APPENDIX A:

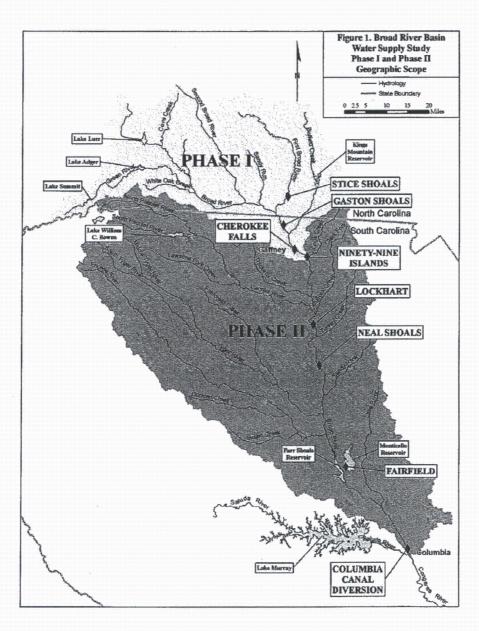
STUDY PLAN/SCOPE

Water Quantity Model for the Upper Broad River Basin

Scope of Work - Phase I

1.0 Introduction

Duke Energy (Duke) is developing a water supply capacity model of the Upper Broad River Basin from its headwaters in North Carolina extending downstream to Duke's Ninety-Nine Islands Dam near Blacksburg, SC. Phase I of this Study is intended to explore the water supply capacity associated with the proposed expansion of Duke's Cliffside Steam Station, located near Cliffside, North Carolina and Duke's proposed construction of the Lee Nuclear Station (LNS), located near Blacksburg, South Carolina. Phase I of the Study will help Duke ensure a clear understanding of the total, long-term water supply picture at these power plant sites. The Study will determine the water supply capacity in the Upper Broad River Basin during low-flow, or drought, conditions and provide tools and analysis that will be used to support the application process for both proposed facilities.


This Study will incorporate eight existing reservoirs, beginning at Lake Lure and Lake Summit to the Northwest, Moss Lake to the Northeast, and ending at Ninety-Nine Islands, as well as routing of flows in identified riverine sections upstream of the proposed LNS. In addition to the water quantity model, this proposal includes performing a water supply Study to inventory current water withdrawals and returns, and project future water withdrawals and returns for the Upper Broad River Basin. The results of the water supply Study will be used to support the development of a dynamic water budget model (CHEOPSTM). Subsequently, the information and model will be used to conduct safe yield analyses for the Upper Broad River Basin in support of Duke Energy's proposed power plant expansions.

A second phase (Phase II) of this Study is also planned and is described in Appendix A. Figure 1 depicts the geographical extent of the Phase I and Phase II study areas. The Phase I drainage area is approximately 1,550 square miles and the Phase II drainage area adds an additional 3,745 square miles, for a total drainage area of 5,295 square miles at the confluence of the Broad River and the Saluda River near Columbia, South Carolina.

2.0 Approach

Devine Tarbell & Associates (DTA) has teamed with HDR, Inc. (both firms have business offices in Charlotte, NC) to provide the water quantity and water supply services outlined in this proposal. DTA and HDR worked together successfully in the past on the Duke Energy Catawba-Wateree Hydro Project relicensing, providing similar services to those outlined below. HDR will provide expertise in water supply analysis and projections of future water demand in the Upper Broad River Basin. DTA will develop a computer based water quantity model and provide expertise in performing scenario modeling and basin specific water budget projections based on results of the water supply Study combined with the CHEOPS model.

Water Quantity Model

The water quantity modeling phase of the project will encompass the upstream constraints in the Upper Broad River Basin down to the Ninety-Nine Islands Hydroelectric facility in Cherokee County, South Carolina. The water quantity model of the Upper Broad River Basin will allow for the evaluation of the cooling water supply potential of the study area while taking into consideration the restrictions that are in place on the river system. The restrictions and characteristics to be modeled include daily hydrology of both direct inflows to the reservoirs and lateral inflows, reservoir operations, hydro unit performance and generation capacity for the facilities to be modeled as hydroelectric generation projects, water (consumptive and nonconsumptive use) withdrawals and returns, and operating restrictions. The model will incorporate known withdrawal and return points and characterization of flow travel time between nodes either by a direct time lag or the U.S. Army Corps of Engineers HEC-1 program's Normal Depth routing scheme. The routing characteristics of the reaches will be derived from a combination of field measurement and topographic estimations for representative reaches in the study area.

The majority of the Upper Broad River Basin information to be used in the development of the CHEOPS model will be acquired from the existing HEC-1 model developed for the calculation of the 1997 Ninety-Nine Islands Probable Maximum Flood (PMF) Study. This work was developed by current DTA engineering staff.

The headwaters of the Broad River originate in the Blue Ridge Mountains through the foothills to the Piedmont. The major tributaries to the Broad River above the Ninety-Nine Islands facility are the Green River, the Hungry River, the Second Broad River, and the First Broad River. These tributaries incorporate the two proposed public water system reservoirs in Cleveland County, North Carolina, on the First Broad River and Buffalo Creek. The Ninety-Nine Islands Hydroelectric Station is on the Broad River in Cherokee County, South Carolina and has a drainage area of approximately 1,550 square miles. The dam is located approximately 6 miles south of Blacksburg, South Carolina, and approximately 9 miles southeast of Gaffney, South Carolina. It is approximately 90 miles north of the confluence of the Broad River and Saluda River near Columbia, South Carolina. The Ninety-Nine Islands project will be modeled as a peaking facility. There are a number of existing dams upstream of Ninety-Nine Islands:

- Tuxedo (Lake Summit) on the Green River
- Turner Shoals (Lake Adger) on the Green River
- Lake Lure on the Broad River
- Stice Shoals on the First Broad River
- Gaston Shoals on the Broad River
- Cherokee Falls on the Broad River
- Kings Mountain Reservoir (Moss Lake) on Buffalo Creek

Tuxedo Dam (Lake Summit)

The Tuxedo Hydroelectric Project is located on the Green River in Henderson County, North Carolina, approximately 2 miles west of the Town of Saluda, NC. Tuxedo Dam impounds Lake Summit. Lake Summit has a surface area of approximately 300 acres and a shoreline of about 10 miles at full pond elevation of 2,012.6 ft msl. The project will be modeled as a generating modified run-of-river facility.

Turner Shoals Dam (Lake Adger)

The Turner Shoals Hydroelectric Project is located on the Green River in Polk County, North Carolina, approximately 3 miles northwest of the Town of Mill Springs, NC. Turner Shoals Dam impounds Lake Adger, which has a surface area of approximately 438 acres and a shoreline of about 15 miles at full pond elevation of 911.6 ft msl. The project will be modeled as a generating modified run-of-river facility.

Lake Lure Dam

The Federal Energy Regulatory Commission (FERC) licensed Lake Lure Hydroelectric Project is located on the Broad River in Rutherford County, North Carolina, on the eastern side of the Town of Lake Lure, NC. Lake Lure has a surface area of approximately 900 acres at full pond elevation of 991 ft msl, which makes it the largest reservoir upstream of Ninety-Nine Islands. The project will be modeled as a fill-and-spill reservoir due to the availability of project information.

Stice Shoals Dam

The Stice Shoals Hydroelectric Project is located on the First Broad River in Cleveland County, North Carolina, approximately 4 miles upstream of the confluence with the Broad River and is approximately 5.5 miles southwest of the City of Shelby, NC. The project will be modeled as a fill-and-spill reservoir due to the availability of project information and negligible storage capacity.

Gaston Shoals Dam

The FERC-licensed Gaston Shoals Hydroelectric Project is located on the Broad River in Cherokee County, South Carolina, approximately 7 miles upstream of Ninety-Nine Islands Reservoir. Gaston Shoals has a drainage area of approximately 1,300 square miles, including the Green River, the Hungry River, the Second Broad River, and the First Broad River. The reservoir volume is estimated to be 2,500 acre-fect, based on the 1997 Ninety-Nine Islands PMF Study. The project will be modeled as a peaking facility.

Cherokee Falls Dam

The FERC-licensed Cherokee Falls Hydroclectric Project is a Federal Energy Regulatory Commission (FERC) licensed project located approximately 4.5 miles upstream of the Ninety-Nine Islands development on the Broad River in Cherokee County, South Carolina. The project will be modeled as a fill-and-spill reservoir due to the availability of project information and negligible storage capacity.

Kings Mountain Dam (Moss Lake)

Kings Mountain Dam (Moss Lake) is located in Cleveland County, North Carolina, on Buffalo Creek, approximately 5 miles northwest of the City of Kings Mountain, NC. The project will be modeled as a fill-and-spill reservoir due to the availability of project information.

There are also two reservoirs in the Upper Broad River Basin that are in the early planning stages:

- Cleveland County Sanitary District's proposed reservoir is to be located on the First Broad River in Cleveland County, North Carolina. This facility will be modeled as a storage facility.
- Kings Mountain's proposed reservoir is to be located on Muddy Fork Creek in Cleveland County, North Carolina. Currently, there are no plans to model this facility due to limited available preliminary design information.

There are also number of ponds and small lakes in the Ninety-Nine Islands watershed. These features will not be modeled as reservoirs. However, depending on the location of the routing reaches and the water withdrawals, a small pond or reservoir may have to be included in the routing calculations. The CHEOPS model will be used to route the water between each of the facilities to analyze the travel time of releases from existing or proposed storage projects. The focus of the modeling is to analyze streamflow and water quantity at specific points along the Broad River during low river flow (drought) conditions. Therefore, calibration of the model will be performed over a range of "in-bank" river flows. To facilitate calibration of the routing of the river flows between points of interest along the river (nodes), DTA is proposing to install level logger instrumentation that will record stage and timing of flows. DTA is also proposing to develop four point stage-flow rating curves at approximately 10 locations in the basin above Ninety-Nine Islands. This data is essential in the calibration of parameters used in the CHEOPS model for performing river routing between nodes.

As part of the Broad River Water Quantity Model Project, a Water Supply Study will be completed for the Ninety-Nine Islands Reservoir and drainage basin. The initial phase of the Water Supply Study will be completed by HDR and consist of data compilation and development of future projected water withdrawals and returns within the Upper Broad River Basin. The Water Quantity Model will be used for a series of scenario runs, which apply the future projected withdrawals developed by HDR to determine the safe yield for the Ninety-Nine Islands Reservoir. The future projected withdrawals will be incrementally applied to drought hydrology to determine the safe yield.

Water Supply Study

The objective of the Broad River Basin Water Supply Study is to inventory current water withdrawals and returns, and project future water withdrawals and returns for the Broad River Basin that begins in western North Carolina and extends into western South Carolina. The results of this Study will be used (by others) to support the development of a dynamic water

budget model (CHEOPS). Subsequently, the information and model will be used to conduct safe yield analyses for the Upper Broad River Basin in support of Duke Energy's proposed LNS project, as well as other interests.

The Study will produce the following information:

- A listing of all significant water users (power, agricultural/irrigation, public water suppliers, and industrial) withdrawing and/or returning water to/from the surface waters of the Broad River Basin.
- Current water withdrawal and return rates, on an annual average basis, with monthly variability factors, where available, for each significant user identified.
- Projected water withdrawal and return rates, on an annual average basis, with monthly variability factors, where available, for each significant entity identified.
 Projections will be provided every year for 60 years beyond the base year (assumed as 2015).

Geographic and Temporal Scope

The Study will cover all water withdrawals and returns greater than 100,000 gallons per day (gpd) to/from the Broad River and its surface water tributaries within the Upper Broad River Basin. Additionally, existing and potential future inter-basin transfers (IBTs) into or out of the Upper Broad River Basin will be estimated and included.

Summary of Existing Data

The following is a list of existing available data that may be useful in the development of this Study:

- Local Water Supply Plans (LWSPs) of North Carolina public water suppliers (updated every five years)
- Withdrawals in South Carolina registered in compliance with the South Carolina Surface Water Withdrawal and Reporting Act
- 3. South Carolina Water Plan (1998 or latest)
- National Pollutant Discharge Elimination System (NPDES) permit information for wastewater treatment facilities
- 5. Public domain Geographic Information Systems (GIS) information

3.0 Scope of Project

Water Quantity Model

1. Acquire System Information

This task includes collecting, compiling, reviewing, and organizing project operating characteristics data. It is assumed that the majority of the necessary Basin information is available in the existing HEC-1 model developed in 1997 for the calculation of the Ninety-Nine Islands PMF Study.

Necessary information:

- a. Hydro Facilities
 - i. Physical Features
 - 1. Reservoir Storage Curve
 - 2. Tailwater Curve
 - 3. Spillway Curve
 - 4. Reservoir Area Curve
 - 5. Turbine Curves For generating facilities
 - 6. Generator Curves For generating facilities
 - 7. Head loss Coefficients For generating facilities
 - 8. Flashboards If any
 - ii. Operations
 - 1. Withdrawals and Returns
 - 2. Bypass Flows and Return Points
 - 3. Operation Type Peaking vs. run-of-river
 - 4. Operating Band Minimum, maximum, and target
 - 5. Historic Operations
 - a. Lake Elevations
 - b. Generation Preferably monthly
 - c. Withdrawals and Returns
- b. Non-Generating Facilities
 - i. Physical Features
 - 1. Reservoir Storage Curve
 - 2. Spillway Curve
 - 3. Reservoir Area Curve
 - 4. Flashboards If any
 - ii. Operations
 - 1. Withdrawals and Returns
 - 2. Bypass Flows and Return Points
 - 3. Operating Band Minimum, maximum, and target
- c. Routing Reaches
 - i. Channel Geometry
 - ii. Stage/Flow Relationships
 - iii. Inflow and Outflow Points

- 1. Lateral Inflows
- 2. Withdrawals and Returns

2. Develop Hydrology

This task includes the development of unimpaired hydrology at each of the node locations using available USGS gage records and historic plant information.

3. Develop Model

This task includes the development of the CHEOPS model for reservoir interactions and flow regimes. This will require custom coding for the routing and withdrawal sections as well as the specific reservoir operations for water supply support.

- a. Incorporate Withdrawal Points
 - i. River Reaches
 - ii. Reservoirs
- b. Develop Routing
 - i. HEC-1 Set-up
 - ii. HEC-1 Calibration
 - iii. Incorporate into CHEOPS
- c. Develop existing conditions scenario and interactions between reservoirs

4. Model Calibration

This task includes model calibration runs for representative wet, dry, and normal hydrology years for which historical operating data is available. Additional model runs will be made for current operation constraints for the hydrology period of record to establish a long-term data set of existing operation as a baseline. The routing routines will be calibrated for a range of normal operating flows.

5. Scenario Runs and Analysis

This task includes a series of runs necessary to define the water supply capacity of the Upper Broad River Basin in reference to the proposed LNS project. This process will be performed in conjunction with HDR for the development of the safe yield at the Ninety-Nine Islands Reservoir. DTA assumes 30 runs will be needed to quantify the water supply capacity for specific drought periods, and 5 runs for a long-term record.

6. Report and Summary

This task includes compiling the modeling scenario results, summary preparation, and preparing a technical report for the Study participants.

7. Deliverables

- Hydrology Report
- Calibration Report
- Summary Report
- Compiled Model

8. Schedule

To support the Nuclear Regulatory Commission (NRC) combined construction and operating license application process for the proposed LNS project, the CHEOPS tool will be calibrated by the end of May 2007 and available to run simulations from June through August 2007.

Water Supply Study

1. Document Current and Projected Water Withdrawals and Returns

- Compile current permitted surface water withdrawals and returns greater than 100,000 gpd or more in the Upper Broad River Basin, including any identified IBTs.
- Review and reconcile the information presented in the LWSPs of North Carolina communities and in the Water Plan of South Carolina for South Carolina communities.
- Arrange and conduct interviews with entities that produce significant withdrawals and/or returns to obtain current data that is more accurate and discuss, in more detail, future projections.
- Compile future population and growth projections from various sources within the Upper Broad River Basin.
- Review current and future industrial growth trends by industry type in the Upper Broad River Basin (including power production facilities).
- Review USGS information associated with current and future agricultural/irrigation water demands.
- Develop a set of 60-year future water withdrawal and return projections for all
 entities identified in the Study. Projections will utilize population and growth rates
 estimated based on an evaluation of local and regional factors, trends, and influences.
- Review any available information on population projections, etc.
- Provide technical memorandum summarizing the water withdrawal and return projections.

2. Assemble and Coordinate Data for Use in the CHEOPS Model

- Compile water withdrawal and return information into spreadsheets usable for loading into the CHEOPS model.
- Coordinate with DTA staff on modeling issues related to the withdrawal and return projections.

3. GIS Mapping

- Develop a GIS map and database that documents the water withdrawal and return entities included in the Study.
- Load relevant data for each entity into the GIS system including name, phone number, current water withdrawals and returns, and future water withdrawal and returns.

4. Safe Yield Analysis

- Evaluate preliminary safe yields for water withdrawal interests in the Upper Broad River Basin.
- Evaluate impacts of future water supply modifications (e.g. new reservoirs, intake modifications) on safe yields.
- Provide technical memorandum on safe yield results and potential impacts of future water supply modifications.

APPENDIX A

Water Quantity Model for the Lower Broad River Basin

Proposed Scope of Work - Phase II

1.0 Introduction to Phase II

Duke Energy (Duke) recognizes that other organizations rely on the Broad River as well for drinking water, industrial and agricultural water needs, and other uses and Duke wants to ensure that all the major water quantity interests are considered in the Study. Therefore, in addition to developing a water quantity model for the Upper Broad River Basin, as described above, Duke is also considering a future second phase of this Study. Phase II would extend the geographic scope of the water quantity model and water supply Study from Ninety-Nine Islands Dam downstream to the Broad River's confluence with the Saluda River near the Columbia Canal Diversion Dam in Columbia, South Carolina. This would more than double the scope of the original Phase I Study by adding an additional 90 miles of river making up the Lower Broad River Basin. Note that the Phase I drainage area is approximately 1,550 square miles and the Phase II drainage area adds an additional 3,745 square miles, for a total drainage area of 5,295 square miles at the confluence of the Broad River and the Saluda River near Columbia, South Carolina.

2.0 Phase II Approach

The approach for the proposed Phase II Study would replicate that of the Phase I Study described above, only it would be applied to the Lower Broad River Basin. The result would be a single model and water supply Study covering the entire Broad River watershed from the headwaters in western North Carolina to the confluence with the Saluda River near Columbia, South Carolina. Phase II will require the development of hydrology downstream of the Ninety-Nine Islands facility and the acquisition of the physical and operational characteristics of the Lockhart facility, Neal Shoals facility, Fairfield facility, Monticello Reservoir, Parr Shoals facility, and the Columbia Canal facility near Columbia, South Carolina.

The majority of the Lower Basin information necessary for the development of the CHEOPS model would be acquired from publicly available data. Modeling of the hydroelectric facilities would be limited to the availability of operational and physical data for the facilities.

Lockhart Dam

The FERC-licensed Lockhart Dam is located in Chester and Union counties, South Carolina, on the Broad River. This project would be modeled as a peaking facility.

Neal Shoals Dam

The FERC-licensed Neal Shoals Dam is located in Chester and Union counties, South Carolina, on the Broad River, approximately 10 miles south of Lockhart Dam. This project would be modeled as a peaking facility.

Fairfield Dam

The FERC-licensed Fairfield Dam is located in Fairfield County, South Carolina, on the Broad River. Fairfield Dam is a pump-storage facility for the Monticello Reservoir. This project could be modeled as either a storage facility or a pump-storage facility, in tandem with the Monticello Reservoir, depending on data availability and participation of stakeholders.

Parr Shoals Dam

The FERC-licensed Parr Shoals Dam is located in Newberry and Fairfield counties, South Carolina, on the Broad River. This project would be modeled as a run-of-river reservoir due to the availability of project information, negligible storage capacity, and current run-of-river operations.

Columbia Canal Diversion Dam

The FERC-licensed Columbia Canal Diversion Dam is located in Richland County, South Carolina, on the Broad River. This project would be modeled as a run-of-river reservoir due to the availability of project information and negligible storage capacity.

3.0 Determination to Proceed with Phase II

Because Duke is concerned with water supply capacity as it pertains to the proposed expansion of Cliffside Steam Station and the proposed construction of LNS (Lee Nuclear Station), the Upper Broad River Basin Study, as outlined in Phase I above, is Duke's primary interest. However, Duke also recognizes that its facilities are part of a larger watershed with a growing population that has many diverse water interests and needs. Therefore, Duke is planning to pursue Phase II of this Study with the following criteria:

- A Broad River Water Supply Study Advisory Group (SAG see Appendix B for a description) is established during the Phase I Study with representatives from Duke, South Carolina Electric & Gas (SCE&G), state resource agencies, and a representative cross-section of public water system owners, industrial and agricultural water users from both North Carolina and South Carolina.
- The SAG works collaboratively during Phase I of the Study to use the resulting tools, analysis, and information for sound decision making purposes.
- Duke's interests are met with respect to filing an application for a LNS combined construction and operating license with the NRC by October 2007.
- The SAG makes a recommendation that Phase II of the Study be pursued, identifies the deliverables of such a Study, and as part of that decision, considers a cost-sharing approach to Phase II.

Note: Duke will make the final decision regarding whether or not it proceeds with Phase II of the Study.

It is anticipated that a final decision as to whether to proceed with Phase II of the Study would need to occur by July 31, 2007, near the end of the Phase I Study. If a decision to proceed with Phase II is made, the expected completion date of the Phase II Study would be near the end of November 2007.

APPENDIX B

Broad River Water Supply Study Advisory Group

Background

Duke Energy (Duke) is planning to expand its coal-fired power plant located at Cliffside, NC and to develop a new nuclear power plant (the Lee Nuclear Station), just east of Gaffney, SC. Both of these power plant sites are located in the Broad River Basin (Basin) that begins in the foothills and mountains of North Carolina and extends into the piedmont region to Columbia, SC. As part of the planning effort, Duke is conducting a Phase I Water Supply Study that includes both an analysis of water supply needs and the development of a water quantity model for the portion of the Basin upstream from the Ninety-Nine Islands Hydroelectric Project (located near Gaffney, SC). Phase I of the Study will help Duke ensure a clear understanding of the total, long-term water supply picture at its Broad River power plant sites. Duke recognizes other organizations rely on the Broad River as well for drinking water, industrial and agricultural water needs, and other uses and Duke wants to ensure that all the major water quantity interests are considered in the Study.

Broad River Water Supply Study Advisory Group Description

Duke believes that the quality and usefulness of the Study can be substantially enhanced by the formation of a Broad River Water Supply Study Advisory Group (SAG). The SAG would consist of representatives from the two large power producers in the Basin (i.e., Duke and South Carolina Electric & Gas (SCE&G)), state resource agencies, and a representative cross-section of public water system owners, industrial and agricultural water users from both North Carolina and South Carolina. The SAG would review and provide technical input for the development of water use projections and the water quantity model, in addition to guiding the development of future water use scenarios. Participation on the SAG shall be entirely advisory in nature and in no way represents approval or endorsement of either the methodology or results of the Study or of the development plans at Duke's power plants. It is understood that both North and South Carolina have preferred water quantity modeling platforms (NC-Oasis & SC-HEC ResSim). It is also understood that data developed for the Duke water quantity model (CHEOPS) will be made available to each state in two standard modeling formats to facilitate study and analysis using tools other than CHEOPS. The input data will be available in standard column and row ASCII format and output from CHEOPS will be available in ASCII and COE HEC-DSS (Data Storage System) formats after the study is completed. Once the products from Phase I are nearing completion, the SAG would also provide Duke with additional input so a final decision can be made as to whether to proceed with Phase II of the Study. This would extend the data collection, water use projections, and modeling efforts from Ninety-Nine Islands Dam to the mouth of the Broad River in Columbia, SC.

Proposed SAG Membership

The following is a *proposed* list of 9-13 potential members of the SAG {Note: "large" in reference to water intakes means intakes that typically withdraw 1 Million Gallons per Day (MGD) or more}:

Large Power Producers (One representative each)

- Duke Ed Bruce
- SCE&G Bill Argentieri

State Resource Agencies (One representative each)

- North Carolina Department of Environment and Natural Resources (NC-DENR-DWR) Steve Reed (primary), Tom Fransen and Don Rayno
- North Carolina Wildlife Commission Chris Goudreau
- South Carolina Department of Health and Environmental Control (SC-DHEC) Larry Turner and Chuck Gorman
- South Carolina Department of Natural Resources (SC-DNR) Andy Wachob

Public Water Suppliers

- A representative from each of 1-2 large NC public water system owners
- A representative from each of 1-2 large SC public water system owners

Industrial/Agricultural Users

- A representative from each of 1-2 large NC industrial or agricultural water intake
- A representative from each of 1-2 large SC industrial or agricultural water intake owners

Project Consultants for Duke Energy

- DTA J. Christopher Ey, P.E.
- HDR Kevin Mosteller, P.E.

Water intake owners interested in being on the SAG can notify Duke or its consultant within one week following the regional Study kick-off meetings. SAG members from the power companies and state agencies will meet within two weeks following the regional kick-off meetings to decide on the remaining SAG membership. Every effort will be made to include representation from the proposed Phase II Study region, as well as the Phase I Study region.

The consulting company conducting the Study for Duke will facilitate the meetings and provide all logistical support for the SAG. Duke will also ensure that communications mechanisms are in place to keep other water supply interests (in addition to those that are on the SAG) informed about the Study.

APPENDIX B: DATA REQUEST LETTER

(Date)

{Name}
{Title}
{Entity}
{Address}
{City, State and Zip}

. .

Broad River Water Supply Evaluation

Information Request

HDR Project No. 202573-48692

Dear {Name}:

Duke Energy is in the process of completing a Water Supply Study (Study) for the Broad River Basin (Basin). This Study will include a basin-wide analysis of water use. Specifically, the Study will document current water withdrawals and returns (i.e. discharges), and make projections that will extend to the Year 2075. This information will then be utilized in a water quantity model being developed for the Basin that will facilitate a more thorough analysis of water supply safe yields. Duke Energy is conducting this Study to ensure a thorough understanding of the water quantities available to support its possible power plant expansion at Cliffside, NC, and its proposed new nuclear plant near Blacksburg, SC. Duke Energy recognizes that your organization also relies on the Broad River and wants to ensure that the water supply in the Broad River Basin continues to support municipal, industrial, power, and other needs into the foreseeable future.

Devine, Tarbell & Associates, Inc. (DTA), in association with HDR Engineering, Inc. of the Carolinas (HDR), is assisting Duke Energy to complete this Study. The scope and purpose of the Water Supply Study has been communicated to regulatory agencies within both states including the North Carolina – Department of Environment and Natural Resources (NC-DENR), the South Carolina – Department of Health and Environmental Control (SC-DHEC), and the South Carolina – Department of Natural Resources (SC-DNR). Duke Energy is committed to close coordination and communication with regulatory agencies and area stakeholders throughout this project.

In order to perform a thorough analysis of the water supply needs within the Broad River Basin, we are requesting your assistance in gathering pertinent data for the assessment of current water withdrawals and water returns, and making future projections.

HDR Engineering, Inc. of the Carolinas

2000 Sam Rittenberg Blvd. Suite 2020 Charleston, SC 29407

Phone: (843) 414-3700 Fax: (843) 414-3701 www.hdrine.com The following is the list of data and information we are requesting that your organization provide:

Withdrawals

- 1995, 2000, 2005, and 2006 average water withdrawn, by month if available, by location
- Withdrawals and number of customers by class (e.g. residential, industrial, etc).
- Any water forecasts or projections your organization has already prepared.
- Any other statements regarding your facilities relevant to our forecasting exercise.

Returns (Discharges)

- 1995, 2000, 2005, and 2006 average water discharged, by month if available, and by location for each NPDES permitted facility.
- Discharges and number of customers by class (e.g. residential, industrial, etc).
- Any water discharge forecasts or Projections your organization has already prepared.
- Any other statements regarding your facilities relevant to our forecasting exercise.

The above data will be used in a water quantity model of the Broad River Basin. The model will provide information on the ability of the Broad River Basin to meet the future water use demands.

We are aware that gathering this data will take some time and we appreciate your efforts to begin assembling the information as soon as possible. *Please send the collected information to me by Datej*. The success and reliability of the Study will be due, in part, to the use of the best available data. When warranted, HDR plans to arrange individual meetings to learn more about system operations and future planning considerations.

Once we have completed the work associated with the Study, we intend to provide a summary of results to all participants.

We appreciate your cooperation in this important Study. If you have any questions, please contact me at [HDR Phone Number], or by email at [HDR Email Address].

Best regards,

HDR Engineering Inc. of the Carolinas

{HDR Employee} {Title}

HDR Engineering, Inc. of the Carolinas

2000 Sam Rittenberg Blvd Suite 2020 Charleston, SC 29407 Phone: (843) 414-370 Fax: (843) 414-3701 www.hdrinc.com

APPENDIX C: WITHDRAWAL AND RETURN SUMMARY SHEETS

	Table C-1. Br	oad Rive	r Basin <u>W</u> i	ithdrawal	<u>s</u> - Summa	ry Sheet (in mgd)					
Sub- Basin Entity	Facility		Historic	al Flows	11	443 E.		Pr	ojected Flo	ows		47.
		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
Lake Summit (LS)		:										
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.03	0.05	0.07	. 0.10	0.15	0.22	0.32
<u>Power</u>						İ						
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation												
Sub-Basin Wide Demand		n/a	0.59	0.60	0.61	0.63	0.67	0.70	0.73	0.77	0.81	0.85
	TOTAL FLOW – NODE LS	0.00	0.59	0.60	0.61	0.66	0.71	0.77	0.83	0.92	1.03	1.17
Turner Shoals (LA)		,										
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a j
<u>Industry</u>												
New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.07	0.10	0.15	0.22	0.33	0.49	0.72
<u>Power</u>					•							
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Agriculture/Irrigation</u>												
Sub-Basin Wide Demand		n/a	0.67	0.68	0.69	0.72	0.75	0.79	0.83	0.87	0.91	0.96
	TOTAL FLOW – NODE LA	0.00	0.67	0.68	0.69	0.78	0.85	0.94	1.05	1.20	1.40	1.68
Node 1	,							-				
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.00	0.00	0.00	0.00	0.00	0.01	0.01
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation		1								-		
Sub-Basin Wide Demand		n/a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	TOTAL FLOW – NODE 1	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01

		Table C-1. Br	oad Rive	r Basin <u>W</u>	ithdrawal	<u>s</u> - Summa	ıry Sheet (in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	ojected Flo	ws		
Dubin			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
Lake Lu	re (LL)												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.03	0.05	0.08	0.11	0.17	0.24	0.36
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.65	0.67	0.67	0.70	0.73	0.77	0.80	0.84	0.89	0.93
		TOTAL FLOW – NODE LL	0.00	0.65	0.67	0.67	0.73	0.78	0.84	0.92	1.01	1.13	1.29
Node 3													
	Public Water Supply												
	Broad River Water Authority	Broad River Water Authority WTP	6.07	5.40	3.57	3.01	5.47	10.17	10.75	11.42	12.20	13.12	14.20
	<u>Industry</u>		.•										
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.07	0.10	0.14	0.21	0.32	0.47	0.69
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.28	0.29	0.29	0.31	0.32	0.34	0.36	0.37	0.39	0.41
		TOTAL FLOW – NODE 3	6.07	5.68	3.86	3.30	5.84	10.59	11.23	11.99	12.89	13.98	15.30
Node 2			,		····								
	Public Water Supply												
	Polk County - Future Water Sy	∕stem⁵	0.00	0.00	0.00	0.00	1.00	1.16	1.35	1.56	1.81	2.11	2.44
	<u>Industry</u>												
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.10	0.15	0.22	0.32	0.48	0.71	1.05
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.69	0.71	0.71	0.74	0.78	0.82	0.87	0.91	0.96	1.01
		TOTAL FLOW -	0.00	0.69	0.71	0.71	1.84	2.09	2.39	2.76	3.21	3.78	4.51

		Table C-1. Br	oad Rive	r Basin <u>Wi</u>	thdrawals	s - Summa	ary Sheet (in mgd)					
Sub- Basin	Entity	Facility		Historica	al Flows			100	Pr	ojected Flo	ws		
Dasin			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
		NODE 2								•			
Node 4													
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
•	<u>Industry</u>												
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.10	0.15	0.22	0.32	0.48	0.71	1.05
	<u>Power</u>	•			,	,	. .	. 1.	1	1-	la	!	
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
5	Agriculture/Irrigation Sub-Basin Wide Demand	•	n/a	0.45	0.46	0.47	0.49	0.51	0.54	0.57	0.60	0.63	0.66
	Sub-basin wide Demand	TOTAL FLOW -								· · · · · · · · · · · · · · · · · · ·			
		NODE 4	0.00	0.45	0.46	0.47	0.59	0.66	0.76	0.89	1.08	1.34	1.72
Node 5													
	Public Water Supply												
	Town of Forest City	Forest City WTP	4.58	5.30	4.49	4.36	5.67	6.10	6.56	7.07	7.62	8.21	8.86
	<u>Industry</u>					,		2.45	0.00		0.47	0.70	4.04
	New Industrial ^{3,4}	•	n/a	n/a	n/a	n/a	0.10	0.15	0.22	0.32	0.47	0.70	1.04
	<u>Power</u>		-/-	n/a	m/o	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	None <u>Agriculture/Irrigation</u>		n/a	п/а	n/a	II/a	I IVa	II/a	II/a	II/a	11/a	11/a	11/a
	Sub-Basin Wide Demand		n/a	0.01	0.01	0.01 '	0.01	0.01	0.02	0.02	0.02	0.02	0.02
	Odb Basiii Wide Beiliana	TOTAL FLOW -					1						
		NODE 5	4.58	5.31	4.51	4.37	5.78	6.26	6.79	7.40	8.11	8.93	9.92
Cliffsid													
	Public Water Supply					,			1	1	t-	1	
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Industry New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.00	0.00	0.00	0.00	0.01	0.01	0.01
			II/a	n/a	11/ a	II/a	0.00	0.00	0.00	0.00	0.01	0.01	0.01
	<u>Power</u> Duke Energy ²	Cliffside Power Station	n/a	6.72	6.72	6.72	20.68	20.68	20.68	20.68	20.68	20.68	20.68
	Agriculture/Irrigation	Cimside Fower Station	11/a	0.12	0.12	0.12	20.00	20.00	20.00	20.00	20.00	20.00	20.00
	Sub-Basin Wide Demand		n/a	0.85	0.87	0.88	0.92	0.96	1.02	1.07	1.13	1.19	1.25
	Sub-Dasiii Wide Demaild		11/4	0.00	0.07	0.00	1_0.02	0.00	1.02	1.07	1.10	1.10	

		Table C-1. Br	oad Rive	r Basin <u>Wi</u>	thdrawals	- Summa	ry Sheet ((in mgd)					
Sub- Basin Entity		Facility -		Historic	al Flows				Pr	ojected Flo	ws	4.17	
Dasin			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
		TOTAL FLOW – NODE CS	0.00	7.57	7.59	7.60	21.60	21.65	21.70	21.75	21.81	21.87	21.94
Node 6													
<u>Public Water S</u> Cleveland Coun District Industry		Cleveland County SD WTP	3.44	3.39	3.43	3.56	4.04	4.67	5.38	6.21	7.16	8.27	9.54
New Industrial ^{3,4}	Į.		n/a	n/a	n/a	n/a	0.10	0.15	0.22	0.32	0.48	0.71	1.05
<u>Power</u> None <u>Agriculture/Irri</u>	qation		n/a	n/a	n/a	n/a	n/a	n/a	n/a	, n/a	n/a	n/a	n/a
Sub-Basin Wide	Demand		n/a	1.15	1.18	1.19	1.24	1.30	1.37	1.44	1.52	1.60	1.68
	,	TOTAL FLOW – NODE 6	3.44	4.54	4.61	4.74	5.38	6.12	6.97	7.98	9.16	10.57	12.27
Stice Shoals (S)								•					
<u>Public Water S</u>	upply									•			
none			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u> New Industrial ^{3,}	ı		n/a	n/a	n/a	n/a	0.09	0.14	0.20	0.30	0.45	0.66	0.98
<u>Power</u> None			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irri													
Sub-Basin Wide	Demand		n/a	0.64	0.65	0.66	0.69	0.72	0.76	0.80	0.84	0.88	0.93
		TOTAL FLOW – NODE S	0.00	0.64	0.65	0.66	0.78	0.86	0.96	1.10	1.29	1.54	1.91
Node 7													
Public Water S	upply				J	,							
None		•	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ິ n/a	n/a	` n/a	n/a
<u>Industry</u> New Industrial ^{3,}	1		n/a	n/a	n/a	n/a	0.01	0.01	0.02	0.02	0.03	0.05	0.07
<u>Power</u> None			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Agriculture/Irri</u> Sub-Basin Wide			n/a	0.08	0.08	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.11

		Table C-1. Br	oad Rive	r Basin <u>W</u>	thdrawals	<u>s</u> - Summa	ry Sheet (in mgd)				·	
Sub- Basin	Entity	Facility		Historic	al Flows				Pr	ojected Flo	ws	100	
Dugini		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
		TOTAL FLOW – NODE 7	0.00	0.08	0.08	0.08	0.09	0.10	0.11	0.12	0.13	0.15	0.18
Node 8			,										
	Public Water Supply			•									
	City of Shelby	Shelby WTP	-	-	-	5:02	5.22	5.45	5.70	5.95	6.22	6.50	6.79
	<u>Industry</u>												
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.10	0.15	0.22	0.32	0.48	0.71	1.05
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	1.15	1.18	1.19	1.24	1.30	1.37	1.44	1.51	1.59	1.67
		TOTAL FLOW – NODE 8	0.00	1.15	1.18	6.20	6.56	6.90	7.28	7.72	8.21	8.80	9.51
Node 9													
	Public Water Supply												
	City of Kings Mountain	TJ Ellison WTP	4.92	4.96	3.18	3.13	3.99	4.47	5.03	5.69	6.46	7.37	8.44
	<u>Industry</u>												
	CNA Holdings, Inc.	Shelby Plant	-	-	-	0.42	0.54	0.72	0.96	1.28	1.70	2.26	3.02
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.04	0.06	0.08	0.13	0.19	0.27	0.41
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand	•	n/a	0.70	0.72	0.73	0.76	0.80	0.84	0.88	0.93	0.97	1.02
		TOTAL FLOW – NODE 9	4.92	5.66	3.90	4.27	5.32	6.04	6.91	7.97	9.27	10.88	12.88
Kings M	lountain (KM)												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.06	0.09	0.13	0.20	0.29	0.44	0.65
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												

		Table C-1. Br	oad Rive	r Basin <u>Wi</u>	thdrawals	s - Summa	ry Sheet (in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows			- 4	Pro	ojected Flo)WS		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	Sub-Basin Wide Demand		n/a	· 0.40	0.41	0.41	0.43	0.45	0.48	0.50	0.53	0.55	0.58
		TOTAL FLOW – NODE KM	0.00	0.40	0.41	0.41	0.49	0.54	0.61	0.70	0.82	0.99	1.23
aston	Shoals (GS)												
	Public Water Supply Gaffney Board of Public Works	Victor/Cherokee WTPs	9.09	10.38	7.91	8.05	9.28	10.25	11.32	12.51	13.82	15.26	16.86
	<u>Industry</u> New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.02	0.03	0.05	0.07	0.11	0.16	0.24
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand			0.15	0.15	0.15	0.16	0.17	0.18	0.18	0.19	0.20	0.21
		TOTAL FLOW – NODE GS	9.09	10.53	8.06	8.20	9.46	10.45	11.55	12.77	14.12	15.63	17.3
herok	ee Falls (CF)												
	Public Water Supply												
	None		n/a	n/a	n/a	. n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	Milliken Company ¹	Magnolia Plant	4.36	3.37	2.80	3.02	3.11	3.20	3.30	3.40	3.50	3.61	3.72
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.07	0.10	0.15	0.23	0.34	0.50	0.73
	<u>Power</u>								•				
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.45	0.05	0.05	0.48	0.51	0.53	0.56	0.59	0.62	0.65
	<u> </u>	TOTAL FLOW – NODE CF	4.36	3.82	2.85	3.08	3.66	3.81	3.98	4.19	4.43	4.72	5.10
ode 1	· .												
	Public Water Supply		,	,	,				1		1	/	
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Industry		-/-	-1-	2/2	n/o	0.01	0.01	0.02	0.02	0.03	0.05	0.0
	New Industrial ^{3,4}		n/a	n/a	n/a	n/a	0.01	0.01	0.02	0.02	0.03	0.05	0.0
	<u>Power</u>	•											

	Table C-1. Br	oad Rive	r Basin <u>W</u>	ithdra <u>wals</u>	s - Summa	ary Sheet (in mgd)					
Sub- Basin Entity	Facility		Historic	al Flows				Pro	ojected Flo	ows		
and the second		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation												
Sub-Basin Wide Demand		n/a	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07
	TOTAL FLOW – NODE 10	0.00	0.05	0.05	0.05	0.06	0.06	0.07	0.08	0.09	0.11	0.14
Ninety-nine Islands Dam (99I)		•					`					
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>		,									-	
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Power</u>												
Duke Energy ²	Lee Nuclear Station	n/a	0.00	0.00	0.00	35.50	35.50	35.50	35.50	35.50	35.50	35.50
Agriculture/Irrigation											* •	
Sub-Basin Wide Demand	•	n/a	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07
	TOTAL FLOW – NODE 991	0.00	0.05	0.05	0.05	35.55	35.56	35.56	35.56	35.57	35.57	35.57
Node 11												
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation												
Sub-Basin Wide Demand		n/a	0.41	n/a	0.43	0.46	0.50	0.54	0.59	0.64	0.69	0.75
	TOTAL FLOW – NODE 11	0.00	0.41	0.00	0.43	0.56	0.64	0.74	0.86	1.02	1.23	1.50
Node 12												
Public Water Supply	•											
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Power</u>												

		Table C-1. Br	oad Rive	r Basin <u>W</u>	ithdrawals	- Summa	ry Sheet (in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows	100			Pro	ojected Flo	ews.		
Duoin			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	None		. n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.29	n/a	0.31	0.33	0.35	0.38	0.41	0.44	0.48	0.52
		TOTAL FLOW – NODE 12	0.00	0.29	0.00	0.31	0.43	0.49	0.58	0.68	0.83	1.01	1.26
Node 14	4			٠.									
	Public Water Supply						}						
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>											•	
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.79	n/a	0.82	0.86	0.90	0.95	0.99	1.05	1.10	1.16
		TOTAL FLOW – NODE 14	0.00	0.79	0.00	0.82	0.96	1.04	1.14	1.27	1.43	1.63	1.90
Node 1	5										•		
	Public Water Supply						İ						
	SWS/SSSD	Landrum WTP	n/a	0.53	0.47	0.49	0.54	0.59	0.66	0.73	0.79	0.86	0.93
	SWS/SSSD	Blalock WTP	n/a	7.21	n/a	12.99	14.02	15.43	16.97	18.67	20.26	21.99	23.86
	SWS/SSSD	Simms WTP	36.03	25.69	32.18	28.42	30.97	34.07	37.49	41.24	44.75	48.56	52.69
	Town of Tryon	Tryon WTP	0.70	0.72	0.46	0.55	0.80	0.93	1.09	1.20	1.30	1.41	1.53
	<u>Industry</u>	•											
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation	·	i										
	Sub-Basin Wide Demand		n/a	2.73	n/a	2.83	2.98	3.17	3.36	3.57	3.80	4.04	4.30
		TOTAL FLOW – NODE 15	36.73	36.88	33.12	45.28	49.41	54.33	59.76	65.69	71.29	77.39	84.06
Node 1	3												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

		Table C-1. Br	oad Rive	r Basin <u>W</u>	ithdrawals	s - Summa	ry Sheet (in mgd)					
Sub- Basin	Entity	Facility 1		Historic	al Flows			Supplier	Pro	jected Flo	ews		
Dasin	arade 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	Industry												
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	. 0.27	0.38	0.53	0.74
	<u>Power</u>	,		`									
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation	•								•			
	Sub-Basin Wide Demand	•	n/a	0.97	n/a	1.03	1.12	1.23	1.36	1.50	1.65	1.81	2.00
		TOTAL FLOW – NODE 13	0.00	0.97	0.00	1.03	1.22	1.37	1.55	. 1.77	2.03	2.34	2.74
Node 16	3					_							
	Public Water Supply												
:	None	•	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
1	<u>Industry</u>												
1	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>					·							
	Duke Energy	Future Nuclear Station	n/a	n/a	n/a	0.00	0.00	0.00	35.55	35.55	35.55	35.55	35.55
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.21	n/a	0.22	0.23	0.25	0.27	0.28	0.30	0.32	0.35
		TOTAL FLOW – NODE 16	0.00	0.21	0.00	0.22	0.33	0.39	36.01	36.10	36.23	36.40	36.64
Lockha	rt Dam (LD)												
1	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
,	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>								,				,
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation			0.05		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	Sub-Basin Wide Demand		n/a	0.05	n/a	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		TOTAL FLOW – NODE LD	0.00	0.05	0.00	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Node 1	7												
	Public Water Supply												
	City of York	City of York WTP (Turkey)	0.95	1.32	1.09	1.12	1.26	0.00	0.00	0.00	0.00	0.00	0.00

		Table C-1. Br	oad Rive	r Basin <u>W</u>	ithdrawal	s - Summa	ary Sheet (in mgd)					
Sub- Basin Enti	ity	Facility		Historic	al Flows				Pr	ojected Flo)Ws		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
<u>Ind</u>	ustry												
New	/ Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Рои</u>	<u>ver</u>												
Non			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	iculture/Irrigation												
Sub	-Basin Wide Demand		n/a	0.72	n/a	0.74	0.77	0.81	0.85	0.90	0.94	0.99	1.04
		TOTAL FLOW NODE 17	0.95	2.04	1.09	1.86	2.14	0.95	1.05	1.17	1.32	1.52	1.79
lode 18									,				
<u>Pub</u>	lic Water Supply												
City	of Union	City of Union WTP	4.79	4.04	3.27	3.41	3.47	3.54	3.62	3.69	3.76	3.84	3.92
<u>Indu</u>	ustry									•			
New	/ Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Рои</u>	<u>ver</u>												
Non	-		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u> </u>	iculture/Irrigation	•											
Sub	-Basin Wide Demand		n/a	0.20	n/a	0.20	0.20	0.20	0.21	0.21	0.21	0.21	0.22
		TOTAL FLOW - NODE 18	4.79	4.24	3.27	3.61	3.78	3.89	4.02	4.17	4.36	4.59	4.88
leal Shoals	Dam (NSD)												
<u>Pub</u>	lic Water Supply	*											
Non	e ·		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Indu</u>	ustry												
Non	e	V.	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Рои</u>	<u>ver</u>												
SCE		Neal Shoals Hydro & Reservoir	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	iculture/Irrigation												
Sub	-Basin Wide Demand		n/a j	0.02	n/a	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.0
		TOTAL FLOW – NODE NSD	0.00	0.02	0.00	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.0
lode 19													_
<u>Pub</u>	lic Water Supply	•											× .
Non	e		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

		Table C-1. Br	oad Rive	r Basin <u>W</u> i	ithdrawals	s - Summa	ry Sheet (in mgd)				22000000000	
Sub- Basin Entity		Facility		Historic	al Flows				Pro	ojected Flo)W8		
22011	13/10/64		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
<u>Industr</u>	<u>Y</u>												
Cone Mi	ills - Water	Carlisle Plant	2.17	1.50	1.58	1.29	1.29	1.29	1.29	1.29	1.29	1.29	1.29
New Ind	ustrial						0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Power</u>	•			•									
Duke Er	nergy	Future Fossil-Fuel Station	n/a	n/a	n/a	0.00	0.00	0.00	0.00	0.00	21.97	21.97	21.97
Agricult	ture/Irrigation												
Sub-Bas	sin Wide Demand		n/a	0.09	n/a	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10
		TOTAL FLOW – NODE 19	2.17	1.59	1.58	1.38	1.48	1.52	1.58	1.66	23.74	23.89	24.11
Node 20		NODE 13											
<u>Public V</u>	Nater Supply												
None			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industr</u>	Ľ	,											
New Ind	lustrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Power</u>													
None		•	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
-	ture/Irrigation												
Sub-Bas	sin Wide Demand		n/a	0.27	n/a	0.28	0.29	0.30	0.32	0.33	0.35	0.37	0.39
		TOTAL FLOW – NODE 20	0.00	0.27	0.00	0.28	0.39	0.44	0.51	0.61	0.73	0.90	1.13
Node 21													
<u>Public l</u>	Nater Supply												
SJWD V	Vater District	SJWD WTP	2.88	5.95	5.81	6.44	10.13	11.52	13.59	14.74	16.00	17.36	18.83
Greer C Public V	PW (Commision of Vorks)	City of Greer CPW WTP	n/a	6.64	7.18	7.96	8.67	9.54	10.49	11.55	12.53	13.59	14.75
<u>Industr</u>	Y		-										
New Ind	lustrial		n/a	n/a ·	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
<u>Power</u>													
None			n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Agricul</u>	ture/Irrigation	;											
Sub-Bas	sin Wide Demand		n/a	4.49	n/a	4.66	4.93	5.26	5.61	6.00	6.42	6.87	7.37
		TOTAL FLOW NODE 21	2.88	17.08	12.99	19.06	23.82	26.46	29.89	32.56	35.32	38.36	41.70

•		Table C-1. Br	oad Rive	r Basin <u>W</u>	thdrawals	s - Summa	ary Sheet (in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	ojected Flo)WS		
Dasiii			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
Node 22	2												
	Public Water Supply						}						
	City of Clinton	City of Clinton WTP	n/a	2.86	2.41	2.55	2.79	3.08	3.40	3.75	4.07	4.41	4.79
	Town of Whitmire	Town of Whitmire WTP	0.60	0.68	0.64	0.57	0.61	0.65	0.69	0.73	0.77	0.82	0.87
	<u>Industry</u>												
	New Industrial	,	n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	4.89	n/a	5.11	5.44	5.84	6.28	6.76	7.28	7.85	8.47
		TOTAL FLOW – NODE 22	0.60	8.43	3.05	8.23	8.93	9.71	10.56	11.51	12.51	13.62	14.87
Node 23	3												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.51	n/a	0.52	0.54	0.56	0.58	0.61	0.63	0.66	0.68
		TOTAL FLOW – NODE 23	0.00	0.51	0.00	0.52	0.64	0.70	0.78	0.88	1.01	1.19	1.43
Parr Sh	oals Dam (PSD)	,											, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Public Water Supply			•									
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>												
	SCE&G	Parr Reservoir (Natural Evaporation)	n/a	8.74	9.87	9.25	9.23	9.23	9.23	9.23	9.23	9.23	9.23
	Agriculture/Irrigation				_			0.70	0		0.50	0.04	0.04
	Sub-Basin Wide Demand		n/a	0.44	n/a	0.46	0.48	0.50	0.53	0.55	0.58	0.61	0.64

		Table C-1. Br	oad Rive	r Basin <u>W</u>	thdrawals	s - Summa	ıry Sheet (in mgd)					
Sub- Basin	Entity	Facility	Historical Flows				Projected Flows						
Dusin	4.50		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
		TOTAL FLOW – NODE PSD	0.00	9.18	9.87	9.71	9.71	9.73	9.76	9.79	9.82	9.84	9.88
Fairfield	d Dam (FD)												•
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>		*										
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>												
	SCE&G	Fairfield Pumpstation & Monticello Reservoir (Natural Evaporation)	n/a	19.52	19.47	19.48	19.49	19.49	19.49	19.49	19.49	19.49	19.49
	SCE&G	V C Summer Nuclear Station - Unit 1 (Current)	n/a	n/a	17.12	15.51	15.99	15.99	15.99	15.99	15.99	15.99	15.99
	SCE&G	V C Summer Nuclear Station - Unit 2 (Future 2016)	n/a	n/a	n/a	n/a	n/a	20.43	20.43	20.43	20.43	20.43	20.43
	SCE&G	V C Summer Nuclear Station- Unit 3 (Future 2019)	n/a	n/a	n/a	n/a	n/a	20.43	20.43	20.43	20.43	20.43	20.43
	Agriculture/Irrigation		`										
	Sub-Basin Wide Demand		n/a	0.06	n/a	0.06	0.07	0.07	0.07	0.08	0.08	0.09	0.09
		TOTAL FLOW – NODE FD	0.00	19.58	36.59	35.05	35.54	76.40	76.40	76.40	76.41	76.41	76.42
Node 24	4												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>						ł						
	SCE&G	Parr Hydro Station	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	SCE&G	Summer Nuclear Training	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	0.12	n/a	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
		TOTAL FLOW – NODE 24	0.00	0.12	0.00	0.13	0.23	0.28	0.34	0.43	0.54	0.70	0.92

	<u> </u>	Table C-1. Br	oad Rive	Basin <u>W</u> i	thdrawals	- Summa	ry Sheet (in mgd)			-		
Sub- Basin	Entity	Facility	Historical Flows				Projected Flows						
Dusin			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	207,5
Node 2	5												
	Public Water Supply												
	Town of Winnsboro	Winnsboro WTP	n/a	2.21	2.00	1.97	2.75	3.31	3.65	4.04	4.38	4.75	5.16
	<u>Industry</u>												
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
•	Sub-Basin Wide Demand		n/a	0.90	n/a	0.93	0.97	1.02	1.07	1.13	1.18	1.24	1.31
		TOTAL FLOW – NODE 25	0.00	3.11	2.00	2.90	3.82	4.47	4.92	5.43	5.94	6.53	7.21
Node 2	6												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Industry											•	
	New Industrial		n/a	n/a	n/a	n/a	0.10	0.14	0.20	0.27	0.38	0.53	0.74
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation	•											
	Sub-Basin Wide Demand		n/a	1.29	n/a	1.34	1.41	1.50	1.59	1.69	1.80	1.91	2.03
	•	TOTAL FLOW NODE 26	0.00	1.29	0.00	1.34	1.51	1.64	1.79	1.96	2.18	2.44	2.78
Columb	oia Canal Diversion Dam (CCD	OD)									,		
	Public Water Supply												
	City of Columbia	Columbia Canal WTP	27.22	30.82	32.29	33.10	38.56	45.70	50.23	55.21	58.91	62.85	67.06
	<u>Industry</u>							•					
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>					•							
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation										•	•	
	Sub-Basin Wide Demand		n/a	0.89	n/a	0.92	0.96	1.01	1.07	1.12	1.18	1.24	1.30
		TOTAL FLOW – NODE CCDD	27.22	31.71	32.29	34.02	39.53	46.71	51.30	56.33	60.09	64.09	68.36

Table C-1. Broad River Basin <u>Withdrawals</u> - Summary Sheet (in mgd)											
Sub- Basin Entity Facility	Historical Flows Projected Flows										
	1995 2000 2005 2006 2015 2025 2035 2045 2055 2065 2075										

NOTE

- S:
 1. Milliken historical and projected withdrawals assume that Milliken returns are 75% of withdrawals. This estimated was used due to the unreliability of Milliken withdrawal
- 2. Duke Power Withdrawals are actually net consumptive use or "outflows" from the system. No return projections are given for these facilities since the values reported here are for
- 3. New Industrial Entities are used to anticipate unknown future industries. These values are net outflows, similar to Duke Energy Withdrawals in Note
- 4. New Industrial Entities growth in withdrawals is set at 4.0%, which is the NC Gross State Product (5.25%) less inflation (1.25%) over the years 1997 - 2005.
- 5. A future Polk County Water System was introduced based on a study conducted for Polk County which desires to create a public water system. Assumes 1.0 mgd in 2015 and increases at a 1.50% AGR.

Table C-2. Broad River Basin Returns - Summary Sheet (in mgd)												
Sub- Basin Entity	Facility		Historical Flows)WS	S. The second se			
		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
Lake Summit (LS)												
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ¹		n/a	n/a	n/a	n/a	0.02	0.02	0.03	0.05	0.08	0.11	0.17
<u>Power</u>												•
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation		-										
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW – NODE LS	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.05	0.08	0.11	0.17
Turner Shoals (LA)										, -		
Public Water Supply									t			
City of Saluda	Saluda WWTP	0.06	0.06	0.06	0.05	0.05	0.06	0.07	0.07	80,0	0.09	0.10
<u>Industry</u>												
New Industrial ¹		n/a	n/a	` n/a	n/a	0.03	0.03	0.07	0.10	0.17	0.24	0.38
<u>Power</u>		-							•			
None .		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation	·											
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW NODE LA	0.06	0.06	0.06	0.05	0.09	0.09	0.13	0.18	0.25	0.33	0.48
Node 1												
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ¹		n/a	n/a	n/a	n/a	0.00	0.00	0.00	0.00	0.00	0.00	0.01
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation						[-

		Table	C-2. Broa	d River Ba	sin <u>Returr</u>	ns - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo	ws		
Dusiii			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Lake Lui	re (LL)												
	Public Water Supply												
	None	;	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Industry												
	New Industrial ¹		n/a	n/a	n/a	n/a	0.02	0.02	0.03	0.05	0.09	0.12	0.19
	<u>Power</u>										_		
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE LL	0.00	0.00	0.00	0.00	0.02	0.02	0.03	0.05	0.09	0.12	0.19
Node 3	•												
	Public Water Supply												
	Town of Lake Lure	Lake Lure WWTP	0.52	0.66	0.82	0.85	0.87	0.88	0.90	0.92	0.94	0.96	0.98
	Town of Rutherfordton	Rutherfordton WWTP	0.61	0.51	0.55	0.44	0.50	0.56	0.64	0.73	0.84	0.95	1.09
	<u>Industry</u>												
	New Industrial ¹		n/a	n/a	n/a	n/a	0.03	0.03	0.07	0.10	0.16	0.23	0.36
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation					,	l ,		,	,		- 1 -	- 1-
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 3	1.13	1.17	1.37	1.29	1.40	1.48	1.61	1.75	1.94	2.14	2.43
Node 2													
	Public Water Supply	<u>.</u>		0.00	0.1-	0.10		0.00	0.07	0.04	0.00	0.40	0.40
	Town of Columbus	Columbus WWTP	0.18	0.20	0.17	0.16	0.20	0.23	0.27	0.31	0.36	0.42	0.49
	<u>Industry</u>					,	0.05	0.05	0.40	0.45	0.05	0.05	0.55
'	New Industrial ¹		n/a	n/a	n/a	n/a	0.05	0.05	0.10	0.15	0.25	0.35	0.55
	<u>Power</u>						1						

		Table	C-2. Broa	d River Ba	ısin <u>Retur</u> ı	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo	swc		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 2	0.18	0.20	0.17	0.16	0.25	0.28	0.37	0.46	0.61	0.77	1.04
Node 4													
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	Dan River, Inc.	Harris Plant	0.30	0.46	0.34	-	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	New Industrial ¹		n/a	n/a	n/a	n/a	0.05	0.05	0.10	0.15	0.25	0.35	0.55
	<u>Power</u>			1-	1	1-	· /	1	-1-	-1-	- la	2/2	2/2
	None		n/a	n/a	n/a	n/a	⁻n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	ń/a
	None	TOTAL FLOW -											
		NODE 4	0.30	0.46	0.34	0.00	0.05	0.05	0.10	0.15	0.25	0.35	0.55
Node 5													
	Public Water Supply												
	Town of Forest City	Riverside Drive WRF	3.20	3.89	3.06	2.65	3.89	4.19	4.50	4.85	5.23	5.64	6.08
	Town of Spindale	Spindale WWTP	3.37	1.54	1.24	1.13	1.18	1.23	1.28	1.34	1.40	1.47	1.53
	<u>Industry</u>				•								
	New Industrial ¹		n/a	n/a	n/a	n/a	0.05	0.05	0.10	0.15	0.25	0.35	0.54
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 5	6.57	5.43	4.30	3.78	5.12	5.46	5.89	6.34	6.88	7.45	8.16
Cliffside	e (CS)												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												

0.1		Table	C-2. Broa	d River Ba	ısin <u>Returı</u>	<u>ıs</u> - Summ	ary Sheet						
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo)WS		
		574-5	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	New Industrial ¹		n/a	n/a	n/a	n/a	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	<u>Power</u>										**		
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation		l										
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW - NODE CS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
lode 6									,		. <u> </u>		
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial ¹		n/a	n/a	n/a	n/a	0.05	0.05	0.10	0.15	0.25	0.35	0.55
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	·	TOTAL FLOW – NODE 6	0.00	0.00	0.00	0.00	0.05	0.05	0.10	0.15	0.25	0.35	0.55
tice Sh	oals (S)							_			-		
	Public Water Supply												
	City of Shelby	First Broad River WWTP	4.17	2.96	2.97	2.68	2.65	2.76	2.89	3.02	3.15	3.30	3.44
	<u>Industry</u>												•
	PPG Industries, Inc.	Shelby Plant	0.85	0.80	0.56	0.61	0.79	1.05	1.40	1.86	2.48	3.30	4.40
	New Industrial ¹		n/a	n/a	n/a	n/a	0.05	0.05	0.09	0.14	0.23	0.33	0.51
	<u>Power</u>	•											
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation		,	,		,		,					_
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW NODE S	5.02	3.75	3.53	3.29	3.48	3.86	4.38	5.02	5.87	6.92	8.36
lode 7													
	Public Water Supply												

		Table	C-2. Broa	d River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)				****	
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	ojected Flo)WS	-2	
Dudin			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>				,								
	New Industrial ¹		n/a	n/a	n/a	n/a	0.00	0.00	0.01	0.01	0.02	0.02	0.04
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation	•											
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW - NODE 7	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.04
Node 8						•							
	Public Water Supply												
	Town of Boiling Springs	Boiling Springs WWTP	0.27	0.27	0.33	0.27	0.28	0.29	0.31	0.32	0.33	0.35	0.36
	<u>Industry</u>												
	Cone Mills Corporation	Cliffside Plant	0.82	0.59	0.15	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00
İ	New Industrial ¹		n/a	n/a	n/a	n/a	0.05	0.05	0.10	0.15	0.25	0.35	0.55
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation		l .				l ,	,			,	,	
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 8	1.09	0.85	0.47	0.30	0.33	0.34	0.41	0.47	0.58	0.70	0.91
Node 9													
	Public Water Supply												
	City of Kings Mountain	Pilot Creek WWTP	2.92	2.68	2.71	2.57	3.54	3.94	4.40	4.95	5.58	6.33	7.21
	Town of Grover	Grover WWTP	0.05	0.06	0.06	0.06	0.10	0.10	0.10	0.10	0.10	0.10	0.10
	<u>Industry</u>											0.00	0.00
	Grover Industries, Inc.	Grover Plant	-	0.10	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	CNA Holdings, Inc.	Shelby Plant	0.57	0.41	0.31	0.36	0.46	0.62	0.82	1.10	1.46	1.94	2.59
	New Industrial ¹		n/a	n/a	n/a	n/a	0.02	0.02	0.04	0.06	0.10	0.14	0.21
	<u>Power</u>			-/-	m/a	m/a	2/0	n/a	2/0	- n/a	n/a	n/a	n/a
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	11/a	ıva
l	Agriculture/Irrigation		I ,										

	Table	C-2. Broad	d River Ba	sin <u>Retur</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin Entity	Facility		Historic	al Flows				Pro	jected Flo	ews.		
		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW – NODE 9	3.54	3.25	3.09	2.99	4.12	4.67	5.36	6.20	7.24	8.51	10.11
Kings Mountain (KM)					•							
Public Water Supply						Ì						
None .		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ¹		n/a	n/a	n/a	n/a	0.03	0.03	0.06	0.09	0.15	0.21	0.34
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation				,		! .				,	,	,
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW NODE KM	0.00	0.00	0.00	0.00	0.03	0.03	0.06	0.09	0.15	0.21	0.34
Gaston Shoals (GS)												
Public Water Supply												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ¹		n/a	n/a	n/a	n/a	0.01	0.01	0.02	0.03	0.06	0.08	0.13
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation						1						
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW – NODE GS	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.03	0.06	0.08	0.13
Cherokee Falls (CF)												
Public Water Supply								•				
Gaffney Board of Public Works <i>Industry</i>	Broad River WWTP	1.93	2.50	1.68	1.67	2.74	2.88	3.05	3.37	3.72	4.11	4.54
Milliken Company	Magnolia Plant	3.27	2.53	2.10	2.27	2.33	2.40	2.47	2.55	2.63	2.71	2.79
New Industrial ¹	ار	n/a	n/a	n/a	n/a	0.03	0.03	0.07	0.10	0.17	0.24	0.38
Power												
<u> </u>		1				ı						

	Table	C-2. Broa	d River Ba	ısin <u>Returr</u>	<u>ıs</u> - Sumn	nary Sheet	(in mgd)					
Sub- Basin Entity	Facility		Historic	al Flows				Pro	jected Flo	ows .		
		1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation	<u>n</u> ,					1						
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW – NODE CF	5.20	5.03	3.78	3.94	5.10	5.32	5.59	6.02	6.52	7.06	7.71
Node 10												
Public Water Supply	<u>'</u>											
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
New Industrial ¹		n/a	n/a	n/a	n/a	0.00	0.00	0.01	0.01	0.02	0.02	0.04
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation	<u>n</u> .											
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW NODE 10	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02	0.02	0.04
Ninety-nine Islands Dam (99I)												
Public Water Supply	4											
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Power</u>												
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Agriculture/Irrigation	<u>n</u>											
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	TOTAL FLOW – NODE 99I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Node 11												
Public Water Supply	<u>'</u>								_	_		
None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
<u>Industry</u>							2.27	0.40	0.44	0.40	0.07	0.0-
New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
<u>Power</u>												

		Table	C-2. Broa	d River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo	WS		
		Section 1	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 11	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Node 12					· <u>-</u>	•							
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>		,		,	,		0.07	0.40	0.44	0.40	0.07	0.27
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u> None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation		100	11/4	11/4	1174	100	1174					
	Sub-Basin Wide		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Demand	TOTAL FLOW -											
		NODE 12	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Node 14	,												•
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>		-/-	m/a	nla	nla	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	New Industrial Power		n/a	n/a	n/a	n/a	0.03	0.07	0.10	0.14	0.15	0.27	0.57
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	·n/a
	Agriculture/Irrigation												
	Sub-Basin Wide		l _{n/a}	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Demand	TOTAL FLOW -					<u> </u>						
		NODE 14	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Node 15													
	Public Water Supply		10.05	40-0			10.00	44.46	40.40	40.00	44.00	45.04	40.04
E.	SWS/SSSD	Fairforest Plant	12.86	10.72	9.44	9.47	10.23	11.16	12.16	13.26	14.39 0.01	15.61 0.01	16.94 0.01
	SWS/SSSD SWS/SSSD	Fingerville Chesnee	n/a 0.22	0.00 0.15	0.00 0.16	0.00 0.16	0.00 0.18	0.00 0.19	0.00 0.21	0.01 0.23	0.01	0.01	0.01
	34/3/3990	Chesnee	1 0.22	0.15	0.10	0.10	1 0.10	0.19	U.Z 1	0.23	0.20	0.21	0.23

		Table	C-2. Broa	d River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	ojected Flo	ews.		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	SWS/SSSD	Clifton Converse	0.11	0.16	0.15	0.13	0.15	0.16	0.17	0.19	0.20	0.22	0.24
	SWS/SSSD	Cowpens	0.27	0.20	0.20	0.18	0.20	0.21	0.23	0.26	0.28	0.30	0.33
	SWS/SSSD	Idlewood	0.03	0.03	0.03	0.02	0.03	0.03	0.03	0.03	0.04	0.04	0.04
	SWS/SSSD	Pacolet Mills	0.08	0.06	0.10	0.14	0.15	0.16	0.18	0.19	0.21	0.23	0.25
	SWS/SSSD	Landrum-Page Creek	0.00	0.29	0.39	0.35	0.37	0.41	0.44	0.48	0.53	0.57	0.62
] .	SWS/SSSD	Spartanburg Water System / Simms	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Town of Tryon	Tryon WWTP	0.72	0.44	0.42	0.33	0.38	0.42	0.47	0.51	0.56	0.60	0.66
	City of Inman (Inman Mills Water District)	Inman Wastewater Labratories Lawson Fork	0.35	0.36	0.41	0.37	0.40	0.44	0.48	0.52	0.57	0.62	0.67
	City of Inman (Inman Mills Water District) Industry	Creek WWTP	0.15	0.11	0.06	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07
	Milliken	Dewey	0.19	0.19	0.21	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
	Invista Sarl	Invista S.A.R.L./Spartanb urg	0.71	0.75	0.70	0.72	0.72	0.72	0.72	0.72	0.72	0.72	0.72
	New Industrial		n/a	n/a	n/a	· n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u> None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 15	15.69	13.47	12.28	12.12	13.10	14.22	15.44	16.79	18.18	19.71	21.40
Node 13								,			_		
	Public Water Supply Gaffney Board of Public Works	Clary WWTF	2.71	2.71	2.77	2.43	4.71	5.50	6.08	6.71	7.41	8.19	9.05
	<i>Industry</i> New Industrial	·	n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	Power				.,, .	1	0.00	0.01	5	U	00	0.2.	0.0.
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

		Table	C-2. Broa	d River Ba	sin <u>Return</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo)WS		
Dusii			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	Demand				•		,					,	
		TOTAL FLOW – NODE 13	2.71	2.71	2.77	2.43	4.76	5.57	6.17	6.85	7.60	8.45	9.42
Node 16													-
	Public Water Supply	-							•				.
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>				,	,			0.40	0.44	0.40	0.07	0.07
1	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>			1	1-		/	1-	/	1	1	-1-	-1-
	None <u>Agriculture/Irrigation</u>		n/a	n/a	n/a	n/a	n/a .	n/a	n/a	n/a	n/a	n/a	n/a
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW NODE 16	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Lockhar	t Dam (LD)												
	Public Water Supply											•	
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>												,
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW NODE LD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Node 17													
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
1	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

		Table	C-2. Broad	d River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo)WS		
		4	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 17	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Node 18	•												
	Public Water Supply								•				
	City of Union	Meng Creek WWTP	0.36	0.28	0.26	0.25	0.25	0.26	0.26	0.27	0.27	0.28	0.28
	(Lockhart WTF) Total Environmental Solutions, Inc. (Contractor: Kace Environmental)	Lockhart Treatment Facility	0.17	0.09	0.09	0.29	0.29	0.30	0.30	0.31	0.32	0.32	0.33
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u> None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	25/114/12	TOTAL FLOW – NODE 18	0.54	0.37	0.35	0.53	0.59	0.62	0.66	0.71	0.78	0.86	0.98
Neal Sho	als Dam (NSD)												
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Industry												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>								,		,	,	,
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	, n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE NSD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

		Table	C-2. Broa	nd River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)	· · · · · · · · · · · · · · · · · · ·				
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	ojected Flo	ws		
		100	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	Public Water Supply				-								
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	Cone Mills Corp	Carlisle Plant	1.61	2.56	1.50	1.21	1.21	1.21	1.21	1.21	1.21	1.21	1.21
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
•	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a`	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 19	1.61	2.56	1.50	1.21	1.26	1.28	1.31	1.35	1.40	1.48	1.58
Node 20													
	Public Water Supply												
	Chester Sewer District	Sandy River WWTF	1.04	1.18	0.87	0.87	0.91	0.95	0.99	1.04	1.08	1.13	1.18
	Industry												
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	2	TOTAL FLOW - NODE 20	1.04	1.18	0.87	0.87	0.96	1.02	1.09	1.17	1.27	1.40	1.55
Node 21										·			
	Public Water Supply												•
	SWS/SSSD	Carolina Country Club	0.03	0.04	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.06
	SWS/SSSD	Lower North Tyger	0.02	0.02	0.94	0.96	1.04	1.13	1.24	1.35	1.46	1.59	1.72
	SWS/SSSD	South Tyger River	0.02	0.00	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.08
	City of Union	Beltline WWTP	0.13	0.12	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10	0.10
	City of Union	Tosch Creek WWTP	1.85	1.20	1.19	0.99	1.01	1.03	1.05	1.08	1.10	1.12	1.14

		Table	C-2. Broad	River Ba	sin <u>Return</u>	<u>s</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo	ws: E		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	Greer CPW (Commission of Public Works)	Maple Creek WWTP (Include Historical South Tyger)	2.16	1.89	2.06	1.91	2.08	2.29	2.52	2.77	3.00	3.26	3.54
	Town of Lyman	Lyman WWTP	2.22	1.73	1.43	1.52	1.64	1.79	1.95	2.12	2.30	2.50	2.71
	SC Department of Corrections	Tyger River Correction	0.21	0.15	0.18	0.16	0.20	0.20	0.22	0.24	0.26	0.28	0.30
	<u>Industry</u>												
	Spartan Mills Startext	Spartan Mills/Startex Mill	0.36	0.07	0.17	0.14	0.18	0.25	0.33	0.45	0.60	0.81	1.08
	SC-DHEC	I-85 Distribution Site	n/a	0.11	0.13	0.09	0.13	0.13	0.13	0.13	0.13	0.13	0.13
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand	,	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 21	6.99	5.33	6.27	5.94	6.50	7.06	7.72	8.46	9.25	10.17	11.24
Node 22		,											
	Public Water Supply												
	WCRSA	Taylors WWTP	2.81	3.36	3.57	3.25	4.01	4.30	4.61	4.94	5.30	5.68	6.09
	WCRSA	Pelham WWTP	5.36	5.45	6.02	5.68	7.00	7.51	8.05	8.63	9.26	9.92	10.64
•	WCRSA	Gilder Creek WWTP	2.57	3.25	3.79	3.71	4.58	4.91	5.26	5.64	6.05	6.49	6.95
	WCRSA	Durbin Creek WWTP	1.39	1.38	1.58	1.42	1.75	1.87	2.01	2.15	2.31	2.48	2.66
	Town of Woodruff	Woodruff/Enoree River	0.45	0.34	0.33	0.31	0.34	0.37	0.40	0.44	0.47	0.51	0.56
	<u>Industry</u>												
	General Electric Gas Turbines	GE/Gas Turbine MFG Operation	0.25	0.26	0.13	0.12	0.15	0.21	0.28	0.38	0.52	0.70	0.95

		Table	C-2. Broad	d River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility	Historical Flows			Projected Flows				ows	The State Beauty		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation												
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Somana	TOTAL FLOW - NODE 22	12.83	14.05	15.41	14.48	17.88	19.23	20.71	22.33	24.10	26.05	28.23
Node 23													
	Public Water Supply												
	None		n/a	n/a	`n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>						,						
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>						l .						
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide											*	
	Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	v	TOTAL FLOW – NODE 23	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Parr Sho	oals Dam (PSD)												
	Public Water Supply												
	Newberry County Water and Sewer Authority	Cannon's Creek WTP	n/a	0.15	0.23	0.26	0.31	0.38	0.40	0.42	0.45	0.47	0.49
	<u>Industry</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation	•										•	
	Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE PSD	0.00	0.15	0.23	0.26	0.31	0.38	0.40	0.42	0.45	0.47	0.49
Fairfield	Dam (FD)											. <u> </u>	
	Public Water Supply												,

		Table	C-2. Broad	d River Ba	sin <u>Return</u>	ı <u>s</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historic	al Flows				Pro	jected Flo)WS		
	the Bernelland	115.4	1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>	•											
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide												
	Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE FD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Node 24				·									
	Public Water Supply												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Industry</u>												
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide	i		•									
	Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 24	0.00	0.00	0.00	0.00	0.05	0.07	0.10	0.14	0.19	0.27	0.37
Node 25	,												
	Public Water Supply												
	Town of Winnsboro	Winnsboro/Jackso n Creek Plant (WWTP)	0.71	0.83	0.77	0.79	0.87	0.98	1.04	1.10	1.16	1.23	1.30
	Industry												
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>			٠.									
	None .		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

		Table	C-2. Broa	d River Ba	sin <u>Returr</u>	<u>ıs</u> - Summ	ary Sheet	(in mgd)					
Sub- Basin	Entity	Facility		Historica	al Flows				Pro	jected Flo	ws		
			1995	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
		TOTAL FLOW – NODE 25	0.71	0.83	0.77	0.79	0.92	1.05	1.13	1.23	1.35	1.49	1.67
Node 26	}												
	Public Water Supply												
	Town of Chapin	Chapin Sewage System	0.15	0.23	0.42	0.42	0.48	0.55	0.63	0.72	0.78	0.85	0.92
	Richland County	Richland County Broad River WWTF	0.00	1.08	1.42	1.49	1.58	1.74	1.93	2.13	2.31	2.51	2.72
	Industry	•											
	New Industrial		n/a	n/a	n/a	n/a	0.05	0.07	0.10	0.14	0.19	0.27	0.37
	<u>Power</u>	·											
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW – NODE 26	0.15	1.32	1.85	1.91	2.10	2.36	2.65	2.99	3.28	3.62	4.01
Columb	ia Canal Diversion Dam (CCDD)				_							
	Public Water Supply												
	None	-	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	· n/a	n/a
٠	<u>Industry</u>							•					
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	<u>Power</u>												
	None		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Agriculture/Irrigation Sub-Basin Wide Demand		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
		TOTAL FLOW - NODE CCDD	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

NOTE
S:
1. New industrial returns are set at 50% of new industrial withdrawals.

APPENDIX D:

PUBLIC WATER SUPPLY AND INDUSTRY WITHDRAWAL AND RETURN DETAIL SHEETS

WATER USER INDEX

age No.	 Public Water System Users 	Facilities	ID No
122	Broad River Water Authority	BRWA WTP	42-V
71	Chester Sewer District	Sandy River WWTF	12-F
51	City of Clinton	City of Clinton WTP	8-W
86	City of Columbia	Columbia Canal WTP	18-V
97	City of Inman (Inman Mills Water District)	Inman Wastewater Labratories	29(IW R
99	City of Inman (Inman Mills Water District)	Lawson Fork Creek WWTP	29(LF) R
146	City of Saluda	Saluda WWTP	52-F
126	City of Shelby	First Broad River WWTP	43-F
124	City of Shelby	Shelby WTP	43-V
67	City of Union	Beltline WWTP	11(B)
63	City of Union	City of Union WTP	11-\
65	City of Union	Meng Creek WWTP	11(M)
69	City of Union	Tosch Creek WWTP	11(T)
5	City of York	City of York WTP (Turkey)	3-V
132	Cleveland County Sanitary District	Cleveland County SD WTP	45-V
116	Gaffney Board of Public Works	Broad River WWTP	15(BI R
81	Gaffney Board of Public Works	Clary WWTF	15-1
114	Gaffney Board of Pulic Works	Cherokee/Victor Gaffney WTPs	15-\
77	Greer Commision of Public Works	City of Greer CPW WTP	14-\
79	Greer Commision of Public Works	Maple Creek WWTP (Include Historical South Tyger)	14-1
120	Kings Mountain	Pilot Creek WWTP	41-
118	Kings Mountain	TJ Ellison WTP	41-\
88	Lockhart WTF (Total Environmental Solutions, Inc.)	Lockhart Treatment Facility	19-
1	Newberry County Water and Sewer Authority	Cannon's Creek WTP	1-F
148	Polk County - Future Water System	Polk County - Future Water System	53-\
53	Richland County	Richland County Broad River WWTF	9-F
101	SC Department of Corrections	Tyger River Correction	32-
49	SJWD Water District	SJWD WTP	7-V
13	Spartanburg Water System / Sanity Sewer District	Blalock WTP	6(B)-
29	Spartanburg Water System / Sanity Sewer District	Carolina Country Club	6(CL
31	Spartanburg Water System / Sanity Sewer District	Chesnee	6(CH R
33	Spartanburg Water System / Sanity Sewer District	Clifton Converse	6(CV
35	Spartanburg Water System / Sanity Sewer District	Cowpens	6(CW
17	Spartanburg Water System / Sanity Sewer District	Fairforest Plant	6(FF
21	Spartanburg Water System / Sanity Sewer District	Fingerville	6(FV
23	Spartanburg Water System / Sanity Sewer District	Highway 101	6(10 Ro
37	Spartanburg Water System / Sanity Sewer District	ldlewood	6(IW)
11	Spartanburg Water System / Sanity Sewer District	· Landrum WTP	6(L)-
43	Spartanburg Water System / Sanity Sewer District	Landrum-Page Creek	6(L-P R
1,9	Spartanburg Water System / Sanity Sewer District	Lawson Fork Plant	6(LF)
39	Spartanburg Water System / Sanity Sewer District	Lower North Tyger	6(LN R
25	Spartanburg Water System / Sanity Sewer District	Marilyndale	6(MI Ro
41	Spartanburg Water System / Sanity Sewer District	Pacolet Mills	6(PM
15	Spartanburg Water System / Sanity Sewer District	Simms WTP	6(S)
45	Spartanburg Water System / Sanity Sewer District	South Tyger River	6(ST R
47	Spartanburg Water System / Sanity Sewer District	Spartanburg Water System / Simms	6(SW

			R
27	Spartanburg Water System / Sanity Sewer District	Tim's Creek	6(TC)- Ro
142	Town of Boiling Springs	Boiling Springs WWTP	50-R
3	Town of Chapin	Chapin Sewage System	2-R
140	Town of Columbus	Columbus WWTP	49-R
128	Town of Forest City	Forest City WTP	44-W
130	Town of Forest City	Riverside Drive WRF	44-R
144	Town of Grover	Grover WWTP	51-R
138	Town of Lake Lure	Lake Lure WWTP	48-R
95	Town of Lyman	Lyman WWTP	28-R
136	Town of Rutherfordton	Rutherfordton WWTP	47-R
134	Town of Spindale	Spindale WWTP	46-R
73	Town of Tryon	Tryon WTP	13-W
75	Town of Tryon	Tryon WWTP	13-R
90	Town of Whitmire	Town of Whitmire WTP	23-W
7	Town of Winnsboro	Winnsboro WTP	4-W
9	Town of Winnsboro	Winnsboro/Jackson Creek Plant (WWTP)	4-R
103	Town of Woodruff	Woodruff/Enoree River	33-R
61	Western Carolina Regional Sewer Authority	Durbin Creek WWTP	10(DC)- R
59	Western Carolina Regional Sewer Authority	Gilder Creek WWTP	10(GC)- R
57	Western Carolina Regional Sewer Authority	Pelham WWTP	10(P)-R
55	Western Carolina Regional Sewer Authority	Taylors WWTP	10(T)-R
Beginning Page No.	Industrial Users	Facilities	ID No.
109	CNA Holdings	Shelby Plant	37-W
110	CNA Holdings	Shelby Plant	37-R
85	Cone Mills - Water	Carlisle Plant	17-W
84	Cone Mills Corp	Carlisle Plant	17-R
112	Cone Mills, Inc.	Cliffside Plant	39-R
111	Dan River Inc.	Harris Plant	38-R
94	General Electric Gas Turbines	GE/Gas Turbine MFG Operation	27-R
106	Grover Industries	Grover Plant	35-R
93	Invista Sarl	Invista S.A.R.L./Spartanburg	26-R
83	Milliken	Dewey	16-R
		Magnolia Plant	36-W
107	Milliken	magnona riant	
107 108	Milliken Milliken	Magnolia Plant	36-R
		· ·	36-R 40-R
108	Milliken	Magnolia Plant	=

Category

Public Water Supply Return

Entity Facility 1-R Categ
Newberry County Water and Sewer Authority
Cannon's Creek WTP
Brent Richardson

Contact

HISTORICAL DATA SUMMARY

Annual Average Flow							
Year Flow (mgd)							
1995	n/a						
2001	0.15						
2005	0.23						
2006	0.26						

Data Sources	
 Obtained from entity. 	

Monthly Average Flow (mgd)										
	Flow (mgd)									
Month	2001 2005		2006	2007						
Jan	0.158	0.243	0.231	0.323						
Feb	0.147	0.314	0.245	0.226						
Mar	0.224	0.266	0.247	0.246						
Apr	0.153	0.252	0.226	0.21						
May	0.133	0.213	0.196	0.216						
Jun	0.166	0.261	0.266	0.256						
Jul	0.15	0.197	0.217	0.213						
Aug	0.132	0.183	0.277	n/a .						
Sep	0.142	0.149	0.294	n/a						
Oct	0.139	0.19	0.252	n/a						
Nov	0.137	0.179	0.297	n/a						
Dec	0.131	0.265	0.344	n/a						
*See Analysis N	lotes regarding use	of Saluda River Basi	n flows.							

	Residential Customers Served											
Year>	20)6	Year?									
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)								
Residential	400											
Commercial	50											
Industrial	w/ Commercial											
Institutional		_										
Wholesale												

	AGR Determnations									
Category	AGR	Remarks								
Residential	2.00%	2007-2025. See Analysis Notes.								
Residential	0.62%	2026-2045. See Analysis Notes.								
Residential	0.50%	2046-2075. See Analysis Notes.								
Institutional										
Wholesale										

Percenta	ge of Flow
Category	Value
Res/Comm	
Ind/Inst	

	Projected Flowrates (MGD)										
	Category										
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted					
2015			1								
2025											
2035											
2045											
2055											
2065			·								
2075											
AGR	0.02	0.006152258	0.005	0	0	NA					

Annual Average Flow				
Year	Flow (mgd)			
2015	0.31			
2025	0.38			
2035	0.40			
2045	0.42			
2055	0.45			
2065	0.47			
2075	0.49			

Monthly Coefficients		
Month	Coefficient	
Jan	1.01	
Feb	1.10	
Mar	1.21	
Apr	1.00	
May	0.86	
Jun	1.10	
Jul	0.90	
Aug	0.92	
Sep	0.91	
Oct	0.91	
Nov	0.95	
· Dec	1.13	

Analysis Notes

- 1. January 2001 through January 2006 discharges were to the Saluda River Basin (SRB) . Flows to SRB were discontiued and diverted to Broad River Basin. Historical SRB are used here for projecting purposes as they represent the base flow for current discharges from the NCWSA.
- 2. NCWSA serves Newberry County areas outside of the City of Newberry. Water supply source is Lake Murray. Discharge location is Cannon Creek in Broad River Basin.
- 3. Current WWTP capacity is 950,000 gpd. Future plan is for 2.5 MGD with buildout anticipated within apparoximately 15 years (2022).
- 4. The county AGR of 0.62 percent generated from the South Carolina Budget and Control Board, Office of Research and Statistics data is lower than the 2 to 3 percent suggested by NCWSA staff. For this analysis analysis 2 percent is used through 2025, the Newberry County rate of 0.62 percent is used from 2026-2035, and a rate of 0.5 percent is used for 2036 through 2075.
- 5. Base year is 2006

 ID No.
 2-R
 Category

 Entity
 Town of Chapin
 Type

 Facility
 Chapin Sewage System

 Contact
 E.A. Services (Keith Murphy)

Public Water Supply	
Return	

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	0.15			
2000	0.23			
2005	0.42			
2006	0.42			

Data Sources	
1. E.A. Services.	
2 Town of Chanin (Marge Lov	ve)

Monthly Average Flow (mgd)				
		Flow (mgd)		
Month	1995	2000	2005	2006
Jan	0.18	0.27	0.39	0.44
Feb	0.23	0.24	0.46	0.45
Mar	0.15	0.24	0.47	0.41
Apr	0.11	0.20	0.43	0.37
May	0.13	0.20	0.39	0.36
Jun	0.15	0.19	0.41	0.42
Jul	0.10	0.25	0.38	0.39
Aug	0.15	0.22	0.42	0.43
Sep	0.13	0.31	0.36	0.44
Oct	0.15	0.20	0.51	0.40
Nov	0.15	0.25	0.39	0.51
Dec	0.14	0.23	0.46	0.48

Residential Customers Served					
Year>	Year> 2007		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential	2,417				
Commercial	119				
Industrial			1		
Institutional					
Wholesale					

AGR Determnations			
Category	AGR	Remarks	
Residential	1.36%	2007-2045 Based on Lexigton County population data.	
Residential	0.82%	2046-2075. See analysis notes	
Industrial			
Institutional			
Wholesale			

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.013560153	0.0082	0	0		NA

Annual Average Flow				
Year	Flow (mgd)			
2015	0.48			
2025	0.55			
2035	0.63			
2045	0.72			
2055	0.78			
2065	0.85			
2075	0.92			

Monthly Coefficients			
Month	Coefficient		
Jan	1.08		
Feb	1.19		
Mar	1.04		
Apr	0.88		
May	0.88		
Jun	0.94		
Jul	0.89		
Aug	0.99		
Sep	1.02		
Oct	1.01		
Nov	1.06		
Dec	1.04		

Analysis Notes						
1. Base year is 2006.						
2. The AGR applied for 2	2015-2045 is based o	n county popluati	ion growth. Subsec	quent years AGR is	reduced to 1%.	
4. AGR for 2046-2075 re	educed to reflect a ge	neral slower U.S.	growth rate, but S	South Carolina is ar	nticipated to contine	
growing faster than U.S	. average.					
			,			
	<u></u>	***************************************	***************************************			THE THE STATE OF T
	The state of the s					A COMPANY OF THE PROPERTY OF T

 ID No.
 3-W
 Category
 Public Water Supply

 Entity
 City of York
 Type
 Withdrawal

 Facility
 City of York WTP (Turkey)
 Terry Montgomery

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year Flow (mgd)			
1995	0.95		
2000	1.32		
2005	1.09		
2006	1.12		

Data Sources		
1. Ol	otained from entity.	

Monthly Average Flow (mgd)				
	Flow (mgd)			
Month	1995	2000	2005	2006
Jan	0.79	0.89	1.04	1.19
Feb	0.82	1.35	1.01	1.32
Mar	0.83	1.43	0.84	0.91
Apr	0.89	1.37	0.94	0.83
May	0.98	1.63	1.02	1.16
Jun	0.97	1.82	1.07	1.28
Jul	0.96	1.70	1.07	1.34
Aug	1.10	1.67	1.35	1.28
Sep	1.00	1.08	1.40	1.18
Oct	0.94	0.96	1.29	1.05
Nov	1.01	0.92	1.04	0.84
Dec	1.10	1.01	1.05	1.02

	Residential Customers Served					
Year>	Year?			Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential	2515					
Commercial	401					
Industrial	(w/ commercial)					
Institutional						
Wholesale						

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	1.39%	Based on York County Population Data		
Commercial				
Industrial				
Institutional				
Wholesale				

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)							
	Category						
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025			-				
2035							
2045			- ,				
2055			-				
2065							
2075			-				
AGR	0.01				**	NA	

Annual Average Flow		
Year	Flow (mgd)	
2015	1.26	
2025		
2035		
2045		
2055		
2065		
2075		

Monthly Coefficients		
Month	Coefficient	
Jan	0.88	
Feb	1.00	
Mar	0.89	
Apr	0.90	
May	1.06	
Jun	1.13	
Jul	1.12	
Aug	1.20	
Sep	1.05	
Oct	0.96	
Nov	0.87	
Dec	0.95	

Analysis Notes
1. City of York is anticipating converting from supplying their own water to purchasing water from the City of Rock Hill within 5 to 10 years. The City
of Rock Hill withdrawls its water from the Catawba River Basin. Therefore, City of York withdrawals from the Broad River Basin within 5 to 10
years are anticipated to be zero.
2. For modeling purposes flows after 2015 are assumed to be zero.
,

4-W

Category

Public Water Supply

Withdrawal

Entity Facility Town of Winnsboro Winnsboro WTP

Contact

Beth D. Bonds {Town of Winnsboro [winn1@infoave.net]}

HISTORICAL DATA SUMMARY

Type

	Annua	l Average Flow
	Year	Flow (mgd)
	1995	n/a
-	2000	2.21
1	2005	2.00
	2006	1.97

	Data Sources	
1. Obtaine	ed from entity.	

Monthly Average Flow (mgd)					
Flow (mgd)					
Month	1995	2000	2005	2006	
Jan		2.20	1.96	1.69	
Feb		1.89	1.89	1.64	
Mar		1.90	1.81	1.76	
Apr		1.82	1.89	1.97	
May		2.86	1.95	2.10	
Jun		3.06	2.02	2.30	
Jul		2.49	2.11	2.29	
Aug		2.15	2.18	2.26	
Sep		2.12	2.35	2.03	
Oct		2.08	2.09	2.02	
Nov		1.98	1.96	1.91	
Dec		2.04	1.79	1.69	

Residential Customers Served					
Year>	2003	2024			
Grouping	Customers	Flow (MGD)	Customers	Flow (MGD)	
Residential	4,169	1.00	7,500	1.94	
Commercial					
Industrial	27	0.31	45	0.49	
Institutional				,	
Wholesale	2	0.52	2	0.65	

Una	Unaccounted Flow				
Years	Flow (MGD)	Percent of Total			
2003	25.07	12%			
2024	16.17	5%			

	AGR Determnations					
Category	AGR (customer)	AGR (Flow)	Remarks			
Residential	2.84%	3.19%	2007-2025. See Analysis Notes.			
Commercial	Commercial					
Industrial	2.46%	2.10%	2007-2025. See Analysis Notes.			
Institutional						
Wholesale	0.00%	1.02%	2007-2025. See Analysis Notes.			
All	All 1.00% 2026-2045. See Analysis Notes. Fairfield County AGR.					
All		0.82%	2046-2075. See Analysis Notes.			

Percentage of Flow				
Category Value				
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015	1.46		0.40		0.59	0.29
2025	2.00		0.50		0.65	0.16
2035	2:21		0.55		0.72	0.17
2045	2.44		0.60		0.80	0.19
2055	2.65		0.66		0.86	0.21
2065	2.88		0.71		0.94	0.23
2075	3.12		0.77		1.02	0.25

Annual Average Flow			
Year	Flow (mgd)		
2015	2.75		
2025	3.31		
2035	3.65		
2045	4.04		
2055	4.38		
2065	4.75		
2075	5.16		

Monthly Coefficients		
Month	Coefficient	
Jan	0.94	
Feb	0.88	
Mar	0.89	
Apr	0.92	
May	1.11	
Jun	1.19	
Jul	1.11	
Aug	1.07	
Sep	1.05	
Oct	1.00	
Nov	0.95	
Dec	0.89	

Analysis Notes

- 1. Town of Winnsboro is currently in the process of developing a water system plan.
- 2. Town of Winnsboro also serves the City of Blywood, which is below Columbia and discharges outside of the Broad River Basin.
- 3. Monthly flow represent treated water for both the Sand Creek WTP and Reservoir WTP.
- 4. Customer base information extracted from the 2003 Interbasin Transfer form submitted to SC-DHEC.
- 5. The AGR applied through 2025 is based on the Town of Winnsboro growth reported on their SC DHEC Interbasin Transfer.
 - The AGR for future years is reduced to 1% for 2026-2045 and 0.8% for 2046-2075. Although the Fairfield County projected population AGR is low (0.57%) it is forecasted that the area served will grow at a faster rate.
- 6. Unaccounted for water is assumed to be 12 % through 2023, then is 5%.
- 7. Base year is 2003.

4_P

Category

Public Water Supply

Return

Entity Facility Town of Winnsboro
Winnsboro/Jackson Creek Plant (WWTP)

Туре

Contact

Beth D. Bonds {Town of Winnsboro [winn1@infoave.net]}

HISTORICAL DATA SUMMARY

Annual Average Flow					
Year Flow (mgd)					
1995	0.71				
2000	0.83				
2005	0.77				
2006	0.79				

Data Sources
1. Obtained from entity.

	Monthly Average Flow (mgd)					
	Flow.(mgd)					
Month	1995	2000	2005	2006		
Jan	0.81	0.98	0.78	0.88		
Feb	0.96	0.81	0.89	0.80		
Mar	0.66	0.82	0.85	0.67		
Apr	0.55	0.80	0.80	0.65		
May	0.57	0.80	0.75	0.62		
Jun	0.73	0.86	0.84	0.87		
Jul	0.67	0.90	0.75	0.72		
Aug	0.78	0.98	0.74	0.82		
Sep	0.71	0.92	0.76	0.82		
Oct	0.69	0.66	0.52	0.77		
Nov	0.71	0.72	0.71	0.95		
Dec	0.63	0.71	0.82	0.85		

	Residential Customers Served					
Year>	Year?		2024			
Grouping	Customers	Flow (gpd)	Customers	Flow (MGD)		
All				0.97		
Commercial						
Industrial						
Institutional						
Wholesale						

Unaccounted Flow

			AGR Determnations
Category	AGR	AGR (Flow)	Remarks
All	n/a	1.16%	Based on projected 2024 wastewater flow from interbasin transfer.
All		0.57%	2026-2045. See Analysis Notes. Fairfield County AGR.
All		0.57%	2046-2075. See Analysis Notes. Fairfield County AGR.
Residential			
Institutional			· · ·
Wholesale			

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

	Projected Flowrates (MGD)						
	Category						
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025							
2035							
2045							
2055							
2065						`	
2075							
AGR	0		0	0	o	NA	

Annual Average Flow				
Year	Flow (mgd)			
2015	0.87			
2025	0.98			
2035	1.04			
2045	1.10			
2055	1.16			
2065	1.23			
2075	1.30			

Monthly Coefficients				
Month	Coefficient			
Jan	1.12			
Feb	1.13			
Mar	0.97			
Apr	0.90			
May	0.88			
Jun	1.07			
Jul	0.98			
Aug	1.07			
Sep	1.04			
Oct	0.86			
Nov	1.00			
Dec	0.97			

Analysis Notes
1. Projection is based on low AGR (Flow) percentage estimated from 2024 flow projections from the Interbasin Transfer.
This value is significantly lower than the AGRs used from water supply. This may partly be a result of interbasin transfers, which
reduces volume of treated water.
2. The AGR for future years is reduced to match the Fairfield County projected AGR.
3. Base year is 2006.

 ID No.
 6(L)-W

 Entity
 SWS/SSSD

 Facility
 Landrum WTP

Category Type Public Water Supply
Withdrawal

Contact

Rebecca West (Email from Joel Jones)

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
1996	0.41			
2000	0.53			
2005	0.47			
2006	0.49			

	Data Sources	
1. Ot	otained from entity.	

	Monthly Average Flow (mgd)				
Flow (mgd)					
Month	1996	2000	2005	2006	
Jan	0.36	0.46	0.48	0.42	
Feb	0.36	0.47	0.42	0.44	
Mar	0.35	0.47	0.40	0.47	
Apr	0.38	0.37	0.40	0.50	
May	0.41	0.31	0.48	0.56	
Jun	0.46	0.62	0.50	0.60	
Jul	0.47	0.65	0.48	0.53	
Aug	0.44	0.66	0.47	0.53	
Sep	0.42	0.62	0.58	0.44	
Oct	0.43	0.61	0.55	0.55	
Nov	0.42	0.56	0.44	0.42	
Dec	0.43	0.51	0.44	0.42	

Residential Customers Served				
Year>	2000 Year?			Year?
Grouping	Taps	Flow (gpd)	Customers	Flow (gpd)
Residential	1432			•
Commercial	248			
Industrial				
Institutional				
Wholesale	7 (All 3 Plants)	•		

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	1.02%	Based on Greenville County Population Data		
Residential	0.82%	See analysis notes.		
Comm./Indust.				
Institutional				
Wholesale				

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
		Category				
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065			,			
2075						
AGR	0.01	0.01				NA

Annual Average Flow				
Year Flow (mgd)				
2015	0.54			
2025	0.59			
2035	0.66			
2045	0.73			
2055	0.79			
2065	0.86			
2075	0.93			

Monthly Coefficients				
Month	Coefficient			
Jan	0.90			
Feb	0.89			
Mar	0.89			
Apr	0.87			
May	0.94			
Jun	1.15			
Jul	1.12			
Aug	1.10			
Sep	1.09			
Oct ·	1.13			
Nov	0.97			
Dec	0.95			

Analysis Notes
1. The Landrum WTP predominately serves the Town of Landrum, located in Grenville County.
2. This facility was previously owned and operated by the Town of Landrum. The town WWTP was sold in 1997 and the WTP was sold in 2004.
3. SWS/SSSD does not have any data for 1995 for the Landrum Water Treatment Plant. The earliest data we have is 1996.
4. AGR applied for 2007-2045 based on Greenville county projected population. Subsequent years reduced to reflect a
general slower U.S. growth rate, but South Carolina is anticipated to continue growing faster than U.S. average.
5. Base year is 2006.
6. Raw data was provided as million gallons per month.

 ID No.
 6(B)-W
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Withdrawal

 Facility
 Blalock WTP

 Contact
 Rebecca West (Email from Jeffrey Phillips [jphillips@sws-sssd.org])
 Email of the properties

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
2000	7.21			
2002	11.44			
2006	11.76			
2007	12.99			
2007	14.49			

Partial Year 9/06-8/07 Partial Year

	Data Sources
i	1. Obtained from entity.

	Monthly Av	erage Flow (mgd)			
		Flow (mgd)			
Month	2000	2002	2006	2007	
Jan	3.48	9.57	offline	7.74	
Feb	5.83	9.39	offline	14.18	
Mar	5.26	9.82	offline	13.99	
Apr	5.48	11.31	offline	14.00	
May	8.39	11.05	offline	14.12	
Jun	4.38	11.96	offline	13.77	
Jul	9.70	11.53	offline	13.95	
Aug	7.18	11.16	14.69	19.99	
Sep	7.92	12.65	14.42	18.71	
Oct	9.59	12.96	14.73	n/a	
Nov	8.79	12.99	7.49	n/a	
Dec	10.48	12.92	7.49	n/a	

Residential Customers Served						
Year>	Yes	ar?	Year?			
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale						

Unaccounted Flow

AGR Determnations						
Category	AGR	Remarks				
Residential	0.96%	2007-2045. See analysis notes.				
Residential	0.82%	2046-2075. See analysis notes.				
Comm./Indust.						
Institutional						
Wholesale						

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

	Projected Flowrates (MGD)					
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015			_			
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.01	0.01				NA

Annual Average Flow			
Year	Flow (mgd)		
2015	14.02		
2025	15.43		
2035	16.97		
2045	18.67		
. 2055	20.26		
2065	21.99		
2075	23.86		

Monthly Coefficients		
Month	Coefficient	
Jan	0.64	
Feb	0.91	
Mar	0.89	
Apr	0.94	
May	1.07	
Jun	0.90	
Jul	1.14	
Aug	1.19	
Sep .	1.22	
Oct	1.24	
Nov	1.00	
Dec	1.07	

Analysis Notes

- The Lake Blalock and Simms WTP predominantly serve customers located within Spartanburg County, although some water is delivered
 to Cherokee County.
- The Blalock Water Treatment Plant did not go on line until 1999 and was off line from September 9th 2004 until August 8th 2006.
 There was no withdrawal from Lake Blalock during that period.
- 3. Monthly Coefficients are based on 2000 data.
- 4. Base year used is the September 2006 through August 2007 average of 12.99 MGD. This value was used as it begins one month after the WTP was brought back online and represents a 12-month period. For comparison purposes the 2002 average was 11.44 MGD, which if grown to 2007 based on the county AGR results in a value of 11.95 MGD. Thus, this average, which is slightly higher, represents a conservative starting point.
- 5. SWS AGR is anticipated to grow faster than County as a whole, thus rate through 2045 is set at the combined Greenville County and Spartanburg County projected population AGR. Subsequent years reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue growing faster than U.S. average.
- 6. AGRs for water use are anticipated to be higher for water withdrawal than returns (Communication with D. DePratter).

 ID No.
 6(S)-W
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Withdrawal

 Facility
 Simms WTP
 Rebecca West (Email from Joel Jones)

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	36.03	
2000	25.69	
2005	32.18	
2006	28.42	

Data Sources
 Obtained from entity.

	Monthly Av	erage Flow (mgd)		
		Flow (mgd)		
Month	1995	2000	2005	2006
Jan	32.36	27.72	28.62	28.75
Feb	32.45	22.43	28.13	27.84
Mar	33.36	23.55	28.34	30.08
Apr	37.55	26.78	29.79	32.54
May	38.89	26.63	33.08	34.71
Jun	37.49	29.76	30.49	38.18
Jul	41.59	28.16	35.02	38.71
Aug	41.63	30.35	36.17	26.51
Sep	37.11	25.59	40.16	19.71
Oct	35.03	26.61	35.12	18.38
Nov	32.59	21.65	32.30	23.58
Dec	32.36	19.00	28.98	22.01

	Residential Customers Served					
Year>	Ye	ar?		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale						

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.96%	2007-2045. See analysis notes.		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Indust.				
Institutional				
Wholesale				

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						·
2025			l			
2035						
2045						
2055						
2065						
2075						
AGR	0.01	0.01				NA

Annual Average Flow		
Year	Flow (mgd)	
2015	30.97	
2025	34.07	
2035	37.49	
2045 .	41.24	
2055	44.75	
2065	48.56	
2075	52.69	

Monthly Coefficients		
Month	Coefficient	
Jan	0.97	
Feb	0.91	
Mar	0.95	
Apr	1.04	
May	1.09	
Jun	1.12	
Jul	1.18	
· Aug	1.10	
Sep	0.99	
Oct	0.94	
Nov	0.90	
Dec	0.83	

Analysis Notes	
1. The Lake Blalock and Simms WTP predominantly serve customers located within Spartanburg County, although some water is delivered	
to Cherokee County.	
2. Base year is 2006.	
3. SWS AGR is anticipated to grow faster than County as a whole, thus rate through 2045 is set the combined Greenville	
County and Spartanburg County projected population AGR. Subsequent years reduced to reflect a general slower U.S.	
growth rate, but South Carolina is anticipated to contine growing faster than U.S. average.	
4. AGRs for water use are anticipated to be higher for water withdrawal than returns (Communication with D. DePratter).	
,	

6(FF)-R

Category

Public Water Supply

Return

Entity

SWS/SSSD

Type

Facility Contact Fairforest Plant (+Lawson Fork Plant +Highway 101 +Marilyndale)
Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	12.86	
2000	10.72	
2005	9.44	
2006	9.47	

Data Sources
1. Obtained from entity.

	Monthly Average Flow (mgd) Flow (mgd)			
Month	1995	2000	2005	200
Jan	14.61	10.89	9.79	10.94
Feb	14.85	12.10	8.96	9.02
Mar	13.66	13.24	10.41	8.38
Apr	11.04	11.55	9.57	8.69
May	11.16	10.62	8.41	8.30
Jun	12.38	10.12	10.51	8.67
Jul	11.70	10.08	10.57	8.84
Aug	13.36	10.13	9.43	8.97
Sep	12.45	10.86	7.96	10.5
Oct	12.98	9.21	9.43	9.31
Nov	14.39	9.95	8.24	10.14
Dec	11.74	9.87	10.01	11.8

	Residential Customers Served					
Year>	Year?		Year?			
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale		i				

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.87%	Based on Spartanburg County Population Data			
Residential	0.82%	2046-2075. See analysis notes.			
Comm./Ind.					
Institutional					
Wholesale					

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025	,					
2035						
2045						
2055						
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015	10.23		
2025	11.16		
2035	12.16		
2045	13.26		
2055	14.39		
2065	15.61		
2075	16 94		

Monthly Coefficients			
Month	Coefficient		
Jan	1.09		
Feb	1.05		
Mar	1.07		
Apr	0.97		
May	0.91		
Jun	0.98		
Jul	0.98		
Aug	0.98		
Sep	0.99		
Oct	0.96		
Nov	1.00		
Dec	1.04		

Analysis Notes
1. Based on Spartanburg County population data unless specific customer base data was available.
Flows for Lawson Fork, Highway 101, and Marilyndale WWTPs have been diverted to the Fairforest WWTP.
All historical flows for these facilities were added to Fairforest WWTP flows for projection purposes.
3. Base year is 2006.
4. AGR through 2045 is based on Spartanburg County projected population.
2040 and 2050.
5. Note that the Fairforest Facility is located in Node 21, but discharges to Node 15. Some NPDES permits are shown in
Node 21.
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue
grouping footor than LLC guarage

ID No.

6(LF)-Ro

Category Туре

Public Water Supply
Return - Added to Other Facility

Entity

SWS/SSSD

Lawson Fork Plant

Facility Contact Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
1995	6.00		
2000	4.81		
2005	4.96		
2006	3.73		

	Data	Sources
1. Obtai	ned fr	om entity.

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	7.19	4.78	4.88	5.14	
Feb	7.12	5.50	4.94	4.67	
Mar	6.48	6.16	5.85	4.51	
Apr	5.39	5.18	5.32	4.46	
May	5.24	4.73	4.58	4.26	
Jun	5.65	4.42	5.51	4.26	
Jul	5.23	4.49	4.96	4.28	
Aug	6.20	4.45	4.59	4.24	
Sep	5.61	5.03	4.19	4.61	
Oct	6.03	4.21	5.08	4.34	
Nov	6.58	4.42	4.51	0.00	
Dec	5.29	4.36	5.10	0.00	

Residential Customers Served					
Year>	Yes	ar?	1	Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial			l		
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065			4			
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015			
2025			
2035			
2045			
2055			
2065			
2075			

Monthly Coef	icients
Month	Coefficient
Jan	1.14
Feb	1.14
Mar	. 1.19
Арг	1.06
May	0.98
Jun	1.03
*Jul	0.99
Aug	1.00
Sep	1.02
Oct	1.02
Nov	0.97
Dec	0.94

Analysis Notes		
	pulation data unless specific customer base data was available.	
Starting in November 2006 pumped to Fairforest Plan	nt	
Historical flows added to Fairforest Plant flows for pro	ojection purposes. No projections are made here.	
4. Base year is 2006.		
5. AGR through 2045 is based on Spartanburg County project	ted population.	
6. AGR for 2046-2075 reduced to reflect a general slower U.S	S. growth rate, but South Carolina is anticipated to continue	
growing faster than U.S. average.		

 ID No.
 6(FV)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Fingerville

 Contact
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	n/a	
2000	0.005	
2005	0.004	
2006	0.004	

	Data Sources
1. Obtai	ined from entity.

	Monthly	Average Flow (mgd)		
	1000	Flow (mgd)		
Month	1995	2000	2005	2006
Jan	1,000	0.005	0.004	0.005
Feb		0.004	0.004	0.003
Mar		0.006	0.005	0.003
Apr		0.007	0.003	0.004
May	***	0.005	0.003	0.003
Jun		0.005	0.004	0.004
Jul		0.004	0.007	0.002
Aug		0.004	0.005	0.003
Sep		0.005	0.002	0.004
Oct		0.004	0.005	0.004
Nov		0.005	0.004	0.004
Dec		0.004	0.007	0.004

	Res	idential Custom	ers Served	
Year>	Ye	ar?		Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional				
Wholesale				

Unaccounted Flow

		AGR Determnations
Category	AGR	Remarks
Residential	0.87%	Based on Spartanburg County Population Data
Residential	0.82%	2046-2075. See analysis notes.
Comm./Ind.		
Institutional		
Wholesale		

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst	ĺ	

		Projected	l Flowrates (MGD)			
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045	,					
2055					}	
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	0.004			
2025	0.004			
2035	0.005			
2045_	0.005			
2055	0.006			
2065	0.006			
2075	0.007			

Monthly Coeff	
Month	Coefficient
Jan	1.09
Feb	0.88
Mar	1.06
Apr	1.07
May	0.84
Jun	0.96
Jul	1.03
Aug	0.94
Sep	0.89
Oct	0.93
Nov	1.05
Dec	1.27

Analysis Notes
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.
2. Base year is 2006.
3. AGR through 2045 is based on Spartanburg County projected population.
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue
growing faster than U.S. average.

ID No.

6(101)-Ro

Category Type Public Water Supply

Return - Added to Other Facility

Entity Facility SWS/SSSD

Highway 101

Contact Rebecca We

Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow	
Year	Flow (mgd)
1995	0.02
2000	
2005	
2006	

Data Sources	
1. Obtained from entity.	

	Monthly Av	erage Flow (mgd)			
Flow (mgd)					
Month	1995	2000	2005	2006	
Jan	0.01	0.00	0.00	0.00	
Feb	0.01	0.00	0.00	0.00	
Mar	0.02	0.00	0.00	0.00	
Apr	0.02	0.00	0.00	0.00	
May	0.02	0.00	0.00	0.00	
Jun	0.01	0.00	0.00	0.00	
Jul	0.01	0.00	0.00	0.00	
Aug	0.02	0.00	0.00	0.00	
Sep	0.01	0.00	0.00	0.00	
Oct	0.02	0.00	0.00	0.00	
Nov	0.02	0.00	0.00	0.00	
Dec	0.02	0.00	0.00	0.00	

	Residential Customers Served			
Year>	Ye	ar?	,	Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional				-
Wholesale				

Unaccounted Flow

	AGR Determnations			
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial		Institutional	Wholesale	*Unacc'ted
2015						
2025						
2035						
2045			5 H 18			
2055			100			
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015		
2025		
2035		
2045		
2055		
2065		
2075		

Monthly Coefficients	
Month	Coefficient
Jan	0.89
Feb	0.80
Mar	1.02
Apr	1.05
May	0.94
Jun	0.88
Jul	0.67
Aug	1.09
Sep	0.80
Oct	1.02
Nov	1.43
Dec	1.42

Analysis Notes
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.
2. 2000, 2005, and 2006 was pumped & hauled to the Fairforest Plant
3. Historical flows added to Fairforest Plant flows for projection purposes. No projections are made here.
2. Base year is 2006.
3. AGR through 2045 is based on Spartanburg County projected population.
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue
growing faster than U.S. average.

ID No. Entity Facility 6(MD)-Ro

Category Type

Public Water Supply
Return - Added to Other Facility

SWS/SSSD

Marilyndale

Contact

Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow	
Year	Flow (mgd)
1995	-
2000	
2005	0.01
2006	**

	Data Sources
1.0	Obtained from entity.

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.00	0.00	0.01	0.00	
Feb	0.00	0.00	0.01	0.00	
Mar	0.00	0.00	0.01	0.00	
Apr	0.00	0.00	0.01	0.00	
May	0.00	0.00	0.00	0.00	
Jun	0.00	0.00	0.01	0.00	
Jul	0.00	0.00	0.01	0:00	
Aug	0.00	0.00	0.01	0.00	
Sep	0.00	0.00	0.00	0.00	
Oct	0.00	0.00	0.02	0.00	
Nov	0.00	0.00	0.02	0.00	
Dec	0.00	0.00	0.00	0.00	

Residential Customers Served					
Year>	Y	ear?	1000	Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale			•		

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

		Projected Fl	lowrates (MGD)			
			Category			
Year	Residential	**Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025	- 75					
2035						1
2045						
2055			1100			
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015			
2025			
2035			
2045			
2055			
2065			
2075			

Monthly Coefficients				
Month	Coefficient			
Jan	0.94			
Feb	0.83			
Mar	1.27			
Apr	1.15			
May	0.44			
Jun	0.87			
Jul	0.86			
Aug	1.28			
Sep	0.37			
Oct	2.15			
Nov	1.85			
Dec				

. All SWS/SSSD AGRs are based on Spa	artanburg County population data unless specific customer base data was available.	
. 2006 was pumped & hauled to the Fair		
. Historical flows added to Fairforest Pla	nt flows for projection purposes. No projections are made here.	
. 1995 and 2000 No Data		
. Base year is 2006.		
. AGR through 2045 is based on Spartan	burg County projected population.	
. AGR for 2046-2075 reduced to reflect	a general slower U.S. growth rate, but South Carolina is anticipated to continue	
growing faster than U.S. average.		

ID No. 6(TC)-R Entity SWS/SSSD Facility Tim's Creek Public Water Supply
Return - Added to Other Facility

Contact

Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Category

Type

Annual Average Flow		
Year Flow (mgd)		
1995	0.02	
2000	0.02	
2005		
2006		

Data Sources	
1. Obtained from entity.	

	Monthly Average Flow (mgd)					
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	0.01	0.02	0.00	0.00		
Feb	0.01	0.02	0.00	0.00		
Mar	0.02	0.01	0.00	0.00		
Apr \	0.02	0.01	0.00	0.00		
May	0.02	0.01	0.00	0.00		
Jun	0.01	0.01	0.00	0.00		
Jul	0.01	0.01	0.00	0.00		
Aug	0.02	0.01	0.00	0.00		
Sep	0.01	0.02	0.00	0.00		
Oct	0.02	0.02	0.00	0.00		
Nov	0.02	0.02	0.00	0.00		
Dec	0.02	0.02	0.00	0.00		

Residential Customers Served					
Year>	Ye	ar?		Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)							
		Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025				36 (25)			
2035							
2045							
2055							
2065						100	
2075							
AGR	0.008673456	0.0082	0	0	0	NA	

Annual Average Flow		
Year	Flow (mgd)	
2015		
2025		
2035		
2045		
2055		
2065		
2075		

Monthly Coefficients			
Month	Coefficient		
Jan	0.95		
Feb	0.99		
Mar	0.94		
Apr	0.88		
May	0.87		
Jun	0.90		
Jul	0.77		
Aug	0.99		
Sep	1.06		
Oct	1.08		
Nov	1.24		
Dec	1.33		

Analysis Notes		
1. All SWS/SSSD AGRs are based on Spartanburg County population of	lata unless specific customer base data was available.	
2. 2005 and 2006 was pumped to L. North Tyger.		
3. Historical flows added to Lower North Tyger Plant flows for projecti	on purposes. No projections are made here.	
4. Base year is 2006.		
5. AGR through 2045 is based on Spartanburg County projected popula	tion.	
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth	rate, but South Carolina is anticipated to continue	
growing faster than U.S. average.		

ID No.

6(CL)-R

Category Type

Public Water Supply

Return

Entity Facility

SWS/SSSD Carolina Country Club

Contact

Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year Flow (mgd)			
1995	0.03		
2000	0.04		
2005	0.03		
2006	0.03		

Data Sources
1. Obtained from entity.

Monthly Average Flow (mgd)				
	Flow (mgd)			
Month	1995	2000	2005	2006
Jan	0.04	0.04	0.03	0.03
Feb	0.04	0.04	0.03	0.03
Mar	0.03	0.05	0.03	0.03
Apr	0.03	0.06	0.03	0.03
May	0.03	0.04	0.03	0.03
Jun	0.03	0.03	0.03	0.03
Jul	0.03	0.04	0.03	0.03
Aug	0.04	0.05	0.03	0.03
Sep	0.03	0.05	0.03	0.03
Oct	0.03	0.03	0.04	0.03
Nov	0.04	0.03	0.03	0.03
Dec	0.04	0.03	0.04	0.03

Residential Customers Served					
Year>	Year?			Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

	Projected Flowrates (MGD)					
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025			•			
2035						
2045						
2055						
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015	0.03		
2025	0.04		
2035	0.04		
2045	0.04		
2055	0.05		
2065	0.05		
2075	0.06		

Monthly Coefficients			
Month	Coefficient		
Jan	1.05		
Feb	0.99		
Mar	0.99		
Apr	0.93		
May	0.97		
Jun	1.00		
Jul ·	0.93		
Aug	1.04		
Sep	0.91		
Oct	1.04		
Nov	1.05		
Dec	1.10		

Analysis Notes	
1. All SWS/SSSD AGRs are based on Spartanburg County populatio	n data unless specific customer base data was available.
2. Base year is 2006.	
3. AGR through 2045 is based on Spartanburg County projected pop	ulation.
4. Year 2000 excluded from Monthly Coefficients calculation de	ue to change in pumping pattern late in the year that causes a
skew in values.	ah ana hai Cauli Caulius is anti-instal to continue
AGR for 2046-2075 reduced to reflect a general slower U.S. grow growing faster than U.S. average.	viii rate, but Soudi Caronna is and opated to continue

 ID No.
 6(CHS)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Chesnee
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	0.22			
2000	0.15			
2005	0.16			
2006	0.16			

Data Sources	ĺ
1. Obtained from entity.	
1. Obtained from South Caro	lina
Department of Health and	
Environmental Control	l

	Monthly Average Flow (mgd)					
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	0.25	0.18	0.17	0.20		
Feb	0.30	0.19	0.16	0.16		
Mar	0.24	0.19	0.20	0.15		
Apr	0.17	0.22	0.19	0.13		
May	0.19	0.15	0.14	0.12		
Jun	0.21	0.12	0.15	0.13		
Jul	0.18	0.12	0.16	0.12		
Aug	0.20	0.11	0.14	0.15		
Sep	0.21	0.13	0.12	0.17		
Oct	0.23	0.11	0.17	0.19		
Nov	0.25	0.12	0.15	0.21		
Dec	0.20	0.14	0.18	0.21		

	Residential Customers Served					
Year>	Ye	ar?	1	(ear?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale			,			

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.87%	Based on Spartanburg County Population Data			
Residential	0.82%	2046-2075. See analysis notes.			
Comm./Ind.	Ind.				
Institutional					
Wholesale		,			

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

	Projected Flowrates (MGD)						
		Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025							
2035							
2045							
2055		·					
2065							
2075							
AGR	0.008673456	0.0082	0	0	0	NA	

Annual Average Flow				
Year	Flow (mgd)			
2015	0.18			
2025	0.19			
2035	0.21			
2045	0.23			
2055	0.25			
2065	0.27			
2075	0.29			

Monthly Coefficients			
Month	Coefficient		
Jan	1.16		
Feb	1.15		
Mar	1.14		
Apr	1.07		
May	0.88		
Jun	0.86		
Jul	0.84		
Aug	0.87		
Sep	0.92		
Oct	1.01		
Nov	1.03		
Dec	1.06		

Analysis Notes
 All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.
2. Base year is 2006.
3. AGR through 2045 is based on Spartanburg County projected population.
4. 1995 and 2000 Monthly Average is from SC-DHEC. 2005 and 2006 Monthly Average is from SWS and matches SC-DHEC.
1. Modified December 2000 value from 137 to 0.137. Appears to be data entry error.
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue
growing faster than U.S. average.

 ID No.
 6(CV)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Clifton Converse
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	0.11	
2000	0.16	
2005	0.15	
2006	0.13	

	Data Sources
1. Ot	tained from entity.

Monthly Average Flow (mgd)						
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	0.23	0.11	0.13	0.17		
Feb	0.13	0.15	0.15	0.14		
Mar	0.09	0.24	0.19	0.12		
Apr	0.08	0.24	0.16	0.13		
May	0.08	0.16	0.13	0.12		
Jun	0.08	0.13	0.17	0.11		
Jul	0.06	0.15	0.11	0.13		
Aug	0.14	0.11	0.13	0.13		
Sep	0.09	0.15	0.11	0.14		
Oct	0.10	0.13	0.19	0.14		
Nov	0.15	0.16	0.14	0.14		
Dec	0.08	0.16	0.18	0.15		

Residential Customers Served					
Year>	Year?		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations			
Category	AGR	Remarks	
Residential	0.87%	Based on Spartanburg County Population Data	
Residential	0.82%	2046-2075. See analysis notes.	
Comm./Ind.			
Institutional			
Wholesale			

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025			,			
2035						
2045						
2055						
2065			•			
2075						
AGR	0.008673456	0.0082	. 0	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	0.15	
2025	0.16	
2035	0.17	
2045	0.19	
2055	0.20	
2065	0.22	
2075	0.24	

Monthly Coefficients			
Month	Coefficient		
Jan	1.25		
Feb	1.04		
Mar	1.12		
Apr	1.06		
May	0.87		
Jun	0.88		
Jul	0.81		
Aug	0.95		
Sep	0.87		
Oct	1.03		
Nov ·	1.09		
Dec	1.02		

Analysis Notes		
. All SWS/SSSD AGRs are based on Spartanburg County p	opulation data unless specific customer base data was available	
. Base year is 2006.		
AGR through 2045 is based on Spartanburg County proje	ted population.	
. AGR for 2046-2075 reduced to reflect a general slower U	S. growth rate, but South Carolina is anticipated to continue	
growing faster than U.S. average.		

 ID No.
 6(CW)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Cowpens
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow	
Year	Flow (mgd)
1995	0.27
2000	0.20
2005	0.20
2006	0.18

	Data Sources	
1. Obtair	ed from entity.	

	Monthly Av	verage Flow (mgd)		
	Flow (mgd)			
Month	1995	2000	2005	2006
Jan	0.33	0.23	0.19	0.22
Feb	0.32	0.23	0.21	0.16
Mar	0.27	0.26	0.25	0.16
Apr	0.27	0.21	0.21	0.17
May	0.22	0.19	0.19	0.17
Jun	0.24	0.18	0.21	0.16
Jul	0.20	0.18	0.17	0.16
Aug	0.29	0.18	0.16	0.18
Sep	0.25	0.19	0.15	0.20
Oct	0.29	0.17	0.28	0.19
Nov	0.32	0.20	0.19	0.23
Dec	0.25	0.21	0.25	0.20

Residential Customers Served				
Year>	Ye	ar?		Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional	,			
Wholesale				

Unaccounted Flow

AGR Determnations		
Category	AGR	Remarks
Residential	0.87%	Based on Spartanburg County Population Data
Residential	0.82%	2046-2075. See analysis notes.
Comm./Ind.		
Institutional		
Wholesale	·	

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)							
		Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025							
2035							
2045							
2055							
2065							
2075							
AGR	0.008673456	0.0082	0	0	0	NA	

Annual Aver	age Flow
Year	Flow (mgd)
2015	0.20
2025	0.21
2035	0.23
2045	0.26
2055	0.28
2065	0.30
. 2075	0.33

Monthly Coeff	īcients
Month	Coefficient
Jan	1.12
Feb	1.04
Mar	1.10
Apr	0.99
May	0.90
. Jun	0.93
Jul	0.82
Aug	0.93
Sep	0.93
Oct	1.07
Nov	1.09
Dec	1.07

Analysis Notes
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.
2. Base year is 2006.
3. AGR through 2045 is based on Spartanburg County projected population.
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue growing faster than U.S. average.

 ID No.
 6(IW)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Idlewood
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual A	verage Flow
Year	Flow (mgd)
1995	0.03
2000	0.03
2005	0.03
2006	0.02

Data Sources
1. Obtained from entity.

	Monthly Average Flow (mgd)					
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	0.02	0.03	0.04	0.02		
Feb	0.03	0.03	0.04	0.02		
Mar	0.03	0.03	0.05	0.03		
Apr	0.03	0.03	0.04	0.03		
May	0.03	0.03	0.04	0.02		
Jun	0.02	0.03	0.03	0.02		
Jul	0.02	0.03	0.02	0.02		
Aug	0.03	0.03	0.03	0.02		
Sep	0.03	0.03	0.03	0.03		
Oct	0.03	0.03	0.03	0.03		
Nov	0.04	0.03	0.02	0.03		
Dec	0.04	0.03	0.03	0.03		

1	Residential Customers Served						
Year> Year?		Year?					
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)			
Residential							
Commercial							
Industrial							
Institutional							
Wholesale							

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.87%	Based on Spartanburg County Population Data			
Residential	0.82%	2046-2075. See analysis notes.			
Comm./Ind.					
Institutional		,			
Wholesale					

Percentage of Flow				
Category Value				
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)							
		Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025	,						
2035							
2045							
2055							
2065							
2075							
AGR	0.008673456	0.0082	0	0	0	NA	

Annual Average Flow				
Year	Flow (mgd)			
2015	0.03			
2025	0.03			
2035	0.03			
2045	0.03			
2055	0.04			
. 2065	0.04			
2075	0.04			

Monthly Coefficients				
Month	Coefficient			
Jan	0.96			
Feb	1.05			
Mar	1.19			
Apr	1.07			
May	1.00			
Jun	0.89			
Jul	0.82			
Aug	0.93			
Sep	0.98			
Oct	0.97			
Nov	1.06			
. Dec	1.08			

Analysis Notes
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.
2. Base year is 2006.
3. AGR through 2045 is based on Spartanburg County projected population.
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue
growing faster than U.S. average.

 ID No.
 6(LNT)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Lower North Tyger (+Tim's Creek)

 Contact
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])
 sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	0.02			
2000	0.02			
2005	0.94			
2006	0.96			

	Data Sources	İ
1. Obt	ained from entity.	

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.01	0.02	0.93	0.96	
Feb	0.01	0.02	0.90	1.00	
Mar	0.02	0.01	1.00	0.91	
Apr	0.02	0.01	0.96	0.91	
May	0.02	0.01	0.90	0.95	
Jun	0.01	0.01	1.02	0.96	
Jul	0.01	0.01	1.02	0.97	
Aug	0.02	0.01	0.94	0.91	
Sep	0.01	0.02	0.88	0.94	
Oct	0.02	0.02	0.89	0.94	
Nov	0.02	0.02	0.82	1.01	
Dec	0.02	0.02	0.98	1.08	
*SEE ANALYSI	S NOTES: FLOWS	INCLUDE OTHER WW	TF FLOW	/S.	

Residential Customers Served						
Year>	Year?		Year?			
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale						

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.87%	Based on Spartanburg County Population Data			
Residential	0.82%	2046-2075. See analysis notes.			
Comm./Ind.					
Institutional		,			
Wholesale					

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

	Projected Flowrates (MGD)					
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.008673456	0.0082	0	0	• 0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015	1.04		
2025	1.13		
2035	1.24		
2045	1.35		
2055	1.46		
2065	1.59		
2075	1.72		

Monthly Coefficients				
Month	Coefficient			
Jan	0.97			
Feb	0.99			
Mar	0.97			
Apr	0.93			
May	0.92			
Jun	0.97			
Jul	0.91			
Aug	0.98			
Sep	1.01			
Oct	1.02			
Nov	1.10			
Dec	1.20			

Analysis Notes	:			
1. All SWS/SSSD AGRs	are based on Spartanburg Coun	ty population data unless	specific customer base data was availab	le.
2. Between 2000 and 2	2005 Tim's Creek WWTP flow	vs began being diverted	d to the Lower North Tyger WWTP.	
All historical flows for	or Tim's Creek WWTP were a	added to Lower North T	yger WWTP flows for projection pur	rposes.
3. Base year is 2006.		•••••		
4. AGR through 2045 is l	oased on Spartanburg County pr	ojected population.		
6. AGR for 2046-2075 re	duced to reflect a general slowe	r U.S. growth rate, but Se	outh Carolina is anticipated to continue	
growing faster than U	S. average.			
,				

 ID No.
 6(PM)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 Pacolet Mills
 Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
1995	0.08		
2000	0.06		
2005	0.10		
2006	0.14		

Data	Sources
1. Obtained fr	om entity.

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.09	0.08	0.08	0.15	
Feb	0.10	0.07	0.09	0.12	
Mar	0.08	0.08	0.12	0.13	
Apr	0.06	0.05	0.08	0.14	
May	0.06	0.04	0.08	0.13	
Jun	0.09	0.05	0.11	0.14	
Jul	0.05	0.05	0.10	0.14	
Aug	0.09	0.05	0.11	0.12	
Sep	0.07	0.07	0.09	0.14	
Oct	0.10	0.05	0.10	0.14	
Nov	0.12	0.06	0.11	0.16	
Dec	0.05	0.08	0.17	0.14	

Residential Customers Served				
Year>	Yes	ar?	1	Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional				
Wholesale				

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.87%	Based on Spartanburg County Population Data			
Residential	0.82%	2046-2075. See analysis notes.			
Comm./Ind.		,			
Institutional					
Wholesale					

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)						
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.008673456	0.0082	O.	0	0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015	0.15		
2025	0.16		
2035	0.18		
2045	0.19		
2055	0.21		
2065	0.23		
2075	0.25		

Monthly Coefficients			
Month	Coefficient		
Jan	1.08		
Feb	1.05		
Mar	1.10		
Apr	0.84		
May	0.77		
Jun	1.01		
Jul	0.85		
Aug	0.98		
Sep	0.95		
Oct	1.00		
Nov	1.19		
Dec	1.17		

Analysis Notes	
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was ava	ilable.
2. Base year is 2006.	
3. AGR through 2045 is based on Spartanburg County projected population.	
4. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continuous anticipated anticipated to continuous anticipated antic	nue
growing faster than U.S. average.	

ID No.

6(L-PC)-R

Category Type Public Water Supply

Return

Entity Facility SWS/SSSD

Contact

Landrum-Page Creek
Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995				
2000	0.29			
2005	0.39			
2006	0.35			

	Data Sources
1. Ob	tained from entity.

	Monthly Average Flow (mgd)				
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	196	0.30	0.37	0.42	
Feb		0.33	0.34	0.34	
Mar		0.38	0.41	0.32	
Apr		0.34	0.40	0.28	
May		0.24	0.34	0.32	
Jun		. 0.27	0.48	0.33	
Jul		0.25	0.45	0.33	
Aug		0.27	0.39	0.39	
Sep		0.29	0.36	0.35	
Oct	69-2	0.27	0.43	0.33	
Nov		0.29	0.33	0.33	
Dec		0.31	0.43	0.40	

	Residential Customers Served				
Year>	Ye	ar?	Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial				_	
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

	Projected Flowrates (MGD)					
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065	,					
2075						
AGR	0.008673456	0.0082	0	0	0	NA.

Annual Average Flow			
Year	Flow (mgd)		
2015	0.37		
2025	0.41		
2035	0.44		
2045	0.48		
2055	0.53		
2065	0.57		
2075	0.62		

Monthly Coefficients		
Month	Coefficient	
Jan	1.05	
Feb	0.99	
Маг	1.09	
Apr	0.99	
May	0.87	
Jun	1.03	
Jul	0.98	
Aug	1.01	
Sep	0.97	
Oct	0.99	
Nov	0.94	
Dec	1.09	

Analysis Notes	
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.	
2. This facility was previously owned and operated by the Town of Landrum. The town WWTP was sold in 1997 and the WTP	
was sold in 2004.	
3. SWS/SSSD does not have any data for 1995 for the Landrum Water Treatment Plant. The earliest data we have is 1996.	
4. Base year is 2006.	
5. AGR through 2045 is based on Spartanburg County projected population.	
6. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue	
growing faster than U.S. average.	
,	

 ID No.
 6(STR)-R
 Category
 Public Water Supply

 Entity
 SWS/SSSD
 Type
 Return

 Facility
 South Tyger River

 Contact
 Rebecca West (Email from Joel Jones [joel]ones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	0.02	
2000	0.00	
2005	0.04	
2006	0.05	

Data Sources	
1. Obtained from entity.	

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.01	0.00	0.04	0.05	
Feb	0.01	0.00	0.04	0.04	
Mar	0.02	0.00	0.04	0.05	
Apr	0.02	0.00	0.04	0.04	
May	0.02	- 0.00	0.04	0.04	
Jun	0.01	0.00	0.04	0.04	
Jul	0.01	0.00	0.04	0.05	
Aug	0.02	0.00	0.03	0.05	
Sep	0.01	0.00	0.04	0.04	
Oct	0.02	0.00	0.04	0.05	
Nov	0.02	0.00	0.05	0.06	
Dec	0.02	0.03	0.05	0.05	

Residential Customers Served							
Year>	Year?		r> Year?			ear?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)			
Residential							
Commercial	j						
Industrial							
Institutional							
Wholesale							

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	Based on Spartanburg County Population Data		
Residential	0.82%	2046-2075. See analysis notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035					1	
2045						
2055						
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	, 0.05			
2025	0.06			
2035	0.06			
2045	0.07			
2055	0.07			
2065	0.08			
2075	0.08			

Monthly Coefficients				
Month	Coefficient			
Jan	0.97			
Feb	0.90			
Mar	1.01			
Apr	0.96			
May	0.95			
Jun	0.89			
Jul	0.86			
Aug	0.98			
Sep	0.86			
Oct	1.04			
Nov	1.30			
Dec	1.27			

Analysis Notes	
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.	
2. Base year is 2006.	
3. AGR through 2045 is based on Spartanburg County projected population.	
4. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue	
growing faster than U.S. average.	

ID No.

6(SWS)-R

Category Туре

Public Water Supply

Return

Entity Facility SWS/SSSD

Contact

Spartanburg Water System / Simms
Rebecca West (Email from Joel Jones [joeljones@sws-sssd.org])

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995		
2000	0.0017	
2005	0.0006	
2006	0.0005	

	Data Sources	
1. Ob	tained from entity.	

	Monthly Average Flow (mgd)				
	Flow (mgd).				
Month	1995	2000	2005	2006	
Jan	0.0000	0.0012	0.0010	0.0008	
Feb	0.0000	0.0013	0.0006	0.0005	
Mar	0.0000	0.0017	0.0009	0.0004	
Apr	0.0000	0.0019	0.0006	0.0004	
May	0.0000	0.0010	0.0004	0.0002	
Jun	0.0000	0.0010	0.0003	0.0005	
Jul	0.0000	0.0011	0.0010	0.0005	
Aug	0.0000	0.0029	0.0003	0.0005	
Sep	0.0000	0.0033	0.0002	0.0003	
Oct	0.0000	0.0016	0.0006	0.0002	
Nov	0.0000	0.0014	0.0005	0.0011	
Dec	0.0000	0.0022	0.0006	0.0011	

Residential Customers Served				
Year>	Yes	ur?		Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential		,		
Commercial				
Industrial				
Institutional				
Wholesale				

Unaccounted Flow

AGR Determinations			
Category	AGR	Remarks	
Residential	0.87%	Based on Spartanburg County Population Data	
Residential	0.82%	2046-2075. See analysis notes.	
Comm./Ind.			
Institutional			
Wholesale			

Percer	itage of Flow
Category	Value
Res/Comm	
Ind/Inst	

	Projected Flowrates (MGD)					
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015	•					
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.008673456	0.0082	0	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	0.001	
2025	0.001	
2035	0.001	
2045	0.001	
2055	0.001	
2065	0.001	
2075	0.001	

Monthly Coefficients		
Month	Coefficient	
Jan	1.30	
Feb	0.91	
Mar	1.12	
Apr	0.94	
May	0.56	
Jun	0.68	
Jul	1.08	
Aug	1.02	
Sep	0.96	
Oct	0.77	
Nov	1.22	
Dec	1.44	

Analysis Notes
1. All SWS/SSSD AGRs are based on Spartanburg County population data unless specific customer base data was available.
2. Base year is 2006.
3. AGR through 2045 is based on Spartanburg County projected population.
4. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue
growing faster than U.S. average.

ID No. Entity

7-W

Category Туре

Public Water Supply Withdrawal

Facility

SJWD Water District SJWD WTP

Contact

Doug Waldrop [dwaldrop@sjwd.com]

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	2.88	
2000	5.95	
2005	5.81	
2006	6.44	

:	Data Sources
1. Ob	tained from entity.

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	3.10	5.23	5.74	4.86	
Feb	3.03	5.62	5.65	5.39	
Mar	2.70	4.46	4.97	5.84	
Apr	2.79	1.80	5.34	6.17	
May	3.10	7.15	5.93	7.03	
Jun	2.84	7.90	6.19	7.99	
Jul	2.60	6.98	5.99	7.32	
Aug	3.08	7.28	5.94	7.79	
Sep	2.84	6.62	6.82	7.11	
Oct	2.96	6.88	6.17	6.44	
Nov	3.16	5.97	5.73	5.94	
Dec	2.37	5.54	5.22	5.41	

Residential Customers Served					
Year> 2006 Year?					
Grouping	Customers	Flow (MGD)	Customers	Flow (MGD)	
Residential	17,335				
Non-Residenti	1,084				

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	3.11%	2007-2025. See analysis notes.			
Residential	1.66%	2026-2035. See analysis notes.			
Residential	0.82%	2036-2045. See analysis notes.			
Residential	0.82%	2046-2075. See analysis notes.			
Comm./Ind./In:	stit./Wholesale				

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)							
		Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025							
2035							
2045							
2055]						
2065							
2075							
AGR	0.02	0.01	0.01	#REF!		NA	

Annual Average Flow				
Year	Flow (mgd)			
2015	10.13			
2025	11.52			
2035	13.59			
2045	14.74			
2055	16.00			
2065	17.36			
2075	18.83			

Monthly Coefficients				
Month	Coefficient			
Jan	0.92 、			
Feb	0.95			
Mar	0.86			
Apr	0.79			
May	1.10			
Jun	1.16			
Jul	1.06			
Aug	1.13			
Sep	1.09			
Oct	1.06			
Nov	1.00			
Dec	0.87			

Analysis Notes
1. Projected flows are based on the forecasted SJWD peak month projections and historical data provided. Historical average and peak month
flows were used to develop peaking factors (1.20). Peaking factors were used to estimate average month flows from forecasted peak months
flows. Estaimated future average month flows for 2015 and 2025 were directly used in the analysis (AGR = 3.11%). Projections
for 2026 through 2035 were estimated using an AGR estimated from the projected peak month data from 2025 to 2030
(1.66%). Subsequent years reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to
continue growing faster than U.S. average.
2. For comparison purposes the Spartanburg County population growth rate is 0.87%.

ID No. Entity Facility 8-W

Category Туре

Public Water Supply

Withdrawal

City of Clinton City of Clinton WTP

Contact

Jimmy Miller [JMiller@ci.clinton.sc.us]

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	n/a			
2000	2.86			
2005	2.41			
2006	2.55			

Data	Sources
1. Obtained fr	om entity.

Monthly Average Flow (mgd)						
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan		2.39	2.08	2.23		
Feb		2.53	2.20	2.28		
Mar		2.52	2.11	2.28		
Apr		2.51	2.20	2.53		
May		3.16	2.50	2.71		
Jun	-	3.50	2.43	3.06		
Jul		3.15	2.64	2.97		
Aug		3.37	2.68	2.73		
Sep		3.01	3.02	2.53		
Oct		3.13	2.49	2.52		
Nov		2.64	2.42	2.42		
Dec		2.42	2.17	2.33		

Residential Customers Served						
Year>	200)6		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential	3,790					
Commercial	581			_		
Industrial	3					
Institutional						
Wholesale	3					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	1.00%	2007-2045. Based on Laurens County population data.		
Residential	0.82%	2046-2075. See Analysis Notes.		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

	Projected Flowrates (MGD)						
		Category					
Year	Residential	 Commercial 	Industrial	Institutional	Wholesale	"Unacc'ted	
2015				·			
2025							
2035							
2045							
2055							
2065					,		
2075							
AGR	0.01		**			NA	

Annual Average Flow		
Year	Flow (mgd)	
2015	2.79	
2025	3.08	
2035	3.40	
2045	3.75	
2055	4.07	
2065	4.41	
2075	4.79	

Monthly Coefficients			
Month	Coefficient		
Jan	0.86		
Feb	0.90		
Mar	0.88		
Apr	0.93		
May	1.07		
Jun	1.14		
Jul	1.12		
Aug	1.12		
Sep	1.10		
Oct	1.04		
Nov	0.96		
Dec	0.89		

Analysis Notes 1. Base year is 2006. 2. AGR for 2046-2075 years reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue growing faster than U.S. average.
1. Base year is 2006.
2. AGR for 2046-2075 years reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to
continue growing faster than U.S. average.
·

 ID No.
 9-R
 Category
 Public Water Supply

 Entity
 Richland County
 Type
 Return

 Facility
 Richland County Broad River WWTF
 Contact
 Joseph Rivers [RIVERSJ@rcgov.us]

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
1995			
2000	1.08		
2005	1.42		
2006	1.49		

	Data Sources	
1. Obta	ined from entity.	

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.00	1.22	1.55	1.55	
Feb	0.00	1.34	1.82	1.62	
Mar	0.00	1.17	1.32	1.54	
Apr	0.00	1.11	1.49	1.42	
May	0.00	0.97	1.43	1.44	
Jun	0.00	1.07	1.37	1.36	
Jul	0.00	0.92	1.47	1.40	
Aug	0.00	0.88	1.78	1.57	
Sep	0.00	1.21	1.50	1.75 estim	atec
Oct	0.00	0.97	1.33	1.48 estim	atec
Nov	0.00	1.08	1.25	1:51 estim	atec
Dec	0.00	1.05	0.78	1.21 estim	atec

Residential Customers Served					
Year>	Yes	r?	8.0	Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	1.01%	See Analysis Notes.		
Residential	0.82%	2046-2075. See analysis notes		
Comm./Ind.				
Institutional				
Wholesale				

Percentage of Flow				
Category	Value			
Res/Comm	_			
Ind/Inst				

Projected Flowrates (MGD)							
			Category				
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015							
2025			•				
2035						1	
2045							
2055							
2065							
2075			· · · · · · · · · · · · · · · · · · ·				
AGR	1.01%	0.0082	0	0	0	NA	

Annual Average Flow				
Year	Flow (mgd)			
2015	1.58			
2025	1.74			
2035	1.93			
2045	2.13			
2055	2.31			
2065	2.51			
2075	2.72			

Monthly Coefficients				
Month	Coefficient			
Jan	1.09			
Feb	1.20			
Маг	1.01			
Apr	1.01			
May	0.96			
Jun	0.96			
Jul	0.94			
Aug	1.04			
Sep	1.12			
Oct	0.94			
Nov	0.96			
Dec	0.78			

Analysis Notes

- 1. Facility is currently being expanded from 2.5 MGD to 6.0 MGD. Completion expected by Spring of 2008.
- Currently sold 5.0 MGD of future capacity (e.g. to developers).
- 3. Due to closesness to Lexington County, expansion of plant, and sold capacity an AGR based on both Richland County and Lexington County population data was developed. Richland County has an AGR of 0.76% while Lexington County has an AGR of 1.36%. Richland County may have a lower AGR due to being more densly developed prior to historical period used, with new growth occuring outside Columia urban area in Richland County. Thus areas of Richland County north of Columbia may see similar growth as Lexington.
- AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to continue growing faster than U.S. average.
- 5. Base year is 2005.
- 6. September 2006 through December 2006 estimated using the monthly percent change for 2000 and 2005.

 ID No.
 10(T)-R
 Category
 Public Water Supply

 Entity
 WCRSA
 Type
 Return

 Facility
 Taylors WWTP
 Ryan Danner {Eng Coop [engcoop@wcrsa.com]}
 Public Water Supply

crsa.com]}

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	2.81			
2000	3.36			
2005	3.57			
2006	3.25			

	Data Sources
1	. Obtained from entity.

	Monthly Average Flow (mgd)				
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	3.40	3.46	3.30	3.70	
Feb	3.20	3.60	3.50	3.20	
Mar	3.10	3.70	3.90	3.10	
Apr	2.40	3.60	4.10	3.10	
May	2.50	3.40	3.50	3.00	
Jun	2.70	3.20	4.10	3.20	
Jul	2.00	3.10	4.10	3.20	
Aug	3.50	3.30	3.30 /	3.20	
Sep	2.50	3.20	3.00	3.30	
Oct	3.00	3.20	3.20	3.20	
Nov	3.10	3.30	3.10	3.40	
Dec	2.30	3.30	3.70	3.40	

	Residential Customers Served					
Year>	Ye	ar?		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale						

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	2.36%	2007-2015. See Analysis Notes			
Residential	0.70%	2016-2045. See Analysis Notes.			
Residential	0.70%	2046-2075. See Analysis Notes			
Comm./Ind./Inst.					
Wholesale					

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045				,		
2055						
2065						
2075						
AGR	0.023629657			0	0	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	4.01			
2025	4.30			
2035	4.61			
2045	4.94			
2055	5.30			
2065	5.68			
2075	6.09			

Monthly Coefficients				
Month	Coefficient			
Jan	1.08			
Feb	1.04			
Mar	1.06			
Apr	1.01			
May	0.95			
Jun	1.01			
Jul	0.94			
Aug	1.03			
Sep	0.92			
Oct	0.98			
Nov	1.00			
Dec	0.97			

·	
Analysis Notes	
1. WCRSA anticipates that in the next ten years some of the discharge from the wastewater treatment plants will be reused as drinking water.	
2. Taylors Plant to be discontinued on August 2008. Flows will be directed to the Pelham WWTP.	
3. 2007-2015 AGR represents WCRSA-wide growth rate from 2000 to 2006 calculated from number of customers.	
2016-2075 AGR based on a rate slightly higher than the Greenville County population AGR for 2015-2035 (0.64%) as	
the WCRSA serves higher growth areas within the county.	
4. WCRSA = Western Carolina Regional Sewer Authourity.	
	ELLEGA C. COMPANION

 ID No.
 10(P)-R
 Category
 Public Water Supply

 Entity
 WCRSA
 Type
 Return

 Facility
 Pelham WWTP
 Contact
 Ryan Danner {Eng Coop [engcoop@wcrsa.com]}
 Yes

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	5.36	
2000	5.45	
2005	6.02	
2006	5.68	

Data Sources	
1. Obtained from entity.	

Monthly Average Flow (mgd)					
		Flow (mgd)			
Month	1995	2000	2005	2006	
Jan	6.40	5.60	5.40	6.50	
Feb	6.30	5.50	5.60	5.60	
Mar	5.50	6.10	6.60	5.90	
Apr	4.90	5.90	6.40	5.70	
May	4.70	5.30	5.70	5.50	
Jun	5.30	4.90	6.70	5.70	
Jul	4.70	4.90	7.00	5.20	
Aug	4.70	5.30	5.70	5.60	
Sep	5.20	5.30	5.10	5.80	
Oct	5.50	5.00	5.90	5.50	
Nov	5.90	5.50	5.40	5.50	
Dec	5.20	6.10	6.70	5.60	

Residential Customers Served					
Year>	Ye	ar?	Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale					

AGR Determnations				
Category	- AGR	Remarks		
Residential	2.36%	2007-2015. See Analysis Notes		
Residential	0.70%	2016-2045. See Analysis Notes.		
Residential	0.70%	2046-2075. See Analysis Notes		
Comm./Ind./Ins	st.			
Wholesale				

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)						
Category			100			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.023629657	0.007	0.007	0 .	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	7.00	
2025	7.51	
2035	8.05	
2045	8.63	
2055	9.26	
2065	9.92	
2075	10.64	

Monthly Coefficients		
Month	Coefficient	
Jan	1.07	
Feb	1.03	
Mar	1.07	
Apr	1.02	
May	0.94	
Jun	1.00	
Jul	0.96	
Aug	0.95	
Sep	0.95	
Oct	0.97	
Nov	0.99	
Dec	1.05	

analysis Notes	
. WCRSA anticipates that in the next ten years some of the discharge from the wastewater tro	
t. Taylors Plant to be discontinued on August 2008. Flows will be directed to the Pe	Iham WWTP. Not shown here. See Taylor Plant projection.
Pelham being expanded from 7.5 MGD to 22.5 MGD (nearly complete).	
. 2007-2015 AGR represents WCRSA-wide growth rate from 2000 to 2006 calculate	ted from number of customers.
2016-2075 AGR based on a rate slightly higher than the Greenville County popula	ation AGR for 2015-2035 (0.64%) as
the WCRSA serves higher growth areas within the county.	
6. WCRSA = Western Carolina Regional Sewer Authourity.	The second of th
;	
	······································

ID No.

10(GC)-R

Category Type Public Water Supply

Return

Entity Facility WCRSA Gilder Creek WWTP

Contact

Ryan Danner {Eng Coop [engcoop@wcrsa.com]}

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	2.57	
2000	3.25	
2005	3.79	
2006	3.71	

	Data Sources
1. Ob	tained from entity.

Monthly Average Flow (mgd)						
		Flow (mgd)				
Month	1995	2000	2005	2006		
Jan	3.20	3.40	3.80	4.20		
Feb	3.00	3.30	4.00	3.90		
Mar	2.90	3.70	3.90	3.70		
Apr	2.20	3.60	4.20	3.60		
May	2.30	3.30	3.60	3.50		
Jun	2.40	3.10	3.70	3.30		
Jul	2.20	3.00	3.80	3.40		
Aug	2.20	3.10	3.70	3.60		
Sep	2.40	3.10	3.40	3.60		
Oct	2.60	3.00	3.50	3.60		
Nov	2.90	3.20	3.60	4.00		
Dec	2.50	3.20	4.30	4.10		

	Residential Customers Served					
Year>	Ye	Year?		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale						

	AGR Determnations				
Category	AGR	Remarks			
Residential	2.36%	2007-2015. See Analysis Notes			
Residential	0.70%	2016-2045. See Analysis Notes.			
Residential	0.70%	2046-2075. See Analysis Notes			
Comm./Ind./Ins	st.				
Wholesale					

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)						
		Category				
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045		•				
2055						
2065						
2075						
AGR	0.023629657	0.007	0.007	0	0	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	4.58			
2025	4.91			
2035	5.26			
2045	5.64			
2055	6.05			
2065	6.49			
2075	6.95			

Monthly Coefficients					
Month Coefficient					
Jan	1.11				
Feb	1.07				
Mar	1.07				
Apr	1.01				
May	0.95				
Jun	0.94				
Jul	0.92				
Aug	0.94				
Sep	0.94				
Oct	0.96				
Nov	1.04				
Dec	1.05				

Analysis Notes
. WCRSA anticipates that in the next ten years some of the discharge from the wastewater treatment plants will be reused as drinking water.
2. Recently expanded to 8 MGD.
3. 2007-2015 AGR represents WCRSA-wide growth rate from 2000 to 2006 calculated from number of customers.
2016-2075 AGR based on a rate slightly higher than the Greenville County population AGR for 2015-2035 (0.64%) as
the WCRSA serves higher growth areas within the county.
I. WCRSA = Western Carolina Regional Sewer Authourity.

ID No.

10(DC)-R

Category Туре

Public Water Supply

Return

Entity Facility

WCRSA Durbin Creek WWTP

Contact

Ryan Danner {Eng Coop [engcoop@wcrsa.com]}

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	1.39			
2000	1.38			
2005	1.58			
2006	1.42			

	Data Sources
	Data Sources
1. OF	tained from entity

	Monthly Average Flow (mgd)					
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	1.70	1.50	1.50	1.80		
Feb	1.70	1.50	1.70	1.30		
Mar	1.40	1.70	1.90	1.20		
Apr	1.40	1.50	1.70	1.20		
May	1.40	1.20	1.50	1.20		
Jun	1.10	1.20	1.90	1.20		
Jul	1.10	1.20	1.60	1.20		
Aug	1.40	1.30	1.30	1.50		
Sep	1.20	1.40	1.30	1.50		
Oct	1.30	1.20	1.40	1.40		
Nov	1.60	1.50	1.30	1.60		
Dec	1.40	1.40	1.90	1.90		

	Residential Customers Served			
Year>	Ye	ur?		Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial		·		
Institutional				
Wholesale				

AGR Determnations			
Category	AGR	Remarks	
Residential	2.36%	2007-2015. See Analysis Notes	
Residential	0.70%	2016-2045. See Analysis Notes.	
Residential	0.70%	2046-2075. See Analysis Notes	
Comm./Ind./Inst.		,	
Wholesale			

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

		Projected Flowrates (MGD)				
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
ACP	0.023620657	0.007	0.007	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	1.75	
2025	1.87	
2035	2.01	
2045	2.15	
2055	2.31	
2065	2.48	
2075	2 66	

Monthly Coefficients		
Month	Coefficient	
Jan	1.13	
Feb	1.07	
Mar	1.07	
Apr	1.00	
May	0.92	
Jun	0.93	
Jul	0.88	
Aug	0.96	
Sep	0.94	
Oct	0.92	
Nov	1.05	
Dec	1.14	

Analysis Notes	
 WCRSA anticipates that in the next ten years some of the discharge from the wastewater treatment plants will be reused as drinking water. 	
2. Currently being expanded to 5.2 MGD. 18 month completion date from 8/2007.	
 2007-2015 AGR represents WCRSA-wide growth rate from 2000 to 2006 calculated from number of customers. 	
2016-2075 AGR based on a rate slightly higher than the Greenville County population AGR for 2015-2035 (0.64%) as	
the WCRSA serves higher growth areas within the county.	
4. WCRSA = Western Carolina Regional Sewer Authourity.	
	EUDIN 00-00-0-0-0-0

ID No. Entity 11-W

Category Type Public Water Supply

Withdrawal

Entity Facility City of Union City of Union WTP

Contact

Mary Jo Sanders [msanders@cityofunion.org]

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year Flow (mgd)			
1995	4.79		
2000	4.04		
2005	3.27		
2006	3.41		

Data Sources		
1. Obtained from entity.		

	Monthly Average Flow (mgd)				
	Flow (mgd) (1)				
Month	1995	2000	2005	2006	
Jan	4.50	3.96	2.72	3.03	
Feb	4.46	3.92	2.76	2.98	
Mar	4.48	3.76	2.85	3.01	
Apr	4.82	3.71	3.01	3.11	
May	5.04	4.29	3.25	3.68	
Jun	4.85	4.55	3.41	4.14	
Jul	5.44	4.36	3.68	4.17	
Aug	5.22	4.50	3.75	3.89	
Sep	4.70	4.03	3.78	3.22	
Oct	4.68	3.84	3.55	3.38	
Nov	4.51	3.87	3.38	3.14	
Dec	4.75	3.68	3.15	3.21	

Residential Customers Served				
Year>		2006		
Grouping	Customers	Flow (MGD)	% of Total	
Residential		0.79	28%	
Commercial		0.21	7%	
Industrial		0.51	18%	
Institutional		0.13	5%	
Wholesale		1.20	42%	

Unaccounted Flow

AGR Determnations			
Category	AGR	Remarks	
Residential	0.20%	See analysis notes.	
Commercial			
Industrial			
Institutional		,	
Wholesale			

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015	0.96	0.26	0.62	0.16	1.47	
2025	0.98	0.26	0.63	0.17	1.50	
2035	1.00	0.27	0.65	0.17	1.53	
2045	1.02	0.27	0.66	0.17	1.56	
2055	1.04	0.28	0.67	0.18	1.59	
2065	1.07	0.28	0.69	0.18	1.63	
2075	1.09	0.29	0.70	0.18	1.66	
AGR	0.00					NA .

Annual Average Flow				
Year	Flow (mgd)			
2015	3.47			
2025	3.54			
2035	3.62			
2045	3.69			
2055	3.76			
2065	3.84			
2075	3.92			

Monthly Coefficients				
Month	Coefficient			
Jan	0.91			
Feb	0.90			
Mar	0.90			
Apr	0.94			
May	1.05			
Jun	1.10			
. Jul	1.14			
Aug	1.12			
Sep	1.02			
Oct	1.00			
Nov	0.96			
Dec	0.95			

palysis Notes	
. 1995 withdrawals are based on converting Finished Water Processed to an Estimated Raw Water. Finished Water values were	***************************************
increased by 2%. The average of 2000, 2005, and 2006 Finished to Raw ratio is 2.1%.	
. Communications with staff indicated that drop off may continue to occur. The area was dependent on textiles which has been	
declining. Historical flows between 1995 and 2005 have declined 3.7% annually, however there was a 4 percent increase	
in 2006. The projected population for Union County is anticipated to continue declining by 0.2% bewteen 2005 and 2035.	
For the purposes of this analysis it is assumed that the county will eventually grow during the next 69 years. Thus	
a rate of 0.2% is utilized over the entire period.	
Base year is 2006.	

 ID No.
 11(M)-R
 Category
 Public Water Supply

 Entity
 City of Union
 Type
 Return

 Facility
 Meng Creek WWTP

 Contact
 Donnie Johnson and Mary Jo Sanders [msanders etityofunion.org]
 etityofunion.org]

HISTORICAL DATA SUMMARY

Annual Average Flow					
Year Flow (mgd)					
1995 0.36					
2000	0.28				
2005 0.26					
2006	0.25				

	Data Sources
1. Obt	ained from entity.

Monthly Average Flow (mgd)					
		Flow (mgd)			
Month	1995	2000	2005	2006	
Jan	0.33	0.32	0.28	0.26	
Feb	0.36	0.30	0.30	0.26	
Mar	0.30	0.27	0.28	0.25	
Apr	0.30	0.27	0.24	0.25	
May	0.28	0.26	0.24	0.25	
Jun	0.51	0.25	0.26	0.25	
Jul	0.35	0.25	0.23	0.24	
Aug	0.43	0.29	0.27	0.25	
Sep	0.36	0.31	0.24	0.23	
Oct	0.37	0.28	0.25	0.22	
Nov	0.39	0.30	0.25	0.25	
Dec	0.38	0.28	0.26	0.22	

I	Residential Customers Served						
Year>	Ye	ar?	Year?				
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)			
Residential							
Commercial							
Industrial							
Institutional	·						
Wholesale							

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.20%	See analysis notes.			
Commercial					
Industrial					
Institutional		·			
Wholesale					

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

Projected Flowrates (MGD)						
	Category					(4.50)
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.002	0	0	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	0.25	
2025	0.26	
2035	0.26	
2045	0.27	
2055	0.27	
2065	0.28	
2075	0.28	

Monthly Coefficients			
Month	Coefficient		
Jan	1.05		
Feb	1.07		
Mar	0.98		
Apr	0.93		
May	0.91		
Jun	1.08		
Jul	0.93		
Aug	1.07		
Sep	0.99		
Oct	0.97		
Nov	1.03		
Dec	0.99		

nalysis Notes
Communications with staff indicated that drop off may continue to occur. The area was dependent on textiles which has been declining.
Historical flows between 1995 and 2006 have declined 3.5% annually.
The projected population for Union County is anticipated to continue declining by 0.2% bewteen 2005 and 2035.
For the purposes of this study a conservative AGR of 0.2% is applied, assuming there will be some growth in the long-term
Base year is 2006.

 ID No.
 11(B)-R
 Category
 Public Water Supply

 Entity
 City of Union
 Type
 Return

 Facility
 Beltline WWTP

 Contact
 Donnie Johnson and Mary Jo Sanders [msanders@cityofunion.org]
 Facility (msanders@cityofunion.org)

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
1995	0.13		
2000	0.12		
2005	0.09		
2006	0.09		

1	Data Sources
1.4	Obtained from entity.

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.17	0.14	0.09	0.10	
Feb	0.17	0.14	0.10	0.09	
Mar	0.14	0.13	0.12	0.10	
Apr	0.12	0.12	0.10	0.08	
May	0.11	0.13	0.08	0.07	
Jun	0.15	0.13	0.15	0.07	
Jul	0.11	0.14	0.08	0.07	
Aug	0.14	0.11	0.07	0.08	
Sep	0.11	0.11	0.07	0.08	
Oct	0.12	0.09	0.08	0.08	
Nov	0.14	0.10	0.07	0.11	
Dec	0.13	0.09	0.10	0.09	

	Residential Customers Served					
Year>	Ye	ar?		Year?		
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)		
Residential						
Commercial						
Industrial						
Institutional						
Wholesale						

-Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.20%	See analysis notes.		
Commercial				
Industrial				
Institutional				
Wholesale				

Percentage of Flow			
Category	Value		
Res/Comm	,		
Ind/Inst			

I	Projected Flowrates (MGD)					
100	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075				l		
AGR	0.002	0	0	0	0	NA

Annual Average Flow			
Year	Flow (mgd)		
2015	0.09		
2025	0.09		
2035	0.09		
2045	0.09		
2055	0.09		
2065	. 0.10		
2075	0.10		

Monthly Coefficients			
Month	Coefficient		
Jan	1.13		
Feb	1.13		
Mar	1.12		
Apr	0.99		
May	0.91		
Jun	1.17		
Jul	0.93		
Aug	0.91		
Sep	0.88		
Oct	0.86		
Nov	0.98		
Dec	0.98		

nalysis Notes	
. Communications with staff indicated that drop off may continue to occur. The area was dependent on textiles which has been declining.	
Historical flows between 1995 and 2006 have declined 4.1% annually.	
The projected population for Union County is anticipated to continue declining by 0.2% bewteen 2005 and 2035.	
For the purposes of this study a conservative AGR of 0.2% is applied, assuming there will be some growth in the long-term	
2. Base year is 2006.	
8. This facility is not excluded as it is one of several operated by the City of Union. To maintain water balance between	
vithdrawals and returns this facility is included.	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ID No.

11(T)-R

Category Type Public Water Supply

Return

Entity Facility City of Union Tosch Creek WWTP

Contact

Donnie Johnson and Mary Jo Sanders [msanders@cityofunion.org]

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	1.85	
2000	1.20	
2005	1.19	
2006	0.99	

	Data Sources	
1. Ol	otained from entity.	

Monthly Average Flow (mgd)				
	Flow (mgd)			
Month	1995	2000	2005	2006
Jan	1.87	1.44	1.05	1.19
Feb	2.19	1.57	1.25	1.13
Mar	1.95	1.38	1.55	1.02
Apr	1.62	1.28	1.36	0.96
May	1.64	1.12	1.13	1.04
Jun	2.46	1.28	1.34	1.15
Jul	1.72	1.12	1.18	1.00
Aug	2.07	1.28	1.18	0.89
Sep	1.52	0.94	1.07	0.97
Oct	1.52	1.07	1.06	0.73
Nov	1.96	1.03	1.04	0.95
Dec	1.67	0.89	1.13	0.91

1	Residential Customers Served				
Year>	Ye	ar?		Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial	l		,		
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.20%	See analysis notes.		
Commercial				
Industrial				
Institutional				
Wholesale				

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)						
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.002	0	0	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	1.01	
2025	1.03	
2035	1.05	
2045	1.08	
2055	1.10	
2065	1.12	
2075	1 14	

Monthly Coefficients		
Month	Coefficient	
Jan	1.07	
Feb	1.17	
Mar	1.13	
Apr	1.01	
May	0.95	
Jun	1.17	
Jul	0.96	
Aug	1.02	
Sep	0.87	
Oct	0.83	
Nov	0.93	
Dec	0.88	

Analysis Notes
1. Communications with staff indicated that drop off may continue to occur. The area was dependent on textiles which has been declining.
Historical flows between 1995 and 2006 have declined 5.5% annually.
The projected population for Union County is anticipated to continue declining by 0.2% bewteen 2005 and 2035.
For the purposes of this study a conservative AGR of 0.2% is applied, assuming there will be some growth in the long-term.
2. Base year is 2006.
·

ID No. Entity Facility 12-R

Category Type

Public Water Supply

Return

Chester Sewer District
Sandy River WWTF

Contact

Phillip Thompson-King [csd1@truvista.net]

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year Flow (mgd)			
1995	1.04		
2000	1.18		
2005	0.87		
2006	0.87		

	Data Sources
1. Obtai	ned from entity.

	Monthly Av	erage Flow (mgd)		
	Flow (mgd)			
Month	1995	2000	2005	2006
Jan	1.21	1.49	0.81	1.50
Feb	1.54	1.40	1.08	1.00
Mar	1.20	1.27	1.33	0.88
Apr	0.84	1.15	0.91	0.76
May	0.85	1.00	0.79	0.72
Jun	1.19	1.02	1.00	0.77
Jul	0.81	1.05	0.69	0.63
Aug	0.97	1.12	0.80	0.73
Sep	0.84	1.55	0.56	0.82
Oct	1.02	1.06	0.65	0.71
Nov	1.18	0.93	0.71	1.03
Dec	0.87	1.06	1.09	0.95

	Residential Customers Served			
Year>	Yes	ar?	46	Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional				
Wholesale				

Unaccounted Flow

		AGR Determnations
Category	AGR	Remarks
Residential	0.44%	Based on Chester County population data.
Commercial		
Industrial		
Institutional		
Wholesale		

	ge of Flow
Category	Value
Res/Comm	
Ind/Inst	

Projected Flowrates (MGD)						
		Category				
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
. 2035						
2045						
2055						
2065						
2075						
AGR	0.004365369	0	0	0	0	NA

Annual Ave	erage Flow
Year	Flow (mgd)
2015	0.91
2025	0.95
2035	0.99
2045	1.04
2055	1.08
2065	1.13
2075	1.18

Monthly Coeff	icients
Month	Coefficient
Jan	1.27
Feb	1.26
Mar	1.19
Apr	0.93
May	0.85
Jun	1.01
Jul	0.80
Aug	0.91
Sep	0.93
Oct	0.86
Nov	0.98
Dec	1.02

Analysis Notes 1. Staff indicated that this WWTP serves an area considered a very low growth area. This is consistent with the Chester County population AGR.	
1. Staff indicated that this WWTP serves an area considered a very low growth area. This is consistent with the Chester County population AGR.	

ID No.
Entity
Facility

13-W

Category Type

Public Water Supply Withdrawal

Facility

Town of Tryon

Contact

Tryon WTP
Betty Jones [bettyhjones@hotmail.com]

HISTORICAL DATA SUMMARY

Annual Average Flow	
Year	Flow (mgd)
1995	0.70
2000	0.72
2005	0.46
2006	0.55

Data Sources
1. Obtained from entity.
2. NC-DWR Water Supply Plan

Monthly Average Flow (mgd)						
2.4	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	0.83	0.67	0.44	0.46		
Feb	0.69	0.68	0.46	0.48		
Mar	0.70	0.66	0.45	0.51		
Apr	0.74	0.73	0.45	0.59		
May	0.68	0.79	0.45	0.54		
Jun	0.70	0.92	0.53	0.65		
Jul	0.66	0.79	0.45	0.54		
Aug	0.80	0.75	0.50	0.57		
Sep	0.66	0.65	0.50	0.59		
Oct	0.65	0.70	0.45	0.59		
Nov	0.63	0.66	0.45	0.52		
Dec	0.64	0.70	0.44	0.53		

Residential Customers Served						
Year>	2002 2007					
Grouping	Customers	Flow (MGD)	Customers	Flow (gpd)		
Residential	1892	0.309	2236			
Commercial	0	0	0			
Industrial	2	0.069	2			
Institutional	0	0	0			
Unaccounted	0	0.276	0			
Total	1894	0.654	2238			

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	1.56%	2007-2035. AGR based on NC-DWR Water Supply Planning data for 2002 to 2030.			
Industrial		Same as resiential			
System Processes		Same as resiential			
Unaccouted		Same as resiential			
Residential	0.99%	2036-2045. Based on Polk County projected population.			
Residential	0.82%	2046-2075. See analysis notes.			

Percentage	of Flow
Category	Value
Res/Comm	
Ind/Inst	

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	System	Unacc'ted
2015	0.38		0.08		0.02	0.31
2025	0.44		0.10		0.03	0.37
2035	0.51		0.11		0.03	0.43
2045	0.57		0.13		0.04	0.47
2055	0.62		0.14		0.04	0.51
2065	0.67	1 1	0.15		0.04	0.56
2075	0.72		0.16		0.05	0.60
AGR	0.02				0.01	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	0.80			
2025	0.93			
2035	1.09			
2045	1.20			
2055	1.30			
2065	1.41			
2075	1.53			

Monthly Coefficients				
Month	Coefficient			
Jan	0.97			
Feb	0.95			
Mar	0.95			
Apr	1.03			
May	1.00			
Jun	1.14			
Jul	1.00			
Aug	1.08			
Sep	1.00			
Oct	0.99			
Nov	0.93			
Dec	0.95			

Analysis Notes	
1. No class break downs for custo	mer served. 1 industrial customer with sewer.
2. AGR is staggered over time. S	ee AGR remarks. See Note 6.
3. Projected flow rates by custom	er category are back calculated from the Annual Average Flow rate using NC-DWR Water Supply Planning data.
4. Annual average flow is based of	on a base year of 2002.
5. Very little room for growth.	
AGR for 2046-2075 years redu	ced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to
contine growing faster than U.S.	average.

ID No.	13-R	Category	Public Water Supply	
Entity	Town of Tryon	Туре	Return	
Facility	Tryon WWTP		•	
Contact	Debra Bradely			

HISTORICAL DATA SUMMARY

Annual Average Flow					
Year Flow (mgd)					
1995	0.72				
2000	0.44				
2005	0.42				
2006	0.33				

Data Sources
1. Obtained from entity.
2. NC-DWR Water Supply Plan

	Monthly Average Flow (mgd)						
		Flow (mgd)					
Month	1995	2000	2005	2006			
Jan	0.68	0.46	0.43	0.39			
Feb	0.76	0.47	0.44	0.34			
Mar	0.79	0.54	0.48	0.35			
Apr	0.69	0.47	0.48	0.32			
May	0.74	0.46	0.40	0.34			
Jun	0.79	0.43	0.50	0.34			
Jul	0.51	0.40	0.50	0.30			
Aug	0.79	0.46	0.40	0.31			
Sep	0.72	0.39	0.36	0.32			
Oct	0.78	0.41	0.34	0.32			
Nov	0.74	0.43	0.34	0.32			
Dec	0.65	0.38	0.35	0.34			

Residential Customers Served				
Year->	2002	2005	2006	
Grouping	Customers	Customers	Customers	
Residential	929	1,066	1,083	
Commercial				
Industrial	1	1	1	
Institutional				
Wholesale				

AGR Determnations		
Category	AGR	Remarks
Residential	1.59%	2007-2015. Based on change in residential connection from 2005 to 2006.
Residential	0.99%	2016-2045. Based on Polk County projected population.
Residential	0.82%	2046-2075. See analysis notes
Institutional		
Wholesale		

Percentage of Flow			
Category	Value		
Res/Comm			
Ind/Inst			

	Project	ed Flowrates (MC				
	100	C _i	tegory			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065			,			
2075						
AGR	0.015947467			0	0	NA

Annual Average Flow		
Year Flow (mgd)		
2015	0.38	
2025	0.42	
2035	0.47	
2045	0.51	
2055	0.56	
2065	0.60	
2075	0.66	

Monthly Coefficients		
Month	Coefficient	
Jan	1.05	
Feb	1.05	
Mar	1.13	
Apr	1.03	
May	1.01	
Jun	1.07	
Jul	0.93	
Aug	1.01	
Sep	0.93	
Oct	0.95	
Nov	0.95	
Dec	0.90	

nalysis Notes	
Very little room for growth.	
Very little room for growth. AGR is staggered downward over time. See AGR remarks.	
Base year is 2006.	
AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine	
growing faster than U.S. average.	

ID No.

14-W

Category Type

Public Water Supply

Withdrawal

Entity Facility Greer CPW (Commission of Public Works)

Contact

City of Greer CPW WTP
Wendell Woodward (Jerry Balding [jerry.balding@greercpw.com])

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1998	6.74	
2000	6.64	
2005	7.18	
2006	7.96	

1	Data Sources	
1. Obt	ained from entity.	

	Monthly Av	verage Flow (mgd)				
		Flow (mgd)				
Month	1998	2000	2005	2006		
Jan	5.31	5.30	6.14	6.02		
Feb	5.31	5.44	6.10	6.15		
Mar	5.48	5.54	5.80	6.95		
Apr	5.79	5.78	6.53	8.10		
May	7.34	7.30	7.37	7.82		
Jun	7.83	8.53	7.28	10.40		
Jul	8.90	8.77	8.15	9.74		
Aug	8.15	7.76	8.19	9.81		
Sep	7.78	6.57	9.32	8.37		
Oct	6.85	7.06	7.81	8.00		
Nov	6.30	6.00	7.16	7.32		
Dec	5.84	5.68	6.28	6.78		

Residential Customers Served				
Year>	Ye	ar?	,	Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional				
Wholesale				

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.96%	Based on combined Greenville County and Spartanburg County population data.		
Commercial				
Industrial				
Institutional				
Wholesale				
Residential	0.82%	2046-2075. See analysis notes		

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

Projected Flowrates (MGD)						
100	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.01					NA

Annual Average Flow					
Year	Flow (mgd)				
2015	8.67				
2025	9.54				
2035	10.49				
2045	11.55				
2055	12.53				
2065	13.59				
2075	14.75				

Monthly Coefficients				
Month	Coefficient			
Jan	0.80			
Feb	0.81			
Mar	0.83			
Apr	0.91			
May	1.05			
Jun	1.19			
Jul	1.25			
Aug	1.19			
Sep	1.12			
Oct	1.04			
Nov	0.94			
Dec	0.86			

Analysis Notes	
1. 2007-2035 AGR is based on combined Greenville County and Spartanburg County population data. See note 5.	
popluation AGR for 2040-2050.	
2. Base year is 2006.	
3. Current permitted	
4. Greer supplies water to the Blue Ridge Water District, which has no treatment facilities.	
5. AGR for 2046-2075 years reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to	
contine growing faster than U.S. average.	
	:

ID No.

14-R

Category Туре

Public Water Supply

Entity **Facility**

Return

Contact

Greer CPW (Commission of Public Works)

Maple Creek WWTP (Include Historical South Tyger)

Mike Watson [mike.watson@greercpw.com]

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	2.16			
2000	1.89			
2005	2.06			
2006	1.91			

i	Data Sources
1. C	Obtained from entity.

	Monthly Average Flow (mgd)						
		Flow (mgd)					
Month	1995	2000	2005	2006			
Jan	2.47	2.01	2.08	1.92			
Feb	2.54	2.14	2.13	1.89			
Mar	2.34	2.32	2.40	1.85			
Apr	1.99	2.04	2.31	1.88			
May	1.95	1.87	2.08	1.91			
Jun	1.88	1.81	2.27	1.91			
Jul	1.74	1.71	2.34	1.81			
Aug	2.07	1.76	1.92	1.97			
Sep	1.91	1.77	1.74	1.93			
Oct	2.42	1.73	1.87	1.88			
Nov	2.50	1.75	1.69	1.96			
Dec	2.05	1.82	1.94	1.97			
*SEE ANALYS	*SEE ANALYSIS NOTES: FLOWS INCLUDE OTHER WWTF FLOWS.						

1	Residential Customers Served						
Year>	Year?		Year?				
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)			
Residential							
Commercial	ł						
Industrial							
Institutional							
Wholesale							

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.96%	Based on combined Greenville County and Spartanburg County population data.			
Commercial					
Industrial					
Institutional					
Wholesale					
Residential	0.82%	2046-2075. See analysis notes.			

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

		Projected F	lowrates (MGD)				
Year		Category					
	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted	
2015				i			
2025							
2035							
2045							
2055							
2065							
2075							
AGR	0.009598447	0	0	0	0	NA NA	

Annual Average Flow					
Year	Flow (mgd)				
2015	2.08				
2025	2.29				
2035	2.52				
2045	2.77				
2055	3.00				
2065	3.26				
2075	3.54				

Monthly Coefficients				
Month	Coefficient			
Jan	1.06			
Feb	1.08			
Mar	1.11			
Apr	1.03			
May	0.98			
Jun	0.98			
Jul	0.95			
Aug	0.96			
Sep	0.92			
Oct	0.98			
Nov	0.98			
Dec	0.97			

Analysis Notes
1. South Tyger WWTP was discontinued in April 2000. Flows were redirected to the Maple Creek WWTP.
Historic South Tyger flows are included in the Maple Creek flows shown above.
2. Industrial comprises 10% to 12% of the customer base.
3. Current permitted capacity is 4.5 MGD. Anticipate updating to 5.0 MGD. Future expansion to 7.5 MGD then 10.0 MGD.
4. 2007-2035 AGR is based on combined Greenville County and Spartanburg County population data.
F ACD 6 v 004C 007F vs duced to vs float a page vs later vs H C avenue h vs to but Court in a is not invested to continu
5. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine
growing faster than U.S. average.
•

ID No.	15-R	Category	Public Water Supply	
Entity	Gaffney Board of Public Works	Туре	Return	
Facility	Clary WWTF			
Contact	Kim		•	
			•	

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
1995	2.71			
2000	2.71			
2005	2.77			
2006	2.43			

<u>'</u>	Data Sources
1. Ol	otained from entity.

Monthly Average Flow (mgd)							
		Flow (mgd)					
Month	1995	2000	2005	2006			
Jan	3.24						
Feb	2.98		i				
Mar	2.95						
Apr	2.55						
May	2.61						
Jun	3.04						
Jul	2.21						
Aug	2.87						
Sep	2.67						
Oct	2.80						
Nov	3.05						
Dec	2.55						

	Percent of Water Demand Treated at a WWTP - Both WWTPs						
Year	Residential	Commercial	Industrial	Wholesale	Sprinkler	Inter-dept	
2005	70%	95%	80%	0%	0%	95%	
2015	75%	95%	80%	0%	0%	95%	
2025	80%	95%	80%	0%	0%	95%	
2035	80%	95%	80%	0%	0%	95%	
2045	80%	95%	80%	0%	0%	95%	
2055	80%	95%	80%	0%	0%	95%	
2065	80%	95%	80%	0%	0%	95%	
2075	80%	95%	80%	0%	0%	95%	
Source: Gaffi	Source: Gaffney Board of Public Works, Long Range Planning Study 2005. Table 3-1.						

I & I
Flow %
32%

Percent of Total Wastewater Treated at Clary WWTP						
Year	Res	Comm	Ind	Wholesale	Sprinkler	Inter-dept
2005	45%	55%	70%	0%	0%	55%
2015	50%	62%	70%	0%	0%	62%
2025	55%	70%	70%	0%	0%	70%
2035	55%	70%	70%	0%	0%	70%
2045	55%	70%	70%	0%	0%	70%
2055	55%	70%	70%	0%	0%	70%
2065	55%	70%	70%	0%	0%	70%
2075	55%	70%	.70%	0%	0%	70%
Source: Gaffr	ney Board of Pub	olic Works, Lor	ng Range Plann	ing Study 2005. Tal	ole 3-2	

		Proje	cted Flowrates (MGD)				
			Categ	ory		6.0	
Year	Residential	Commercial	Industrial	Wholesale	Sprinkler	Inter-dept	1/1
2015	0.63	0.43	2.00			0.16	1.48
2025	0.82	0.54	2.21			0.20	1.73
2035	0.90	0.59	2.44			0.23	1.91
2045	1.00	0.66	2.69			0.25	2.12
2055	1.10	0.72	2.98		_	0.27	2.34
2065	1.22	0.80	3.29			0.30	2.58
2075	1.34	0.88	3.63			0.34	2.85
AGR	NA	NA NA	NA .	NA	NA	NA	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	4.71			
2025	5.50			
2035	6.08			
2045	6.71			
2055	7.41			
2065	8.19			
2075	9.05			
*See Note 1				

Monthly Coefficients		
Month	Coefficient	
Jan	1.20	
Feb	1.10	
Mar	1.09	
Apr	0.94	
May	0.96	
Jun	1.12	
Jul	0.82	
Aug	1.06	
Sep	0.99	
Oct	1.03	
Nov	1.13	
Dec	0.94	

Analysis Notes					
					VW Flow Treated at Clary.
I and I was estimated	using 32% of total v	vastewater flow ge	nerated. This method is	s consitent with the	e method used in Phase I, but results for
2015 and 2025 are sig	nificantly higher tha	n the projected was	stewater flow in Gaffne	y Board of Public \	Work's Long Range Planning Study, 200
2. Comparison of Differen		***************************************			
	Year	Planning Study	Estimated Here	Difference	
DOCUMENTO CONTROL CONT	. 2015	3.05	4.71	1.66	
	2025	3.43	5.50	2.07	

^{3.} Note that the resultant higher return flows are a result a higher projections for withdrawals from Phase I. In Phase I the method used to calculate water withdrawals differed slightly from the Gaffney Planning Study resulting in higher Withdrawals. As Returns are based on a percentage of withdrawals the returns are also higher in Phase I and II, despite the methodology for returns being consistent with the Gaffney Planning Study.

ID No.	16-R	Category	Industrial		
Entity	Milliken	Туре	Return		
Facility	Dewey				
Contact	Lee Slusher [Lee.Slusher@milliken.com]				
				<u> </u>	

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	0.19			
2000	0.19			
2005	0.21			
2006	0.19			

Data Sources:
Obtained from South Carolina
Department of Health and
Environmental Control
2. Source: Bureau of Economic Analysis,
U.S. Department of Commerce.

Monthly Average Flow (mgd)				
	Flow (mgd)			
Month	1995	2000	2005	2006
Jan	0.26	0.21	0.21	0.22
Feb	0.22	0.18	0.16	0.20
Mar	0.23	0.24	0.18	0.21
Apr	0.17	0.24	0.18	0.14
May	0.16	0.19	0.20	0.20
Jun	0.25	0.21	0.21	0.24
Jul	0.11	0.17	0.29	0.24
Aug	0.19	0.19	0.21	0.23
Sep	0.17	0.23	0.18	0.19
Oct	0.21	0.15	0.23 .	0.11
Nov	0.18	0.18	0.22	0.18
Dec	0.11	0.13	0.21	0.15

PROJECTION SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
2015	0.19		
2025	0.19		
2035	0.19		
2045	0.19		
2055	0.19		
2065	0.19		
2075	0.19		

Industry Sector: Chemical

0.00%

remained constant. Therefore, the growth rate is set to zero percent change.

AGR

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	1.16	Jul	1.03	
Feb	0.98	Aug	1.06	
Mar	1.09	Sep	0.98	
Apr	0.93	Oct	0.90	
May	0.96	Nov	0.97	
Jun	1.16	Dec	0.78	

Inflation AGR:

PROJECTIONS ANALYSIS

-9.15%

Analysis Notes
The Whitestone Packaging Plant never discharges into river system. Evaporates from pond.
2. the New Prospect Facitlity discharges within Phase II area, but is currently closed.
3. Lockhart Dam is a net zero situation.
Dewey Facility discharges into Lawson Fork Creek. Data provided above.
5. The current SC GSP AGR shows a significant decline in this sector, however historical discharges for this entityt have

SC GSP AGR:

6. Their SIC code is 2869 = INDUST. ORGANIC CHEMICALS NEC. This corresponds to an NAICS code of 325.

 ID No.
 17-R
 Category
 Industrial

 Entity
 Cone Mills Corp
 Type
 Return

 Facility
 Carlisle Plant
 Contact
 Erica A. Johnson [JOHNSOEA@dhec.sc.gov]
 Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
1995	1.61		
2000	2.56		
2005	1.50		
2006	1.21		

Data Sources:	
1. Obtained from South Carolina	
Department of Health and	
Environmental Control	
2. Source: Bureau of Economic An	alysis,
U.S. Department of Commerce	

	Monthly Average Flow (mgd)				
	V.	Flow (mgd)			
Month	1995	2000	2005	2006	
Jan	1.88	1.85	1.28	1.53	
Feb	1.70	2.52	1.58	1.33	
Mar	1.57	2.91	1.72	1.21	
Apr	1.89	3.49	2.05	0.98	
May	1.39	2.82	1.77	1.07	
Jun	1.49	3.53	1.26	1.13	
Jul	1.35	1.89	1.13	1.07	
Aug	1.81	2.33	1.51	1.43	
Sep	1.37	2.14	1.44	1.23	
Oct	1.76	2.11	1.21	1.09	
Nov .	1.49	2.40	1.59	1.12	
Dec	1.66	2.74	1.50	1.33	

PROJECTION SUMMARY

Annual Average Flow				
Year Flow (mgd)				
2015	1.21			
2025	1.21			
2035	1.21			
2045	1.21			
2055	1.21			
2065	1.21			
2075	1.21			

0.00%

AGR

Monthly Coefficients						
Month Coefficient Month Coefficient						
Jan	1.00	Jul	0.80			
Feb	1.05	Aug	1.05			
'Mar 1.06		Sep	0.92			
Apr	Apr 1.18		0.91			
May 1.01		Nov	0.96			
Jun	1.02	Dec	1.05			

Inflation AGR:

PROJECTIONS ANALYSIS

-5.67%

Analysis Notes	
1. Monthly flows for Jan	uary 1995 through June 1997 and December 2002 through December 2006 are actuals.
2. Monthly flows for all of	other months is estimated from peak flows and monthly peaking factors estimated from data.
3. SIC CODE : 2261 =	FINISH OF BRD WOV FAB OF COTTN . Converts to NAICS of 313311 Broadwoven Fabric
Finishing Mills (pt) .	Therefore, NAICS code 313 is used from GSP table.
4. For this analysis it is	assumed flows will not continue to decline.

SC GSP AGR:

ID No.	17-W	Category	Industrial		
Entity	Cone Mills - Water	Туре	Withdrawal		•
Facility	Carlisle Plant			1	
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]				

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	2.17			
2000	1.50			
2005	1.58			
2006	1.29			

Data Sources:
Obtained from South Carolina
Department of Health and
Environmental Control
2. Source: Bureau of Economic Analysis,
U.S. Department of Commerce.

Monthly Average Flow (mgd)						
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	2.88		1.68	1.40		
Feb	2.50	2.57	1.74	1.56		
Mar	1.36	3.07	1.77	1.51		
Apr	2.25	2.50	1.73	1.19		
May	2.02		1.62	1.35		
Jun	2.43		1.69	1.56		
Jul	1.87	2.07	1.28	1.11		
Aug	2.64		1.89	1.52		
Sep	2.26	2.51	1.40	0.92		
Oct	1.75	2.47	1.51	1.22		
Nov	2.31	2.85	1.56	1.31		
Dec	1.76		1.12	0.85		

PROJECTION SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
2015	1.29		
2025	1.29		
2035	1.29		
2045	1.29		
2055	1.29		
2065	1.29		
2075	1.29		

0.00%

AGR

Monthly Coefficients						
Month Coefficient Month Coefficien						
Jan	1.16	Jul	0.84			
Feb	1.15	Aug	1.19			
Mar 0.97 Apr 1.02 May 1.00		Sep	0.88			
		Oct	0.90			
		Nov	1.02			
Jun	1.13	Dec	0.73			

Analysis Notes 1. Combined water flows for the Carlisle Plan	t (SC-DHEC water and indu	etrial designation)	
2. SIC CODE: 2261 = FINISH OF BRD WO			1 Broadwoven Fabric
Finishing Mills (pt) . Therefore, NAICS cod	***************************************		
3. For this analysis it is assumed flows will no			
······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······································	
		······································	

ID No. Entity

18-W

Category Type

Public Water Supply Withdrawal

Facility

City of Columbia

Contact

Columbia Canal WTP
Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year Flow (mgd)				
1995	27.22			
2000	30.82			
2005	32.29			
2006	33.10			

D . 0	
Data Sources	
Ditti Boures	
1 Observed from CC DUEC	
1 Obtained from SC DUEC	

	Monthly A	verage Flow (mgd)		
		Flow (mgd)		
Month	1995	2000	2005	2006
Jan	21.74	24.22	28.76	27.72
Feb	20.57	24.86	27.34	26.58
Mar	23.79	24.36	25.27	27.48
Apr	30.78	27.85	30.05	34.21
May	35.92	40.61	31.05	36.42
Jun	28.06	40.07	32.24	41.79
Jul	31.41	40.44	37.32	43.89
Aug	31.97	38.97	31.47	36.56
Sep	27.78	28.91	44.64	29.64
Oct	25.31	29.57	35.14	36.28
Nov	22.44	25.76	34.77	30.24
Dec	26.85	24.17	29.41	26.34

Year>	Residential Customers	2006	
Grouping	Population	Flow (gpd)	Taps
Residential	292,677		117,071
Non-Residential		·	10,712
Commercial/Industrial			
Institutional			
Wholesale			

Unaccounted Flow

AGR Determnations			
Category	AGR	Remarks	
Residential	1.71%	2007-2025. See analysis notes.	
Residential	0.95%	2026-2045. See analysis notes.	
Industrial			
Institutional			
Wholesale			
Residential	0.65%	2046-2075. See analysis notes.	

Percentage	of Flow
Category	Value
Res/Comm	
Ind/Inst	

Projected Flowrates (MGD)						
	Category					
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015			•			
2025	i					
2035						
2045						
2055						
2065						
2075						
AGR	0.02	0.01				NA

Annual Average Flow			Monthly Co	efficients
Year	Flow (mgd)		Month	Coefficient
2015	38.56	1.71%	Jan	0.83
2025	45.70	1.71%	Feb	0.80
2035	50.23	1.45%	Mar	0.82
2045	55.21	1.32%	Apr	1.00
2055	58.91	1.18%	May	1.17
2065	62.85	1.09%	Jun	1.15
2075	67.06	1.03%	Jul	1.24
			Aug	1.13
			Sep	1.06
			Oct	1.02
			Nov	0.91
			Dec	0.87

Analysis Notes

- 1. The growth rate of actual withdrawals from 1995 to 2006 was 1.94% and 2000 to 2006 was 2.45%.
- 2. The 2007-2025 AGR is based on the projections provided by the City f Columbia (1.7%). The 2026-2075 AGR is based professional judgement and the combined Lexington County and Richland County population AGR of 1.01%.
- Base year is 2006.
- 4. The City of Columbia operates the Columbia Canal WTP which is withdrawals water from the Broad River Diversion Canal. The City also treats water at the Columbia Metro WWTP, however this facility is located approximately 6 miles downstreem of the Broad River Diversion Canal on the Congaree River, thus is outside of the study basin. Therefore the Metro WWTP is excluded from this study.
- AGR for 2046-2075 years reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine growing faster than U.S. average.

m	No.

Category

Public Water Supply Return

Entity Facility (Lockhart WTF) Total Environmental Solutions, Inc. Type

Contact

Lockhart Treatment Facility
Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	0.17	
2000	0.09	
2005	0.09	
2006	0.29	

Data Sources	
 Obtained from South Carolina 	ì
Department of Health and	
Environmental Control	

	Monthly Average Flow (mgd)				
		Flow (mgd)			
Month	1995	2000	2005	2006	
Jan	0.19	0.12	0.08	0.09	
Feb	0.17	0.11	0.10	0.09	
Mar	0.14	0.10	0.13	0.07	
Apr	0.12	0.10	0.11	0.07	
May	0.19	0.07	0.09	0.08	
Jun	0.28	0.07	0.11	0.08	
Jul	0.18	0.07	0.09	0.08	
Aug	0.19	0.08	0.09	0.07	
Sep	0.14	0.13	0.07	0.09	
Oct	0.16	0.07	0.08	0.07	
Nov	0.18	0.07	0.08	1.22	
Dec	0.15	0.07	0.11	1.42	

Residential Customers Served				
Year>	Ye	ar?		Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial			T	
Institutional				
Wholesale				

Unaccounted Flow

AGR Determnations			
Category	AGR	Remarks	
Residential	0.20%	See analysis notes.	
Commercial			
Industrial			
Institutional			
Wholesale			

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

	i	Projected	Flowrates (MGD)	1		
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
, 2015						
2025						
2035		ŕ				
2045			•			
2055						<u> </u>
2065						
2075						
AGR	0.002	0	, 0	0	0	NA

Annual Average Flow				
Year	Flow (mgd)			
2015	0.29			
2025	0.30			
2035	0.30			
2045	0.31			
2055	0.32			
2065	0.32			
2075	0.33			

Monthly Coefficients				
Month	Coefficient			
Jan	1.10			
Feb	1.12			
Mar	1.09			
Apr	0.99			
May	0.92			
Jun	1.18			
Jul	0.94			
Aug	0.97			
Sep	0.98			
Oct	0.86			
Nov	0.89			
Dec	0.95			

· · · · · · · · · · · · · · · · · · ·
Analysis Notes
1. The Union County population is anticipated to decline between 2005 and 2035 (i.e0.20%). For this study a conservative
AGR of 0.2% is applied for the entire 69 year period.
2. Year 2006 is excluded from Monthly coefficient calculations due to apparent increase in pumping at end of 2006.
This skews November and December coefficients if included.

ID No.

Category Type

Public Water Supply

Withdrawal

Entity Facility 23-W Town of Whitmire

Contact

Town of Whitmire WTP

Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow Year Flow (mgd)		
2000	0.68	
2005	0.64	
2006	0.57	

Data Sources
1. Obtained from SC-DHEC.

	Monthly Average Flow (mgd)				
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.62	0.70	0.61	0.54	
Feb	0.61	0.80	0.63	0.54	
Mar	0.60	0.83	0.61	0.56	
Apr	0.56	0.81	0.63	0.56	
May	0.64	0.00	0.74	0.62	
Jun	0.66	0.94	0.73	0.68	
Jul	0.65	0.88	0.72	0.66	
Aug	0.68	0.87	0.67	0.63	
Sep	0.63	0.80	0.61	0.54	
Oct	0.56	0.77	0.59	0.56	
Nov	0.49	0.76	0.57	0.53	
Dec	0.47	0.00	0.53	0.48	

Residential Customers Served				
Year>		2006		
Grouping	Population	Flow (gpd)	Taps	
Residential	2,755		1,102	
Non-Residential		,	79	
Commercial/ Ind	ustrial			
Institutional				
Wholesale				

AGR Determnations				
Category AGR Remarks				
Residential	0.62%	Based on Newberry County population data.		
Commercial				
Industrial				
Institutional		,		
Wholesale				
Residential	0.59%	2046-2075. Anticipated reduced AGR.		

Percentage of Flow			
Category Value			
Res/Comm			
Ind/Inst			

	Projected Flowrates (MGD)					
		Category				
Year	Residential	Non-Residential	Industrial/Commercial	Institutional	Wholesale	*Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						l
AGR	0.01					NA

Annual Average Flow		
Year	Flow (mgd)	
2015	0.61	
2025	0.65	
2035 ,	0.69	
2045	0.73	
2055	0.77	
2065	0.82	
2075	0.87	

Monthly Coefficients		
Menth	Coefficient	
Jan	0.99	
Feb	1.03	
Mar	1.04	
Apr	1.02	
May	0.82	
· Jun	1.20	
Jul	1.16	
Aug	1.14	
Sep	1.03	
Oct	0.99	
Nov	0.94	
Dec	0.62	

Analysis Notes 1. AGR is staggered slightly downward in 2046 to better reflect U.S. declines in AGR. 2. Base year is 2006.	
1. AGR is staggered slightly downward in 2046 to better reflect U.S. declines in AGR.	
2. Base year is 2006.	

·	

ID No.	25-R	Category	Industrial	
Entity	Spartan Mills Startext	Туре	Return	
Facility	Spartan Mills/Startex Mill			
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]			

Annual Average Flow			
Year Flow (mgd)			
1995	0.36		
2000	0.07		
2005	0.17		
2006	0.14		

	Data Sources:
1.	Obtained from South Carolina
]	Department of Health and
1	Environmental Control
2.	Source: Bureau of Economic Analysis,
	U.S. Department of Commerce.

	Monthly /	Average Flow	(mgd)		
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan-	0.40	0.06	0.20	0.15	
Feb	0.35	0.09	0.11	0.21	
Mar	0.41	0.07	0.18	0.10	
Apr	0.38	0.08	0.19	0.07	
May	0.38	0.09	0.10	0.14	
Jun	0.44	0.09	0.17	0.14	
Jul	0.44	0.06	0.07	· 0.13	
Aug	0.42	0.02	0.17	0.11	
Sep	0.34	0.08	0.24	0.14	
Oct	0.28	0.07	0.18	0.16	
Nov	0.26	0.07	0.22	0.20	
Dec	0.27	0.07	0.20	0.15	

PROJECTION SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
2015	0.18			
2025	0.25			
2035	0.33			
2045	0.45			
2055	0.60			
2065	0.81			
2075	1.08			

3.00%

Monthly Coefficients					
Month	Coefficient	Month	Coefficient		
Jan	1.06	Jul	0.86		
Feb	1.08	Aug	0.80		
Mar	0.99	Sep	1.10		
Apr	0.92	Oct	0.97		
May	0.98	Nov	1.11		
Jun	1.12	Dec	1.02		

Industry Sector: Warehousing	SC GSP AGR:	6.17%	Inflation AGR:
Analysis Notes			
1. Their SIC Code is 4226 = SPECIAL WA	REHOUSING & STORAGE. This	corresponds to an	n NAICS code of 493.
2. Upon reviewing the historical usage of the	his facility it was determined that	a 6% growth rate v	vas too aggressive,
especially considering the recent trends in	water use. Therefore a rate of 39	6 was used for the	entire period.

ID No.	26-R	Category	Industrial	
Entity	Invista Sarl	Туре	Return	
Facility	Invista S.A.R.L./Spartanburg			
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]			

Annual Average Flow			
Year	Flow (mgd)		
1995	0.71		
2000	0.75		
2005	0.70		
2006	0.72		

Data Sources:	
Obtained from South Carolina	
Department of Health and	
Environmental Control	
2. Source: Bureau of Economic Anal	ysis,
U.S. Department of Commerce.	

	Monthly	Average Flow	v (mgd)		
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.74	0.78	0.59	0.68	
Feb	0.73	0.77	0.61	0.65	
Mar	0.76	0.70	0.68	0.79	
Apr	0.67	0.72	0.67	0.77	
May	0.70	0.67	0.68	0.70	
Jun	0.65	0.72	0.71	0.74	
Jul	0.71	0.79	0.74	0.78	
Aug	0.76	0.79	0.78	0.78	
Sep	0.69	0.77	0.73	0.75	
Oct		0.75	0.75	0.66	
Nov	0.74	0.76	0.71	0.68	
Dec	0.67	0.81	0.71	0.64	

PROJECTION SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
2015	0.72			
2025	0.72			
2035	0.72			
2045	0.72			
2055	0.72			
2065	0.72			
2075	0.72			

Industry Sector: Chemical

AGR

0.00%

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	0.94	Jul	1.07	
Feb	0.94	Aug	1.08	
Mar	1.00	Sep	1.04	
Apr	1.00	Oct	0.99	
May	0.95	Nov	0.99	
Jun	1.01	Dec	1.00	

Inflation AGR:

PROJECTIONS ANALYSIS

-9.15%

Analysis Notes
1. Their SIC Code is 2821 = PLSTC MAT./SYN RESINS/NV ELAST. This corresponds to an NAICS code of 325211 Plastics
Material and Resin Manufacturing. Thus NAICS code 325 is used in the GSP table.
2. Historical trend since 1995 shows a realitive stable withdrawal. Therefore an AGR of 0% is used in place of the -9.15% sector
AGR as a conservative estimate.
3. Raw data from SC-DHEC was changed for 6/2005 from 7.12 to 0.712. Assumed data entry error.

SC GSP AGR:

ID No.	27-R	Category	Industrial
Entity	General Electric Gas Turbines	Туре	Return
Facility	GE/Gas Turbine MFG Operation	_	
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]	-	

Annual Average Flow					
Year Flow (mgd)					
1995	0.25				
2000	0.26				
2005	0.13				
2006	0.12				

Data Sources:
Obtained from South Carolina
Department of Health and
Environmental Control
2 Source: Bureau of Economic Anal

Environmental Control	
2. Source: Bureau of Economic Ana	ysis,
U.S. Department of Commerce.]

3.10%

Monthly Average Flow (mgd)						
Flow (mgd)						
Month	1995	2000	2005	2006		
Jan	0.23	0.23	0.09	0.15		
Feb	0.25	0.26	0.11	0.14		
Mar	0.25	0.27	0.14	0.14		
Apr	0.33	0.44	0.16	0.12		
May	0.30	0.31	0.13	0.09		
Jun	0.21	0.27	0.17	0.09		
Jul	0.28	0.21	0.12	0.12		
Aug	0.28	0.26	0.11	0.08		
Sep	0.24	0.25	- 0.10	0.11		
Oct	0.23	0.26	0.10	0.11		
Nov	0.23	0.19	0.10	0.10		
Dec	0.21	0.21	0.18	0.13		

PROJECTION SUMMARY

Annual Average Flow				
Year Flow (mgd)				
2015	0.15			
2025	0.21			
2035	0.28			
2045 .	0.38			
2055	0.52			
· 2065	0.70			
2075	0.95			

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	0.96	Jul	0.98	
Feb	1.02	Aug	0.91	
Mar	1.08	Sep	0.92	
Apr	1.32	Oct	0.91	
May	1.04	Nov	0.83	
Jun	0.99	Dec	1.04	

Inflation AGR:

PROJECTIONS ANALYSIS

Industry Sector: Turbines	SC GSP AGR:	3.10%	Inflation AGR:	
Analysis Notes				
1. Their SIC Code is 3511 = TURBIN	NES & TURBINE GENERATOR	. This corresponds to	an NAICS code of 333611	Turbine an
Turbine Generator Set Unit Manuf	facturing. Thus a NAICS code of	f 333 is used in the G	SP Table.	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				<u></u>

SC GSP AGR:

ID No.	28-R	Category	Public Water Supply
Entity	Town of Lyman	Туре	Return
Facility	Lyman WWTP	•	
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]		

Annual Average Flow				
Year Flow (mgd)				
1995	2.22			
2000	1.73			
2005	1.43			
2006	1.52			

Data Sources			
1. Obtained from South Carolina			
Department of Health and			
Environmental Control			

	Monthly Average Flow (mgd)					
	Flow (mgd)					
" Month	1995	2000	2005	2006		
Jan	2.44	1.43	1.50	1.40		
Feb	2.24	1.36	1.60	1.50		
Mar	1.71	1.76	1.80	1.50		
Apr	1.97	1.57	1.70	1.20		
May	2.34	1.67	1.50	1.60		
Jun	2.19	1.60	1.80	1.60		
Jul	1.60	1.60	1.40	1.60		
Aug	2.92	2.00	1.10	1.50		
Sep	2.55	2.20	1.10	1.50		
Oct	2.43	1.90	1.20	1.70		
Nov	2.36	1.70	1.10	1.50		
Dec	1.87	2.00	1.40	1.60		

1	Residential Customers Served				
Year>	Year	?	,	Year?	
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)	
Residential					
Commercial					
Industrial					
Institutional					
Wholesale					

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	2007-2045. Based on Spartanburg County population data.		
Commercial				
Industrial				
Institutional				
Wholesale				
Residential	0.82%	2046-2075. See analysis notes.		

Percentage of Flow		
Category	Value	
Res/Comm		
Ind/Inst		

Projected Flowrates (MGD)						
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065				·		
2075						
AGR	0.008673456	0	0	0	0	NA

Annual Average Flow		
Year	Flow (mgd)	
2015	1.64	
2025	1.79	
2035	1.95	
2045	2.12	
2055	2.30	
2065	2.50	
2075	2.71	

Monthly Coefficients		
Month	Coefficient	
Jan	0.97	
Feb	0.98	
Mar	1.01	
Apr	0.94	
May	1.03	
Jun	1.06	
Jul	0.92	
Aug	1.06	
Sep	1.04	
Oct	1.04	
Nov	0.95	
Dec	1.01	

Analysis Notes
1. AGR is staggered downward to follow national trend.
2. Base year is 2006.
3. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine
growing faster than U.S. average.

ID No. Entity

29(IWL)-R

Category Type

Public Water Supply

Return

Facility Contact City of Inman (Inman Mills Water District)

Inman Wastewater Labratories
Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year Flow (mgd)			
1995	0.35		
2000	0.36		
2005	0.41		
2006	0.37		

:	Data Sources
1. 0	Obtained from South Carolina
[Department of Health and
1 F	Invironmental Control

	Monthly Average Flow (mgd)				
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.37	0.35	0.39	0.42	
Feb	0.43	0.41	0.42	0.37	
Mar	0.41	0.47	0.47	0.37	
Apr	0.35	0.42	0.43	0.37	
May	0.36	0.36	0.42	0.35	
Jun	0.42	0.32	0.47	0.39	
Jul	0.31	0.31	0.49	0.37	
Aug	0.30	0.35	0.36	0.36	
Sep	0.27	0.37	0.34	0.35	
Oct	0.35	0.29	0.39	0.33	
Nov	0.33	0.32	0.37	0.40	
Dec	0.27	0.35	0.42	0.43	

Residential Customers Served				
Year>	2006			
Grouping	Population	Flow (gpd)	Taps	Description
Residential	771		294	All WWTPs
Non-Residential			1	All WWTPs
Industrial/Commercial				
Institutional				
Wholesale				

AGR Determnations			
Category	AGR	Remarks	
· Residential	0.87%	2007-2045. Based on Spartanburg County population data.	
Commercial			
Industrial			
Institutional			
Wholesale			
Residential	0.82%	2046-2075. See analysis notes.	

Percentage of Flow						
Category	Value					
Res/Comm						
Ind/Inst						

Projected Flowrates (MGD)						
		Category				
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075						
AGR	0.008673456	0	0	0	0	NA

Annual Average Flow					
Year	Flow (mgd)				
2015	0.40				
2025	0.44				
2035	0.48				
2045	0.52				
2055	0.57				
2065	0.62				
2075	0.67				

Monthly Coefficients				
Month	Coefficient			
Jan	1.03			
Feb	1.09			
Mar	1.15			
Apr	1.05			
May	0.99			
Jun	1.06			
Jul	0.99			
Aug	0.92			
Sep	0.88			
Oct	0.91			
Nov	0.94			
Dec	0.98			

·
Analysis Notes
1. Modified the September 1995 data point from 270.5 to 0.2705. Appears to be data entry error.
2. AGR is staggered downward to follow national trend.
3. Base year is 2006.
4. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine
growing faster than U.S. average.

ID No.

29(LFC)-R

Category Type

Public Water Supply

Return

Entity Facility City of Inman (Inman Mills Water District)
Lawson Fork Creek WWTP

Contact

Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow					
Year	Flow (mgd)				
1995	0.15				
2000	0.11				
2005	0.06				
2006	0.04				

Data Sources	
Obtained from South Carolina	
Department of Health and	
Environmental Control	

Monthly Average Flow (mgd)						
	Flow (mgd)					
Month	1995	2000	2005	2006		
Jan	0.15	0.16	0.06	0.05		
Feb	0.13	0.13	0.06	0.04		
Mar	0.16	0.14	0.12	0.04		
Apr	0.14	0.13	0.06	0.04		
May	0.14	0.10	0.05	0.03		
Jun	0.18	0.08	0.06	0.05		
Jul	0.13	0.06	0.07	0.04		
Aug	0.18	0.08	0.04	0.03		
Sep	0.16	0.12	0.03	0.03		
Oct	0.17	0.12	0.05	0.04		
Nov	0.22	0.12	0.04	0.05		
Dec	0.11	0.10	0.06	0.05		

Residential Customers Served							
Year>	ear> 2006						
Grouping	Population Flow (gpd) Taps Description						
Residential	771		294	All WWTPs			
Non-Residential			1	All WWTPs			
Industrial/Commercial							
Institutional		•					
Wholesale							

Unaccounted Flow

AGR Determnations					
Category	AGR	Remarks			
Residential	0.87%	2007-2045. Based on Spartanburg County population data.			
Commercial		<i>;</i>			
Industrial					
Institutional	•				
Wholesale					
Residential	0.82%	2046-2075. See analysis notes.			

Percentage of Flow				
Category	Value			
Res/Comm				
Ind/Inst				

		Projected	l Flowrates (MGD)			
Year		Category				
	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035		,				
2045						
2055						
2065						
2075						
AGR	0.008673456	0	0	0	0	NA

. Annual Average Flow				
Year	Flow (mgd)			
2015	0.04			
2025	0.05			
2035	0.05			
2045	0.06			
2055	0.06			
2065	0.07			
2075	0.07			

Monthly Coefficients		
Month	Coefficient	
Jan	1.17	
Feb	0.99	
Mar	1.32	
Apr	0.98	
May	0.85	
Jun	1.03	
Jul	0.88	
Aug	0.83	
Sep	0.86	
Oct	1.00	
Nov	1.10	
Dec	0.99	

Analysis Notes
AGR is staggered downward to follow national trend.
2. Base year is 2006.
3. Included in analysis despite being less than 0.1 MGD threshold because in combination with other facility it meets the criteria.
In addition, historical flows have exceeded theshold.
4. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine
growing faster than U.S. average.
,

ID No.

Category Type

Public Water Supply (Other)

Return

Entity **Facility** SC Department of Corrections

Tyger River Correction

Contact

Erica A. Johnson [JOHNSOEA@dhec.sc.gov]

HISTORICAL DATA SUMMARY

Annual Average Flow			
Year	Flow (mgd)		
1995	0.21		
2000	0.15		
2005	0.18		
2006	0.16		

Data Sources:
Obtained from South Carolina
Department of Health and
Environmental Control
2. Source: Bureau of Economic Analysis,
ILS Department of Commerce

Monthly Average Flow (mgd)					-
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan	0.22	0.12	0.18	0.16	
Feb	0.23	0.14	0.18	0.16	
Mar	0.26	0.16	0.18	0.16	
Apr	0.28	0.16	0.18	0.16	
May	0.22	0.16	0.18	0.16	
Jun	0.23	0:15	0.18	0.17	
Jul	0.18	0.16	0.16	0.17	
Aug	0.19	0.16	0.18	0.18	
Sep	0.18	0.16	0.18	0.17	
Oct	0.19	0.17	0.19	0.18	Estima
Nov	0.16	0.15	0.19	0.16	Estima
Dec	0.16	0.14	0.17	0.15	Estima

ated ated ated

PROJECTION SUMMARY

0.82% AGR 0.94%

Annual Average Flow		
Year	Flow (mgd)	
2015	0.20	
2025	0.20	
. 2035	0.22	
2045	0.24	
2055	0.26	
2065	0.28	
2075	0.30	

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	0.94	Jul	0.95	
Feb	1.00	Aug	1.01	
Mar	1.07	Sep	0.99	
Apr	1.09	Oct	1.06	
May	1.02	Nov	0.96	
Jun	1.03	Dec	0.88	

PROJECTIONS ANALYSIS

Industry Sector: Government

5.85%

Inflation AGR:

Analysis Notes

1. AGR is based on SIC code of 9223 = CORRECTIONAL INSTITUTIONS. This corresponds to an NAICS code of 92214 Correctional Institutions . NAICS code "92, State and Local" was used for GSP table. This rate of growth appears to be to aggressive considering historic data shows a slight decline in water returns. Therefore a lower rate of 0.94% is used for 2007-2045

(based on South Carolina state population growth between 2005-2035) and 0.82% is used for 2046 - 2075 (based on a combination of U.S. growth and anticipated South Carolina growth).

1	Coefficients				
Month	1995	2000	2005	2006	
Jan	1.06	0.76	0.98	0.96	
Feb	1.12	0.94	1.00	0.94	
Mar	1.26	1.03	1.03	0.97	
Apr	1.33	1.08	0.99	0.97	
May	1.08	1.04	1.00	0.97	
Jun	1.09	1.01	1.00	1.01	
Jul	0.85	1.03	0.89	1.03	
Aug	0.90	1.04	0.99	1.09	
Sep	0.87	1.03	1.02	1.03	
Oct	0.90	1.14	1.08	1.10	
Nov	`0.78	1.01	1.04	1.00	
Dec	0.75	0.89	0.95	0.91	

1			Flow Pro	jections -	Tabula	r Forn	n (DO
						Mont	h
Year	Jan	Feb	Mar	Apr	May	Jun	Jul
2005	0.18	0.18	0.18	0.18	0.18	0.18	0.16
2006	0.16	0.16	0.16	0.16	0.16	0.17	0.17
2015	0.18	0.20	0.21	0.21	0.20	0.20	0.19
2025	0.19	0.20	0.21	0.22	0.20	0.20	0.19
2035	0.20	0.22	0.23	0.24	0.22	0.22	0.21
2045	0.22	0.24	0.25	0.26	0.24	0.24	0.23
2055	0.24	0.26	0.28	0.28	0.26	0.27	0.25
2065	0.26	0.28	0.30	0.31	0.29	0.29	0.27
2075	0.29	0.30	0.33	0.33	0.31	0.31	0.29

ID No.	33-R	Category	Public Water Supply	
Entity	Town of Woodruff	Туре	Return	
Facility	Woodruff/Enoree River			
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]			

Annual Average Flow				
Year Flow (mgd)				
1995	0.45			
2000	0.34			
2005	0.33			
2006	0.31			

	Data Sources
1.	Obtained from South Carolina
l	Department of Health and
	Environmental Control

Monthly Average Flow (mgd)				
		Flow (mgd)		
Month	1995	2000	2005	2006
Jan	0.45	0.36	0.31	0.31
Feb	0.57	0.39	0.38	0.27
Mar	0.39	0.35	0.36	0.28
Apr	0.33	0.36	0.32	0.28
May	0.39	0.33	0.30	0.26
Jun	0.49	0.28	0.37	0.28
Jul	0.46	0.31	0.31	0.27
Aug	0.54	0.31	0.33	0.35
Sep	0.44	0.38	0.28	0.42
Oct	0.48	0.39	0.34	0.33
Nov	0.53	0.31	0.28	0.37
Dec	0.32	0.31	0.34	0.32

Residential Customers Served				
Year>	Year	?		Year?
Grouping	Customers	Flow (gpd)	Customers	Flow (gpd)
Residential				
Commercial				
Industrial				
Institutional				
Wholesale				

Unaccounted Flow

AGR Determnations				
Category	AGR	Remarks		
Residential	0.87%	2007-2045. Based on Spartanburg County population data.		
Commercial				
Industrial		•		
Institutional				
Wholesale		,		
Residential	0.82%	2046-2075. See analysis notes.		

Percenta	ge of Flow
Category	Value
Res/Comm	
Ind/Inst	•

Projected Flowrates (MGD)						
			Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Unacc'ted
2015						
2025						
2035						
2045						
2055						
2065						
2075		***************************************				
AGR	0.008673456	0	0	0	0	NA ·

Annual Average Flow		
Year	Flow (mgd)	
2015	0.34	
2025	0.37	
2035	0.40	
2045	0.44	
2055	0.47	
2065	0.51	
2075	0.56	

Monthly Coefficients		
Month	Coefficient	
Jan	1.00	
Feb	1.11	
Mar	0.98	
Apr	0.92	
May	0.89	
Jun	0.99	
Jul	0.94	
Aug	1.06	
Sep	1.07	
Oct	1.07	
Nov	1.03	
Dec	0.93	

Analysis Notes
1. AGR is staggered downward to follow national trend.
2. Base year is 2006.
AGR is staggered downward to follow national trend. Base year is 2006. AGR for 2046-2075 reduced to reflect a general slower U.S. growth rate, but South Carolina is anticipated to contine
growing faster than U.S. average.

	•			
ID No.	34-R	Category	Industrial	
Entity	SC-DHEC	Туре	Return	
Facility	I-85 Distribution Site	•		
Contact	Erica A. Johnson [JOHNSOEA@dhec.sc.gov]			

	Annual Av	erage Flow
	Year	Flow (mgd)
	1995	n/a
	2000	0.11
	2005	0.13
	2006	0.09

	Data Sources:
1.	Obtained from South Carolina
	Department of Health and
	Environmental Control
2.	Source: Bureau of Economic Analysis,
	U.S. Department of Commerce.

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2005	2006	
Jan			0.08	0.13	
Feb		0.07	0.13	0.06	
Mar		0.07	0.18	0.06	
Apr		0.08	0.12	0.08	
May		0.05	0.09	0.05	
Jun		0.18	0.17	0.07	
Jul		0.11	0.12	0.09	
Aug	1	0.10	0.13	0.06	
Sep		0.24		0.13	
Oct		0.07	0.13	0.11	
Nov		0.09	0.14	0.11	
Dec		0.13	0.13	0.16	

PROJECTION SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
2015	0.13	
2025	0.13	
2035	0.13	
2045	0.13	
· 2055	0.13	
2065	0.13	
2075	0.13	

0.00%

Monthly Coefficients			
Month	Coefficient	Month	Coefficient
Jan	1.03	Jul	0.98
Feb	0.77	Aug	0.86
Mar	0.88	Sep	1.77
Apr	0.84	Oct	0.94
May	0.58	Nov	1.05
Jun	1.25	Dec	1.32

Analysis Notes				
1. This site is a state owned superfund site. It	was assumed flows would remain	constant (or more like	ly decline in the future).	
2. SIC code from NPDES permit is 9999 =	NONCLASSIFIABLE ESTABL	LISHMENTS.		
State owned facility.				
4. Base year is 2005. As this represents t	ne highest recent volume used			
	······································	***************************************		
		·····		
	······································			***************************************

ID No. Entity

35-R

Grover Industries

Facility Contact Grover Plant

Sara Logan (828.859.9125.125)

Category Type Industrial Return

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	-	
2000	0.10	
2002	0.01	
2005	0.00	
2006	0.01	

Data Sources:	3
DMR Data	

Monthly Average Flow (mgd)					
			Flow (mgd)	12/2	
Month	1995	2000	2002	2005	2006
Jan	-	0.13	0.01	0.01	0.00
Feb	-	0.13	0.01	0.01	0.00
Mar	-	0.13	0.01	0.01	0.00
Apr	_	0.11	0.01	0.01	0.00
May	-	0.11	0.01	0.00	0.00
Jun	-	0.11	0.01	0.00	0.00
Jul	-	0.09	0.01	0.00	0.00
Aug	-	0.11	0.01	0.00	0.01
Sep	-	0.08	0.01	0.00	0.01
Oct	-	0.09	0.01	0.00	0.01
Nov	-	0.10	0.01	0.00	0.01
Dec	-	0.07	0.007	0.00	0.01

PROJECTION SUMMARY

AGR

Annual Average Flow		
Year	Flow (mgd)	
2015	0.00	
2025	0.00	
2035	0.00	
2045	0.00	
2055	0.00	
2065	0.00	
2075	0.00	

	Mont	hly Coefficients	
Month	Coefficient	Month	Coefficient
Jan	1.31	Jul	0.73
Feb	0.95	Aug	0.92
Mar	1.17	Sep	1.03
Apr	1.10	Oct	1.00
May	0.79	Nov	1.10
Jun	0.89	Dec	1.02

PROJECTIONS ANALYSIS

Industry Sector: Textiles NC GSP AGR: - Inflation AGR:
Analysis Notes:
- Downsized since 2000

- Plant is likely to be closed entirely.

ID No.	36-W	Category	Industrial
Entity	Milliken	Type	Withdrawal
Facility	Magnolia Plant		
Contact	Lee Slusher		

Annual Average Flow		
Year	Flow (mgd)	
1995	4.36	
2000	3.37	
2002	2.89	
2005	2.80	
2006	3.02	

Data Sources:	
Plant Data	

	Mo	nthly Average	Flow (mgd)		
			Flow (mgd)		
Month	1995	2000	2002	2005	2006
Jan	-		-	-	-
Feb	#	-	-	-	-
Mar	-	-	-	•	-
Apr	-	-	-	-	-
May	-	-	-	-	-
Jun	_	-	-	-	-
Jul	-	-	•		-
Aug	-	-	-	-	-
Sep	-	-	-	-	-
Oct	-	-	•	-	_
Nov	-	-		-	-
Dec	-	-	-	-	-

PROJECTION SUMMARY

AGR

Annual A	Annual Average Flow				
Year	Flow (mgd)				
2015	3.11				
2025	3.20				
2035	3.30				
2045	3.40				
2055	3.50				
2065	3.61				
2075	3.72				

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	0.99	Jul	1.03	
Feb	0.98	Aug	1.06	
Mar	0.99	Sep	1.03	
Apr	0.97	Oct	1.05	
May	1.00	Nov	1.00	
Jun	1.04	Dec	0.87	

PROJECTIONS ANALYSIS

Industry Sector: Textile & Chemical NC GSP AGR: -6.60, 2.91 Inflation AGR: -

Analysis Notes:

- Plant involved with both textiles and chemical manufacturing. Both NC GSP AGRs are provided above.
- Contact says withdrawal meter is not reliable, but they calculate that the return is approximately

75% of the withdrawal.

- Withdrawal projections based on the provided percentage relationship.
- This assumes that the monthly variation for withdrawals is the same as for the returns.
- Historical flow rates based on provided percentage relationship between returns and withdrawals.

ID No.	36-R	Category	Industrial	
Entity	Milliken	Туре	Return	
Facility	Magnolia Plant	<u> </u>		
Contact	Lee Slusher	<u>-</u>		•

Annual Average Flow				
Year	Flow (mgd)			
1995	3.27			
2000	2.53			
2002	2.17			
2005	2.10			
2006	2.27			

Data Sources:	
Plant Data	

	Mo	nthly Average	Flow (mgd)		
			Flow (mgd)		
Month	1995	2000	2002	2005	2006
Jan	3.50	2.59	2.15	1.93	2.13
Feb	3.06	2.35	2.04	2.30	2.23
Mar	3.15	2.30	2.15	2.27	2.25
Apr	3.19	2.36	2.27	2.13	2.02
May	3.15	2.36	2.48	2.04	2.24
Jun	3.19	2.38	2.46	2.38	2.35
Jul	3.20	2.62	2.16	2.24	2.41
Aug	3.65	2.70	2.17	2.18	2.42
Sep	3.52	2.90	2.22	1.83	2.32
Oct	3.34	2.75	2.32	2.09	2.48
Nov	3.43	2.58	2.04	1.93	2.41
Dec	2.88	2.45	1.57	1.88	1.96

PROJECTION SUMMARY

AGR 0.30%

Annual Average Flow				
Year	Flow (mgd)			
2015	2.33			
2025	2.40			
2035	2.47			
2045	2.55			
2055	2.63			
2065	2.71			
2075	2.79			

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	0.99	Jul	1.03	
Feb	0.98	Aug	1.06	
Mar	0.99	Sep	1.03	
Apr	0.97	Oct	1.05	
May	1.00	Nov	1.00	
Jun	1.04	Dec	0.87	

PROJECTIONS ANALYSIS

Industry Sector: Textile & Chemical NC GSP AGR: -6.60, 2.91 Inflation AGR: -

Analysis Notes:

- Plant involved with both textiles and chemical manufacturing. Both NC GSP AGRs are provided above.
- Historical decline in returns due to water use reduction projects.
- Maximum Capacity of Plant is 3.5 MGD
- Water use is approximately 90% textiles and 10% chemicals.
- Both textiles and chemicals are expected to increase overtime at the plant, the chemicals will increase more.
- AGR used for projections assumes textiles don't increase water use and chemicals grow in demand according to its AGR.

ID No.	37-W	Category	Industrial	
Entity	CNA Holdings	Type	Withdrawal	
Facility	Shelby Plant			
Contact	Pem Carter (704 480 4900) and Richard Marella (904.94)	2.9500.3004)		

Annual Average Flow				
Year	Flow (mgd)			
1995	-			
2000	-			
2004	0.40			
2005	-			
2006	0.42			

Month	1995	2000	2004	2005	2006
Jan	- [-	0.33	-	-
Feb	-	-	0.31	-	•
Mar	-	-	0.58	-	-
Apr	-	-	0.48	<u>-</u>	•
May	-	-	0.56	-	-
Jun	-	-	0.43	-	-
Jul	- 1	-	0.45	-	
Aug	-	<u>-</u>	0.39	-	-
Sep	-	-	0.35	-	-
Oct	-	-	0.36	-	-
Nov	<u> </u>	-	0.36	-	
Dec		-	0.2	_	_

Monthly Average Flow (mgd)

Flow (mgd)

Data Sources:	
USGS Data	
Phone Interviews	
NC DEND DWD Data	

PROJECTION SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
2015	0.54	
2025	0.72	
2035	0.96	
2045	1.28	
2055	1.70	
2065	2.26	
2075	3.02	

Industry Sector: Resin Manufacturer

AGR

2.91

Monthly Coefficients			
Month	Coefficient	Month	Coefficient
Jan	0.83	Jul	1.13
Feb	0.78	Aug	0.98
Mar	1.45	Sep	0.88
Apr	1.20	Oct	0.90
May	1.40	Nov	0.90
Jun	1.08	Dec	0.50

Inflation AGR:

PROJECTIONS ANALYSIS

2.91

Analysis Notes:		
- Company didn't have histrocial flow records.		
- 2004 return was reported to DWQ as 0.34		
MGD (Avg. Daily Flow), which is 85.9% of	,	
the 2004 reported withdrawal		
- Projections were calculated by dividing the		
CAN Holdings Return projections by the	The state of the s	
85.9% relationship from 2004.		

ID No.

Category Type

Industrial Return

Entity

CNA Holdings

Facility

Shelby Plant

Contact

Pem Carter (704.480.4900) and Richard Marella (904.942.9500.3004)

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	0.57	
2000	0.41	
2002	0.34	
2005	0.31	
2006	0.36	

Data Sources:	
DMR Data	

	Monthly Average Flow (mgd)				
	Flow (mgd)				236
Month	1995	2000	2002	2005	2006
Jan	0.60	0.37	0.54	0.29	0.38
Feb	0.54	0.39	0.43	0.32	0.33
Mar	0.51	0.35	0.42	0.28	0.29
Apr	0.48	0.38	0.25	0.25	0.27
May	0.56	0.34	0.27	0.26	0.35
Jun -	0.65	0.33	0.25	0.30	0.36
Jul	0.60	0.44	0.32	0.29	0.31
Aug	0.64	0.41	0.29	0.35	0.23
Sep	0.55	0.55	0.30	0.22	0.35
Oct	0.56	0.45	0.27	0.40	0.44
Nov	0.60	0.48	0.35	0.39	0.52
Dec	0.60	0.46	0.40	0.38	0.47

PROJECTION SUMMARY

	a service service	
	ACD	2 01
	AGN	4.71
,		

Annual Average Flow		
Year	Flow (mgd)	
2015	0.46	
2025	0.62	
2035	0.82	
2045	1.10	
2055	1.46	
2065	1.94	
2075	2.59	

Monthly Coefficients			
Month	Coefficient	Month	Coefficient
Jan	1.10	Jul	0.97
Feb	1.02	Aug	0.94
Mar	0.93	Sep	0.97
Apr	0.81	Oct	1.08
May	0.88	Nov	1.19
Jun	0.92	Dec	1.17

PROJECTIONS ANALYSIS

Industry Sector: Resin Manufacturer

NC GSP AGR: 2.91 Inflation AGR:

Analysis Notes:

- Historical flows have declined largely due to introduction of a water recycling program.
- The plant is expanding and expects to grow although they didn't quantify the growth rate.
- Projections use the NC GSP AGR for
- chemical manufacturing.

ID No.	38-R	Category	Industrial	
Entity	Dan River Inc.	Туре	Return	
Facility	Harris Plant			
Contact				

Annual Average Flow	
Year	Flow (mgd)
1995	0.30
2000	0.46
2002	0.44
2005	0.34
2006	-

Data Sources:	
DMR Data	

Monthly Average Flow (mgd)					
			Flow (mgd)	W.	
Month	1995	2000	2002	2005	2006
Jan	0.30	0.47	0.39	0.41	-
Feb	0.32	0.46	0.39	0.37	-
Mar	0.33	0.44	0.47	0.31	-
Apr	0.35	0.42	0.46	0.37	-
May	0.37	0.47	0.47	0.37	-
Jun	0.39	0.51	0.48	0.40	-
Jul	0.26	0.45	0.36	0.32	-
Aug	0.30	0.49	0.45	0.48	-
Sep	0.29	0.48	0.45	0.29	T
Oct	0.24	0.46	0.53	0.31	-
Nov	0.24	0.45	0.45	0.33	T -
Dec	0.15	0.38	0.403	0.16	T -

PROJECTION SUMMARY

AGR	0.00%
•	

Annual Average Flow		
Year	Flow (mgd)	
2015	0.00	
2025	0.00	
2035	0.00	
2045	0.00	
2055	0.00	
2065	0.00	
2075	0.00	

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	1.02	Jul	0.90	
Feb	1.02	Aug	1.13	
Mar	1.01	Sep	0.98	
Apr	1.06	Oct	0.98	
May	1.11	Nov	0.94	
Jun	1.18	Dec	0.68	

Industry Sector: Textiles	NC GSP AGR: -	Inflation AGR: -	
Analysis Notes:			
- Contact was attempted with the facility and			
corporate headquarters, but was unsuccessful.			
- EPA Envirofacts Warehouse indicates this			
facility is inactive.			
- Projections assume that the plant is			
permanently inactive.			

ID No.	39-R	Category	Industrial	
Entity	Cone Mills, Inc.	Туре	Return	
Facility	Cliffside Plant			
Contact		-		

Annual Average Flow		
Year	Flow (mgd)	
1995	0.82	
2000	0.59	
2002	0.46	
2005	0.15	
2006	0.03	

Data Sources:	
DMR Data	

	Monthly Average Flow (mgd)				
	Flow (mgd)				
Month	1995	2000	2002	2003	2004
Jan	0.74	0.48	0.34	0.14	0.06
Feb	0.79	0.47	0.46	0.18	0.02
Mar	0.85	0.56	0.49	0.20	0.02
Apr	0.74	0.53	0.41	0.23	0.02
May	0.80	0.57	0.50	0.19	0.03
Jun	0.97	0.67	0.49	0.23	0.03
Jul	0.87	0.65	0.53	0.17	0.03
Aug	0.98	0.67	0.50	0.09	0.04
Sep	0.91	0.63	0.46	0.11	0.04
Oct	0.77	0.61	0.47	0.16	0.03
Nov	0.70	0.66	0.42	0.05	0.04
Dec	0.70	0.55	0.46	0.03	0.03

PROJECTION SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
2015	0.00	
2025	0.00	
2035	0.00	
2045	0.00	
2055	0.00	
2065	0.00	
2075	0.00	

Monthly Coefficients				
Month	Coefficient	Month	Coefficient	
Jan	1.05	Jul	1.10	
Feb	0.90	Aug	1.04	
Mar	0.99	Sep	1.06	
Apr	0.98	Oct	1.02	
May	1.05	Nov	0.87	
Jun	1.17	Dec	0.78	

PROJECTIONS ANALYSIS

Industry Sector: Textiles NC GSP AGR: -6.60 Inflation AGR: -

Analysis Notes:

- Contact was attempted with the facility, but was unsuccessful.
- Data suggests plant has declined in production since 1995.
- 2006 flow rate suggests the plant was largely offline for the year.
- This apparent decline is expected given that it is a textile production facility.
- Projections assume the plant is permanently offline

ID No.	40-R	Category	Industrial	
Entity	PPG Industries	Туре	Return	
Facility	Cliffside Plant			•
Contact	Richard Young (704,434,2261,359)	-		

Annual Average Flow			
Year	Flow (mgd)		
1995	0.85		
2000	0.80		
2002	0.67		
2005	0.56		
2006	0.61		

Data Sources:	
DMR Data	

	N	Ionthly Avera	ge Flow (mgd)			
	(Flow (mgd)					
Month	1995	2000	2002	2003	2004	
Jan	0.95	0.82	0.66	0.55	0.52	
Feb	0.75	0.76	0.69	0.53	0.57	
Mar	0.77	0.78	0.68	0.53	0.60	
Apr	0.84	0.77	0.61	0.47	0.55	
May	0.79	0.75	0.76	0.56	0.53	
Jun	0.86	0.82	0.85	0.68	0.58	
Jul	0.88	0.83	0.91	0.63	0.58	
Aug	0.95	0.90	0.63	0.55	0.64	
Sep	0.85	0.90	0.57	0.59	0.69	
Oct	0.83	. 0.71	0.56	0.56	0.70	
Nov	0.83	0.76	0.51	0.54	0.69	
Dec	0.88	0.79	0.56	0.49	0.65	

PROJECTION SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
2015	0.79			
2025	1.05			
2035	1.40			
2045	1.86			
2055	2.48			
2065	3.30			
2075	4.40			

2.91

AGR

	Monthly Coefficients				
Month	Coefficient	Month :	Coefficient		
Jan	0.99	Jul	1.10		
Feb	0.95	Aug	1.04		
Mar	0.97	Sep	1.03		
Apr	0.93	Oct	0.98		
May	0.98	Nov	0.96		
Jun	4.10	Dec	0.96		

Industry Sector: Chemi	cals	NC GSP AC	GR: 2.91	Inflation AGR:	-
Analysis Notes:		t			
- Assumed growth in demar	d commensurate				
with NC GSP AGR, less in	lation.	And analysis and a deal is sur-district employed man and attended to reside the	and the state of t		
- Water is purchased from S	helby normally.		Andrew Committee and the State of the State	Benchischer : Fest Vir defenteure Fester und Ebenstehbessen Abbieb her westen geweit in demokr	те подменять, в перет домиторовать почения под дом, дот подменяющего почение почение доминальной доминальной д
- Emergency water supply is	s provided from	Man washington and an all and an analysis of the second analysis of the second analysis of the second and an analysis of the s	According to the reduction of course a communication and a colonial and a second and a second and a second and	ы фиторования». Тамары тактанар тары, цевана кооптициялана уургандарын он тут дированиялан он он артугарын он он	CONTRACTOR OF STREET
Cleveland County Sanitary	District.		Application of the state of the		A death and the second of the
- Projections assume the ret	urns will increase	a commencentral and the agreement companied deposits the character would show a combiner observed a recommenda	oor water makeessoon aheelsoon si isaamiin oo soogaa sootaan. Siisaassoon misiin ahsiin sootaa in in sootaa aheen	to the title areas to a ferror to the second	THE PROPERTY AND A STATE OF THE PARTY AND A ST
according to the NC GSP A	GR from chemical	manufacturing.			magazinen erikaita (m. 1900). Karanta erikaita erikaita (m. 1900). Karanta (m. 1900). Kar

ID No.

15-W

Entity **Facility** Contact Gaffney Board of Pulic Works

Cherokee/Victor Gaffney WTPs Kim Fortner (864.488.8801)

Category Type

PWS

Withdrawal

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year,	Flow (mgd)			
1995	9.09			
2000	10.38			
2002	7.50			
2005	7.91			
2006	9.05			

Estimated Estimated

Data Sources: UTEC/BPB Study

Monthly Average Flow (mgd)					
Month	. 1995	2000 % c	2002	2005	2006
Jan	-	-	-	-	-
Feb	-	-	-	-	-
Mar	-	-	-	-	-
Apr	-	-	-	-	`~
May	-	-	_	_	-
Jun	-	-	-	-	-
Jul	-	-	-	-	-
Aug	-	-	_	-	-
Sep .	-	-	-	-	-
Oct	-	-	-	-	•
Nov	•	_	-	-	-
Dec	-	_	-	_	-

	2002 Cust	omer Data	ļ
Customer	Number	Flow	Total
Residential	8,553	173	1.48
Commercial	964	666	0.64
Industrial	53	59,185	3.14
Wholesale	1	1,302,215	1.30
Sprinkler	38	753	0.03
Inter-dept	16	15,253	0.24
Loss	1	669,315	0.67
Avg. Loss	16.24%	(1994 - 2003	5)

Historical Customer Data				
Year	Res	Comm		
1994	8,020	934		
1995	8,082	849		
1996	8,144	865		
1997	8,209	880		
1998	8,274	896		
1999	8,342	913		
2000	8,410	929		
2001	8,481	946		
2002	8,553	964		
2003	8,626	982		
2004	8,701	1,000		

;		AGR Determnations
Category	AGR	Remarks
Residential	1.00	See Analysis Notes
Commercial	1.00	Based on Commercial Customer History
Industrial	1.00	See Analysis Notes
Wholesale	1.00	Assumed same as Residential
Sprinkler	1.00	Assumed same as Residential
Inter-dept	1.00	Assumed same as Residential

Projected Flowrates (GPD)								
				ategory	Sec. Sec. 9	Aur. Sandal A	12 13 33	
Year	Residential	Commercial	Industrial	Wholesale	Sprinkler	Inter-dept	Loss	
2015	1.68	0.73	3.57	1.48	0.03	0.28	1.51	
2025	1.86	0.81	3.94	1.64	0.04	0.31	1.66	
2035	2.05	0.89	4.36	1.81	0.04	0.34	1.84	
2045	2.27	0.99	4.81	2.00	0.04	0.37	2.03	
2055	2.50	1.09	5.32	2.21	0.05	0.41	2.24	
2065	2.76	1.20	5.87	2.44	0.05	0.46	2.48	
2075	3.05	1.33	6.49	2.69	0.06	0.50	2.74	
AGR	1	. 1	1	Î	Ĩ	1	N/A	

Annual Average Flow					
* Year	Flow (mgd)				
2015	9.28				
2025	10.25				
2035	11.32				
2045	12.51				
2055	13.82				
2065	15.26				
2075	16.86				

Monthly Coefficients					
Month	Coefficient				
Jan	1.00				
Feb	1.00				
Mar	1.00				
Apr	1.00				
May	1.00				
Jun	1.00				
Jul	1.00				
Aug	1.00				
Sep	1.00				
Oct	1.00				
Nov	1.00				
Dec	1.00				

Base	Year
20	02

Analysis Notes

- Both Cherokee and Victor WTPs utilize the same water intake structure.
- New industrial customers have typically had smaller water demands. Many large industrial water users have been lost. The net effect has been more industrial customers, but less water demand.
- Industrial AGR used is 1.00 to account for new, unforeseen industrial customers.
- Residential customer history indicates an AGR of 0.82. The AGR used is 1.00 to account for service area expansion.
- UTEC/BPB Study predicted total water production in 2025 to be nearly 8 mgd.
- Overall AGR is 1.00, which is slightly greater than the Cherokee County predicted population AGR
- of 0.93. This accounts for service area growth.
- Monthly coefficients set to 1.00 due to lack of monthly flow data.

ID No.15(BR)-REntityGaffney Board of Public WorksFacilityBroad River WWTP

Category PWS
Type Return

Contact Kim Fortner (864.488.8801)

HISTORICAL DATA SUMMARY

Annual Average Flow					
Year	Flow (mgd)				
1995	1.93				
2000	2.50				
, 2002	-				
2005	1.68				
2006	1.67				

Monthly Average Flow (mgd)							
	Flow (mgd)						
Month	1995	2000	2002	2005	2006		
Jan	2.32	2.67		1.63	1.95		
Feb	2.42	2.78	-	1.66	1.73		
Mar	2.42	2.90	-	1.77	1.64		
Apr	1.81	2.81	-	1.81	1.60		
May	2.21	2.63	-	1.57	1.60		
Jun	2.40	2.74	-	1.75	1.50		
Jul	1.06	2.34	-	1.72	1.60		
Aug	1.70	2.37	-	1.65	1.72		
Sep	1.70	2.52	-	1.56	1.60		
Oct	1.72	2.30	-	1.68	1.70		
Nov	1.83	2.19	-	1.54	1.80		
Dec	1.55	1.72	-	1.80	1.60		

Phone Interview
Plant Data

,	Perce	nt of Water	Demand Tr	eated at a V	WTP	
Year	Residential	Commercial	Industrial	Wholesale	Sprinkler	Inter-dept
2005	70%	95%	80%	0%	0%	95%
2015	75%	95%	80%	0%	0%	95%
2025	80%	95%	80%	0%	0%	95%
2035	80%	95%	80%	0%	0%	95%
2045	80%	95%	80%	0%	0%	95%
2055	80%	95%	80%	0%	0%	95%
2065	80%	95%	80%	0%	0%	95%
2075	80%	95%	80%	0%	- 0%	95%

I/I Pct 30%

,	Percent of Total Wastewater Treated at Broad River WWTP							
Year	Res	Comm	. Ind		Year	Res	Comm	Ind
2005	55%	45%	30%	Γ	2045	45%	30%	30%
2015	50%	38%	30%	Γ	2055	45%	30%	30%
2025	45%	30%	30%	Γ	2065	45%	30%	30%
2035	45%	30%	30%		2075	45%	30%	30%

1	AGR Determnations					
Category	AGR	Remarks				
Residential	_	See Analysis Notes				
Commercial	-	See Analysis Notes				
Industrial	-	See Analysis Notes				
Institutional		See Analysis Notes				
Wholesale	-	See Analysis Notes				

Projected Flowrates (GPD)							
表表多表 。				Category	SERVE TO		2000
Year	Residential	Commercial	Industrial'	Wholesale	Sprinkler	Inter-dept	IЛ
2015	0.63	0.31	0.86	0.00	0.00	0.12	0.82
2025	0.67	0.29	0.95	0.00	0.00	0.11	0.86
2035	0.74	0.25	1.05	0.00	0.00	0.10	0.91
2045	0.82	0.28	1.15	0.00	0.00	0.11	1.01
2055	0.90	0.31	1.28	0.00	0.00	0.12	1.12
2065	1.00	0.34	1.41	0.00	0.00	0.13	1.23
2075	1.10	0.38	1.56	0.00	0.00	0.14	1.36
AGR	NA NA	NA NA	NA NA	NA	NA	NA	NA

Annual	Average Flow
Year#	Flow (mgd)
2015	2.74
2025	2.88
2035	3.05
2045	3.37
2055	3.72
2065	4.11
2075	4.54

Monthly 0	Coefficients
Month	Coefficient
Jan	1.10
Feb	1.10
Mar	1.11
Apr	1.03
May	1.02
Jun	1.07
Jul	0.87
Aug	0.96
Sep	0.94
Oct	0.96
Nov	0.96
Dec	0.88

Base Year	
2005	

Analysis Notes

- GBPW treats wastewater at two WWTPs. Only the Broad River WWTP is in the Phase I area.
- Projections area based on a BPB Study, which provide some information on how much potable

water is returned as wastewater and what percentage of that wastewater is treated at the Broad River WWTP.

- Example: In 2015, the projected residential water demand is 1.68 mgd (see ______). It is estimated that 75% of that demand will be returned as wastewater, or Γ.26 mgd. Further, 50% of that 1.26 mgd will be treated at the Broad River WWTP. Therefore, the residential wastewater treated in 2015 is projected to be 0.63 mgd. The 75% and 50% values can be found in the tables provdided on the previous page.
- The BPB Study predicted lower flows to this WWTP, (1.73 mgd, avg month, in 2025).
- This is one of two WWTP for Gaffney.
- This collects flow from customers in Providence Creek and Peoples Creek Basins
- BPB Study provided information on Pct Returns based on water demand and Pct flow to either WWTP.
- Projections based on Percent Returns and Pct flows of water demand.
- BPB Study predicted less flow to this WWTP, but the increase overtime is consistent.

 ID No.
 41-W
 Category
 PWS

 Entity
 Kings Mountain
 Type
 Withdrawal

 Facility
 TJ Ellison WTP
 TJ Ellison WTP

Contact Dennis Wells (704.734.4525)

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
1995	4.92			
2000	4.96			
2002	4.60			
2005	3.18			
2006	3.13			

Data Sources:
User Data
2002 LWSP
Phone Interview

	Monthly Average Flow (mgd)				
	Flow (mgd)				
Month	× 1995	2000	2002	2005	2006
Jan	4.91	4.61	4.17	2.60	3.16
Feb	5.22	5.04	4.59	2.88	3.08
Mar	5.23	5.15	4.23	2.82	3.11
Apr	4.83	4.46	4.64	2.73	3.12
May	5.06	5.42	4.91	3.00	3.22
Jun	5.24	5.85	5.09	3.24	3.52
Jul	4.90	4.33	5.09	3.03	3.24
Aug	5.69	5.29	5.39	3.53	3.82
Sep	5.01	5.42	4.67	4.09	3.08
Oct	4.81	5.34	4.90	3.72	2.92
Nov	4.42	4.72	4.10	3.43	2.79
Dec	3.74	3.91	3.38	3.06	2.45

2002 LWSP Data					
Customer	Number	Flow (gpd)			
Residential	4909	246			
Commercial	0	246			
Industrial	60	45,267			
Institutional	· 24	2,500			
Wholesale	1	178,000			
Other	1	322,000			

2005 User Data				
Customer	Number			
Residential	5176			
Commercial	79			
Industrial	39			
Institutional	6			
Wholesale	1			
Other	1			

System Losses	
2002	6.0%
2006	-

AGR Determnations			
Category	AGR	Remarks	
Residential	1.76	Based on Residential Customer Increases	
Commercial	1.76	Assumed same as Residential	
Industrial	0.37	Weighted average of industrial sectors in Kings Mtn.	
Institution	1.76	Assumed same as Residential	
Wholesale	1.76	Assumed same as Residential	
Other	1.76	Assumed same as Residential	

Analysis Notes (Part 1 of 2)
- Decline in flows resulted from loss of two industrial customers in 2005, summing 1.85 MGD.
- 2002 LWSP contained 0 commercial because they were considered industrial at the time.
- 2005 customer data provided by contact in phone interview.
- Known future growth activities include 971-home development (estimated 0.364 MGD), and 1.100 new

;	Projected Flowrates (MGD)				:		
THE RESERVE OF THE PARTY OF THE			1.44 7.68	Category		的复数方面点	9 7 7 7 7 7
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Other	Losses
2015	1.52	0.02	1.83	0.02	0.21	0.38	-
2025	1.81	0.03	1.90	0.02	0.25	0.46	-
2035	2.16	0.03	1.97	0.03	0.30	0.54	-
2045	2.57	0.04	2.05	0.03	0.36	0.65	-
2055	3.06	0.05	2.12	0.04	0.43	0.77	-
2065	3.64	0.06	2.20	0.04	0.51	0.92	<u>-</u>
2075	4.34	0.07	2.29	0.05	0.60	1.09	-
AGR	1.76	1.76	0.37	1.76	1.76	1.76	_

Annual Average Flow			
Year	Flow (mgd)		
2015	3.99		
2025	4.47		
2035	5.03		
2045	5.69		
2055	6.46		
2065	7.37		
2075	8.44		

Monthly	Coefficients
Month	Coefficient
Jan	1.01
Feb	0.98
Mar	0.99
Apr	1.00
May	1.03
Jun	1.12
Jul	1.04
Aug	1.22
Sep	0.98
Oct	0.93
Nov	0.89
Dec	0.78

	Base	Year	
2005			

Analysis Notes (Part 2 of 2)

jobs (0.055 MGD). Both are near-term.

- Industrial customers involved in chemicals, textiles, and motor vehicle manufacturing.
- An HDR Study conducted for Kings Mountain predicted the 2050 water demand to be 9.7 mgd.
- The HDR Study utilized a more conservative projections method than this study.
- Kings Mountain provides water to Shelby, CCSD, Grover, and Bessemer City. These demands are

largely accounted for in other water user projections in this study.

- Overall AGR is 1.40, which accounts for population increase (0.44 AGR in Cleveland County) and service area expansion.
- System Losses are included in 2005 base year water demand, and thus not broken out in projections.
- 2005 customer data came from phone conversation with contact.
- Near term: 971 house development estimated 0.364 MGD demand
- Near term: 1,100 jobs estimated 0.055 MGD demand
- Industries include chemical, textiles, manufacturing.
- Overall AGR of 1.45 much larger than 0.44 AGR for Cleveland County
- Projections less than HDR study conducted for Kings Mountain.

ID No. Entity 41-R

Kings Mountain

Pilot Creek WWTP

Facility Contact

Dennis Wells (704.734.4525)

Category PWS
Type Return

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
y Year	Flow (mgd)
1995	2.92
2000	2.68
2002	2.66
2005	2.71
2006	2.57

Data Sources:
Phone Interview
Plant Data

	Monthly Average Flow (mgd)				
	3		Flow (mgd)		
Month	1995	2000	2002	2005	2006
Jan	3.07	2.66	3.22	2.89	3.10
Feb	3.30	2.84	2.70	3.32	2.84
Mar	3.16	2.95	2.80	2.94	2.74
Арг	2.80	2.60	2.63	2.62	2.54
May	2.80	2.67	2.55	2.39	2.54
Jun	3.33	3.06	2.31	2.84	2.57
Jul	2.75	2.00	2.17	2.94	2.57
Aug	2.93	2.98	2.31	3.13	2.35
Sep	2.69	2.94	2.79	2.35	2.03
Oct	2.81	2.89	3.12	2.18	2.62
Nov	3.16	2.54	2.90	2.21	2.62
Dec	2.25	1.99	2.45	2.76	2.34

2005 Potable Water Use Data					
Customer	Number	Flow (gpd)	Flow (mgd)	Pct 1	
Residential	5,176	246	1.28	39.2%	
Commercial	79	246	0.02	0.6%	
Industrial	39	45,267	1.77	54.3%	
Institutional	6	2,500	0.02	0.5%	
Wholesale	1	178,000	0.18	5.5%	
Total	5.301	_	3.25	100%	

Water/Wastewater Comparison		
Year	Wastewater/Water Q	
2005	85%	
2006	82%	

AGR Determnations			
Category	AGR	Remarks	
Residential	1.76	Based on Residential Customer Increases	
Commercial	1.76	Assumed same as Residential	
Industrial	0.37	Industry Sector: , NC GSP AGR: , Inflation AGR:	
Institutional	1.76	Assumed same as Industrial	
Wholesale	1.76	Assumed same as Residential	

			Projected Flo	wrates (GPD)	:		
	11115955	en let katak	rtrette	Category	化产生排 長 药		
Year	Residential	Commercial	Industrial	Institutional	Wholesale		
2015	1.27	0.02	1.53	0.01	0.18	0.53	
2025	1.51	0.02	1.59	0.02	0.21	0.59	
2035	1.80	0.03	1.64	0.02	0.25	0.66	
2045	2.14	0.03	1.71	0.03	0.30	0.74	
2055	2.55	0.04	1.77	0.03	0.36	0.84	
2065	3.04	0.05	1.84	0.04	0.42	0.95	
2075	3.62	0.06	1.91	0.04	0.50	1.08	
AGR	1.76	1 76	0.37	1.76	1.76	NA	

Annual Average Flow			
Year	Flow (mgd)		
2015	3.54		
2025	3.94		
2035	4.40		
2045	4.95		
2055	5.58		
2065	6.33		
2075	7.21		

Monthly	Coefficients
Month	· Coefficient
Jan	1.06
Feb	1.23
Mar	1.08
Apr	0.96
May	0.88
Jun	1.05
Jul	1.08
Aug	1.15
Sep	0.86
Oct	0.80
Nov	0.81
Dec	1.02

Base	Year
20	05

Analysis Notes

- Overall AGR is 1.41, which accounts for population increase (0.44 AGR in Cleveland County) and service area expansion.
- Projections based on AGR and Potable water use by customer category.
- Example: In 2005, there were 5,176 customers, and their per capita potable water demand was estimated at 246 gallons per day (gpd). Total residential demand was 1.28 MGD. This corresponds to 39.2% of the total potable water demand. Therefore, it was assumed that 39.2% of the total wastewater treated was from residential customers. Future wastewater flow from residential customers was assumed to be 1.76, which is the same as the potable water demand AGR. Using 2005 wastewater flow of 2.71 MGD as the base, the residential wastewater projection for 2015 is calculated as 2.71 MGD x 0.392 x (1+1.76/100)^(2015-2005) = 1.26 MGD.
- I/I flow was assumed to be 15% of the total flow.
- Wastewater/Water ratios for projections range between 86 89%, which is slightly higher than seen in the past.

ID No. Entity 42-W

Broad River Water Authority

Facility

BRWA WTP

Contact

Maria Hunnicutt (828) 286-0640

Category Type PWS Withdrawal

HISTORICAL DATA SUMMARY

Annual Average Flow				
Year	Flow (mgd)			
1995	6.07			
2000	5.40			
2002	4.58			
2005	3.57			
2006	3.01			

Data Sources:	
Facility Data	
2002 LWSP	
Phone Interview	

Monthly Average Flow (mgd)						
	Flow (mgd)					
Month_	1995	2000	2002	2005	2006	
Jan	5.65	5.33	4.60	3.60	2.86	
Feb	5.78	5.21	4.56	3.50	2.86	
Mar	5.99	4.83	4.40	3.60	3.00	
Apr	5.81	4.78	4.62	3.52	2.85	
May	6.21	6.02	5.01	3.63	3.12	
Jun	6.40	6.01	5.33	3.78	3.62	
Jul	6.02	5.33	5.27	3.45	2.98	
Aug	7.00	5.91	5.40	3.70	3.32	
Sep	6.81	5.38	4.98	3.70	2.80	
Oct	6.10	5.81	4.56	3.70	2.94	
Nov	5.57	5.35	4.15	3.55	2.83	
Dec	5.52	4.84	3.94	3.06	2.98	

2002 LWSP Data					
Customer	Number	Flow (gpd)			
Residential	5199	140			
Commercial	328	384			
Industry	42	56,833			
Institutional	227	1,004			
Wholesale	1	775,000			
Other	1	140,000			

2005 User Data					
Customer	Customer Number Flow				
Residential	5468	141			
Commercial	416	442			
Lrg Ind.	130,418				
Sm Ind.	35	27,403			
Institutional	101	1,484			
Wholesale	1	775,000			
Other	1	64,545			

System Losses 2002 5.0%

AGR Determnations					
Category	AGR 💹	Remarks			
Residential	1.68	Based on Residential Customer Increases			
Commercial	1.68	Assumed same as Residential			
Industrial	0.50	See Analysis Notes			
Institution	1.68	Assumed same as Residential			
Wholesale	1.68	Assumed same as Residential after 2018 (see notes)			
Other	1.68	Assumed same as Residential			

Projected Flowrates (MGD)							
	Category						42451
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Other	Losses
2015	0.91	0.22	1.40	0.18	2.42	0.08	0.27
2025	1.08	0.26	1.45	0.21	6.58	0.09	0.51
2035	1.27	0.30	1.51	0.25	6.78	0.11	0.54
2045	1.50	0.36	1.56	0.29	7.01	0.13	0.57
2055	1.77	0.42	1.62	0.34	7.28	0.15	0.61
2065	2.09	0.50	1.68	0.41	7.60	0.18	0.66
2075	2.47	0.59	1.75	0.48	7.99	0.21	0.71
AGR	1.68	1.68	0.50	1.68	1.68	1.68	_

Annual Average Flow				
Year	Flow (mgd)			
2015	5.47			
2025	10.17			
2035	10.75			
2045	11.42			
2055	12.20			
2065	13.12			
2075	14.20			

Monthly Coefficients				
Month	Coefficient			
Jan	0.97			
Feb	0.96			
Mar	0.96			
Apr	0.95			
May	1.05			
Jun	1.11			
Jul	1.01			
Aug	1.11			
Sep	1.03			
. Oct	1.01			
Nov	0.94			
Dec	0.90			

Base	Year
20	05

Analysis Notes
- Anticipated New Wholesale Flows; 2009 - 1.5 MGD to SWS for Liberty Chesnee Fingerville District,
and 2017 - 4.0 MGD to SWS for Boilng Springs area.
- 80% of industrial demand is exerted by three customers. One plant is likely to close before 2015 and
the other two are textiles and aren't expected to increase their demand.
- The large industrial customers were separated from the small industrial customers which account for
the remaining 20% of industrial demand. The large customers were assumed to not change in demand.
The small customers were assigned a 0.50 AGR to account for unforeseen industrial growth.
Multi-family customers were considered residential customers where 1 multi-family customer equates
to 7.5 residential customers. This ratio came from 2005 data.
- Projections performed by BRWA predicts customer growth at an AGR of 2.10.
- These projections show an overall AGR of 2.03, which is much greater than Rutherford County's
population AGR of 0.82. However, this is consistent with the large wholesale expected and future

service area expansion. Excluding wholesales, the overall projections AGR is 1.32.

ID No.	43-W	Category	PWS	
Entity	City of Shelby	Type	Withdrawal	
Facility	Shelby WTP			
Contact	Duane Sando (704.484.6474)			

Annual Av	erage Flow
Year	Flow (mgd)
1995	-
2000	· -
2002	4.85
2005	-
2006	5.02

Data Sources:	
2002 LWSP	
Phone Interview	

Monthly Average Flow (mgd)						
	Flow (mgd)					
Month	1995		2002		2006	
Jan	_	-	4.82	-	4.47	
Feb	-		4.78	-	4.75	
Mar	-	-	4.75	-	4.92	
Apr	-	_	5.21	-	5.21	
May	-	_	5.76	_	5.41	
Jun	-	-	6.53	5.10	5.54	
Jul	, -	_	6.10	5.39	5.50	
Aug	-	-	3.91	5.34	5.11	
Sep	-	-	4.15	6.01	4.87	
Oct	-	-	4.11	5.12	5.11	
Nov	-	_	4.06	4.98	4.69	
Dec	-	-	4.41	4.47	4.60	

2002 LWSP Data					
Customer	Number	Flow (gpd)			
Residential	7,099	338			
Commercial		-			
Industrial	300	6,000			
Institutional	-	- •			
Wholesale	- 1	350,000			
Other	1	74,000			

2007 Customer Data				
Customer	Number 🗻			
Inside	9,696			
Outside	383			

PROJECTIONS ANALYSIS

AGR Determnations

AGR Determnations						
⊕Category	AGR	Remarks + 1	Remarks - *			
Residential	0.44	Based on County Population I	Data			
Commercial	-	See analysis notes				
Industrial	-	See analysis notes				
Institution	-	See analysis notes				
Wholesale	-	See analysis notes				
Other	-	See analysis notes				

,		i	Projected Flo	wrates (MGD)	j		
		美国大学		《Category》	Y - 在 # 表表		
Year	· Residential	Commercial	Industrial	- Institutional	Wholesale	Other	Losses
2015	_	-	_	-	_		-
2025	-	-	-	-	-	-	-
2035	-	-	-	-	-	-	-
2045	-	-	•	-		-	-
2055	-	-	-	-	-	· •	-
2065	-	-	-	-	-	-	-
2075	-	-	•	-	*	-	-
AGR	-	-	-	-	-	-	-

Annual Average Flow Year Flow (mgd) 2015 5.22 2025 5.45 2035 5.70 2045 5.95 2055 6.22 2065 6.50 2075 6.79

Monthly Coefficients				
Month	Coefficient 🐨			
Jan	0.94			
Feb	0.96			
Mar	0.98			
Apr	1.05			
May	1.13			
Jun	1.22			
Jul	1.17			
Aug	0.91			
Sep	0.91			
Oct	0.93			
Nov	0.88			
Dec	0.91			

Analysis Notes

- Shelby currently sells to Boiling Springs approximately 350,000 gpd.
- No customer type information is available.
- Contact indicates that the current flow is around 4.9 mgd
- Shelby would like to serve new customers, but they are surrounded by the CCSD system.
- They desire to serve industrial customers, but none are expected to locate to the area.
- Assumed growth in customers based on AGR of Cleveland County population of 0.44 %.
- Although system expansion may occur, the AGR did not account for this because the projections
- for CCSD and Kings Mountain over aggressive. In other words, these projections assume that
- CCSD and Kings Mountain will expand their service areas to include those locations which would
- otherwise be served by Shelby.
- System losses are included in flow rates reported in 2006 base flow.

ID No.	43-R	Category	PWS	
Entity	City of Shelby	Type	Return	
Facility	First Broad River WWTP			
Contact	Duane Sando (704.484.6474)			

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	4.17	
2000	2.96	
2002	2.46	
2005	2.97	
2006	2.68	

Data Sources:			
2002 LWSP			
Phone Interview			

	Monthly Average Flow (mgd)					
			Flow (mgd)			
Month 4	1995	2000	2002	2005	2006	
Jan	4.62	2.96	2.90	2.74	3.50	
Feb	5.19	3.14	2.80	2.78	2.69	
Mar	5.18	3.57	3.25	3.62	2.52	
Apr	3.72	3.61	2.90	3.69	2.71	
May	3.78	3.06	2.82	2.97	2.57	
Jun	3.72	2.75	2.70	3.01	2.31	
Jul	3.66	2.67	2.54	2.94	2.39	
Aug	3.89	2.77	1.61	2.98	2.63	
Sep	3.63	2.90	1.72	2.63	2.53	
Oct	4.11	2.73	1.78	2.73	2.63	
Nov	4.79	2.75	2.01	2.62	2.82	
Dec	3.76	2.55	2.48	2.95	2.86	

2005 Plant Data					
Customer:	Number	Flow (gpd)	Flow (mgd)	Pct	
Inside	8,223	-	-	-	
Outside	129	-	-	-	
Total	8,352	-	-	-	

Water/Wastewater Comparison				
· Year 🖖	Wastewater/Water Q			
2002	51%			
2006	-			

PROJECTIONS ANALYSIS

AGR Determnations

	AGR Determnations					
Category	≪ AGR ≪	Remarks	XIII BARARAN BARA		5.7	
Residential	-	See Analysis Notes				
Commercial	-	See Analysis Notes				
Industrial	-	See Analysis Notes				
Institutional	-	See Analysis Notes				
Wholesale	-	See Analysis Notes				

r	Projected Flowrates (GPD)						
第次引用	Auressi		S. S. SEARCH	Category	计扩展 建铁煤	9 9 8 8 8 8 18 18	
Year	正 等表表表 [1]	1.0	1 1 1 4 4	图 17 图 2 图 3	T B A A D F		
- I cal	Residential	Commercial	Industrial	"Institutional	Wholesale	VI.	r 1 1 1
2015	-	-	-	-		-	
2025	-	-	ı	· -	-		
2035		= ,	-	-	-	-	
2045	-	-	-	-	-	-	
2055	-	-	-	-	-	_	
2065	-	-	-	-	-	-	
2075	-	-	-	-	-	. -	
AGR	-	-	-	-	-	NA	· · · ·

Annual Average Flow		
Year	Flow (mgd)	
2015	2.65	
2025	2.76	
2035	2.89	
2045	3.02	
2055	3.15	
2065	3.30	
2075	3.44	

Monthly Coefficients		
Month	Coefficient	
Jan	0.92	
Feb	0.93	
Mar	1.22	
Apr	1.24	
May	1.00	
Jun	1.01	
Jul	0.99	
Aug	1.00	
Sep	0.88	
Oct	0.92	
Nov	0.88	
Dec	0.99	

Base Year 2005

Analysis Notes	
- Historical flow decrease is solely a result of industrial losses (te	xtiles and dyeing)
- Remaining customers are nearly all residential customers	
- Contact indicates about half of water sold is treated at wastewat the 51% Wastewater to Water ratio listed in the 2002 LWSP.	er plant, which is consistent with
- Projections were calculated by assuming future wastewater flow	s would be 51% of the projected
potable water demand.	Paga

 ID No.
 44-W
 Category
 PWS

 Entity
 Town of Forest City
 Type
 Withdrawal

 Facility
 Forest City WTP
 Contact
 Scott Hoyle (828.248.5203)

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	4.58	
2000	5.30	
2002	5.10	
2005	4.49	
2006	4.36	

	Data Sources:
2002	LWSP

Monthly Average Flow (mgd)					
15-16-26	5 4 5 5 5		Flow (mgd)	PARTING	接来的 从5
- Month	1995	2000	2002	2005	2006,4
Jan	4.69	5.32	4.93	4.73	4.25
Feb	4.54	5.38	5.05	4.63	4.26
Mar	4.64	5.35	5.00	4.43	4.25
Apr	4.73	5.11	5.22	4.37	4.39
May	5.05	5.24	5.22	4.50	4.41
Jun	4.66	5.66	5.65	4.45	4.46
Jul	4.49	4.97	5.19	4.42	4.50
Aug	4.58	5.64	5.26	4.56	4.35
Sep	4.26	5.28	4.98	4.74	4.38
Oct	4.49	5.44	5.03	4.45	4.29
Nov	4.77	5.24	5.02	4.40	4.38
Dec	4.01	4.97	4.70	4.25	4.42

2002 LWSP Data					
Customer 🐺	Number	Flow (gpd)			
Residential	5737	174			
Commercial	840	1,488			
Industrial	19	110,000			
Institutional	0	0 .			
Wholesale	1	207,000			
Other	0	0			

2005 User Data				
Customer	Number			
Residential	5907			
Commercial	881			
Industrial	0			
Institutional	0			
Wholesale	1			
Other	0			

System Losses			
2002 12.0%			
2006			

PROJECTIONS ANALYSIS

AGR Determnations

1			
;		AGR Determnations	
Category	AGR	Remarks	
Residential	0.98	Based on Residential Customer Increas	es
Commercial	0.98	Assumed same as Residential	•
Industrial	0.50	See analysis notes	
Institution	0.00	Not expected to change	
Wholesale	0.00	Not expected to change	
Other	0.00	Not expected to change	

			Projected Flo	wrates (MGD)	1		
	被强烈的 (44.47.57			Category 🐝 💥	的記述在外,可能		10. 第三次 的 型型
Year	Residential 🧢	Commercial	Industrial:	Institutional ::	Wholesale	Other	Losses
2015	1.14	1.42	2.23	0.00	0.21	0.00	0.68
2025	1.25	1.56	2.34	0.00	0.21	0.00	0.73
2035	1.38	1.72	2.46	0.00	0.21	0.00	0.79
2045	1.52	1.90	2.59	0.00	0.21	0.00	0.85
2055	1.68	2.10	2.72	0.00	0.21	0.00	0.91
2065	1.85	2.31	2.86	0.00	0.21	0.00	0.99
2075	2.04	2.55	3.01	0.00	0.21	0.00	1.06
AGR	0.98	0.98	0.50	0.00	0.00	0.00	

Annual Average Flow				
Year	Flow (mgd)			
2015	5.67			
2025	6.10			
2035	6.56			
2045	7.07			
2055	7.62			
2065	8.21			
2075	8.86			

Monthly Coefficients				
Month	Coefficient			
Jan	1.00			
Feb	1.00			
Mar	0.99			
Apr	1.00			
May	1.03			
Jun	1.04			
Jul	0.99			
Aug	1.02			
Sep	0.99			
Oct	0.99			
Nov	1.00			
Dec	0.94			

Base Year

Analysis Notes			
- Wholesale to Bostic (0.045 n	ngd), Ellenboro (0.100 mgd), and Conco	ord Comm. WS (0.062 mgd)	
- Contact doesn't expect whole	esales quantities to change in the future.		
- Contact indicates customer in	creases amount to approximately 50 pe	r year.	
- Overall AGR is 0.76, which is accounts for service area expan	s larger than Rutherford County's popul ssion.	ation AGR of 0.34. This	

 ID No.
 44-R
 Category

 Entity
 Town of Forest City
 Type

 Facility
 Riverside Drive WRF

 Contact
 Scott Hoyle (828.248.5203)

 Category
 PWS

 Type
 Return

HISTORICAL DATA SUMMARY

Annual Average Flow					
Year	Flow (mgd)				
1995	3.20				
2000	3.89				
2002	3.62				
2005	3.06				
2006	2.65				

Data Sources: DMR Data

Monthly Average Flow (mgd)					
			Flow (mgd)		
Month	1995	2000	2002	2005	2006
Jan	4.01	3,99	3.86	3.49	2.76
Feb	4.06	4.03	3.83	3.54	2.68
Mar	2.26	4.01	3.82	3.38	2.62
Apr	3.41	3.82	3.73	3.25	2.65
May	3.69	3.54	3.56	2.70	2.55
Jun	3.37	3,88	3.55	3.06	2.55
Jul	2.67	3.36	3.26	3.29	2.44
Aug	2.96	4.11	3.62	3.09	2.88
Sep	2.71	3.97	3.54	2.90	2.74
Oct	3.17	4.02	3.36	3.01	2.71
Nov	3.39	4.03	3.61	2.47	2.66
Dec	2.71	3.97	3.73	2.55	2.53

2005 Plant Data			
Customer - Number			
Inside	3,509		
Outside 44			
Total	3,553		

Water/Wastewater Comparison			
√ SYear	Year Wastewater/Water Q		
1995	70%		
2000	73%		
2002	71%		
2005	68%		
2006	61%		
Average	69%		

		AGR Determnations		
Category	# AGR	Remarks		经销售工
Residential	-	Based on Residential Customer Increas	es	·
Commercial	-	Assumed same as Residential		
Industrial	-	Industry Sector: , NC GSP AGR: , Inflation AGR:		
Institutional	-	Assumed same as Industrial		
Wholesale	-	Assumed same as Residential		

1	Projected Flowrates (GPD)						
194.40	计一系统 0 元		THE WAY	Category	FARMANA W	11.4.252	The same of
Year	Residential	Commercial	Industrial	Institutional	Wholesale	I/I	
2015	•	•	•	-	-	-	
2025	-	-	-	-	-	-	
2035	-	-	-	-	-	-	
2045		,	-	-	-	-	
2055	Ī	-	ı	-	-	-	
2065	-	-	-	-	· -	-	
2075	-	-	-	-	-	-	
AGR	-	-	-	=	<u>-</u>	NA	

Annual Average Flow			
Year	Flow (mgd)		
2015	3.89		
2025	4.19		
2035	4.50		
2045	4.85		
2055	5.23		
2065	5.64		
2075	6.08		

Monthly Coefficients		
Month	Coefficient 🐭	
Jan	1.14	
Feb	1.16	
Mar	1.11	
Apr	1.06	
May	0.88	
Jun	1.00	
Jul	1.08	
Aug	1.01	
Sep	0.95	
Oct	0.98	
Nov	0.81	
Dec	0.83	

Base	Year
20	05

Analysis Notes		•
- Decline in treated flow resulted fro	om loss of industrial customers.	
	errormen av en valenda antikliken Makkell auskell auskell auskell auskell auskell auskell auskell av er en valen av er en være en en er en en en en en en en en en en en en en	
- 2.0 mgd of total flow in 2006 come	es from one industry - National Textiles.	and the second second second second in the second s
- National Textiles is also a potable	water customer of Forest City.	
- Contact indicates growth has been	nonexistent for several years, and no change is expe	ected.
- Customer types are not available.		
- Projections assumed that future ret	urn flows are equal to 66% of the projected water de	emand,
based on the average of the 2002 and	d 2006 wastewater to water ratios. Overall AGR of	0.99 is
higher than that for Forest City with	drawal because of different base years.	

ID No.

45-W

Entity

Cleveland County Sanitary District

Facility

Cleveland County SD WTP

Contact

Butch Smith (704.538.9033)

Category Type

PWS Withdrawal

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
Year	Flow (mgd)
2002	3.44
2003	3.39
2004	3.69
2005	3.43
2006	3.56

Data Sources:	
2002 LWSP	
User Provided Data	

	7.2		Flow (mgc	i)	
Month	2002	2003	2004	2005	2006
Jan	3.26	3.16	3.33	3.28	3.01
Feb	3.21	3.10	3.34	3.20	2.98
Mar	3.06	3.21	3.23	3.26	3.25
Apr	3.48	3.29	3.55	3.42	3.47
May	3.68	3.30	3.82	3.64	3.74
Jun	4.24	3.64	3.96	3.52	4.05
Jul	3.91	3.66	4.01	3.62	4.06
Aug	3.37	3.35	3.98	3.76	4.10
Sep	3.26	3.62	4.11	3.89	3.75
Oct	3.14	3.37	3.94	3.25	3.62
Nov	3.39	3.49	3.61	3.23	3.36
Dec	3.33	3.52	3.43	3.13	3.28

Monthly Average Flow (mgd)

Customer Data			
Customers	Increase		
12,399	•		
13,011	613		
13,248	. 237		
13,632	384		
14,122	490		
14,806	684		
15,512	706		
16,219	707		
16,820	601		
17,182	362		
17,544	362		
17,993	449		
-	509		
	12,399 13,011 13,248 13,632 14,122 14,806 15,512 16,219 16,820 17,182 17,544		

C	Customer Data					
Year	Flow Per Customer.					
1995	157					
1996	158					
1997	161					
1998	164					
1999	169					
2000	. 168					
2001	169					
2002	212					
2003	202					
2004	215					
2005	196					
2006	198					
Average	181					

PROJECTIONS ANALYSIS

	AGR Determnations				
Category	AGR	Rémarks			
Residential	1.44	See Analysis Notes			
Commercial	-	See Analysis Notes			
Industrial	-	See Analysis Notes			
Institutional	-	See Analysis Notes			
Wholesale	-	See Analysis Notes			

Analysis Notes (Part 1 of 2)

- CCSD serves virtually entirely residential customers
- Although 2002 LWSP showed some industry, contact says that is mostly gone or leaving
- Strong growth in customer base over last 10 12 years, despite slow county population growth

1		!	Projected Flo	wrates (MGD)			4
		医多数多效比别		Category			54333
Year	Residential	Commercial	Industrial	Institutional	Wholesale	Other	Losses
2015	4.04	-	-	-	-	-	-
2025	4.67	-	-	-	-	-	-
2035	5.38	•	-	-	-	-	-
2045	6.21		-	-	-	-	-
2055	7.16	·	•	•	-	-	-
2065	8.27	-	-	-	-	-	-
2075	9.54	•	-	_	-	-	-
AGR	1.44	-	-	-	-	-	-

Annual Average Flow					
Year 🔻	Flow (mgd)				
2015	4.04				
2025	4.67				
2035	5.38				
2045	6.21				
2055	7.16				
2065	8.27				
2075	9.54				

Monthly	Coefficients
Month	Coefficient
Jan	0.92
Feb	0.90
Mar	0.91
Apr	0.98
May	1.04
Jun	1.11
Jul	1.10
Aug	1.06
Sep	1.06
Oct	0.99
Nov	0.98
Dec	0.95

Base Year 2006

Analysis Notes (Part 2 of 2)

- CCSD desires to expand into surrounding counties because of poor quality private wells.
- Strong gowth expected to continue as long as new reservoir is constructed as planned.
- An AGR of 1.44 is used for projections 0.44 is from normal Cleveland County population growth and
- 1.00 is to account for strong service area expansion. Through 2075, this equates to approximately
- 500 new customers per year at 181 gpd/c, which agrees well with the historical customer data.
- CCSD serves virtually entirely residential customers
- Although 2002 LWSP showed some industry, contact says that is mostly gone or leaving
- Strong growth in customer base over last 10 12 years, despite slow county population growth
- CCSD is going aggressively after customers in surrounding counties because of poor quality wells.
- Strong gowth expected to continue as long as new reservoir is constructed as planned.
- Since growth is based not on community growth but on health needs, and because historical growth has
- been linear for the last 15 years, the projections are not based on an AGR, but a linear increase in customers.
- The average increase per customers is 508 per year. This is used in the projections along with the average per customer water usage rate.
- System losses are included in historical flow values
- Overall AGR of 1.45 larger than the Cleveland County AGR of 0.44, which is consistent with their plans to move beyond the County lines to serve new customers.

ID No.	46-R	Category	PWS	
Entity	Town of Spindale	Type	Return	
Facility	Spindale WWTP		***************************************	
Contact	Bill Hodge (828.286.3407)			

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
Year	Flow (mgd)
1995	3.37
2000	1.54
2002	1.04
2005	1.24
2006	1.13

			Flow (mgd)	4.	
♠ Month ↓	1995	2000	2002	2005	2006
Jan	3.67	0.96	1.36	0.96	1.22
Feb	3.33	0.74	1.27	1.08	0.99
Mar	2.95	0.82	1.04	1.33	1.13
Apr	2.78	0.68	1.07	1.28	0.90
May	3.27	0.80	1.07	1.09	1.03
Jun	3.52	1.33	1.11	1.38	1.71
Jul	3.05	2.15	0.88	1.34	0.93
Aug	4.40	2.14	1.05	1.42	1.27
Sep	4.00	2.33	1.09	1.28	1.09
Oct	4.01	2.37	0.89	1.33	1.13
Nov	3.07	2.14	0.82	1.20	1.19
Dec	2.41	1.97	0.86	1.22	0.97

Data Sources:	
DMR Data	
Telephone Interview	

2006 Data from Plant Sources

Customer	Number	Flow (gpd)	Total Flow	Flow Pct
Residential	2,500	160	0.40	35.4%
Commercial	30	160	0.00	0.4%
Industrial	4	181,100	0.72	64.2%
Institutional	0	0	0.00	0.0%
Wholesale	0	0	0.00	0.0%
Total	2,534	-	1.13	100.0%

		AGR Determnations
Category	AGR	Remarks
Residential	0.34	Based on County population growth
Commercial	0.34	Assumed same as Residential
Industrial	0.50	See Analysis Notes
Institutional	-	See Analysis Notes
Wholesale	-	See Analysis Notes

Projected Flowrates (GPD)							
	Category						
Year	Residential	Commercial	Industrial	Institutional	Wholesale	VI V. A. C.	N 15 B V
2015	0.41	0.00	0.76	-	-	-	· ·
2025	0.43	0.01	0.80	-		-	
2035	0.44	0.01	0.84	-	~	-	
2045	0.46	0.01	0.88	-	-	-	
2055	0.47	0.01	0.92	-	-	-	
2065	0.49	0.01	0.97	-		-	
2075	0.51	0.01	1.02	-	-	-	
AGR	0.34	0.34	0.50	•	-	NA	

Annual Average Flow		
Year	Flow (mgd)	
2015	1.18	
2025	1.23	
2035	1.28	
2045	1.34	
2055	1.40	
2065	1.47	
2075	1.53	

0.444614566

Monthly Coefficients			
Month	Coefficient		
Jan	0.77		
Feb	0.87		
Mar	1.07		
Apr	1.03		
May	0.88		
Jun	1.11		
Jul	1.08		
Aug	1.14		
Sep	1.03		
Oct	1.07		
Nov	0.97		
Dec	0.98		

Base Year 2006

Ano	vsis	NIA	0.00
		IN LUZ	1.00

- Water service to Town provided by Broad River Water Authority.
- Residential and Commerical customer numbers are approximations from contact.
- About 1/2 to 2/3 of flow comes from the industrial customers
- On weekends, when industiral customers don't operate, plant flows range 0.3 0.4 gpd
- Major industrial customers are textiles (dyeing), other small ones are metal finishing plants
- No pending industrial losses in the near future, but this is unpredictable
- 0.50 AGR used for industrial customers to account for unexpected new industrial customers.
- System only provides service within city limits, but would go into County if there was a need.
- Contact indicates residential customer base hasn't changed much in the past seven years.
- Overall AGR of 0.44 is larger than Rutherford County AGR of 0.44.

ID No.
Entity47-R
Town of RutherfordtonCategory
TypePWS
ReturnFacilityRutherfordton WWTPRutherfordton WWTPContactKaren Andrews (828.287.3520) and Nadine Blackwell (336.766.0270)

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
Year	Flow (mgd)
1995	0.61
2000	0.51
2002	0.48
2005	0.55
2006	0.44

Data Sources:	
Phone Interview	
Plant Data	

	Mo	onthly Avera	age Flow (m	gd)	
	Flow (mgd)				
Month	1995	2000	2002	2005	2006
Jan	0.74	0.53	0.50	0.56	0.50
Feb	0.68	0.51	0.46	0.57	0.44
Mar	0.66	0.60	0.49	0.65	0.44
Apr	0.54	0.57	0.43	0.57	0.40
May	0.52	0.48	0.44	0.48	0.42
Jun	0.65	0.46	0.41	0.59	0.42
Jul	0.49	0.49	0.43	0.68	0.51
Aug	0.62	0.47	0.43	0.54	0.49
Sep	0.58	0.53	0.47	0.46	0.40
Oct	0.64	0.43	0.53	0.49	0.39
Nov	0.62	0.50	0.52	0.45	0.38
Dec	0.52	0.57	0.68	0.54	0.48

2006 Plant Data				
Customer	Number			
Residential	1,603			
Commercial	12			
Industrial	0			
Institutional	0			
Wholesale	0			
Total	1,615			

AGR Determnations			
Category	AGR	Remarks	
Residential	1.32	See analysis notes	
Commercial	1	See analysis notes	
Industrial	1	See analysis notes	
Institutional	1	See analysis notes	
Wholesale	-	See analysis notes	

	Projected Flowrates (GPD)						
1.50		HARRIS NAM		Category	CHECKEY TO A	が発展している。	1. 网络维尔
Year			AND THE RESERVE AND SERVE				
	- Residential	Commercial	Industrial	Institutional		16. VI. 17. S.	1, 8, 7, 7
2015	•	-	1	-	<u>-</u>	-	
2025	-	-	-	<u>-</u>	-	-	
2035	<u>-</u>	-	-	-	-	-	
2045	-	-	-	-	-	_	
2055	-	-	-	-	-	-	
2065	-	-	-	-		-	
2075	•	-	-	-	-	-	
AGR	-	-	-		-	NA	

Annual Average Flow		
Year Y	Flow (mgd)	
2015	0.50	
2025	0.56	
2035	0.64	
2045	0.73	
2055	0.84	
2065	0.95	
2075	1.09	

Monthly Coefficients			
Month	Coefficient		
Jan	1.03		
Feb	1.04		
Mar .	1.18		
Apr	1.05		
May	0.87		
Jun	1.07		
Jul	1.24		
Aug	0.98		
Sep	0.85		
Oct	0.89		
Nov	, 0.82		
Dec	0.98		

Base	Year	
20	06	

Analysis Notes
- Water for the Town is provided by the Broad River Water Authority.
- Contact sees significant growth in the County, and wants to serve it around their city.
- 110 home subdivision being constructed now
- Seeks to serve a golf course/gated community just inside Polk County once constructed
- In 90s, plant upgraded from 1 mgd capacity to 3 mgd for textile industry that never materialized.
- No industry is on this sytem currently.
- Flow losses in past 10 years due mostly to I/I rehabilitation and loss of industry.
- Assumed that I/I reduction has bottomed out in 2006.
- Projections based on the the BRWA AGR (wholesales excluded) of 1.32. This is aggressive
compared to Rutherford County's AGR of 0.34, but in line with the Town's expasion interests.

ID No.	48-R	Category	PWS	
Entity	Town of Lake Lure	Type	Return	
Facility	Lake Lure WWTP			
Contact	William Grimes (828.625.9983)			

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
Year	Flow (mgd)
1995	0.52
2000	0.66
2002	0.66
2005	0.82
2006	0.85

Data Sources:
Phone Interview
Plant Data

Monthly Average Flow (mgd)					
Flow (mgd)				100	
Month	1995	2000	2002	2005	2006
Jan	0.38	0.49	0.58	0.79	0.78
Feb	0.44	0.49	0.49	0.76	0.68
Mar	0.42	0.53	0.48	0.75	0.64
Apr	0.41	0.59	0.50	0.67	0.65
May	0.43	0.64	0.56	0.62	0.71
Jun	0.54	0.72	0.69	0.73	0.88
Jul	0.69	0.82	0.76	0.88	0.95
Aug	0.67	0.78	0.73	0.92	0.96
Sep	0.61	0.71	0.85	0.95	0.99
Oct	0.59	0.79	0.83	0.97	1.05
Nov	0.60	0.74	0.72	0.94	1.04
Dec	0.48	0.63	0.69	0.89	0.91

2005 Plant Data						
Customer	Number	Flow (gpd)	Flow (mgd)	Pct 绿彩		
Residential	859	200	0.17	20.1%		
Sm Com	88	500	0.04	5.1%		
Med Com	25	750	0.02	2.2%		
Lg Com	12	1,000	0.01	1.4%		
I/I	1	-	0.61	71.2%		
Total	-	-	0.85	100%		

Lake Lure Population Growth				
Year 💮	Population	AGR		
1995	691	-		
2000	1,027	8.25		
2005	1,023	4.00		

,	AGR Determnations			
Category	AGR	Rémarks		
Residential	0.60	See Analysis Notes		
Commercial	-	See Analysis Notes		
Industrial	-	See Analysis Notes		
Institutional	-	See Analysis Notes		
Wholesale	-	See Analysis Notes		

Projected Flowrates (GPD)							
	WALKSON O	A.415.5.05.67.1		Category		Karabe se a d	3 2 2 2 2
Year	Residential	Commercial	Industrial	Institutional	Wholesale	I/I	
2015	-	-	-	-	·	-	
2025	<u>-</u>	-	-	-	-	-	
2035	-	-	-	-	-	-	
2045	-	-	_		-	-	
2055	-	-	-	-	-	-	
2065	-		-	-	-	-	•
2075	-	-	-	-	-	_	
AGR	· •	-	-	- .	-	-	

Annual Average Flow				
😘 Year 🏠	Flow (mgd)			
2015	0.87			
2025	0.88			
2035	0.90			
2045	0.92			
2055	0.94			
2065	0.96			
2075	0.98			

Monthly Coefficients				
Month	Coefficient 🔗			
Jan	0.84			
Feb	0:81			
Mar	0.80			
Apr	0.81			
May	0.85			
Jun	1.02			
Jul	1.18			
Aug	1.16			
Sep	1.17			
Oct	1.20			
Nov	1.15			
Dec	1.01			

Base Year

Analysis Notes

- Sewer Line is under Lake Lure severe I/I flows and erratic flow readings!
- No industry, mostly residential with some commercial
- Historical flow readings impacted by changing meters in 90s and starting weekend meter readings
- Serves Lake Lure and Chimney Rock incorporated areas, although many residents on septic tanks
- Would like to serve these incorprated areas further, but most solve some I/I issues first
- Assumed per customer flow rates to estimate I/I flow. Assumed I/I flow would remain constant.
- Assumed growth in flow would occur at Rutherford County AGR of 0.60. This includes 0.34 for
- normal Rutherford County population growth and 0.26 for service area expansion.
- Lake level drops every three years
- Overall AGR is 0.21, which is low because of the large I/I contribution to plant flow.

 ID No.
 49-R
 Category
 PWS

 Entity
 Town of Columbus
 Type
 Return

 Facility
 Columbus WWTP

 Contact
 Robert Rosseter (828.894.8236)

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
; Year	Flow (mgd)
1995	0.18
2000	0.20
2002 .	0.18
2005 ,	0.17
2006	0.16

Data Sources:	
2002 LWSP	
DMR Data	

Monthly Average Flow (mgd)					
	Flow (mgd)				
Month	1995	2000	2002	2005	2006
Jan	0.19	0.20	0.20	0.15	0.16
Feb	0.17	0.20	0.18	0.17	0.15
Mar	0.16	0.21	0.17	0.17	0.15
Apr	0.14	0.22	0.17	0.16	0.13
May	0.16	0.23	0.18	0.15	0.14
Jun	0.19	0.20	0.16	0.20	0.16
Jul	0.18	0.20	0.21	0.22	0.15
Aug	0.22	0.21	0.17	0.17	0.16
Sep	0.19	0.19	0.17	0.15	0.18
Oct	0.21	0.20	0.19	0.17	0.17
Nov	0.19	0.21	0.18	0.17	0.17
Dec	0.16	0.20	0.20	0.18	0.19

Polk County Population Data				
Year	Population	'AGR		
1990	14,416	-		
2000	18,324	2.43		
2005	19,134	1.91		

AGR Determnations				
Category	AGR	Remarks		
Residential	-	See Analysis Notes		
Commercial	-	See Analysis Notes		
Industrial	-	See Analysis Notes		
Institutional	-	See Analysis Notes		
Wholesale	_	See Analysis Notes		

		İ	Projected Flo	wrates (GPD)			
Llai	3.0.有价度图文			Category			era, dinabila
Year	Residential	Commercial	Industrial	Institutional	Wholesale	I/I	
2015	•	-	-	-	– J	-	
2025	-	-	-	-	-	-	
2035	-	-	-	-	-	-	
2045	-	- '	+	-	-	-	
2055	-	-	-	-	-	-	
2065 .	-	•	-	-	-	-	
2075	-	-	-	-	-	_	

AGR

Annual Average Flow		
Year	Flow (mgd)	
2015	0.20	
2025	0.23	
2035	0.27	
2045	0.31	
2055	0.36	
2065	0.42	
2075	0.49	

Monthly Coefficients		
Month	Coefficient	
Jan	1.00	
Feb	0.97	
Mar	. 0.96	
Apr	0.91	
May	0.94	
Jun	1.02	
Jul	1.06	
Aug	1.03	
Sep	0.98	
Oct	1.05	
Nov	1.03	
Dec	1.04	

Base Year

Analysis Notes

- Town's public water supply provided from public groundwater wells.
- Flow has declined over past 15 years largely due to loss of industry and I/I improvements
- Remaining industries don't use much water
- VI improvements will not yield much more benefit.
- Current 1,050 customers are nearly all residential and within the city limits.
- Town is not actively pursuing customers outside of city limits, but my expand in the future.
- Not enough customer data available to disaggregate customer categories and make separate AGRs
- A withdrawal was created to account for a possible future Polk County water system, starting with
- 1.0 mgd in 2015 and increasing at an AGR of 1.50. It is assumed that Columbus will return 20% of that withdrawal.
- The Polk County future withdrawals is large enough to incorporate any growth expected in the Town of Columbus.

 ID No.
 50-R
 Category
 PWS

 Entity
 Town of Boiling Springs
 Type
 Return

 Facility
 Boiling Springs WWTP
 Contact
 Mike Gibert (704.434.2357)

HISTORICAL DATA SUMMARY

Annual Ave	erage Flow
Year	Flow (mgd)
1995	0.27
2000	0.27
2002	0.24
2005	0.33
2006	0.27

Data Sources:
Phone Interview
Plant Data

Monthly Average Flow (mgd)					
			Flow (mgd)		
Month	1995	2000	2002	2005	2006
Jan	0.27	0.29	0.31	0.30	0.38
Feb	0.32	0.31	0.26	0.32	0.31
Mar	0.27	0.33	0.28	0.37	0.25
Apr	0.23	0.34	0.25	0.39	0.25
May	0.22	0.24	0.21	0.29	0.23
Jun	0.21	0.22	0.17	0.28	0.20
Jul	0.22	0.23	0.18	0.33	0.23
Aug	0.27	0.24	0.18	0.29	0.25
Sep	0.31	0.29	0.22	0.29	0.29
Oct	0.37	0.24	0.24	0.34	0.27
Nov	0.31	0.25	0.26	0.34	0.30
Dec	0.26	0.22	0.34	0.37	0.27

	2005 Plant Data				
Customer	Number	Flow (gpd)	Flow (mgd)	Rct A	
Residential			0.00	#DIV/0!	
Commercial			0.00	#DIV/0!	
Industrial			0.00	#DIV/0!	
Institutional			0.00	#DIV/0!	
Wholesale			0.00	#DIV/0!	
Total			0.00	#DIV/0!	

		AGR Determnations
Category	AGR	Remarks
Residential	0.44	See Analysis Notes
Commercial	-	See Analysis Notes
Industrial	-	See Analysis Notes
Institutional	-	See Analysis Notes
Wholesale	-	See Analysis Notes

			Projected Flo	wrates (GPD)	j		i
1851	多色型型 电影		40.050	Category			
Year	Residential	Commercial	Industrial	Institutional	Wholesale	I /I	
2015	<u>-</u>	-	-	-	-	_	
2025	-		-	-	-	-	
2035	-	-	-	- · ·	-	_	
2045	-	1	-		-	-	
2055	-	-	-	-	-	-	
2065	-	-	-	-	-	-	
2075	-	-	-	-		-	

AGR

Annual Average Flow					
Year	Flow (mgd)				
2015	0.28				
2025	0.29				
2035	0.31				
2045	0.32				
2055	0.33				
2065	0.35				
2075	0.36				

Monthly	Coefficients
Month -	Coefficient
Jan	0.94
Feb	0.99
Mar	1.15
Apr	1.18
May	0.89
Jun	0.86
Jul	1.02
Aug	0.89
Sep	0.88
Oct	1.03
Nov	1.03
Dec	1.13

Base Year 2006

Analysis Notes		
- Contact with Town was attempted, but unsuccessful.		
- Boilng Springs customers receive water from Shelby, 350,00	00 gpd, according to Shelby 2002 LWSP.	tarinin in seksember demonstratik seksi menintita hikusan teksember dirakterin saman meninti mener
		s (water construction and the subsequence and the subsect of the subsequence and the subsequence of the subs
- No customer data available.	рот ««поторожнор» от уруження пред «репрускиромиро» и муж уруже променения и мене динестации, дальна завина зави	habannyina ay sa isirakakasakanining 11 yakatasi kyyanmidaky akakasa
Market 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
- Projections assumed AGR of 0.44, to be consistent with Shell	lby's withdrawal AGR.	
The 0.44 ACP also metals the Clausian decrease which	entralination vincolorina entralina entralination entralin	ессе т б ато м есколиничест - такита скезатитамо станите тука мескологоличе месколого и компенсот меско
- The 0.44 AGR also matches the Cleveland County population	on AGR.	I marketing to the second of t
The second control of the second control of		
		over the state of

ID No.	51-R	Category	PWS	
Entity	Town of Grover	Туре	Return	
Facility	Grover WWTP			
Contact	Mike Church (704.937.9986)			

HISTORICAL DATA SUMMARY

Annual Ave	erage Flow
Year	Flow (mgd)
1995	0.05
2000	0.06
2002	0.06
2005	0.06
2006	0.06

Data Sources:
DMR Data
Phone Interview

Monthly Average Flow (mgd)							
Division of							
Month	1995	3 4 2000 kg	2002	2005	2006		
Jan	0.06	0.06	0.07	0.06	0.07		
Feb	0.06	0.06	0.06	0.06	0.06		
Mar	0.05	0.07	0.06	0.06	0.05		
Apr	0.04	0.06	0.05	0.06	0.05		
May	0.04	0.05	0.05	0.08	0.05		
Jun	0.04	0.05	0.05	0.08	0.05		
Jul	0.04	0.05	0.04	0.07	0.05		
Aug	0.05	0.05	0.05	0.05	0.05		
Sep	0.04	0.06	0.05	0.05	0.05		
Oct	0.05	0.05	0.05	0.06	0.05		
Nov	0.06	0.05	0.10	0.06	0.06		
Dec	0.05	0.06	0.08	0.07	0.06		

2005 Plant Data							
Customer 🖑	. Number∌	Flow (gpd)	Flow (mgd)	Pct			
Residential	-	-	-	-			
Commercial	_	-	-	-			
Industrial	_	-	-	-			
Institutional	_	-	-	-			
Wholesale	-	-	-	-			
Total	, -	_	-	•			

Water/Wastewater Comparison						
Year	Wastewater/Water Q					
2005	N/A					
2006	N/A					

į		AGR Determnations
* Category **	AGR	Remarks
Residential	_	Based on Residential Customer Increases
Commercial	-	Assumed same as Residential
Industrial	-	Industry Sector: , NC GSP AGR: , Inflation AGR:
Institutional	_	Assumed same as Industrial
Wholesale	-	Assumed same as Residential

Projected Flowrates (GPD)							
	Category						
Year	Residential	Commercial	Industrial	Institutional	Wholesale	·1. I/I	
2015	-	-	-	-	-	-	
2025	-	-	-	-	-	-	
2035	-	-	-	-	-	-	
2045	-	•	-	-	-	-	
2055	-	-	-	-	-	-	
2065	-	-	-			-	
2075	-	•	-	-	-	-	
AGR	-	-	-	-	-	-	

Annual Average Flow				
→ Year	Flow (mgd)			
2015	0.10			
2025	0.10			
2035	0.10			
2045	0.10			
2055	0.10			
2065	0.10			
2075	0.10			

Monthly	Coefficients
∴ Month ***	Coefficient
Jan	0.91
Feb	0.96
Mar	1.02
Apr	0.99
May	1.19
Jun	1.22
Jul	1.10
Aug	0.83
Sep	0.82
Oct	0.92
Nov	0.90
Dec	1.12

Base Year

Analysis Notes	
- Contact says their system does not anticipate	e much growth in the future.
- Customers are virtually all residential.	
- Any future growth will likely be treated by c	other surrounding sewer systems.
with the significance of t	
- No plans to increase the treatment facility's	capacity.
- Will assume 0.1 MGD as build-out discharg	e
And the first consistency or the three dynamics and the first consistency of the three consistency of the consistency of the three consistency of the three consistency of the three consistency of the three consistency of the consistency of the consistency of the consistency of the consistency of	ин тир туру таки терени нарын андагы жаша жаша жаша жаша жаша жаша жаша жаш
·	

ID No.	52-R	Category	PWS	
Entity	City of Saluda	Туре	Return	·
Facility	Saluda WWTP			
Contact	Erny Williams (828.749.2581)			

HISTORICAL DATA SUMMARY

Annual Average Flow		
Year	Flow (mgd)	
1995	0.06	
2000	0.06	
2002	0.06	
2005	0.06	
2006	0.05	

Data Sources:
2002 LWSP
DMR Data
Phone Interview
Census Data

	M	onthly Aver	age Flow (n	ngd)	· · · · · · · · · · · · · · · · · · ·
			Flow (mgd).	
Month	1995	2000	2002	2005	2006
Jan	0.10	0.04	0.06	0.08	0.0511
Feb	0.07	0.05	0.06	0.05	0.0491
Mar	0.06	0.05	0.06	0.06	0.0466
Apr	0.04	0.05	0.06	0.08	0.0489
May	0.04	0.05	0.05	0.05	0.0516
Jun	0.05	0.05	0.05	0.07	0.0457
Jul	0.04	0.06	0.05	0.06	0.0506
Aug	0.05	0.05	0.05	0.06	0.0446
Sep	0.07	0.06	0.06	0.05	0.0470
Oct	0.07	0.06	0.06	0.05	0.0405
Nov	0.07	0.09	0.09	0.05	0.0496
Dec	0.06	0.08	0.08	0.04	0.0551

2005 Plant Data					
Customer	Number	Flow (gpd)	Flow (mgd)	Pct	
Residential	- .		-	-	
Commercial		<u>-</u>		-	
Industrial	-	-	-	-	
Institutional	-	-	_	_	
Wholesale	-	_	-	-	
Total	-	**	-	-	

AGR Determnations				
Category	AGR :	Remarks		
Residential	1.05	See Analysis Notes		
Commercial	,	See Analysis Notes		
Industrial		See Analysis Notes		
Institutional	1	See Analysis Notes		
Wholesale		See Analysis Notes		

!		l	Projected Flo	wrates (GPD)			:
			"我我在我说。"	Category	15377		
Year 🖟	Residential	Commercial:	Industrial	Institutional	Wholesale	I /I	
2015	-	-	-	•	-	-	
2025	-	-	-	-	•	-	
2035	-	-	-	-	-	-	·
2045	-	-	-	-	-	-	
2055	_	-	_	-	-	-	
2065	-	_	-	-	-	-	
2075	•		-	-	-		

AGR

Annual Average Flow				
Year	Flow (mgd)			
2015	0.0531			
2025	0.0590			
2035	0.0655			
2045	0.0727			
2055	0.0807			
2065	0.0896			
2075	0.0994			

Monthly Coefficients		
> Month	Coefficient	
Jan	1.1829	
Feb	0.9611	
Mar	0.9815	
Apr	0.9745	
May	0.8740	
Jun	0.9313	
Jul	0.9270	
Aug	0.9125	
Sep	0.9821	
Oct	0.9744	
Nov	1.1902	
Dec	1.1085	

Base Year

owth over 15 years.			
er had any. Only a few com	mercial customers	et gewone War wenn was in the first white globals, and could be the first an incidence	THE TAX SEPTEMBER STORY TO SEPTEMBER OF THE SEPTEMBER SE
патура таминатуру мары акы үздүүний үү к кардартардага түмдүүнү тат үрүмүрүлүүдүүү таминулган жазан	enchiv Westernamenterinferdundsreds von wieden administration in in 2 oct 1885 och 1818 och 1800 mills ann ver		namelakka vettaavat kaalanka ja kertaurat een keessä karekintele taja keessa mis ook ettavaan taksi.
nd their discharge creek can	not handle more than that.	etini anang alja powe winnele wangkapuning appgamente wa wa saman	ware in the ware country state, according to the modern manager, where the semidative section is a semidative section to the section of the s
Proposition and Adaptive Contract of Contr	nganinatinatan 1980 (alika 1980) (alika 1980) (alika 1980) (alika 1980) (alika 1980) (alika 1980) (alika 1980)	hadd talada Managhallarindan si'i nodiis soomadaandhalanada sa'i	- 4°s selfende har en en en en en en en en en en en en en
tional flow to Tryon along w	ith Columbus in the future.		
thin the city limits. No inter	ntions of moving outside city	limits.	
Side contact in the territorial place of the contact the contact to the contact the contac	ar Aribidylir (Maseria Annous Brown Maler o chasennon i lepan Anno Baron I I I I I I I I I I I I I I I I I I I	and the state of t	Endergraft (Anthonory) house process and the Anthonory (Anthonory) (Anthonory) (Anthonory) (Anthonory) (Anthonory)
AGR of 1.05	allantina kalitata. 1881-k an mpaka kwa kwa mataka mataka mata mpakaya, mpa 19 k wila upi na kwa mili kuki sa	4 - V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1	nd their discharge creek can tional flow to Tryon along w	rer had any. Only a few commercial customers and their discharge creek cannot handle more than that. tional flow to Tryon along with Columbus in the future. thin the city limits. No intentions of moving outside city	rer had any. Only a few commercial customers Ind their discharge creek cannot handle more than that. Itional flow to Tryon along with Columbus in the future. Ithin the city limits. No intentions of moving outside city limits.

ID No.

53-W

Entity

Polk County - Future Water System

Facility Contact Polk County - Future Water System

Polk County

Category PWS

Type

Withdrawal

HISTORICAL DATA SUMMARY

Annual Av	erage Flow
Year	Flow (mgd)
1995	0.00
2000	0.00
2002	0.00
2005	0.00
2006	0.00

∴ Month √ ®	2×1995	2000	::.≻2002.≭.×	2005	2006
Jan	0.00	0.00	0.00	0.00	0.00
Feb	0.00	0.00	0.00	0.00	0.00
Mar	0.00	0.00	0.00	0.00	0.00
Apr	0.00	0.00	0.00	0.00	0.00
May	0.00	0.00	0.00	0.00	0.00
Jun	0.00	0.00	0.00	0.00	0.00
Jul	0.00	0.00	0.00	0.00	0.00
Aug	0.00	0.00	0.00	0.00	0.00
Sep	0.00	0.00	0.00	0.00	0.00
Oct	0.00	0.00	0.00	0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

Monthly Average Flow (mgd)

Data Sources:

Customer Data				
Year	Customers	Increase		
1995	0	-		
2000	0	0		
2005	0	0		
2006	0	0		

Customer Data			
Year	Flow Per Customer		
1995	0		
2000	0		
2005	0		
2006	0		

0.00

0.00

PROJECTIONS ANALYSIS

0.00

0.00

	AGR Determnations			
Category	AGR	Remarks		
Residential	1.50	See Analysis Notes		
Commercial	-	See Analysis Notes		
Industrial	-	See Analysis Notes		
Institutional	-	See Analysis Notes		
Wholesale	-	See Analysis Notes		

Nov

Dec

				wrates (MGD)			
				-Category +	F: 625-729	4.7 a. 4 5 7.22	ZŽŽWSCSŽ
Year	Residential	Commercial	Industrial	Institutional	Wholesale "	Other	Losses
2015	1.00		-	-	-	-	-
2025	1.16	-		-	-	-	-
2035	1.35	-	-	-	-	-	-
2045	1.56	-	-	<u>-</u>	-	-	-
2055	1.81	-	-	- '	-	-	~
2065	2.11	-	-	-	-	-	-
2075	2.44	•	1		-	-	-
AGR	1.50	-	-	-	-	-	-

Annual Average Flow				
Year	Flow (mgd)			
2015	1.00			
2025	1.16			
2035	1.35			
2045	1.56			
2055	1.81			
2065	2.11			
2075	2.44			

Monthly Coefficients				
Month	Coefficient			
Jan	1.00			
Feb	1.00			
Mar	1.00			
Apr	1.00			
May	1.00			
Jun	1.00			
Jul	1.00			
Aug	1.00			
Sep	1.00			
Oct	1.00			
Nov	1.00			
Dec	1.00			

Base	Year
n.	/a

-Arryvasarvy maeri
apampanan na at na aga
where the same of the same of

APPENDIX E:
AGRICULTURE AND IRRIGATION WITHDRAWAL DETAIL SHEETS

Beginning Page No.	County	State	Beginning Page No.	County	State
1 Summary Table		,	Downstream	of Ninety-Nine Isla	nds Dam
	•	•	21	Cherokee	SC
Upstream of N	Ninety-Nine Islands	Dam	22	Chester	SC
- 5	Buncombe	, NC	15	Cleveland	NC
13	Cherokee	SC	22	Fairfield	SC
6	Cleveland	NC	16	Gaston	NC
7	Gaston	NC	23	Greenville	SC
8	Henderson	NC	17	Henderson	NC
9	Lincoln	NC	24	Laurens	SC
10	McDowell	NC	25	Lexington	SC
11	Polk	NC	26	Newberry	SC
. 12	Rutherford	NC	18	Polk	NC
14	Spartanburg	SC	27	Richland	SC
			21	Rutherford	NC
			28	Spartanburg	SC
			29	Union	SC
			30	York	SC
					٦

		Agricul	ture/Irrigati	on Rollup	Summary					
		Estimated	Estimated							
Sub-Basin / County	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
Sub-Basin No. LS										
Henderson	0.59	0.60	0.61	0.63	0.67	0.70	0.73	0.77	0.81	0.85
Total	0.59	0.60	0.61	0.63	0.67	0.70	0.73	0.77	0.81	0.85
Sub-Basin No. LA										
Henderson	0.51	0.52	0.53	0.55	0.58	0.60	0.63	0.67	0.70	0.73
Polk	0.15	0.16	0.16	0.17	0.17	0.18	0.19	0.20	0.21	0.22
Total	0.67	0.68	0.69	0.72	0.75	0.79	0.83	0.87	0.91	0.96
Sub-Basin No. 1	•									
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Polk								0.00	0.00	0.01
Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Sub-Basin No. LL										
Buncombe	0.19	0.19	0.19	0.20	0.21	0.21	0.22	0.23	0.24	0.25
Henderson	0.34	0.35	0.35	0.37	0.39	0.41	0.43	0.45	0.47	0.49
Rutherford	0.12	0.13	0.13	0.13	0.14	0.15	0.15	0.16	0.17	0.18
Total	0.65	0.67	0.67	0.70	0.73	0.77	0.80	0.84	0.89	0.93
Sub-Basin No. 2										
McDowell	0.08	0.09	0.09	0.09	0.09	0.10	0.10	0.11	0.11	0.12
Rutherford	0.59	0.61	0.61	0.64	0.67	0.71	0.75	0.79	0.83	0.87
Buncombe	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	0.69	0.71	0.71	0.74	0.78	0.82	0.87	0.91	0.96	1.01
Sub-Basin No. 3							• • •			
Polk	0.28	0.29	0.29	0.31	0.32	0.34	0.36	0.37	0.39	0.41
Total	0.28	0.29	0.29	0.31	0.32	0.34	0.36	0.37	0.39	0.41
Sub-Basin No. 4										
Polk	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Rutherford	0.35	0.36	0.36	0.38	0.40	0.42	0.44	0.47	0.49	0.52
Cherokee	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07
Spartanburg	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06
Total	0.45	0.46	0.47	0.49	0.51	0.54	0.57	0.60	0.63	0.66
Sub-Basin No. CS										
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cleveland				0.00	0.10	0.10	0.00	0.00	0.00	0.12
McDowell	0.09	0.09	0.09							1.12
Rutherford Total	0.76 0.85	0.78 0.87	0.78 0.88	0.82 0.92	0.86 0.96	0.91 1.02	0.96 1.07	1.01	1.06 1.19	1.25
1 Oldi	0.00	0.07	0.00	0.02	0.00	1.02				0
Sub-Basin No. 5			0.01	0.01	0.04	0.01	0.01	0.04	0.01	0.04
Cleveland	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Rutherford	0.01	0.01	0.01	0.01 0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02
Sub-Basin No. 6			•							
Cleveland	0.82	0.84	0.84	0.88	0.93	0.98	1.02	1.08	1.13	1.19
Lincoln	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rutherford	0.33	0.34	0.34	0.36	0.37	0.39	0.42	0.44	0.46	0.49
Total	1.15	1.18	1.19	1.24	1.30	1.37	1.44	1.52	1.60	1.68
Sub-Basin No. S										
Cleveland	0.64	0.65	0.66	0.69	0.72	0.76	0.80	0.84	0.88	0.93
Total	0.64	0.65	0.66	0.69	0.72	0.76	0.80	0.84	0.88	0.93
-	-									
Sub-Basin No. 7 Cleveland	0.08	0.08	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.11
Cievelariu				0.00	บ.บฮ					
Total	0.08	0.08	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.11

			lture/Irrigat							
Sub-Basin / County	2000	Estimated 2005	Estimated 2006	2015	2025	2035	ojected Flo 2045	ws 2055	2065	2075
Sub-Basin No. 8										
Cherokee	0.09	0.09	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.13
Cleveland	0.95	0.97	0.97	1.02	1.07	1.13	1.18	1.24	1.31	1.37
Rutherford	0.12	0.12	0.12	0.13	0.13	0.14	0.15	0.16	0.16	0.17
Total	1.15	1.18	1.19	1.24	1.30	1.37	1.44	1.51	1.59	1.67
Sub-Basin No. KM										
Cleveland	0.30	0.31	0.31	0.32	0.34	0.35	0.37	0.39	0.41	0.43
Gaston	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
Lincoln	0.09	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.13
Total	0.40	0.41	0.41	0.43	0.45	0.48	0.50	0.53	0.55	0.58
Sub-Basin No. 9										
Cherokee	0.09	0.09	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.12
Cleveland	0.55	0.56	0.57	0.59	0.62	0.65	0.69	0.72	0.76	0.80
Gaston	0.07	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10
Total	0.70	0.72	0.73	0.76	0.80	0.84	0.88	0.93	0.97	1.02
Sub-Basin No. GS										
Cherokee	0.12	0.13	0.13	0.13	0.14	0.15	0.15	0.16	0.17	0.18
Cleveland	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04
Total	0.15	0.15	0.15	0.16	0.17	0.18	0.18	0.19	0.20	0.21
Sub-Basin No. CF										
Cherokee	0.40			0.43	0.45	0.47	0.50	0.52	0.55	0.58
Cleveland	0.05	0.05	0.05	0.06	0.06	0.06	0.06	0.07	0.07	0.07
Total	0.45	0.05	0.05	0.48	0.51	0.53	0.56	0.59	0.62	0.65
Sub-Basin No. 10										
Cherokee	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07
Total	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07
Sub-Basin No. NI										
Cherokee	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07
Total	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07
Columbia Canal Diversion Dam										
Richland	0.89	0.92	0.92	0.96	1.01	1.07	1.12	1.18	1.24	1.30
Total	0.89	0.92	0.92	0.96	1.01	1.07	1.12	1.18	1.24	1.30
F-18-14 D										
Fairfield Dam	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.09	0.09
Fairfield Total	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.09	0.09
									4	
Lockhart Dam	0.04	0.04	0.04	0.04	0.04	0.04	0.01	0.04		0.01
Chester	0.01	0.01	0.01	0.01	0.01	0.01	0.01 0.04	0.01 0.04	0.01	0.01 0.04
Union	0.04	0.04 0.00	0.04 0.00	0.04 0.00	0.04 0.00	0.04 0.00	0.04	0.04	0.04 0.00	0.04
York Total	0.00	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
		•								
Neal Shoals Dam	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.02
Chester Union	0.01 0.00	0.01 0.00	0.02 0.00	0.02 0.00	0.02 0.00	0.02 0.00	0.02 0.00	0.02	0.02	0.02
Total	0.02	0.02	0.00	0.02	0.00	0.02	0.02	0.00	0.00	0.03
N. 1. 44										
Node 11 Cherokee	0.26	0.27	0.28	0.30	0.33	0.36	0.40	0.44	0.49	0.54
Cleveland	0.12	0.13	0.13	0.13	0.14	0.15	0.15	0.16	0.17	0.18
Gaston	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
York	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03
Total	0.41	0.43	0.43	0.46	0.50	0.54	0.59	0.64	0.69	0.75
Node 12										
Cherokee	0.15	0.15	0.16	0.17	0.19	0.21	0.23	0.25	0.28	0.30
York	0.15	0.15	0.15	0.16	0.17	0.18	0.18	0.19	0.20	0.21
Total*	0.29	0.31	0.31	0.33	0.35	0.38	0.41	0.44	0.48	0.52
	-								•	

!		Agricu	Iture/Irrigatio	n Rollup	Summary					
0.1.0	9999		Estimated	0045	none		jected Flo		9065	0075
Sub-Basin / County Node 13	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
Cherokee	0.95	1.00	1.01	1.10	1.21	1.33	1.47	1.62	1.78	1.97
Spartanburg	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03
Total	0.97	1.02	1.03	1.12	1.23	1.36	1.50	1.65	1.81	2.00
i Giai	0.57	1.02	1.00	1.12	1.20	1.50	1.50	7.00	1.01	2.00
Node 14										
Cherokee	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cleveland	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03
Gaston	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
York	0.77	0.79	0.80	0.83	0.88	0.92	0.97	1.02	1.07	1.12
Total	0.79	0.81	0.82	0.86	0.90	0.95	0.99	1.05	1.10	1.16
Node 15										
Cherokee	0.24	0.25	0.25	0.28	0.30	0.34	0.37	0.41	0.45	0.50
Greenville	0.41	0.44	0.44	0.48	0.53	0.58	0.65	0.71	0.79	0.87
Henderson	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.09	0.09	0.10
Polk	0.18	0.19	0.19	0.19	0.20	0.22	0.23	0.24	0.25	0.26
Rutherford	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Spartanburg	1.73	1.77	1.78	1.85	1.94	2.04	2.14	2.24	2.35	2.47
Union	0.10	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
Total	2.73	2.82	2.83	2.98	3.17	3.36	3.57	3.80	4.04	4.30
	•									
Node 16	0.07	0.00	0.00	0.00	0.09	0.10	0.11	0.13	0.14	0.15
Cherokee	0.07 0.00	0.08 0.00	0.08 0.00	0.08 0.00	0.09	0.10	0.11 0.00	0.13	0.14	0.15
Chester Union	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
York	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Total	0.12	0.12	0.12	0.13	0.13	0.14	0.13	0.13	0.10	0.35
Total	0.21	0.22	0.22	0.25	0.23	0.2.7	0.20	0.50	0.52	0.00
Node 17										
Chester	0.08	80.0	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.11
York	0.64	0.65	0.66	0.69	0.72	0.76	0.80	0.84	0.88	0.93
Total	0.72	0.74	0.74	0.77	0.81	0.85	0.90	0.94	0.99	1.04
Node 18										
Chester	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04
Union	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17
Total	0.20	0.20	0.20	0.20	0.20	0.21	0.21	0.21	0.21	0.22
Node 19										
Chester	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03
Union	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
Total	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.10
Node 20										
Chester	0.27	0.27	0.28	0.29	0.30	0.32	0.33	0.35	0.37	0.39
Fairfield	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.27	0.27	0.28	0.29	0.30	0.32	0.33	0.35	0.37	0.39
Node 21										
Greenville	1.77	1.87	1.89	2.06	2.27	2.50	2.76	3.05	3.37	3.72
Spartanburg	2.14	2.20	2.21	2.30	2.41	2.53	2.76	2.78	3.37 2.92	3.72
Union	0.57	0.57	0.57	0.57	0.57	0.58	0.58	0.58	0.58	0.59
Total	4.49	4.63	4.66	4.93	5.26	5.61	6.00	6.42	6.87	7.37
Node 22	0.00	0.00		0.55		0.00	0.50	0.00	4.00	
Greenville	2.26	2.38	2.41	2.62	2.90	3.20	3.53	3.90	4.30	4.75
Laurens	1.56	1.60	1.61	1.67	1.76	1.84	1.93	2.03	2.13	2.23
Newberry	0.43	0.44	0.45	0.47	0.49	0.52	0.54	0.57	0.60	0.63
Spartanburg	0.51	0.53	0.53	0.55	0.58	0.61	0.63	0.67	0.70	0.73
Union	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.13	0.13
Total	4.89	5.07	5.11	5.44	5.84	6.28	6.76	7.28	7.85	8.47

			lture/Irrigation	on Rollup	Summary					
		Estimated	Estimated	4.4		Pr	ojected Flo	ws		
Sub-Basin / County	2000	2005	2006	2015	2025	2035	2045	2055	2065	2075
						÷				
Node 23										
Chester	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
Fairfield	0.28	0.29	0.29	0.30	0.32	0.33	0.35	0.37	0.39	0.41
Newberry	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.11
Union	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Total	0.51	0.52	0.52	0.54	0.56	0.58	0.61	0.63	0.66	0.68
Node 24										
Fairfield	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03
Newberry	0.10	0.10	0.10	0.11	0.11	0.12	0.12	0.13	0.14	0.14
Richland	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Total	0.12	0.13	0.13	0.13	0.14	0.15	0.16	0.16	0.17	0.18
Node 25										
Chester	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03
Fairfield	0.86	0.89	0.89	0.93	0.98	1.03	1.08	1.14	1.19	1.25
Richland	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02
Total	0.90	0.92	0.93	0.97	1.02	1.07	1.13	1.18	1.24	1.31
Node 26	•									
Fairfield	0.30	0.31	0.31	0.33	0.34	0.36	0.38	0.40	0.42	0.44
Lexington	0.24	0.25	0.25	0.28	0.30	0.34	0.37	0.41	0.45	0.50
Newberry	0.01	0.01	0.23	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Richland	0.75	0.77	0.77	0.81	0.85	0.89	0.94	0.98	1.03	1.09
Total	1.29	1.33	1.34	1.41	1.50	1.59	1.69	1.80	1.91	2.03
'014.				,						
Parr Shoals Dam										
Fairfield	0.10	0.11	0.11	0.11	0.12	0.12	0.13	0.14	0.14	0.15
Newberry	0.34	0.35	0.35	0.37	0.38	0.40	0.42	0.45	0.47	0.49
Total	0.44	0.45	0.46	0.48	0.50	0.53	0.55	0.58	0.61	0.64
Grand Total	29.36	29.85	30.02	32.04	33.99	36.07	38.31	40.71	43.29	46.06

COUNTY STATE:

Buncombe

NORTH CAROLINA

BASIN CONTRIBUTION:

ABOVE 99 ISLAND DAM

County Land Area Distribution

Designation	Area (Acres)	Pct of Total	
Total	422280	-	
Sub-Basin No. 2	1984	0.5%	Χ
Sub-Basin No. LL	24436	5.8%	Χ
Broad River Basin	26420	6.3%	

Livestock

Year	Demand
1985	0.60
1990	0.91
1995	1.17
2000	0.34

^{*}Data from USGS

AG	R
15 Yr	-3.7%
10 Yr	-9.4%
5 Yr	-21.9%
Assigned	-0.5%

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Dem	and (mgd)	Pct of Total	Pct from Surface
Irrigation Type	Ground	Surface	Irrigation	Water
Golf Courses	0.00	2.36	81%	100%
Crops	0.03	0.51	19%	94%

	Irrigat	ion Demand	(mgd)
Year	Total	Golf Courses	Crops
1985	0.09	0.07	0.02
1990	0.54	0.44	0.09
1995	2.18	1.77	0.38
2000	2.90	2.36	0.51

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	26.1%	26.1%
10 Yr	18.3%	18.3%
5 Yr	5.9%	5.9%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Agricultural/Irrigation Demand Projections (in mgd)

Year	Live	Livestock		olf	Cr	ops
real	Sub-2	Sub-LL	Sub-2	Sub-LL	Sub-2	Sub-LL
2000	0.00	0.02	0.01	0.14	0.00	0.03
2015	0.00	0.02	0.01	0.15	0.00	0.03
2025	0.00	0.02	0.01	0.15	0.00	0.03
2035	0.00	0.02	0.01	0.16	0.00	0.04
2045	0.00	0.02	0.01	0.17	0.00	0.04
2055	0.00	0.01	0.01	0.18	0.00	0.04
2065	0.00	0.01	0.02	0.19	0.00	0.04
2075	0.00	0.01	0.02	0.20	0.00	0.04

County (Phase): Buncombe (I)

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

STATE:

COUNTY CLEVELAND NORTH CAROLINA BASIN CONTRIBUTION: ABOVE 99 ISLAND DAM

County Land Area Distribution

B1	Area	Pct of	-
Designation	(Acres)	Total	
Total	299702	-	-
Sub-basin No. 5	421	0.1%	Χ
Sub-basin No. 6	68552	22.9%	Х
Sub-basin No. 7	4637	1.5%	Х
Sub-basin No. 8	57695	19.3%	Х
Sub-basin No. 9	54123	18.1%	Х
Sub-basin No. S	62890	21.0%	Х
Sub-basin No. CS	314	0.1%	Х
Sub-basin No. CF	5080	1.7%	Х
Sub-basin No. KM	29343	9.8%	Х
Sub-basin No. GS	2547	0.8%	Х
Broad River Basin	248318	83%	

Livestock

Year	Demand
1985	0.60
1990	0.54
1995	1.06
2000	0.93

*Data from USGS

AGR				
15 Yr	3.0%			
10 Yr	5.6%			
5 Yr	-2.6%			
Assigned	0.5%			

Golf Course and Crop Irrigation Data (for 2000)

Irrication Tuno	Water Dem	and (mgd)	Pct of Total	Pct from Surface	
Irrigation Type	Ground	Surface	Irrigation	Water	
Golf Courses	0.25	2.26	84%	90%	
Crops	0.10	0.39	16%	80%	

	Irrigation Demand (mgd)					
Year	Total	Golf Courses	Crops			
1985	0.43	0.32	0.06			
1990	0.88	0.66	0.11			
1995	2.41	1.82	0.31			
2000	3.00	2.26	0.39			

468	Golf	0			
AGR	Courses	Crops			
15 Yr	13.8%	13.8%			
10 Yr	13.0%	13.0%			
5 Yr	4.5%	4.5%			
Assigned	0.5%	0.5%			
*AGRs hased on Historical Demand					

^{*}Assigned AGR based on judgement of projector.

V	Livestock									
Year	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9	Sub-S	Sub-CS	Sub-CF	Sub-KM	Sub-GS
2000	0.00	0.21	0.03	0.44	0.07	0.08	0.00	0.01	0.04	0.00
2015	0.00	0.23	0.04	0.47	0.08	0.09	0.00	0.01	0.04	0.00
2025	0.00	0.24	0.04	0.49	0.08	0.09	0.00	0.01	0.04	0.00
2035	0.00	0.25	0.04	0.52	0.08	0.10	0.00	0.01	0.05	0.00
2045	0.00	0.27	0.04	0.54	0.09	0.10	0.00	0.01	0.05	0.00
2055	0.00	0.28	0.05	0.57	0.09	0.11	0.00	0.01	0.05	0.00
2065	0.00	0.29	0.05	0.60	0.10	0.11	0.00	0.01	0.05	0.00
2075	0.00	0.31	0.05	0.63	0.10	0.12	0.00	0.01	0.06	0.00

-	V	_				G	olf				
	Year	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9	Sub-S	Sub-CS	Sub-CF	Sub-KM	Sub-GS
•	2000	0.00	0.52	0.03	0.44	0.41	0.47	0.00	0.04	0.22	0.02
	2015	0.00	0.56	0.04	0.47	0.44	0.51	0.00	0.04	0.24	0.02
	2025	0.00	0.59	0.04	0.49	0.46	0.54	0.00	0.04	0.25	0.02
	2035	0.00	0.62	0.04	0.52	0.49	0.56	0.00	0.05	0.26	0.02
	2045	0.00	0.65	0.04	0.54	0.51	0.59	0.00	0.05	0.28	0.02
	2055	0.00	0.68	0.05	0.57	0.54	0.62	0.00	0.05	0.29	0.03
	2065	0.00	0.71	0.05	0.60	0.56	0.66	0.00	0.05	0.31	0.03
	2075	0.00	0.75	0.05	0.63	0.59	0.69	0.00	0.06	0.32	0.03

Year	Crops .									
rear	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9	Sub-S	Sub-CS	Sub-CF	Sub-KM	Sub-GS
2000	0.00	0.09	0.01	0.08	0.07	0.08	0.00	0.01	0.04	0.00
2015	0.00	0.10	0.01	0.08	0.08	0.09	0.00	0.01	0.04	0.00
2025	0.00	0.10	0.01	0.09	0.08	0.09	0.00	0.01	0.04	0.00
2035	0.00	0.11	0.01	0.09	0.08	0.10	0.00	0.01	0.05	0.00
2045	0.00	0.11	0.01	0.09	0.09	0.10	0.00	0.01	0.05	0.00
2055	0.00	0.12	0.01	0.10	0.09	0.11	0.00	0.01	0.05	0.00
2065	0.00	0.12	0.01	0.10	0.10	0.11	0.00	0.01	0.05	0.00
2075	0.00	0.13	0.01	0.11	0.10	0.12	0.00	0.01	0.06	0.00

^{*}AGRs based on Historical Demand

*Assigned AGR based on judgement of projector.

^{*}Golf course and crop imigation data from USGS
*"Total" column includes ground and surface waters
*"Golf Courses" and "Crops" columns include surface water only

COUNTY

GASTON

BASIN CONTRIBUTION:

STATE:

NORTH CAROLINA

ABOVE 99 ISLAND DAM

County Land Area Distribution

Designation	Area (Acres)	Pct of Total	
Total	232525	-	_
Sub-basin No. 9	5876	2.5%	Χ
Sub-basin No. KM	913	0.4%	Χ
Broad River Basin	6789	3%	_

Livestock

Year	Demand
1985	0.25
1990	0.20
1995	0.25
2000	0.30

^{*}Data from USGS

AGR				
15 Yr	1.2%			
10 Yr	4.1%			
5 Yr	3.7%			
Assigned	0.5%			

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Dem	and (mgd)	Pct of Total	Pct from Surface
Irrigation Type	Ground	Surface	Irrigation	Water
Golf Courses	0.38	2.13	88%	85%
Crops	0.04	0.31	12%	89%

	Irriga	Irrigation Demand (mgd)				
Year	Total	Golf Courses	Crops			
1985	0.04	0.03	0.00			
1990	0.34	0.25	0.04			
1995	2.26	1.68	0.24			
2000	2.86	2.13	0.31			

^{*}Golf course and crop irrigation data from USGS

AGR	Golf	Crono
AGN	Courses	Crops
15 Yr	32.9%	32.9%
10 Yr	23.7%	23.7%
5 Yr	4.8%	4.8%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Voor	Year Livestock		G	Golf		Crops	
Teal	Sub-9	Sub-KM	Sub-9	Sub-KM	Sub-9	Sub-KM	
2000	0.01	0.00	0.05	0.01	0.01	0.00	
2015	0.01	0.00	0.06	0.01	0.01	0.00	
2025	0.01	0.00	0.06	0.01	0.01	0.00	
2035	0.01	0.00	0.06	0.01	0.01	0.00	
2045	0.01	0.00	0.07	0.01	0.01	0.00	
2055	0.01	0.00	0.07	0.01	0.01	0.00	
2065	0.01	0.00	0.07	0.01	0.01	0.00	
2075	0.01	0.00	0.08	0.01	0.01	0.00	

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

 $^{{}^*\!}Assigned$ AGR based on judgement of projector.

COUNTY STATE:

HENDERSON

NORTH CAROLINA

BASIN CONTRIBUTION:

ABOVE 99 ISLAND DAM

County Land Area Distribution

Designation	Area	Pct of	_
Designation	(Acres)	Total	
Total	239834	-	_
Sub-basin No. LS	27153	11.3%	Χ
Sub-basin No. LA	23508	9.8%	Χ
Sub-basin No. LL	15802	6.6%	Χ
Broad River Basin	50661	21%	

Livestock

Year	Demand
1985	0.39
1990	0.81
1995	0.32
2000	0.21

^{*}Data from USGS

AGR				
15 Yr	-4.0%			
10 Yr	-12.6%			
5 Yr	-8.1%			
Assigned	0.0%			

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Dem	and (mgd)	Pct of Total	Pct from Surface	
inigation Type	Ground	Surface	Irrigation	Water	
Golf Courses	0.00	3.10	61%	100%	
Crops	0.11	1.90	39%	95%	

	Irrigat	ion Demand	(mgd)
Year	Total	Golf	Crops
	1 Otal	Courses	Стора
1985	0.19	0.12	0.07
1990	0.50	0.30	0.19
1995	3.82	2.32	1.42
2000	5.11	3.10	1.90

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	24.5%	24.5%
10 Yr	26.2%	26.2%
5 Yr	6.0%	6.0%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Vaar		Livestock		G	olf Course	s		Crops	
Year	Sub-LS	Sub-LA	Sub-LL	Sub-LS	Sub-LA	Sub-LL	Sub-LS	Sub-LA	Sub-LL
2000	0.02	0.02	0.01	0.35	0.30	0.20	0.22	0.19	0.13
2015	0.02	0.02	0.01	0.38	0.33	0.22	0.23	0.20	0.13
2025	0.02	0.02	0.01	0.40	0.34	0.23	0.24	0.21	0.14
2035	0.02	0.02	0.01	0.42	0.36	0.24	0.26	0.22	0.15
2045	0.02	0.02	0.01	0.44	0.38	0.26	0.27	0.23	0.16
2055	0.02	0.02	0.01	0.46	0.40	0.27	0.28	0.25	0.16
2065	0.02	0.02	0.01	0.49	0.42	0.28	0.30	0.26	0.17
2075	0.02	0.02	0.01	0.51	0.44	0.30	0.31	0.27	0.18

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

COUNTY

LINCOLN

BASIN CONTRIBUTION:

STATE:

NORTH CAROLINA

ABOVE 99 ISLAND DAM

County Land Area Distribution

Designation	Area (Acres)	Pct of Total	_
Total	196167	-	_
Sub-basin No. 6	245	0.1%	Χ
Sub-basin No. KM	12888	6.6%	Χ
Broad River Basin	13133	7%	_

Livestock

Year	Demand
1985	0.34
1990	0.44
1995	0.87
2000	0.62

^{*}Data from USGS

AGR					
15 Yr	4.1%				
10 Yr	3.5%				
5 Yr	-6.6%				
Assianed	0.5%				

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Dem	and (mgd)	Pct of Total	Pct from Surface		
	Ground	Surface	Irrigation	Water		
Golf Courses	0.06	0.53	69%	90%		
Crops	0.03	0.24	31%	89%		

	Irrigation Demand (mgd)				
Year	Total	Golf Courses	Crops		
1985	0.34	0.21	0.09		
1990	0.03	0.02	0.01		
1995	0.78	0.48	0.22		
2000	0.86	0.53	0.24		

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	6.4%	6.4%
10 Yr	39.9%	39.9%
5 Yr	2.0%	2.0%
_Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Year	Live	Livestock		ourses	Cr	Crops	
	Sub-6	Sub-KM	Sub-6	Sub-KM	Sub-6	Sub-KM	
2000	0.00	0.04	0.00	0.03	0.00	0.02	
2015	0.00	0.04	0.00	0.04	0.00	0.02	
2025	0.00	0.05	0.00	0.04	0.00	0.02	
2035	0.00	0.05	0.00	0.04	0.00	0.02	
2045	0.00	0.05	0.00	0.04	0.00	0.02	
2055	0.00	0.05	0.00	0.05	0.00	0.02	
2065	0.00	0.06	0.00	0.05	0.00	0.02	
2075	0.00	0.06	0.00	0.05	0.00	0.02	

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

COUNTY

McDOWELL

BASIN CONTRIBUTION:

NORTH CAROLINA STATE:

ABOVE 99 ISLAND DAM

County Land Area Distribution

Destacettes	Area	Pct of	_
Designation	(Acres)	Total	
Total	285659	-	
Sub-basin No. LL	547	0.2%	Χ
Sub-basin No. 2	19256	6.7%	Χ
Sub-basin No. CS	19799	6.9%	Χ
Broad River Basin	19804	7%	

Livestock

Year	Demand
1985	0.10
1990	7.57
1995	3.58
2000	0.25

15 Yr
10 Yr
5 Yr
Assigned

6.3%

-28.9%

-41.3%

0.5%

AGR

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Dem	and (mgd)	Pct of Total	Pct from Surface		
	Ground	Surface	Irrigation	Water		
Golf Courses	0.04	0.70	73%	95%		
Crops	0.00	0.28	27%	100%		

	Irrigation Demand (mgd)				
Year	Total	Golf Courses	Crops		
1985	0.02	0.01	0.01		
1990	0.16	0.11	0.04		
1995	0.84	0.58	0.23		
2000	1.02	0.70	0.28		

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	30.0%	30.0%
10 Yr	20.4%	20.4%
5 Yr	4.0%	4.0%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Voor	Veer Livestock			Golf Courses			Crops		
Year	Sub-LL	Sub-2	Sub-CS	Sub-LL	Sub-2	Sub-CS	Sub-LL	Sub-2	Sub-CS
2000	0.00	0.02	0.02	0.00	0.05	0.05	0.00	0.02	0.02
2015	0.00	0.02	0.02	0.00	0.05	0.05	0.00	0.02	0.02
2025	0.00	0.02	0.02	0.00	0.05	0.05	0.00	0.02	0.02
2035	0.00	0.02	0.02	0.00	0.06	0.06	0.00	0.02	0.02
2045	0.00	0.02	0.02	0.00	0.06	0.06	0.00	0.02	0.02
2055	0.00	0.02	0.02	0.00	0.06	0.06	0.00	0.02	0.03
2065	0.00	0.02	0.02	0.00	0.07	0.07	0.00	0.03	0.03
2075	0.00	0.02	0.03	0.00	0.07	0.07	0.00	0.03	0.03

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

COUNTY

POLK

BASIN CONTRIBUTION:

STATE:

NORTH CAROLINA

ABOVE 99 ISLAND DAM

County Land Area Distribution

Designation	Area (Acres)	Pct of Total	_
Total	152685	-	-
Sub-basin No. 1	832	0.5%	Χ
Sub-basin No. 3	67837	44.4%	Χ
Sub-basin No. 4	3879	2.5%	Χ
Sub-basin No. LA	36822	24.1%	Х
Broad River Basin	68669	45%	

Livestock

Year	Demand
1985	0.08
1990	0.09
1995	0.13
2000	0.07

AGR						
15 Yr -0.9%						
10 Yr	-2.5%					
5 Yr	-11.6%					
Assigned	0.5%					

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Dem	and (mgd)	Pct of Total	Pct from Surface		
	Ground	Surface	Irrigation	Water		
Golf Courses	0.02	0.42	75%	95%		
Crops	0.00	0.15	25%	100%		

	Irrigation Demand (mgd)						
Year	Total	Golf Courses	Crops				
1985	0.08	0.06	0.02				
1990	0.10	0.07	0.03				
1995	0.60	0.43	0.15				
2000	0.59	0.42	0.15				

Golf AGR Crops Courses 15 Yr 14.2% 14.2% 10 Yr 19.4% 19.4% -0.3% -0.3% 5 Yr 0.5% 0.5% Assigned

Year	Livestock				Golf Courses				Crops			
rear	Sub-1	Sub-3	Sub-4	Sub-LA	Sub-1	Sub-3	Sub-4	Sub-LA	Sub-1	Sub-3	Sub-4	Sub-LA
2000	0.00	0.03	0.00	0.02	0.00	0.19	0.01	0.10	0.00	0.07	0.00	0.04
2015	0.00	0.03	0.00	0.02	0.00	0.20	0.01	0.11	0.00	0.07	0.00	0.04
2025	0.00	0.04	0.00	0.02	0.00	0.21	0.01	0.11	0.00	80.0	0.00	0.04
2035	0.00	0.04	0.00	0.02	0.00	0.22	0.01	0.12	0.00	0.08	0.00	0.04
2045	0.00	0.04	0.00	0.02	0.00	0.23	0.01	0.13	0.00	0.08	0.00	.0.05
2055	0.00	0.04	0.00	0.02	0.00	0.25	0.01	0.13	0.00	0.09	0.01	0.05
2065	0.00	0.04	0.00	0.02	0.00	0.26	0.01	0.14	0.00	0.09	0.01	0.05
2075	0.00	0.05	0.00	0.02	0.00	0.27	0.02	0.15	0.00	0.10	0.01	0.05

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*}Golf course and crop irrigation data from USGS

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}AGRs based on Historical Demand
*Assigned AGR based on judgement of projector.

COUNTY

RUTHERFORD NORTH CAROLINA BASIN CONTRIBUTION: ABOVE 99 ISLAND DAM

STATE:

County La	nd Area	Distribution
-----------	---------	--------------

Designation	Area (Acres)	Pct of Total	-
Total	361842		-
Sub-basin No. 2	93788	25.9%	Х
Sub-basin No. 4	55564	15.4%	Χ
Sub-basin No. 5	1199	0.3%	Χ
Sub-basin No. 6	52257	14.4%	Χ
Sub-basin No. 8	18622	5.1%	Х
Sub-basin No. LL	19484	5.4%	Х
Sub-basin No. CS	120548	33.3%	Х
Broad River Basin	361462	100%	_

<u>Livestock</u>

Year	Demand
1985	0.23
1990	0.41
1995	0.34
2000	0.35

AGR 15 Yr 2.8% 10 Yr -1.6% 5 Yr 0.6% 0.6% Assigned *

Golf Course and Crop Irrigation Data (for 2000)

Indication Tune	Water Dem	and (mgd)	Pct of Total	Pct from Surface
Irrigation Type	Ground.	Surface	Irrigation	Water
Golf Courses	0.09	1.68	87%	95%
Crops	0.01	0.25	13%	96%

	Irriga	Irrigation Demand (mgd)				
Year	Total	Golf Courses	Crops			
1985	0.04	0.03	0.00			
1990	0.05	0.04	0.01			
1995	2.45	2.03	0.30			
2000	2.03	1.68	0.25			

Golf AGR Crops Courses 15 Yr 29.9% 29.9% 10 Yr 44.8% 44.8% -3.7% -3.7% 5 Yr Assigned 0.5% 0.5
*AGRs based on Historical Demand 0.5%

Year				Livestock			•
rear	Sub-2	Sub-4	Sub-5	Sub-6	Sub-8	Sub-LL	Sub-CS
2000	0.09	0.05	0.00	0.05	0.02	0.02	0.12
2015	0.10	0.06	0.00	0.06	0.02	0.02	0.13
2025	0.11	0.06	0.00	0.06	0.02	0.02	0.14
2035	0.11	0.07	0.00	0.06	0.02	0.02	0.14
2045	0.12	0.07	0.00	0.07	0.02	0.02	0.15
2055	0.13	80.0	0.00	0.07	0.03	0.03	0.16
2065	0.14	80.0	0.00	0.08	0.03	0.03	0.17
2075	0.14	0.09	0.00	0.08	0.03	0.03	0.18

Year				Golf			
rear	Sub-2	Sub-4	Sub-5	Sub-6	Sub-8	Sub-LL	Sub-CS
2000	0.44	0.26	0.01	0.24	0.09	0.09	0.56
2015	0.47	0.28	0.01	0.26	0.09	0.10	0.60
2025	0.49	0.29	0.01	0.27	0.10	0.10	0.63
2035	0.52	0.31	0.01	0.29	0.10	0.11	0.67
2045	0.55	0.32	0.01	0.30	0.11	0.11	0.70
2055	0.57	0.34	0.01	0.32	0.11	0.12	0.74
2065	0.60	0.36	0.01	0.34	0.12	0.13	0.77
2075	0.63	0.38	0.01	0.35	0.13	0.13	0.81

Year				Crops			
real	Sub-2	Sub-4	Sub-5	Sub-6	Sub-8	Sub-LL	Sub-CS
2000	0.06	0.04	0.00	0.04	0.01	0.01	0.08
2015	0.07	0.04	0.00	0.04	0.01	0.01	0.09
2025	0.07	0.04	0.00	0.04	0.01	0.02	0.09
2035	0.08	0.05	0.00	0.04	0.02	0.02	0.10
2045	0.08	0.05	0.00	0.05	0.02	0.02	0.10
2055	0.09	0.05	0.00	0.05	0.02	0.02	0.11
2065	0.09	0.05	0.00	0.05	0.02	0.02	0.12
2075	0.09	0.06	0.00	0.05	0.02	0.02	0.12

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

[&]quot;Golf course and crop irrigation data from USGS
""Total" column includes ground and surface waters
""Golf Courses" and "Crops" columns include surface *Assigned AGR based on judgement of projector.

water only

COUNTY STATE: CHEROKEE SOUTH CAROLINA

BASIN CONTRIBUTION: ABOVE 99 ISLAND DAM

County Land Area Distribution

	Area	Pct of	-
Designation	(Acres)	Total	
Total	254013	-	_
Sub-basin No. 4	4701	1.9%	Х
Sub-basin No.8	8808	3.5%	Х
Sub-basin No. 9	8648	3.4%	Х
Sub-basin No. 10	4614	1.8%	Х
Sub-basin No. CF	40179	15.8%	Х
Sub-basin No. GS	12369	4.9%	Х
Sub-basin No. NI	5142	2.0%	Х
Broad River Basin	84460	33.3%	

Livestock

Year	Demand
1985	0.09
1990	0.15
1995	0.15
2000	N/A

AGR
15 Yr 10 Yr 5.2%
5 Yr 0.0%
Assigned 0.5%

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand	Pct of	Total
migution Type	(mgd)	Irrigation	l .
Golf Courses	0.60	26%	
Crops	1.75	74%	

^{*}Data from 2000 South Carolina Water Plan

	Irriga	Irrigation Demand (mgd)				
Year	Total	Golf Courses	Crops			
1985	0.12	0.03	0.09			
1990	0.40	0.10	0.30			
1995	0.20	0.05	0.15			
2000	2.35	0.60	1.75			

AGR	Golf	Crops
Adit	Courses	
15 Yr	21.9%	21.9%
10 Yr	5.2%	5.2%
5 Yr	27.2%	27.2%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand
*Assigned AGR based on judgement of projector.

Year				Livestock			
rear	Sub-4	Sub-8	Sub-9	Sub-10	Sub-CF	Sub-GS	Sub-NI
2000	0.00	0.01	0.01	0.00	0.02	0.01	0.00
2015	0.00	0.01	0.01	0.00	0.03	0.01	0.00
2025	0.00	0.01	0.01	0.00	0.03	0.01	0.00
2035	0.00	0.01	0.01	0.00	0.03	0.01	0.00
2045	0.00	0.01	0.01	0.00	0.03	0.01	0.00
2055	0.00	0.01	0.01	0.00	0.03	0.01	0.00
2065	0.00	0.01	0.01	0.00	0.03	0.01	0.00
2075	0.00	0.01	0.01	0.00	0.04	0.01	0.00

		(4)		Golf			
Year	Sub-4	Sub-8	Sub-9	Sub-10	Sub-CF	Sub-GS	Sub-NI
2000	0.01	0.02	0.02	0.01	0.09	0.03	0.01
2015	0.01	0.02	0.02	0.01	0.10	0.03	0.01
2025	0.01	0.02	0.02	0.01	0.11	0.03	0.01
2035	0.01	0.02	0.02	0.01	0.11	0.03	0.01
2045	0.01	0.03	0.03	0.01	0.12	0.04	0.02
2055	0.01	0.03	0.03	0.01	0.12	0.04	0.02
2065	0.02	0.03	0.03	0.02	0.13	0.04	0.02
2075	0.02	0.03	0.03	0.02	0.14	0.04	0.02

Year				Crops			
rear	Sub-4	Sub-8	Sub-9	Sub-10	Sub-CF	Sub-GS	Sub-NI
2000	0.03	0.06	0.06	0.03	0.28	0.09	0.04
2015	0.03	0.07	0.06	0.03	0.30	0.09	0.04
2025	0.04	0.07	0.07	0.04	0.31	0.10	0.04
2035	0.04	0.07	0.07	0.04	0.33	0.10	0.04
2045	0.04	0.08	0.07	0.04	0.35	0.11	0.04
2055	0.04	0.08	0.08	0.04	0.36	0.11	0.05
2065	0.04	0.08	0.08	0.04	0.38	0.12	0.05
2075	0.05	0.09	0.09	0.05	0.40	0.12	0.05

^{*}Data from USGS

Assigned 0.5%
*AGRs based on Historical Demand
*Assigned AGR based on judgement of projector.

^{*}Data from USGS

COUNTY SPARTANBURG **STATE**: SOUTH CAROLINA

BASIN CONTRIBUTION: ABOVE 99 ISLAND DAM

County Land Area Distribution

Designation	Area (Acres)	Pct of Total	_
Total	524046	-	
Sub-Basin No. 4	3071	0.6%	Χ
Broad River Basin	3071	0.6%	

Livestock

Year	Demand
1985	0.24
1990	0.23
1995	0.23
2000	N/A

^{*}Data from USGS

AGR				
15 Yr	-			
10 Yr	-0.4%			
5 Yr	0.0%			
Assigned	0.5%			

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand (mgd)	Pct of Total Irrigation
Golf Courses	3.30	51%
Crops	3.13	49%

^{*}Data from 2000 South Carolina Water Plan

	Irriga	Irrigation Demand (mgd)			
Year	Total	Golf Courses	Crops		
1985	0.28	0.14	0.14		
1990	0.37	0.19	0.18		
1995	0.38	0.20	0.18		
2000	6.43	3.30	3.13		

^{*}Data from USGS

AGR	Golf Courses	Crops
15 Yr	23.2%	23.2%
10 Yr	3.1%	3.1%
5 Yr	5.7%	5.7%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Year	Livestock Sub-4	Golf Sub-4	Crops Sub-4
2000	0.00	0.02	0.02
2015	0.00	0.02	0.02
2025	0.00	0.02	0.02
2035	0.00	0.02	0.02
2045	0.00	0.02	0.02
2055	0.00	0.03	0.02
2065	0.00	0.03	0.03
2075	0.00	0.03	0.03

^{*}Assigned AGR based on judgement of projector.

^{*}Assigned AGR based on judgement of projector.

COUNTY: STATE:

CLEVELAND

NORTH CAROLINA

BASIN CONTRIBUTION:

BELOW 99 ISLAND DAM

County Land Area Distribution

Designat	ion	Area (Sq. Miles)	Pct of Total
Total		468.6	-
Sub-1	Node 11	16.2	3.5%
Sub-2	Node 14	2.5	0.5%
Broad Riv	er Basin	18.7	4%

Livestock

Year	Demand
1985	0.60
1990	0.54
1995	1.06
2000	0.93

^{*}Data from USGS

AGR		
15 Yr	3.0%	
10 Yr	5.6%	
5 Yr	-2.6%	
Assigned	0.5%	

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Invigation Type	Water Demand (mgd)		Det of Total Irrigation	Pct from Surface
Irrigation Type	Ground	Surface	Pct of Total Irrigation	Water
Golf Courses	0.25	2.26	84%	90%
Crops	0.10	0.39	16%	80%

Irrigation Demand (mgd)			ngd)
Year	Total	Golf Courses	Crops
1985	0.43	0.32	0.06
1990	0.88	0.66	0.11
1995	2.41	1.82	0.31
2000	3.00	2.26	0.39

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	13.8%	13.8%
10 Yr	13.0%	13.0%
5 Yr	4.5%	4.5%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Year	Liv	estock	(Golf	Cro	ops
rear	Sub-1	Sub-2	Sub-1	Sub-2	Sub-1	Sub-2
2000	0.03	0.00	0.08	0.01	0.01	0.00
2015	0.03	0.01	0.08	0.01	0.01	0.00
2025	0.04	0.01	0.09	0.01	0.02	0.00
2035	0.04	0.01	0.09	0.01	0.02	0.00
2045	0.04	0.01	0.10	0.02	0.02	0.00
2055	0.04	0.01	0.10	0.02	0.02	0.00
2065	0.04	0.01	0.11	0.02	0.02	0.00
2075	0.05	0.01	0.11	0.02	0.02	0.00

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

COUNTY: STATE:

GASTON

NORTH CAROLINA

BASIN CONTRIBUTION:

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total	
Total	•	363.6	-	_
Sub-1	Node 11	0.7	0.2%	X
Sub-2	Node 14	0.0	0.0%	Х
Broad Riv	er Basin	0.7	0%	_

Livestock

Year	Demand
1985	0.25
1990	0.20
1995	0.25
2000	0.30

^{*}Data from USGS

AG	iR
15 Yr	1.2%
10 Yr	4.1%
5 Yr	3.7%
Assigned	0.5%

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Water Demand (mgd)		and (mgd)	Pct of Total Irrigation Pct from Surf	Pct from Surface
Irrigation Type	Ground	Surface	Water	Water
Golf Courses	0.38	2.13	88%	85%
Crops	0.04	0.31	12%	89%

	I 1	rrigation Demand (ı	mgd)
Year	Total	Golf Courses	Crops
1985	0.04	0.03	0.00
1990	0.34	0.25	0.04
1995	2.26	1.68	0.24
2000	2.86	2.13	0.31

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	32.9%	32.9%
10 Yr -	23.7%	23.7%
5 Yr	4.8%	4.8%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Vace	Livestock		G	Golf		Crops	
Year	Sub-1	Sub-2	Sub-1	Sub-2	Sub-1	Sub-2	
2000	0.00	0.00	0.00	0.00	0.00	0.00	
2015	0.00	0.00	0.00	0.00	0.00	0.00	
2025	0.00	0.00	0.00	0.00	0.00	0.00	
2035	0.00	0.00	0.00	0.00	0.00	0.00	
2045	0.00	0.00	0.00	0.00	0.00	0.00	
2055	0.00	0.00	0.01	0.00	0.00	0.00	
2065	0.00	0.00	0.01	0.00	0.00	0.00	
2075	0.00	0.00	0.01	0.00	0.00	0.00	

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

COUNTY:

HENDERSON

STATE:

NORTH CAROLINA

BASIN CONTRIBUTION:

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total	_
Total		374.9	-	
Sub-1	Node 15	4.9	1.3%	X
Broad Riv	er Basin	5	1%	

Livestock

Year	Demand
1985	0.39
1990	0.81
1995	0.32
2000	0.21

_	_		_	_
'n	ota	fron	1115	CS

Golf Course and Crop Irrigation Data (for 2000)

Insignation Type	Water Dem	Water Demand (mgd) Pct of Total Irrigation		Pct from Surface
Irrigation Type	Ground	Surface	PCI OF TOTAL IMPACTOR	⁴ Water
Golf Courses	0.00	3.10	61%	100%
Crops	0.11	1.90	39%	95%

	Irrigation Demand (mgd)			
Year	Total	Golf Courses	Crops	
1985	0.19	0.12	0.07	
1990	0.50	0.30	0.19	
1995	3.82	2.32	1.42	
2000	5.11	3.10	1.90	

¹⁰ Yr 26.2% 26.2% 5 Yr 6.0% 6.0% Assigned 0.5% 0.5%

Golf **AGR** Crops Courses 15 Yr 24.5% 24.5%

Year	Livestock Sub-1	Golf Courses Sub-1	Crops Sub-1
2000	0.00	0.04	0.02
2015	0.00	0.04	0.03
2025	0.00	0.05	0.03
2035	0.00	0.05	0.03
2045	0.00	0.05	0.03
2055	0.00	0.05	0.03
2065	0.00	0.06	0.03
2075	0.00	0.06	0.04

AGR 15 Yr -4.0% 10 Yr -12.6% 5 Yr -8.1% Assigned 0.0%

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*}Golf course and crop irrigation data from USGS

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}AGRs based on Historical Demand *Assigned AGR based on judgement of projector.

COUNTY: STATE:

POLK

NORTH CAROLINA

BASIN CONTRIBUTION:

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation Total		Area (Sq. Miles)	Pct of Total	
		238.7	•	_
Sub-1	Node 15	67.5	28.3%	_ X
Broad River Basin		67	28%	

Livestock

Year	Demand
1985	0.08
1990	0.09
1995	0.13
2000	0.07

^{*}Data from USGS

AG	R
15 Yr	-0.9%
10 Yr	-2.5%
5 Yr	-11.6%
Assigned	0.5%

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand (mgd)		Pct of Total Irrigation	Pct from Surface
irrigation Type	Ground	Surface	. Fet of Total Imgation	Water
Golf Courses	0.02	0.42	75%	95%
Crops	0.00	0.15	25%	100%

	lr .	Irrigation Demand (mgd)			
Year	Total	Golf Courses	Crops		
1985	0.08	0.06	0.02		
1990	0.10	0.07	0.03		
1995	0.60	0.43	0.15		
2000	0.59	0.42	0.15		

^{*}Golf course and crop irrigation data from USGS

AGR	Golf Courses	Crops
15 Yr	14.2%	14.2%
10 Yr	19.4%	19.4%
5 Yr	-0.3%	-0.3%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Year	Livestock Sub-1	Golf Courses Sub-1	Crops Sub-1
2000	0.02	0.12	0.04
2015	0.02	0.13	0.05
2025	0.02	0.13	0.05
2035	0.02	0.14	0.05
2045	0.02	0.15	0.05
2055	0.03	0.16	0.06
2065	0.03	0.16	0.06
2075	0.03	0.17	0.06

^{*}Assigned AGR based on judgement of projector.

^{*&}quot;Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface water only

^{*}Assigned AGR based on judgement of projector.

COUNTY: STATE:

RUTHERFORD

NORTH CAROLINA

BASIN CONTRIBUTION: BELOW 99 ISLAND DAM

County Land Area Distribution

Designati	ion	n Area (Sq. Miles)		_
Total	•••	565.7	-	_
Sub-1	Node 15	0.5	0.1%	_X
Broad Riv	er Basin	0	0%	_

Livestock

Year	Demand
1985	0.23
1990	0.41
1995	0.34
2000	0.35

^{*}Data from USGS

AG	R
15 Yr	2.8%
10 Yr	-1.6%
5 Yr	0.6%
Assigned	0.6%

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

tunian time	Water Demand (mgd)		Pct of Total Irrigation	Pct from Surface
Irrigation Type	Ground	Surface	PCI OF FOIAI Irrigation	Water
Golf Courses	0.09	1.68	87%	95%
Crops	0.01	0.25	13%	96%

	lr	rigation Demand (mg	d)
Year	Total	Golf Courses	Crops
1985	0.04	0.03	0.00
1990	0.05	0.04	0.01
1995	2.45	2.03	0.30
2000	2.03	1.68	0.25

AGR	Golf Courses	Crops
15 Yr	29.9%	29.9%
10 Yr	44.8%	44.8%
5 Yr	-3.7%	-3.7%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Year	Livestock Sub-1	Golf Sub-1	Crops Sub-1
2000	0.00	0.00	0.00
2015	0.00	0.00	0.00
2025	0.00	0.00	0.00
2035	0.00	0.00	0.00
2045	0.00	0.00	0.00
2055	0.00	0.00	0.00
2065	0.00	0.00	0.00
2075	0.00	0.00	0.00

^{*}Assigned AGR based on judgement of projector.

^{*}Golf course and crop irrigation data from USGS
*"Total" column includes ground and surface waters

^{*&}quot;Golf Courses" and "Crops" columns include surface

^{*}Assigned AGR based on judgement of projector.

COUNTY:

Cherokee

BASIN CONTRIBUTION:

STATE: S

South Carolina

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation	-	Area (Sq. Miles)	Pct of Total
Total		397.2	-
Sub-1	Node 11	41.1	10.4%
Sub-2	Node 12	23.3	5.9%
Sub-3	Node 13	150.7	37.9%
Sub-4	Node 14	0.2	0.1%
Sub-5	Node 15	38.0	9.6%
Sub-6	Node 16	11.6	2.9%
Broad River Basin		265.0	66.7%

Livestock

Year	Demand
1985	0.09
1990	0.15
1995	0.15
2000	N/A

AGR		
15 Yr	-	
10 Yr	5.2%	
5 Yr	0.0%	
Assigned	0.5%	

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand (mgd)	Pct of Irriga	Total tion
Golf Courses	0.60	269	%
Crops	1.75	749	%

^{*}Data from 2000 South Carolina Water Plan

	Irrigat	Irrigation Demand (mgd)				
Year	Total	Golf Courses	Crops			
1985	0.12	0.03	0.09			
1990	0.40	0.10	0.30			
1995	0.20	0.05	0.15			
2000	2.35	0.60	1.75			

^{*}Data from USGS

AGR	Golf Courses	Crops
15 Yr	21.9%	21.9%
10 Yr	5.2%	5.2%
5 Yr	27.2%	27.2%
Assigned	1.0%	1.0%

^{*}AGRs based on Historical Demand

	. /												
Year	Livestock				Livestock					Golf Courses			
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	
2000	0.02	0.01	0.06	0.00	0.01	0.00	0.06	0.04	0.23	0.00	0.06	0.02	
2015	0.02	0.01	0.06	0.00	0.02	0.00	0.07	0.04	0.26	0.00	0.07	0.02	
2025	0.02	0.01	0.07	0.00	0.02	0.01	0.08	0.05	0.29	0.00	0.07	0.02	
2035	0.02	0.01	0.07	0.00	0.02	0.01	0.09	0.05	0.32	0.00	0.08	0.02	
2045	0.02	0.01	0.07	0.00	0.02	0.01	0.10	0.06	0.36	0.00	0.09	0.03	
2055	0.02	0.01	0.08	0.00	0.02	0.01	0.11	0.06	0.39	0.00	0.10	0.03	
2065	0.02	0.01	0.08	0.00	0.02	0.01	0.12	0.07	0.43	0.00	0.11	0.03	
2075	0.02	0.01	0.08	0.00	0.02	0.01	0.13	0.07	0.48	0.00	0.12	0.04	

Year		Crops							
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6			
2000	0.18	0.10	0.66	0.00	0.17	0.05			
2015	0.21	0.12	0.77	0.00	0.19	0.06			
2025	0.23	0.13	0.85	0.00	0.21	0.07			
2035	0.26	0.15	0.94	0.00	0.24	0.07			
2045	0.28	0.16	1.04	0.00	0.26	0.08			
2055	0.31	0.18	1.15	0.00	0.29	0.09			
2065	0.35	0.20	1.27	0.00	0.32	0.10			
2075	0.38	0.22	1.40	0.00	0.35	0.11			

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*}Assigned AGR based on judgement of projector.

COUNTY: Chester

BASIN CONTRIBUTION: BELOW 99 ISLAND DAM

STATE: South Carolina

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		586.4	•
Sub-1	Lockhart Dam	2.9	0.5%
Sub-2	Neal Shoals Dam	8.2	1.4%
Sub-3	Node 16	0.1	0.0%
Sub-4	Node 17	44.2	7.5%
Sub-5	Node 18	17.0	2.9%
Sub-6	Node 19	10.1	1.7%
Sub-7	Node 20	150.2	25.6%
Sub-8	Node 23	8.7	1.5%
Sub-9	Node 25	12.6	2.2%
Broad River B	Basin	254.0	43.3%

Livestock

Year	Demand
1985	0.10
1990	0.13
1995	0.13
2000	N/A

AGR				
15 Yr	-			
10 Yr	2.7%			
5 Yr	0.0%			
Assigned	0.5%			

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand	Pct of	Total
	(mgd) Irrigation		
Golf Courses	0.60	66%	,
Crops	0.31	34%	,

^{*}Data from 2000 South Carolina Water Plan

	Irrigatio	n Demand (m	gd)
Year	Total	Golf Courses	Crops
1985	0.00	0.00	0.00
1990	0.00	0.00	0.00
1995	0.00	0.00	0.00
2000	0.91	0.60	0.31

AGR	Golf Courses	Crops
15 Yr	-	-
10 Yr	-	-
5 Yr	-	•
Assigned	0.5%	.0.5%

Year	Livestock								
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9
2000	0.00	0.00	0.00	0.01	0.00	0.00	0.03	0.00	0.00
2015	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.00	0.00
2025	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.00	0.00
2035	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.00	0.00
2045	0.00	0.00	0.00	0.01	0.00	0.00	0.04	0.00	0.00
2055	0.00	0.00	0.00	0.01	0.01	0.00	0.04	0.00	0.00
2065	0.00	0.00	0.00	0.01	0.01	0.00	0.05	0.00	0.00
2075	0.00	0.00	0.00	0.01	0.01	0.00	0.05	0.00	0.00

Year	Golf Courses								
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9
2000	0.00	0.01	0.00	0.05	0.02	0.01	0.15	0.01	0.01
2015	0.00	0.01	0.00	0.05	0.02	0.01	0.17	0.01	0.01
2025	0.00	0.01	0.00	0.05	0.02	0.01	0.17	0.01	0.01
2035	0.00	0.01	0.00	0.05	0.02	0.01	0.18	0.01	0.02
2045	0.00	0.01	0.00	0.06	0.02	0.01	0.19	0.01	0.02
2055	0.00	0.01	0.00	0.06	0.02	0.01	0.20	0.01	0.02
2065	0.00	0.01	0.00	0.06	0.02	0.01	0.21	0.01	0.02
2075	0.00	0.01	0.00	0.07	0.03	0.01	0.22	0.01	0.02

Year	Crops								
Г	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9
2000	0.00	0.00	0.00	0.02	0.01	0.01	0.08	0.00	0.01
2015	0.00	0.00	0.00	0.03	0.01	0.01	0.09	0.00	0.01
2025	0.00	0.00	0.00	0.03	0.01	0.01	0.09	0.01	0.01
2035	0.00	0.01	0.00	0.03	0.01	0.01	0.09	0.01	0.01
2045	0.00	0.01	0.00	0.03	0.01	0.01	0.10	0.01	0.01
2055	0.00	0.01	0.00	0.03	0.01	0.01	0.10	0.01	0.01
2065	0.00	0.01	0.00	0.03	0.01	0.01	0.11	0.01	0.01
2075	0.00	0.01	0.00	0.03	0.01	0.01	0.12	0.01	0.01

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*}Data from USGS

^{*}AGRs based on Historical Demand
*Assigned AGR based on judgement of projector.

COUNTY:

Fairfield

BASIN CONTRIBUTION: BELOW 99 ISLAND DAM

STATE: South Carolina

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		710.0	•
Sub-1	Fairfield Dam	16.1	2.3%
Sub-2	Node 20	0.0	0.0%
Sub-3	Node 23	72.9	10.3%
Sub-4	Node 24	4.9	0.7%
Sub-5	Node 25	224.3	31.6%
Sub-6	Node 26	78.6	11.1%
Sub-7	Parr Shoals Dam	26.8	3.8%
Broad River F	Basin	424	59.7%

<u>Livestock</u>

Year	Demand
1985	0.06
1990	0.07
1995	0.07
2000	N/A

AGR 15 Yr 10 Yr 1.6% 5 Yr 0.0% Assigned 0.5%

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand	Pct of	Total
Intigation type	(mgd)	Irrigation	
Golf Courses	0.20	89	6
Crops	2.46	92	%

^{*}Data from 2000 South Carolina Water Plan

	Irrigation Demand (mgd)					
Year	Total	Golf Courses	Crops			
1985	0.00	0.00	0.00			
1990	0.00	0.00	0.00			
1995	0.00	0.00	0.00			
2000	2.66	0.20	2.46			

AGR	Courses	Crops			
15 Yr	-	-			
10 Yr	-	•			
5 Yr	-	-			
Assigned 0.5% 0.5%					
*AGRs based on Historical Demand					

Year	Livestock						
Г	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7
2000	0.00	0.00	0.01	0.00	0.02	0.01	0.00
2015	0.00	0.00	0.01	0.00	0.02	0.01	0.00
2025	0.00	0.00	0.01	0.00	0.03	0.01	0.00
2035	0.00	0.00	0.01	0.00	0.03	0.01	0.00
2045	0.00	0.00	0.01	0.00	0.03	0.01	0.00
2055	0.00	0.00	0.01	0.00	0.03	0.01	0.00
2065	0.00	0.00	0.01	0.00	0.03	0.01	0.00
2075	0.00	0.00	0.01	0.00	0.03	0.01	0.00

Year			Go	f Courses			
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7
2000	0.00	0.00	0.02	0.00	0.06	0.02	0.01
2015	0.00	0.00	0.02	0.00	0.07	0.02	0.01
2025	0.01	0.00	0.02	0.00	0.07	0.03	0.01
2035	0.01	0.00	0.02	0.00	0.08	0.03	0.01
2045	0.01	0.00	0.03	0.00	0.08	° 0.03	0.01
2055	• 0.01	0.00	0.03	0.00	0.08	0.03	0.01
2065	0.01	0.00	0.03	0.00	0.09	0.03	0.01
2075	0.01	0.00	0.03	0.00	0.09	0.03	0.01

Year				Crops			
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7
2000	0.06	0.00	0.25	0.02	0.78	0.27	0.09
2015	0.06	0.00	0.27	0.02	0.84	0.29	0.10
2025	0.06	0.00	0.29	0.02	0.88	0.31	0.11
2035	0.07	0.00	0.30	0.02	0.93	0.32	0.11
2045	0.07	0.00	0.32	0.02	0.97	0.34	0.12
2055	0.07	0.00	0.33	0.02	1.02	0.36	0.12
2065	0.08	0.00	0.35	0.02	1.07	0.38	0.13
2075	0.08	0.00	0.37	0.02	1.13	0.40	0.13

^{*}Data from USGS

^{*}Assigned AGR based on judgement of projector.

^{*}Data from USGS

^{*}Assigned AGR based on judgement of projector.

COUNTY:

Greenville

BASIN CONTRIBUTION:

STATE:

South Carolina

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		794.9	-
Sub-1	Node 15	28.6	3.6%
Sub-2	Node 21	122.6	15.4%
Sub-3	Node 22	156.5	19.7%
Broad River B	Basin	308	38.7%

Livestock

Year	Demand
1985	0.15
1990	0.18
1995	0.18
2000	N/A

A	AGR		
15 Yr	-		
10 Yr	1.8%		
5 Yr	0.0%		
Assigned	0.5%		

Golf Course and Crop Irrigation Data (for 2000)

tunianation Toma	Water Demand	Pct of	Total	
Irrigation Type	(mgd) Irriga		ition	
Golf Courses	6.20	55	%	
Crops	5.11	45	%	

^{*}Data from 2000 South Carolina Water Plan

	Irrigat	ion Demand	(mgd)
Year	Total	Golf Courses	Crops
1985	0.25	0.14	0.11
1990	0.34	0.19	0.15
1995	0.38	0.21	0.17
2000	11.31	6.20	5.11

^{*}Data from USGS

Year		Livestock		Go	olf Courses			Crops	
	Sub-1	Sub-2	Sub-3	Sub-1	Sub-2	Sub-3	Sub-1	Sub-2	Sub-3
2000	0.01	0.03	0.04	0.22	0.96	1.22	0.18	0.79	1.01
2015	0.01	0.03	0.04	0.26	1.11	1.42	0.21	0.91	1 .17
2025	0.01	0.03	0.04	0.29	1.23	1.57	0.24	1.01	1.29
2035	0.01	0.03	0.04	0.32	1.35	1.73	0.26	1.12	1.43
2045	0.01	0.04	0.05	0.35	1.50	1.91	0.29	1.23	1.57
2055	0.01	0.04	0.05	0.39	1.65	2.11	0.32	1.36	1.74
2065	0.01	0.04	0.05	0.43	1.83	2.33	0.35	1.50	1.92
2075	0.01	0.04	0.05	0.47	2.02	2.58	0.39	1.66	2.12

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

Golf **AGR** Crops Courses 15 Yr 28.9% 28.9% 10 Yr 4.3% 4.3% 5 Yr 6.3% 6.3% Assigned 1.0% 1.0%

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

COUNTY:

Laurens

STATE:

South Carolina

BASIN CONTRIBUTION:

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total	
Total		723.5		
Sub-1	Node 22	268.8	37.1%	
Broad Riv	er Basin	269	37.1%	

Livestock

Year	Demand
1985	0.29
1990	0.23
1995	0.23
2000	N/A

^{*}Data from USGS

Golf Course and Crop Irrigation Data (for 2000)

Irrination Type			Pct of	Total
Irrigation Type	Water Demand	(mgd)	Irrigation	1
Golf Courses	0.80		20%	
Crops	3.17		80%	

^{*}Data from 2000 South Carolina Water Plan

	Irri	Irrigation Demand (mgd)		
Year	Total	Golf Courses	Crops	
1985	0.00	0.00	0.00	
1990	0.23	0.05	0.18	
1995	0.00	0.00	0.00	
2000	3.97	0.80	3.17	

^{*}Data from USGS

Year	Livestock Sub-1	Golf Courses Sub-1	Crops Sub-1
2000	0.09	0.30	1.18
2015	0.09	0.32	1.27
2025	0.09	0.34	1.33
2035	0.09	0.35	1.40
2045	0.09	0.37	1.47
2055	0.09	0.39	1.55
2065	0.09	0.41	1.63
2075	0.09	0.43	1.71

AGR
15 Yr 10 Yr -2.3%
5 Yr 0.0%
Assigned 0.0%

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

AGR
 Golf Courses
 Crops

 15 Yr

 10 Yr
 33.0%
 33.0%

 5 Yr

 Assigned
 0.5%
 0.5%

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

COUNTY: STATE:

Lexington

South Carolina

BASIN CONTRIBUTION:

BELOW 99 ISLAND DAM

County Land Area Distribution

Designati	on	Area (Sq. Miles)	Pct of Total
Total		757.1	-
Sub-1	Node 26	8.4	1.1%
Broad Riv	er Basin	8	1.1%

Livestock

Year	Demand
1985	0.06
1990	0.86
1995	0.86
2000	N/A

^{*}Data from USGS

AC	AGR		
15 Yr	-		
10 Yr	30.5%		
5 Yr	0.0%		
Assigned	0.5%		

^{*}AGRs based on Historical Demand

Golf Course and Crop Irrigation Data (for 2000)

Irrination Time			Pct of	Total
Irrigation Type	Water Demand	r Demand (mgd) Irri		n
Golf Courses	2.30		11%	
Crops	18.30		89%	

^{*}Data from 2000 South Carolina Water Plan

	lrr	igation Demand (m	ıgd)
Year	Total	Golf Courses	Crops
1985	0.32	0.04	0.28
1990	0.96	0.11	0.85
1995	0.54	0.06	0.48
2000	20.60	2.30	18.30

^{*}Data from USGS

AGR	Golf Courses	Crops
15 Yr	32.0%	32.0%
10 Yr	5.4%	5.4%
5 Yr	24.6%	24.6%
Assigned	1.0%	1.0%

^{*}AGRs based on Historical Demand

Year	Livestock Sub-1	Golf Courses Sub-1	Crops Sub-1
2000	0.01	0.03	0.20
2015	0.01	0.03	0.24
2025	0.01	0.03	0.26
2035	0.01	0.04	0.29
2045	0.01	0.04	0.32
2055	0.01	0.04	0.35
2065	0.01	0.05	0.39
2075	0.01	0.05	0.43

^{*}Assigned AGR based on judgement of projector.

^{*}Assigned AGR based on judgement of projector.

COUNTY: STATE:

Newberry

BASIN CONTRIBUTION:

South Carolina

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		647.6	•
Sub-1	Node 22	149.0	23.0%
Sub-2	Node 23	26.1	4.0%
Sub-3	Node 24	34.3	5.3%
Sub-4	Node 26	2.4	0.4%
Sub-5	Parr Shoals Dam	116.7	18.0%
Broad Riv	er Basin	328.4	50.7%

Livestock

Year	Demand
1985	0.33
1990	0.40
1995	0.40
2000	N/A

AGR
15 Yr 10 Yr 1.9%
5 Yr 0.0%
Assigned 0.5%

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand	Pct of	Total
inigation Type	(mgd)	Irrigat	ion
Golf Courses	0.60	419	6
Crops	0.87	59%	6

^{*}Data from 2000 South Carolina Water Plan

	Irrigation Demand (mgd)				
Year	Total	Golf	Crops		
	Total	Courses	Огоро		
1985	0.04	0.02	0.02		
1990	0.00	0.00	0.00		
1995	0.00	0.00	0.00		
2000	1.47	0.60	0.87		

^{*}Data from USGS

	Golf	
AGR	Courses	Crops
15 Yr	27.2%	27.2%
10 Yr	-	-
5 Yr	-	-
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Agricultural/Irrigational Demand Projections (in mgd)

Year	.,	1	_ivestock				G	olf Course	s	
Ī	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5
2000	0.09	0.02	0.02	0.00	0.07	0.14	0.02	0.03	0.00	0.11
2015	0.10	0.02	0.02	0.00	0.08	0.15	0.03	0.03	0.00	0.12
2025	0.11	0.02	0.02	0.00	0.08	0.16	0.03	0.04	0.00	0.12
2035	0.11	0.02	0.03	0.00	0.09	0.16	0.03	0.04	0.00	0.13
2045	0.12	0.02	0.03	0.00	0.09	0.17	0.03	0.04	0.00	0.14
2055	0.12	0.02	0.03	0.00	0.10	0.18	0.03	0.04	0.00	0.14
2065	0.13	0.02	0.03	0.00	0.10	0.19	0.03	0.04	0.00	0.15
2075	0.14	0.02	0.03	0.00	0.11	0.20	0.04	0.05	0.00	0.16

26 of 30

Year	Crops				
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5
2000	0.20	0.04	0.05	0.00	0.16
2015	0.22	0.04	0.05	0.00	0.17
2025	0.23	0.04	0.05	0.00	0.18
2035	0.24	0.04	0.05	0.00	0.19
2045	0.25	0.04	0.06	0.00	0.20
2055	0.26	0.05	0.06	0.00	0.21
2065	0.28	0.05	0.06	0.00	0.22
2075	0.29	0.05	0.07	0.00	0.23 `

Water Withdrawals for

Agricultural and Irrigigation Users

County (Phase): Newberry (II)

12/11/2007

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*}Assigned AGR based on judgement of projector.

COUNTY:

Richland

BASIN CONTRIBUTION: BELOW 99 ISLAND DAM

STATE:

South Carolina

County Land Area Distribution

Designation	on	Area (Sq. Miles)	Pct of Total
Total		771.4	-
Sub-1	Columbia Canal Diversion Dam	112.2	14.5%
Sub-2	Node 24	8.0	0.1%
Sub-3	Node 25	1.7	0.2%
Sub-4	Node 26	93.7	12.1%
Broad Rive	r Basin	208.3	27.0%

Livestock

Year	Demand
1985	0.06
1990	0.08
1995	0.08
2000	N/A

AGR				
15 Yr				
10 Yr	2.9%			
5 Yr	0.0%			
Assigned	0.5%			

Golf Course and Crop Irrigation Data (for 2000)

Imigation Type	Water Demand	Pct of Tota		
Irrigation Type	(mgd)	Irriga	tion	
Golf Courses	4.30	71	%	
Crops	1.77	29	%	

^{*}Data from 2000 South Carolina Water Plan

	Irrigation Demand (mgd)			
Year	Total	Golf Courses	Crops	
1985	1.43	1.01	0.42	
1990	0.39	0.28	0.11	
1995	0.35	0.25	0.10	
2000	6.07	4.30	1.77	

^{*}Data from USGS

AGR	Golf Courses	Crops
15 Yr	10.1%	10.1%
10 Yr	20.1%	20.1%
5 Yr	76.9%	76.9%
Assigned	0.5%	0.5%

^{*}AGRs based on Historical Demand

Agricultural/Irrigational Demand Projections (in mgd)

Year	Livestock					Golf C	ourses	
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-1	Sub-2	Sub-3	Sub-4
2000	0.01	0.00	0.00	0.01	0.63	0.00	0.01	0.52
2015	0.01	0.00	0.00	0.01	0.67	0.00	0.01	0.56
2025	0.01	0.00	0.00	0.01	0.71	0.00	0.01	0.59
2035	0.01	0.00	0.00	0.01	0.74	0.01	0.01	0.62
2045	0.01	0.00	0.00	0.01	0.78	0.01	0.01	0.65
2055	0.02	0.00	0.00	0.01	0.82	0.01	0.01	0.69
2065	0.02	0.00	0.00	0.01	0.86	0.01	0.01	0.72
2075	0.02	0.00	0.00	0.01	0.91	0.01	0.01	0.76

Year	Crops						
	Sub-1	Sub-2	Sub-3	Sub-4			
2000	0.26	0.00	0.00	0.21			
2015	0.28	0.00	0.00	0.23			
2025	0.29	0.00	0.00	0.24			
2035	0.31	0.00	0.00	0.26			
2045	0.32	0.00	0.00	0.27			
2055	0.34	0.00	0.01	0.28			
2065	0.36	0.00	0.01	0.30			
2075	0.37	0.00	0.01	0.31			

Water Withdrawals for

Agricultural and Irrigigation Users

County (Phase): Richland (II) 12/11/2007

^{*}Data from USGS

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

^{*}Assigned AGR based on judgement of projector.

COUNTY:

Spartanburg

BASIN CONTRIBUTION: BELOW 99 ISLAND DAM

STATE:

South Carolina

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		819.3	, -
Sub-1	Node 13	4.0	0.5%
Sub-2	Node 15	319.1	38.9%
Sub-3	Node 21	396.4	48.4%
Sub-4	Node 22	94.8	11.6%
Broad River Basin		814.3	99.4%

Livestock

Year	Demand
1985	0.24
1990	0.23
1995	0.23
2000	N/A

^{*}Data from USGS

Golf Course and Crop Irrigation Data (for 2000)

Irrigation Type	Water Demand	Pct of To		
irrigation Type	(mgd)	Irrigation		
Golf Courses	3.20	76	%	
Crops	1.00	24	%	

^{*}Data from 2000 South Carolina Water Plan

	Irrigat	ion Demand	(mgd)
Year	Total	Golf Courses	Crops
1985	0.28	0.21	0.07
1990	0.37	0.28	0.09
1995	0.00	0.00	0.00
2000	4.20	3.20	1.00

^{*}Data from USGS

Agricultural/Irrigational Demand Projections (in mgd)

Year		Livestock Golf Cours			Golf Courses			
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-1	Sub-2	Sub-3	Sub-4
2000	0.00	0.09	0.11	0.03	0.02	1.25	1.55	0.37
2015	0.00	0.09	0.11	0.03	0.02	1.34	1.67	0.40
2025	0.00	0.09	0.11	0.03	0.02	1.41	1.75	0.42
2035	0.00	0.09	0.11	0.03	0.02	1.48	1.84	0.44
2045	0.00	0.09	0.11	0.03	0.02	1.56	1.94	0.46
2055	0.00	0.09	0.11	0.03	0.02	1.64	2.04	0.49
2065	0.00	0.09	0.11	0.03	0.02	1.72	2.14	0.51
2075	0.00	0.09	0.11	0.03	0.02	1.81	2.25	0.54

Year			Crops	
	Sub-1	Sub-2	Sub-3	Sub-4
2000	0.00	0.39	0.48	0.12
2015	0.01	0.42	0.52	0.12
2025	0.01	0.44	0.55	0.13
2035	0.01	0.46	0.58	0.14
2045	0.01	0.49	0.61	0.14
2055	0.01	0.51	0.64	0.15
2065	0.01	0.54	0.67	0.16
2075	0.01	0.57	0.70	0.17

Water Withdrawals for Agricultural and Irrigigation Users County (Phase): Spartanburg (II) 12/11/2007

AGR
15 Yr 10 Yr -0.4%
5 Yr 0.0%
Assigned 0.0%

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

AGR
 Golf Courses
 Crops

 15 Yr

 10 Yr

 5 Yr

 Assigned
 0.5%
 0.5%

^{*}AGRs based on Historical Demand

^{*}Assigned AGR based on judgement of projector.

COUNTY: Union

STATE:

South Carolina

BASIN CONTRIBUTION: BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		516.2	-
Sub-1	Lockhart Dam	17.2	3.3%
Sub-2	Neal Shoals Dam	2.3	0.4%
Sub-3	Node 15	43.6	8.4%
Sub-4	Node 16	9.4	1.8%
Sub-5	Node 18	69.8	13.5%
Sub-6	Node 19	28.0	5.4%
Sub-7	Node 21	236.8	45.9%
Sub-8	Node 22	50.9	9.9%
Sub-9	Node 23	58.2	11.3%
Broad River E	Basin	516	100.0%

Livestock

Year	Demand
1985	0.07
1990	0.08
1995	0.08
2000	N/A

AGR					
15 Yr	-				
10 Yr	1.3%				
5 Yr	0.0%				
Assigned	0.5%				
*AGRs based on	Historical Demand				

Golf Course and Crop Irrigation Data (for 2000)

	Water Demand	Pct of Total	
Irrigation Type	(mgd)		
Golf Courses	0.40	34	%
Crops	0.76	66	%

*Data from 2000 South Carolina Water Plan

	Irrigation Demand (mgd)					
Year	Golf Total Course		Crops			
1985	0.00	0.00	0.00			
1990	0.00	0.00	0.00			
1995	0.00	0.00	0.00			
2000	1.16	0.40	0.76			

AGR	Golf Courses	Crops
15 Yr	-	-
10 Yr	-	-
5 Yr	-	-
Assigned	0.0%	0.0%

Year	Livestock								
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9
2000	0.00	0.00	0.01	0.00	0.01	0.00	0.04	0.01	0.01
2015	0.00	0.00	0.01	0.00	0.01	0.00	0.04	0.01	0.01
2025	0.00	0.00	0.01	0.00	0.01	0.01	0.04	0.01	0.01
2035	0.00	0.00	0.01	0.00	0.01	0.01	0.04	0.01	0.01
2045	0.00	0.00	0.01	0.00	0.01	0.01	0.05	0.01	0.01
2055	0.00	0.00	0.01	0.00	0.01	0.01	0.05	0.01	0.01
2065	0.00	0.00	0.01	0.00	0.02	0.01	0.05	0.01	0.01
2075	0.00	0.00	0.01	0.00	0.02	0.01	0.05	0.01	0.01

Year	Golf Courses								
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9
2000	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2015	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2025	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2035	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2045	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2055	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2065	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05
2075	0.01	0.00	0.03	0.01	0.05	0.02	0.18	0.04	0.05

Year	Crops								
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9
2000	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2015	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2025	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2035	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2045	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2055	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2065	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09
2075	0.03	0.00	0.06	0.01	0.10	0.04	0.35	0.07	0.09

^{*}Data from USGS

^{*}Assigned AGR based on judgement of projector.

^{*}Data from USGS

^{*}AGRs based on Historical Demand *Assigned AGR based on judgement of projector.

COUNTY:

BASIN CONTRIBUTION:

STATE:

South Carolina

BELOW 99 ISLAND DAM

County Land Area Distribution

Designation		Area (Sq. Miles)	Pct of Total
Total		695.6	
Sub-1	Node 11	3.3	0.5%
Sub-2	Node 12	22.5	3.2%
Sub-3	Lockhart Dam	0.3	0.0%
Sub-4	Node 14	118.0	17.0%
Sub-5	Node 16	17.8	2.6%
Sub-6	Node 17	97.4	14.0%
Broad River B	Basin	259.3	37.3%

Livestock

Year	Demand
1985	0.22
1990	0.35
1995	0.35
2000	N/A

A	GR
15 Yr	-
10 Yr	4.8%
5 Yr	0.0%
Assigned	0.5%
**********	V-4

Golf Course and Crop Irrigation Data (for 2000)

Indication Time	Water Demand	Pct of	Total	
Irrigation Type	(mgd)	Irrigation		
Golf Courses	3.20	76	%	
Crops	1.00	24	%	

^{*}Data from 2000 South Carolina Water Plan

	Irrigat	ion Demand (n	ngd)
Year	Total	Golf Courses	Crops
1985	0.12	0.09	0.03
1990	0.13	0.10	0.03
1995	0.10	0.08	0.02
2000	4.20	3.20	1.00

AGR	Golf Courses	Crops
15 Yr	26.7%	26.7%
10 Yr	-1.8%	-1.8%
5 Yr	1.6%	1.6%
Assigned	0.5%	0.5%

Golf

Year	Livestock						
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6	
2000	0.00	0.01	0.00	0.06	0.01	0.05	
2015	0.00	0.01	0.00	0.07	0.01	0.05	
2025	0.00	0.01	0.00	0.07	0.01	0.06	
2035	0.00	0.01	0.00	0.07	0.01	0.06	
2045	0.00	0.01	0.00	0.08	0.01	0.06	
2055	0.00	0.02	0.00	80.0	0.01	0.07	
2065	0.00	0.02	0.00	80.0	0.01	0.07	
2075	0.00	0.02	0.00	0.09	0.01	0.07	

Year	Golf Courses							
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6		
2000	0.01	0.10	0.00	0.54	0.08	0.45		
2015	0.02	0.11	0.00	0.59	0.09	0.48		
2025	0.02	0.12	0.00	0.62	0.09	0.51		
2035	0.02	0.12	0.00	0.65	0.10	0.53		
2045	0.02	0.13	0.00	0.68	0.10	0.56		
2055	0.02	0.14	0.00	0.71	0.11	0.59		
2065	0.02	0.14	0.00	0.75	0.11	0.62		
2075	0.02	0.15	0.00	0.79	0.12	0.65		

Year			Cro	ps		
	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Sub-6
2000	0.00	0.03	0.00	0.17	0.03	0.14
2015	0.01	0.03	0.00	0.18	0.03	0.15
2025	0.01	0.04	0.00	0.19	0.03	0.16
2035	0.01	0.04	0.00	0.20	0.03	0.17
2045	0.01	0.04	0.00	0.21	0.03	0.18
2055	0.01	0.04	0.00	0.22	0.03	0.18
2065	0.01	0.04	0.00	0.23	0.04	0.19
2075	0.01	0.05	0.00	0.25	0.04	0.20

^{*}Data from USGS

^{*}Assigned AGR based on judgement of projector.

^{*}Data from USGS

^{*}AGRs based on Historical Demand *Assigned AGR based on judgement of projector.

APPENDIX F:

POWER WATER WITHDRAWAL PROJECTIONS -- DUKE ENERGY

					Summa	ry of Net	Outflows	Broad Ri	ver Basir	Power L	sers-	-	_						_	. –
							istorical						2002				Net Outfic			
		Facility	1996	1997	1998	1999	2000 %	2001	2002	2003	2004	2005	2006	2015	2025	2035	2045	2055	2065	2075
Node CS	Duke	2000 1 20	n/a	n/a	n/a	n/a	6.72	6.70	6.72	6.70	6.70	6.72	6.72	20.68	20.68	20.68	20.68	20.68	20.68	20.68
1	Subtotal	Cliffside Steam Station 1,2a	n/a	n/a	n/a	n/a	6.72	6.70	6.72	6.70	6.70	6.72	6.72	20.68	20.68	20.68	20.68	20.68	20.68	20.68
1	Subiotal		104			100	0.72	5.70	0.72	0.70	00	0	J., L]						
Node 991	l																			
	Duke	Lee Nuclear Power Station 1, 2b	n/a	n/a	n/a	n/a	0.00	n/a	0.00	n/a	n/a	0.00	0.00	35.50	35.50	35.50	35.50	35.50	35.50	35.50
]	Subtotal		n/a	n/a	n/a	n/a	0.00	n/a	0.00	n/a	n/a	0.00	0.00	35.50	35.50	35.50	35.50	35.50	35.50	35.50
Neal Sho	ala Dam																			
inear Sho	SCE&G	Neal Shoals Hydro & Reservoir 3	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Subtotal	Near Shoals Hydro & Neservon	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Parr Sho		45.00						0.00	9.16	9.47	10.05	9.87	9.25	9.23	9.23	9.23	9.23	9.23	9.23	9.23
	SCE&G Subtotal	Parr Reservoir (Natural Evaporation) 4, 5, 8a	n/a 0.00	n/a 0.00	n/a 0.00	8.66 8.66	8.74 8.74	8.66 8.66	9.16	9.47	10.05	9.87	9.25	9.23	9.23	9.23	9.23	9.23	9.23	9.23
	Subtotai		0.00	0.00	0.00	8.00	0.74	0.00	9.10	9.47	10.05	9.07	9.20	9.23	5.23	3.23	3.23	3.23	3.23	3.20
Fairfield I	Dam																			į
	SCE&G	Fairfield Pumpstation & Monticello Reservoir	19.48	19.50	19.51	19.49	19.52	19.51	19.49	19.49	19.42	19.47	19.48	19.49	19.49	19.49	19.49	19.49	19.49	19.49
		(Natural Evaporation) 4,5,6b		****************								***************************************								
	SCE&G	V C Summer Nuclear Station - Unit 1	n/a	n/a	n/a	n/a	n/a	n/a	17.83	15.06	14.42	17.12	15.51	15.99	15.99	15.99	15.99	15.99	15.99	15.99
	SCE&G	(Current) 6c, ^{ed} V.C. Summer Nuclear Station - Unit 2 (Future)	r/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20.43	20.43	20.43	20.43	20.43	20.43
	SUEAG	2016) 60	IVA	iva	iva	wa	IVA	100	· va	· va	IVA	104		''"	20.40	20.10	20.10	20.10	20.10	
ļ	SCE&G	V C Summer Nuclear Station- Unit 3 (Future	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20.43	20.43	20.43	20.43	20.43	20.43
1		2019) ^{6e}																		
	Subtotal		19.48	19.50	19.51	19.49	19.52	19.51	37.31	34.54	33.84	36.59	34.99	35.47	76.33	76.33	76.33	76.33	76.33	76.33
Node 24														l.						
14006.24	SCE&G	Parr Hydro Station 8	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	SCE&G	Summer Nuclear Training 6	n/a	n/a	n/a	n/a	n/a	n/a	r√a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Subtotal													0.00	0.00	0.00	0.00	0.00	0.00	0.00
		,												j						1
Node 16	Dules Engrave	T	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		0.00	0.00	35.55	35.55	35.55	35.55	35.55
	Duke Energy Subtotal	Future Nuclear Station 1, 2c	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		0.00	0.00	35.55	35.55	35.55	35.55	35.55
	Guululai		100	I V CL	IVA	IIIa	11/4	100	104			1114		1 5.55	0.00	55.55	50.00	55.55	20.00	20.00
Node 19																				
	Duke Energy	Future Fossil-Fuel Station 1, 2c	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		0.00	0.00	0.00	0.00	21.97	21.97	21.97
L	Subtotal		n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a 53.18	50.96	0.00	0.00	0.00 177.29	0.00 177.29	21.97 199.26	21.97 199.26	21.97 199.26
Grand T	otal		19.48	19.50	19.51	28.15	34.98	34.88	53.20	50.72	50.59	53.18	50.96	100.89	141.74	177.29	177.29	199.20	199.20	199.20

Notes: 1. Duke Power Withdrawals are actually net consumptive use or "outflows" from the system. No return projections are given for these facilities since the values reported here are for net outflow.

2. Net Outflows for Duke Energy provided by Duke Energy.

(A) Cliffside Steam Station is an expansion of an existing facility. Historical outflows shown are the average for the time period.

(B) Lee Nuclear Station is a planned new facility.

(C) No additional future stations are currently being planned. These facilities, and their assigned nodes, are place holder for potential growth within the lower Broad River Basin.

- 3. The Neal Shoals Hydro and Reservoir project is a run-of-river project. The majority of losses are to natural evaporation. For the purposes of this study Neal Shoals natural evaporation is not included as part of net outflows for Power. But, will be estimated within the CHEOPS model.
- 4. Parr and Monticello Reservoir Net Outflows represents the estimated evaporation losses at each reservoir. Historical evaporative losses were calculated based on data provided by SČE&G. Data provided included Hourly Reservoir Stage (USGS), Reservoir Stage-Area-Storage Conversion Tables, and Pan Evaporation Methodology developed by South Carolina State Climatology Office for Central South Carolina (see Note 2 for more detail). To estimate evaporative losses three steps were taken: (Step 1) hourly stage data was converted to hourly surface area, (Step 2) monthly average surface area was used in the Pan Evaporation Methodology to estimate each months estimated evaporation.

5. Source information for Pan Evaporation Methodology provided by SCE&G.

Source: Pan Evaporation Records for the South Carolina Area, John C. Purvis, South Carolina State Climatology Office

FWS values were computed as 75 percent of pan evaporation values.

This factor was estimated from a discussion in NOAA Technical Report NWS 33, Evaporation Atlas for the 48 Contiguous States.

The conversion from evaporation in inches to evaporation rate in CFS per thousand acres is:

(inches) x (1 ft/12 in) x (1 month/31 [or 30 or 28] days) x (43,560 SF/acre) x (1 day/86,400 sec) x (1,000 acres/thousand acres)

6. Reservoir Projections:

- (A) Natural Evaporation -- Parr Reservoir's projected net outflows are based on the current infrastructure and historical reservoir volumes. Projected net outflows are based on the 1999-2006 historic average. This assumption may be incorrect following the installation and operation of new facilities on Monticello Reservoir requiring increased pumping and blowdown from these facilities. However, due to lack of data it is not known how lake levels will fluctuate in the future.
- (B) Natural Evaporation -- Monticello Reservoir's projected net outflows from "natural evaporation" are based on current infrastructure and historic reservoir levels. Projected net outflows are based on 1996-2006 historic average. This assumption may be incorrect following the anticipated new facilities beginning in 2016. However, due to lack of data future reservoir levels could not be determined.

(C) Forced Evaporation' -- Monticello Reservoir's projected net outflows from "forced evaporation" is estimated by SCE&G.

- (D) Consumptive Use -- Consumptive use represents the net outflows for Unit 1. This is comprised of direct water losses through power generation and other user such as drinking water.
- (E) Future Facility -- SCE&G is currently planning to build a new nuclear facility on Monticello Reservoir. This facility will be comprised of two units (Unit 2 and Unit 3). Unit 2 is anticipated to go online in 2019. These facilities will have cooling towers as opposed to the "in-lake" cooling that occurs with Unit #1. SCE&G has estimated each of the new units will generate 14,159 GPM in evaporative losses and 31 GPM in losses from drift.

7. Net outflows captured within net outflows of other components.

Broad River Water Supply Study Duke Energy - Cliffside Power Plant Net Water Use

Table 1 - Cliffside Plant Data

Dry Bulb Temperature (°F)	Evaporation (gpm)
95	6,540
81	5,810
45	4,672
33	4,190

Table 2 - Interpolated Evaporation Data

Temperature (°F)	Evaporation (gpm)
35	4,267
40	4,448
45	4,630
50	4,812
55	4,994
60	5,175
65	5,357
70	5,539
75	5,721
80	5,902
85	6,084
90	6,266
95	6,448

Table 3 - Monthly Coefficient Calculations

Month	Average Temperature (°F)	Evaporation (gpm)	Monthly Coefficient
Jan	41.3	4,496	0.87
Feb	43.9	4,590	0.89
Mar	51.1	4,852	· 0.94 `
Apr	60.0	5,175	1.00
May	68.3	5,477	1.06
Jun	75.6	5,742	1.11
Jul	78.7	5,855	1.13
Aug	77.4	5,808	1.12
Sep	71.6	5,597	1.08
Oct	60.9	5,208	1.00
Nov	51.0	4,848	0.94
Dec	42.9	4,554	0.88
Average	60.2	5,183	1.00

Notes:	
1	Net outflows from the Cliffside Power Plant are due to evaporation. Table 1 provides plant data
	regarding evaporation rate in relation to temperature.

Evaportion rates for the range in temperatures in Table 2 were interpolated from the data in Table 1.

The average monthly temperatures in Table 3 are historical averages for the Southern Piedmont of North Carolina (1931 - 2000). This data was obtained from page 44 of "Climatograph of the United States No. 85", prepared by the National Climatic Data Center of the National Oceanic and Atmospheric Administration.

2

3.00


Broad River Water Supply Study Duke Energy - Lee Nuclear Power Plant Net Water Use

Table 1 - Duke Energy Provided Data

Year	Net Water Use (MGD)
2015	50.4
2025	50.4
2035	50.4
2045	50.4
2055	50.4
2065	50.4
2075	50.4

Table 2 - Monthly Coefficients

DIC E	monthing oc
J	0.96
F	0.94
M	0.96
Α	0.98
М	1.00
J	1.02
J	1.04
Α	1.06
S	1.04
0	1.02
Ν	1.00
D	0.98
Avg	1.00

Notes:

- 1 Table 1 information was provided by Duke Energy.
- 2 Table 2 coefficients were determined based on two criteria:
 - The average of the coefficients must equal 1.00.
 - The average coefficient for May Nov must be 6% larger than the Dec Apr average.

				ו	Data Provid	led by Dui	ke Energy							
Water Use (cfs)	Phase	Subbasin	Existing	2008	2009	2010	2011	2012	2013	2014	2015	2016-2027	2028-2054	2055-207
Net Water Use	•													
Cliffside Steam Station														
Unit 1-4	Phase I		2.60	2.60	2.60	2.60	2.60							
Unit 5	Phase I		7.80	7.80	7.80	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00	15.00
Unit 6	Phase I		0.00	0.00	0.00	0.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00	17.00
Subtotal	Phase I	-	10.40	10.40	10.40	17.60	34.60	32.00	32.00	32.00	32.00	32.00	32.00	32.00
Lee Nuclear Station														
Unit 1	Phase I	**************************************									27.50	27.50	27.50	27.50
Unit 2	Phase I		†								27.50	27.50	27.50	27.50
Subtotal	Phase I										55.00	55.00	55.00	55.00
Future Nuclear Station			•											
Assume intake location on Br	oad River ius	st helow Pace	alet											
Unit 1	Phase II	Node 16	T	T			T	T			T	1	27.50	27.50
Unit 2	Phase II	Node 16									 	 	27.50	27.50
Subtotal	Phase II	Node 16											55.00	55.00
	**************************************		3000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2000 m to 2		*******				·					
Future Fossil-Fuel Station														
Assume intake near SC 72											······································			·
Unit 1	Phase II	Node 19											<u> </u>	17.00
Unit 2	Phase II	Node 19												17.00
Subtotal	Phase II	Node 19												34.00

APPENDIX G: POWER WATER WITHDRAWAL PROJECTIONS -- SCE&G

					Summa	ry of Net											-			
Sub Bac	In / Entity · ·	Facility	1996	1997	1998	1999	istorical 2000	Net Outfle 2001	ows (MGI 2002	2003	2004	2005	2006	2015		rojected 2035	Net Outfle 2045	ows (MGE 2055)) 2065	2075
Node CS		ji donitj	300 1 0 0 0 pm		(SEE . 1 O O O XX		1											W/		
	Duke	Cliffside Steam Station 1, 2a	n/a	n/a	n/a	n/a	6.72	6.70	6.72	6.70	6.70	6.72	6.72	20.68	20.68	20.68	20.68	20.68	20.68	20.68
	Subtotal		n/a	n/a	n/a	n/a	6.72	6.70	6.72	6.70	6.70	6.72	6.72	20.68	20.68	20.68	20.68	20.68	20.68	20.68
Node 991	!																			
	Duke	Lee Nuclear Power Station 1, 26	n/a	n/a	n/a	n/a	0.00	n/a	0.00	n/a	n/a	0.00	0.00	35.50	35.50	35.50	35.50	35.50	35.50	35.50
	Subtotal		n/a	n/a	n/a	n/a	0.00	n/a	0.00	n/a	n/a	0.00	0.00	35.50	35.50	35.50	35.50	35.50	35.50	35.50
Neal Sho	als Dam SCE&G	Neal Shoals Hydro & Reservoir ³	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Subtotal	Neal Shoals Hydro & Neservoir	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Parr Sho	ale Dam																			
7 gir One	SCE&G	Parr Reservoir (Natural Evaporation) 4, 5, 6a	n/a	n/a	n/a	8.66	8.74	8.66	9.16	9.47	10.05	9.87	9.25	9.23	9.23	9.23	9.23	9.23	9.23	9.23
ļ	Subtotal		0.00	0.00	0.00	8.66	8.74	8.66	9.16	9.47	10.05	9.87	9.25	9.23	9.23	9.23	9.23	9.23	9.23	9.23
Fairfield I	Dam																			
	SCE&G	Fairfield Pumpstation & Monticello Reservoir (Natural Evaporation) 4,5,6b	19.48	19.50	19.51	19.49	19.52	19.51	19.49	19.49	19.42	19.47	19.48	19.49	19.49	19.49	19.49	19.49	19.49	19.49
	SCE&G	V C Summer Nuclear Station - Unit 1 (Current) 6c, 6d	n/a	n/a	n/a	n/a	n/a	n/a	17.83	15.06	14.42	17.12	15.51	15.99	15.99	15.99	15.99	15.99	15.99	15.99
	SCE&G	V C Summer Nuclear Station - Unit 2 (Future 2016) 69	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20.43	20.43	20.43	20.43	20.43	20.43
	SCE&G	V C Summer Nuclear Station- Unit 3 (Future 2019) 66	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	20.43	20.43	20.43	20.43	20.43	20.43
•	Subtotal		19.48	19.50	19.51	19.49	19.52	19.51	37.31	34.54	33.84	36.59	34.99	35.47	76.33	76.33	76.33	76.33	76.33	76.33
Node 24																				
	SCE&G	Parr Hydro Station 6	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	SCE&G	Summer Nuclear Training ⁶	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a 0.00	n/a 0.00	n/a 0.00
	Subtotal				-			-	••					0.00	0.00	0.00	0.00	0.00	0.00	0.00
Node 16									-4-	-1-	-1-				0.00	05.55	05 55	20 00	25.55	25.55
	Subtotal	Future Nuclear Station 1, 2c	n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a	n/a n/a		0.00	0.00	35.55	35.55 35.55	35.55 35.55	35.55 35.55	35.55 35.55
	Subtotal		n/a .	iva	IVa	iva	IVA	iva	iva	iva	IVa	iva		0.00	0.00	33.33	JJ.JJ	33.33	55.55	JJ.JJ
Node 19	Duke Energy	Future Fossil-Fuel Station 1, 2c	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		0.00	0.00	0.00	0.00	21.97	21.97	21.97
	Subtotal	Future Fossii-Fuel Station	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a		0.00	0.00	0.00	0.00	21.97	21.97	21.97
	otal		19.48	19.50	19.51	28.15	34.98	34.88	53.20	50.72	50.59	53.18	50.96	100.89	141.74	177.29	177.29	199.26	199.26	199.26

Notes: 1. Duke Power Withdrawals are actually net consumptive use or "outflows" from the system. No return projections are given for these facilities since the values reported here are for net outflow.

2. Net Outflows for Duke Energy provided by Duke Energy.

(A) Cliffside Steam Station is an expansion of an existing facility. Historical outflows shown are the average for the time period.

(B) Lee Nuclear Station is a planned new facility.

(C) No additional future stations are currently being planned. These facilities, and their assigned nodes, are place holder for potential growth within the lower Broad River Basin.

3. The Neal Shoals Hydro and Reservoir project is a run-of-river project. The majority of losses are to natural evaporation. For the purposes of this study Neal Shoals natural evaporation is not included as part of net outflows for Power. But, will be estimated within the CHEOPS model.

4. Parr and Monticello Reservoir Net Outflows represents the estimated evaporation losses at each reservoir. Historical evaporative losses were calculated based on data provided by SCE&G. Data provided included Hourly Reservoir Stage (USGS), Reservoir Stage-Area-Storage Conversion Tables, and Pan Evaporation Methodology developed by South Carolina State Climatology Office for Central South Carolina (see Note 2 for more detail). To estimate evaporative losses three steps were taken: (Step 1) hourly stage data was converted to hourly surface area, (Step 2) monthly average surface area was used in the Pan Evaporation Methodology to estimate each months estimated evaporation.

5. Source information for Pan Evaporation Methodology provided by SCE&G.

Source: Pan Evaporation Records for the South Carolina Area, John C. Purvis, South Carolina State Climatology Office

FWS values were computed as 75 percent of pan evaporation values.

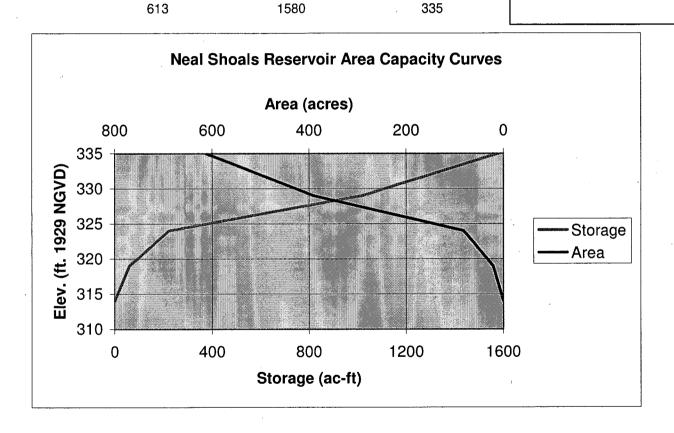
This factor was estimated from a discussion in NOAA Technical Report NWS 33, Evaporation Atlas for the 48 Contiquous States.

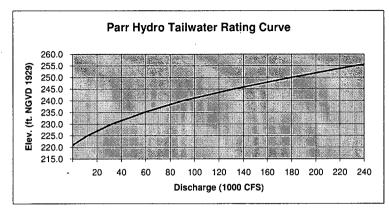
The conversion from evaporation in inches to evaporation rate in CFS per thousand acres is:

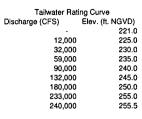
(inches) x (1 ft/12 in) x (1 month/31 [or 30 or 28] days) x (43,560 SF/acre) x (1 day/86,400 sec) x (1,000 acres/thousand acres)

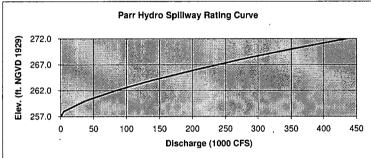
6. Reservoir Projections:

- (A) Natural Evaporation -- Parr Reservoir's projected net outflows are based on the current infrastructure and historical reservoir volumes. Projected net outflows are based on the 1999-2006 historic average. This assumption may be incorrect following the installation and operation of new facilities on Monticello Reservoir requiring increased pumping and blowdown from these facilities. However, due to lack of data it is not known how lake levels will fluctuate in the future.
- (B) Natural Evaporation -- Monticello Reservoir's projected net outflows from "natural evaporation" are based on current infrastructure and historic reservoir levels. Projected net outflows are based on 1996-2006 historic average. This assumption may be incorrect following the anticipated new facilities beginning in 2016. However, due to lack of data future reservoir levels could not be determined.

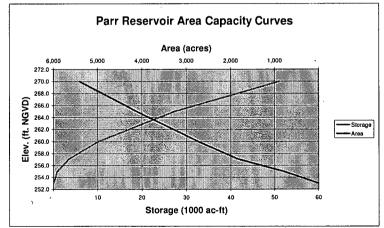

(C) Forced Evaporation -- Monticello Reservoir's projected net outflows from "forced evaporation" is estimated by SCE&G.


- (D) Consumptive Use -- Consumptive use represents the net outflows for Unit 1. This is comprised of direct water losses through power generation and other user such as drinking water.
- (E) Future Facility -- SCE&G is currently planning to build a new nuclear facility on Monticello Reservoir. This facility will be comprised of two units (Unit 2 and Unit 3). Unit 2 is anticipated to go online in 2019. These facilities will have cooling towers as opposed to the "in-lake" cooling that occurs with Unit #1. SCE&G has estimated each of the new units will generate 14,159 GPM in evaporative losses and 31 GPM in losses from drift.
- 7. Net outflows captured within net outflows of other components.


Neal Shoals Hourly Headpond Elevations Hourly Tailwater Elevations Hourly Discharges Reservoir Area/Capacity Data Spillway Discharge Rating Curves Tailwater Rating Curve Reservoir Operating Ranges and Requirements System Flow Withdrawals	Source USGS 02156449 Not Available USGS 02156500 SCE&G Not Available Not Available SCE&G Not Applicable	Date or Period of Record 9/30/1996 - Present None 10/1/1938 - Present Bathymetric Survey 1995 None None 1996 FERC License	Notes See 02156449 Excel Files See 02156500 Excel Files See Neal Shoals Tab for Tables & Curves See Neal Shoals Tab for requirements
Parr Hydro Hourly Headpond Elevations Hourly Tailwater Elevations Hourly Discharges Reservoir Area/Capacity Data Spillway Discharge Rating Curves Tailwater Rating Curve Reservoir Operating Ranges and Requirements System Flow Withdrawals	Source USGS 02160990 USGS 02160991 USGS 02161000 SCE&G SCE&G SCE&G SCE&G Not Applicable	Date or Period of Record 6/1/1993 - Present 10/1/1996 - Present 1/1/1993 - Present 1972 License Application 1972 License Application 1972 License Application	Notes See 02160990 Excel Files See 02160991 Excel Files See 02161000 Excel Files See Parr Hydro Tab for Table & Curve See Parr Hydro Tab for Table & Curve See Parr Hydro Tab for Table & Curve See Parr Hydro Tab for Requirements
Fairfield Pumped Storage Hourly Headpond Elevations Hourly Tailwater Elevations Hourly Discharges	Source SCE&G - VCS USGS 02160991	<u>Date or Period of Record</u> 1/1/1996 - 7/30/2007 10/1/1996 - Present	Notes See Monticello Level Excel Files See 02160991 Excel Files
Reservoir Area/Capacity Data Spillway Discharge Rating Curves Tailwater Rating Curve Reservoir Operating Ranges and Requirements System Flow Withdrawals	SCE&G Not Applicable Not Applicable SCE&G Not Applicable	1972 License Application None None	See Parr Hydro Tab for Table & Curve See Fairfield PS Tab for Requirements


Stage-Area	rabie	
Area (acres)	Storage (ac-ft)	Elev. (ft. NGVD 1929)
0	0	314
21	60	319
82	220	324
391	1020	329

Reservoir Operating Range per license is 329.86 - 333.86 ft. NGVD 1929. Minimum flow per license is lesser of 730 CFS or inflow.



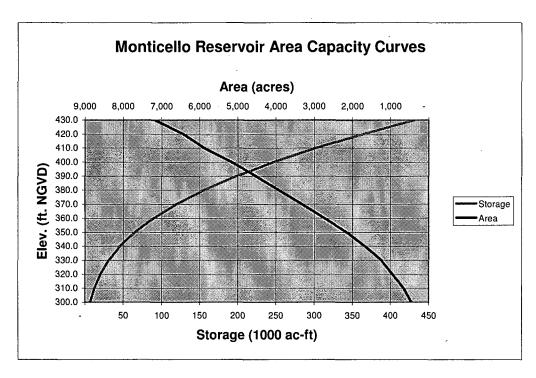
Spillway Rating Curve Discharge (CFS) 257.0 5,000 258.0 37,000 260.0 83,300 262.0 139,400 264.0 204,500 266.0 272,700 268.0 351,500 270.0 436,400 272.0 (Gates down)

Stage	-Area-Storage Tab	le
Elev. (ft. NGVD 1929)	Area (acres)	Storage (ac-ft)
253.0		•
255.0	800	800
257.1	1,850	3,533
260.0	2,727	10,171
265.0	4,116	27,321
270.0	5,402	51,116

Normal operating range is 256.0 - 266.0. Top of dam is 257.0, top of bascule crest gates is 266.0.

Minimum flow per license:

March - May: Lesser of 1000 CFS hourly minimum or daily average inflow minus evaporation from Parr & Monticello Reservoirs.


Remainder of year: Lesser of 800 CFS daily average or daily average inflow minus evaporation from Parr & Monticello Reservoirs. Hourly minimum of 150 CFS.

	Stage-Area-Storage T	able
Area (acres)	Storage (ac-ft)	Elev. (ft. NGVD 1929)
37	-	270.0
137	870	280.0
279	2,950	290.0
451	6,600	300.0
649	12,150	310.0
943	20,110	320.0
1,242	31,030	330.0
1,682	45,650	340.0
2,150	64,810	350.0
2,730	89,250	360.0
3,320	119,500	370.0
3,920	155,700	380.0
4,520	197,900	390.0
5,160	246,300	400.0
5,880	301,500	410.0
6,430	363,050	420.0
7.170	431.050	430.0

Reservoir Operating Range per FERC is 420.5 - 425.0.

No minimum flow requirement.

Discharge from Fairfield PS must be reduced when Broad River discharge reaches 40,000 CFS to prevent additional flooding downstream.

Estimated Evaporation from Parr and Monticello Reservoirs

	Evaporation, Central	SC	Re	servoir Evaporation	n Loss Estimates in	CFS
	Avg. Monthly FWS	Evap. Rate	Monticello Evap.	Parr Evap. Rate,	Total Evap. Rate	Total Evaporation
	Evap. (in).	(CFS/1000 ac.)	Rate (CFS)	(CFS)	(CFS)	(ac-ft)
January	1.29	1.75	12	9	21	1,272
February	1.82	2.74	19	14	32	1,793
March	3.19	4.33	29	22	51	3,140
April	4.50	6.31	43	32	74	4,429
May	5.24	7.10	48	35	84	5,149
June	5.53	7.75	53	39	91	5,442
July	5.77	7.82	53	39	92	5,672
August	5.00	6.78	46	34	80	4,920
September	4.03	5.64	38	28	67	3,962
October	3.08	4.18	28	21	49	3,033
November	2.00	2.80	19	14	33	1,965
December	1.37	1.85	13	9	22	1,345
Whole Year	42.8	4.92	33	25	58	42,121
May-October	28.7	6.54	45	33	77	28,178
	(Sum)	(Average)	(Average)	(Average)	(Average)	(Sum)

Source: <u>Pan Evaporation Records for the South Carolina Area</u>, John C. Purvis, South Carolina State Climatology Office FWS values were computed as 75 percent of pan evaporation values.

This factor was estimated from a discussion in NOAA Technical Report NWS 33, Evaporation Atlas for the 48 Contiguous States.

Reservoir evaporation loss estimates are based on surface areas of 6,800 acres for Monticello and 5,000 acres for Parr.

The conversion from evaporation in inches to evaporation rate in CFS per thousand acres is:

(inches) x (1 ft/12 in) x (1 month/31 [or 30 or 28] days) x (43,560 SF/acre) x (1 day/86,400 sec) x (1,000 acres/thousand acres)

Estimated Evaporation from Parr and Monticello Reservoirs

	Evaporation, Central	SC	Reservoir Evaporatio	n Loss Estimates in CFS
	Avg. Monthly FWS	Evap. Rate	Lake Murray Evap. Rate	Total Evaporation (ac-ft)
	Evap. (in).	(CFS/1000 ac.)	(CFS)	
January	1.29	1.75	84	5,175
February	1.82	2.74	131	8,074
March	3.19	4.33	208	12,773
April	4.50	6.31	303	18,617
May	5.24	7.10	341	20,947
June	5.53	7.75	372	22,873
July	5.77	7.82	375	23,072
August	5.00	6.78	325	20,012
September	4.03	5.64	271	16,654
October	3.08	4.18	201	12,337
November	2.00	2.80	134	8,259
December	1.37	1.85	89	5,470
Whole Year	42.8	4.92	236	174,263
May-October	28.7	6.54	314	115,896
-	(Sum)	(Average)	(Average)	(Sum)

Source: Pan Evaporation Records for the South Carolina Area, John C. Purvis, South Carolina State Climatology Office FWS values were computed as 75 percent of pan evaporation values.

This factor was estimated from a discussion in NOAA Technical Report NWS 33, Evaporation Atlas for the 48 Contiguous States.

Reservoir evaporation loss estimates are based on surface area of 48,000 acres for Lake Murray.

The conversion from evaporation in inches to evaporation rate in CFS per thousand acres is:

(inches) x (1 ft/12 in) x (1 month/31 [or 30 or 28] days) x (43,560 SF/acre) x (1 day/86,400 sec) x (1,000 acres/thousand acres)

Source:

AMMARELL, RAYMOND R [RAMMARELL@scana.com]

SCE&G

Email to J. Lemieux

Date:

11/28/2007

VCS Unit 1								•
All Values in MGD	2002	2003	2004	2005	2006	AVG.		
JAN	845	845	845	845	845	845		
EB	845	845	845	845	845	845	•	
// AR	845	· 845	845	845	845	845	•	
\PR	845	845	845	648	845	806		
/ΙΑΥ	845	845	845	136	845	703		
IUN	845	845	845	845	845	845		
IUL	845	845	845	845	845	845		•
AUG	845	845	845	845	845	845		
SEP	845	310	310	845	845	631		
OCT	845	26	26	845	354	419		
VOV	845	164	164	845	113	426		
DEC	845	26	26	845	354	419		
Annual Average	845	607	607	769	702	706		2.89 MGD Consumptive Use
	3.46	2.48	2.48	3.15	2.87	2.89	MGD Consumptive Us	e
ncr. Evap.				0000				
All Values in MGD	2002	2003	2004	2005	2006	AVG.		
JAN	14.3	14.3	14.3	14.3	14.3	14.3		•
EB	14.3	14.3	14.3	14.3	14.3	14.3		
MAR	14.3	14.3	14.3	14.3	14.3	14.3		
APR	14.3	14.3	7.7	11.0	14.3	12.3		
MAY	14.3	14.3	14.3	13.0	14.3	14.1		
JUN	14.3	14.3	14.3	14.3	14.3	14.3		
JUL	14.3	14.3	14.3	14.3	14.3	14.3		
AUG	14.3	14.3	14.3	14.3	14.3	14.3		
SEP	14.3	14.3	14.3	14.3	14.3	14.3		
OCT	14.3	4.6	4.6	14.3	6.0	8.8		
NOV	14.3	2.4	2.4	14.3	1.9	7.1 14.2		
DEC Annual Average	14.3 14.3	14.3 12.5	13.4 11.9	14.3 14.0	14.3 12.6		MGD Increased Evapo	ration
Allitual Average	14.3	12.5	11.5	14.0	12.0	10.1	mas moreasca Evapo	
Drinking Water								
All Values in MGD	2002	2003	2004	2005	2006	AVG.	0	
JAN	0.021	0.026	0.030	0.024	0.021	0.024		
EB	0.023	0.028	0.032	0.029	0.018	0.026		
MAR	0.021	0.029	0.029	0.025	0.021	0.025		•
APR	0.030	0.029	0.037	0.024	0.019	0.028		
ИΑΥ	0.036	0.032	0.030	0.027	0.015	0.028		
JUN	0.032	0.029	0.030	0.021	0.014	0.025		
JUL	0.025	0.028	0.030	0.019	0.014	0.023		
AUG	0.026	0.029	0.031	0.020	0.015	0.024		
SEP	0.026	0.029	0.033	0.018	0.015	0.024		
ОСТ	0.023	0.035	0.030	0.018	0.025	0.026		
NOV	0.022	0.044	0.031	0.020	0.024	0,028		
	0.022	0.033	0.033	0.019	0.013	0.024		
DEC	0.022	0.000	0.000	0.010	0.010	0.024		

Source:

Email from AMMARELL, RAYMOND R [RAMMARELL@scana.com] on 11/9/2007

Ray Ammarell

SCE&G - Fossil Hydro Technical Services

111 Research Drive Columbia, SC 29203 803-217-7322 Phone 803-206-3710 Cell 803-933-7847 Fax rammarell@scana.com

Water usage for VCS Units 2 & 3 (future):

These units will operate with closed cycle cooling towers with makeup from Monticello Reservoir, and blowdown discharge to Parr Reservoir. Each unit is estimated to use:

Evaporation: 14,159 GPM

Drift: 31 GPM

Blowdown: 4,719 to 14,159 GPM (discharged to Parr Reservoir)

Design team estimates actual total water usage for two units at 45,000 GPM.

Unit 2 is planned commercial in 2016 Unit 3 is planned commercial in 2019

APPENDIX H:

GEOGRAPHIC INFORMATION SYSTEM DATA

(Electronic copy provided on enclosed CD)