Project Title: UFTR DIGITAL CONTROL SYSTEM UPGRADE

UFTR-QA1-102.3, UFTR ID Coding Concept

Prepared by,

Dr. Gabriel Ghita Jug...... (Signature) Date: 10/2 9/2010

Reviewed by,

Prof. Alireza Haghighat

Approved by,

Prof. DuWayne Schubring

Relie (Signature) Date: 11/05/2010

	Prep	pared by	I	Reviewed by	QA-1, UFTR QA-1-102.3		
UFTR	Name:		Name:		Revision 0	Copy 1	
UTIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 2 of 19	

THE DISTRIBUTION LIST OF THE DOCUMENT

No.	Name	Affiliation	Signature	Date
1.				
2.				
3.				
4.				
5.				
6.				

UF/NRE	Prep	ared by	K	Reviewed by	QA-1, UFTR QA-1-102.3		
UFTR	Name:		Name:		Revision 0	Copy 1	
UTIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 3 of 19	

THE LIST OF THE REVISED PAGES OF THE DOCUMENT

Revision no.	R eviewed by	Approved by	The Modified Pages	Date
				<u> </u>
· · · · · · · · · · · · · · · · · · ·				
	. <u></u>		· · · · · · · · · · · · · · · · · · ·	

UF/NRE	Pi	epared by	K	Reviewed by	QA-1, UFT	QA-1, UFTR QA-1-102.3		
UFTR	Name:	<u></u>	Name:		Revision 0	Copy 1		
	Date :	Initials:	Date :	Initials:	Vol. 1	Page 4 of 19		

TABLE OF CONTENTS

1.	Pur	pose		5					
2.	Refe	erences		6					
3.	Abb	reviatio	ons, and Acronyms	7					
4.	Cod	ing of I	&C Equipment						
	4.1	ID Co	ding of Field Equipment						
	4.2	Cabin	ets ID Coding						
	4.3	CPU ID Coding							
5.	ID C	Coding	for Design Documentation						
	5.1	Hardy	ware Diagram Coding						
	5.2	Funct	ion Diagram Coding						
		5.2.1	Function Diagram Coding for Input Sub-modules						
		5.2.2	Function Diagram Coding for Function Modules						
		5.2.3	Function Diagram Coding for Output Sub-modules						
6.	ID C	Coding	of I&C Signals						
	6.1	Signal	Coding Standard						
	6.2	Analo	g Signal Coding						
	6.3	Binar	y Signal Coding						
	6.4	Monit	oring Signal Coding						

UF/NRE UFTR	Prepa	red by	Revie	wed by	QA-1, UFTR QA-1-102.3		
	Name:		Name:	,	Revision 0	Copy 1	
	Date :	Initials:	Date :	Initials:	Vol. 1	Page 5 of 19	

1. Purpose

The University of Florida Training Reactor (UFTR) identification (ID) coding provides a standardized method of naming equipment, diagrams and signals for the purpose of continuity in identification during the project development process. The Reactor Protection System (RPS) specifications for the project are described in UFTR-QA1-100, "Functional Requirements Specification (FRS)," /1/.

This document defines the rules for the assignment of ID codes to:

- Instrumentation and Control (I&C) equipment
- I&C diagrams
- 1&C signals

This document forms an essential design input for the Software Requirement Specification (SRS) document.

UF/NRE UFTR	P	repared by	K	leviewed by	QA-1, UFT	R QA-1-102.3
	Name:		Name:		Revision 0	Copy 1
UTIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 6 of 19

2. References

- /1/ UFTR-QA1-100, "Functional Requirements Specification (FRS)"
- /2/ UFTR-QA1-200, "T3000 Functional Requirements Specification (FRS)"
- /3/ AREVA NP Inc. Document No., 01-1007858-00, "TELEPERM XS Engineering System SPACE (TXS Core Software 3.3.6)"

UF/NRE UFTR	Prepa	red by	Revie	wed by	QA-1, UFTR QA-1-102.3		
	Name:		Name:		Revision 0	Copy 1	
	Date :	Initials:	Date :	Initials:	Vol. 1	Page 7 of 19	

.

3. Abbreviations, and Acronyms

ARM	Area Radiation Monitor
BF3	Boron Tri-fluoride
CH	Channel
CPU	Central Processing Unit
FC	Fission Chamber
FD	Function Diagram
FM	Fan Monitor
FRM	Flow Rate Monitor
I&C	Instrumentation and Control
IC	Ion Chamber
ID	Identification
MSI	Monitoring and Service Interface
NI	Nuclear Instrumentation
RPS	Reactor Protection System
RTD	Resistive Temperature Detector
SPACE	Specification And Coding Environment
TXS	TELEPERM XS

	Prepa	red by	Revie	wed by	QA-1, UFTR QA-1-102.3		
UFTR	Name:		Name:		Revision 0	Copy 1	
	Date :	Initials:	Date :	Initials:	Vol. 1	Page 8 of 19	

4. Coding of I&C Equipment

4.1 ID Coding of Field Equipment

The ID coding of UFTR's field equipment identifies the devices within the system following the format presented in Table 4.1-1 (Note that although the maximum number of characters that can be used in the naming scheme of the SPACE Engineering System is twenty characters, not all of the available character spaces are used).

Facility	Facility	Unit Number	System	System	System	Device Type	Device Type	Device Number	Device Number	Device Number	Device Number	Suffix	Suffix	Suffix					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
F	F	#	S	S	S	D	D	n	n	n	n	Α	Α	Α					

Table 4.1-1 Equipment ID Code format description

The first two characters are implied as "UF" (University of Florida Training Reactor) when it is not included in the ID. The following character is number 1, which shall be used for the reactor Unit Number. The ID code includes information of the device location (System) and the Device Type. When less than 3 characters are needed for the System code, a space or underscore in its place shall be used. Device type is designated a 2 characters field. In the case of the SPACE Engineering System which does not allow the use of underscores, a blank shall be used. The SPACE Engineering System also will not allow ID codes containing more than one blank between characters. Any additional blanks that would violate this rule should be omitted. Four digits are assigned to the Device Number and, in special cases, additional information can be added to the end of the ID on the three available Suffix fields.

The ID code for the sensors includes abbreviation for the sensor name, the sensor location in the reactor system, and the order of redundant channels. Table 4.1-2 presents the ID code for all the sensors in the UFTR RPS.

UF/NRE	Pro	epared by		Reviewed by	QA-I, UFT	R QA-1-102.3
UFTR	Name:		Name:		Revision 0	Copy 1
UFIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 9 of 19

Table 4.1-2 ID codes for Sensors

N	Nuclear Instru	mentation (NI))	ID Codes						
		Sensor location								
	Primary Coolant (PC)	Secondary Coolant (SC)	Reactor Cell (CEL)	(Redundant) Channel 1	Comments					
BF3	1			1PC_NI0001R1						
FC	2			1PC_NI0002R1						
IC	3			1PC_NI0003R1						
Resis	tive Tempera	ture (RT) Dete	ctors							
Box 1	1			1PC_RT0001R1						
Box 2	2			1PC_RT0002R1						
Box 3	3			1PC_RT0003R1						
Box 4	4			1PC_RT0004R1						
Box 5	5			1PC_RT0005R1						
Box 6	6			1PC_RT0006R1						
Inlet	7			1PC_RT007R1						
Outlet	8			1PC_RT008R1						
Inlet	T	1		1SC_RT0009R1						
Outlet		2		1SC_RT0010R1						
	Flow Rate M	Ionitors (FR)								
Inlet	1			1PC_FR0029R1	, <u>, , , , , , , , , , , , , , , , , , </u>					
Outlet	2		<u> </u>	1PC FR0028R1	an a					
Inlet		1		1SC FR0026R1	T3000 FRS*					
Outlet		2		1SC FR0027R1	T3000 FRS*					
	Water Level (WL) Monitors								
Box	1			1PC_WL0001R1						
Storage Tank	2			1PC_WL0002R1	T3000 FRS*					
Shield Tank			1	1CELWL0022R1						
A	erial Radiatio	n Monitor (RM	l)							
South			1	ICELRM0045AR1						
North			2	1CELRM0045BR1						
East			3	1CELRM0045CR1	ni an					
West			4	1CELRM0045DR1						
	Fan Mon	nitor (FM)			AND - A AND AND AND AND AND AND AND AND AND A					
Core Ventilation			1	ICELFM0001R1	T3000 FRS*					
Stack Dilution			2	ICELFM0002R1	T3000 FRS*					
Stack Dilution RPM			3	ICELFM0003R1	T3000 FRS*					

*Sensor included on the Functional Requirements Specifications (FRS) of the T3000 non-safety system, /2/

	Pi	repared by		Reviewed by	QA-1, UFT	R QA-1-102.3
UFTR	Name:		Name:		Revision 0	Copy 1
	Date :	Initials: Date		Initials:	Vol. 1	Page 10 of 19

Table 4.1-3 presents a few samples for the sensor ID codes as projected onto the ID code table.

Table 4.1-3	Equipment II	D Code Sample
-------------	---------------------	---------------

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
F	F	#	S	S	S	D	D	n	n	n	n	A	Α	Α	Î			Í	Î	
							Γ								Γ		1	Γ	Î	
		1	Р	С	_	N	I	0	0	0	1	R	1					Î		UF, Unit #1,Primary Coolant, NI #1 (BF3), Redundant Channel 1
		1	Р	С		R	Т	0	0	0	5	R	1							UF, Unit #1, Primary Coolant, Resistive Temp. Det. #5 (Box 5), Red.Ch. 1
		1	s	С		R	Т	0	0	1	0	R	1							UF, Unit #1, Sec. Coolant, Resistive Temp. Det. #2 (Outlet), Red. Ch. I
		1	С	Е	L	w	L	0	0	2	2	R	1							UF, Unit #1, Reactor cell, Water Level Monitor #1 (Shield Tank), Red. Ch. 1
		1	С	E	L	R	М	0	0	4	5	A	R	1						UF, Unit #1, Reactor cell, Aerial Radiation Monitor #1 (South), Red. Ch. 1

4.2 Cabinets ID Coding

The maximum number of characters that can be used in the naming scheme of the SPACE Engineering System for the I&C cabinets is ten. UFTR is using the following two cabinets.

Cabinet 1RPSCA0001 Reactor Protection System Cabinet 0001

Contains: Redundant Channel 1 (AQP-1)

Cabinet 1RPSCA0002 Reactor Protection System Cabinet 0002

Contains: Monitoring Service Interface (MSI)

Table 4.2-1 presents the projection of the Cabinet ID Codes onto the ID code table.

<u> </u>												 	-					
1	2	3	4	5	6	7	8	9	10			14	15	16	17	18	19	20
F	F	#	S	S	S	D	D	n	n	n	n							
																·		Π
		1	R	Р	S	С		0	0	0	1	`						
		1	R	1	S		Α	0	0	0	2			Π				Π

Table 4.2-1 Cabinets ID Codes

4.3 CPU ID Coding

The application code generated by the SPACE code generators is assigned to a CPU-ID, which has to be defined in the function diagrams. If no CPU-ID is defined, the code generators (i.e., SPACE) will assign one. However, it is beneficial to apply a systematic naming scheme to the CPU-ID. For the UFTR RPS, the following scheme is used:

UF/NRE	Pr	epared by	K	leviewed by	QA-1, UFT	R QA-1-102.3
	Name:		Name:		Revision 0	Copy 1
UFTR	Date :	Initials:	Date :	Initials:	Vol. 1	Page 11 of 19

Positions 1 2 3 4

L		
		Number
		Location
I	L	Component
L		Unit Number (1)

Position 1 is assigned to the reactor Unit Number which is 1 for this application. Position 2, "Component," referred to the components of the TXS system such as Acquisition and Processing (AQP), Service Unit (SU), etc., and the third position 3, "Location" refers to the location within the TXS safety system. Positions 2 and 3 are used together to clearly clarify the place of a CPU within the system. Table 4.3-1 presents a matrix of Component vs. Location.

Table 4.3-1 Running number matrix (Positions 2 and 3)

Position 2 (Component)	Posit	ion 3
0	Location	Assigned #
AQP-1	Cabinet 1	1
MSI	Cabinet 2	2
SU	Service Unit	3
GW	Gateway	4
QDS	QDS	5

Position 4 of the CPU ID contains the CPU number.

Table 4.3-2 presents the CPU ID Coding considered for the CPUs used in the UFTR TXS System.

Table 4.3-2 CPU ID Codes

CPUs	ID Code
AQP-1	
Unit Number (1), AQP-1 (01), CPU (1)	1011
Unit Number (1), AQP-1 (01), CPU (2)	1012
MSI	
Unit Number (1), MSI (22), CPU (1)	1021
SU	
Unit Number (1), SU (03), CPU (1)	1031
GW	
Unit Number (1), GW (04), CPU (1)	1041
QDS	
Unit Number (1), QDS (05), CPU (1)	1051

	Prepa	red by	Revie	wed by	QA-1, UFTR QA-1-102.3			
UF/INRE UFTR	Name:		Name:		Revision 0	Copy 1		
	Date :	Initials:	Date :	Initials:	Vol. 1 Page 12 of			

5. ID Coding for Design Documentation

The TXS Software Engineering Tools document the hardware and software in the form of diagrams, which are identified by ID codes. SPACE diagrams are distinguished by diagram type. For additional information on SPACE diagrams, see the SPACE overview document /3/.

5.1 Hardware Diagram Coding

Table 5.1-1 shows the ID code for the Cabinet Overview Diagram (YDN). There is only one cabinet overview diagram for the project. Again, the leading number is the Unit Number 1.

Table 5.1-1 Cabinet Overview Diagram (YDN)

[l	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
			1	R	Р	S	С	Α						`						

Table 5.1-2 defines the naming convention for the individual Cabinet Arrangement Diagrams (YDR) and an example 1RPSCA0001, is listed. YDRs are named the same as the cabinet equipment ID. According to SPACE specification, ID can have up to 10 characters (see Section 2.1).

Table 5.1-2 Cabinet Arrangement Diagrams (YDR)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		1	R	Р	S	С	Α	0	0	0	1		·				"		

Table 5.1-3 shows the ID code for the Network Diagram (YUR).

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
		1	R	Р	S	С	Α	Ν	W				·						

Table 5.1-4 defines the naming convention for the Input/Output Hardware Diagrams (YFR/RH00) and an example (1PC_RT0007) is listed. YFRs are named the same as the field device ID (see Section 4.1).

Table 5.1-4 Input / Output Hardware Diagrams (YFR/RH00)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		19	20
		1	Р	С	_	R	Т	0	0	0	7	R	1				1 × 1		

ID equals equipment ID of the field device (see Table 4.1-2).

UF/NRE	Pre	epared by	k	Reviewed by	QA-1, UFT	R QA-1-102.3
UFTR	Name:		Name:		Revision 0	Copy 1
	Date :	Initials:	Date :	Initials:	Vol. 1	Page 13 of 19

5.2 Function Diagram Coding

The application software designed for the TXS computers using the SPACE Engineering System is based on function diagrams (FD). These FDs must be named using an unambiguous ID code. The FDs are identified by this ID code. Signal connections between function diagrams carry the ID code of the source FD plus a signal identifier.

The functional requirements are broken down into:

- Input sub-modules, receiving data from the field or control board;
- 1&C Functions, using the data provided by the input sub-modules and providing outputs to the output sub-modules;
- Output sub-modules, driving the output interface to the field or control board / control panel.

5.2.1 Function Diagram Coding for Input Sub-modules

The sub-modules that read field inputs are named using the ID code of the component providing the field input (i.e., the sensors, monitors, etc) in addition to identifying the TXS computer on which these functions are executed. Table 5.2.1-1 represents the coding scheme for the input function diagrams.

 Table 5.2.1-1 Input Function Diagrams (YFR/RS00)

1	ľ	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
				Field Device												A					RPS Input Functions running on AQP-1
			Field Device												В		N			Input Functions running on MSI	

For example, below, we demonstrate the ID coding for an input sub-module running on the AQP-1 with an input from the Primary Coolant Resistive Temperature Detector for Fuel Box #5 within the Redundant Channel 1:

1PC_RT0005R1	Field Device: Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel 1
Α	AQP-1
1PC_RT0005R1A	Primary Coolant RT for Fuel Box #5, on AQP-1, Input Function Diagram

NOTE: When an input function diagram constitutes multiple input sources, naming convention does not change. Input function diagram naming is established with the primary field device.

5.2.2 Function Diagram Coding for Function Modules

The ID coding for safety function diagrams is comprised of the ID coding of the Function and an identifier for the component which execute the function. Table

UF/NRE	Prepa	red by	R	eviewed by	QA-1, UFT	R QA-1-102.3
UFINKL	Name:	<u> </u>	Name:		Revision 0	Copy 1
UTIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 14 of 19

5.2.2-1 presents the ID coding for a Function Diagram running on different components.

					44.10		J.1				II C I	101		14	<u>6</u>		21		1.	1.500)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
		1	R	Р	S	F	U	n	n	n	n	Α								RPS Functions running on AQP - 1
		1	R	Р	S	F	U	n	n	n	n	В								Functions running on MSI
		1	R	Р	S	F	U	n	n	n	n	С								Transfer diagrams running on MSI
		1	R	Р	S	F	U	n	n	n	n	D								Transfer diagrams running on Gateway

Table 5.2.2-1 Function Diagrams (YFR/RS00)

For example, below, we present the ID coding for a Function Diagram running on the AQP-1 component performing a high flux trip function:

1RPSFU0002 RPS Function 2: High Flux Trip

<u>A AQP - 1</u>

1RPSFU0002A High Flux Trip in AQP-1, Function Diagram

5.2.3 Function Diagram Coding for Output Sub-modules

Output sub-modules send safety system actuation signals to the field, Annunciators, Event Recorder, or Main Control Board. Field Component and Main Control Board output function diagrams are named using the ID code of the component they drive. In addition, the Field Component and Main Control Board output function diagram names identify the TXS computer where the function resides on. Annunciator and Event Recorder output function diagrams are named using the ID code of the function they are driven from. In addition, the Annunciator and Event Recorder output function diagram names identify the TXS computer where the function resides on. Table 5.2.3-1 represents the coding schema for the output function diagrams for Field Components and Main Control Board.

1	2	3 4 5 6 7 8 9 10 11 12 13 14 15	16	17	18	192	0
		Field Device	Α				RPS Output Functions running on AQP-1
		Field Device	В				Output Functions running on MSI
		Field Device	С			Π	Output Functions running on Gateway

 Table 5.2.3-1 Output Function Diagrams (YFR/RS00)

For example, below, we present the ID coding for an Output Function Diagram (YFR/RS00) running on the AQP-1 component:

UEMDE	Prepa	red by	Revie	wed by	QA-1, UFTI	R QA-1-102.3
UF/NRE UFTR	Name:		Name:		Revision 0	Copy 1
UTIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 15 of 19

1PC_RT0005R1Primary Coolant Resistive Temperature Detector for Fuel
Box #5, Redundant Channel 1

AAQP - 11PC_RT0005R1APrimary Coolant RTD for Fuel Box #5 Channel 1, AQP -

1, Output Function Diagram

Table 5.2.3-2 represents the coding schema for the output function diagrams for Annunciators and Event Recorders.

				J	[ab	le	5.2	2.3	-2 (Ou	tp	ut	Fu	nci	tio	n 1	Dia	gr	an	ns (YFR/RH01)
[2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20																			
	1 R P S F U n n n A AQP-1 Annunciators/Event Recorders																			

For example, below, we present the ID coding for an Output Function Diagram (YFR/RH01) running on the AQP-1 component:

1RPSFU0002	RPS Function 2: High Flux Trip				
<u>A</u>	AQP – 1 Annunciator/Event Recorder				
1RPSFU0002A	High Flux Trip in AQP-1 to Annunciator/Event Recorder				

UF/NRE		Prepared by		Reviewed by	QA-1, UFT	R QA-1-102.3
	Name:		Name:		Revision 0	Copy 1
UFIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 16 of 19

6. ID Coding of I&C Signals

6.1 Signal Coding Standard

The SPACE Engineering System requires ID codes for signals being exchanged between function diagrams. These signals that are called "external signals" carry the ID code of the function diagram they are originating from, plus a signal identifier. Table 6.1-1 defines the coding standard for signals. All signals start with a Function ID Code. Function ID Code can be (see Section 5):

- Sensor ID
- Sensor ID with suffix
- Field Contact ID
- Function ID
- Function ID with suffix
- Function ID with predefined suffix
- Component ID
- Component ID with predefined suffix

Column 1 and 2 of Table 6.1-1 define the type of signal. XA is for analog signals, XB is for binary signals, and XM is for monitoring signals. Column 3 and 4 designate different input and output signals with a numerical value.

Table 6.1-1 Signal Coding Standard

<u>Signals</u>

	1	2	3	4	
Function ID Code	X	Α	n	n	Analog Signals
Function ID Code	X	В	n	n	Binary Signals
Function ID Code	X	M	n	n	Monitoring Signals

6.2 Analog Signal Coding

Table 6.2-1 represents actual defined analog signals for the UFTR Digital Control System Upgrade Project.

Table 6.2-1 Analog Signal Coding Specification

Analog Signals

	1	2	3	4
Function ID Code	X	Α	n	n

UF/NRE	Pr	epared by	I	Reviewed by	QA-1, UFTR QA-1-102.3		
UFTR	Name:		Name:		Revision 0	Copy 1	
UTIK	Date :	Initials:	Date :	Initials:	Vol. 1	Page 17 of 19	

Analog Input Signals to RPS

<sensor id=""></sensor>	X	Α	0	0	Temperature Signal Input Signal (4 wire RTD)
<sensor id=""></sensor>	x	Α	0	1	Current Input Signal (0/20mA, 4/20mA) - from field device, - output of temperature transmitter
<sensor id=""></sensor>	X	Α	1		Isolated Output Signal (0/20mA, 4/20mA) of SNV1, Redundant Ch. 1

NI Input Signals to RPS

Total Flux

<sensor id=""></sensor>	x	Α	0	1Isolated Output Signal (0/20mA) of SNV1,Redundant Ch. 1	
-------------------------	---	---	---	--	--

OTHER NI FUNCTIONS

Power Supply Monitoring

<sensor id=""></sensor>	X	Α	3	1	(+)15V from Bipolar Power Supply (BPS)
<sensor id=""></sensor>	X	Α	3		(-)15V from Bipolar Power Supply (BPS)
<sensor id=""></sensor>	Χ	Α	3	3	Power from Detector Power Supply (DPS)

Delta Flux

a second s	and the second				
<sensor id=""></sensor>	Χ	Α	2	0	Output to Indicator

Internal Analog Signals

<sensor id=""><suffix></suffix></sensor>	x	Α	7		Analog Signal (engineering units) to other Software Functions
<sensor id=""><suffix></suffix></sensor>	X	Α	9	n	Analog Signal to MSI

Any unspecified ranges may be used to supplement any other ranges on an "as needed" basis.

Example:

1PC_RT0005R1	Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel 1
A	AQP - 1
XA71	Analog Signal to other Input Function Diagram
1PC_RT0005R1A XA71	Primary Coolant RTD for Fuel Box #5 Channel 1, AQP-1, Internal Analog Signal

6.3 Binary Signal Coding

Table 6.3-1 represents actual defined binary signals for the UFTR Digital Control System Upgrade Project.

UF/NRE	Prepa	red by	Revie	wed by	QA-1, UFTR QA-1-102.3		
	Name:	Name:			Revision 0	Copy 1	
UFTR	Date :	Initials:	Date :	Initials:	Vol. 1	Page 18 of 19	

Table 6.3-1 Binary Signal Coding SpecificationBinary Signals

	1	2	3	4
Function ID Code	X	В	n	n

Binary Input Signals to Voter

<field contact="" id=""></field>	X	В	0	n	Field Contact (12VAC), NO
<field contact="" id=""></field>	X	В	5	n	Field Contact (12VAC), NC (if exists)
<field contact="" id=""></field>	X	В	1	n	Optocoupler Output (24VDC), NO
<field contact="" id=""></field>	X	В	6	n	Optocoupler Output (24VDC), NC (if exists)

Binary Output Signals of Voters to Annunciator, etc.

<function id=""></function>	X	В	2	n	TXS Output (24VDC), Voter
<function id=""></function>	X	В	3	n	Dry Contact (Output of Interposing Equipment)

Binary Input Signals to RPS Protection Sets

<pre><field contact="" id=""></field></pre>	X	В	0	n	Field Contact (12VAC), NO
<field contact="" id=""></field>	X	В	5		Field Contact (12VAC), NC (if exists)
<field contact="" id=""></field>	X	В	1	n	Optocoupler Output (24VDC), NO
<field contact="" id=""></field>	X	В	6	n	Optocoupler Output (24VDC), NC (if exists)

Binary Output Signals of RPS Protection Sets to Annunciator, etc.

<pre><function id=""><suffix></suffix></function></pre>	Χ	В	2	n	TXS Output (24VDC)
<pre><function id=""><suffix></suffix></function></pre>	Χ	В	3	n	Dry Contact (Output of Interposing Equipment)

Internal Binary Signals (SW)

<function id=""><suffix></suffix></function>	X	В	7	n	Binary Signal to other Software Functions
<function id=""><suffix></suffix></function>	Χ	В	9	n	Binary Signal to MSI

Any unspecified ranges may be used to supplement any other ranges on an "as needed" basis.

Example:

1RPSFU0001	Function Diagram
А	AQP-1
<u>XB21</u>	Binary Signal to other Safety Function Diagram
1RPSFU0001A XB21	Function Diagram, AQP-1, Binary Output Signal

UF/NRE	Prepa	red by	Rev	ewed by	QA-1, UFTR QA-1-102.3		
UFTR	Name:		Name:		Revision 0	Copy 1	
	Date :	Initials:	Date :	Initials:	Vol. 1	Page 19 of 19	

6.4 Monitoring Signal Coding

Table 6.4-1 represents monitoring signals for the UFTR Digital Control System Upgrade Project.

Table 6.4-1 Monitoring Signal Coding SpecificationCoded Monitoring Signals

	1	2	3	4
Function ID Code	Χ	Μ	n	n

Monitoring Signals to Signal Online Validation

<function diagram="" id=""></function>	X	Μ	0	n	Monitoring Signal from 2nd Min Function Block
<function diagram="" id=""></function>	Χ	Μ	1	n	Monitoring Signal from 2nd Max Function Block
<function diagram="" id=""></function>	X	М	2	n	Monitoring Signal from 2 out of 3 Function Block
<function diagram="" id=""></function>	X	M	3	n	Monitoring Signal from 2 out of 4 Function Block

Any unspecified ranges may be used to supplement any other ranges on an "as needed" basis.

1PC_RT0005R1	Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel 1
Α	AQP-1
XM01	Monitoring Signal from 2nd Min Function Block
1PC_RT0005R1A XM01	Primary Coolant RTD for Fuel Box #5 Channel 1, AQP–1, 2 nd Min Function Block Monitoring Signal