direct measurements against standards
or the determination of calibration functions for indirect measurement pro­
cedures. In addition to these monitoring and calibration activities based on
external standards, routine control or verification procedures or inter­
laboratory comparisons often involve repeated measurements from which
error parameters can be estimated. When nonstandard (production)
materials are used in such studies, estimates and tests for bias are not pos­
sible. However, the error variances are frequently more realistic when
obtained from measurement data on production items than those obtained
from measurements on standards. There are two main reasons for this.
First, it is often difficult or impossible to obtain standards that are typical
of the production items in all important respects such as composition,
impurities, interferences, geometry, etc. Second, if it is recognized that the
measurement is being made on a standard, special or an excessive amount
of care is often exercised.

15.3.1 Data from a Single Source

When repeated measurements are made on the same or similar produc­
tion items, it is possible to obtain a direct estimate of the error variance.
Care must be taken to recognize which error sources are replicated in such
measurements and which are constant for all data in the set. Also, the
time period covered by the repeated measurements should be one in which
the calibration and control of the measurement method bas been stable.

The data obtained where a single sealed can of V02 powder is repeat·
edly weighed on a given scale at random intervals over a I-month time
period provide a simple example. If it is known from past experience that
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the calibration of the scale can be expected to remain valid for longer than
1 month, and that the contents of the can remain constant during the
month, then such data can be used to calculate an estimate of the random
error variance.

Example 15.12 The following are 24 weight measurement results
(in kg) for one can:

Weight
Measurement (kg) Measurement

1 22.038 13
2 22.041 14
3 22.033 15
4 22.048 16
5 22.038 17
6 22.043 18
7 22.029 19
8 22.047 20
9 22.047 21

10 22.033 22
11 22.031 23
12 22.038 24

The sample mean, variance, and standard deviation are

x= 22.0380

s2 = 0.000043435

s = 0.00659

Weight
(kg)

22.036
22.037
22.038
22.029
22.029
22.038
22.044
22.037
22.029
22.047
22.049
22.032

If a long history using this particular make and model of scale in simi­
lar applications in the plant has shown that the expected variance is
0'6 = (0.0050)2 = 0.000025, then the hypothesis that the variance for
this scale during this period was equal to the historical value 0'6 can be
tested. The case where ~ > 0'6 would have practical importance, because
it would indicate possible need for maintenance on, or replacement of, the
scale. Using a chi-square test as described in Section 4.2.3 at the 0.05 level
of significance, the test statistic is



814 CHAPTER 115 ESTNATN3 MEASUREMENT VARIABUTY

2= (n _l)S2 = 23 (OO43435סס.0) = 39960
x u6 OO25סס.0 .

Because X6.9S(23) = 35.2, there is reason to reject the null hypothesis
that the population variance for this scale is equal to the historical or
standard value. If a standard deviation equal to Uo is required when using
this scale, then replacement or repair is indicated.

The use of a single can of powder for such a large number of repeated
measurements could lead to recognition of the can by the person doing the
weighing. The 24 measurements might have been more effectively made on
several different cans of powder submitted at random over the month.
Instead of the data in the above example, the following 26 measurement
results might have been observed:

Can 1 Can 2 Can 3 Can 4 Can 5

22.038 22.616 21.418 19.811 24.095
22.041 22.615 21.425 19.825 24.120
22.033 22.617 21.414 19.808 24.096
22.048 22.608 19.802 24.105

22.603 19.795 24.105
22.610 19.799 24.118

24.113

The scatter in the nj repeated measurements for each can 'is combined to
estimate the random error variance from these data. A one-way analysis of
variance can be used, which in addition to providing the random error var­
iance estimate allows an estimate of the variance u; due to the actual
weight difference between cans. If the five cans were randomly selected,
then such an estimate can be obtained from a one-way analysis of vari­
ance. Using the methods in Section 5.2.1 for random effects, the following
ANOVA table was obtained:

Source elf SS MS E(MS)

Between cans 4 62.6954338 15.67385845 ~ + Oou;

Within cans 21 0.0015006 OO71457סס.0 ~

Total 25
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no = 1) (26- '"j;nl!26) = .1 (26-5.615384615)
(5-1 4

= 5.0962
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From this data set, the estimated random error variance due to measure­
ment is 0.000071457 (kg)2. A chi-square test of this residual variance esti­
mate based on 21 degrees of freedom against the hypothetical variance
0'6 = 0.000025 leads to the test statistic X2 = 60.024, which exceeds
X6.9s(21) = 32.7, again indicating need for possible replacement or repair
of the scale.

15.3.2 Data from Two Sources

The simplest treatment of data from two sources occurs when it can be
assumed that the two measurement methods (or the two parties) have the
same random measurement standard deviation. Let

Xlk = measurement result for item k using measurement method 1
X2k = measurement result for item k using measurement method 2

n = number of items independently measured using both methods
- -

dk = Xlk - X2k
~ = the measurement variance for both methods

There are two possible estimators for ~ depending on whether or not the
two measurement methods are biased relative to each other. Under the
assumption of no relative bias between the methods, the estimator

o
'"j; d~

A2 k=10' =---
2n

(I5.57)

is the appropriate one to use. Under the assumption that there is a bias
between the methods, the estimator

(I5.58)

should be used.
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Example US. IS A sample of uniform size is drawn from each of sev­
eral containers of nitrate solution and analyzed for percent plutonium con­
tent using two different analytical methods. Historical quality control data
have routinely confirmed that the two particular methods used in the study
have the same random measurement variance. Sample results for 20 con­
tainers are given below. Two questions need to be answered: Is the bias
between the two methods equal to zero? What is the current estimate of
the common random standard deviation?

Container Xlk x2k "A

1 13.11 13.00 0.11
2 15.14 14.90 0.24
3 13.22 13.01 0.21
4 13.67 13.65 0.02
5 10.48 10.61 -0.13
6 15.37 15.11 0.26
7 12.37 12.40 -0.03
8 12.50 12.63 -0.13
9 11.46 11.71 -0.25

10 14.28 14.21 0.07
11 13.26 13.01 0.25
12 11.00 11.06 -0.06
13 12.74 12.75 -0.01
14 13.69 13.69 0.00
15 10.43 10.40 0.03
16 11.38 11.30 0.08
17 12.26 12.27 -0.01
18 12.89 12.70 0.19
19 13.33 13.30 0.03
20 11.88 11.90 -0.02

From these data,

~di = 0.85

~d, = 0.3949

d = 0.0425

2 _ 0.3949-(0.85)2/20
sd - (19)

= 0.018882894
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If there is no bias, (1 can be estimated as

~d2
q2 = _~_k = 0.3949 = 0.0098725

2(20) 40

u= 0.09936

817

If the absence of bias cannot be assumed, then the appropriate estimate of
(1 is

q2 = s3!2 = 0.018~82894 = 0.0094414

U= 0.09717

To test the hypothesis that there is no systematic difference between
the two measurement methods, the approach used in Section 4.2.2 can be
applied. The hypotheses are:

If the test is made at the 0.05 level of significance, the critical values
-2.093 and +2.093 are obtained from a table of Student's t-distribution
for 19 degrees of freedom. The calculated value for the test statistic t for
this example is

d 0.0425
t = (1d/.JD. = 0.137415

Jf6

= 1.383

so the null hypothesis is not rejected. There is no evidence that the two
methods are biased with respect to each other.

So far in this section, it has been assumed that the error variances for
the two parties or methods are the same. Although paired data occur natu­
rally in both shipper-receiver comparisons and comparisons of measure­
ment results on the same items during inspections, the measurement
methods used by the two parties may be quite different and the assump­
tion of equal variances is often not appropriate.
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A general model for this situation is given by

Xlk= JL + (Jk + Elk

X2k = JL + a + (Jk + E2k (15.59)

where JL is the overall mean of the n items and a is a possible bias between
the paired results. The Elk, E2k, and (Jk are assumed to be random error
effects associated with the two measurement methods and the variation in
the true content of the items measured. The model is similar to that for a
2 X n random effects analysis of variance (Section 5.4.3) except that the
variances of the Elk and E2k are not assumed to be equal. Assume the ran­
dom effects to be independent with expected value zero, and let E(Elk) =
ul, E(E~k) = u~, and E«(Jf) = ~ (commonly called the product variance).
Then if

sl = sample variance for the Xlk

s~ = sample variance for the X2k

S12 = sample covariance for the Xlk X2k pairs

it is easily shown (Section 2.7) that

E(sl) = u; + ul
E(s~) = u; + u~

E(s12) = u;
E(sJ) = ul + u~

The last value can be derived directly from the model or computed from
the fact that E(sl> + E(si) - 2E(SI2) = E(sJ). As noted in Section 4.4,
the covariance (or correlation) between the measured values is a direct
reflection of the common variability in the two measurements, which in
this case is simply the variability in the items being measured.

Using the first three equations and replacing expected values by
observed sample variances, the following estimates are obtained:

(15.60)
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Equivalently, the three estimates can be expressed as

&t = (sf + sa - s~)/2

&i = (s~ + sa - sf)/2

&1 = (sf + s~ - sa)/2

819

(15.61)

This form reflects the method of generalizing to more than two measure­
ment methods considered in the next section.

This approach to the estimation of unequal error variances, along with
the methods to be considered in the next section, was proposed by
F. E. Grubbs (1948). Assuming the measurement errors to be normally
distributed, the variances of the estimates of the measurement errors are
given by

Var(&t) =
2 4+ 2 2+ 2 2+ 2 20"1 O"B 0"1 O"B 0"2 0"1 0"2

n-l
(15.62)

20"1 + 0"1 O"t + 0"1 O"i + O"f O"~
Var(&i) =

n-l
(15.63)

When the number of measurements is small and either the other measure­
ment variance or the product variance, or both, are large relative to the
measurement variance bein estimated, the estimate 0-1 will be highly vari-

able because SE(&f) = Var(&t) will be large compared to O"f. This can
result in a high frequency of negative variance estimates. On the other
hand, if the product variance is small compared to the measurement vari­
ances, the error in direct estimates of the measurement variances based on
the sample variances sf and s~, without any correction for a common
effect, is small. Methods have been proposed (Jaech, 1981) that will
always lead to positive estimates, but these do not improve their basic
quality.

Example 18.14 This example presents a situation where the Grubbs
method can be used to obtain reasonable estimates of the measurement
error variances. Eighteen containers of solution were analyzed for percent
uranium using two different direct chemical methods which are expected
to have different error variances. The results are listed below:
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Container Xlk Xa tit

1 75.44 73.96 1.48
2 77.46 75.98 1.48
3 72.22 74.15 -1.93
4 75.85 75.98 -0.13
5 74.28 77.44 -3.16
6 76.82 77.61 -0.79
7 74.24 70.30 3.94
8 77.87 80.27 -2.40
9 75.32 78.75 -3.43

10 76.17 73.70 2.47
11 73.21 77.93 -4.72
12 75.65 74.70 0.95
13 76.93 73.38 3.55
14 72.36 73.67 -1.31
15 79.15 76.01 3.14
16 75.90 77.01 -1.11
17 77.03 76.71 0.32
18 75.90 73.71 2.19

For this example

sl = 3.433038

si = 5.751697

Sl2 = 1.317212

and hence

ul = 2.1158 or UI = 1.455

u? = 4.4345 or 0'2 = 2.106

Both variance estimates turn out to be positive for this data set. However,
if the paired measurements for the percent uranium on the 18 containers
were repeated several times, the expected variability in the estimates
obtained from the different data sets would be quite large.

It may be desirable to test the hypothesis of no difference between the
two measurement variances, i.e., Ho: al = ai. An attempt to perform an
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F-test, as presented in Section 4.3.3, is not appropriate because the esti­
mates cd and uf do not have chi-square distributions and hence, their ratio
does not have an F-distribution. An alternate approach has been proposed
(Maloney and Rastagi, 1971) which does lead to a valid test of the
hypothesis. If the additional variable Uk = Xlk + X2k is introduced, the fol­
lowing quantities can be calculated:

~ = Sf + sl + 2s12

sJ = Sf + sl - 2S12

Sud = Sf - sl

An estimate of the correlation coefficient of u and d is

(15.64)

(15.65)

Because the expected value of the numerator is af - aI, a test of the
hypothesis that the population correlation coefficient of u and d is zero is
equivalent to the hypothesis that af = a!. By using the test statistic

rud ~
t= v(n-2). .Jl-dd

(15.66)

and comparing the calculated result with the critical values of Student's t­
distribution with (n - 2) degrees of freedom at the a significance level, a
test of the desired hypothesis can be performed.

Example 15.15 Although the hypothesis af = af is clearly not
defensible in an exact sense for two methods known to be different, it
might be desirable to determine whether the data of Example 15.14 sup­
port the hypothesis of approximately equal variances. To do this, calculate

~ =3.433038 + 5.751697 + 2(1.317212)

= 11.819159

sJ =3.433038 + 5.751697 - 2(1.317212)

= 6.550311
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from which

and
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Sud= 3.433038 - 5.751697

= -2.318659

-2.318659
rud = -.Jr;;(6==.5===57'=03~1::;:;l):::;:(l:;::::1~.8~19:=:1===59~)

= -0.26352

-0.26352.Jf6
t = -..jr1=_=(-=0=.2=6=35=2=;;:)2

= -1.093

Because the critical values of Student's t for a two-sided test at the 0.05
level of significance with 16 degrees of freedom are ± 2.120, the hypothe­
sis of equal variance cannot be rejected on the basis of these measure­
ments. If the variances are assumed to be equal, then the estimate of the
common variance is given by

q2 = sJ/2 = 3.2752

U= 1.810

This estimate is exactly the same as the residual variance estimate that
would be obtained if these data were analyzed by the methods of Chapter
5 using a 2 X n two-way analysis of variance. Also, S12 = (s; - S3)/4 is
precisely the estimate of the variance of the item effects obtained by dif­
ferencing the expected mean squares for a two-way random effects
ANOVA model because S;/2 is exactly the between-items mean square in
the 2 X n case. The validity of the between-items estimate does not
depend on equality of the measurement error variances.

15.3.3 Data from Three or More Sources

When results are available from more than two methods or laboratories
on the same set of n items, it is no longer necessary to involve the product
variance to obtain estimates of the error variances for individual labora­
tories or methods. The following sections describe two closely related
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approaches. The first was given by Grubbs (1948) in the same article in
which the method for two sources was introduced. The second is contained
in an unpublished report by Stewart (1980) which was primarily con­
cerned with outlier detection and elimination prior to the use of Grubb's
procedures.

The basic data consist of the results Xilt obtained by i= 1, ... , m
instruments (laboratories or measurement methods) on each of
k= 1, ... , n items to be measured. The data can be considered as the
results of a randomized block experiment where the items being measured
are blocks and the methods used for measurement, or the laboratories per­
forming the measurements, are the treatments. The analysis differs from
that given in Sections 5.4.3 and 7.2.2 only in that the measurement error
effects for each treatment are assumed to be from different populations.

15.3.3.1 Grubbs Approach

Let dijk = Xilt - Xjk be the difference between the measurements of the
ith and j11i laboratories on the kth item. Then the average difference for the
n items is

_ D

d·· = ~ d..k/n = X· - x·1J. ~ 1J 1. J.
k=l

The sample variance of the differences is

D

= ~ (Xilt - Xjk - Xi. + xjY/(n-l)
k=l

The general model for the results is assumed to be

where

p. = overall mean
f3i = instrument effects
Ok = item effects
Eik = individual measurement errors

(15.67)

(15.68)

If it is assumed that E(Eik) = 0 and E(E~) = CTt for repeated measure­
ments on the same item by a given instrument, then
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If all m(m - 1)/2 possible paired differences of the m instruments with
i < j are considered, then exactly m - 1 of the Vij will have a specific (f?
in their expected values, and these m - 1 expected values will contain
each of the other error variances (fl, j *" 1, exactly once. The expected
values of the remaining (m - 1)(m - 2)/2 sample variances of the
differences contain each (fl, j *" i, exactly m - 2 times. Hence, an esti­
mate of (f? is given by

m m
o} = ~ ~ ars Vrs

r-I s-r+1
(15.69)

where ars = (m - 1)-1 if either r or s is equal to i and ars = -[(m - 1)
(m - 2)r l if neither r nor s is equal to i. For example, if m = 4

VI2 + V23 + V24&r = _":'::"'_"";:':'---"'-'-
3

VI3 + VI4 + V34

(3)(2)

m
Since Vii = 0 and Vij = Vjj, Si = .~ Vij is equal to the sum of terms

J-I
m

in &? that have the coefficient (m-1)-I. Let S = ~ Si. Then S/2 - Si
i-I

is equal to the sum of the terms in &? for which the coefficients are
-1/[(m - 1)(m - 2)]. Multiplying the sums by their appropriate coef­
ficients and adding yields

A2 _ Si (S/2 - Si)(f' - ---
I m-l (m-1)(m-2)

=[Si= 2(m
S
_1)]/(m-2) (15.70)

For m = 3, it can be shown that these estimates are maximum likelihood
estimates if the measurement error effects are assumed to be normally dis­
tributed (Jaech, 1983).

Example 15.16 Aliquots from n = 8 product batches were analyzed
for plutonium by m = 4 laboratories. The results (g/l) and the sample
means for each item, each instrument, and overall are given. in Table
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15.17. The differences between the laboratory means and the overall mean
are used in a later example.

TABLE 15.17

Instrument

Item 1 2 3 4 X.II

1 163.92 167.04 168.10 170.36 167.3550
2 163.63 163.43 162.74 164.10 163.4750
3 187.07 186.64 189.03 187.43 187.5425
4 182.45 185.80 186.90 186.41 185.3900
5 184.25 185.94 184.27 184.27 184.6825
6 171.39 172.03 173.35 173.63 172.6000
7 183.59 180.88 180.92 179.70 181.2725
8 159.07 160.69 159.60 159.84 159.8000

X, 174.42125 175.30625 175.61375 175.71750 X.. = 175.26469I.

X'-X -0.84344 0.04156 0.34906 0.45281I. ..

The six possible differences between laboratories for each item and their
sample variances for the eight items measured are shown in Table 15.18.

TABLE 15.18

Differences

Item 1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4

1 -3.12 -4.18 -6.44 -1.06 -3.32 -2.26
2 0.20 0.89 0.47 0.69 -0.67 -1.36
3 0.43 -1.96 -0.36 -2.39 -0.79 1.60
4 -3.35 -4.45 -3.96 -1.10 -0.61 0.49
5 -1.69 -0.02 -0.02 1.67 1.67 0.00
6 -0.64 -1.96 -2.24 -1.32 -1.60 -0.28
7 2.71 2.67 3.89 -0.04 1.18 1.22
8 -1.62 -0.53 -0.77 1.09 0.85 -0.24

Sums -7.08 -9.54 -10.37 -2.46 -3.29 -0.83

Vij 4.021457 5.969136 9.258084 1.926621 2.654041 1.613655

The sums of the variances are given by

8\ = 4.021457 + 5.969136 + 9.258084 = 19.248677

82 = 4.021457 + 1.926621 + 2.654041 = 8.602119
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S3 = 5.969136 + 1.926621 + 1.613655 = 9.509412

S4 = 9.258084 + 2.654041 + 1.613655 = 13.525780

S = ~ Si = 50.885988

For m = 4, &r = (~ - S/6)/2 and hence,

&~ = 5.383839

&i = 0.060561

&~ = 0.514207

&1 = 2.522391

The relative uncertainties associated with these estimates are large con­
sidering that only eight items and four instruments are involved, so the
numbers of significant figures that are shown in the estimates are not war­
ranted in practice. They are given here only to facilitate comparison with
the results obtained by the alternate method developed in the next section.

15.3.3.2 Analysis of Variance Approach

The usual two-way random effects analysis of variance procedure (Section
5.4.3) can be used to fit the linear model of the previous section to the
results Xik. The residuals from this fit are given by

rik = Xik - Xi. - X.k +x..

Defining the measurement error variances for each instrument as in the
previous section, it can be shown that

and hence,
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[

D r~ I D E<r~)
E~- =~-

)[-1 n-l )[-1 n-l

=~ [<m-l)2 ul + ! ull
m j¢i
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Note that if .. - • for aU i. the right-hand quantity reduces to Im.: I I'"
as expected. This set of equations can be solved for estimates of the
u~ in a similar fashion to that used in the previous section, obtaining

mR-R.. 2 1u· =
1 m-2

where

D

~ r~
)[-1R·=-­

1 n-l

and

~Ri
R=-­

m-l

With some straightforward but tedious algebraic manipulation, it can
be shown that these estimates are identical to those of the preceding
section.

Esample 15.17 The residuals for the data of Example 15.16 are

1 2 3 4

1 -2.5916 -0.3566 0.3959 2.5522
2 0.9984 -0.0866 -1.0841 0.1722
3 0.3709 -0.9441 1.1384 -0.5653
4 -2.0966 0.3684 1.1609 0.5672
5 0.4109 1.2159 -0.7616 -0.8653
6 -0.3666 -0.6116 0.4009 0.5772
7 3.1609 -0.4341 -0.7016 -2.0253
8 0.1134 0.8484 -0.5491 -0.4128
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The following intermediate quantities are computed for each
laboratory:

Laboratory • 2~rlk
11:-1

1 22.553874 3.221982
2 3.922399 0.560343
3 5.510162 0.787166
4 12.538805 1.791258

From these results, R
tTl = (4Rj - R)/2,

as in the previous section.

2.120250, and because for m

uf = 5.383839

u£ = 0.060561

ur = 0.514207

ul = 2.522391

4,

In the situation where an unprogrammed desk calculator is used, the
difference method is probably easier than the residual method when m is
small because differences are easier to calculate than residuals. However,
because m(m-1)/2 sets of differences and only m sets of residuals have to
be calculated, the difference in sets required, m(m-1)/2 - m =
m(m-3)/2, becomes large as m increases. Thus, the residual method
may be easier for larger m. Also, this approach can be applied directly to
the residuals calculated in an analysis of variance and it can be appended
easily to the computer prog~ams normally available. Finally, the residuals
can be easily and automatically screened for outliers using the regression
residual approach given in Section 10.5.3.

If the value of n used in the computation of the Vij and the R j is
adjusted for missing differences or residuals, missing values do not affect
either method when the residuals are estimated through appropriate
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nonorthogonal procedures. The essential features are that the expected
values involve only linear combinations of the measurement variances and
that the number of quantities for which independent combinations are
available is sufficient to estimate individual variance components.
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CHAPTER 16

Evaluation of Accounting Results
16.0 INTRODUCfION

As discussed in Chapter 13, mass balance accounting is based on a
periodic comparison of the book inventory to the physical inventory. At the
end of each material balance period an estimate of the amount of material
present in the material balance area is subtracted from an estimate of the
amount that should be present to obtain an estimate of the inventory dif­
ference. The cumulative inventory difference is the sum of the inventory
differences for a number of consecutive periods and can be considered as
an inventory difference over an extended period. The estimated values of
the inventory difference and cumulative inventory difference and the asso­
ciated estimates of their variances and covariances are the basic input to
the evaluation of material accounting results. They provide the basis for
both a quantitative assessment of the state of material control and the esti­
mation and testing of the parameters of various loss models.

16.1 AN OVERVIEW OF THE EVALUATION PROBLEM

16.1.1 Scope of the Problem

In one sense the evaluation process is very simple. The estimated inven­
tory difference from the material accounting process is compared to an
appropriate multiple of its standard error of estimate. If this critical value
is exceeded, the hypothesis of a true inventory difference of zero is rejected
and the observed inventory difference is declared "significant." Steps are
then taken to investigate the causes of the presumed loss. On the other
hand, it has been repeatedly pointed out that the estimated inventory dif­
ference is a complex combination of many individual results, each subject
to a variety of errors. Reported inventory differences can arise from many
causes, such as material that is present but not included in the physical
inventory, recording errors, bookkeeping errors, and gross mistakes in
measurement, as well as the usual errors of measurement. Such contribu­
tions to the variability in an inventory difference estimate are not usually
included in an estimate of the variance due to measurement error, and
their presence often confuses the interpretation of estimated inventory
differences. The initial motivation for material balance accounting was to
maintain control over the accounting for nuclear materials by detecting

Preceding page blank 831
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and eliminating nonmeasurement contributions. Error variance estimates
reflecting only measurement error are appropriate to determine the need
for investigating accounting discrepancies. Problems of interpretation arise
only when inventory differences and other accounting indices are being
used to make decisions concerning deliberate loss or diversion. It is neces­
sary in this case to include in the variance estimate any contribution from
nonmeasurement sources not eliminated from the accounting process. In
particular, estimates of losses that are known but not directly
measurable-such as process holdup or accumulation on filters~an be
considered as another "measurement" whose variability should be included
as an additional source of error.

A somewhat different problem is the estimation or testing of the total
effect of accounting errors from a sample. This situation arises when com­
pliance with licensing requirements or international agreements is being
verified. Statistical techniques for estimating the effect of recording errors
and gross mistakes in measurement under such circumstances have had
only limited attention both in general accounting practice and in material
accounting. The distribution of such errors tends to be nonnormal, so that
appropriate contributions to the variance of an estimate are difficult to
estimate. Control practices usually use attribute sampling procedures of
the type considered in Chapter 17. While the error estimation techniques
considered in Chapter 15 are seldom directly applicable, few alternatives
are available. The problem of reporting and recording mistakes in material
accounting has been examined by Jaech and Hough (1983), and some
techniques for estimating the contribution to the verification process to be
considered in Chapter 17 have been suggested. Methods of estimating the
overstatement in an accounting population from an audit sample in the
absence of measurement error have been reported (Fienberg, Neter, and
Leitch, 1977; Neter and Loebhecke, 1977). For further discussion, see
Section 17.2.

As discussed in Section 14.3.4, estimates of the measurement error
variances-especially those associated with bias effects or bias correction
effects-may be based on very few equivalent degrees of freedom and
hence, subject to large variability. This also can seriously affect the valid­
ity of statistical testing procedures. The final tests of an observed inventory
difference or cumulative inventory difference, while apparently simple and
straightforward, are the culmination of a complex estimation process
involving many assumptions. While experience has shown the usefulness of
proceeding with the evaluation techniques described in the following sec­
tions, the user should be aware of the complexities involved and the
approximate nature of many of the procedures.

The remainder of this section defines the input data and loss models in
the form they have generally been used in developing the extensive litera­
ture on the evaluation of inventory differences. The next section considers
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the application of the statistical hypothesis testing procedures of
Chapter 4 to the routine testing and monitoring of inventory differences
and cumulative inventory differences. The final section considers special­
ized estimation procedures useful when sequences of inventory differences
are available. These are particularly applicable when unit processes or
other well-defined process areas are being monitored on a frequent or
near-real-time basis. Examples are daily inventory taking and inventory
difference calculations at the dissolver area in a reprocessing plant or at a
rod loading station in a MOX plant and weekly inventory taking and
inventory difference calculations across the process area of a reprocessing
plant.

16.1.2 Defming the Components of an
Inventory Difference

The inventory difference of a single material balance period was
defined in Equation 13.1 as

ID = BI + A - R - EI (16.1)

where the terms on the right are the beginning inventory, the additions to
the inventory, the removals from the inventory, and the ending inventory,
respectively. The estimated inventory difference is a linear combination of
observations on each of these four components, and hence, a linear combi­
nation of accounting results.

As pointed out in Chapter 14, estimates of individual components as
defined in Equation 16.1 are not necessarily independent. There are several
ways in which these components can be redefined to emphasize certain
dependencies and contrasts (in the sense of Section 5.1.4.2). The expres­
sion of the inventory difference in the form

ID = (BI + A) - (R + EI) (16.2)

in which all positive terms in the ID equation are in the first component
and all negative terms are in the second, indicates the magnitudes of the
two quantities being differenced to obtain the inventory difference. When
treating consecutive inventory differences as sequential observations, it is
sometimes convenient to consider the net transfer T = A - R as the
observed change in two successive inventories, in which case

ID = BI + T - EI (16.3)
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This is the basic form used for estimation and testing procedures in which
both the "book" inventory BI + T and the "physical" inventory EI are
considered as estimates of the true inventory at the end of the period-i.e.,
T is the "change of state" of the inventory over the material balance
period. When considering a sequence of n inventory differences, it is con­
venient to replace the symbols BI and EI by the single set of n + 1
inventory symbols Ij, i = 0, 1, ... , n, which represents the inventory at
the end of the ith period. Without this change the symbols Eli and Bli+l
would represent the same quantity. In this notation the inventory differ­
ence for the ith period in a sequence of n is given by

(16.4)

The actual notation used in the literature on evaluation of inventory differ­
ences to designate these components varies widely.

The individual components required to form a sequence of n inventory
differences using Equation 16.4 are the 2n + 1 quantities Ii, i = 0,
1, ... , n, and Ti = Ai - Ri, i = 1, ... , n. Estimation and testing
procedures for inventory differences require that the variances and covari­
ances between the estimates of all these quantities be modeled and
estimated. As noted in Chapter 14, a covariance between two of these esti­
mates can occur for two reasons:

1. The identical measurement result may occur in two components,
resulting in an exact replication or an exact cancellation of all error effects
in the measurement. For example, material received during a material bal­
ance period may be contained in the additions and in the ending inventory
at identical measured values which cancel exactly (Equation 16.2). This
will induce a positive covariance between estimates of the additions and
ending inventory as contained in accounting reports. This dependence can
be eliminated from a given inventory difference by redefining the com­
ponents to eliminate these unchanged results.

2. The same error effect may apply to one or more measurements in
each of the two components, resulting in the exact replication of one con­
tribution to the total error effect. This is the case, for example, when a
scale with a fixed calibration error is used to measure all or part of both
shipments and ending inventory. Methods for determining or eliminating
the reduction in variability in a linear combination of strata components
due to common error effects were considered in Section 14.3.5.

When considering the second source of covariance between com­
ponents, it is important to recognize that there is not necessarily a rela­
tionship between a material balance period and the time period for which
the effects fJ~ defined in Section 14.2.3, are constant. This was discussed
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briefly in Section 14.3.1 with respect to the definition of error effects aris­
ing from the weighing operation in Example 14.1. An important distinction
is between the use of a material balance period as an arbitrary period for
defining a unique random error effect and the situation where the random
error effect is associated with some well-defined time period or set of
measurements other than a material balance period. It is only in the latter
case that a covariance will exist between two successive net transfers or
inventories because the same error effect is part of the total measurement
error for results in both components. Effects which are assumed to be ran­
domly chosen for each material balance period, similar to the interclass .
effects in an analysis of variance, do not contribute to the covariance
between components for different periods even though they are constant
for all measurements within the period.

Example 16.1 For a certain low-enriched fuel fabrication facility,
inventories are taken and material balances computed every 6 months.
Assume that the expected (true) values of the flows and inventories for the
year 1983 in metric tons of uranium were as follows:

TABLE 16.1

Uranium Flows and Inventories in 1983

Amount
Component (metric tcm)

Inventory, 12/31/82 (10) 70
Inventory, 6/30/83 (II) 40
Inventory, 12/31/83 (12) 16

Additions, 1/1-6/30/83 (AI) S6
Additions, 7/1-12/31/83 (A2) 44

Removals, 1/1-6/30/83 (RI) 86
Removals, 7/1-12/31/83 (R2) 68

The true inventory differences are calculated from Equation 16.1 or 16.4
to be zero. In practice, as will be seen in Example 16.4, the presence of
measurement errors in the actual accounting results used to determine the
component totals will lead to an observed nonzero inventory difference
even in the :'\bsence of loss or deliberate diversion.

A campaign involving 90 tons of material was in process as of
December 31, 1982. Another similar campaign involving 80 tons of mate­
rial was initiated during the first half of the year and completed during
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the second half. Specifically, of the 70 tons of material from the first cam­
paign on hand as of December 31, 1982, 30 were in the form of finished
fuel components, 12 were in process, and 28 tons were in the form of feed
material not yet introduced into the process. The receipts during the first 6
months consisted of 20 additional tons of feed to complete the first cam­
paign and 36 tons of feed for the second campaign. All of the latter was
still in the June 30, 1983, inventory in some form, along with 4 tons of
material in unrecovered scrap from the previous campaign. In particular,
the 18 tons of material received but not yet introduced into the process
were included in this inventory at the same value they were included in the
first period receipts. The shipments during the first 6 months consisted of
the 86 tons of material in finished fuel elements from the first campaign,
30 of which were shipped at exactly the same measured value as they were
included in the inventory at the beginning of the year. During the last half
of the year the remaining 44 tons of material for the second campaign
were received and processed. The 6 tons of finished product material in the
inventory on June 30, 1983, plus an additional 56 tons of material in fuel
elements produced during the second half of the year were shipped along
with 6 tons of material from recovered scrap. The inventory at the end
of the year consisted of 14 tons of material in finished fuel elements and 2
tons of material in unrecovered scrap.

Each of the inventories is composed of one or more of the following
material types:

1. Feed material not yet introduced into the process which is in the
inventory at the same value used to determine receipts during the previous
period.

2. Material in process.
3. Unrecovered scrap.
4. Material in fuel components (rods or fmal assemblies) included in

inventory at exactly the established content at which it will be included in
the shipments for some following period.

The breakdown of each inventory into these four strata is as follows:

Stratum

Inventory 1

12/31/82 28
6/30/83 18

12/31/83

234

12 30
12 4 6

2 14

These four inventory strata, the single stratum for receipts, and the two
strata for shipments (product and recovered scrap) involve five types of
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material whose measurement errors are assumed to arise from the follow­
ing simplified error structure (Section 14.1.3):

1. Measurements of the receipts of feed material contain individual
error effects with a relative standard deviation of 0.5% associated with
each 2 tons of uranium per cylinder received and a constant error effect
with a relative standard deviation of 0.1% associated with the total
receipts.

2. Product shipment measurements contain individual error effects
with a relative error effect of 0.25% associated with each 400 kg of ura­
nium in a finished fuel element and a constant error effect with a relative
standard deviation of 0.05% associated with the total product shipment.

3. Measurements of the shipment of recovered scrap contain individual
error effects with a relative standard deviation of 0.7% associated with
each 500 kg shipment and a constant error effect with a relative standard
deviation of 0.2% associated with the total shipment.

4. Estimates of the total material in the process inventory contain
errors with a relative standard deviation of 0.3%.

5. Measurements of the material content of unrecovered scrap contain
individual error effects with a relative standard deviation of 3% associated
with each scrap batch containing a nominal 100 kg of uranium, and a con­
stant error effect of 0.8% associated with the total stored unrecovered
scrap.

These assumptions are summarized in Table 16.2 using the notation of
Section 14.3.1.

TABLE 16.2

Assumed Error Parameters

Relati,e staDdanI deYiatioa (%)

Material type 8 8

Feed material 0.1 0.5
Finished elements 0.05 0.25
Scrap shipments 0.2 0.7
In-process inventory 0.3
Unrecovered scrap 0.8 3.0

From this description of the process flows and inventories and the
behavior of the measurement errors, the standard errors of estimate for the
components given in Table 16.1 can be computed using the methods
developed in Chapter 14. For example, because there are three material
types involved, two with two error sources and one with a single source,
from Equation 14.47 the variance of an observed value of 10 would be
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Var(io) = (28,000)2 (0.001)2 + 14(2000)2 (0.005)2

+ (12,000)2(0.003)2

+ (30,000)2 (0.005)2 + 75(400)2 (0.0025)2

= 3780 (kg)2

For AI there is only one material type, and

Var()~I) = (56,000)2 (0.001)2 + 28(2000)2 (0.005)2

= 5936 (kg)2

For R2there are two material types, each with two error sources, so that

Var(R2) = (62,000)2(0.0005)2 + 155(400)2(0.0025)2

+ (6000)2 (0.002)2 + 12(500)2 (0.007)2

= 1407 (kg)2

The variances and standard errors for all the components in Table 16.1 are
given in Table 16.3.

TABLEt6.3

Standard Errors of Flows and Inventories

Compoaent Variance (kgf Standard error (kg)

3780
3928

520
5936
4136
2064
1407

61.5
62.7
22.8
77.0
64.3
45.4
37.5

In this example, estimates of 10 and R I will be dependent and will
involve a covariance because of the 30 tons of finished fuel elements in the
December 31, 1982, inventory. These elements were shipped during the
first 6 months and occur in both estimates at the same measured value.
The covariance is (Section 14.3.5)
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Covl(io, RI) = (30,000)2(0.0005)2

+ (75) (400)2(0.0025)2

= 300 (kg)2

839

The subscript indicates that the covariance is due to the first of the two
sources discussed earlier in this section. Estimates of II and Al will be
dependent because of the 18 tons of receipts still included in the inventory
estimate at the same measured value as in the receipts. The estimate of
the covariance is

.. .. 2 2
Covl(Ah II) = (18,000) (0.001)

+ (9) (2000)2(0.005i

= 1224 (kg)2

Because there was no feed material in inventory on December 31, 1983,
A2 and i2 contain no dependency of this type in this case. On the other
hand, the June 30, 1983, inventory and the shipments during this second
6 months have in common 6 tons of finished fuel elements, so that

.. .. 2 2
Covl(Ih R2) = (6000) (0.0005)

+ (15)(400)2(0.0025)2

= 24 (kg)2

Assuming that the measurement of in-process material is replicated at
each inventory, and that there is no common feed material, product, or
unrecovered scrap in the three inventories, there is no further dependency
due to common measurement results in this example. This is not generally
true; in fact, inventory dependencies due to the inclusion of material in
several successive inventories at identical values are quite common. In
particular, this example assumes that the 2 tons of unrecovered scrap in
the December 31, 1983, inventory is completely different from the 4 tons
in the June 30, 1983, inventory-Le., that all the unrecovered scrap in the
June 30, 1983, inventory was part of the 6 tons recovered and shipped, so
that none remains on inventory at an identical value.

The above dependencies arise because the same material is included in
two components. Dependencies also arise because different material of the
same material type occurs in two components with a common constant
error effect associated with the measurement system. For purposes of illus-
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tration, assume that for each material type a single constant error effect
applied to all measurements during the year. Five components in Table
16.1 involve feed material; thus, there are 10 possible covariances due to
feed material, each based on the relative standard deviation of the com­
mon error effect given in Table 16.2 and the amounts of different feed
material in each component. For example,

A A 2
Cov2(IO, AI) = (28,000) (56,000) (0.001)

= 1568 (kg)2

A A 2
Cov2(IO, II) = (28,000)(18,OOO)(O.001)

= 504 (kg)2

A A 2
Cov2(AJ, II) = (38,000) (18,000) (0.001)

= 684 (kg)2

The subscript 2 indicates that the covariance is induced by a common con­
stant error effect. The last of these is in addition to the previously com­
puted covariance COVIO~J, i l) between Al and i l associated with the 18
tons of identical feed material in the two components. Similarly, product
material is contained in five components and unrecovered scrap in two.
The errors in the in-process inventory estimates are uncorrelated.

From the definition of IDj in Equation 16.4 and using Equation 2.123,

Var(iDI) = Var(io) + Var(AI) + Var(RI) + Var(ll)

+ 2 Cov(io, AI) - 2 Cov(io, RI) - 2Cov(io, i l)

- 2 Cov(AJ, RI) - 2 Cov(AJ, i l) + 2Cov(RJ, i l)

In general, the covariance between two components is the sum of the
covariance induced by identical measurements and the covariance induced
by common constant error effects. For example,

A

To evaluate Var(IDI), the following additional covariance components
based on nonidentical product material measured with common error
effects are needed:
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.. .. 2
CoV2(IO, RI ) = (30,000) (56,000) (0.0005)

= 420(kg)2

.. .. 2
CoV2(IO, II) = (30,000) (6,000) (0.0005)

= 45(kg)2

Cov2CRh ill = (86,000) (6,000) (0.0005)2

= 129(kg)2

Substituting from previous computations and Table 16.3,

Var(fD I ) = 3780 + 5936 + 2064 + 3928

+ 3136 - (600 + 840) - (l008 + 90)

- 0 - (2448 + 1368) + 258

= 12,748 (kg)2

so that the standard error of estimate is 112.9 kg.

841

For purposes of inventory difference evaluation, the dependence arising
from the use of identical measured values in both inventory and flow com­
ponents can be eliminated by redefining the components of the inventory
difference so that feed material in an ending inventory is considered as an
addition during the following period, and product material in a beginning
inventory as a removal during the previous period. Specifically, let

where

Ali = material received and processed in period i
A2i = material received during period i but not yet processed

and similarly
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where

R li = material produced (including scrap) and removed in period i
R2i = material produced (including scrap) in period i-I but not yet

removed

Then

where Ii' is the material in process plus the unrecovered scrap. From Equa­
tion 16.4,

Define

Ai = A2,i-1 + Ali

Ri = Rli + R2,i+1

Then it follows that

These new material balance components are defined in terms of the pro­
cess rather than the actual presence of the material at the facility. The
advantage is that the duplication of the quantities A2i and R2i in the origi­
nal components has been eliminated and the new components are inde­
pendent linear combinations of the five basic quantities, Ali> A 2i> Rlh R 2i>

and Ii" Making the boundaries of the material balance area reflect process
changes rather than geographical or administrative areas has tended to
associate the components of the material balance with key measurements
rather than changes in location or responsibility.

In some cases, material received during period i might not be processed
for several periods, and material produced might not be shipped for several
periods. Both of these circumstances lead to inventory which is unchanged
for one or more periods. The affected inventories must be redefined by
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removing any such inactive material from both affected inventories. Such
changes due to a common inventory are in addition to the quantities A2i
and R2i and would be subtracted from the redefined inventories Ii"

Example 16.2 Continuing with Example 16.1, the basic independent
quantities defming the material balance components for the year are:

10' = 12 tons of uranium in material in process as of December 31,
1982

II' = 16 tons of uranium in material and unrecovered scrap in
process as of June 30, 1983

12' = 2 tons of uranium in unrecovered scrap in process as of
December 31, 1983

A20 = 28 tons of uranium in feed material on hand as of December
31, 1982, but not processed

Au = 38 tons of uranium in feed material received and processed in
the first 6 months

A21 = 18 tons of uranium in feed material received in the first 6
months but not processed

A12 = 44 tons of uranium in feed material received and processed in
the second 6 months

A22 = 0 tons of uranium in feed material received in the second 6
months but not processed

R21 = 30 tons of uranium in fuel produced but not shipped as of
December 31, 1982

Ru = 56 tons of uranium in fuel produced and shipped in the first 6
months

R22 = 6 tons of uranium in fuel produced in the first 6 months but
shipped in the second 6 months

R 12 = 56 tons of uranium in fuel produced and shipped in the second
6 months, plus 6 tons of uranium recovered from scrap and
shipped during the second 6 months

R23 = 14 tons of uranium in fuel produced in the second 6 months
but shipped in the next period

The new components are given in Table 16.4. Note that R21t the 30 tons
of material produced but not shipped at the beginning of the year, is not
involved in these components. If there had been feed material in storage as
of the end of the year (A22), it would also have been excluded from the
process material balance.
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TABLE 16.4

Redefmed Material Balance Components

Compoaent

In-process inventory, 12/31/82 (10')
In-process inventory, 6/30/83 (II')
In-process inventory, 12/31/83 (I2')

Additions, 1/1-6/30/83 (AI')
Additions, 7/1-12/31/83 (A2')

Removals, 1/1-6/30/83 (RI')
Removals, 7/1-12/31/83 (R2')

Amount (toas)

12
16 (12 + 4)

2

66 (28 + 38)
62 (18 + 44)

62 (56 + 6)
76 (56 + 6 + 14)

The components as defined in Table 16.4 do not contain identical mea­
sured values for common items, so that this source of covariance has been
eliminated. Because of the magnitude of the throughput and the time
intervals involved, there is a high turnover rate, so that the covariances
between the successive in-process inventories and between these inventories
and the additions to and removals from the process are frequently negligi­
ble in practice. However, because fixed effects common to both material
balance periods may constitute a significant part of the error present in
additions and removals, the consequent covariance between the estimated
amounts in the various strata constituting the receipts and removals may
be appreciable. Consequently, the methods of Section 14.3.5 must be used
in determining the standard error estimates for the combinations of com­
parable strata in these components (Example 14.5).

From Table 16.2 and Equation 14.47, the variances of the estimated
redefined components are as follows:

Vardo) = (12,000)2(0.003)2

= 1296 (kg)2

Yard;) = (12,000)2(0.003)2 + (4000)2(0.008)2

+ 40 (100)2(0.03)2

= 2680 (kg)2

Var(i;) = (2000)2(0.008)2 + 20(100)2(0.03)2

= 436 (kg)2
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Var(Ai)= (66,000)2(0.001)2 + 33(2000)2(0.005)2

= 7656 (kg)2

Var(Ai)= (62,000)2(0.001)2 + 31(2000)2(0.005)2

= 6944 (kg)2

Var(Ri)= (62,000)2(0.0005)2 + 155(400)2(0.0025)2

= 1116 (kg)2

Var(Ri)= (70,000)2(0.0005)2 + (175)(400)2(0.0025)2

+(6000)2(0.002)2 + (12)(500)2(0.007)2

= 1691 (kg)2

i01 is given by

ID1 = io+ A; - R; - i;

845

There are no dependencies between the redefined elements due to mea­
surement results common to two components and no duplication of mea­
surement methods (material types) in more than one stratum except for
the in-process inventory estimates, which are assumed to be independent.
Hence,

Var(ID1) = Var(io) + Var(Ai)

+ Var(Ri) + Var(i;)

= 12,748 (kg)2

which is the result obtained in Example 16.1. Similarly,

Var(ID2) = Var(ii) + Var(Ai)

+ Var(Ri) + Var(ii)

- 2 Cov (i;,ii)

The single nonzero covariance in this case is due to the assumed presence
of a common error effect in the measurement of unrecovered scrap in
process, so that
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and hence,
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Cov (i;, i2)= (4000) (2000) (0.008)2

= 512 (kg)2

Var(ib2) = 10,727 (kg)2

SE(ID2) = 103.6 kg

In addition to the possible correlations between component estimates,
successive inventory differences are dependent because they always, by
defmition, have one inventory component in common. However, this causes
no difficulty if it is remembered that the sum of two successive inventory
differences is given by

(16.5)

so that the variance of the cumulative difference involves only the vari­
ances and covariances of the four quantities Ii - h Tj, Ti+h and Ii+1' Note
that the variance of the intermediate inventory has no effect on the vari­
ance of the sum of the inventory differences.

Theoretical investigations of procedures for evaluating inventory differ­
ences often assume the independence of the estimates of inventories and
net transfers. Under this assumption, the only estimates of inventory
differences that are not independent are estimates of successive inventory
differences, which are dependent because (as noted in the previous para­
graph) they have the estimate of one inventory component in common.
The covariance of these successive estimates is the negative of the variance
of the estimate of the common inventory component. Since experience has
shown that the covariances between components due to common error
effects tend to be small when effective control practices are followed, these
independence assumptions are probably justified for theoretical investiga­
tions of estimation procedures. In practice, the magnitudes of the variances
and covariances estimated using the formulations of Chapter 14 will vary
widely with the nature and amount of material processed or transferred
and, as pointed out there, individual treatment of the sources of measure­
ment error is required to determine the specific variances and covariances
for each observed inventory difference from available estimates of the vari­
ance components from each source.
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Example 16.3 Continuing the example of 16.1 and 16.2, the covari­
ance between

and

arises from four sources. The first contribution is due to the common
inventory estimate ii" and is given by

Cov(ibl,iD2) = -Yard;)

= - 2680 (kg)2

The second component arises from the assumption of a common constant
error effect in AI' and A2', and is given by

Cov(A;, A;) = (66,000)(62,000)(0.001)2

= 4092 (kg)2

The third component !irises from the assumption. of a common constant
error effect in R I' and R2', and is given by

Cov(R;, R;) = (62,000)(70,000)(0.0005)2

= 1085 (kg)2

The fourth component is due to the common error effect in the
unrecovered scrap measurements in ii' and i2', which was previously
evaluated in Example 16.2 as

Cov(i;,i;) = 512 (kg)2

Then

Var(i'ol + i'D2) = Var(i'ol) + Var(i'o2)

- 2 Var(i;) + 2 Cov(A;, A;)
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= 12,748 + 10,727 - 5360

+ 8184 + 2170 + 1024

= 29,493 (kg)2

and the standard error of estimate for the cumulative inventory difference
for the year is 171.7 kg.

More directly, from Equation 16.5 it follows that

For the total additions Ai + Ai = 128 tons, the variance can be calcu­
lated directly from the relative standard deviations in Table 16.2 as

Var(Ai + Ai) = (128,000)2(0.001)2

+ 64(2000)2(0.005)2

= 22,784 (kg)2

The total removal is Ri + Ri = 138 tons, 132 tons of finished fuel, and
6 tons of recovered scrap. Thus,

Var(ii + ii) = (132,000)2(0.0005)2

+ (330)(400)2(0.0025)2

+ (6000)2(0.002)2

+ 12(500)2(0.007)2

= 4977 (kg)2

Because the estimates io' and i2 are independent of each other and of the
estimates of total additions and total removals,

Var(iD I + iD2) = Var(io) + Var(Ai + Ai)

+ Var(Ri + Ri) + Var(ii)
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= 1296 + 22,784

+ 4977 + 436

= 29,493 (kg)2

as obtained previously.

16.1.3 Loss Models

849

In Chapter 14 it was emphasized that an estimate of an inventory dif­
ference is the sum, with appropriate signs, of a large number of individual
estimates of the content of individual items. These individual estimates are
accumulated into estimates of stratum totals, component totals, and inven­
tory differences. The simplest model for an estimated inventory difference
is

10 =L+ E (16.6)

where L is the expected value of the inventory difference and Ethe random
error present in the observed result. As discussed in Chapter 13, in the
absence of unknown losses, accounting mistakes, and measurement error, L
and Eshould both be identically equal to zero. In a completely controlled
situation, where only measurement error effects with zero expected values
are present, the expected value L will be identically zero and E will be a
random variable with E(E) = 0 and Var(E) = Var(iO). The basis for
this assumption is discussed in Section 14.3.1 in conjunction with the
assumptions made in defining procedures for estimating Var(iO).

With respect to accounting mistakes, such as recording errors, missed
inventory items, or unmeasured wastes, two approaches are possible. If the
purpose of the inventory difference evaluation is to maintain a state of
control over the accounting process, then this type of contribution to io is
assumed to be included in L, and specific testing procedures are designed
to discover and eliminate such assignable causes of a nonzero value of L.
When the purpose of the evaluation is to discover unknown losses or delib­
erate diversions of material, it is necessary to assume a priori that the
accounting process is in control, i.e., that all mistakes and other non­
measurement sources of variability have been eliminated or their effects
included in the determination of the variance of the random variable E.
The control procedures can include identification of and correction for
consistently positive (or even negative) losses which are an inherent part of
the accounting process. However, as is the case of measurement control
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procedures for individual sources of measurement error, it is always prefer­
able to eliminate the need for such corrections whenever possible.

When a sequence of inventory differences is considered, the assumed
model is

(16.7)

where the l.j are parameters and the Ej are random variables with
E(Ej) = O. The Ej will be assumed to have a known varianee-covariance
matrix. Some theoretical studies have been carried out under the simplify­
ing assumption that the covariance between all estimates of inventories
and net transfers is zero, so that COV(Ej, Ej-k) = 0 for k > 1. Recom­
mended procedures for sequential testing do not make this assumption and
are based on a redefined sequence of independent quantities computed
using a known variance-covariance matrix (Goldman, 1985).

In connection with the development of procedures for the testing of
sequences of inventory difference estimates, a variety of assumptions has
been made with respect to the expected values Lj. The nature of the
assumptions differs depending on whether the purpose is control of
unknown losses or the detection of deliberate diversion. In the first case a
common assumption is that the l.j are observed values of a random varia­
ble with expected value L and variance U(, where L mayor may not be
assumed to be O. This model is similar to the random effects model for the
between-class effects in a one-way analysis of variance. The special case
U( = 0, for which Lj = L for all i, is frequently called the constant loss
model. When dealing with deliberate diversion rather than chance losses,
the values of the Lj can presumably be chosen by the diverter to maximize
his chances of nondetection. This allows a wide variety of diversion pat­
terns, usually subject only to the constraint that the total amount
M = ~Lj diverted over some fixed period equals or exceeds some speci­
fied goal. In this case the constant loss model in which an amount
L = Min is diverted each period is sometimes referred to as "protracted"
diversion, as opposed to the diversion of an amount M in a single material
balance period, which is called "abrupt" diversion. Many specialized tests
have been developed to deal with specific diverter strategies as alternatives
to the null hypothesis of no diversion. Some of these are discussed in
Section 16.3.

16.2 TESTING INVENTORY DIFFERENCES AND
CUMULATIVE INVENTORY DIFFERENCES

When the observed inventory difference is considered as a normally
distributed random variable with expected value L and known variance,
the hypothesis tests of Section 4.2.1 are applicable. Considering the large
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number and nature of the individual results involved, the assumption of
normality based on the Central Limit Theorem is almost certainly
justified. Although there is no practical alternative, the assumption of
known variance should be examined more carefully. If the variance of the
inventory difference is dominated by several variance components whose
estimates are based on small numbers of degrees of freedom (Section
3.5.1), this assumption may be questionable and result in an increased
number of unwarranted rejections of the null hypothesis (false positives),
because the most common consequence of variance estimation based on
small numbers of degrees of freedom is an underestimation of the true
magnitude of the variance.

The basic testing procedures for inventory differences and cumulative
inventory differences are considered in Section 16.2.1. Section 16.2.2
reviews some applications of decision theory and game theory to the deter­
mination of optimum testing procedures.

16.2.1 Hypothesis Testing

When the inventory difference is being used as a control on the
accounting process, we are concerned with the composite alternative
hypothesis L ::f= 0 as opposed to the null hypothesis L = O. The control
chart procedures of Section 4.7 are directly applicable. The situation has
some aspects of both theoretical and empirical control charts. In the sense
that their primary use is to promote guidance in establishing and main­
taining a state of control, they are empirical; but in the sense that each
observed inventory difference has a unique known variance which is used
to determine specific control lines, they are theoretical.

In order to establish a state of control such that L = 0, the center
line of the control chart is chosen to be zero. As noted in the discussion of
routine monitoring in Section 15.2.1.1, it has become standard practice in
nuclear regulatory applications, as mandated by the Nuclear Regulatory
Commission, to use approximate 5% and 1% limits to make control judg­
ments rather than the customary 2u and 3u limits of quality control prac­
tice.t The justification for this is based on the desire to emphasize investi­
gation of possible assignable causes at the expense of false positives.
Further discussion of the criteria for determining action limits and critical
values is contained in the next section and in Chapter 12.

The estimates SE(fD) = "Yar(n:» needed to compute these limits are
generally determined in one of two ways:

1. By estimating Yar(iD) using the methods of Chapter 14.
2. By multiplying some historical standard deviation relative to the

throughput, considered to be representative of good accounting practice for

'In particular, the term "limits of error" has been commonly used for estimates of the 20',
or approximately 5%, limits on both individual measurements and accounting results.
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the process being monitored, by the throughput associated with an esti­
mate io. It follows from Equation 16.2 that if this known standard devia­
tion relative to the throughput is defined as 6, and if the throughput T is
defined as either BI+A or R +EI, then an estimate of the variance is

Var(fO) aa 2(6T)2

and

The second approach is more applicable to control procedures "designed to
demonstrate a required or desired level of performance, while the first is
more applicable to empirical processes for achieving control (Section 4.7).

The procedure of Section 4.2.1.2 is usually used to test the hypothesis
of no loss against the alternative of an unknown loss or a deliberate diver­
sion. The test statistic Z, defined by Equation 4.6, is obtained by replacing
the mean X and its standard error u/JD. by io and SE(iO), respectively,
and It by L. Because the true standard error SE(ID) is not known, the pro­
cedure is modified by replacing it with an estimate obtained using the
approximate procedures of Chapter 14. As noted in Section 14.3.4, infor­
mation concerning the quality of the standard error estimates obtained in
practice is generally not available, and there is little else to do but accept
them as known. It should be recognized that the rejection rate under the
null hypothesis (false alarm rate) may increase and the probability of
detection may decrease when the true standard error is replaced by an
estimate. If information is available concerning an appropriate degrees of
freedom to assign to the estimate of the standard error, then the parallel
procedures of Section 4.2.2 based on Student's t-distribution should be
used. This is particularly important if some dominant component of the
estimated variance is known to be based on relatively few degrees of
freedom.

In this procedure, the hypothesis

Ho: L = 0

is tested against the one-sided alternative that the loss is some specific pos­
itive quantity LA, so that
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The modified test statistic is

(16.8)10
Z = SEOD)

For a selected false alarm rate a, the rejection region is Z ~ Zl-a' where
Zl-a is determined by

and q,(z) is the cumulative unit normal distribution defined by Equa­
tion 2.35 and tabulated in Table A3. From Equation 4.14 the probability fJ
of not rejecting the null hypothesis when the alternative is true is

(16.9)

For a given value of LA, an estimate of fJ can be obtained by replacing the
known standard error by its estimate as in the testing procedure.

The probability I - fJ of rejecting the null hypothesis when the alterna­
tive hypothesis LA is true (defined as the power of the test in Section
4.2.1.3) is usually referred to in nuclear material accounting applications
as the "probability of detection" of a loss of size LA'

Because the cumulative inventory difference is simply the inventory dif­
ference for an extended period, the identical hypothesis testing procedure
is applicable. The hypothesis

Ho: M = 0

is tested against the alternative

(16.10)

..
CID

Z = SE(ciD)

using the test statistic

and the rejection region Z > Zl-a' where Z is assumed to be N(O,l). The
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power to detect an alternative MA is given by I-{J, where

{J = q, [ZI-a - SE~io)I
This can again be estimated by replacing SE(do) by S"E(do).

(16.11)

Example t 6.4 Assume that for the material balance periods defined
in Example 16.1 the actual reported results were:

TABLE 16.5

Reported Results

Stratum

Process material inventory
12/31/82
6/30/83
12/31/83

Unrecovered scrap inventory
12/31/82
6/30/83
12/31/83

Feed material
In inventory, 12/31/82
Received and processed, 1/1-6/30
In inventory, 6/30/83
Received and processed, 7/1-12/31
In inventory, 12/31/83

Finished fuel
In inventory, 12/31/82
Produced and shipped, 1/1-6/30
In inventory, 6/30/83
Produced and shipped, 7/1-12/31
In inventory, 12/31/83

Recovered scrap shipments
1/1-6/30
7/1-12/31

Estimated total COIItent
(kg muiwn)

11,956
12,087

4,030
1,687

27,943
37,922
18,006
44,014

30,004
56,015
6,002

56,024
14,006

6,011

From these results for individual strata the inventories, additions, and
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removals on a facility basis as defined in Example 16.1 were computed and
are given in Table 16.6.

TABLE 16.6

Reported Components of the Material Balance

Estimated
Compooent amount

Inventory 12/31/82 69,903
Inventory 6/30/83 40,125
Inventory 12/31/83 15,693

Additions 1/1-6/30 55,928
Additions 7/1-12/31 44,014

Removals 1/1-6/30 86,019
Removals 7/1-12/31 68,037

From these component results the estimates of the inventory differences
are computed as

iD I = 69,903 + 55,928 - 86,019 - 40,125 = -313
iD2 = 40,125 + 44,014 - 68,037 - 15,693 = 409

The results for the reformulated components based on a process material
balance are given in Table 16.7. The standard errors of estimate for these
components as computed in Examples 16.2 and 16.3 are also shown for
reference.

TABLE 16.7

Estimated Amounts and Estimated Standard Errors for the
Reformulated Components of the Material Balance

Estimated Studarcl error
Compooent amount of estimate

In-process inventory 12/31/82 11,956 36
In-process inventory 6/30/83 16,117 52
In-process inventory 12/31/83 1,687 21

Additions to process 1/1-6/30 65,865 87
Additions to process 6/30-12/31 62,020 83
Additions to process 1/1-12/31 127,885 151

Removals from process 1/1-6/30 62,017 33
Removals from process 7/1-12/31 76,041 41
Removals from process 1/1-12/31 138,058 71
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The estimates of the inventory differences computed from Table 16.7 are

lOt = 11,956 + 65,865 - 62,017 - 16,117 = -313

and

i02 = 16,117 + 62,020 -76,041 - 1,687 = 409

which, as expected, are identical to those computed from Table 16.6. The
standard errors of these estimates and their sum were estimated in Exam­
ples 16.2 and 16.3 to be:

Period

1/1-6/30 (lOt)
7/1-12/31 (102)

1/1-12/31 (CIO)

ill

-313
409
96

A A

SE (ID)

113
104
172

Note that in Table 16.7 all of the basic material balance components,
except the unrecovered scrap in inventory at the end of the year, have
standard errors consistent with the 0.1 to 0.3% standard deviation due to
measurement errors expected in fuel fabrication plants processing low
enriched uranium. However, all the inventory difference estimates are
differences of much larger amounts, and such estimates of the relative
standard deviation are not directly meaningful with respect to the observed
material balances. While the net transfers used in Equation 16.3 are not,
like the inventory difference, expected to be zero, they will also usually be
small compared to the combination of beginning inventory plus additions,
or removals plus ending inventory, with respect to which historical or
desirable relative error estimates are defined.

The test statistics obtained by dividing the estimated inventory differ­
ences and the cumulative inventory difference by their estimated standard
errors are:

Zt = -313/113 = -2.77

Z2 = 409/104 = 3.93

Z = 96/172 = 0.56

Both Zt and Z2 exceed the critical value Zt-O.05 = Zo.95 = 1.645. The
fact that they are relatively large but opposite in sign suggests some
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problem with the intermediate inventory. However, for the process
throughputs per period of approximately 78 metric tons (beginning in­
process inventory plus additions or ending in-process inventory plus
removals) observed here, the estimated standard errors are only about
0.14% of the throughput, which is somewhat smaller than accepted stan­
dards for this type of facility. This suggests the alternative additional pos­
sibility that bias contributions to the estimated standard error from some
sources may have gone unrecognized, leading to underestimation of the
standard errors and inflated values of the test statistics.

The procedure for examining the power of these tests is illustrated for
the case of dD. The rejection region for the test of M = 0 for a = 0.05
is z ~ 1.645. From Equation 16.11, fJ is given by

p - +.645 - s;clDll
Using the estimate SE(dD) = 172, the probability 1- fJ of rejecting the
hypothesis that no loss occurred is plotted as a function of the true loss
MA in Figure 16.1. This power curve describes the loss detection sensitivity
of this particular determination of an inventory difference. In particular,
the probability of detecting a loss of MA = 566 kg is 0.95 (fJ = 0.05).
The probability is only 0.5 of detecting a loss of 283 kg.

1.0 ,..-------------------..,

0.8

0.6

1-/3

0.4

0.2

0.0 ~___'___........____" I...___""___..J

100 200 300 400 500
M A, Total loss in kg

Figure 16.1. Power cune for Example 16.4.
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The ability of the cumulative inventory difference test to detect a
loss does not depend on the pattern of loss within the extended period but
only upon the amount. The probability that at least one of the inventory
differences included in a cumulative inventory difference will detect a loss
does depend, among other factors, on how the loss is patterned over the
periods i = 1, 2, ... , n. If the amount M is to be diverted in n periods
and the individual inventory differences have equal standard deviations,
then the maximum probability of nondetection by at least one individual
test occurs when a constant amount Min is diverted in each of the n
periods. If the amount M is diverted in one period, then the individual test
for that period will have more loss detection power than a cumulative test
that includes the period because an individual estimate will always have a
smaller standard deviation than the cumulative estimate. Using the inven­
tory difference and cumulative inventory difference test jointly guards
against a multiplicity of alternative loss patterns. The individual tests
guard against lumping all the loss into one period (abrupt diversion);
cumulative tests guard against a gradual loss of the total amount over
several periods, no matter what the specific loss pattern (protracted
diversion). .

Equations 16.9 and 16.11 describe the relationship between the four
basic parameters of the testing procedure for either an inventory difference
or a cumulative inventory difference. These are:

ex : The probability of rejecting the null hypothesis when
no loss or diversion occurs; the false alarm rate.

LA' MA : A loss or diversion which should be detected with rea­
sonably high assurance; an amount of material of regu­
latory significance.

fl : The probability of failing to reject the null hypothesis
. when the true loss is LA or MA•

SE(iO), SE(ciO) : The standard error of an estimate of the inventory
difference or the cumulative inventory difference.

There are two basic ways in which this relationship is used. In the plan­
ning process, it is generally assumed that ex, fl, and LA or MA are deter­
mined by the objectives of the material accounting process. Given these
three quantities, the SE(ID) required to achieve these goals can be calcu­
lated. In essence, the quality of the measurement and accounting system
necessary to achieve a given level of loss detection capability, as stated in
terms of the parameters ex, fl, and LA or MA, has been established. Some
of the ways in which these parameters can be related to the goals of the
systems are considered in the next section.

When an evaluation is being performed after the fact, estimated values
ID and S"E(i'O) of the inventory difference and of its standard error are
known from the calculation of the material balance and its variance from
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available production and control measurements. From these observed
values, assuming as before that the estimate is normally distributed, the
probability a of observing an estimate as large as fo when L = 0, and the
probability fJ of observing a value as small as fo when L = LA, can be
computed. Comparing these estimated values of a and fJ to the usual 0.05
or 0.01 significance levels is equivalent to testing whether L is significantly
greater than zero or significantly less than LA, respectively. Alternatively,
using the estimated value of ID as the critical value for computing a value
LL of L associated with a given value of a and a value Lu of L associated
with a given fJ is equivalent to determining a lOO[ 1- (a + fJ»)%
confidence interval for the true value of L. The determination of a confi­
dence interval for L based on the estimate ib and its variance indicates
the spread of possible true values of the inventory difference consistent
with the observed estimates. The quantity [SE(ID») [Zl-a + Zl-P) mea­
sures the width of this confidence interval for a fixed value of SE(t'O).
Comparison of this width, which depends only on the standard error of the
inventory difference estimate, with the loss LA to be detected determines
the ability of the system to detect a loss of this size. For the frequently
used valu~s a = fJ = 0.05, Zl-a = Zl-p .. = 1.645 and the estimated
width of the confidence interval is 3.29 [SE(IO»). Equivalently, the largest
value of SE(fO) for which a hypothesis test can be designed that is capa­
ble of detecting LA with probability 1- fJ and with false alarm rate a is
SE(ID) = LA/3.29.

16.2.2 Decision Theoretic Approaches
The interpretation of the observed inventory difference and its

estimated standard error based on the simple quality control procedures of
Section 4.7 and the hypothesis testing approach described in Section 4.1
were discussed in preceding section. The decision to reject the null
hypothesis, or simply to investigate for the presence of assignable causes of
lack of control, was based on the choice of a given multiple of the
estimated standard error as a control limit. This multiple, in turn, was
based on the choice of a significance level (or false alarm rate) and a dis­
tribution function for an inventory difference or cumulative inventory
difference which enabled the translation of this selected probability into a
critical value for determining the action to be taken. Because of the impor­
tance of decisions based on observed inventory differences and cumulative
inventory differences, much work has been done to determine good
methods for selecting a decision rule. This work will only be reviewed
briefly in this volume. More complete expositions of such approaches to the
determination of test procedures are available in the literature (Shipley,
1977, 1983; Avenhaus, 1977, 1986).

Statistical procedures for arriving at optimum decisions have been con­
sidered at three levels. The first level of approach, used in the previous
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section, is based on the classical methods of hypothesis testing. For a given
test statistic and assumed distribution, the power function describes the
behavior of the test for all alternatives to the null hypothesis that are
assumed possible. To derive tests which are in some sense optimum, the
problem is formulated in terms of the possible decisions and states of
nature. In Table 4.1, the possible decisions are "Reject Ho" and "Do not
reject Ho"; the states of nature are "Ho is true" and "Ho is false." More
generally, it is necessary to determine from a given set of observations and
their assumed distribution the probability that any possible decision will be
taken given a specific state of nature. For a fixed significance level, this
enables a correct selection of test statistic and critical region by choosing
the procedure that minimizes the number of incorrect decisions, but does
not provide guidance as to the size of the critical region or, equivalently,
the ratio of false alarm rate to the power of the test. When applied to the
testing of a single inventory difference, procedures in this class involve
only the selection of a one-sided or two-sided critical region based on the
choice of admissible alternatives, but do not give guidance in the selection
of appropriate significance levels.

The second and third levels of statistical decision procedures both
involve the establishment of a loss table, or series of loss functions,
describing in comparable units the consequences of each action given each
state of nature. Again using Table 4.1 as an example, it is necessary to
determine the costs associated with Type I and Type II errors, and either
a zero cost or a gain (a negative cost) associated with each correct deci­
sion. Based on this concept of a loss function, a number of procedures have
been developed which consider the decision problem as a game against
nature with the loss table as a payoff matrix. In the simple case of Table
4.1, this means that ex and f3, the probabilities of Type I and Type II
errors, respectively, are chosen so as to make the expected losses due to
these two errors equal. In simple safeguards terms, the losses due to false
alarms-i.e., unnecessary investigations, unwarranted plant shutdowns, or
unjustified accusations of diversion or loss-should balance the losses due
to undetected discards or diversions. Approaches of this type to the simple
problem of interpreting a single observation of an inventory difference
whose variance is known have been studied (Siri, Ruderman, and Dresher,
1978). Studies of this type can provide considerable insight into appropri­
ate choices of false alarm rates but are highly dependent on the formula­
tion of the payoff function. Similar approaches have been used to
determine appropriate sampling procedures for the verification problems
considered in Chapter 17.

At the third level of statistical decision procedures, prior distributions
of the states of nature are also assumed, so that a single Bayesian risk can
be calculated and the procedures designed to minimize this risk. In the
simple case of one inventory difference, this is equivalent to assuming a
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probability that a diversion will be attempted or a loss will occur (Bennett,
1970). Considerations of this type have been taken into account in the for­
mulation of inspection approaches but not in the interpretation of observed
material balances. The Neyman-Pearson hypothesis testing criteria and the
game theoretic approach have been applied more extensively than the
Bayesian approach (Avenhaus and Frick, 1974a,b; Shipley, 1983). An
excellent summary of work on strategic analysis is given by Goldman
(1984).

16.3 SPECIALIZED ESTIMATION AND
TESTING PROCEDURES

16.3.1 Specialized Loss Estimators

The inventory difference and cumulative inventory difference estimates
are based on straightforward mass balance considerations. Other special­
ized loss estimators have been developed because individual tests on each
inventory difference do not use all the available mass balance accounting
information in a sequence of consecutive inventory differences. For exam­
ple, the estimate of the ith inventory difference in a sequence of length n
does not depend on or utilize any information from previous periods, and
the cumulative inventory difference based on a sequence does not use
intermediate inventory information. The following display indicates the
data used and ignored in each instance.

Loss estimate Data used Data ignored

The estimate IDj also ignores the information I j+ lo Ii+2, ... , In' Ti+lo
Ti+2' ... , Tn generated subsequent to period i.

Loss estimators that can use all or part of the additional information
require additional assumptions concerning the loss model; thus, the use of
the term specialized to describe these estimates. They were developed to
use the information from the material accounting process more completely
and to create loss estimators that are more sensitive when the loss is
assumed to be constant. The main technical criterion is that it be possible
to represent the components of the material balance as linear combinations
of loss and physical inventory parameters that reflect the hypothesized loss
situation. When the more detailed loss models are valid, the sensitivity of
the estimates increases relative to that of an inventory difference, or cumu-
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lative inventory difference, with increasing n and with increasing X, where
X is defined as the ratio of the physical inventory variance to the net
transfer variance. Thus these specialized estimates provide useful comple­
ments to inventory differences and cumulative inventory differences when
special loss situations are of concern and when X and n are sufficiently
large. The desirability of a large n suggests that sequences of inventory
differences based on short and frequent accountability periods, thus
approaching real-time accountability, are natural candidates for these pro­
cedures when the other conditions are satisfied.

The use or the contemplated use of a specialized loss estimator should
involve the following considerations:

1. The detection of loss is an inherently important goal.
2. The loss models are not arbitrary but are based on strategic con­

siderations in guarding against loss.
3. Relationships between the component variances such that a signifi­

cant increase in loss detection power is possible are known to exist.
4. The overall Type I error rate can be controlled by simultaneous

inference methods (Chapter 10).
5. An adequate computer program is available or feasible.
6. The loss estimators are obtained by regression techniques, so that

the standard results associated with regression (Chapter 6) can be used to
explore the adequacy of the model and/or the data.

Estimation procedures using generalized least squares are necessary
when there are more equations than unknown parameters and the observa­
tions on the dependent variable are correlated and may have unequal vari­
ances. These conditions exist in specialized loss situations because in n
consecutive periods there are 2n + 1 observations (n + 1 inventory esti­
mates and n net transfer estimates) and n + 1 + P parameters
(p loss parameters and n + 1 inventories) to be estimated (if p < n, then
n + 1 + P < 2n + 1). The observed values of the inventories and net
transfers are frequently correlated and usually have unequal variances. In
the constant loss case the number of loss parameters is 1, the constant loss
L per period.

In ordinary least squares, the dependent variables are uncorrelated with
equal variances (Section 6.2.3). Under these conditions, the least squares
estimates of the parameters are linear, unbiased, and have minimum vari­
ances. The theoretical basis for generalized least squares (Section 6.3.2) is
that new variables that have equal variances and are uncorrelated are cre­
ated by appropriate linear transformations, and the methods of ordinary
least squares are then applied to these new variables. The
varianctH:Ovariance matrix of the dependent variables is assumed to be
known. In this application the estimated variances and covariances of the
inventories and net transfers determined by the methods of Chapter 14
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and 15 are used in the solution. There are special cases where other
approaches can be used that are equivalent or approximately equivalent to
generalized least squares estimates. These special cases occur when the loss
model and/or the error model is simple.

In the remainder of this section a number of specific applications of
specialized loss estimation are described briefly. For a more complete
treatment the reader is referred to Bennett and Stewart (1983) and
Wincek, Stewart, and Piepel (1979).

Case 1:· The purpose here is to obtain and test the loss estimator for an
abrupt, one-time loss in some one period by a process which proceeds
sequentially. The hypothesis Ho: LI = 0 is tested first against the compos­
ite alternative hypothesis HI: LI > 0 using the loss estimator LI = 01 =
io + TI - i I-t If Ho is not rejected, then the minimum variance linear
unbiased estimator of Ill, the true beginning inventory of the second
period, is AI = rlil + t l (io + 1'1), where rl and t l are obtained by
minimizing the variance of AI subject to the constraint rl + t l = 1. Then
the loss estimator L2 = AI + T2 - i2 is used to test Ho: L2 = 0 against
H1: L2 > O. If J!o is notA rejected, A2,. and ~3 are obtained from A2 =
r2I2 + t2 (AI + T2) and L3 = A2 + T3 - 13, respectively, where r2 and
t2 are obtained by minimizing the variance of A2 subject to the constraint
r2 + t2 = 1. The process is continued until Hois rejected for some period.

This problem was first solved under the conditions Var(ij) = Var(i),
Var(Tj) = Yard), and zero covariances (Stewart, 1958). The problem was
generalized and solved for the case of zero covariances among the inven­
tories and net transfers, but unrestricted variances (Stewart, 1972). This is
an example of a relatively simple procedure that uses the information more
completely and gives results that would be obtained under the generalized
least squares approach. The problems of determining the operating charac­
teristics of such sequential testing procedures are discussed by Wincek,
Stewart, and Piepel (1979), Pike and Woods (1983), and Goldman (1985).

Case 2: The analyst wishes to use the data more completely to test for
an abrupt, one-time loss in a selected intermediate period i out of a
sequence of 0. periods. The estimate of the beginning inventory Ilj-I for
period i is obtained by the procedure of Case 1. The ending inventory
value Ilj for period i is estimated as follows. Estimate Iln-I by Pn-I =
rn-I in-I + tn-I (in - Tn), where the values rn-I and tn-I are obtained
by minimizing the variance of Pn-I subject to the constraint rn-I +
tn-I = 1. Then estimate Iln-2 by Pn-2 = rn-2in-2 + tn-2 (Pn-I-T.l'-I)'
This process is continued until Pj is obtained. Then the loss estimator Li =
Pi-I + Tj - Pi is used to test Ho: ~ = 0 against HI: ~ > O. This prob­
lem is discussed by Win~ek, Stewart, and Piepel (1979).

t Dj is used to represent the observed inventory difference for the ilb period in the remain­
der of this section.
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Case 3: In this case, the losses are assumed to be constant from period
to period and a constant loss estimator is used. The constant loss estimator
uses a more specific loss model than the cumulative inventory difference
and hence, uses the information available for the sequence of periods more
completely. The constant loss estimator was first developed for the same
variance conditions as in Case 1. The methods that have been derived to
obtain L(n), the estimate of L based on information from n successive
periods, include: 0) Kalman Filter techniques (Pike and Morrison, 1977);
(2) minimizing the variance of linear combinations of OJ values (Jaech,
1978); (3) the use of orthogonal linear forms (Wincek, Stewart, and
Piepel, 1979); and (4) generalized least squares (Wincek, Stewart, and
Piepel, 1979). These approaches, which seem to be so different, all provide
identical minimum variance linear unbiased estimators of L.

Case 4: In this case, the constant loss problem is generalized to the sit­
uation where nonzero covariances exist among the material balance com­
ponents and the variances are unrestricted. For the constant loss model,
only the inventory differences and their variance-covariance matrix are
needed to obtain the least squares estimate of L based on n periods.
Because E(Dj) = L, the matrix representation of the model is

0 1 1 El

O2 1 E2

0= (L) + =XL+E 06.12)

On 1 En

so that by the generalized least squares procedures of Section 6.3.2

06.13)

and

06.14)

Because ~' = 0, 1, ... l) is a 1 X n unit vector, the variance of ~n) can
be written

Var(L(n» =-n-n-­

~ ~ qt~)
j-lj-l

06.15)

where qt~)is the itb row, lb column element of the (n X n) matrix ?;.-l.
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Case 5: The analyst wishes to estimate the total loss for n periods
under the hypothesis Ho: Li = 'YiM, where .}; 'Yi = I and 'Yi is the pro-

t-I

portion of material that is lost in period i, and M is the total loss for the n
periods. Here 'Yi is a design variable and M is a parameter. Then the
inventory differences are modeled as

0 1 1'1 EI

O2 1'2 E2

0= (M) + =rM+E (l6.16)- -

On 'Yn En

and it can be shown that M, the minimum variance linear unbiased esti­
mate of M, is

with

n n

~ ~ 'Yi'Yj (1t~)
i-Ij-I

(l6.17)

(l6.18)

This formulation of the loss problem is useful in guarding against a partic­
ular pattern of loss. For example, the l' values may be made proportional
to period throughputs.

Case 6: More than one loss parameter can be used. Suppose the ana­
lyst wants to estimate and to test for a constant loss in Periods 2, 3, and 4
and an abrupt loss in Period 6 in a sequence of seven material balances.
The inventory differences could be modeled as

0 1 00

[~:I
EI

O2 I 0 E2

0 3 I 0 E3

0 4 I 0 + E4

OS o 0 Es

0 6 o I E6

0 7 00 E7
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The value L, is an estimate of the constant loss value for Periods 2, 3, and
4; and L2 is an estimate of the one-time loss in Period 6.

These different possibilities illustrate: (1) some of the many loss models
that are possible; (2) the generality of the approach to these problems and
modifications of the general approach that are helpful in simplifying the
computations; and (3) some special properties of constant loss estimators.

16.3.2 Sequential Tests

The examples of the preceding section emphasize the estimation of loss
based on the data for a sequence of n material balance periods. These esti­
mation procedures are characteristic of procedures for nuclear materials
accounting and management, where the primary requirement is the assess­
ment of the status of the nuclear material. However, the shift to detection
of loss or deliberate diversion as the primary function of the material
accounting process, and the consequent need for frequent material bal­
ances as a means of obtaining timely decisions that diversion has occurred,
changed the emphasis to decisions as opposed to assessment (Pike, Woods,
and Rose, 1980; Shipley, 1981, 1983). Numerous procedures have been
proposed for testing material balance data under these new conditions
(Stewart, 1978; Jaech, 1978; Avenhaus and Frick, 1979; Avenhaus and
Beedgen, 1980; Cobb et aI., 1980, particularly in connection with exten­
sive studies of real-time accounting. Reviews of these developments (Ship­
ley, 1981; Goldman, Picard, and Shipley, 1982; Gupta, 1983; Pike and
Woods, 1983) emphasize three aspects of the problem:

1. The need to develop tests, or groups of tests, which are robust
against all possible diversion tactics.

2. The need to develop tests that are truly sequential, rather than
simply based on more than one material balance, so as to emphasize
timely detection.

3. The need to characterize test performance in at least the minimum
decision-theoretic sense of being able to place upper bounds on detection
probability and lower bounds on false alarm rates.

The multiplicity of tests involved in both sequen~ial test procedures and
multiple tests makes it difficult to satisfy these three requirements simul­
taneously. Shipley (1981, 1983) has stated the criteria for a satisfactory
statistical testing procedure as follows:

1. To preserve timeliness, the opportunity to decide that a loss has
occurred must be available soon after each balance.

2. Losses of sufficient size occurring over any time interval, up to
one-year long, for example, must be detectable. (One year is chosen
because that seems to be the currently accepted standard for the maxi­
mum interval.)
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3. A decision that diversion has or has not occurred during a time
interval, and backed up by appropriate assessment procedures, may not be
changed at a later time in the absence of substantial new information.

4. A definitive estimate of the inventory difference and its variance
must be available periodically, say, once each calendar year at physical
inventory time.

5. The false alarm and detection probabilities and the detection sensi­
tivity (goal quantity) must be known (or at least bounded) beforehand.

If one adds to these the requirement that the procedures can be applied
and understood in connection with routine evaluation in the field, it is easy
to see why development and acceptance of appropriate tests has been
difficult.

With respect to the requirement to detect all types of loss patterns,
four procedures involving sequences of material balances seem to cover
most cases. The first is the cumulative inventory difference, which is a spe­
cific case of the cumulative sum, or CUSUM, frequently used as a statistic
in sequential testing (Section 4.6). The cumulative inventory difference is
attractive as a test statistic because its power, as noted earlier, is indepen­
dent of the loss pattern, depending only on the total loss M = ~Li' The
second is the uniform loss estimator of Cases 3 and 4 of the previous sec­
tion. As noted there, this case has received much attention and is
extremely sensitive to the early detection of protracted diversion which is
relatively uniform (e.g., Case 5 of the previous section, where the loss is
proportional to the throughput). The third is the procedure of Case 1 of
the preceding section, which is sensitive to change in the loss pattern (Win­
cek, Stewart, and Piepel, 1979; Sellinschegg et aI., 1981). This procedure
detects the initiation of diversion or loss, as opposed to the presence of a
protracted loss. The fourth procedure is a test sensitive to the variance in
the losses which will protect against deliberate randomization of indi­
vidual losses to counter the sensitivity of the estimators based on constant
loss.

Each of the above estimates can be computed at the time of the nth
material balance using any number 1 to n of consecutive prior balances,
and its significance tested against its estimated standard error. Interpreting
the very large number of test statistics so obtained is difficult. Computer­
ized display procedures which aid in this process have been developed
(Shipley, 1978). However, they do not quantify the performance of these
highly dependent multiple tests with respect to their detection capability.
For independent sequential statistics derived from a sequence of inventory
differences, sequential probability ratio tests (Section 4.6), Page's test, and
tests of power one have been studied and their properties determined
(Goldman, 1985).

Relatively little plant experience with sequential procedures is avail­
able. Demonstrations have been carried out in several large reprocessing
plants (Cobb et aI., 1981; Ikawa, et aI., 1983).
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CHAPTER 17

Verification of Accounting Data
17.0INTRODUcnON

In Chapter 13, the basic concepts of nuclear material accounting were
introduced. The many close parallels between the concepts of material
accounting and those of standard financial accounting were highlighted. In
this chapter, the verification of material accounting data is treated. These
verification activities are parallel to the audit procedures of financial
accounting.

This chapter consists of three main sections. Section 17.1 presents an
overview of the verification process in which the statistical aspects of the
problem are outlined. Section 17.2 treats statistical methods for making
inferences about the "errors" or "discrepancies" (these terms will be
defined later) that may be uncovered in the course of verifying accounting
data. Section 17.3 presents a statistical method for verifying the account­
ing results. Specifically, it provides a procedure for making inferences con­
cerning the correctness of reports of amounts of material shipped, received,
or on hand, as well as the material balance achieved.

17.1 THE VERIFICATION PROCESS

To provide a background for discussion of specific verification tech­
niques useful in nuclear material accounting applications, a brief overview
of the verification process is presented and the central concepts are intro­
duced. As used in this chapter, verification refers to that part of the audit
process that concentrates primarily on the independent collection. exami­
nation. and evaluation of data in order to verify the correctness of the
reported accounting results. It is the aspect of auditing in which statistical
methods are most commonly used.

Auditing has been defined as "a systematic process of objectively
obtaining and evaluating evidence regarding assertions about economic
actions and events to ascertain the degree of correspondence between those
assertions and established criteria and communicating the results to inter­
ested users" (Committee on Basic Auditing Concepts, 1972). In the spe­
cific context of nuclear material safeguards, ANSI Standard NI5.38-1982
(ANSI, 1982) defines an audit as "a documented examination, evaluation,
and correction activity, performed in accordance with this standard, to ver­
ify that all or a portion of a safeguards system or subsystem has been ade-
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872 CHAPTER 17 VERIFICATION OF ACCOUNTING DATA

quately developed, documented, and implemented as necessary to satisfy
applicable requirements." In the United States, the applicable require­
ments are given, for example, as:

1. Atomic Energy Act of 1954, as amended.
2. Energy Reorganization Act of 1974, as amended.
3. Code of Federal Regulations.
4. Department of Energy orders.
5. Operating licenses, contracts, and conditions.
6. Regulatory guides.
7. Operating procedures and practices.
8. American National Standards.

Different requirements may apply in other countries. It should be noted
that generally the tasks of auditing, and verification in particular, are
strongly influenced by the nature of the criteria established to govern the
nuclear material accounting system. For example, the ground rules and
constraints for verification activities are very different in international
safeguards and domestic safeguards, although many of the same statistical
techniques can be used.

The first definition of auditing given above emphasizes the concept of
evidence as the basis for audit conclusions. In ANSI Standard
NI5.38-1982, the role of objective evidence is also stressed (ANSI, 1982):

Sufficient valid and relevant evidential matter shall be obtained and made part of the
working papers through inspection, observation, inquiries, and confirmations to afford
a reasonable basis for the report regarding the compliance of the nuclear materials
safeguards system under investigation.

The verification process concentrates on a particular kind of
evidence-namely, quantitative data-and this is where statistics enters
the picture. The role of statistics is largely directed toward objectively
obtaining and evaluating sufficient quantitative evidence. Statistical sam­
pling plans are used to obtain such evidence objectively. Statistical estima­
tion procedures and hypothesis tests are used to evaluate the evidence
objectively. Statistical design criteria for sampling and evaluation are used
to ensure that the evidence will be sufficient.

17.1.1 The Internal Control System

In the financial context, all but the very simplest accounting systems
make provisions for an internal control system that establishes and
enforces uniform accounting procedures and monitors the quality of the
information generated by the accounting system. In U.S. domestic safe­
guards, the counterpart of the internal control system is the material con­
trol and accounting (MC&A) system. For international (IAEA) safe­
guards, it is the State System of Accounting and Control (SSAC). In each
case, this internal control system is of fundamental importance in the
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auditing and verification process. The nature and quality of the internal
control system largely determine the required scope and intensity of the
audit and verification activities, and furthermore have an important impact
on the level of assurance that can be derived from auditing and verifica­
tion. An excellent internal control system not only facilitates auditing and
verification, but also strengthens the conclusions that can be drawn. A
weak or ineffective system, on the other hand, may require an inordinate
amount of effort to audit and verify, and, even in the most favorable cir­
cumstances, may permit only a qualified statement or conclusion about the
accounts being examined.

Auditing is a multistage process in which the internal control system
plays a central role. Among the determinations that must be made are the
following:

1. Is the design of the internal control system adequate to prevent
and/ or control the occurrence of errors, intentional or unintentional?

2. Has the implementation of the internal control system been adequate
to ensure that the system functions as it was designed to function, thereby
providing some assurance of control over possible errors?

3. Do direct tests of the accounts, performed independently by the
auditor, substantiate the effectiveness of the internal control system as
implemented?

Quantitative data and statistical methods do not play a major role in
helping the auditor address the first question. The adequacy of an internal
control system design depends on such matters as the establishment of
clear lines of authority and responsibility, the existence of documented
standard procedures (some of which may involve statistical considerations),
the allocation of sufficient resources to the accounting and control func­
tions, segregation of functional responsibilities, and staffing and training
policies. In addressing the second and third areas, however, quantitative
data and statistical methods have a more significant role. The verification
procedures described in this chapter are aimed at these latter areas. The
quality of implementation of the internal control system can be evaluated
through compliance tests t performed on a statistical sample of transactions
and procedures. The overall effectiveness of the internal control system can
be substantiated or confirmed through substantive tests t of the accounts,
independently carried out by the auditor, again on a statistical basis.

In the safeguards literature, using a somewhat different nomenclature,
the three levels or stages of auditing/verification outlined above are some­
times referred to as: (I) capability, (2) performance, and (3) independent
assurance. This usage is illustrated in the following extract from the

tThcsc concepts will be explained and illustrated more fully in the rest of the chapter.
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IAEA's Guidelines for States' Systems of Accounting for and Control of
Nuclear Materials (IAEA, 1980):

Assurance of operator compliance with the requirements of the system of account­
ing and control established by the State and the assessment of its effectiveness can be
achieved only by means of a comprehensive audit and inspection programme. Such a
programme should have the first of the following objectives, and may have others,
including the second:

(a) To ensure that the capability of, and performance by, each facility operator for
the discharge of his responsibility for accounting for and control of nuclear material
satisfy the requirements of the Agreement with the IAEA.t

(b) In addition, a State may wish to derive assurance, through independent verifi­
cation at facilities by the Authority, that the accounting and control measures imple­
mented by the facility operator are effective and, in conjunction with other measures,
to conclude that there has been no unauthorized removal or use of nuclear material.

These assurances contribute to the establishment by the IAEA, through its inde­
pendent verification activities, whether there has been any diversion of significant
quantities of nuclear material. The Authority should establish criteria against which
the operator's capability and performance and the results of SSAC inspections and
evaluations can be assessed.

Although this terminology is somewhat different from that introduced ear­
lier, the underlying concepts are identical.

17.1.2 Fundamental Concepts

The essence of verification is the independent collection, examination,
and evaluation of data to (1) ensure that the internal control system is
functioning as designed, thereby obtaining some assurance of control over
possible errors, and (2) substantiate the quantities of material recorded by
the accounting system. In the first instance, the emphasis is on character­
izing and evaluating the errors in the accounts. In the second, the empha­
sis is on the material itself and, ultimately, on whether some material
might have been lost or diverted or might otherwise be unaccounted for.

In most cases, verification involves the comparison of two indepen­
dently generated sets of data. The principal examples are inspection data
and shipper-receiver data. During an inspection, the inspection team
obtains independent measurements of a sample of items. (Recall from
Chapter 13 the definition of an item, the primary accounting unit in a
material accounting system, as an object or container that has a unique
material quantity assigned to it and which can be identified and accounted
for as a separate entity.) These inspection measurements can be compared
with the data recorded by the plant operator for the same items. Ship-

t In this statement, "capability" refers to the actual presence at the facility of the records,
equipment, trained personnel, documented procedures, and other resources needed for ade­
quate accounting and control of nuclear material at the facility, and "performance" refers to
the actual use of the capability for accounting and control of nuclear material at the facility.
Objective (a) may include some independent verification activities by the Authority (e.g.,
through measurements and observations).
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per-receiver data consist of independent measurements made by both the
shipper and receiver on each item in one or more shipments of nuclear
material. From a statistical viewpoint these two situations are similar.
Both involve paired data, and the same statistical techniques are generally
applicable. The discussion in this chapter will focus primarily on inspection
data, i.e., operator-inspector comparisons. However, on occasion, reference
will also be made to the shipper-receiver context.

Generally, the inspector will make two different kinds of measurements
which require different kinds of statistical procedures for comparing opera­
tor and inspector data. The two types are referred to in safeguards par­
lance as attributes and variables measurements. These terms are derived
from quality control conventions. An attributes measurement or test simply
classifies an item as either "defective" or "not defective," depending on
whether or not the item possesses some specified attribute or characteris­
tic. In the language of Chapter 1, it is a measurement on a (dichotomous)
nominal scale. In verification applications, the attribute of interest is usu­
ally the correctness of the item amount stated by the plant operator. More
generally, the attribute may be the correctness of any assertion or implica­
tion concerning the accounting system. A variables measurement is a mea­
~urement, on a continuous scale, of some characteristic or quality an item
possesses. In nuclear material accounting, examples of variables mea­
surements include masses and weights, volumes, concentrations and
enrichments. In the language of Chapter 1, a variables measurement is a
measurement on a ratio scale.

Errors in nuclear material accounting data can be classified in several
ways. One important classification is in terms of the source or cause of the
error. One source that is always present is measurement variability. This
source of error can usually be characterized in terms of one or more
random variables. Ways to estimate and control measurement error were
discussed in Chapters 14 and 15. A second broad category of errors
involves the bookkeeping or clerical mistakes which occur in any account­
ing system. Examples include mistakes in transcribing data from one
record to another, mistakes in calculations, and mistakes in applying
prescribed procedures. These mistakes vary widely both in magnitude and
in frequency of occurrence and are difficult to characterize statistically,
but they are unavoidable in practice. An effective internal control system
can minimize but never completely eliminate them. A third distinct possi­
ble cause of error is the willful manipulation of the accounting system to
conceal a diversion or loss of material. Again, an effective internal control
system can minimize the possibility that such discrepancies will go
undetected but cannot completely rule them out.

A second important classification of errors is based on the size of the
effect or discrepancy. The definition of size depends on the situation and
well-defined rules are not possible. However, in safeguards applications it
is common to base the defmition on the detection sensitivities of the verifi-
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cation techniques used in inspection. Generally, these methods are of two
kinds:

1. Nondestructive assays (NDA). These are usually relatively rapid
instrumental techniques.

2. Destructive analyses. These are relatively more time-consuming,
with higher precision than the NDA techniques. They normally involve
separate bulk measurements (weight or volume), a bulk sampling opera­
tion, and elemental and/or isotopic analysis.

These two methods of verification furnish the basis for defining three
error size classifications:

1. Gross defects. A gross defect is an error that is large enough to be
detected with essentially 100% certainty by a single nondestructive mea­
surement. Thus, the size of the defect must be large compared with the
variability in the nondestructive measurement.

2. Medium defects (sometimes called partial defects). A medium defect
can be detected with essentially 100% certainty by a single measurement
by a destructive analysis technique. Such a defect must be large compared
with the variability in the destructive analysis but not large enough to be
detected with 100% certainty by NDA.

3. Small defects (sometimes called biases). A small defect is an error
that is too small to be detected by a single measurement of either type.
However, the cumulative effect of a number of small defects may be
detectable by statistical tests performed on a set of data generated by veri­
fying a collection of items.

A third important concept in characterizing the size of an error is the
concept of a significant quantity, variously referred to as target quantity,
strategic goal quantity, formula quantity, or threshold amount. The analo­
gous concept in financial auditing is materiality. Whatever the terminol­
ogy, the essential point is that there is a certain size or amount of total
discrepancy or loss that is regarded as practically significant in some well­
defined sense; in this context "significant" does not mean the same thing
as "statistically significant." In safeguards applications, the significant
quantity is usually defined as a matter of regulatory or administrative .
policy.

The relevance of this concept to verification is that the intensity of ver­
ification is usually governed by the desire to detect, if missing, the loss or
diversion of a significant quantity or formula quantity. Thus, this quantity
enters into the determination of sample sizes for inspection. The size of an
observed discrepancy relative to the significant or formula quantity also
determines to some extent the nature and intensity of the follow-up activi­
ties prescribed when errors are uncovered. For obvious reasons, discrepan­
cies of little or no practical significance will not generally warrant the
same degree of attention and concern as those that are large relative to the
significant quantity.
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17.1.3 Selecting a Random Sample
The process of collecting verification data has several statistical

aspects. First, items to be verified must be selected on a statistical (ran­
dom sampling) basis. Second, measurements of the selected items must be
performed by measurement systems that are in a state of statistical con­
trol. Statistical sampling techniques are presented in Chapter 8. Problems
of measurement control have been covered in Chapter 15 and the tech­
niques presented there are equally applicable to inspection measurements
and facility measurements. Specific procedures for selecting a random
sample in this context have not been discussed in other chapters, so an
account of the process is given here.

There are three requirements for selecting a random sample: the
sampling frame, the sample size, and a source of random numbers. The
frame is usually thought of as a list of all items in the population (uni­
verse) to be verified. A more general definition is given by Deming (1960):
"The frame is a set of physical materials (census statistics, maps, lists,
directories, records) that enables us to take hold of the universe piece by
piece." The more general concept includes physical lists and also pro­
cedures that can account for all the items in the population without actu­
ally going to the trouble of listing them. In nuclear material accounting,
the frame is commonly an inventory listing. It may also be a list of items
on a shipping document, a list of storage locations in a critical assembly, a
list of transactions in a journal, and so forth. It is worth noting that the
frame may be, and often is, in error. The list may not be a completely
accurate representation of the population to be verified. Some items in the
population may fail to appear in the list. Other items may inadvertently
appear twice. Items on the list may be mislabeled or misidentified in any
number of ways. One of the purposes of verification is to check for defi­
ciencies in the frame.

The frame is used as the basis for sample selection. Given a sample
size determined in accordance with a statistical plan, random numbers are
used to select items in the frame for verification. The approaches that can
be used are described in Section 11.3.1. The simplest and most widely used
in verification of nuclear material accounting results are based on tables of
random numbers or simple random number generating routines contained
in hand-held calculators. Table 17.1, taken from Snedecor and Cochran
(1980), gives an example of 1000 random digits grouped in blocks of five.
Many statistical texts and reference volumes of statistical tables include a
collection of random numbers which are adequate for the selection prac­
tices described here. The routines used to generate random numbers using
small computers are also generally adequate for sample selection, although
they may not be satisfactory in situations where large numbers are
required, such as the simulation techniques described in Chapter 11.

There are many ways to choose random numbers for sample selection
that work equally well. For example, any method of stepping through the
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TABLE 17.1

One Thousand Random Digitst

06-04 05-09 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49

00 54463 22662 65905 70639 79365 67382 29085 69831 47058 08186
01 15389 85205 18850 39226 42249 90669 96325 23248 60933 26927
02 85941 40756 82414 02015 13858 78030 16269 65978 01385 15345
03 61149 69440 11286 88218 58925 03638 52862 62733 33451 77455
04 05219 81619 10651 67079 92511 59888 84502 72095 83463 75577

05 41417 98326 87719 92294 46614 50948 64886 20002 97365 30976
06 28357 94070 20652 35774 16249 75019 21145 05217 47286 76305
07 17783 00015 10806 83091 91530 36466 39981 62481 49177 75779
08 40950 84820 29881 85966 62800 70326 84740 62660 77379 90279
09 82995 64157 66164 41180 10089 41757 78258 96488 88629 37231

10 96754 17676 55659 44105 47361 34833 86679 23930 53249 27083
11 34357 88040 53364 71726 45690 66334 60332 22554 90600 71113
12 06318 37403 49927 57715 50423 67372 63116 48888 21505 80182
13 62111 52820 07243 79931 89292 84767 85693 73947 22278 11551
14 47534 09243 67879 00544 23410 12740 02540 54440 32949 13491

15 98614 75993 84460 62846 59844 14922 48730 73443 48167 34770
16 24856 03648 44898 09351 98795 18644 39765 71058 90368 44104
17 96887 12479 80621 66223 86085 78285 02432 53342 42846 94771
18 90801 21472 42815 77408 37390 76766 52615 32141 30268 18106
19 55165 77312 83666 36028 28420 70219 81369 41943 47366 41067

tReprinted with permission from Snedecor and Cochran (1980).

numbers in the table is equally valid-vertically down the columns, hor-
izontally across the rows, diagonally-because the numbers in the table
are completely random. For the sake of convenience, it is usually desirable
to pick a simple systematic method, such as searching down columns. The
choice of entry point or starting point is completely arbitrary, again
because the numbers are random, but a different starting point should be
selected each time the table is used. A simple way to accomplish this is to
make a pencil mark after the last random number used in a particular
sampling plan. The next time a sample is drawn, simply start at that point.

The use of the tables can be inefficient if the size of the population is
substantially smaller than a power of 10. For example, suppose the popula-
tion to be verified contains 15 items. Only about 15% of the two digit
numbers in the table will be between 1 and 15, with the result that most of
the numbers in the table will simply be rejected and it may take a little
longer to find the sample. There are simple modifications whereby this
inefficiency can be avoided. For example, subtract 20 from all numbers
between 21 and 40, subtract 40 from numbers between 41 and 60, etc. In
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this way, every two digit random number will give rise to a random
number between 1 and 20, and about 75% of these will be between 1 and
15. Thus, the rejection rate will be much lower than before. Note that the
number subtracted must be an exact divisor of the appropriate power of 10
used to enter the table.

Example t 7. t The inspector wishes to verify a stratum consisting of
48 cylinders of uranium hexafluoride (UF6). Calculations of the required
sample size indicate that 7 of the 48 cylinders should be selected for
inspection. First, the UF6 cylinders are numbered sequentially from 1 to
48. This is easily done using the inventory list. Then an arbitrary starting
point or entry point for entering the random number table is selected, and
the following sequence of two-digit numbers is systematically searched for
numbers between 1 and 48. For example, suppose he starts with row 5,
columns 18 and 19, and moves down the columns. The first number is 94,
the second 74, the third 91, the fourth 66, the fifth 80, the sixth (row 10,
columns 18 and 19) is 05. This is between 1 and 48, so the inspector puts
cylinder number 5 in the sample. The next 9 two-digit numbers in
columns 18 and 19 are 26, 15, 31, 44, 46, 51, 23, 08, and 28. All except
51 are between 1 and 48, so the inspector includes in the sample
cylinders 26, 15, 31,44,46, and 23, at which point the desired sample size
of 7 has been reached.

Unless the sample size is large, using a computer program to generate
random numbers is not likely to be a great deal faster than using a ran­
dom number table. However, computerized methods have the important
advantage of being self-documenting. The sampling table printed out by
the computer can be included with the inspection working papers or
reports as a record of what was done.

17.2 INFERENCES FROM OBSERVATION OF
ATTRIBUTES

One of the purposes of verifying accounting data is to obtain informa­
tion about the existence of mistakes or discrepancies in the reported data.
Such information can be used to indicate:

1. Whether the implementation of the internal control system has been
adequate. Ideally, an effective internal control system will permit only a
small number of errors in the data, none of which will seriously distort the
accounting results.
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2. Whether a loss or diversion of material might have occurred. Many
possible scenarios by which loss or diversion could be concealed will mani­
fest themselves in terms of discrepancies in the accounting data.

Most of the statistical techniques to be presented in this section are dual­
purpose in the sense that they provide evidence concerning both of the pos­
sibilities mentioned above. It is useful to keep these two possibilities firmly
in mind even though the same statistical techniques are applied in assess­
ing them. The distinction is important in interpreting the results of the sta­
tistical procedures and in defining the necessary follow-up actions.

The basic features of verification procedures based on the observation
of attributes are described in the next section. Section 17.2.2 explains the
use of the hypergeometric distribution in attribute sampling. Section 17.2.3
presents the use of the binomial distribution.

17.2.1 Attribute Sampling
A population of items is given and the inspector wishes to determine

the proportion of items in the population that possess some specific attri­
bute. To do this, the inspector selects a random sample of items from the
population and subjects each selected item to a test (measurement, exami­
nation) to determine whether the item possesses the specified attribute or
characteristic. Items that do not are usually called defective, e.g., con­
tainers with a broken seal. After examining each sampled item, the inspec­
tor can calculate the proportion of defectives in the sample and on the
basis of this information can reach a conclusion about the proportion of
defectives in the population as a whole. In verification applications, the
attribute of interest is usually the correctness of the item amount as stated
by the plant operator. However, correctness may also refer in some cases
to compliance with prescribed procedures (Le., compliance with the inter­
nal control system) regardless of whether the item amount is correctly
stated. For example, if source documents are not properly signed and
dated or if forms are not correctly filled out, the inspector could classify
the inspected item as defective even if the item amount is correct.

In practice, the definition of what constitutes a defective item or an
error depends on the nature of the test performed by the inspector and on
the goals of the inspection. Clearly, the inspector will want to avoid plac­
ing too much emphasis on trivial errors or discrepancies of little practical
significance. On the other hand, the value of the inspection is diminished if
the inspector is overly permissive in accepting errors. A proper balance
must be maintained between these extremes, and considerable judgment is
required. When the attribute test is based on a measurement, a defective is
usually defined as a discrepancy too large to be explained by the normal
variability of the test measurement. The error effects associated with the
measurement system are not defects in the attribute sense. However,
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defects can be defined by a systematic procedure for determining that an
observed difference is unlikely to have been caused by measurement varia­
bility alone.

The salient features of attribute sampling may be summarized as
follows:

1. A test (measurement, examination) is used to classify each item as
either defective or not.

2. The emphasis is on the rate of occurrence of defects or on the num­
ber of defects rather than on the magnitude of the observed discrepancies.

3. The conclusion of an attribute sampling procedure is usually a
determination to accept or reject the inspected population as satisfactory
in terms of quality.

4. Poor quality (high defect rate or number) may indicate either a
breakdown of the internal control system or a possible loss or diversion of
material. Follow-up investigations are needed to determine the cause of the
observed discrepancies.

5. Since attribute sampling involves counted values (number of defects,
·number of items), discrete probability distributions are used in modeling
the procedure.

6. The decision to accept or reject can be treated as a statistical
hypothesis test. Alternatively, the number or proportion of defects in the
population can be estimated.

Two discrete distributions are in wide use for attribute sampling appli­
cations, the hypergeometric distribution and the binomial distribution. The
Poisson distribution has also seen some use, primarily as an approximation
to the binomial distribution. With the advent of hand-held calculators and
readily available computing facilities, the need for the Poisson approxima­
tion has diminished. These distributions are introduced and illustrated in
Chapter 2. Hypothesis tests based on the binomial distribution are
presented in Chapter 4.

17.2.2 Applications of the Hypergeometric Distribution
As discussed in Chapter 2, the hypergeometric distribution is an appro­

priate model for random sampling without replacement from a finite popu­
lation, and this is the justification for using it in verification applications.
Although the hypergeometric model is exact in this context, it is somewhat
cumbersome to use when computing specific probabilities. The use of the
binomial distribution as a more tractable but approximate model will be
discussed in the next section.

The hypergeometric distribution can be applied to obtain exact solu­
tions to the following kinds of questions:

1. Calculating probabilities of detection_ Consider a population of
known size and with a known fraction of defective items in the population.
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For random samples of various sizes without replacement, what are the
probabilities of obtaining various numbers of defective items in the sam­
ple? In other words, given a specified sampling procedure, what is the
probability of observing various numbers of defective items?

2. Designing a sampling plan. Consider a population of known size.
The actual fraction of defects in the population is not known. The inspec­
tor wishes to design a sampling plan so that (1) if the actual number or
fraction of defects is greater than or equal to some specified value, the
population will be rejected with some specified (usually high) probability,
and (2) if the actual number or fraction of defects is less than or equal to
some specified value, the population will be rejected only with a specified
low probability. How large should the sample size be to satisfy these
conditions?

Example 17.2 To illustrate the computations involved, consider the
simple (and unrealistic) example where the population consists of 20 cans
of U02 powder. The fraction defective in the population is assumed to be
10%, or two cans. For a sample of size 5, calculate the probability of
obtaining various numbers of defectives in the sample.

First, notation is defined and the facts given in the problem statement
are recorded.

N population size = 20
n sample size = 5
p fraction defective in the population = 0.1
D number of defectives in the population = Np = (20)(0.1) = 2
X number of defectives in the sample (random variable)
x number of defectives in the sample (observed value of

random variable) = 0, 1, or 2.

From Equation 2.17, the formula for calculating the required probabil­
ity is

Pr(X = x) = (17.1)

where the notation (b)' introduced in Chapter 2, indicates
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(
a) a!
b = b!(a-b)!

883

(17.2)

For this example, the chance of getting zero defectives in the sample is

Pr(X = 0) =

2! 18!---
0!2! S! 13!

201
S! IS!

By cancellation of identical factors, this expression simplifies tot

P (X = 0) = 15(14) = 05526
r 20(19)'

Repeating the calculation for x = I and x = 2,

Pr(X = 1) =

2! 181---
1!1! 4! 14!

20!
S! IS!

= 2(5)(15) = 0 3947
20(19) .

Pr(X = 2) =
2! 18!---

= 2!0! 3! IS!
20!

S! IS!

5(4) _
20(19) - 0.0526

Thus, under the specified conditions, there is a 55% chance that the sam­
ple will contain no defective items, and a 45% chance that it will contain
one or more.

For realistic population sizes and sample sizes, hand calculation of
hypergeometric probabilities quickly becomes unwieldy. Modem computers
and hand calculators both evaluate factorials easily, and most software
packages contain programs for computing the terms of a hypergeometric

tRccall from Chapter 2 that O! - 1.
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distribution. Logarithms can also be used in evaluating factorial terms,
since with logarithms all of the numbers remain within reasonable bounds.

Continuing with this simple example, suppose that the fraction defec­
tive in the population is unknown. The inspector uses the criterion that a
population fraction defective of 100 PA = 20% or higher is unacceptable
and should be rejected with high probability (say 0.9) in the course of
inspection. In addition, the inspector uses the criterion that a population
fraction defective of 100 Po = 5% or lower is acceptable and should be
accepted with high probability (say 0.9) in the course of inspection. How
large should the sample size be to satisfy these criteria?

The statistical formulation of this problem will be in terms of hypothe­
sis testing. Specifically, the question to be answered is: What sample size
should be selected to induce the desired power in the statistical test? The
reader may wish to refer to Chapter 4 to review the basic concepts of
hypothesis testing.

The null hypothesis is that the population fraction defective is less than
or equal to 5%. The alternative hypothesis is that the population fraction
defective is greater than or equal to 20%. The probability of rejecting the
null hypothesis when it is true is to be 0.1 in this example, because the
probability of accepting the null hypothesis when it is true was chosen as
0.9. The probability of rejecting the null hypothesis when the alternative
holds was chosen to be 0.9. This is the power of the test, or equivalently,
one minus the probability of a Type II error.

The hypothesis test requires the selection of a critical value, U, which
represents the largest number of defectives that can appear in the sample
without rejecting the null hypothesis and the population. U is often called
the "acceptance number." If the sample contains U or fewer defectives, the
population is accepted. By definition, the Type I error probability is

Pr(X > Ulp = Po) = a

and the Type II error probability is

Pr(X ~ Ulp ~ PA) = f3

(17.3)

(17.4)

Using the hypergeometric distribution to determine these probabilities, the
equations become

D.
Pr(X>Ulp = Po) = ~

x-U+l

[~oll~=~l
l~)

=a (17.5)
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where

u
Pr(X ~ Vip = PA) = .~

x-o

[~AI [~=~Al
(~)

=fJ (17.6)

N = population size = 20
n = sample size (to be determined)
V = acceptance number (to be determined)

Do = number of defectives in population under the null hypoth­
esis = Npo = 20 (0.05) = I

DA = number of defectives in population under the alternative
hypothesis = NPA = 20 (0.20) = 4.

The design problem is to determine the minimum value of n, and the
corresponding value of V, for which certain predetermined error probabili­
ties ao and fJo are attained. Clearly, setting n = N and V = I, 2, or 3
will make both a and fJ zero and satisfy the conditions. However, the
intent is to satisfy the conditions with the smallest possible sample.
Because n and V must be integers, the required solution may not produce
values of a and fJ which are exactly equal to the desired error probabilities
ao and fJo. Thus, the problem is to determine the minimum integer value of
n, and the corresponding V, for which a ~ ao and fJ ~ fJo. Tables (Sherr,
1972) are available to assist in solving this problem, and many software
packages contain programs for its solution. Various approximations are
also available (Jaech, 1973, Section 9.1).

In the present simple example, a solution can be determined by choos­
ing successively larger values of V beginning with V = 0, determining
the values of n for which the value of a computed from Equation 17.5 is
less than or equal to ao = 0.1, and then determining the minimum n in
this set for which the value of fJ computed from Equation 17.6 is less than
or equal to fJo = 0.1. For V = 0, Do = I,

n=-
20

so that a ~ 0.1 if n = I or 2. For V = 0, DA= 4,

fJ = (~6) = (20-n)(19-n)(18-n)(17-n)

F~) (20)(19)(18)(17)
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For n = 1, fJ = 0.80; for n = 2, fJ = 0.632. Thus, for U = 0 there is no
value of n for which a ~ 0.1 and fJ ~ 0.1. If U = 1, then for Do = 1,
a = 0, because the occurrence of two or more rejects is not possible.
Thus, any value of n will satisfy the requirement a ~ 0.1. For U = 1,
DA = 4,

= (20-n)(19-n)(18-n)(17+3n)
(20)(19)(18)(17)

For n = 13, fJ = 0.101; for n = 14, fJ = 0.061, so that the smallest sam­
ple size for which the desired conditions are possible is n = 14, with an
acceptance number of 1. The actual error levels are a = 0, fJ = 0.06,
rather than the desired value. of ao = fJo = 0.1. This behavior is typical
of small populations and small numbers of defects. When both the size of
the population and the number of defects present are large, solutions
closely approximating the required conditions can be obtained.

Note that for U = 2, any sample size will again satisfy the conditions
on a. However, the expression for fJ will contain an additional positive
term, so that for a given n, fJ will always be larger than its value for
U = 1. Hence, the minimum n for which fJ ~ fJo must be greater than
or equal to that for U = 1.

In safeguards applications of attribute sampling, the special case
Do = 0, which corresponds to the absence of any defective items in the
population being inspected, is frequently an appropriate null hypothesis. In
this case, the occurrence of any defect in a sample, regardless of the sam­
ple or population size, would be unacceptable, so that U = 0 is the only
possible acceptance number. When this is the case, the computations
needed to calculate the appropriate sample size are greatly simplified.
First, note that the probability a of a Type I error is zero; it is impossible
to find any defectives if the population does not contain any, so the chance
of rejection when the null hypothesis is true is zero. Second, the Type II
error probability fJ depends on only one term of the summation shown
earlier (Equation 17.6), namely the term for which x = O. Then
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(j=

(N-DA)!(N-n)!

NI (N-DA-n)!

DA! (N-DA)!

OIDAI nl(N-DA-n)!

N!
n!(N-n)!

(N-n)(N-n-l)(N-n-2) ... (N-DA-n+ 1)

N (N-1) (N-2) ... (N-DA+1)
(17.7)

Note that for N = 20, n = 1, and DA = 4, Equation 17.7 reduces to the
result given for (j when U = 0 in Example 17.2. The value U = 0 may
occur as a solution to the design problem even when Do is not zero. Equa­
tion 17.7 is also the basis for the approximation (Jaech, 1973, p. 327)

The corresponding approximation for the sample size for a given value of
(j is

(17.8)

The use of a zero acceptance number has considerable merit in audit
and inspection applications. In many cases, the emphasis may properly be
placed on uncovering errors, if they exist, rather than on attempting to dis­
criminate between the acceptable and rejectable quality levels. In financial
auditing, sampling plans of this type are called "discovery sampling plans,"
which is suggestive of their emphasis on finding errors rather than testing
a hypothesis.

Example t7.3 Returning to Example 17.2 and applying the zero
acceptance number formula with

(j = 0.1

DA =4

N=20
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n = 0.5[1 - (0.1)°·25](40-4+1)

= 8.1

Fractional sample sizes should always be rounded up, so for this example a
sample of size 9 is needed to ensure a 0.9 probability of having at least
one defective in the sample, and thus rejecting the population when 4 of
20 items in the population are defective. (The actual values are
fJ = 0.102 for n = 8 and fJ = 0.068 for n = 9.)

Example 1'.4 Stratum 3 of the material balance considered in.
Example 14.6 consisted of 2770 containers of solid waste. After the con­
tent is determined these containers are sealed and stored, frequently for
some period of time, until they are discarded or processed. Inspectors
checking the integrity of the seals wish to examine a sufficient sample of
the containers to infer, based on the absence of any defective seals in the
sample (U = 0), that the probability is 0.95 that 99% of the seals are
intact. For N = 2770, fJ = 0.05, and DA = (2770)(0.01) = 27.7,
Equation 17.8 yields the result

n = 0.5[1 - (0.05)1/27.7](5540 - 27.7+1)

= 282.6

so that a sample of 283 containers selected at random should be inspected.
Note that rounding DA up to 28 would lead to a sample size of 280, which
is nonconservative (see Example 17.7).

If several distinct populations are to be sampled in an inspection, e.g.,
several different strata of material, some attention should be given to the
problem of multiple testing and simultaneous inference (see Chapter 10).
In the zero acceptance number case, the situation is simple because the
false alarm (Type I error) probability is zero (under the null hypothesis)
for every stratum, so that the overall probability is also zero. More gener­
ally, however, the situation with multiple strata is not so simple and con­
trol of the overall Type I error probability requires more detailed analysis.

17.2.3 Applications of the Binomial Distribution
The binomial distribution is more widely used in attribute sampling

applications than is the hypergeometric. The hypergeometric distribution
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provides a theoretically exact model for sampling without replacement
from a fmite population. However, the binomial distribution provides an
excellent approximation in many situations and is generally easier to work
with.

The binomial distribution is theoretically exact when sampling is with
replacement or when sampling is from an infmite population. Sampling
with replacement is not realistic in safeguards applications-to verify the
same item more than once would be wasteful (unless it were done as a
quality control procedure, which is another matter}-but, in practice,
populations to be verified are frequently large enough to be effectively
infinite. An intuitive explanation is given in Section 2.4.2.

In safeguards, the most common application is with zero acceptance
number sampling. The question of interest is to determine the probability
of obtaining one or more defective items in the sample, given a specified
fraction defective in the population. The probability of obtaining one or
more defective items is one minus the probability of obtaining no defective
items. Applying the binomial distribution (see Equation 2.20),

(17.9)

with
x = number of defectives in sample
p = fraction defective in the population
n = sample size

Pr(X = 0) = (0) p0(l_p)D

= (1_p)D (17.10)

This formula can be interpreted as the probability of no successes (defec­
tives in the sample) in n independent trials (items sampled) where the
chance of success at each trial is p, the probability that a randomly
selected item is defective.

A preferred, alternative form of the binomial approximation involves a
switch in viewpoint. Instead of looking at n independent drawings of items
from a population consisting of DA = Np defectives and N - DA non­
defectives, consider the assignment of DA defectives to a population con­
sisting of n = Nf sampled items and N - n non-sampled items. Then the
probability of x successful assignments of a defective to a sampled item,
which has a probability f of occurrence, is

IDAI D -xPr(X = x) = x fX(l-f) A



890 CHAPTER 17 VERIFICATION OF ACCOUNTING DATA

When the acceptance number is zero,

DPr(X = 0) = (1-f) A (17.11)

This can be interpreted as the probability that each of the DA defects
escapes the sample.

It is useful to compare these two binomial approximations to develop
insight into how well they work and the conditions under which they break
down.

Example 17.5 In Example 17.2 of the preceding section, the target
population consisted of 20 cans of U02 powder, and the assumed fraction
defective was 10%, so that DA = 2. The sample size was n = 5 and the
fraction sampled was f = 0.25. The probability of obtaining zero defec­
tives in the sample according to the (exact) hypergeometric distribution
was

Pr(X = 0) = 0.5526

By the two binomial approximations,

Pr(X = 0) = (1_p)D = (1-0.1)5 = 0.5905

Pr(X = 0) = (1_f)DA = (1-0.25)2 = 0.5625

The three results agree more closely than one might have expected, given
that the fraction sampled is as large as 0.25. Note also that the second
binomial approximation is noticeably better than the first, and that both
approximations overestimate the probability that no defectives will be
found. Equivalently, they underestimate the probability of detection. In
this sense, they are conservative approximations.

Example 17.6 Suppose a stratum contains 200 plutonium fuel pins,
10 of which are defective. The results obtained with the binomial approxi­
mations are to be compared with those obtained using the exact hyper­
geometric model. Let
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n = sample size
N = population size = 200
f = fraction sampled = nlN = n/200

DA number of defectives = 10
P = fraction defective = D A/N = 0.05

Then, from Equations 17.10, 17.11, and 17.7, the results in Table 17.2 can
be calculated. The binomial approximations break down when the fraction
sampled is large, although (l_f)DA seems to work better than (l_p)D.

TABLE 17.2

Comparison of Approximations for Example 17.6

D r (l-p)" (l_fjDA

[N ~DA)

(~J

25 0.125 0.2774 0.2631 0.2545
50 0.25 0.0769 0.0563 0.0521

100 0.5 0.0059 0.0010 0.000771
150 0.75 0.000456 oo1סס0.0 0.00000046

Perhaps the most prevalent application of the binomial approximation
is in calculating sample sizes. Starting from Equation 17.11

D
Pr(X = 0) = (l-f) A

and substituting Pr(X
can be obtained:

0) = fJ and f = nlN, the following formulas

DfJ = (1-f) A (17.12)

(17.13)

(17.14)

These formulas are easy to apply with a hand calculator, and form the
basis for IAEA procedures for determining sample size (IAEA, 1988).
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Because the binomial approximation underestimates the probability of
detection, it will overestimate the sample size required to achieve a given
probability of detection. Thus, Equation 17.14 is a conservative estimate of
the necessary sample size in the sense that it wiU always be larger than
needed to achieve the required detection probability or, equivalently, will
actually produce a detection probability higher than that required. The
estimate may be unduly conservative if the defective items constitute more
than about 10% of the items in the population, and Equation 17.8 should
be used to compute the sample size (see Example 17.8).

Example 17.7 In a highly enriched uranium fuel fabrication plant,
one stratum in the physical inventory contains 53 cylinders of uranium
hexafluoride (UF6). The stratum contains a total of 384.8 kg 235U. Thus,
the average item contains 7.26 kg 2350. If the goal quantity were 5 kg
235U, then a gross discrepancy in a single cylinder would constitute an
unacceptable loss or diversion. In order to have a 0.95 probability of
detecting a single defective, clearly 95% of the items would have to be
inspected. The formula correctly gives that result because

n = N(1-f31
/

DA
)

= 53(1-0.051)

= 50.35

Because fractional sample sizes are always rounded up, the sample size is
rounded to 51. In practice, when such a large fraction of the population is
to be verified, it is often logistically and administratively simpler to sample
100% of the population, ignoring the statistical sampling plan.

Suppose now that the goal quantity is 25 kg 235U, as might be the case
in an IAEA inspection. This translates to

DA = 25 kg/7.26 kg/item = 3.44

defective items in the population. Because by definition an item either is or
is not defective, it is tempting to round DA to an integer value. However,
to round up to DA = 4 is nonconservative-it may lead to a detection
probability smaller than the specified target value. On the other hand,
rounding down may unduly inflate the required sample size, especially
when (as in this case) the number of defectives is small. For design pur­
poses, it is desirable simply to use the approximate formulas in Equations
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17.8, 17.12, 17.13, and 17.14 with a fractional value of DA• This recog­
nizes that it is actually the proportion, not the integral number, of defec­
tives which is of concern in most safeguards situations. The sample size
calculation is

n = NO-tJl/DA
)

= 53[1-(0.05)°·29]

= 30.8

This is then rounded up to n = 31.

Example 17.8 In a low-enriched uranium fuel fabrication plant, the
inventory at the end of a material balance period includes 1000 trays of
pellets. Each tray contains 5 kg uranium enriched to 3% 23SU. This
translates to 150 g of 235U per tray. Assuming the goal quantity is 75 kg
23SU, 500 of the 1000 trays would have to be gross defects (i.e., contain no
23SU at all) to constitute a total discrepancy for the stratum of one goal
quantity. To detect at least 1 of the 500 defective items with probability
0.95, the sample size should be

n = NO-tJ'/DA)

= 1000[1-(0.05)°·002]

= 5.97

which is rounded up to obtain n = 6.
Because the fraction defective is quite high (50%), it is interesting to

check the adequacy of the binomial approximation with a sample size of 6.
From Equation 17.12, the probability of not detecting the discrepancy is

tJ = O-f)DA = [1 __6_1 500
= 00494

1000 .

while Equation 17.7 results in the value

tJ=
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Once again, it can be seen that the approximate formula is conservative
and gives noticeably different results than the exact solution when the
fraction defective is large. In this case, the use of Equation 17.8 would sig­
nificantly improve the sample size calculation. The result is

n = 0.5 [1-(0.05)°·002](2000 - 500 + 1)

= 4.48

which rounds to a sample size of 5. From Equation 17.7, the exact value
of {3 for a sample size of 5 is

= 0.0309

17.3 INFERENCES FROM MEASUREMENT
DIFFERENCES

This section considers the analysis of the actual measured differences
between declared values of sampled items and remeasurements by the
inspecting agency. As with attributes, both compliance tests to determine
the status of the measurement systems and substantive tests of the pres­
ence of the material can be based on this type of data. The statistical tech­
niques are primarily extensions of the techniques for modeling and
estimating measurement errors considered in Chapters 14 and 15.

17.3.1 Inferences About Measurement Errors

The role of the measurement system in nuclear materials accounting
has been described in detail in Chapter 13. It was pointed out there that
the utility of the entire nuclear material accounting system is heavily
dependent on the capability and performance of the measurement system.
For this reason, nuclear material accounting systems normally include
a measurement control program, as outlined in Section 13.3.2.1, whose
basic function is to monitor and control the precision and accuracy of mea­
surement. Statistical methods applicable to the routine operations of a
measurement control program have been presented in Chapter 15.

Measurement control programs normally make provisions for some
kind of audit or review activity to confirm the capability and performance
of the measurement system. Such audits may include both tests of compli­
ance with established procedures and directs tests of measurement perfor-
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mance. The applicable statistical techniques are essentially the same as
those described in Chapter 15 for monitoring measurement systems. Attri­
bute tests can also be used for compliance testing purposes. The attribute
of interest is usually the adherence to prescribed measurement procedures.
In any audit of this kind, the distinguishing characteristic is the provision
of an independent check of routine operations.

While reliance on a strong measurement control program may provide
the primary assurance concerning measurement capability and perfor­
mance, other sources of information also exist by which measurement
capability and performance can be verified. In particular, paired data
(either shipper-receiver or operator-inspector data) can be used for this
purpose. The following sections describe how inspection data in the form
of operator-inspector paired comparisons can be used to assess the
operator's measurement performance.

17.3.1.1 Use or Inspection Measurements to Verify
Measurement Capability and Performance

One of the many activities carried out in the course of an inspection
consists of independent measurements performed by the inspection team on
a sample of items. (Recall from Chapter 13 the definition of an item as
the primary accounting unit in the material accounting system-an object
or container that has a unique material quantity assigned to it and that
can be identified and accounted for as a separate entity.) Such inspection
measurements are multipurpose, as can be seen in the other sections of this
chapter. One of the purposes, and the only one discussed in this section, is
to provide information that can be used to test the capability and perfor­
mance of the operator's measurement system.

The basic data are in the form of paired measurements on individual
items. The operator will have assigned a value (material quantity) to every
item entering into the material balance. The inspector selects a sample of
items and measures them. For each item sampled, the operator's and
inspector's values may be compared, and the difference between the two
values computed. The observed differences will reflect the combined effect
of the operator's and inspector's measurement errors. Highly precise and
unbiased measurements should give rise to only small differences. Highly
precise but biased measurements will tend to yield consistent but nonzero
differences. Imprecise measurements should result in highly variable
differences. Thus, the observed differences contain information that can be
used to formalize the assessment process.

In practice, the sequence of inspection activities is the following. On
the basis of past experience, the inspection team sets design criteria for
this phase of the inspection program. Using the design criteria, an inspec­
tion plan is drawn up, including a sampling plan for selecting items for
verification. Next, the inspection plan is implemented by selecting items at
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random and making independent measurements on the sampled items. The
measurement results are next compared to the operator's reported values
and the performance of the operator's measurements assessed. Finally,
depending on the outcome of the assessment, a follow-up investigation of
some kind may be initiated. In any case, conclusions and recommendations
concerning this phase of the inspection are documented and transmitted
through the appropriate channels. In Section 17.3.1.2, the procedures for
evaluating the inspection data are presented. In Section 17.3.1.3, the pro­
cedures for determining an appropriate sample size are treated.

17.3.1.2 Evaluating Inspection Data to Assess
Measurement Performance

The analysis described here characterizes the variability of the differ­
ences between the operator's and the inspector's values for some sample of
items from a single stratum. The variability actually observed will be com­
pared to the variability that would be expected if actual measurement per­
formance were in fact consistent with stated or prescribed measurement
capability.

Assume that the inspector has sampled n items of the N items in the
stratum, and that measured values for each item have been obtained and
recorded for both operator and inspector. Let

where

dk = Xlk - X2k = observed difference for item k (17.15)

d=

operator's measurement result for item k
inspector's measurement result for item k

1 D
- ~ dk = observed mean difference
n k-I

1 D
sJ = -- ~ (dk - "d)2 = estimated variance pf the differences

n-l j-l

The assumed error models for operator and inspector results are

(17.16)

where ILk is the true amount of material in item k, PI and P2 are the con­
stant error effects associated with the operator and inspector, respectively,
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and Elk and E2k are the operator's and inspector's individual error effects
for item k. For this treatment, only two error sources are considered for
each measurement, one affecting all items and the other each item. If this
assumption is not valid, then the differences dk must be modeled and ana­
lyzed using the more complex hierarchical analysis of variance models
introduced in Section 5.3.1 and applied in Section 14.3. It follows from
Equations 17.15 and 17.16 that

and assuming E(Ejk) = E(E2k) = 0, Var(Elk) = o}, Var(Elk)
COV(Elk' E2k) = 0'12, it follows that

and

E(sJ) = O'J = O't + O'~ - 2012

0'£, and

If the error effects are also assumed to have a normal distribution, the
procedure provided in Section 4.2.3 can be applied to test the hypothesis
that the variance O'J of the differences is equal to a specified value,
corresponding to stated or prescribed levels of measurement capability.

The procedures of Section 4.4 can be applied to test the hypothesis
fJI - fJ2 = 0 that there is no relative bias between the inspector and the
operator in this sample. This is a test of the absence of a constant effect in
the operator's measurements only if the inspector's measurements are
known or assumed to be unbiased. In this case, the inspector's measure­
ment is being considered a standard in the sense discussed in the introduc­
tion to Section 15.2. Numerically this test is equivalent to an F-test, with
1 and n-1 degrees of freedom, of the hypothesis that the variance compo­
nent associated with the constant effects fJl and fJ2 is zero. This formula­
tion may be more appropriate when considering these effects as a sample
from a large population. When the assumed error model is more complex,
additional levels of fixed or random effects must be included in the
analysis.

Example 17.9 During an inspection at a low-enriched uranium fuel
fabrication plant, 19 cans of U02 powder are randomly selected for verifi­
cation by the inspector. After the items are measured by the inspector, the
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observed differences (in grams of uranium) are calculated. The data are
listed in Table 17.3.

TABLEt7.3

Operator-Inspector Differences
for a Sample of

VOl Powder Cans

Item Difference
It (g uranium)

1 -32
2 -10
3 -72
4 8
5 40
6 32
7 -71
8 40
9 33

10 25
11 -31
12 -20
13 42
14 12
15 13
16 -4
17 - 1
18 0
19 -22

The plant operator, on the basis of an extensive measurement control pro­
gram, claims a measurement error variance for this type of measurement
of (1~ = 361 (g)2. The inspector, from his own measurement control pro­
gram, estimates his independent measurement error variance to be
(1l = 400 (g)2. The question is whether the variability of the differences in
Table 17.3 is consistent with the stated random error variances.

One approach is to perform a chi-square test of the variance. This test
was introduced in Section 4.2.3. The null hypothesis is that the true vari­
ance of the differences is (because (112 = 0) (13 = 361(g)2 + 4oo(g)2 =
761(g)2. The alternative is that the variance is either larger or smaller
than the stated value. To test the hypothesis, the test statistic

(17.17)
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is used (Equation 4.21). Because

the test statistic takes on the value

X2 = 21,272.95/761

= 27.95

This value is compared to upper and lower l00a/2 percentage points of
the chi-square distribution with 18 degrees of freedom. From Table A4 for
a = 0.05,

X6.025 (18) = 8.23

X6.97S(18) = 31.5

Because the observed value of the test statistic falls within this range, the
null hypothesis is not rejected, and it is concluded that the observed
variability of the differences in Table 17.3 is not inconsistent with the
stated measurement capabilities.

As pointed out in Chapter 4, the chi-square test is sensitive to depar­
tures from the assumed normal distribution of the differences. This is an
example of the general principle succinctly stated by Kendall and Stuart
(1979, p. 493): "Tests on means are robust; by comparison, tests on vari­
ances can only be described as frail." The normal theory test procedure,
when applied to nonnormal data, may result in a Type I error probability
different from the specified a = 0.05. In practice, this means that incor­
rect conclusions may be drawn more often than is acceptable.

The stem-and-leaf diagram for the differences in Table 17.3 shown in
Table 17.4 suggests that the differences -71 and -72 might be outliers,
and also raises some question as to the distribution of the remaining differ­
ences. Powder cans of this type typically contain about 20 kg of uranium
and can usually be measured with a relative standard deviation of less
than 0.1 %, which is consistent with the claims of both inspector and opera­
tor. If the two extreme values are excluded, the estimated value of 0'1
based on 16 degrees of freedom -is sJ = 634.11 (g)2 and the mean
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TABLE 17.4

Stem-and-Leaf Display of
Operator-Inspector Differences

-7 12
-6
-5
-4
-3 12
-2 02
-1 0
-0 14

o 08
1 23
2 5
3 23
4 002
5

difference is 7.35 g. For this estimate of the variance, the value of x2 com­
puted from Equation 17.17 is

2 _ (16)(634.11)
X - 761

= 13.33

which is not only not significant, but is also slightly smaller than its
expected value of 16. The mean difference of 7.35 is also not significant,
because

t = 7.35.Ji6 = 1.168
.J634.11

is well within the 5% critical value of Student's t-distribution with 16
degrees of freedom. In spite of the lack of significance of the overall chi­
square test at the 0.05 level, it seems reasonable to conclude that the
values -71 and -72 are unusual and should be investigated, while the
remaining differences, in spite of the lack of a characteristic bell-shaped
distribution, represent normal measurement performance.
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17.3.1.3 Determining the Sample Size

The procedure for determining the sample size needed to attain a
specified power level (or equivalently, Type II error probability) is given
in Section 4.3.2. In particular, see Example 4.9. To calculate the sample
size it is necessary to specify:

1. The magnitude of departure from the assumed measurement capa­
bility to be detected.

2. The probability with which such a departure, if it exists, is to be
detected (i.e., the power of the test).

3. The allowable probability of incorrectly concluding that a departure
exists when in fact it does not (i.e., the Type I error or false alarm
probability).

Example 17.9 (cont'd)

To continue Example 17.9, suppose that the inspection team has deter­
mined that there would be cause for concern if the operator's measurement
performance, as measured by his measurement error standard deviation,
was a factor of two larger than prescribed capability levels, where the
capability levels might represent widely accepted standards for the varia­
bility of a particular combination of measurement techniques. The inspec­
tion team decides that if such a deviation occurs, the probability of detect­
ing it should be 0.9 and an allowable false alarm probability for such a
test is 0.05.

If the operator's standard deviation is higher than the prescribed level
by a factor of two, then his variance will be high by a factor of 22 = 4.
Under the null hypothesis that performance equals capability, the variance
of the difference is

Under the alternative hypothesis,

Using the values assumed for this example,

0'1= 361 (g)2

0'1= 400 (g)2
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O'J= 761 (g)2

O'Ja= 4(361) + 400 = 1844 (g)2

The ratio of O'Ja to O'J, denoted by Ain Chapter 4, is

A= O'Ja = 1844 = 242
O'J 761 .

Entering Table A4 with a = 0.05, f3 = 0.1, and A
the row in which

or, in this example

2.42 X6.1 S5 X6.95

the following table can be constructed:

TABLE 17.5

Selected Chi-Square Values

2.42, and seeking

- ""-

Degrees of freedom xiJs xi. xl" /xl.

25 37.6525 16.4734 2.29
23 35.1725 14.8479 2.37
21 32.6705 13.2396 2.47
22 33.9244 14.0415 2.42

Thus, the desired power will be attained with 22 degrees of freedom,
which implies a sample size one larger, or a requirement for 23 observed
differences.

In calculating sample sizes, it was assumed that the parameters a, f3,
and A (the ratio of the variance under the alternative hypothesis to that
under the null hypothesis) were given. The parameters a and f3 present lit­
tle difficulty, as they will usually be assigned one of the conventional
values 0.1, 0.05, or 0.01. The parameter A is less straightforward. It is not
easy to determine how large a departure from prescribed measurement
capability should be cause for concern and should be detected with high



SECTION 17.3 INFERENCES FROM MEASUREMENT DFFERENCES 903

probability. In practice, there is likely to be an economic constraint to con­
sider; total inspection resources are usually limited, and the amount of
effort devoted to tests of measurement capability must be balanced against
the effort needed for other inspection activities. From a statistical view­
point, the most useful approach is to present a power curve or operating
characteristic curve as described in Chapter 4, so that the nature of the
tradeoff can be readily assessed. The final decision about how much effort
to devote to sampling for assessing measurement capability can then be
made in light of the available resources.

17.3.2 Inferences About Material Quantities
In this section, techniques are presented that can be used to make

direct inferences about material quantities. Whereas the emphasis in the
previous section was on compliance tests of the internal control system to
determine the state of control over errors, the emphasis in this section is
on substantive tests of the accounts, i.e., direct inferences about inventory
differences and amounts of material in particular items, batches, or strata.

The basis for most of the procedures presented in this section is the
so-called difference statistic. This statistic is computed from paired com­
parisons (differences) between operator and inspector data; it quantifies, in
terms of amounts of material, the agreement or lack of agreement between
the quantities recorded by the plant operator and the quantities estimated
by the inspector on the basis of independent measurements.

For those readers interested in exploring more of the background and
theoretical aspects of these techniques, it is noted that the correction of an
inventory difference based on a difference statistic determined from a sam­
ple is one of a class of widely used methods in sampling theory that make
use of auxiliary information to strengthen the inferences that can be drawn
on the basis of a sample. In the context of nuclear material accounting
verification, the auxiliary information is supplied by the book values stated
by the operator. These book values are used to obtain more powerful tests
and more accurate estimates than could be obtained if only the inspector's
independent observations were used as the basis for inference. Further
details on this subject can be found in the sampling theory literature
(Cochran, 1977; Hansen, Hurwitz, and Madow, 1953; and Kish, 1965).

17.3.2.1 Dermition of the Difference Statistic

Suppose that during an inspection the inspector independently mea­
sures a sample of nj items from the Nj items in each of the ~ strata
involved in the calculation of the inventory difference (Equation 14.42).
From these measurements and the operator's declared values for each
item, the differences

(17.18)
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can be calculated,

where

X!U: = operator's declared values for sampled item k from stratum i
X2ik = inspector's measured value for sampled item k from stratum i

Then the difference statistic OJ for stratum i is defined as

where Njis the total number of items in stratum i, and

nj

~ dik
(f.=_k_-_I_

1 nj

(17.19)

(17.20)

is the observed mean difference for the sampled items from the ith stratum.
The difference statistic for the material balance is formed from the same
linear combination of difference statistics that was used to compute the
inventory difference from individual stratum totals. From Equation 14.42,

(17.21)

where the coefficients Cj = ± 1 are defined in Section 14.3.5.
If it is assumed that the operator's declared value can differ from the

true content of a particular item presented for inspection not only because
of measurement error but also due to actual loss or diversion, the
K = 1, ... , Nj declared values for each item in stratum i can be
modeled as

XIiK = #LjK + ~K + EIiK (17.22)

where EIiK is the operator's measurement error and LjK is the unknown dis­
crepancy in the K th declared value. For the k = 1, ... , nj sampled items,
the inspector's measurements contain only an error of measurement, so
that

(17.23)

If the same conventions are adopted for the error effects due to the inspec-
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tor and operator as in Section 14.3.2, then it can be assumed that
E(EIiK) = E(E2ik) = 0 and hence for the sampled items,

E(dik) = Itik + La -Itik = La (17.24)

Assuming the same notational conventions as in Chapter 14, define the
total discrepancy in stratum i as

Nj

Lj=~LjK
K-l

and the total discrepancy in the sample items as t

From Equations 17.20, 17.24, and 17.26, it follows that

(17.25)

(17.26)

(17.27)

The nj discrepancies La in the sampled items are selected randomly from
the fmite population of true discrepancies of size Nj, so that

(17.28)

where ~ = ~/Nj. The prime has been added to indicate that this expecta­
tion over the possible samples of nj items is not the same as t~e expecta­
tion E over the possible measurement effects in Equations' 17.24 and

tStrictiy speaking, as shown in Equation 17.28, it is L;/n; which is an estimate of L;/N;.
The "hat" notation is used here for the sums to retain the distinction between sample and
population with respect to the total discrepancy present.
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17.27. In order that it follow from Equation 17.19 that E(Dj) = ~, both
Equations 17.27 and 17.28 must hold-i.e., it is necessary that
E (<Ij) = Li/nj and E'(Lj) = nj~/Nj. The two expectations are over the
measurement and the sampling processes, respectively.

17.3.2.2 The Variance of the Difference Statistic

The estimate OJ = N;dj for a single stratum is a linear combination
of the declared values of the operator and the measured values of the
inspector. From Equations 17.18 and 17.20, it follows that

Dj Dj

njdj = ~ xlik - ~ x2ik = Xli - X2j
k=1 k-I

or, alternatively, from Equations 17.22, 17.23, and 17.26 that

(17.29)

(17.30)

where Xli and X2j are the totals of the operator's reported values and the
inspector's measurements, respectively, and the Elik are the operator's mea­
.surement errors on the sampled items. From Equation 17.29,

(l7.31)

If the operator's and inspector's measurement systems are completely inde­
pendent, then COV(XIi,X2j) = 0 and completely separate estimates of
Var(xli) and Var(x2j) can be obtained by identifying the measurement
error sources in operator and inspector measurements and applying the
methods outlined in Chapter 14 for stratum totals (Section 14.3.2, Equa­
tion 14.32) to each sample sum separately. If there are error sources that
are common to inspector and operator measurements~.g., the use of a
common measurement of the bulk amount of a transfer-then corrections
for the common effects in the two totals are necessary in a manner com­
pletely analogous to those considered in Section 14.3.5 in connection with
the combination of strata. For purposes of variance estimation, the vari­
ance of the difference between the sums Xli and X2j can be considered as
just another case of the estimation of the variance of a linear combination
of strata.

The variance of the estimate Dj of the total discrepancy ~ present in a
stratum obtained using Equation 17.19 includes a component due to the
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variation of the sample total ~ about its expected value (ni/Ni)Li given by
Equation 17.28 (Franklin, 1984). From Equations 17.19 and 17.30,

Yar())j - [ ~:r[Yard.,) +Yar(Xn)

+ Var(X2i) - 2 COV(Xlj,X2i)] (17.32)

Note that Var O[ ~ Ejikj has been replaced by Var(Xji) for j = I, 2. This
1,:-1

follows from Equations 17.22 and 17.23, regarding LiK as a constant.
From finite sampling theory, it follows that

where

.. [ n'lVar(~) = ni I - ~i Var(LiK) (17.33)

(17.34)

This component of the variance of the differences arising from the sam­
pling of discrepancies is an important consideration in testing and estimat­
ing the statistic Dj, because only a test of the null hypothesis Li = 0 is
independent of the actual distribution of the discrepancies .LiK. When
determining optimal tests, the distribution of the test statistic under the
alternative hypothesis ~ > 0 will always depend on the assumed distribu­
tion of the individual discrepancies, and estimation procedures can only be
optimized when the distribution is known. While the assumption of nor­
mality may be reasonable with respect to measurement error or other pro­
cessing discrepancies present in individual items, it is not a very reasonable
assumption in the case of discrepancies due to diversion. In most test pro­
cedures it is tacitly assumed either that the individual discrepancies are
constant, in which case Var(~) = 0, or that they are proportional to the
content of the items and can, like the item contents, be assumed to be
approximately normal.

Similar considerations apply to the variance of the statistic Dgiven by
Equation 17.2I. A direct application of Equation 2.123 yields
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(17.35)

As is the case when the combination of stratum and component totals is
considered in Section 14.3.5, covariances between estimates OJ for differ­
ent strata can occur both because of common error effects and because of
the cancellation of identical results in two components of the inventory dif­
ference. It follows from Equation 17.19 that

From Equation 17.29, it follows that

so that

Combining this result with Equation 17.32, Equation 17.35 becomes

.. 2 ..
Var(D) = ~ (Ni/nj)2[Var(~) + Var(Xli) + Var(X2j) - 2 CoV(XU,X2j»

i-I

2
+ 2 ~ cjcj(Ni/nj)(Nj/nj)[Cov(Xli,Xlj) - COV(Xli,X2j)

i<j-I

- COV(X2j,Xlj) + COV(X2j,X2j)]

Because from Equations 17.21 and 17.19,

it follows from Equation 17.29 that

(17.36)
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(17.37)

The determination of that part of the variance of 0 due to measurement
error is a straightforward application of the methods of Section 14.3.5 to
this linear combination of the 2~ sample sums Xli and X2i computed from
the sampled items. Applying Equation 2.123 directly to Equation 17.37
accounts for all of the terms in Equation 17.36 except for the component
Ii(Ni/nYVar(i'i) due to the sampling of discrepancies. In this form, it can
also be seen that, as in the case of determining the variances of inventory
differences and their components, the measuremeI)t error contribution can
be computed independently for each error source by writing the total error
in each sample sum as a linear combination of independent error effects
and substituting into Equation 17.37, so that 0 is expressed as a linear
combination of the independent error effects from each source.

17.3.2.3 The Variance of the Corrected Inventory Difference

Using the difference statistics and their estimated variances developed
in the two preceding sections, the hypothesis that the total discrepancy Li

2
for an individual stratum, or the total discrepancy L = ~ '11.; for a

I-I
material balance, is zero can be tested against the alternative hypothesis of
a nonzero discrepancy by the same procedures used for testing inventory
differences and cumulative inventory differences in Section 16.2. The
power of the testing procedure may vary widely depending on the true
alternative.

For some purposes, it is more desirable to estimate a stratum total or .
an inventory difference which is corrected for possible discrepancies. In
particular, the estimate ID - 0 is sometimes referred to as the
"inspector's inventory difference." It follows from Equations 14.42 and
17.21 that

(17.38)

where Xi is the sum of all Ni operator-reported values in stratum i. Thus,
the inspector's estimate of the inventory difference is again a linear combi­
nation of the inspector's estimates of the stratum totals, and it will be suf­
ficient to examine the variances (and possible covariances) of the stratum
totals in order to obtain its variance.
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The quantities Xi and Oi in the corrected estimates of the stratum totals
are not independent, since they both involve the ni reported values of the
operator for the items measured by the inspector. If xi = xi - Xli desig­
nates the total reported amount in items not sampled, then from Equations
17.19 and 17.29,

.. ,[ Nil Ni
X· - D' = x· + 1 - - XI' + -x2'

I I I n. I n' I
I I

(17.39)

From this form, it is easy to see that as ni approaches Nj, i.e., as the sam­
ple measured by the inspector approaches all the items in the stratum,
1 - Ndni and xi both approach zero, Ndni approaches one, and the
corrected estimate approaches the total of the inspector measurements for
all the items in the stratum.

From Equation 17.39, using the general formula for the variance of
a linear combination of random variables given in Equation 2.123,
Var (Xi - Di) can be expressed as a linear combination of the variances
and covariances of the totals Xi', xlj, and X2i. As noted in the previous dis­
cussion of the variance of the difference statistic, the error effects associ­
ated with operator and inspector measurements usually come from com­
pletely independent sources, except when a common measurement is used
by both. In such a case, the common error effects cancel identically from
the differences between operator and inspector measurements, and the
variability due to these common effects does not affect the variance of the
total difference n;di = Xli - X2i. On the other hand, the operator error
effects in the totals Xi' and Xli are clearly from the same sources, and any
of these which affect more than one measurement will presumably affect
both sampled and unsampled items and lead to a positive covariance
between the totals.

Because the estimates Var(xli) and Var(x2i) and any necessary correc­
tion to their sum due to common effects will have been computed in calcu­
lating the estimated variance Var(Di) of the difference statistic, it is more
convenient to calculate the variance of the inspector's estimate from the
expression

(17.40)

Using Equation 2.123,
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+ [:;rVar(x~) - 2 [ :;ICov(X;,XU)

(I7.41)

Under the reasonable assumption that the errors in the inspector's mea­
surements and the operator's declared measurements on non-sampled items
are independent, COV(Xj,X2i) = O. This, coupled with Equation 17.31,
allows Equation 17.41 to be" written

Because the sample total Xli is the sum of a subset of the reported values
included in the overall total Xi for the stratum, the measurement error
sources contributing to both totals are identical. Hence, Var(xi) and
Var(xli) differ only in whether the quantitites J.L and J.Lj(r) in Equation 14.32
are based on the sums J.Li and J.Lij(r) for all items in the stratum or the sums
J.Lli and J.Llij(r) for items in the sample. It therefore follows from the direct
method for calculating the covariance used in Equation 14.49 that

(I 7.43)

Assuming J.Llij(r) = (ni/Ni)J.Lij(r) for each of the r sources of measurement
error, it follows that J.Lli = (ni/Ni)J.Li and Equation 17.43 reduces to

(I 7.44)

Because Var(Di) = Nr Var( di ), Equation 17.42 becomes

(I 7.45)

With the usual qualifications concerning any error effects common to the
strata involved in the material balance, it follows from Equations 17.38,
17.21, and 14.42 that

Var(ID - D) = Var(D) - Var(ID) (I 7.46)
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While it may seem strange that the variance of a difference is the dif­
ference of the variances, remember that ID and Dare not independent and
that the actual process is essentially one of replacing operator measure­
ments by inspector measurements. Var(ID - D) is a measure of the trust
that the inspector can have in the reported inventory difference based on
his measurements. The extreme cases are (1) no inspector measurements,
in which case Var(ID - D) becomes indeterminate, and (2) complete
remeasurement of the entire material balance, in which case the
inspector's measurement errors simply replace those of the operator. The
primary difference in the latter case is simply that the inspector's measure­
ments are free of any discrepancies which may have been deliberately
introduced by the operator to conceal diversion. Var(D), and hence
Var(ID - D), will be large relative to Var(ID) if the sample is small or
if the inspector's measurement variance is large compared to the
operator's.

The assumption required to obtain Equation 17.44 from Equation
17.43 implies that the total amount of material in the sampled items must
be the same constant fraction ni/Ni of the total material in the stratum
not only for the stratum as a whole, but for each of the ar subsets of the
Ni items in the stratum associated with every measurement source. In gen­
eral, it is only true that with respect to the random sampling process for
choosing the items to be verified, E'(~lij(r» = (ni/Ni)~j(r), so that Equa­
tions 17.45 and 17.46 only are true "on the average." Sufficient conditions
that Equation 17.44 will always hold are (l) ~K = ~i/Ni for all K, and
(2) the sources of measurement error are such that the error effects apply
either to individual items or to the stratum total.

When the variances given by Equations 17.45 and 17.46 are used to
form confidence limits on the inspector's estimat~, Var(Di) and Var(D)
must include the sampling variability given by Equation 17.33. Franklin
(1984) has pointed out that if one defines discrepancies L1K = 4K + EiK
which include the operator's measurement error effects, then the variabil­
ity in the corrected estimate is simply the combined variance associated
with (1) sampling this finite population of discrepancies with expected
value Li/Ni = L; and variance equal to the combined variance of the
true discrepancies and the measurement errors, and (2) the inspector's
measurement of the discrepancy.

Example 17.10 An inspection was carried out to verify the simplified
material balance for the fuel fabrication facility considered in Example
14.6. The inspection activities are shown in Table 17.6.
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TABLE 17.6

nata on Verification Activities

Stratum (I)

1 2 3 .. 5 6 7

Number of batches 12 10 6 4 6 4
sampled

Number of bulk measurements 3 100 3 4 3 4
per sampled batch

Number of samples taken 2 24 2 3 2 3
for chemical analysis
per sampled batch

The sampling was done in two stages: (1) a random selection of batches,
and (2) a random selection of an equal number of items from each batch
for verification of bulk amount and element concentration. Note that in
Strata 2, 4, 5, 6, and 7, all of the arbitrarily defmed batches were sam­
pled. This proportional sampling process, along with the assumption
of equal batch sizes, makes it possible to apply Equation 17.45 to each
stratum.

It will be assumed that the verification activities for bulk measurement
are carried out using the operator's scales but with independent calibration
by the inspector. Thus, for measurement .error Sources 1, 3, and 6, it will
be assumed that both the common effect and the individual effects are
independent for operator and inspector measurements, but that both sets of
effects have the variances given in Example 14.6. The inspector's NDA
measurements on a sample of waste batches will be assumed to be inde­
pendent, but with error variance components 8s' and ~s' which are some­
what larger than those of the operator. The analyses for element concen­
tration are all assumed to be carried out by the safeguards laboratory on
independent samples. The values of the variance components are given in
Table 17.7.

The total observed difference between sampled items for Stratum 1 is
based on inspector and operator measurements on 36 containers of
approximately 20 kg each, or a total of 720 kg. The contribution to the
variance in the total difference from measurement error Source 1 is

Var\(36d\)= (720)2(0.000439)2 + 36(20)2(0.000658)2

= 0.10614I(kg)2
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TABLE 17.7

Relative Standard Deviations of
Inspector Measurements

Standard deriation

Source 8' ~,

1 0.000439 0.000658
2 0.000172 0.000433
3 0.000175 0.000877
4 0.000165 0.000822
5 0.0692 0.0923
6 0.00167 0.00250

7,8 0.00225 0.028j

for both operator and inspector. The operator contribution from the deter­
mination of element concentration is

Var2(36d\)= (720)2(0.000571)2 + 12(60)2(0.000685)2/5

= 0.173074(kg)2

and the inspector contribution is

Var;(36d\)= (720)2(0.000172)2 + 12(60)2(0.000433)2/2

= 0.019386(kg)2

Hence, the variance of the total difference in the sampled items is

and the variance of the difference statistic for Stratum 1 is

= [12,000]2 (0404742)
36 .

= 44,971.35(kg)2
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From Example 14.6, the variance in the reported total for Stratum 1 is

= 29,950.34(kgyz

From Equation 17.45, the variance of the corrected estimate of the stra­
tum total is

The fact that this variance is smaller than the operator estimate, even
though based on a relatively small sample, is due to (1) the fact that for
both inspector and operator the variance components associated with the
error effects common to all measurements are dominant, and (2) in the
corrected estimate, the error effects which are constant for all operator
measurements are exactly replaced by the comparable inspector effects
when the item amounts are equal or, more generally, when the total con­
tribution of these error sources to the sample total is exactly ni/Nj times
the contribution to the stratum total. This can easily be seen from Equa­
tion 14.27 if it is assumed that each operator measurement contains an
error PifJr' which is constant for all measurements in the stratum total Xj.
This effect occurs Nj- nj times in the sum Xj' and nj times in the sample
total Xli, so that the total contribution to the stratum total Xj is
[Nj - nj + nj(I - Ni/nj)]~fJ; = O. Conversely, if ~fJ; is the" constant
contribution due to the comparable inspector effect which occurs nj times
in the sample total X2h the contribution from this source is nj(Ni/nj)~fJ; =
N~fJr' = JLfJ;, which is the contribution that arises from applying the
common error effect from Source r in the inspector's measurements to the
total amount in the stratum. Table 17.8 shows the contributions from each
type of effect to each variance.

TABLE 17.8

Variance Components

Source or 'arlam:e
Quantity
estimated Common effects

XI 29,880.69

D1 42,685.46

x1-D I 12,804.77

IDdiridual effects

69.65

2285.89

2216.24
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Stratum 2 has only one batch; it is assumed that the inspector, like the
operator, applies a single pellet factor (based on the analysis of 24 sam­
ples) to each of the 100 pellet trays for which the bulk amount is verified.
In this case, the contribution of both operator and inspector from Source 3
is

Var3(lood2) = (500)2(0.000175)2 + 100(5)2(0.000877)2

= 0.0095791 (kg)2

and for the separate contributions from Source 4

Var4(lood2) = (500)2[(0.000341)2 + (0.000568)2/240]

= 0.029406 (kg)2

Var~(lOOd2) = (500)2[(0.000165)2 + (0.000822)2/24]

= 0.013845 (kg)2

so that

Var(l00d2) = 0.062409 (kg)2

and

Var(D2) = (47,760/1oo)2Var(lood2)

= 14,235.65 (kg)2

From Example 14.6, summing the contributions from Source 3 and
Source 4,

Var(x2) = 8454.95 (kg)2

so that

Stratum 3 involves only error Source 5, and so for the total difference in
the 10 containers of solid waste randomly selected for verification by NDA
measurement,

Vars(lOd3) = (4.33)2(0.0462)2 + 10(0.433)2(0.0577)2

= 0.046260 (kg)2
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Vars(lOd3) = (4.33)2(0.0692)2 + 10(0.433)2(0.0923)2

= 0.105754 (kg)2

Var(lOd3) = 0.152015 (kg)2

Var(D3) = (2770/10)2Var(lOd3)

= 11,663.95 (kg)2

From Example 14.6,

Var(x3) = 3075.32 (kg)2

so that

Strata 4 and 6, the beginning and ending inventories of dirty scrap, have
the same estimated variance in this example for operator and inspector.
The contribution for both operator and inspector from error Source 6,
again assuming the common element factor based on the analysis of two
samples is applied to all containers in a batch, is

Var6(l8d4) = (72)2(0.00167)2 + 18(4)2(0.00250)2

= 0.016258 (kg)2

and the contributions from Source 7 are

Var7(l8d4) = (72)2[(0.00896)2 + (0.03284)2/10]

= 0.975256 (kg)2

Var7(l8d4) = (72)2[(0.00225)2 + (0.0285)2/2]

.= 2.131596 (kg)2

so that

Var(l8d4) = 3.139368 (kg)2

and

Var(i>4) = (l800jI8)2Var(l8d4)

= 31,393.68(kg)2
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Because the common error effects from measurement Sources 6, 7, and 8
do not contribute to Var(ID), these components were not computed for
individual strata in Example 14.6. The contribution of these common error
effects to the above estimate is 4713.39 (kg)2, so that the remaining com­
ponent of 26,680.29 (kg)2 is due to individual error effects. This
corresponds to a total contribution of 931.91 (kg)2 to Var(X4) from indi­
vidual errors, and hence a contribution of 25,748.38 (kg)2 from individual
errors to Var(X4 - D4). This imbalance reflects the large variance in the
individual analytical results for dirty scrap and the relatively small number
of samples taken for verification of element content.

For Strata 5 and 7, the computations are

Var6(l6ds) = (80)2(0.00167)2 + 16(5)2(0.00250)2

= 0.020349 (kg)2

Varg(l6ds) = (80)2[(0.01000)2 + (0.04998)2/12]

= 1.972267 (kg)2

Var~(l6ds) = (80)2[(0.00225)2 + (0.0285)2/3]

= 1.765200 (kg)2

Var(l6ds) = 3.778165 (kg)2

Var(Ds) = (800/16)2Var(l6ds)

= 9445.41 (kg)2

The component of this variance due to individual effects is 7675.17 (kg)2,
and because the corresponding contribution in Example 14.6 was 832.97
(kg)2, the contribution from the variance of the individual effect to
Var(X4 - :04) is 6842.20 (kg)2.

TABLE 17.9

Summary of Variance Components (kg)1

Stratum In D ID-D

1 29,950 44,971 15,021
2 8,455 14,236 5,781
3 3,075 11,664 8,589
4t 932 26,680 25,748
5t 833 7,675 6,842
6t 932 26,680 25,748
7t 833 7,675 6,842

Total 45,010 139,581 94,571
Standard error (kg) 212 374 308

tContributions from individual errors only.
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The data for the entire material balance are summarized in Table 17.9,
with the components that can~el from the variance of the estimate of ID
eliminated. The greatest improvement in the variance of the corrected
estimate would come from an improved estimate by the inspector of the
element concentration in dirty scrap.

17.3.2.4 Variables Sampling Plans

In the last section, the inspection sample sizes were regarded as given
and the resulting variance of the difference statistic was calculated. In this
section, methods for determining the inspection sample sizes are developed.

A few words of background and perspective are appropriate before tak­
ing up the details. Virtually every text on sampling theory presents
methods for determining variables sampling plans, and the plans have been
widely used in some fields of application, particularly in sample surveys.
However, these methods have not been widely practiced in safeguards
applications. The reasons are primarily economic and logistical. In safe­
guards applications, variables samples are typically (although not necessar­
ily) based on destructive chemical analysis: the inspector weighs items,
takes samples for element or isotope determination, and then sends the
samples to an offsite laboratory for analysis. These procedures are expen­
sive (on the order of several hundred dollars per sample) and administra­
tively complex, in part because of requirements for packaging and shipping
radioactive materials. Another drawback is a lack of timeliness. Up to sev­
eral months may elapse between the time of the inspection and the receipt
of the analytical report from the offsite laboratory. For obvious reasons, it
is more desirable to obtain and evaluate the results of the inspection
quickly.

Because of these factors, the tendency in most inspection applications is
to rely primarily on attributes testing or variables measurements using
nondestructive techniques, taking only a small number of variables samples
for calibrations, measurement control information, and other specialized
purposes. In this section, therefore, only the basic principles of variables
sampling plans will be presented, and no attempt will be made to give
detailed guidance for applications. If the need arises for such guidance, the
reader may consult such references as Jaech (1973) or the IAEA Safe­
guards Technical Manual (JAEA, 1988), which give full details.

As is usual in designing a sampling plan, it is first necessary to decide
1. The size of the difference that is of concern and is to be detected

through the statistical sampling and testing.
2. The probability with which such a difference should be detected, if

it exists (i.e., the power of the test).
3. The allowable probability of concluding that a difference exists

when in fact it does not (i.e., the Type I error or false alarm probability).
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The size of the difference that would be of concern is typically based on
the concept of a significant quantity discussed earlier. In safeguards sam­
pling plan calculations, this quantity is usually called the goal quantity and
is denoted by the letter M. The power of the test, or one minus the
Type II error, is conventionally chosen as some high value, say 0.90 or
0.95. although these values are not suitable in every case and should not
be accepted uncritically. The Type I error probability is conventionally
assigned a low value such as 0.05 and 0.10. Again, these conventional
values should not be accepted uncritically.

The variance of the difference statistic is a function of the inspection
sampling plan. A completely general treatment would be complex, because
the variance depends on the sampling plan in a rather complicated man­
ner, as is apparent from the discussion in Section 17.3.2.2. For purposes of
exposition, a procedure for determining the optimum sample sizes for each
stratum will be presented here. The procedure is based on the simplified
assumptions of constant true item content and constant batch size associ­
ated with each replicated error source used to obtain Equation 14.34. The
basic result is well known in sampling theory and is discussed in most sam­
pling texts under the heading of optimum allocation (e.g., see Cochran,
1977; Hansen, Hurwitz, and Madow, 1953; or Kish, 1965), or sometimes
as the Neyman allocation or Tschuprow-Neyman allocation after its origi­
nators (see Lehmann, 1983). In Section 8.3.4.2, a special case of the Ney­
man allocation is quoted in the context of stratified sampling to estimate a
population mean or total. An analogy to the difference statistic can be
drawn because the difference statistic estimates a (population) total differ­
ence between operator and inspector. However, there are details that make
the analogy less than perfect.

When Equation 14.34 is used in connection with the procedures for
computing the variance of 0 discussed in Section 17.3.2.2, the components
of variance due to each stratum are combined as described in Section
14.3.5. The linear combination, over all strata used to compute 0. of the
components "2:.r8; corresponding to nonreplicated effects is independent of
the sample size used to verify individual strata. For replicated effects, if
the simplified approach is used, the constant size of the ar subsets
(batches) of items corresponding to the unique error effects from measure­
ment source r is Nir = Ni/air, where Nj is the number of items and air
the number of independent measurement errors from source r in the ith

stratum. Making the additional assumption that the sampling is such that
the number of sampled items containing each unique error effect is
nir = (nj/Nj)Njr = nj/air' it follows that for each stratum i the variance
component in Equation 14.34 correspondingly to the replicated effects can
be written as O/nj)"2:.rniro;/br for sampled items. Also, under the simplified
assumptions, no replicated effects are common to operators and inspectors
or to two strata, so that all the covariance terms of Equation 17.36 disap-
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pear for those components that are dependent on nj. Consequently, the var­
iance of the difference statistic can generally be expressed as

.. 2 7.2
Var(D) = 72 + ~_1

j_1 nj
(17.47)

where

72 = the sum of all the variance and covariance, components
associated with nonreplicated effects

the variance component for stratum i dependent on nj

and 6tr and air are the relative error variances of operator and inspector
for (replicated) source r.

Because the difference statistic is assumed to be approximately nor­
mally distributed, the following probability statements can be written to
express the design criteria:

where M = ~Lj > 0 is some specified total loss. As discussed in Section
17.3.2.2, when M has a nonzero value, SE(D) is a function of the nonzero
component Var(Lj) included in the estimates of Var(DJ The following
simplified allocation plan is based only on the components T[ due to mea­
surement error. The basic constraint on SE(D) for fixed a, fl, and M aris­
ing from these criteria is

(17.48)

Satisfying this constraint provides a target value for the overall variance
Var(D) = [SE(D)f, The next step is to determine how many samples
should be taken in each stratum to achieve this target variance.
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There is no unique solution unless an additional requirement is
imposed. The essence of the Neyman allocation is to specify, as the addi­
tional requirement, that costs should be minimized. If the cost per item of
a variables sample is the same for each stratum, then the total sample size
for all strata should be minimized, subject to Equation 17.48. This leads to
a sampling plan with the sample size in stratum i given by

where

VT = the target value for the component of the variance of the dif­
ference statistic dependent on the nj

Var(D) - r 2

In other words, the sample size is proportional to rj. The derivation is
straightforward and utilizes Lagrange multipliers; an alternative proof
based on the Cauchy-Schwarz inequality is sketched in Cochran (1977).

The rather simplified approach described here can become considerably
more complicated in practical applications. However, the basic principles
remain useful under a wide range of circumstances. Two cases illustrate
the complexities that can arise. First, it may happen that no sampling plan
exists that satisfies the specified design criteria. This will occur when the
target variance needed to satisfy Equation 17.48 is smaller than r2, the
constant component of the variance. Even an infinite sample size cannot
reduce the variance below this constant value, which is effectively a lower
bound on the variance. The second possibility, which applies to sampling
plan determinations generally, is that knowledge of the variance is
required a priori when in fact the available information may be quite lim­
ited. In verification applications, in particular, the variance of the differ­
ence statistic may depend on the distribution of discrepancies, which is not
known in advance. Franklin (1984) and the references therein discuss this
and related problems.
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APPENDIX A

TABLEA3

Cumulative Standard Normal Distribution-

~ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54379 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57534
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68438 0.68793

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78523
0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.80234 0.80510 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83397 0.83646 0.83891

1.0 0.84134 0.84375 0.84613 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87285 0.87493 0.87697 0.87900 0.88100 0.88297
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89616 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91465 0.91621 0.91773
1.4 0.91924 0.9~073 0.92219 0.92364 0.92506 0.92647 0.92785 0.92922 0.93056 0.93189

1.5 0.93319 0.93448 0.93574 0.93699 0:133822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95448
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96637 0.96711 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.~7441 0.97500 0.97558 0.97615 0.97670

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 o 98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99897 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99%0
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997

-Hines, W. W., and D. C. Montgomery, 1980, Probability and Statistics in Eng/Mering
and Management Science, 2nd Ed. (Appendix Table II), © 1980, John Wiley &. Sons, Inc.
Reprinted by permission of the publisher.
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APPENDIX A

TABLEA5

Quantile Values t,<II) for the Student's t Distribution
with II Degrees of Freedom-

939

tp (v)

v to.55 to.60 to.70 t o.75 to.80 to.90 to.95 to.975 to.99 to.995

1 0.158 0.325 0.727 1.000 1. 376 3.03 6.31 12.71 31.82 63.66
2 0.142 0.239 0.617 0.816 1.061 1.89 2.92 4.30 6.96 9.92
3 0.137 0.277 0.584 0.765 0.978 1. 64 2.35 3.18 4.54 5.84
4 0.134 0.271 0.569 0.741 0.941 1. 53 2.13 2.78 3.75 4.60
5 0.132 0.267 0.559 0.727 0.920 1.48 2.02 2.57 3.36 4.03

6 0.131 0.265 0.553 0.718 0.906 1. 44 1. 94 2.45 3.14 3.71
7 0.130 0.263 0.549 0.711 0.896 1. 42 1. 90 2.36 3.00 3.50
8 0.130 0.262 0.546 0.706 0.889 1. 40 1. 86 2.31 2.90 3.36
9 0.129 0.261 0.543 0.703 0.883 1. 38 1. 83 2.26 2.82 3.25

10 0.129 0.260 0.542 0.700 0.879 1. 37 1. 81 2.23 2.76 3.17

11 0.129 0.260 0.540 0.697 0.876 1. 36 1. 80 2.20 2.72 3.11
12 0.128 0.259 0.539 0.695 0.873 1. 36 1. 78 2.18 2.68 3.06
13 0.128 0.259 0.538 0.694 0.870 1.35 1.77 2.16 2.65 3.01
14 0.128 0.258 0.537 0.692 0.868 1. 34 1. 76 2.14 2.62 2.98
15 0.128 0.258 0.536 0.691 0.866 1. 34 1. 75 2.13 2.60 2.95

16 0.128 0.258 0.535 0.690 0.865 1. 34 1. 75 2.12 2.58 2.92
17 0.128 0.257 0.534 0.689 0.863 1. 33 1. 74 2.11 2.57 2.90
18 0.127 0.257 0.534 0.688 0.862 1. 33 1. 73 2.10 2.55 2.88
19 0.127 0.257 0.533 0.688 0.861 1. 33 1. 73 2.09 2.54 2.86
20 0.127 0.257 0.533 0.687 0.860 1. 32 1.72 2.09 2.53 2.84

21 0.127 0.257 0.532 0.686 0.859 1. 32 1.72 2.08 2.52 2.83
22 0.127 0.256 0.532 0.686 0.858 1. 32 1. 72 2.07 2.51 2.82
23 0.127 0.256 0.532 0.685 0.858 1. 32 1. 71 2.07 2.50 2.81
24 0.127 0.256 0.531 0.685 0.857 1. 32 1.71 2.06 2.49 2.80
25 0.127 0.256 0.531 0.684 0.856 1. 32 1. 71 2.06 2.48 2.79

26 0.127 0.256 0.531 0.684 0.856 1. 32 1.71 2.06 2.48 2.78
27 0.127 0.256 0.531 0.684 0.855 1. 31 1. 70 2.05 2.47 2.77
28 0.127 0.256 0.530 0.683 0.855 1. 31 1. 70 2.05 2.47 2.76
29 0.127 0.256 0.530 0.683 0.854 1. 31 1. 70 2.04 2.46 2.76
30 0.127 0.256 0.530 0.683 0.854 1. 31 1. 70 2.04 2.46 2.75

40 0.126 0.255 0.529 0.681 0.851 1. 30 1. 68 2.02 2.42 2.70
60 0.126 0.254 0.527 0.679 0.848 1. 30 1. 67 2.00 2.39 2.66

120 0.126 0.254 0.526 0.677 0.845 1. 29 1. 66 1. 98 2.36 2.62
00,0.126 0.253 0.524 0.674 0.842 1. 28 1.645 1. 96 2.33 2.58

*Compiled from Table III of R. A. Fisher and F. Yates, 1974, Statistical Tables for Bio-
logical. Agricultural and Medical Research. 6th Ed., published by Longman Group UK,
Ltd., London (previously published by Oliver and Boyd Ltd., Edinburgh). Reprinted by
permission of the publishers.
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APPENDIX A 953

TABLEA9

Upper Bounds for Critical Values for Standardized Residuals·

pt

J¢ 1 2 3 4 5 6 8 10 15 25

a - 0.10
5 1.87
6 2.00 1.89
7 2.10 2.02 1.90
8 2.18 2.12 2.03 1.91
9 2.24 2.20 2.13 2.05 1.92

10 2.30 2.26 2.21 2.15 2.06 1.92
12 2.39 2.37 2.33 2.29 2.24 2.17 1.93
14 2.47 2.45 2.42 2.39 2.36 2.32 2.19 1.94
16 2.53 2.51 2.50 2.47 2.45 2.42 2.34 2.20
18 2.58 2.57 2.56 2.54 2.52 2.50 2.44 2.25
20 2.63 2.62 2.61 2.59 2.58 2.56 2.52 2.46 2.11
25 2.72 2.72 2.71 2.70 2.69 2.68 2.66 2.63 2.50
30 2.80 2.79 2.79 2.78 2.77 2.77 2.75 2.73 2.66 2.13
35 2.86 2.85 2.85 2.85 2.84 2.84 2.82 2.81 2.77 2.55
40 2.91 2.91 2.90 2.90 2.90 2.89 2.88 2.87 2.84 2.72
45 2.95 2.95 2.95 2.95 2.94 2.94 2.93 2.93 2.90 2.82
50 2.99 2.99 2.99 2.99 2.98 2.98 2.98 2.97 2.95 2.89
60 3.06 3.06 3.05 3.05 3.05 3.05 3.05 3.04 3.03 3.00
70 3.11 3.11 3.11 3.11 3.11 3.11 3.10 3.10 3.09 3.07
80 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.14 3.12
90 3.20 3.20 3.19 3.19 3.19 3.19 3.19 3.19 3.18 3.17

100 3.23 3.23 3.23 3.23 3.23 3.23 3.23 3.22 3.22 3.21

a = 0.05

5 1.92
6 2.07 1.93
7 2.19 2.08 1.94
8 2.28 2.20 2.10 1.94
9 2.35 2.29 2.21 2.10 1.95

10 2.42 2.37 2.31 2.22 2.11 1.95
12 2.52 2.49 2.45 2.39 2.33 2.24 1.96
14 2.61 2.58 2.55 2.51 2.47 2.41 2.25 1.96
16 2.68 2.66 2.63 2.60 2.57 2.53 2.43 2.26
18 2.73 2.72 2.70 2.68 2.65 2.62 2.55 2.44
20 2.78 2.77 2.76 2.74 2.72 2.70 2.64 2.57 2.15
25 2.89 2.88 2.87 2.86 2.84 2.83 2.80 2.76 2.60
30 2.96 2.96 2.95 2.94 2.93 2.93 2.90 2.88 2.79 2.17
35 3.03 3.02 3.02 3.01 3.00 3.00 ·2.93 2.97 2.91 2.64
40 3.08 3.08 3.07 3.07 3.06 3.06 3.05 3.03 3.00 2.84
45 3.13 3.12 3.12 3.12 3.11 3.11 3.10 3.09 3.06 2.96
50 3.17 3.16 3.16 3.16 3.15 3.15 3.14 3.14 3.11 3.04
60 3.23 3.23 3.23 3.23 3.22 3.22 3.22 3.21 3.20 3.15
70 3.29 3.29 3.28 3.28 3.28 3.28 3.27 3.27 3.26 3.23
80 3.33 3.33 3.33 3.33 3.33 3.33 3.32 3.32 3.31 3.29
90 3.37 3.37 3.37 3.37 3.37 3.37 3.36 3.36 3.36 3.34

100 3.41 3.41 3.40 3.40 3.40 3.40 3.40 3.40 3.39 3.38
(Table A9 continued on next page.)
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TABLE A9 (Cont'd)

pt

a* 1 1 3 4 5 Ii 8 10 15 15

a - 0.01

5 1.98
Ii 2.17 1.98
7 2.32 2.17 1.98
8 2.44 2.32 2.18 1.98
9 2.54 2.44 2.33 2.18 1.99

10 2.62 2.55 2.45 2.33 2.18 1.99
12 2.76 2.70 2.64 2.56 2.46 2.34 1.99
14 2.86 2.82 2.78 2.72 2.65 2.57 2.35 1.99
16 2.95 2.92 2.88 2.84 2.79 2.73 2.58 2.35
18 3.02 3.00 2.97 2.94 2.90 2.85 2.75 2.59
20 3.08 3.06 3.04 3.01 2.98 2.95 2.87 2.76 2.20
25 3.21 3.19 3.18 3.16 3.14 3.12 3.07 3.01 2.78
30 3.30 3.29 3.28 3.26 3.25 3.24 3.21 3.17 3.04 2.21
35 3.37 3.36 3.35 3.34 3.34 3.33 3.30 3.28 3.19 2.81
40 3.43 3.42 3.42 3.41 3.40 3.40 3.38 3.36 3.30 3.08
45 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43 3.38 3.23
50 3.52 3.52 3.51 3.51 3.51 3.50 3.49 3.48 3.45 3.34
60 3.60 3.59 3.59 3.59 3.58 3.58 3.57 3.56 3.54 3.48
70 3.65 3.65 3.65 3.65 3.64 3.64 3.64 3.63 3.61 3.57
80 3.70 3.70 3.70 3.70 3.69 3.69 3.69 3.68 3.67 3.64
90 3.74 3.74 3.74 3.74 3.74 3.74 3.73 3.73 3.72 3.70

100 3.78 3.78 3.78 3.77 3.77 3.77 3.77 3.77 3.76 3.74

·Reprinted from Table 1 in Richard E. Lund, 1975, "Tables for Approxi-
mate Test for Outliers in Linear Models," Technometrics, 17: 473-476, with the
permission of the publisher and the author.

tp - number of independent variables (including intercept if fitted).
*n - number of observations.
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TABLE AIO

Durbin-Watson Critical Values·

k = 1 k = 2 k = 3 k=4 k=5

n dL dv dL dv dL dv dL dv dL dv

a = 0.05

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21
16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10
18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06
19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02
20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.18 0.93 1.90
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.14 1.05 1.84
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.13 1.15 1.81
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80
36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.13 1.18 1.80
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79
39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.19
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.18
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.13 1.41 1.17
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.13 1.44 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.14 1.46 1.77
75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.14 1.51 1.77
85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.17
90 1.63 1.68 1.61 1.10 1.59 1.73 1.57 1.15 1.54 1.78
95 1.64 1.69 1.62 1.71 1.60 1.13 1.58 1.75 1.56 1.18

100 1.65 1.69 1.63 1.72 1.61 1.14 1.59 1.16 1.57 1.78
(Table AIO continued on next page).
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TABLE AIO (Coot'd)

k .. I k-2 k-3 k=4 k=5
D dL dv dL dv dL dv dL dv dL dv

a = 0.025

15 0.95 1.23 0.83 1.40 0.71 1.61 0.59 1.84 0.48 2.09

16 0.98 1.24 0.86 1.40 0.75 1.59 0.64 1.80 0.53 2.03

17 1.01 1.25 0.90 1.40 0.79 1.58 0.68 1.77 0.57 1.98

18 1.03 1.26 0.93 1.40 0.82 1.56 0.72 1.74 0.62 1.93

19 1.06 1.28 0.96 1.41 0.86 1.55 0.76 1.72 0.66 1.90

20 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0.70 1.87

21 1.10 1.30 1.01 1.41 0.92 1.54 0.83 1.69 0.73 1.84

22 1.12 1.31 1.04 1.42 0.95 1.54 0.86 1.68 0.77 1.82

23 1.14 1.32 1.06 1.42 0.97 1.54 0.89 1.67 0.80 1.80

24 1.16 1.33 1.08 1.43 1.00 1.54 0.91 1.66 0.83 1.79

25 1.18 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77

26 1.19 1.35 1.12 1.44 1.04 1.54 0.96 1.65 0.88 1.76

27 1.21 1.36 1.13 1.44 1.06 1.54 0.99 1.64 0.91 1.75

28 1.22 1.37 1.15 1.45 1.08 1.54 1.01 1.64 0.93 1.74

29 1.24 1.38 1.17 1.45 1.10 1.54 1.03 1.63 0.96 1.73

30 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0.98 1.73
31 1.26 1.39 1.20 1.47 1.13 1.55 1.07 1.63 1.00 1.72

32 1.27 1.40 1.21 1.47 1.15 1.55 1.08 1.63 1.02 1.71

33 1.28 1.41 1.22 1.48 1.16 1.55 1.10 1.63 1.04 1.71
34 1.29 1.41 1.24 1.48 1.17 1.55 1.12 1.63 1.06 1.70

35 1.30 1.42 1.25 1.48 1.19 1.55 1.13 1.63 1.07 1.70

36 1.31 1.43 1.26 1.49 1.20 1.56 1.15 1.63 1.09 1.70
37 1.32 1.43 1.27 1.49 1.21 1.56 1.16 1.62 1.10 1.70

38 1.33 1.44 1.28 1.50 1.23 1.56 1.17 1.62 1.12 1.70
39 1.34 1.44 1.29 1.50 1.24 1.56 1.19 1.63 1.13 1.69

40 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69

45 1.39 1.48 1.34 1.53 1.30 1.58 1.25 1.63 1.21 1.69

50 1.42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69

55 1.45 1.52 1.41 1.56 1.37 1.60 1.33 1.64 1.30 1.69
60 1.47 1.54 1.44 1.57 1.40 1.61 1.37 1.65 1.33 1.69

65 1.49 1.55 1.46 1.59 1.43 1.62 1.40 1.66 1.36 1.69
70 1.51 1.57 1.48 1.60 1.45 1.63 1.42 1.66 1.39 1.70

75 1.53 1.58 1.50 1.61 1.47 1.64 1.45 1.67 1.42 1.70

80 1.54 1.59 1.52 1.69 1.49 1.65 1.47 1.67 1.44 1.70

85 1.56 1.60 1.53 1.63 1.51 1.65 1.49 1.68 1.46 1.71
90 1.57 1.61 1.55 1.64 1.53 1.66 1.50 1.69 1.48 1.71

95 1.58 1.62 1.56 1.65 1.54 1.67 1.52 1.69 1.50 1.71

100 1.59 1.63 1.57 1.65 1.55 1.67 1.53 1.70 1.51 1.72

(Table AI0 continued on next page).
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TABLE AIO (Cont'd)

k = I k=2 k-3 k=4 k-S

D dL du dL du dL du dL du dL du

a - 0.01

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74
21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65
26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61
31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59
36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

*Durbin, J., and G. S. Watson, 1951, Biometrika, .38: 159-178. Reprinted
with the permission of the Biometrika Trustees and the principal author.
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TABLEAl1

Quantiles of tbe Wilcoxon Signed Ranks Test Statisticft

a(D + 1)
"UM ""'1 "1.125 "1U5 "1.1. "1.]1 "1.31 "1M "1.51 2

n-4 0 0 0 0 1 3 3 4 5 10
5 0 0 0 1 3 4 5 6 7.5 15
6 0 0 1 3 4 6 8 9 10.5 21
7 0 1 3 4 6 9 11 12 14 28
8 1 2 4 6 9 12 14 16 18 36
9 2 4 6 9 11 15 18 20 22.5 45

10 4 6 9 11 15 19 22 25 27.5 55
11 6 8 11 14 18 23 27 30 33 66
12 8 10 14 18 22 28 32 36 39 78
13 10 13 18 22 27 33 38 42 45.5 91
14 13 16 22 26 32 39 44 48 52.5 105
15 16 20 26 31 37 45 51 55 60 120
16 20 24 30 36 43 51 58 63 68 136
17 24 28 35 42 49 58 65 71 76.5 153
18 28 33 41' 48 56 66 73 80 85.5 171
19 33 38 47 54 63 74 82 89 95 190
20 38 44 53 61 70 83 91 98 105 210
21 44 50 59 68 78 91 100 108 115.5 131
22 49 56 67 76 87 100 110 119 126.5 153
23 55 63 74 84 95 110 120 130 138 176
24 62 70 82 92 105 120 131 141 150 300
25 69 77 90 101 114 131 143 153 162.5 325
26 76 85 99 III 125 142 155 165 175.5 351
27 84 94 108 120 135 154 167 178 189 378
28 92 102 117 131 146 166 180 192 203 406
29 101 III 127 141 158 178 193 206 217.5 435
30 110 121 138 152 170 191 207 220 232.5 465
31 119 131 148 164 182 205 221 235 248 496
32 129 141 160 176 195 219 236 250 264 528
33 139 152 171 188 208 233 251 266 280.5 561
34 149 163 183 201 222 248 266 282 297.5 595
35 160 175 196 214 236 263 283 299 315 630
36 172 187 209 228 251 279 299 317 333 666
37 184 199 222 242 266 295 316 335 351.5 703
38 196 212 236 257 282 312 334 353 370.5 741
39 208 225 250 272 298 329 352 372 390 780
40 221 239 265 287 314 347 371 391 410 820
41 235 253 280 303 331 365 390 411 430.5 861
42 248 267 295 320 349 384 409 431 451.5 903
43 263 282 311 337 366 403 429 452 473 946
44 277 297 328 354 385 422 450 473 495 990
45 292 313 344 372 403 442 471 495 517.5 1035
46 308 329 362 390 423 463 492 517 540.5 1081
47 324 346 379 408 442 484 514 540 564 1128

(Table A12 continued on next page.)
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TABLE AU (Coat'd)

"U05 "1.0. "0.025 "1.05 "8.10 "0.20 "8.341 "tAO "1.541
D(D + I)

2
,

48 340 363 397 428 463 50S 536 563 588 1176
49 357 381 416 447 483 527 559 587 612.5 1225
50§ 374 398 435 467 504 550 583 611 637.5 1275

tConover, W. J., 1980, Practical Nonparametric Statistics. 2nd Ed., C John Wiley &:
SOns, Inc. Adapted from H. L. Harter and D. B. Owen, 1970, Selected Tables in
Mathematical Statistics. Vol. I.• Markham Publishing Co., Chicago. The values in the
Ciclected Tables had been developed and distributed by the Lederle Laboratories Division of
American Cyanamid Co., in cooperation with the Department of Statistics, Florida State
University, Tallahassee, Florida, and copyrighted in 1963 by American Cyanamid Co. and
Florida State University. Reprinted here with the permission of John Wiley &: Sons, IDC.,
W. J. Conover, Florida State University, and the American Cyanamid Co.

*The entries in this table are quantiles wp of the Wilcoxon signed ranks test statistic W·
given by Equation 9.8 for selected values of p :IE; .50. Quantiles wp for p > .50 may be com­
puted from the equation

where n(n + 1)/2 is given in the right hand column in the table. Note that
P(W· < wp) :IE; p and P ( W· > wp) :IE; I - P if Ho is true. Critical regions correspond to
values of W· less than (or greater than) but not including the appropriate quantile.

§For n larger than SO, the pth quantile wp of the Wilcoxon signed ranks test statistic may
be approximated by wp = [n(n + 1)/4] + xp .In(n+I)(2n+I)/24), where xp is the pth
quantile of a standard normal random variable, obtained from Table A3.
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APPENDIX A

TABLE Al4

Quantiles of the Squared Ranks Test Statistict+

D p m=3 4 5 6 7 8 9 IO§

3 .005 14 14 14 14 14 14 21 21
.01 14 14 14 14 21 21 26 26
.025 14 14 21 26 29 30 35 41
.05 21 21 26 30 38 42 49 54
.10 26 29 35 42 50 59 69 77
.90 65 90 117 149 182 221 260 305
.95 70 101 129 161 197 238 285 333
.975 77 110 138 170 213 257 308 362
.99 77 110 149 194 230 285 329 394
.995 77 110 149 194 245 302 346 413

4 .005 30 30 30 39 39 46 50 54
.01 30 30 39 46 50 51 62 66
.025 30 39 50 54 63 71 78 90
.05 39 50 57 66 78 90 102 114
.10 50 62 71 85 99 114 130 149
.90 111 142 182 222 270 321 375 435
.95 119 154 197 246 294 350 413 476
.975 126 165 206 255 311 374 439 510
.99 126 174 219 270 334 401 470 545
.995 126 174 230 281 351 414 494 567

5 .005 55 55 66 75 79 88 99 110
.01 55 66 75 82 90 103 115 127
.025 66 79 88 100 114 130 145 162
.05 75 88 103 120 135 155 175 195
.10 87 103 121 142 163 187 212 239
.90 169 214 264 319 379 445 514 591
.95 178 228 282 342 410 479 558 639
.975 183 235 297 363 433 508 592 680
.99 190 246 310 382 459 543 631 727
.995 190 255 319 391 478 559 654 754

6 .005 91 104 115 124 136 152 167 182
.01 91 115 124 139 155 175 191 210
.025 115 130 143 164 184 208 231 255
.05 124 139 164 187 211 239 268 299
.10 136 163 187 215 247 280 315 352
.90 243 300 364 435 511 592 679 772
.95 255 319 386 463 545 634 730 831
.975 259 331 406 486 574 670 771 880
.99 271 339 424 511 607 706 817 935
.995 271 346 431 526 624 731 847 970

7 .005 140 155 172 195 212 235 257 280
.01 155 172 191 212 236 260 287 315
.025 172 195 217 245 274 305 338 372
.05 188 212 240 274 308 344 384 425
.10 203 236 271 308 350 394 440 489
.90 335 407 487 572 665 764 871 984
.95 347 428 515 608 707 814 929 1051
.975 356 443 536 635 741 856 979 1108
.99 364 456 560 664 779 900 1032 1172
.995 371 467 571 683 803 929 1067 1212

(Table A14 continued on next page.)
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TABLE A14 (Coot'd)

0 p m=3 4 5 6 7 8 9 IO§

8 .005 204 236 260 284 311 340 368 401
.01 221 249 276 309 340 372 408 445
.025 249 276 311 345 384 425 468 513
.05 268 300 340 381 426 473 524 576
.10 285 329 374 423 476 531 590 652
.90 447 536 632 735 846 965 1091 1224
.95 464 560 664 776 896 1023 1159 1303
.975 476 579 689 807 935 1071 1215 1368
.99 485 599 716 840 980 1124 1277 1442
.995 492 604 731 863 1005 1156 1319 1489

9 .005 304 325 361 393 429 466 508 549
.01 321 349 384 423 464 508 553 601
.025 342 380 423 469 517 570 624 682
.05 365 406 457 510 567 626 689 755
.10 390 444 501 561 625 694 766 843
.90 581 689 803 925 1056 1195 1343 1498
.95 601 717 840 972 1112 1251 1420 1587
.975 615 741 870 1009 1158 1317 1485 1662
.99 624 757 900 1049 1209 1377 1556 1745
.995 629 769 916 1073 1239 1417 1601 1798

10§ .005 406 448 486 526 573 620 672 725
.01 425 470 513 561 613 667 725 785
.025 457 505 560 616 677 741 808 879
.05 486 539 601 665 734 806 883 963
.10 514 580 649 724 801 885 972 1064
.90 742 866 1001 1144 1296 1457 1627 1806
.95 765 901 1045 1197 1360 1533 1715 1907
.975 778 925 1078 1241 1413 1596 1788 1991
.99 793 949 1113 1286 1470 1664 1869 2085
.995 798 961 1130 1314 1505 1708 1921 2145

tConover, W. J., 1980, Practical Nonparametric Statistics, 2nd Ed., ©
John Wiley & Sons, Inc. Adapted from tables by Conover and Iman, 1978,
Communications in Statistics, B7: 491-513, Marcel-Dekker Journals, New
York. Reprinted with the permission of John Wiley & Sons, Inc., Marcel-
Dekker, Inc., and authors W. J. Conover and R. L. Iman.

:j:The entries in this table are selected quantiles wp of the squared ranks
test statistic T,*, given by Equation 9.12. Note that Pr(T,* < wp) :E; p and
P(T,* > wp) :E; 1 - p. Critical regions correspond to values less than (or
greater than) but not including the appropriate quantile.

§For n or m greater than 10, the p'h quantile wp of the squared ranks test
statistic may be approximated by

w = n(N + 1)(2N + I) + jmn(N + 1)(2N + 1)(8N + 11)
p 6 ~ 1W

where N = n + m, and xp is the plh quantile of a standard normal random
variable, obtained from Table A3.
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TABLE A15

Quantiles of the Spearman Test Statistic*t

D p=.900 .950 .975 .990 .995 .999

4 .8000 .8000
5 .7000 .8000 .9000 .9000
6 .6000 .7714 .8286 .8857 .9429
7 .5357 .6786 .7450 .8571 .8929 .9643
8 .5000 .6190 .7143 .8095 .8571 .9286
9 .4667 .5833 .6833 .7667 .8167 .9000

10 .4424 .5515 .6364 .7333 .7818 .8667
11 .4182 .5273 .6091 .7000 .7455 .8364
12 .3986 .4965 .5804 .6713 .7273 .8182
13 .3791 .4780 .5549 .6429 .6978 .7912
14 .3626 .4593 .5341 .6220 .6747 .7670
15 .3500 .4429 .5179 .6000 .6536 .7464

16 .3382 .4265 .5000 .5824 .6324 .7265
17 .3260 .4118 .4853 .5637 .6152 .7083
18 .3148 .3994 .4716 .5480 .5975 .6904
19 .3070 .3895 .4579 .5333 .5825 .6737
20 .2977 .3789 .4451 .5203 .5684 .6586

21 .2909 .3688 .4351 .5078 .5545 .6455
22 .2829 .3597 .4241 .4963 .5426 .6318
23 .2767 .3518 .4150 .4852 .5306 .6186
24 .2704 .3435 .4061 .4748 .5200 .6070
25 .2646 .3362 .3977 .4654 .5100 .5962

26 .2588 .3299 .3894 .4564 .5002 .5856
27 .2540 .3236 .3822 .4481 .4915 .5757
28 .2490 .3175 .3749 .4401 .4828 .5660
29 .2443 .3113 .3685 .4320 .4744 .5567
30t .2400 .3059 .3620 .4251 .4665 .5479

·Conover, W. J., 1980, Practical Nonparametric
Statistics, 2nd Ed., © 1980, John Wiley & Sons, Inc.
Adapted from G. J. Glasser and R. F. Winter, 1961,
Biometrika, 48: 444. Reprinted with the permission of
John Wiley & Sons, Inc., the Biometrika Trustees, and the
principal authors, W. J. Conover and G. J. Glasser.

tThe entries in this table are selected quantiles wp of
the Spearman rank correlation coefficient p when used as
a test statistic. The lower quantiles may be obtained from
the equation

wp = -wl- p

The critical region corresponds to values of p smaller than
(or greater than) but not including the appropriate quan-
tile. Note that the median of p is O.

tFor n greater than 30 the approximate quantile of p
may be obtained from

xp
wp =- ..;;;::::Tn-l

where Xp is the pth quantile of a standard normal random
variable, obtained from Table A3.
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TABLEA16

Quantlles of the Kendall Test Statistict:t:

• ,-.900 .950 .975 .990 .995

4 4 4 6 6 6
5 6 6 8 8 10
6 7 9 11 11 13
7 9 11 13 15 17
8 10 14 16 18 20
9 12 16 18 22 24

10 15 19 21 25 27
11 17 21 25 29 31
12 18 24 28 34 36
13 22 26 32 38 42
14 23 31 35 41 45
15 27 33 39 47 51
16 28 36 44 50 56
17 32 40 48 56 62
18 35 43 51 61 67
19 37 47 55 65 73
20 40 50 60 70 78
21 42 54 64 76 84
22 45 59 69 81 89
23 49 63 73 87 97
24 52 66 78 92 102
25 56 70 84 98 108
26 59 75 89 105 115
27 61 79 93 111 123
28 66 84 98 116 128
29 68 88 104 124 136
30 73 93 109 129 143
31 75 97 115 135 149
32 80 102 120 142 158
33 84 106 126 150 164
34 87 III 131 155 173
35 91 115 137 163 179
36 94 120 144 170 188
37 98 126 150 176 196
38 103 131 155 183 203
39 107 137 161 191 211
40 110 142 168 198 220
41 114 146 174 206 228
42 119 151 181 213 235
43 123 157 187 221 245
44 128 162 194 228 252
45 132 168 200 236 262
46 135 173 207 245 271
47 141 179 213 253 279
48 144 186 220 260 288
49 150 190 228 268 296

(Table A16 continued on next page.)
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TABLE 16 (Coat'd)

D ,-.900 .950 .975 .990 .995

50 153 197 233 277 305
51 159 203 241 285 315
52 162 208 248 294 324
53 168 214 256 302 334
54 173 221 263 311 343
55 177 227 269 319 353
56 182 232 276 328 362
57 186 240 284 336 372
58 191 245 291 345 381
59 197 251 299 355 391
6O§ 202 258 306 364 402

tConover, W. J., 1980, Practical Non­
parametric Statistics, 2nd Ed., © John Wiley &
Sons, Inc. Adapted from D. J. Best, 1974,
Table I, Appendix, Division of Mathematical
Statistics Technical Paper 39, Commonwealth
Scientific and Industrial Research Organization
of Australia (Canberra). Reprinted with the
permission of John Wiley & Sons, Inc., the
Commonwealth Scientific and Industrial
Research Organization of Australia, W. J. Con­
over, and D. J. Best.

;The entries in this table are selected quan­
tiles wp of the Kendall test statistic T*, dermed
by Equation 9.32 for selected values of p. Only
upper quantiles are given here, but lower
quantiles may be obtained from the relationship.

Critical regions correspond to values of T*
greater than (or less than) but not including the
appropriate quantile. Note that the median of
T* is O.

§For n greater than 60, approximate quan­
tiles of T* may be obtained from

n(n-I)(2n+5)
18

where Xp is the p"h quantile from the standard
normal distribution given by Table A3.
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TABLE Al8

Quantlles of the Lilliefors Test Statistic for NormaUtytt

p-=.80 .85 .90 .95 .99

Sample size n = 4 .300 .319 .352 .381 .417
5 .285 .299 .315 .337 .405
6 .265 .277 .294 .319 .364
7 .247 .258 .276 .300 .348
8 .233 .244 .261 .285 .331
9 .223 .233 .249 .271 .311

10 .215 .224 .239 .258 .294
11 .206 .217 .230 .249 .284
12 .199 .212 .223 .242 .275
13 .190 .202 .214 .234 .268
14 .183 .194 .207 .227 .261
15 .177 .187 .201 .220 .257
16 .173 .182 .195 .213 .250
17 .169 .177 .189 .206 .245
18 .166 .173 .184 .200 .239
19 .163 .169 .179 .195 .235
20 .160 .166 .174 .190 .231
25 .142 .147 .158 .173 .200
30 .131 .136 .144 .161 .187

Over 30 ..736 .768 .805 .886 1.031

.Jn .Jn .Jn .Jn .Jn

tConover, W. J., 1980, Practical Nonparametric Statistics, 2nd
~., @ John Wiley & Sons, Inc. Adapted from H. W. Lilliefors, 1967,
Journal of the American Statistical Association, 62: 399-402.
Reprinted with the permission of John Wiley & Sons, Inc., the Ameri-
can Statistical Association, and the authors.

iThe entries in this table are the approximate quantiles wp of the
Lilliefors test statistic T* as defined by Equation 9.39. Reject Ho at
the level a if T* exceeds wI-a for the particular sample size n.
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TABLEA10

Quantiles of the Shapiro-WUk Test Statistict;

D 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000
4 0.687 0.707 0.748 0.792 0.935 0.987 0.992 0.996 0.997
5 0.686 0.715 0.762 0.806 0.927 0.979 0.986 0.991 0.993
6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989
7 0.730 0.760 0.803 0.838 0.928 0.972 0.979 0.985 0.988
8 0.749 0.778 0.818 0.851 0.932 0.972 0.978 0.984 0.987
9 0.764 0.791 0.829 0.859 0.935 0.972 0.978 0.984 0.986

10 0.781 0.806 0.842 0.869 0.938 0.972 0.978 0.983 0.986
11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986
12 0.805 0.828 0.859 0.883 0.943 0.973 0.979 0.984 0.986
13 0.814 0.837 0.866 0.889 0.945 0.974 0.979 0.984 0.986
14 0.825 0.846 0.874 0.895 0.947 0.975 0.980 0.984 0.986
15 0.835 0.855 0.881 0.901 0.950 0.975 0.980 0.984 0.987
16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987
17 0.851 0.869 0.892 0.910 0.954 0.977 0.981 0.985 0.987
18 0.858 0.874 0.897 0.914 0.956 0.978 0.982 0.986 0.988
19 0.863 0.879 0.901 0.917 0.957 0.978 0.982 0.986 0.988
20 0.868 0.884 0.905 0.920 0.959 0.979 0.983 0.986 0.988
21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989
22 0.878 0.892 0.911 0.926 0.961 0.980 0.984 0.987 0.989
23 0.881 0.895 0.914 0.928 0.962 0.981 0.984 0.987 0.989
24 0.884 0.898 0.916 0.930 0.963 0.981 0.984 0.987 0.989
25 0.888 0.901 0.918 0.931 0.964 0.981 0.985 0.988 0.989
26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989
27 0.894 0.906 0.923 0.935 0.965 0.982 0.985 0.988 0.990
28 0.896 0.908 0.924 0.936 0.966 0.982 0.985 0.988 0.990
29 0.898 0.910 0.926 0.937 0.966 0.982 0.985 0.988 0.990
30 0.900 0.912 0.927 0.939 0.967 0.983 0.985 0.988 0.990
31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990
32 0.904 0.915 0.930 0.941 0.968 0.983 0.986 0.988 0.990
33 0.906 0.917 0.931 0.942 0.968 0.983 0.986 0.989 0.990
34 0.90~ 0.919 0.933 0.943 0.969 0.983 0.986 0.989 0.990
35 0.910 0.920 0.934 0.944 0.969 0.984 0.986 0.989 0.990
36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990
37 0.914 0.924 0.936 0.946 0.970 0.984 0.987 0.989 0.990
38 0.916 0.925 0.938 0.947 0.971 0.984 0.987 0.989 0.990
39 0.917 0.927 0.939 0.948 0.971 0.984 0.987 0.989 0.991
40 0.919 0.928 0.940 0.949 0.972 0.985 0.987 0.989 0.991
41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991
42 0.922 0.930 0.942 0.951 0.972 0.985 0.987 0.989 0.991
43 0.923 0.932 0.943 0.951 0.973 0.985 0.987 0.990 0.991
44 0.924 0.933 0.944 0.952 0.973 0.985 0.987 0.990 0.991
45 0.926 0.934 0.945 0.953 0.973 0.985 0.988 0.990 0.991
46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991
47 0.928 0.936 0.946 0.954 0.974 0.985 0.988 0.990 0.991
48 0.929 0.937 0.947 0.954 0.974 0.985 0.988 0.990 0.991
49 0.929 0.937 0.947 0.955 0.974 0.985 0.988 0.990 0.991
50 0.930 0.938 0.947 0.955 0.974 0.985 0.988 0.990 0.991

(Footnote to Table A20 at bottom of next page).-
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TABLE A21

Table of Critical Values for T. (One-Sided Test)
When Standard Deviation Is Calculated

from the Same Sample·

Number of 5% 1.5% 1%
obsenadoos Significam:e Significaoce Significaoce

• lefel level le,el

3 1.15 1.15 1.15
4 1.46 1.48 1.49
5 1.67 1.71 1.75
6 1.82 1.89 1.94
7 1.94 2.02 2.10
8 2.03 2.13 2.22
9 2.11 2.21 2.32

10 2.18 2.29 2.41
11 2.23 2.36 2.48
12 2.29 2.41 2.55
13 2.33 2.46 2.61
14 2.37 2.51 2.66
15 2.41 2.55 2.71
16 2.44 2.59 2.75
17 2.47 2.62 2.79
18 2.50 2.65 2.82
19 2.53 2.68 2.85
20 2.56 2.71 2.88
21 2.58 2.73 2.91
22 2.60 2.76 2.94
23 2.62 2.78 2.96
24 2.64 2.80 2.99
25 2.66 2.82 3.01
30 2.75 2.91
35 2.82 2.98
40 2.87 3.04
45 2.92 3.09
50 2.96 3.13
60 3.03 3.20
70 3.09 3.26
80 3.14 3.31
90 3.18 3.35

100 3.21 3.38

*Grubbs, F. E., 1969, Technometrics, 11: 1·21.
Reprinted with the permission of the American Statistical
Association and the author.

(Footnote to Table 20.)

tConover, W. J., 1980, Practical Nonparametric Statistics, 2nd Ed., @ John
Wiley & Sons, Inc. Adapted from S. S. Shapiro and M. B. Wilt, 1965,
Biometrika, 51: 591. Reprinted with the permission of John Wiley & Sons, Inc.,
the Biometrika Trustees, and the authors W. J. Conover and S. S. Shapiro.

*The entries in this table are quantiles wp of the Shapiro-Wilk Test statistic
w* given by Equation 9.40.
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TABLE A2Z

Critical Values for w/s (Ratio of Range to Sample
Standard Deriation)·

Number of 5% 1% 0.5%
obsenadOllS Slpificuce SlpIficaDce SipIflcuce

• le,eI le,el le,eI

3 2.00 2.00 2.00
4 2.43 2.44 2.45
5 2.75 2.80 2.81
6 3.01 3.10 3.12
7 3.22 3.34 3.37
8 3.40 3.54 3.58
9 3.55 3.72 3.77

10 3.68 3.88 3.94
11 3.80 4.01 4.08
12 3.91 4.13 4.21
13 4.00 4.24 4.32
14 4.09 4.34 4.43
15 4.17 4.43 4.53
16 4.24 4.51 4.62
17 4.31 4.59 4.69
18 4.38 4.66 4.77
19 4.43 4.73 4.84
20 4.49 4.79 4.91
30 4.89 5.25 5.39
40 5.15 5.54 5.69
50 5.35 ·5.77 5.91
60 5.50 5.93 6.09
80 5.73 6.18 6.35

100 5.90 6.36 6.54
150 6.18 6.64 6.84
200 6.38 6.85 7.03
500 6.94 7.42 7.60

1000 7.33 7.80 7.99

*Selected from H. A. David, H. O. Hartley, and E. S.
Pearson, 1954. "The Distribution of the Ratio in a Single
Sample of Range to Standard Deviation," Biometrika, 41:
482-493. Reprinted with the permission of the Biometrika
Trustees and the principal author.
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TABLE A23

Critical Values for Simultaneously Testing the Two
Largest or Two Smallest Observations·

979

Number of
obsenations

"
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

10%
Significance

level

.0031

.0376

.0921

.1479

.1994

.2454

.2853

.3226

.3552

.3843

.4106

.4345

.4562

.4761

.4944

.5113

.5269

5%
Significance

level

.0008

.0183

.0565

.1020

.1478

.1909

.2305

.2666

.2996

.3295

.3568

.3818

.4048

.4259

.4455

.4636

.4804

.0000

.0035

.0186

.0440

.0750

.1082

.1415

.1736

.2044

.2333

.2605

.2859

.3098

.3321

.3530

.3725

.3909

*Grubbs, F. E., 1969, Technometrics, 11: 1-21. Reprinted
with the permission of the publisher and the author.
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TABLE A24

Critical Values for Testing .ji);*

II

Sig
Le,el 5t lot 15t lOt 15 30 35 40 50 60

1% 1.34 1.31 1.20 1.11 1.06 .98 .92 .87 .79 .72
5% 1.05 .92 .84 .79 .71 .66 .62 .59 .53 .49

·Grubbs, F. E., 1969, Techrwmetrics, 11: 1-21. Reprinted with the
permission of the American Statistical Association and the author.

tFerguson, T. S., 1961, "On the Rejection of Outliers" in Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and Prob­
ability, 1: 253-287. Reprinted with the permission of the publisher and
the author.

TABLE A15

Critical Values for Testing bz*

II

Sig
Le,el 5t lOt 15t lOt 15t 50 75 100

1% 3.11 4.83 5.08 5.23 5.00 4.88 4.59 4.39
5% 2.89 3.85 4.07 4.15 4.00 3.99 3.87 3.77

·Grubbs, F. E., 1969, Techrwmetrlcs, 11: 1-21. Reprinted
with the permission of the American Statistical Association and
the author.

tFerguson, T. S., 1961, "On the Rejection of Outliers" in
Proceedings of the Fourth Berkeley Symposium on Mathemati­
cal Statistics and Probability, 1: 253-287. Reprinted with the
permission of the publisher and the author.
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TABLE AU

Critical Values for T~ When Standard Deviation s., Is
Independent of Present Sample·

" 3 4 5 6 7 8 9 10 12

,,- df 1% poiDts

10 2.78 3.10 3.32 3.48 3.62 3.73 3.82 3.90 4.04
11 2.72 3.02 3.24 3.39 3.52 3.63 3.72 3.79 3.93
12 2.67 2.96 3.17 3.32 3.45 3.55 3.64 3.71 3.84
13 2.63 2.92 3.12 3.27 3.38 3.48 3.57 3.64 3.76
14 2.60 2.88 3.07 3.22 3.33 3.43 3.51 3.58 3.70
15 2.57 2.84 3.03 3.17 3.29 3.38 3.46 3.53 3.65
16 2.54 2.81 3.00 3.14 3.25 3.34 3.42 3.49 3.60
17 2.52 2.79 2.97 3.11 3.22 3.31 3.38 3.45 3.56
18 2.50 2.77 2.95 3.08 3.19 3.28 3.35 3.42 3.53
19 2.49 2.75 2.93 3.06 3.16 3.25 3.33 3.39 3.50
20 2.47 2.73 2.91 3.04 3.14 3.23 3.30 3.37 3.47
24 2.42 2.68 2.84 2.97 3.07 3.16 3.23 3.29 3.38
30 2.38 2.62 2.79 2.91 3.01 3.08 3.15 3.21 3.30
40 2.34 2.57 2.73 2.85 2.94 3.02 3.08 3.13 3.22
60 2.29 2.52 2.68 2.79 2.88 2.95 3.01 3.06 3.15

120 2.25 2.48 2.62 2.73 2.82 2.89 2.95 3.00 3.08
00 2.22 2.43 2.57 2.68 2.76 2.83 2.88 2.93 3.01

5% poiDts

10 2.01 2.27 2.46 2.60 2.72 2.81 2.89 2.96 3.08
11 1.98 2.24 2.42 2.56 2.67 2.76 2.84 2.91 3.03
12 1.96 2.21 2.39 2.52 2.63 2.72 2.80 2.87 2.98
13 1.94 2.19 2.36 2.50 2.60 2.69 2.76 2.83 2.94
14 1.93 2.17 2.34 2.47 2.57 2.66 2.74 2.80 2.91
15 1.91 2.15 2.32 2.45 2.55 2.64 2.71 2.77 2.88
16 1.90 2.14 2.31 2.43 2.53 2.62 2.69 2.75 2.86
17 1.89 2.13 2.29 2.42 2.52 2.60 2.67 2.73 2.84
18 1.88 2.11 2.28 2.40 2.50 2.58 2.65 2.71 2.82
19 1.87 2.11 2.27 2.39 2.49 2.57 2.64 2.70 2.80
20 1.87 2.10 2.26 2.38 2.47 2.56 2.63 2.68 2.78
24 1.84 2.07 2.23 2.34 2.44 2.52 2.58 2.64 2.74
30 1.82 2.04 2.20 2.31 2.40 2.48 2.54 2.60 2.69
40 1.80 2.02 2.17 2.28 2.37 2.44 2.50 2.56 2.65
60 1.78 1.99 2.14 2.25 2.33 2.41 2.47 2.52 2.61

120 1.76 1.96 2.11 2.22 2.30 2.37 2.43 2.48 2.57
00 1.74 1.94 2.08 2.18 2.27 2.33 2.39 2.44 2.52

*The percentage points are from David, H. A., 1956, "Revised Upper Per-
centage Points of the Extreme Studentized Deviate from the Sample Mean,"
Biometrika. 43: 449-451. Reprinted with the permission of the Biometrika
Trustees and the author.
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TABLE A27

Critical Values of T; and T~ When the
Population Standard Deviation (1 Is Known*

Number of 5% 1% 0.5%
obse"ations Signifk:aDce SigDific:ance SigDificance

II level level level

2 1.39 1.82 1.99
3 1.74 2.22 2.40
4 1.94 2.43 2.62
5 2.08 2.57 2.76
6 2.18 2.68 2.87
7 2.27 2.76 2.95
8 2.33 2.83 3.02
9 2.39 2.88 3.07

10 2.44 2.93 3.12
11 2.48 2.97 3.16
12 2.52 3.01 3.20
13 2.56 3.04 3.23
14 2.59 3.07 3.26
15 2.62 3.10 3.29
16 2.64 3.12 3.31
17 2.67 3.15 3.33
18 2.69 3.17 3.36
19 2.71 3.19 3.38
20 2.73 3.21 3.39
21 2.75 3.22 3.41
22 2.77 3.24 3.42
23 2.78 3.26 3.44
24 2.80 3.27 3.45
25 2.81 3.28 3.46

*Grubbs, F. E., 1969, Technometrics, 11: 1-21.
Reprinted with the permission of the publisher and the
author.
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INDEX

abrupt loss, 863
acceptance number, 884
accounting adjustments for

bias corrections, 628, 645
bookkeeping mistakes, 628, 645
change of enrichment, 628, 646
change of ownership, 628
decay, fission or transmutation, 628, 646
inventory difference, 628, 644-645
measurement mistakes, 628, 645
shipper-receiver differences, 628,

644·645
accounting data, verification of, 871
accounting errors, effect of, 832
accounting for holdup, 644
accounting for misplaced material, 644
accounting process, 669
accounting records, 639-643
accounting results

evaluation of, 831
expected values of, 683
variances of, 683

accounting structure, 669
accounting systems, 627, 639
adjustments, see accounting adjustments
admissible strategy, 610
alarm limits, 788
aliased effects, 420
alias structure, 422
alternative hypothesis, 136
analysis of variance (ANOVA), 233

nested mixed effects, 299
nested random effects, 283
one-way fixed effects, 234
one-way random effects, 264
two-way crossed classifications, 310
two-way fixed effects, 313
two-way mixed effects, 324
two-way random effects, 320

analytical report, 641
ANOVA (analysis of variance), 233

987

approximate degrees of freedom,
see Satterthwaite approximation

approximate value of an integral, 580
arithmetic mean, 5
assignable cause, 210
attribute sampling, 880

binomial distribution, 888
approximation to the hypergeonietric,

889
fraction sampled, 891
required sample size, 891
type II error probability, 891

hypergeometric distribution, 881
acceptance number, 884
fractional number defective, 888
fraction defective, 881
number defective, 881
probability of detection, 881
requir.ed sample size, 882, 887
Type II error probability, 887
zero acceptance number, 886

attributes measurement, 875
auditing\ 871

capability, 873
independent assurance, 873
performance, 873

audit process, 871
available actions, 603
average, 5
average sample number (ASN),

203,209

bar chart, 12
Bartlett's test for equal variances, 802
basic measurement result, 669
Bayesian estimators, 102
Bayes risk, 609, 614
Bayes strategy, 609, 613
Behrens-Fisher problem, 168
bell-shaped curve, 57



988

beta distribution, 69
pdf, parameters, mean, variance, 68

bias, 672
accounting adjustments for, 645
correction, 722, 785, 805

biased estimator, 98
binomial approximation to the

hypergeometric, 49, 889
binomial distribution, 47, 888

estimator for parameter p, 106
normal approximation to, 62
pdf, mean, variance, 47
Poisson approximation to, 5I
sample proportion, 106
table, 928

bivariate distribution, continuous, 73
conditional mean and variance, 76
conditional pdf, 74
correlation coefficient, 75
covariance, 75
independence, 75, 76
joint cdf, 74
joint pdf, 74
marginal pdf, 74
mean, variance, 75

bivariate distribution, discrete, 70
conditional mean and variance, 73
conditional pdf, 7I
correlation coefficient, 73
covariance, 73
independence, 73
joint cdf, 71
joint pdf, 70
marginal pdf, 71
mean, variance, 72

bivariate normal distribution, 82
conditional mean, 85
conditional pdf, 84
conditional variance, 85
correlation coefficient, 83
joint pdf, parameters, 83
marginal pdf, 83, 84
means, variances, covariance, 83
regression, 85

blocking with fractional replicates, 427
Bonferroni

inequality, 539
intervals, 251
t statistics, 543

book inventory, 620, 639
boxplot, 17

calibration
general linear, 737

INDEX

calibration (cont'd)
parameter estimates, 738
weighted regression analysis, 748

model,733
nonlinear, 760
of measurement systems, 732
of NDA instruments, 732
of process vessels, 774
process of, 732
single point, 732
uncertainty, 763

calibration of measurement processes, 633
cdf (cumulative distribution function), 40

. center line, 210
Central Limit Theorem, 61
central tendency, 4
chance event, 30
Chebyshev's inequality, 214
chemical analyses, 653-657

see a/so measurement methods
chi-square distribution, 69

pdf, parameters, mean, variance,
68,69, 108

table, 937
chi-square sum, 544
chi-square test, 523
classification of results by error

source, 680
class mark, 5
class mean, 235
cluster sampling, one-stage, 455

estimators for mean and total, 455
required sample size, 456
standard error of estimators, 455

cluster sampling, two-stage 458
estimators for mean and total, 459
required sample size, 459
standard error of estimators, 459

coefficient of determination, R2, 349
combination, 32
combination of variance estimators, 699
common error effects in ID components,

700
complement of a set, 30
completely randomized design, 391
compliance tests, accounting data, 873
components of a material balance, 629-630
compound smoothing, 22
computerized model, 570
concordant pairs, 521
conditional joint pdf, 77
conditional mean, 73, 76, 85
conditional pdf, 71, 74, 84
conditional probability, 35
conditional variance, 73, 76, 85



NlEX

confidence interval, 96, 106
for binomial distribution parameter p,

118·120
exact, 120
normal approximation, 118'
required sample size, 119

for difference of two binomial parameters,
121

for difference of two means, 115
variances known, 116
variances unknown but equal, 116
variances unknown and unequal, 116

for finite population mean and total, 481
for hypergeometric distribution

parameter D, 122
for mean of a linear combination, 127
for mean of normal distribution, 113

required sample size, 114
variance known, 113
variance unknown, 113

for ratio of two standard deviations,
111

for ratio of two variances, 111
for standard deviation, 109

confidence intervals and hypothesis testing,
151

confounded effects, 420
congruential generator, 577
consistent estimator, 98
constant absolute variance, 673
constant bias effect, 673
constant error effect, 673
constant loss, 864
constant relative variance, 673
constrained maximum likelihood estimate,

102
contingency table, 502
continuous model, 573
continuous monitoring, 790
continuous random variable, I, 38
contrasts, 253, 305
control chart, 210, 787, 851
Cook's distance, 380
corrected inventory difference, 909

variance of, 909
correcting measurement results, 722
correlated statements, 541
correlation, 181, 332
correlation coefficient, 73, 75, 79, 83,

332-333
population correlation coefficient, 332
sample correlation coefficient, 333

covariance, 73, 75, 78, 79
covariance matrix, see variance­

covariance matrix

989

critical region, 137
cumulative distribution function (cdf), 40
cumulative error model, 774

parameter estimates, 776
problems with, 777

cumulative inventory difference, 831
cumulative sum (CUSUM) chart, 224

amount of shift, 227
lead distance, 228
turning point, 227
Type I and Type II errors, 227
V-mask, 224

curtailed sequential sampling, 443
CUSUM (cumulative sum) chart, 206,

224

data smoothing, 22
data splitting in regression, 382
decile, II
decision analysis, 602
decision rule, selection of, 859
decision theory, 601
defining contrast, 422
dependent error effects, 679
dependent variable, 389
design of experiments, 387
deterministic model, 572
difference statistic, 903

variance of, 906
discordant pairs, 521
discrete model, 573
discrete random variable, 1, 38
dispersion, 9
distribution of sample mean, 112
distribution, continuous, 53

beta distribution, 69
bivariate normal distribution, 82
chi-square distribution, 69
exponential distribution, 67
F-distribution, 110
gamma distribution, 67
lognormal distribution, 64
normal distribution, 56
standard normal distribution, 58
uniform distribution, 53
Weibull distribution, 69

distribution, discrete, 44
binomial distribution, 47
hypergeometric distribution, 44
multinomial distribution, 79
Poisson distribution, 50

diversion
abrupt, 850, 863
protracted, 850

Duncan's multiple range test, 256, 309
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Duncan's multiple range test (cont'd)
equal sample sizes, 257
tables, 951
unequal sample sizes, 258

DUPLEX algorithm, 383
Durbin test, 517

effect of accounting errors, 832
elementary event, 30
empirical cdf, 96, 529
empirical control chart, 211

count rate, 222
mean, 218
proportion, 221
range, 223

empirical density function, 96
empirical distribution, 96
error rate, 538
errors in independent variables, 343
error size classifications, 876

gross defect, 876
medium defect, 876
significant quantity, 876
small defect, 876

error structure, 670
generic treatment of, 671
simplification of, 691
sources of variability, 670

error variance component, 674
models for estimating, 674

error variances, compilation of, 692
estimate, 95

maximum likelihood, 101
estimating means and totals, 447
estimating measurement variability, 634
estimation, 95
estimation of component variances, 700
estimator, 95

point, 95
method of moments, 99
interval, 95, 106

event, 30, 33
expected error rate, 540
expected loss, 605
expected mean squares, 239, 266, 285,

300, 321, 326
see also ANOVA

expected value, 41
experiment, 29
experimental design, 387
experimental error variance, 414
experimental objectives, 389
experimental units, 388

INDEX

exploration of a system, 575
exploratory data analysis, 2
exponential distribution, 67

pdf, parameters, mean, variance, 68

facility and process variables, 625-626
factorial designs, 403-429

2k designs, 409
3k designs, 416

factor, 389
false alarm rate, 138
false alarm rate, choice of, 859
family of statements, 538
F-distribution, 110

degrees of freedom, 110
tables, 940

feasibility of an experiment, 390
filter, 22
finite population correction factor, 50
finite populations, sampling, 439
Fisher's combination of probabilities test,

546
Fisher-Cornish approximation, 561
fractional factorial designs, 419

2k•p designs, 421
3k•p designs, 427

fractions of:
2k designs, 421
3k designs, 427
general factorial designs, 427

Freund-Ansari test, 500
Friedman test, 514
F-test for two variances, 171, 50I
functions of random variables, 88

general functions, 90
approximate mean and variance, 91
estimator for approximate mean, 126
estimator for approximate variance, 126
Taylor series approximation, 91

linear combinations, 88
estimator for mean, 124
estimator for variance, 124
mean and variance of, 89

game theory, 601
gamma di~tribution, 67

parameter estimators, 107
pdf, parameters, mean, variance, 68

general functions of variables, 90
approximate mean and variance, 91
estimate for approximate mean, 126
estimator for approximate variance, 126
Taylor series approximation, 91

general linear calibration, 737
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general linear regression model, 344
generating random deviates, 576

see a/so random deviate generation
geometric mean, 8
geometric standard deviation, 10
goodness of fit tests, 523

chi-square test, 523
Kolmogorov-Smirnov test, 529
Kolmogorov test, 529
Lilliefors test for normality, 531
Shapiro-Wilk test for normality, 532

Graeco-Latin square design, 403
grouped data, 5
Grubbs' procedures, 556, 823

hanning, 26
hat matrix, 561
heterogeneous error variances, 343
hierarchical designs, 433
hierarchical models ANOVA, 282
high-level neutron coincidence counter

(HLNCC), 748
calibration of, 751

high leverage observation, 378
hinges, 17
histogram, 12
HLNCC (high-level neutron coincidence

counter), 748
Hotelling's T2-test, 547
hypergeometric distribution, 44, 881

binomial approximation to, 49
parameter estimator, 107
pdf, mean variance, 44
Poisson approximation to, 51

hypothesis testing, 135
hypothesis testing with confidence

intervals, 151
hypothesis tests for

binomial parameter p, 183
approximate test, 188

OC and power curves, 189
required sample size, 190

exact test, 183
OC and power curves, 185
required sample size, 186

comparing two means, variances known,
161

OC and power curves, 164
required sample size, 164

comparing two means, variances unknown,
165

paired observations, 176
OC and power curves, 179
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hypothesis tests for (cont'd)

rationale for pairing, 180
required sample size, 179

variances assumed equal, 165
pooled standard deviation, 167
pooled variance estimator, 166
probability of Type II error, 168
required sample size, 168

variances unequal, 168
OC and power curves, 171
required sample size, 171
Satterthwaite procedure, 168

comparing two proportions, 191
OC and power curves, 193
required sample size, 193

comparing two variances, 171
OC curve, 173
required sample size, 173

cumulative inventory differences, 851
inventory differences, 85 I
mean, variance known, 139

OC and power curves, 144
one-sided tests, 142
required sample size, 147·148
two-sided test, 139

mean, variance unknown, 152
OC and power curves, 155
required sample size, 155

Poisson parameter, 195
approximate test, 199

OC and power curves, 200
required sample size, 200

exact test, 195
OC and power curves, 197
required sample size, 197

variance of a normal distribution, 157
OC and power curves, 159
required sample size, 160

10, see inventory difference
10 components, common error effects, 700
imperfect inspection, 440, 448, 452
independence, 73, 75, 76, 79
independent samples, 161,495,501
independent statements, 541
independent variables, 389
indicator variable, 37
inferences from material accounting, 636
infinite variance, 734
influential data points, 379
inspector's inventory difference, 909
interaction effect, 404, 413
interlaboratory exchange studies, 799, 807
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internal control, 628
internal control system, 872
internal transfer report, 641
interquartile range, 11
intersection of two sets, 31
interval estimator, 95, 106
interval scale, 4
intrac1ass correlation coefficient, 275
inventory accounting, 621
inventory difference (ID), 620, 701, 831

components of, 833
control chart, 851
corrected, 909
redefinition of, 841
sequences of, 833
testing, 850, 859

inventory difference account, 644
inventory of materials, 620, 643
inventory strata, 629-630
inverse calibration, 779
isolation of effects, 389
item accounting, 629, 643
item amounts, 675

errors in, 675
total bias effect, 676

item control areas, 625

Johnson approximation, 97
joint cdf, 71, 74, 76, 77
jointly distributed random variables, 76
joint marginal pdf, 77
joint pdf, 70, 74, 76, 77

Kendall's tau, 521
key measurement point, 625
Kolmogorov-Smirnov test, 529
Ko1mogorov test, 529
Kruskal-Wallis test, 503
k-samp1e squared ranks test, 507

multiple comparisons, 509
kurtosis, 43

\.
lack of fit, 349, 356-360

test for significance of, 359
Latin square design, 398
law of large numbers, 35
lead distance, 228
least favorable distribution, 614
least significant range, 257
least squares, 339
least squares estimates, 100
ledgers, 639
likelihood function, 79, 100

INDEX

LiIliefors test for normality, 531
linear combinations of variables, 88

estimator for mean, 124
estimator for variance, 124
mean and variance of, 89

location, 5,489, 501
location parameter, 43
lognormal distribution, 64

geometric mean, 66
mean, median, mode, variance, 65
parameter estimators, 107
pdf, parameters, 65

long-term systematic effect, 692
loss

abrupt, 863
constant, 864
proportional to throughput, 865
sequential tests, 866

losses
behavior of, 850
distribution of, 850, 907
models for, 832, 849, 861
probability of detecting, 853

dependent on loss model, 858
sampling of, 909
specialized estimators, 861

loss function, 603
loss model, 832, 849, 861
loss table, 603
lower control limit (LCL), 210

main effect, 404, 413
Mann-Whitney test, 495
manufacturing process, diagram of

typical, 625, 626
marginal pdf, 71, 74, 83, 84
matched pairs tests, 493
material accounting, 619-622

inferences from, 636
requirements, 627
role of statistics in, 630

material balance
areas, 625
components, 629-630
equation, 620

material quantities, inferences about, 903
material unaccounted for (MUF), 620
mathematical models, 571
maximum likelihood estimate, 101
mean, 42
mean square error, 98, 792

bias component of, 792
mean vector, 78, 548



measurement
attributes, 875
capability verification, 895
performance assessment, 896
performance verification, 895
variables, 875

measurement control
control programs, 632-633
use of reference standards, 634
procedures, 780

measurement differences, inferences from,
894

measurement error, 672
biases, 672
constant bias effects, 673
constant error effect, 673
effects, 669
random errors, 672
relative bias effect, 673
relative error effects, 673
sources, of, 679

measurement error, in sampling,
440, 448, 452

measurement errors, inferences about, 894
measurement methods, 629, 647·664

reference standards for, 648, 651, 658,
662-663

statistical control of, 630-636
measurement process

components, 671
generic treatment of, 692

measurement replication, 635
measurement scale, 2
measurements, control of bias in, 634
measurement system

modeling, 665
accounting structure, 669
definitions, 666
error structure, 670

monitoring of, 767, 780
stability of, 752

measurement uncertainty, 631
effect on inventory differences, 631
estimation and control, 632-636

measurement variability
controlling, 731
data sources for estimating, 731
estimating, 731
example of modeling, 713
modeling, 665
sources of, 685

measures of
central tendency, 4
influence, 380
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measures of (cont'd)
leverage, 380
variability, 8

median, 7
median test, 501
method of moments, 99
minimax criterion, 607
minimax regret strategy, 615
minimax risk, 607
minimax strategy, 607
minimum variance estimator, 98
minimum variance unbiased estimator, 98
mixed level factorial designs, 419
mixed model, see ANOVA
mixed strategies, 610
modal group, 8
mode, 8
modeling measurement uncertainty, 631
moment

about the mean, 43
of a distribution, 43

Monte Carlo methods, 569
Monte Carlo simulation, 55, 569
Mood test, 500
moving sum chart, 230
MUF, see material unaccounted for
multinomial distribution, 79

mean vector, 81
pdf, parameters, 80
varianee-covariance matrix, 81

multiple linear regression, 344
analysis of variance, 348
ordinary least squares estimators, 346
weighted least squares estimators, 346

multistage sampling plan, 441
multistage sequential sampling, 443
multivariate analysis, 547
multivariate analysis of variance, 552
multivariate confidence region, 552
multivariate distribution, 76, 548

conditional joint pdf, 77
conditional mean and variance, 73
correlation coefficient, 79
covariance, 78, 79
independence, 79
joint cdf, 76, 77
joint marginal pdf, 77
joint pdf, 76, 77
mean vector, 78
variance-eovariance matrix, 78

multivariate statistical methods, 547
mutually exclusive sets, 32

nested design, 433



nested mixed effects ANOVA, 299
comparison of means, 305-308
contrasts, 305-308

confidence intervals, 307-308
estimates, 305-306
hypothesis tests, 307-308
variance of estimates, 306

Duncan's multiple range test, 309
equal sample sizes, 308-309
estimation of means, 301-305

estimators, 302-303
one-at-a-time confidence intervals, 304
simultaneous confidence intervals,

304-305
variance of estimators, 302-304
weighting schemes, 302

expected mean squares, 300
mean squares, 300
model, 299-300
sums of squares, 300

nested random effects ANOVA, 283
equal sample sizes, 298
estimating overall mean, 291-298

confidence interval, 295
estimators, 292-295
hypothesis test, 295
variance of estimators, 292-295
weighting schemes, 292

expected mean squares, 285
hypothesis tests, 286-287
mean squares, 284-285
model,282-283
sums of squares, 284
variance components, 285-286

nominal scale, 3
noncentrality parameter, ISS, 167
noncentral t-distribution, ISS, 167
noninformative prior distribution, 610
nonlinear calibration, 760
nonparametric methods, 483
normal approximation

to the binomial, 62, 188
to the Poisson, 199

normal distribution, 56
pdf, mean, variance, cdf, 57, 58
sample mean, 104
sample variance, 105
table, 936

nuclear material accounting, 621-622,
627, 639-646

nuclear material accounting forms, 627
null hypothesis, 136
null set, 30

INDEX

objectives of an experiment, 389
OC (operating characteristic) curve, 144
one-at-a-time confidence intervals,

249,304,317,328
one-fourth replicate of a 21 design,

425
one-half replicate of a 24 design, 425
one-way ANOVA, 234, SOl
one-way rlXed effects ANOVA, 234

comparisons suggested by data, 251
all possible contrasts, 262
Scheff6's test, 261-262

contrasts, 253
confidence interval for, 255, 262
estimates of, 253
hypothesis test for, 254
variance of, 254

Duncan's multiple range test, 256
expected mean squares, 239
linear model, 235
mean squares, 239.
normality assumption, 235, 240
OC and power curves, 244-249
one-at-a-time confidence intervals, 249
planned comparisons of means, 253
pooled variance estimator, 239
required sample sizes, 244-249
simultaneous confidence intervals, 250

Bonferroni intervals, 251
Scheffe intervals, 250

sums of squares, 237-239
test for equal means, 234
unequal sample sizes, 242-244

one-way random effects ANOVA, 264
expected mean squares, 266
intraclass correlation coefficient, 275
mean squares, 265
normality assumption, 267
OC and power curves, 270-272
overall mean, 274

confidence interval for, 279
hypothesis tests for, 279
minimum variance unbiased estimator,

275
sampling schemes, 279-280

cost considerations, 280
required sample sizes, 280

unweighted estimator, 277
variance of, 277-278

weighted estimator, 276
variance of, 276-277

random effects model, 265
required sample size, 270-273



one-way random effects ANOVA (cont'd)
sums of squares, 265
variance components, 265-267

operating characteristic (OC) curve, 144
operational activities in simulation, 576
operator-inspector difference, 898
optimization of a system, 575
order statistic, 96, 554
ordinal scale, 3
ordinary least squares estimator, 346
outliers, 537
outliers in regression, 378, 560
outliers, testing for, 552

paired comparisons, 895
paired observations, 176, 493
paired t-test, 176, 396, 493
parameter, 1,95
parameter estimation, 95
pdf (probability density function), 40
Pearson approximation, 97
Pearson-Hartley charts, 245, 943
percentile, II
period of a generator, 578
permutation, 32
physical inventory, 620, 643-644
pie chart, II
point estimator, 95
Poisson approximation

to the binomial, 51
to the hypergeometric, 5I

Poisson distribution, 50
parameter estimator, 107
pdf, mean, variance, 50, 5I
table, 934

polynomial equations, 342
population, I
power curve, 144
power of a test, 138
PPS (probability proportional to size)

sampling, 443
PPS cluster sampling without replacement,

470
estimator for total, 470
required sample size, 471
standard error of estimator, 470

PPS cluster sampling with replacement,
463

estimators for mean and total, 463
required sample size, 464
standard error of estimators, 463
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PPS sampling without replacement, 467
estimators for mean and total, 468
Rao, Hartley, Cochran (RHC) method,

467
required sample size, 469
standard error of estimators, 468

PPS sampling with replacement, 461
estimators for mean and total, 461
required sample size, 461
standard error of estimators, 461

predicted value, 383-384
confidence intervals, 384
variance of, 383

PRESS procedure, 382
prior distribution, 102, 609
probability, definition, 29, 33
probability density function (pdf), 40
probability distribution, 39
probability function, 40
probability model, 39
probability of detecting defectives, 881
probability proportional to size (PPS)

sampling, 443
process vessel, calibration of, 774
pure error, 349
pure strategy, 610

Quade test, 5I0
quality control of measurement processes,

632-634
quartile, II

R2
, coefficient of determination, 349

random deviate generation, 576
binomial distribution, 594
chi-square distribution, 587
F-distribution, 592
functions of random variables, 595
gamma distribution, 587
multivariate normal distribution, 593

correlated random deviates, 594
noncentral Student's t-distribution, 590
normal distribution, 582

Box-Muller method, 583
Central Limit Theorem, 584
polar method, 583

Student's t-distribution, 589
uniform distribution, 579

random effect, 692
random error, 672
random number generation, 577
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random number tables, 578, 877
random sample, 1,441,577, 877
random variable, 36
randomization, 56, 388
randomized block ANOVA, 395
randomized block design, 176
randomized block experiment, 823
randomized complete block design, 395
randomized incomplete block design, 403
randomized strategy, 610
range, 9
rank ANOVA test, 516
rank correlation, 518

Kendall's tau, 521
Spearman's rho, 518

Rao, Hartley, Cochran (RHC) method,
467

ratio scale, 4
recalibration procedures, 752
reference standards in monitoring

measurement processes, 634
regression, 85, 331
regression analysis, 331
regression coefficient estimators, 346-356

sampling distribution of, 352
test for significance of, 355
variance-rovariance matrix, 352-354

regret function, 61 5
rejection region, 137
related samples, 395, 510
relative bias effect, 673
relative error effects, 673
repeated normal statistics, 542
replication, 388
required sample size,

see ANOVA, hypothesis testing,
confidence intervals, sampling

residual sum of squares, 339
residuals, 27, 339, 362-378

hat matrix, 371
plotting residuals, 363
serial correlation, 373

Durbin-Watson test, 375
runs test, 374

standardized residuals, 370
test for normality, 369

resolution III designs, 421
resolution IV designs, 421
resolution V designs, 422
response variable, 389
robust estimator, 98
round-off error, 55
round robin studies, 799
running average, 26
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running median smoother, 22
runs test, 484

S2, sample variance, 9
SAM (stabilized assay meter), 768
SAM calibration, 768
sample covariance, 125
sample mean, 5, 97, 104
sample mean of grouped data, 5
sample moment, 97
sample point, 30, 33
sample proportion, 106
sample space, 30, 33
sample variance of grouped data, 10
sample variance, S2, 9, 105
sampling, 439
sampling distribution, 95, 106
sampling finite populations, 439

cluster sampling, one-stage, 455
cluster sampling, two-stage, 458
confidence intervals for mean and total,

481
effect of measurement error, 440, 448,

452
PPS cluster sampling without replacement,

470
PPS cluster sampling with replacement,

463
PPS sampling without replacement, 467
PPS sampling with replacement, 461
Rao, Hartley, Cochran (RHC) method,

467
sequential sampling, 443
simple random sampling, 442, 449
stratified random sampling, 442, 473
systematic random sampling, 442

sampling frame, 877
sampling methods

for materials, 629, 659-660
invalid assumptions, 453
limitations of, 452

sampling notation, 440
sampling plan development, 443
sampling techniques, strengths and

weaknesses, 444-445
Satterthwaite approximation, 116, 128,

168, 699
see also ANOVA

scale parameter, 43, 69
scatter, 9
scatter plot, 20
ScheffC's method, 250,261, 305
seed value, 578
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sequential material balances, tests for, 866
sequential probability ratio test (SPRT),

202
average sample number (ASN), 203, 209
OC curves, 209
Type I and Type II errors, 203

sequential probability ratio test
(SPRT) for

binomial parameter p, 207
average sample number, 209
decision regions, 208

mean of a normal distribution, 204
decision region, 205-207

sequential sampling, 443
sequential tests, 202
serial correlation, 577
set, 30
shape parameter, 67
Shapiro-Wilk test for normality, 532
Shewhart chart, 212
shipper-receiver bias, 800
short-term systematic effect, 692
short-term systematic error, 679
Siegel-Tukey test, 500
significance level, 138
sign test, 489, 493
simple effect, 404
simple linear regression, 336

intercept, 338
least squares estimates, 340
model,338
slope, 338

simple random sampling, 442, 449
confidence intervals, 450
estimators for mean and total, 449
required sample size, 450
standard error of estimators, 449

simulation analysis, 569
simulation analysis, advantages of, 570
simulation model

design, 575
implementation, 575
validation, 575
verification, 575

simultaneous confidence intervals,
250, 304, 542, 544

simultaneous confidence statement, 544
simultaneous inference, 537
simultaneous tests, 550
single factor experiments, 391
single point calibration, 732
skewness, 43
smoothing, 22
source data, 639
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sources of error in measurements, 649·651,
655·658, 660-663

sources of measurement error, 679
sources of measurement variability, 685
sources of variability, 670
SPC (statistical process control), 210
Spearman's rho, 518
specialized loss estimators, 861
split plot design, 430
SPRT (sequential probability ratio test), 202
SQC (statistical quality contro!), 210
squared ranks test, 498
stabilized assay meter (SAM), 768
standard deviation, 10, 43
standard deviation of sample mean, 104
standard error, definition, 10

see sampling
standard error of sample mean, 104
standard normal distribution, 58

mean, variance, cdf, 58
table, 936

standard squares, 400
standardization of measurement processes,

633
stand"ardized residuals, 561
state of nature, 603
state of statistical control, 210
state system of accounting and control

(SSAC), 632, 872
statistic, 2, 95
statistical control, 210

of measurement processes, 630
statistical design of experiments, 387
statistical hypothesis, 135
statistical process control (SPC), 210
statistical quality control (SQC), 210
statistical sampling, 439
statistical tables, 927

binomial distribution, 928
chi-square distribution, 937
coefficients for Shapiro-Wilk test, 973
critical values for .Jf);, 980
critical values for b2, 980
critical values for Ti and T~, 982
critical values for T~, 981
critical values for To, 977
critical values for wIs, 978
Duncan's multiple range test, 951
Durbin-Watson test, 955
F-distribution, 940
Kendall test statistic, 969
Kolmogorov test, 971
Lilliefors test, 972
Mann-Whitney test, 961
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statistical tables (cont'd)
normal distribution

(standard), 936
Pearson-Hartley charts, 943
Poisson distribution, 934
runs test, 958
screening studentized residuals, 983
Shapiro-Wilk test statistic, 976
Spearman test statistic, 968
squared ranks test, 966
standardized residuals, 953
standard normal distribution, 936
Student's t-distribution, 939
testing two extreme values, 979
Wilcoxon test, 959

statistically independent, 35
statistics, role in material accounting, 630
stem and leaf display, 15
stepwise regression, 355
stochastic model, 572
strategy, 603, 605
stratified random sampling, 442, 473, 921

allocation of sample, 477
cluster sampling within strata, 480
cost considerations, 474
estimators for mean and total, 476
PPS sampling within strata, 480
required sample size, 478
standard error of estimators, 476
successful stratification, 473, 476

stratum totals, 678, 686
errors in, 678
expected values, 686
variances, 686

studentized residuals, 560
Student's t-distribution, 113

degrees of freedom, 113
table, 939

substantiative tests of accounts, 873
symbolic models, 571
systematic error, 632
systematic random sampling, 442
system models, 570, 571

tables of random numbers, 578
tables, see statistical tables
Taylor series approximation, 91, 763
t-distribution, see Student's

t-distribution
test for high leverage, 380
test for significance of effects, 415
test for significance of regression, 350
test of randomness, 484

runs test, 484

INDEX

test statistic, 137
testing all pairs of means, 257
testing cumulative inventory

differences, 850
testing for outliers, 552

Grubbs' treatment of outliers, 556
repeated testing for outliers, 558
testing largest value, 558
testing smallest value, 558
testing two extreme values, 558
testing two largest values, 558
testing two smallest values, 558

methods of Dixon, 554
testing k most extreme values, 556
testing largest value, 554
testing smallest value, 554
testing two extreme values, 555

testing inventory differences, 850, 859
tests for comparing several locations,

233,501
independent samples, 234, 501

Kruskal-Wallis test, 503
median test, 501
one-way ANOVA, 234, 501

related samples, 395,510
Durbin test, 517
Friedman test, 514
Quade test, 510
randomized block ANOVA, 395
rank ANOVA test, 516

tests for comparing two locations,
161,493,495

independent samples, 161,495
Mann-Whitney test, 495
two sample t-test, 165,496
Wilcoxon rank-sum test, 495

paired observations, 176, 493
matched pairs test, 493
paired t-test, 176, 493
sign test, 493
Wilcoxon signed ranks test, 493

tests for comparing variances,
171, 498, 507

Bartlett's test, 802
Freund-Ansari test, 500
F-test, 171, 501
k-sample squared ranks test, 507
Mood test, 500
Siegel-Tukey test, 500
squared ranks test, 498

tests for normality, 531
Lilliefors test for normality, 531
Shapiro-Wilk test for normality, 532
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tests of single location, 152, 489
sign test, 489
t-test, 152
Wilcoxon signed ranks test, 491

tests, see a/so hypothesis testing
theoretical control chart, 211

count rate, 213
mean, 213
number defective, 213
proportion, 213
range, 216
standard deviation, 216
variance, 21 5

three-sigma control chart, 212
time series, 21
time series plot, 21
tolerance limits, 129

distribution free, 129
for normal distributions, 129

one-sided, 131
two-sided, 129

total bias effect, 676
traceability of accounting data, 639
traceability of material, 639
transformations, 342
transformations to stabilize variance, 343
transformed cumulative error model, 775
treatment means, 235
t-test, 152

two sample, 165,496
turning point, 227
two-way crossed classifications ANOVA,

310
computational formulas, 312-313
rlXed effects model, 313

comparison of means, 317-319
estimation of means, 317-319

confidence intervals, 317-319
expected mean squares, 316
hypothesis tests, 31 5

mean squares, 313
mixed effects model, 324

comparison of means, 328
estimation of means, 327

confidence intervals, 328
estimators, 327
variance of estimators, 327

expected mean squares, 326
hypothesis tests, 324-325
variance components, 326-327

model, 310-311
random effects model, 320

expected mean squares, 321

two-way crossed classifications
ANOVA (cont'd)

hypothesis tests, 322
overall mean, 323

confidence interval, 324
estimate, 323
hypothesis test, 324
variance of estimate, 323

overall variance, 322
variance components, 322

sums of squares, 312-313
Type I error, 137
Type II error, 137
types of facilities subject to nuclear

material accounting, 623

unbiased estimator, 98
uniform distribution, 53, 577

parameter estimators, 107
pdf, mean, variance, cdf, 53, 54

union of two sets, 30
universal set, 30
unmeasured losses, 643
upper control limit (VeL), 210

variable
continuous random, I, 38
discrete random, 38
independent, 389

variables measurement, 875
variables sampling plans, 919

required sample size, 922
stratified sampling, 921
type II error probability, 920

variance, 42
variance component estimator, variance of,

699
variance components, 265, 285, 322, 326,

674,725
negative estimates, 267

variance estimator
combination of, 699
variance of, 698

variance of corrected measurement results,
728

variance of sample variance, 105
variance of variance component estimator,

699
variance of variance estimator, 698
variance--covariance matrix, 78, 345, 548
Venn diagram, 31
verification of accounting data, 637
verification process, 871
V-mask, 224
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warning limits, 788
Weibull distribution, 69

pdf, parameters, mean, variance, 68
weighted average, 7
weighted average loss, 609
weighted least squares estimators, 346
weighted mean, 7
whiskers, 18
Wilcoxon rank-sum test, 495
Wilcoxon signed ranks test, 491, 493
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x-bar, 5
x-y plot, 20

Youden square design, 403

zero acceptance number, 886


