Project 86-060-27 August 1991

CanonieEnvironmental

Volume II - Tables, Figures Tailings Reclamation Plan As Approved by NRC March 1, 1991 License No. SUA - 1475

Church Rock Site Gallup, New Mexico

Prepared For:

United Nuclear Corporation Gallup, New Mexico

Volume II - Tables, Figures Tailings Reclamation Plan As Approved by NRC March 1, 1991 License No. SUA - 1475

LIST OF TABLES

Í C 🗤

_+ }

	TABLE NUMBER	TITLE
	1.1	Precipitation - Evaporation Data Church Rock
,	2.1	Background Ra-226 Activity Concentration
	2.2	Background Gamma Exposure Rate Readings
	2.3	Ra-226 Soil Activity Concentration Versus Measured Gamma Ray Exposure Rate
	2.4	Summary of Background Drillhole Readings
	2.5	Ra-226 Activity Concentration Versus BHL Reading for Boreholes
· •	2.6	Ra-226 Activity Concentration Versus BHL Reading for Drillholes
	2.7A	Borehole Logging Results for Drillholes Located around Tailings Disposal Area - Radials
	2.7B	Borehole Logging Results for Drillholes Located South of the Diversion Ditch
	2.7C	Borehole Logging Results for Drillholes Located around Tailings Disposal Area - East Fenceline
	2.7D	Borehole Logging Results for Drillholes Located around Tailings Disposal Area - West of Tailings Disposal Area
	2.7E	Borehole Logging Results for Drillholes Located around Tailings Area - Elevated Activity Area on Radial "N"
	2.8	Depth to Ra-226 Activity Concentration Levels Less Than 16 pCi/g below the Surface or 6 pCi/g at the Surface

Canonie Environmental

i

 $\mathbb{R}^{+}_{\frac{1}{2}}$

144

TABLE <u>NUMBER</u>	TITLE
2.9A	Ra-226 Activity Concentrations in Soil Samples Obtained in the Vicinity of the Tailings Disposal Area - Along Radials
2.9B	Ra-226 Activity Concentrations in Soil Samples Obtained in the Vicinity of the Tailings Disposal Area - Boreholes
2.9C	Ra-226 Activity Concentrations in Soil Samples Obtained in the Vicinity of Tailings Disposal Area - South of Borrow Pit No. 2
2.9D	Ra-226 Activity Concentrations in Soil Samples Obtained in the Vicinity of the Tailings Disposal Area - Northeast Tailings Area
2.9E	Ra-226 Activity Concentrations in Soil Samples Obtained in the Vicinity of the Tailings Disposal Area - West Tailings Area
2.9F	Ra-226 Activity Concentrations in Soil Samples Obtained in the Vicinity of Tailings Disposal Area - Elevated Activity Area on Radial "N"
2.9G	Ra-226 Activity Concentrations in Soil Samples Obtained at Miscellaneous Locations in the Tailings and Mill Areas
2.10	Depth to 16 pCi/g for Boreholes in the Mill Area
2.11	Ra-226 Activity Concentrations in Soil Samples Obtained from the Mill Area Boreholes
2.12	Ore Storage Pad Borehole Logging Results
3.1	Summary of Geotechnical Properties Pipeline Arroyo Borrow Material

C

CanonieEnvironmental

ii

a state and the set

.

۰.

TABLE <u>NUMBER</u>	TITLE
3.2	Summary of Geotechnical Properties Existing Soil Stockpile
3.3	Summary of Geotechnical Properties North and Central Cell Interim Cover Soils
3.4	Limestone Rock Quality Ratings Gallup Source
3.5	Basalt Rock Quality Ratings Grants Source
4.1	Estimated Interim Stabilization Earthwork Quantities
4.2	Permanent Seed Mixture and Application Rates for North Cell, Wind-blown, and Disturbed Areas
4.3	Temporary Seed Mixture and Application Rates for Central Cell
5.1	Coarse Tailings Laboratory Test Data
5.2	Fine Tailings Laboratory Test Data
5.3	Soil Cover Thickness Design Parameters using RADON Computer Code
5.4	Summary of the Field Testing and Inspection Plan
5.5	Branch Swale Characteristics
5.6	Riprap Material Gradation Requirements
5.7	Bedding Material Requirements

TABLE NUMBER	TITLE
5.8	North Diversion Ditch Characteristics
5.9	North Diversion Ditch Total Head Comparisons at Confluences with Contributing Tributaries
5.10	Geomorphological Parameters for Pipeline Arroyo and North Fork Rio Puerco
5.11	Drainage Basin Descriptions
5.12	Summary of Meander Patterns
5.13	Estimated Final Reclamation Earthwork Quantities
6.1	NRC Ground Water Protection Standards and Their Exceedances by Formation of Concern
6.2	EPA Contaminant-Specific Ground Water ARARs and Their Exceedances by Formation of Concern
6.3	Performance Monitoring Analytes
6.4	Implementation of the Corrective Action Program, United Nuclear Church Rock Site
6.5	Data from Zone 3 Wells used to Generate Isopach Map of Saturated Thickness (Figure 6-6)
6.6	Pumping Rates for Zone 3 Computer Model Performance Simulation
6.7	Zone 3 Performance Monitoring Wells
6.8	Implementation of the Zone 3 Corrective Action Program

TABLE NUMBER	TITLE
6.9	Summary of 1989 Operational Data, Zone 3 - Stage I Wells
6.10	Summary of 1990 Operational Data, Zone 3 - Stage I Wells
6.11	Zone 1 Performance Monitoring Wells
6.12	Implementation of the Zone 1 Corrective Action Program
6.13	Zone 1 Water Level Data Second and Fourth Quarters 1989 and Fourth Quarter 1990
6.14	Zone 1 - Estimated Response Time to Dewatering Borrow Pit No. 2
6.15	Summary of 1990 Operational Data, Zone 1 Pump-back Wells
6.16	Summary of Activities for Zone 1 ALARA Demonstration
6.17	Data Used to Generate Isopach Map of Saturated Thickness (Figure 6-19) for the Southwest Alluvium Remedial Design
6.18	Representative Permeability Values for the Southwest Alluvium Remedial Design
6.19	Southwest Alluvium Flow Rate Calculations for the Remedial Design
6.20	Declines in Chloride Values with Increasing Distance from the South Cell Tailings Impoundment for the Remedial Design

TABLE NUMBER	TITLE
6.21	Predicted Peak Discharge from Wells in the Southwest Alluvium for the Remedial Design
6.22	Southwest Alluvium Monitoring Wells
6.23	Implementation of Southwest Alluvium Corrective Action Program
6.24	Summary of 1989 Operational Data, Southwest Alluvium Extraction Wells
6.25	Summary of 1990 Operational Data, Southwest Alluvium Extraction Wells
6.26	Monthly Net Evaporation Rates Used for the Remedial Design
6.27	Summary of Predicted and Actual Water Balance for Evaporation Ponds, 1989 to 1991
6.28	Summary of Predicted and Actual Pumping Rates and Volumes - Seepage Extraction Wells, 1989 to 1991

vi

LIST OF FIGURES

FIGURE NUMBER	DRAWING NUMBER	TITLE
1-1	86-060-A618	Site Vicinity Map
1-2	86-060-A607	Site Location and Land Ownership Status
1-3	86-060-E551	Mill Facilities and Tailings Disposal Area 1987 Conditions
1-4	86-060-E525	Mill Facilities and Tailings Disposal Area July 1991 Conditions
1-5	86-060-B573	Mill Facilities Area
2-1	86-060-B542	Tailings Disposal Area Radiological Survey Data
2-2	86-060-B628	Arroyo Area Radiological Survey Data - North End
2-3	86-060-B547	Arroyo Area Radiological Survey Data - South End
2-4	86-060-B541	Elevated Gamma Ray Exposure Rates Mill Facilities and Tailings Disposal Area
2-5	86-060-B534	Mill Area Radiological Survey Data
3-1	86-060-E596	Geotechnical Test and Sample Locations
3-2	86-060-B603	Acceptable Soil Cover Grain Size Envelope
4-1	86-060-E536	Interim Stabilization Plan - South End
4-2	86-060-E550	Interim Stabilization Plan - North End
4-3	86-060-E598	Interim Stabilization Grading, Spring 1991 - South End

I.

CanonieEnvironmental

vii

FIGURE NUMBER	DRAWING NUMBER	TITLE
4-4	86-060-E600	Interim Stabilization Grading, Spring 1991 - North End
4-5	86-060-E570	Interim Stabilization Detail Sheet
4-6	86-060-A615	Settlement Monument Detail
5-1	86-060-E544	Final Reclamation Plan - South End
5-2	86-060-E540	Final Reclamation Plan - North End
5-3	86-060-E569	Soil Cover and Surface Water Control Details
5-4	86-060-E565	Runoff Control Ditch and South Cell Drainage Channel Details
5-5	86-060-B568	Pipeline Arroyo Drainage Basin
5-6	86-060-E567	North and South Diversion Ditch Details
5-7	86-060-B624	North Diversion Ditch Confluence Cross Sections
5-8	86-060-B594	Channel Profile Pipeline Arroyo
5-9	86-060- <u>E</u> 631	Pipeline Arroyo Channel and Buried Jetty Details
5-10	86-060-B623	Pipeline Arroyo Profile
5-11	86-060-A606	Slope Stability Analysis
5-12	86-060-B621	Pipeline Arroyo Cross Sections 15+05 and 41+95
5-13	86-060-B622	Pipeline Arroyo Cross Sections 60+40 and 73+80

۰.

CanonieEnvironmental

viii

FIGURE NUMBER	DRAWING NUMBER	TITLE
5-14	86-060-B620	Pipeline Arroyo and Hard Ground Canyon Watersheds
6-1	86-060-B583	Church Rock Site Orientation Map as of April 1989
6-2	86-060-B582	Location Map for Pre-Mining and Pre-Milling Water Level Data
6-3	86-060-B576	Projected Pre-Mining and Pre-Milling Water Level
6-4	86-060-B535	Zone 3 Refined Target Area for 1989 Remedial Design
6-5	86-060-A608	Zone 3 Remedial Design System As-Built Well Locations
6-6	86-060-B584	Zone 3 Saturated Thickness Initial Conditions for 1989 Remedial Design
6-7	86-060-B585	Predicted Zone 3 Saturated Thickness After 2.5 Years of Pumping
6-8	86-060-B586	Predicted Zone 3 Water Table Surface After 2.5 Years of Extraction Illustrating the Zone of Capture
6-9	86-060-B627	Performance Monitoring Wells as of July 1991
6-10	86-060-B526	Change in Zone 3 Saturated Thickness between 3rd and 4th Quarters, 1989
6-11	86-060-B645	Zone 3 Isoconcentrations of pH, Initial Conditions, 3rd Quarter 1989

CanonieEnvironmental

ix

FIGURE NUMBER	DRAWING NUMBER	TITLE
6-12	86-060-B647	Zone 3 Isoconcentrations of pH, Response to Pumping, 4th Quarter 1989
6-13	86-060-B527	Comparison of Change in Saturated Thickness after One Quarter (8/89 - 10/89) and One Year (10/89 - 10/90) of Pumping
6-14	86-060-A528	Zone 3 Dewatering as of 4th Quarter 1990
6-15	86-060-B539	Zone 1 Refined Target Area as of April 1989
6-16	86-060-B642	Zone 1 Isoconcentrations of pH, 4th Quarter 1989
6-17	86-060-B643	1990 Revised Zone 1 Well Locations
6-18	86-060-B529	1991 Zone 1 Well Configuration for ALARA Demonstration Program
6-19	86-060-B581	Isopach of Saturated Alluvium for the Remedial Design
6-20	86-060-B579	Water Level Elevations in Alluvium for the Remedial Design
6-21	86-060-B587	Range of Observed and Projected Flow Through Southwest Alluvium for the Remedial Design
6-22	86-060-B575	Documented Water Level Declines in Alluvium for the Remedial Design
6-23	86-060-B588	Average Yearly Mine Water Discharge to Pipeline Arroyo for the Remedial Design

CanonieEnvironmental

х

FIGURE <u>NUMBER</u>	DRAWING NUMBER	TITLE
6-24	86-060-B589	Water Table Gradient Vs. Time in the Southwest Alluvium for the Remedial Design
6-25	86-060-B590	Water Level Vs. Time in Well 513AD Used for the Remedial Design
6-26	86-060-B578	Southwest Alluvium Refined Target Area for the Remedial Design
6-27	86-060-B577	Predicted Capture Zone Map With Proposed Wells for the Remedial Design
6-28	86-060-A610	Schematic Illustration-Confirmation of Flow Towards Extraction Wells By Paired Monitoring Wells for the Remedial Design
6-29	86-060-B612	Southwest Alluvium Well Locations as of June 1991
6-30	86-060-B616	Southwest Alluvium Potentiometric Surface, Initial Conditions, October 16, 1989
6-31	86-060-B648	Southwest Alluvium Potentiometric Surface, December 4, 1989
6-32	86-060-B613	Southwest Alluvium Chloride Concentration, Initial Conditions 4th Quarter 1989
6-33	86-060-B611	Southwest Alluvium Potentiometric Surface, 4th Quarter 1990
6-34	86-060-B601	Cross Section Illustrating Effect of SW Alluvium Extraction Wells, 4th Quarter 1990
6-35	86-060-B614	Southwest Alluvium Chloride Concentration, 4th Quarter 1990

-

FIGURE NUMBER	DRAWING NUMBER	TITLE
6-36	86-060-B641	Actual Site Conditions, 4th Quarter 1989
6-37	86-060-B639	Actual Site Conditions, 4th Quarter 1990
6-38	86-060-B619	Actual Site Conditions, 3rd Quarter 1991

CanonieEnvironmental

xii

新教会などの State International

TABLES

.

.

.

.

•

1.0

TABLE 1.1

PRECIPITATION - EVAPORATION DATA (a) CHURCH ROCK

			<u>Total Pan Ev</u>	vaporation		
Year	Aver Tempe O High	rage erature F Low	Tailings Solution <u>(inches)</u>	Tap Water <u>(inches)</u>	Precipitation (inches)	Net Pan Evaporation (inches)
1980 /	No	data	75	84	10.5	65
1981	No	data	73	76	11.9	61
1982	67.3	35.9	66	67	16.1	50
1983	66.7	29.7	60	57	16.5	44
1984	68.5	28.7	65	69	12.1	53
1985	67.8	28.6	59	67	13.5	45
1986	67.6	31.2	58	59	18.0	41
1987	68.5	28.1	58	60	17.21	41
1988	68.4	31.7	64	66	11.66	52
1989	68.9	30.8	98	98	7.70	90
1990	67.5	32.4	82	84	16.63	65
Average (b)	67.6	30.8	68	68	14.1	54

Annual average temperature extremes: -20 to 100°F.

(b) Average of values from 1980 to 1986 used since 1987 in water balance calculations for the site.

⁽a) On-site data collected by United Nuclear personnel.

		7	
		/	

	20		· .	•
·				

·

	Background Plot Number			
	<u>Plot #1</u>	<u>Plot #2</u>	<u>Plot #3</u>	
Number of measurements	13	10	13	
Mean (pCi Ra-226/g soil)	0.65	0.88	0.84	
Standard deviation	0.30	0.83	0.43	
Standard deviation of the mean	0.083	0.26	0.12	

BACKGROUND Ra-226 ACTIVITY CONCENTRATION

Notes:

- 1. Weighted overall mean = 0.78 pCi/g.
- 2. Analysis of variance shows no significant difference among means. The pooled standard deviation for all 36 samples is 0.53 pCi/g.
- 3. Ninety-five percent confidence limits on overall mean: 0.61 pCi/g \pm 0.95 pCi/g.
- 4. Samples in Plots No. 1 and No. 3 were composited from drillholes and are representative of soils from 0-60 cm. Due to the rocky nature of Plot No. 2, all 10 samples were obtained from the surface.

BACKGROUND GAMMA EXPOSURE RATE READINGS (uR/hr)

Background Plot Number	n	Mean	Standard <u>Deviation</u>
1	55	11.3	0.92
2	44	11.5	1.6
3	52	11.6	1.5

Notes:

- 1. Weighted overall mean = 11.46 uR/hr.
- 2. Corrected * weighted overall mean = 11.46(0.81) + 5.6 = 14.9 uR/hr.
- 3. Only two significant figures are considered reasonable for use in any further analyses. Therefore, the mean background external gamma radiation exposure rate is taken to be equal to 15 uR/hr.
- 4. Analysis of variance shows no significant difference between the means of the three plots. The pooled standard deviation for the three plots is 1.35, or 12 percent. That is, 95 percent of the observations will fall between 15 <u>+</u> (1.96)(0.12)(15) uR/hr, or 11.5 to 18.5 uR/hr. The probability of observing a gamma exposure rate due only to background greater than 18.5 uR/hr is 2.5 percent. The probability of observing a gamma exposure rate due only to background greater than 18.5 uR/hr is 2.5 percent.
- * The correction factor is based on calibration against the Pressurized Ion Chamber.

Ra-226 SOIL ACTIVITY CONCENTRATION VERSUS MEASURED GAMMA RAY EXPOSURE RATE

<u>X (uR/hr)</u>	Ra-226 (pCi/g) <u>Estimated Mean</u>
18	0.6
19	1.5
20	2.5
21	3.5
22	4.6
23	5.6
24	6.7
25	7.7

Notes:

1. Ra-226 activity concentration = 6 pCi/g.

2. X (uR/hr) = 23.

SUMMARY OF BACKGROUND DRILLHOLE READINGS (a)

	<u>Plot #1</u>	<u>Plot #2</u>
Mean Surface Reading	1.3	1.2
Number of measurements Standard deviation Standard deviation of the mean	13 0.28 0.08	13 0.27 0.08
Mean Reading 0-15 cm	1.4	1.4
Number of measurements Standard deviation Standard deviation of the mean	13 0.30 0.08	13 0.35 0.10
Mean Reading 15-30 cm	1.7	1.7
Number of measurements Standard deviation Standard deviation of the mean	13 0.25 0.07	13 0.50 0.14
Mean reading >30 cm	1.9	2.1
Number of measurements Standard deviation Standard deviation of the mean	13 0.23 0.06	13 0.74 0.21
Overall mean 0-50 cm	1.7	1.7
Pooled standard deviation	0.27	0.56
Pooled standard deviation total	0	.44

Due to the rocky nature of Background Plot No. 2, no drillholes could be advanced. Only surface soil samples were taken in this area. Drillholes were advanced with a gas auger.

(a) All borehole measurements are reported as readings with no units. The meter reads in counts/minute or mR/hr. However, neither of these units has any meaning except as a relative measurement. The meter must be calibrated for a particular probe under specific conditions of use. The borehole logger (BHL) was read on the mR/hr scale for ease of reading, but reporting these readings as exposure in mR/hr would be very misleading and incorrect.

Ra-226 ACTIVITY CONCENTRATION VERSUS BHL READING FOR BOREHOLES

BHL Reading (a)	Ra-226 (pCi/g) <u>Estimated Mean</u>
3.0	2.4
4.0	3.8
5.0	5.2
6.0	6.6
7.0	8.0
8.0	9.4
9.0	10.8
10.0	12.2
11.0	13.6
12.0	14.9
13.0	16.3

Ra-226 activity concentration = 6 pCi/g BHL reading = 5.6 ,

Ra-226 activity concentration = 16 pCi/gBHL reading = 12.8

(a) BHL readings are reported without units as the units have significance only when the instrument is properly calibrated.

Ra-226 ACTIVITY CONCENTRATION VERSUS BHL READING FOR DRILLHOLES

BHL Beading (a)	Ra-226 (pCi/g) Estimated Mean
DITE Heading (a)	LStillated Wear
3.0	4.5
4.0	6.2
5.0	7.8
6.0	9.4
7.0	11.0
8.0	12.7
9.0	14.3
10.0	15.9
11.0	13.6
12.0	14.9
13.0	16.3

Ra-226 activity concentration = 6 pCi/gBHL reading = 3.9

Ra-226 activity concentration = 16 pCi/gBHL reading = 10.1

(a) BHL readings are reported without units as the units have significance only when the instrument is properly calibrated.

TABLE 2.7A

BOREHOLE LOGGING RESULTS FOR DRILLHOLES LOCATED AROUND TAILINGS DISPOSAL AREA - RADIALS

Background borehole logger reading = 1.7 95 percent confidence limits for a single reading, 0.8 - 2.6

Estimated mean borehole logger reading for 6 pCi/g = 3.9 estimated mean borehole logger reading for 16 pCi/g = 10.1

		Rac	dial Coordinat	<u>e</u>	
<u>Depth</u>	<u>C 30</u>	<u>C 55</u>	<u>C 80</u>	<u>D 50</u>	<u>D 65</u>
Surface	15.0 (a)	10.0 (a)	7.3 (a)	9.0 (a)	10.0 (a)
15 cm (0.5 ft)	8.5	7.5	7.0	5.0	6.1
30 cm (1.0 ft)	4.7	5.8	5.0	3.5	3.5
45 cm (1.5 ft)	3.5	5.0	3.9		2.6
60 cm (2.0 ft)		3.5	3.8		1.7
75 cm (2.4 ft)	٩				1.6
		Rac	lial Coordinat	<u>e</u>	
<u>Depth</u>	<u>D 100</u>	D 200	<u>D 300</u>	<u>D 450</u>	<u>E 100</u>
Surface	6.5 (a)	4.0 (a)	3.2 (a)	2.4 (a)	8.0 (a)
15 cm (0.5 ft)	5.8	4.1	2.6	2.0	6.0
30 cm (1.0 ft)	3.5	3.9	2.2	2.0	3.9
45 cm (1.5 ft)	2.5	2.5	2.0	2.0	3.5
60 cm (2.0 ft)	2.1	2.0	2.0		
		Rac	lial Coordinate	<u>e</u>	
Depth	<u>E 390</u>	<u>E 494</u>	<u>G 200</u>	<u>G 300</u>	<u>H 350</u>
Surface	3.4 (a)	2.1 (a)	2.6 (a)	2.3 (a)	2.0 (a)
15 cm (0.5 ft)	2.5	2.0	2.0	1.9	2.5
30 cm (1.0 ft)	2.1	2.0	1.4	1.7	3.0
45 cm (1.5 ft)	2.0	2.1	1.3	1.9	2.9
60 cm (2.0 ft)	2.1			1.9	

(a) Borehole logger readings.

TABLE 2.7A

BOREHOLE LOGGING RESULTS FOR DRILLHOLES LOCATED AROUND TAILINGS DISPOSAL AREA - RADIALS (Continued)

<u>Depth</u>		Rad	dial Coordinat	<u>e</u>	
	<u> 300</u>	<u>J 400</u>	<u>K 400</u>	<u>K 450</u>	<u>M 850</u>
Surface	2.6 (a)	2.8 (a)	3.2 (a)	2.5 (a)	2.5 (a)
15 cm (0.5 ft)	1.9	2.8	2.8	2.1	3.3
30 cm (1.0 ft)	1.7	3.2	2.3	2.0	5.0
45 cm (1.5 ft)	1.9				÷
60 cm (2.0 ft)	2.0				

(a) Borehole logger readings.

TABLE 2.7B

BOREHOLE LOGGING RESULTS FOR DRILLHOLES LOCATED SOUTH OF THE DIVERSION DITCH

Background borehole logger reading = 1.795 percent confidence limits for a single reading, 0.8 - 2.6

Estimated mean borehole logger reading for 6 pCi/g = 3.9Estimated mean borehole logger reading for 16 pCi/g = 10.1

		Location	
<u>Depth</u>	SBDD-1	SBDD-2	SBDD-3
Surface	2.2	2.2	2.9
15 cm (0.5 ft)	1.7	1.7	1.9
30 cm (1.0 ft)	1.7	1.4	1.5
45 cm (1.5 ft)	1.6	1.8	1.5
60 cm (2.0 ft)	1.6		

TABLE 2.7C

BOREHOLE LOGGING RESULTS FOR DRILLHOLES LOCATED AROUND TAILINGS DISPOSAL AREA - EAST FENCELINE

Background borehole logger reading = 1.7 95 percent confidence limits for a single reading, 0.8 - 2.6

Estimated mean borehole logger reading for 6 pCi/g = 3.9Estimated mean borehole logger reading for 16 pCi/g = 10.1

		Location	
Depth	<u>FL 1</u>	<u>FL 2</u>	<u>FL 3</u>
Surface	3.7	2.4	3.3
15 cm (0.5 ft)	3.7	2.0	2.7
30 cm (1.0 ft)	2.8	1.7	2.5
45 cm (1.5 ft)	2.6	1.8	2.4
60 cm (2.0 ft)		2.0	2.4
75 cm (2.4 ft)		1.9	2.3

TABLE 2.7D

BOREHOLE LOGGING RESULTS FOR DRILLHOLES LOCATED AROUND TAILINGS DISPOSAL AREA - WEST OF TAILINGS DISPOSAL AREA

Background borehole logger reading = 1.795 percent confidence limits for a single reading, 0.8 - 2.6

Estimated mean borehole logger reading for 6 pCi/g = 3.9Estimated mean borehole logger reading for 16 pCi/g = 10.1

	Location				
Depth	<u>Catch Ba</u>	<u>isin No. 1</u>	<u>Catch Ba</u>	<u>Catch Basin No. 2</u>	
	Hole 1	Hole 2	Hole 1	Hole 2	
Surface	8.6	12.5	75.0	51.0	
15 cm (0.5 ft)	6.5	27.0	114.0	87.0	
30 cm (1.0 ft)	3.0	52.0	162.0	159.0	
45 cm (1.5 ft)	2.2	55.0	100.0	off scale	
60 cm (2.0 ft)	2.0	43.0	31.0	off scale	
75 cm (2.4 ft)	1.6	10.5	8.6	161.0	
90 cm (2.9 ft)	1.8	3.7	6.0	75.0	
105 cm (3.4 ft)	1.8	2.5	5.1	35.0	
120 cm (3.9 ft)		1.9	4.2	10.5	
135 cm (4.4 ft)			3.9	7.8	
150 cm (4.9 ft)			3.2	6.4	
165 cm (5.4 ft)				6.2	

	Loca	tion
Depth	<u>WTA 3-1</u>	<u>WTA 3-2</u>
Surface	4.1	4.1
15 cm (0.5 ft)	3.2	2.6
30 cm (1.0 ft)	3.9	2.6
45 cm (1.5 ft)	5.1	
60 cm (2.0 ft)	4.1	
75 cm (2.4 ft)	3.5	

TABLE 2.7E

BOREHOLE LOGGING RESULTS FOR DRILLHOLES LOCATED AROUND TAILINGS AREA - ELEVATED ACTIVITY AREA ON RADIAL "N"

								Rac	lial Coorc	linate						
Depth	<u>N-1</u>	<u>N-2</u>	<u>N-3</u>	<u>N-4</u>	<u>N-5</u>	<u>N-6</u>	<u>N-7</u>	<u>N-8</u>	<u>N-9</u>	<u>N-10</u>	<u>N-11</u>	<u>N-12</u>	<u>N-13</u>	<u>N-14</u>	N-100 A	<u>N-150 D</u>
Surface	15.0	2.0	2.1	5.9	1.8	1.4	1.9	6.1	11.0	3.6	1.3	1.5	3.5	4.5	12.8	25.0
15 cm (0.5 ft)	35.0	2.1	2.2	12.0	1.6	1.2	5.0	11.1	34.0	7.6	1.2	1.7	4.5	6.2	29.0	42.0
30 cm (1.0 ft)	14.1	2.5	2.6	32.0	1.6	1.3	12.6	36.0	52.0	30.0	1.5	1.7	7.5	8.6	13.9	50.0
45 cm (1.5 ft)	5.8	2.5	2.6	35.0	2.1	1,2	32.0	54.0	41.0	40.0	1.6	1.5	8.5	9.2	5.7	17.5
60 cm (2.0 ft)	3.2	2.5	2.7	16.6	3.2		39.0	41.0	11.5	11.2	1.8	1.7	7.5	8.1	3.1	6.1
75 cm (2.4 ft)	2.2		2.1		7.4		48.0	12.6	4.8	4.4	1.8	1.8	5.3		2.5	3.0
90 cm (2.9 ft)					26.0		14.4	3.9	2.6	2.2					2.1	2.1
105 cm (3.4 ft)					37.0			2.0	2.1	1.8					2.1	2.1
120 cm (3.9 ft)					29.0			1.8	2.1	1.7						
135 cm (4.4 ft)					9.5											
150 cm (4.9 ft)					4.5											

CanonieEnvironmental

Note: Background borehole logger reading = 1.7 95 percent confidence limits for a single reading, 0.8 - 2.6

Estimated mean borehole logger reading for 6 pCi/g = 3.9Estimated mean borehole logger reading for 16 pCi/g = 10.1

DEPTH TO Ra-226 ACTIVITY CONCENTRATION LEVELS LESS THAN 16 pCi/g BELOW THE SURFACE OR 6 pCi/g AT THE SURFACE

Borehole <u>Number</u>	Depth	Borehole <u>Number</u>	Depth
R1	(a)	R27	15 cm (0.5 ft)
R2		R28	240 cm (7.9 ft)
R3		R29	210 cm (6.9 ft)
84		R30	195 cm (6.4 ft)
R5		R31	210 cm (6.9 ft)
R6		R32	225 cm (7.4 ft)
R7	45 cm (1.5 ft)	R33	>240 cm (7.9 ft)
R8		R34	210 cm (6.9 ft)
R9		R35	225 cm (7.4 ft)
R10		[.] R36	>225 cm (7.4 ft)
R11		R37	>225 cm (7.4 ft)
R12	15 cm (0.5 ft)	R38	>210 cm (6.9 ft)
R13	225 cm (7.4 ft)	R39	15 cm (0.5 ft) (b)
R14	15 cm (0.5 ft)	R40	(2)
R15	210 cm (6.9 ft)	R41	(2)
R16	135 cm (4.4 ft)	R42	>225 cm (7.4 ft)
R17	15 cm (0.5 ft)	R43	>240 cm (7.9 ft)
R18	. 	R44	
R19		R45	
R20		R46	
R21	**	R47	10 40
R22		R48	
R23	15 cm (0.5 ft)	R49	
R24	15 cm (0.5 ft)	R50	
R25	15 cm (0.5 ft)	R51	
R26	15 cm (0.5 ft)	R52	

- (a) Less than 16 pCi/g at depths greater than 15 cm (0.5 ft) or less than 6 pCi/g at depths less than 15 cm.
- (b) Borehole logger readings increasing at maximum depth indicating possible Ra-226 concentrations greater than 16 pCi/g below maximum hole depth.

TABLE 2.9A

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED IN THE VICINITY OF THE TAILINGS DISPOSAL AREA - ALONG RADIALS

		Ra-226 (U-238/Ra-226		
Depth:		0 - 15 cm 0 - 0.5 ft	15 - 3 0.5 -	30 cm 1 ft	0 - 15 cm 0 - 0.5 ft
Radial Coordinate					
C 30 C 55 C 80 C 150 C 200	46.0(a) 19.0 35.0 2.8 1.1	(3.0)(b) (1.2) (2.2) (0.21) (0.10)	3.6 11.0 3.8 2.6 3.5	(0.20) (0.12) (0.23) (0.28) (0.14)	0.75 0.88 0.59 0.78 1.8
D 50 D 65 D 100 D 200 D 300 D 450	53.0 23.0 13.0 17.0 15.0 2.6	(3.4) (0.36) (0.87) (0.44) (0.97) (0.19)	2.5 5.0 13.0 1.5 1.7	(0.12) (0.36) (1.2) (0.13) (0.12)	0.74 0.77 0.62 1.4 4.3 1.9
E 100 E 390 E 400 E 410 E 494	110.0 11.0 3.5 2.2 6.7	(5.4) (0.13) (0.21) (0.25) (0.31)	18.0 2.5 7.7 2.1 0.94	(0.79) (0.10) (0.50) (0.25) (0.11)	0.37 <0.11 2.1 2.8 1.1
G 200 G 300	1.0 0.82	(0.10) (0.11)	0.51 0.88	(0.05) (0.07)	4.0 7.1
H 350	1.7	(0.14)	2.5	(0.21)	4.0
1 300	0.72	(0.05)	0.50	(0.08)	6.1
J 400	1.5	(0.14)	1.5	(0.16)	6.2
K 400 K 450 K 475	1.1 0.96 1.6	(0.14) (0.12) (0.14)	1.2 0.85	(0.17) (0.09)	6.6 3.9 5.1
M 850 M - A	0.96 6.0	(0.18) (0.15)	3.7 17.0	(0.30) (0.71)	<1.4 1.1

(a) Measured value of Ra-226 in pCi/g.

(b) Number in parentheses is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.

TABLE 2.9B

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED IN THE VICINITY OF THE TAILINGS DISPOSAL AREA - BOREHOLES

		Ra-226 (pCi/g)					
Depth:		0 - 15 cm 0 - 0.5 ft	15 - 30 0.5 - 1	0 cm ft	0 - 15 cm 0 - 0.5 ft		
Borehole Number							
R 5	1.0 (a)	(0.06) (b)			6.9		
R 7	5.0	(0.48)	27.0 (a)	(0.57) (b)	2.6		
R 8	2.4	(0.13)	1.4	(0.04)	3.3		
R 9	1.4	(0.11)	1.5	(0.11)	4.2		
R 15	106.0	(3.4)			0.41		
R 16	72.0	(0.46)	22.0	(0.53)	0.63		
R 28	9.1	(1.4)			1.3		
R 29	11.0	(0.27)			1.2		
R 42	42.0	(0.61)	88.0	(0.44)	0.57		
R 46	2.5	(0.24)	1.7	(0.07)	6.6		

(a) Measured value of Ra-226 in pCi/g.

(b) Number in parentheses is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.

TABLE 2.9C

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED IN THE VICINITY OF THE TAILINGS DISPOSAL AREA -SOUTH OF BORROW PIT NO. 2

	U-238/Ra-226				
Depth:	C	0 - 15 cm 15 - 30 cr 0 - 0.5 ft 0.5 - 1 ft		0 cm ft	0 - 15 cm 0 - 0.5 ft
Location					· .
SBDD-1	0.97 (a)	(0.04) (b)	0.64 (a)	(0.10) (b)	4.5
SBDD-2	1.1	(0.09)	0.80	(0.10)	5.2
SBDD-3	1.1	(0.12)	0.76	(0.05)	5.6

- (a) Measured value of Ra-226 in pCi/g.
- (b) Number in parentheses is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.

TABLE 2.9D

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED IN THE VICINITY OF THE TAILINGS DISPOSAL AREA -NORTHEAST TAILINGS AREA

		Ra-226 (pCi/g)				
Depth:		0 - 15 cm 0 - 0.5 ft	15 - 30 cm 0.5 - 1.ft		0 - 15 cm 0 - 0.5 ft	
Location						
B 4	2.0 (a)	(0.04) (b)	2.1 (a)	(0.11) (b)	1.4	
B 6	7.5	(0.50)	2.1	(0.21)	<0.52	
B 5	4.4	(0.23)			2.1	
B 3	18.0	(0.18)			0.80	
B 7	21.0	(0.93)			1.4	
B 1	8.4	(0.59)	0.65	(0.10)		
B 2	8.6	(0.60)	1.8	(0.15)		
E 100	110.0	(5.4)			0.37	
E 494	6.7	(0.31)	0.94	(0.11)	1.4	
E 450	7.0	(0.25)			1.2	
E 400	3.5	(0.21)	· 7.7	(0.50)	2.1	
E 410	2.2	(0.25)	2.1	(0.25)	2.4	
E 390	11.0	(0.13)	2.5	(0.10)	<0.11	
FL 141	16.0	(0.92)			0.56	
FL 400	6.5	(0.30)			1.1	
FL 446	7.4	(0.52)				
NT-1	11.0	(0,29)			1.0	
NT-2	9.6	(0.33)			0.99	
NT-3	10.4	(0.85)			1.3	

(a) Measured value of Ra-226 in pCi/g.

(b) Number in parentheses is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.
TABLE 2.9E

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED IN THE VICINITY OF THE TAILINGS DISPOSAL AREA -WEST TAILINGS AREA

	Ra-226	(pCi/g)	U-238/Ra-226
Depth:	. 0	- 15 cm - 0.5 ft	0 - 15 cm 0 - 0.5 ft
Location			
WTA 1-1	5.3 (a)	(0.37) (b)	2.3
WTA 1-2	6.3	(0.41)	2.6
WTA 1-3	26.0	(0.77)	0.83
WTA 1-4	3.1	(0.33)	1.9
WTA 3-1	4.0 .	(0.10)	2.4
WTA 3-2	1.2	(0.05)	3.8

- (a) Measured value of Ra-226 in pCi/g.
- (b) Number in parentheses is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.

TABLE 2.9F

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED IN THE VICINITY OF TAILINGS DISPOSAL AREA -ELEVATED ACTIVITY AREA ON RADIAL "N"

		Ra-226 (pCi/	3)	Ú-238	3/Ra-226
Depth: Radial Coordinate	0-15 cm 0-0.5 ft	15-30 cm 0.5-1 ft	30-45 cm 1-1.5 ft	45-60 cm 1.5-2 ft	0-15 cm 0-0.5 ft
N 13	17.0 (a)	20.0 (a)	11.0 (a)	21.0 (a)	1.1
N 150D	58.0	106.0	61.0		0.69
N 150	0.95				0.39
N 150A	0.84	13.0			<1.8

(a) Measured value of Ra-226 concentration in pCi/g.

TABLE 2.9G

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED AT MISCELLANEOUS LOCATIONS IN THE TAILINGS AND MILL AREAS

Location	Description (a) of Surface <u>Sampling Location</u>	Ra	-226	<u>U-238/Ra-226</u>
MF-1 MF-2	NE corner of mill fence (outside mill area	24(b) 89	(0.97)(c) (0.95)	1.7
566-1 566-2	NE corner of Hwy 566 and tailings road	31 99	(1.9) (1.1)	0.68 1.3
566-3 566-4	NE side of Hwy 566; 1,600 ft from tailings road	47 43	(2.8) (0.19)	0.75 0.62
CB No. 2 30 - 45 cm (1 - 1.5 ft)	Center of catch basin	405	(6.4)	1.5
Tailings F1-F5 F6-F10	Central Cell	721 724	(11.8) (16.6)	<0.01 <0.11

(a) Unless otherwise noted.

- (b) Measured value of Ra-226 in pCi/g.
- (c) Number in parenthesis is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.

TABLE 2.10

	Depth to		Depth to
Borehole	<16 pCi/g	Borehole	<16 pCi/g
Number	<u>cm (ft)</u>	Number	<u>cm (ft)</u>
R 56	*	R 82	
R 57	*	R 83	*
R 58	**	R 84	*
R 59	*	R 85	*
R 60	*	R 86	135 (4.4)***
R 61	*	R 87	*
R 62	*	R 88	*
R 63	*	R 89	*
R 64	*	R 90	*
R 65	**	R 91	*
R 66	*	R 92	45 (1.5)
R 67	*	R 93	45 (1.5)
R 68	*	R 94	*
R 69	*	R 95	*
R 70	45 (1.5)	R 102	*
R 71	**	R 103	*
R 72	**	R 104	*
R 73	45 (1.5)	R 105	*
R 74	45 (1.5)	R 106	*
R 75	**	R 107	*
R 76	**	R 108	*
R 77	**	R 109	*
R 78	15 (0.5)	R 110	*
R 79	**	R 111	*
R 80	**	R 112	*
R 81	**	R 113	*

DEPTH TO 16 pCi/g FOR BOREHOLES IN THE MILL AREA

* Less than 6 pCi/g at surface, less than 16 pCi/g below 15 cm.

** Greater than 6 pCi/g at surface, less than 16 pCi/g below 15 cm.

*** Sediment on top of concrete to approximately 1.5 meters.

CamonieEnvironmental

TABLE 2.11

	Ra-226 (pCi/g)							
Depth: Borehole Number	0 - 1 0 - 0	0 - 15 cm 0 - 0.5 ft		30 cm - 1 ft				
R 57	1.9 (a)	(0.26) (b)	1.2 (a)	(0.06) (b)				
R 58	6.6	(0.29)						
R 65	5.5	(0.17)	11.0	(1.0)				
R 70		10 M	26.0	(1.3)				
R 72	25.0	(0.89)	6.2	(0.33)				
R 73	27.0	(0.44)	19.0	(0.93)				
R 74			40.0	(0.63)				
R 79			1.9	(0.18)				

Ra-226 ACTIVITY CONCENTRATIONS IN SOIL SAMPLES OBTAINED FROM THE MILL AREA BOREHOLES

(a) Measured value of Ra-226 concentration in pCi/g.

(b) Number in parenthesis is the value to be added or subtracted from the measured value to show the range at the 95 percent confidence level.

TABLE 2.12

ORE STORAGE PAD BOREHOLE LOGGING RESULTS

Background borehole logger reading = 1.7 95 percent confidence limits for a single reading, 0.8 - 2.6

Estimated mean borehole logger reading for 6 pCi/g = 5.6Estimated mean borehole logger reading for 16 pCi/g = 12.8

			Boreho	le Number	(a)		
Depth	<u>M-1</u>	<u>M-2</u>	<u>M-4</u>	<u>M-5</u>	<u>M-6</u>	<u>M-7</u>	<u>M-8</u>
Surface	1.8	1.7	6.1	2.0	3.9	7.8	17.0
15 cm	1.8	1.9	4.1	1.5	2.2	10.4	30.0
30 cm	2.0	2.0	2.3	1.5	1.7	14.0	25.0
45 cm	2.0	2.0	2.3	1.7	1.5	10.9	6.8
60 cm	2.0	1.9	2.5	2.0	1.7	11.4	3.8
75 cm	1.9	2.0	2.0	2.0	1.7	4.5	2.8
90 cm	2.0	2.0	1.9	2.1	1.9	2.5	2.3
105 cm	1.9	2.0	1.9	2.1	1.9	2.0	2.2
120 cm	2.0	2.0	1.9	2.0	2.0	2.0	rock

135 and below - all readings less than 3.0

			<u>Bore</u>	hole Numb	er		
Depth	<u>M-9</u>	<u>M-10</u>	<u>M-11</u>	<u>M-12</u>	<u>M-13</u>	<u>M-14</u>	<u>M-15</u>
Surface	39.0	31.0	7.2	7.0	35.0	38.0	6.2
15 cm	60.0	45.0	3.8	3.0	23.0	50.0	3.6
30 cm	86.0	35.0	2.1	2.2	8.0	30.0	2.0
45 cm	88.0	13.5	2.1	2.2	3.2	9.2	2.0
60 cm	56.0	5.5	2.5	2.2	2.5	4.0	2.0
75 cm	23.0	3.0	3.0	2.2	2.2	3.2	1.8
90 cm	7.6	2.9	mud	water	mud	mud	1.7
105 cm	5.0						1.8
120 cm	3.1						mud
135 cm	2.9			* **		***	

150 and below - all readings less than 3.0

(a) Borehole No. M-3 not drilled.

	3.0		•			
-						
		•				
					· · · · · · ·	ļ
					· .	
\sim					\sim	1

SUMMARY OF GEOTECHNICAL PROPERTIES PIPELINE ARROYO BORROW MATERIAL

							Graii	n–Size An	alysis		
						(U.:	S. Standa	rd Sieve S	Size Numb	ers)	
Sample	Depth of	Liquid	Plasticity	Unified Soil			Pe	rcent Pas	sing		
Identification	Sample	Limit	Index	Classification	200	100	40	10	4	3/8	3/4
74 SHB-2	10	38	20	CL	92	98	99	99	100		
78 SHB-7	2.5-4.5	26	5	ML-CL	57	84	99				
	6.0-7.7		NP	SM	31	67	99				
78 SHB-8	9.5-10.5	31	14	CL	63	84	96	9 8	100		
78 SHB-13	0-1.5	22	1	SM	49	81	99				
78 SHB-14	0–1.5	28	12	CL ·	57	80	91	94	95	99	100
78 SHB-30	9.5-11		NP	SM	23	74	100				
78 SHB-31	4.5-6	29	14	CL	55	79	90	95	98	100	
78 SHB-42	4.5-6	28	14	CL	65	74	82	87	92	96	100
86-RP-P2	10.5-11	NT	NT	CL	100						
86-RP-P3	10.5-11	NT	NT	SM	66	96	100				
86-RP-P4	5.5-6	NT	NT	SM-ML	32	56	84	97	98	100	
86-RP-P5	0-3	NT	NT	ML	65	86	98	99	100		
86-RP-P5	3-6	NT	NT	ML	68	87	98	99	99	100	
86-RP-P5	6-6.5	NT	· NT	SM	48	83	95	97	98	100	
86-RP-P6	0-3	NT	NT	CL	70	89	98	99	100		
86-RP-P6	3–6	NT	NT	SM	51	80	97	98	99	99	100
86-RP-P8	11-11.5	NT	NT	ML	93	99	100			r	
86-RP-TP1	5-6	NT	NT	SM	18	32	87	97	98	100	
86-RP-TP2	6-7	NT	NT	SM-ML	40	67	95	97	· 98	100	
86-RP-TP3	0–10	NT	NT	CL-ML	85	97	99	100			
				Average:	58.5	80.6	95.5	97.9	98.8	99.7	100.0
			St	andard Deviation:	22.5	16.0	5.48	3.05	2.02	0.90	0.0
		g	5 Percent Confi	dence Level (+/-):	9.61	6.84	2.34	1.30	0.86	0.39	0.0

Notes:

1. NT = Not tested.

2. NP = Non-plastic.

3. Data also include the South Diversion Ditch and the Runoff Control Ditch material.

4. Results provided in Appendix A.

TABL 2

SUMMARY OF GEOTECHNICAL PROPERTIES EXISTING SOIL STOCKPILE

				•		/11.6	Grair	I-Size Ana d Sigura S	alysis Sing Numb	oro)	
Boring	Depth of	Liquid	Plasticity Unified Soil		Percent Passing						
Identification	Sample	Limit	Index	Classification	200	100	40	10	4	3/8	3/4
78 SHB-18	4.5	26	11	CL	52	79	90	95	99		100
	14.5	32	11	CL	92	98	99	100			
78 SHB-19	4.5	22	NP	SM .	41	64	82	88	94	98	100
78 SHB-31	9.5	26	11	CL	52	83	98	99	100		
78 SHB-33	4.5	27	9	CL	51	77	98	100			
	14.5	21	NP	SM	47	86	99	100			
78 SHB-32	4.5		NP	SM	29	70	96	100			`
89 SS-1	SURFACE		ŇP	ML	55	80	97	99	100		
90 SS-1	SURFACE	23	3	SC-SM	50	79	92	94	96	98	100
90 SS-2	10.5-12.5	26	7	ML-CL	54	84	94	97	98	100	
				Average:	52.3	80.0	9 4.5	97.2	98.7	99.6	100.0
			S	Standard Deviation:	16.0	9.1	5.34	3.91	2.11	0.84	0.0
			95 Percent Con	fidence Level (+/-):	9.92	5.64	3 .31	2.42	1.31	0.52	0.0

Notes:

1. NP = Non-plastic

2. Results provided in Appendix A

TAE 3.3

SUMMARY OF GEOTECHNICAL PROPERTIES NORTH AND CENTRAL CELL INTERIM COVER SOILS

						(U.S	Standar	rd Sieve S	Size Numb	ers)	
Sample	Depth of	Liquid	Plasticity	Unified Soil			Per	cent Pas	sing		
Identification	Sample	Limit	Index	Classification	200	100	40	10	4	3/8	3/4
North Cell:											
89 NC-1	0–5	26	10	CL	61	80	94	96	96		100
89 NC-2	0–5		NP	SM	47	70	92	98	99	100	
89 NC-3	0-5	27	10	CL	61	84	95	98	100		
89 NC-4	0-4	33	16	CL	70	89	97	99	100		
89 NC-5	0-1		NP	SM	45	69	99	100			
89 NC-6	0–1	25	8	CL	56	76	87	92	97	100	
89 NC-7	0-2	27	8	SC – SM	48	63	70	74	79	86	93
89 NC-8	0-1	31	13	CL	63	80	96	97	98	99	100
89 NC-9	0-1	34	17	CL	60	85	98	99	100		
89 NC-10	0–1		NP	SM	20	25	43	48	56	63	73
89 NC-11	0-1	22	7	SC – SM	43	63	90	98	99	99	100
89 NC-12	0–1	43	21	CĽ	63	- 82	100				
Central Cell:											
90 CC-1	SURFACE	27	9	CL	60	83	94	96	97	99	100
90 CC-2	SURFACE	32	16	CL	61	84	96	99	100		
90 CC-3	SURFACE	35	15	CL	65	86	96	98	99	100	
90 CC-4	SURFACE	30	15	CL	68	86	96	98	99	100	
90 CC-5	SURFACE	31	11	CL	66	87	96	98	99	100	
90 CC-6	SURFACE	26	12	SC	48	56	90	93	94	96	98
90 CC-7	SURFACE	26	8	CL	59	85	95	97	98	99	100
-				Average:	56.0	75.4	90.7	93.6	95.3	96.9	98.1
			St	andard Deviation:	11.9	15.5	13.3	12.4	10.6	8.82	6.30
		. g	5 Percent Confi	dence Level (+/-):	5.33	6.96	5.97	5.59	4.78	3.97	2.03

Notes:

1. NP = Non-plastic

2. Results provided in Appendix A

TABLE 3.4

LIMESTONE ROCK QUALITY RATINGS GALLUP SOURCE

Best-	Case	Results
		I LOGAILO

Lab Test	Result	Score	Weight	Score x Weight	Maximum Score
Specific Gravity	2.64	8	12	96	120
Absorption, %	1.1	5	13	65	130
Sodium Sulfate, %	2	9.5	4	38	40
L.A. Abrasion, %	19	2	1	2	10
Totals				201	300
Rating				201/300 X 10	00% = 67.0

201/300 X 100% = 67.0

Worst-Case Results

Lab Test	Result	Score	Weight	Score x Weight	Maximum Score	
Specific Gravity	2.64	8	12	96	120	
Absorption, %	1.5	4	13	65	130	
Sodium Sulfate, %	2	5.5	4	22	40	
L.A. Abrasion, %	22	2	1	2	10	
Totals				172	300	
Rating				172/300 X 10	00% = 57.3	

Source: Gallup Sand and Gravel Quarry, 7 miles north of Thoreau, New Mexico.

TABLE 3.5

BASALT ROCK QUALITY RATINGS GRANTS SOURCE

Lab Test	Result	Score	Weight	Score x Weight	Maximum Score
Specific Gravity	2.805	10	9	90	90
Absorption, %	0.4	8.5	2	17	20
Sodium Sulfate, %	1.7	9.6	11	105.6	110
L.A. Abrasion, %	21	1.8	1	1.8	10
Totals				214.4	230
Rating				214.4/230 X	100% = 93.2

Source: Marinelli Construction Quarry, 18 miles east of Grants, New Mexico.

4.0

.

TABLE 4.1

ESTIMATED INTERIM STABILIZATION EARTHWORK QUANTITIES

Description	Area (acres)	Cut Volume (bank cubic yards)	Fill Volume (bank cubic yards)
Tailings Regrading	100	490,000	490,000
Wind-blown Tailings	50	37,000	37,000
Embankment Grading		164,000	24,000
Interim Soil Cover	100	NA	161,000
Borrow Stockpile		20,000	NA
Mill Area/Ore Pad	25	70,000	NA
Mill Area Cap	16	NA	26,000
Catch Basins	8	30,000	NA

TABLE 4.2

PERMANENT SEED MIXTURE AND APPLICATION RATES FOR NORTH CELL, WIND-BLOWN, AND DISTURBED AREAS

Application Rate (a)

			Pounds
Scientific Name	Common Name	Growth (b) Habit	Pure Live Seed/Acre
Agropyron' smithii	Western wheatgrass	NS	5.0
Bouteloua gracilis	Blue grama	NB	2.0
Oryzopsis hymenoides	Indian ricegrass	NB	4.0
Sporobolus airoides	Alkali sacaton	NB	0.5
Bouteloua curtipendula	Sideoats grama	NB	2.0
Hilaria jamisii	Galleta	NS	3.0

(a) Seeding rate is for drill seeding. If broadcast seeding is used, the seeding rate will be doubled.

(b) NB = native bunchgrass NS = native sodgrass

TABLE 4.3

TEMPORARY SEED MIXTURE AND APPLICATION RATES FOR CENTRAL CELL

Application Rate (a)

	·		Pounds
Scientific Name	Common Name	Growth (b) Habit	Pure Live
Agropyron tricophorum	Pubescent wheatgrass	IS	8.0
Agropyron intermadium	Intermediate wheatgrass	IS	4.0
Agropyron elongatum	Tall wheatgrass	IB	8.0
Agropyron desertorum	Crested wheatgrass	IB	2.0
Elymus juncas	Russian wildrye	IB	2.0

(a) Seeding rate is for drill seeding. If broadcast seeding is used, the seeding rate will be doubled.

(b) IS = introduced sodformerIB = introduced bunchgrass

CanonieEnvironmental

		5.0	
		· · ·	
			•
		·	
		,	

٦

COARSE TAILINGS LABORATORY TEST DATA

				Dry Bulk		Moisture	(a) Radium	Diffusion (b)		
General	Boring	Depth	Specific	Density		Content	Content	Coefficient	Emanation	
Description	Number	(feet)	Gravity	(pcf)	Porosity	(percent)	(pCi/g)	(cm2/sec)	Coefficient	
Tailings	658	15	NT	105	0.40	NT	NT	NT	NT	
Sands	658	20	2.83	104	0.41	23.5	160	0.0000053	0.32	
	658	30	2.81	98	0.44	23.4	141	0.000019	0.27	
	658	40	2.89	92	0.49	31.2)	212	0.000002	0.25	
	659	10	2.84	95	0.46	- 6.1	125	0.037	0.18	
	659	20	2.83	94	0.47	10.5	227	0.023	0.21	ł
	659	30	2.74	97	0.43	13.1	132	0.016	0.20	
	65 9	32.5	NT	106	0.47	8.1	115	0.042	0.27	
	662	20	NT	97	0.49	34.1	NT	NT	NT	
	662	25	2.78	96	0.36	25.1	108	0.0000025	0.33	
	662	30	2.79	94	0.46	29.6	177	0.0000013	0.28	
Supplemental (c)							143.1			
Average		•	2.81	97.5	0.45	20.47	154	NA	0.26	Fight
95 Percent Confid	ence		2.77 to	NA	0.43 to	NA	125.0 to	NA	0.25 to	
Interval			2.84		0.47		183		0.27	

NT = Not tested

- (a) Moisture contents are not indicative of long-term values, which will typically be lower; therefore, the radon computer model default value of 60 percent was used.
- (b) Diffusion coefficients are typically low due to the high moisture content values; therefore, calculated values will be used.
- (c) Value for radium content from Environmental Report on Uranium Mill Tailings Backfill presented in April 8, 1981 letter from United Nuclear to the New Mexico Environmental Improvement Division.

				Dry Bulk		Moisture	Radium	Diffusion	
General	Boring	Depth	Specific	Density		Content	Content	Coefficient	Emanation
Description	Number	(feet)	Gravity	(pcf)	Porosity	(percent)	(pCi/g)	(cm2/sec)	Coefficient
Fine-Grained	659	37.5	2.72	78	0.54	29.6	602	0.0056	0.16
Tailings	660	8.0	2.81	74	0.58	44.27	341	0.0000011	0.37
Slimes	660	15.0	2.84	94	0.47	60.0	1099	0.0000016	0.31
	660	27.5	2.75	89	0.48	32.2	285	0.0000016	0.26
	660	37.5	2.84	79	0.56	41.4	526	0.0000027	0.28
	662	40.0	2.72	84	0.51	36.4	574	0.0000062	0.21
	662	42.5	NT	89	0.55	43.8	NT	NT	NT
	658	10.0	2.81	88	0.50	17.4	402	0.0067	0.22
	658	32.5	NT	97	0.55	43.6	NT	NT	NT
Average			2.78	86	0.53	38.7	547	0.00076	0.26
95 Percent Con	fidence		2.73 to	NA	0.50 to	29.7 to	296 to	0.00022 to	0.20 to
Interval			2.83		0.56	47.7	798	0.0053	0.32

FINE TAILINGS LABORATORY TEST DATA

NT = Not tested

CanonieEnvironmental

SOIL COVER THICKNESS DESIGN PARAMETERS USING RADON COMPUTER CODE

Trial No.	Layer Type	Porosity	Mass Density (gm/cm3)	Radium Activity (pCi/g)	Weight Percent Moisture	Diffusion Coefficient (cm2/sec)	Emanation Coefficient	Thickness
Final Design	Fine-grained tailings	0.48	1.45	547	6.0 (a)	0.0400 (b)	0.26	16.4
	Coarse-grained tailings	0.47	1.56	154	6.0 (a)	0.0360 (b)	0.26	7.0
	Soil cover	0.33	1.73	0	12.9	0.0036 (b)	NA	1.5

(a) Default value from NRC Regulatory Guide 3.64.

(b) Diffusion coefficient calculated by RADON computer model.

NA = Not applicable.

.

IABLE 5.4

SUMMARY OF THE FIELD TESTING AND INSPECTION PLAN

Quality Control Activity	NRC Staff Technical PositionFrequency (a)
Full Proctor tests (ASTM D 698)	One test per every 15 field density tests
One-point Proctor tests	One test per every 5 field density tests
Field test for moisture/density	One test for each 500 cubic yards (cy) of cover soil or a minimum of two tests for each day of cover soil in excess of 150 cy
Nuclear density guage correlation (if appropriate)	One sand cone test and one oven-dry test per every 10 nuclear density tests
Gradation and classification testing of cover soil (includes Atterberg limits)	Minimum of one test each day of cover soil in excess of 150 cy and one test per 1,000 cy
Rock durability tests (specific gravity, absorption, soundness, L.A. Abrasion)	One test series at 10,000 cy and 20,000 cy riprap placed, then one test series per 10,000 cy of riprap placed in excess of 30,000 cy

(a) The August 1990 NRC Staff Position Paper is officially titled "Testing and Inspection Plans during Construction of DOE's Remedial Action at Inactive Uranium Mill Tailings Sites."

CanonieEnvironmental

t

TABLE 5.5

BRANCH SWALE CHARACTERISTICS

						Minimum	Hiprap	
3.5			Bottom	Peak	Depth	Swale	D	Riprap
Swale	Length	Slope	Width	Discharge	of Flow	Depth	50	Thickness
Designation	(ft)	(ft/ft)	(ft)	(cfs)	(ft)	(ft)	(in)	(in)
Α	2,600	0.0038	10	40	0.98	2.0	1.5	3.0
B	3,600	0.0083	20	97	0.97	2.0	1.5	3.0
С	3,400	0.0050	10	75	1.38	2.0	1.5	3.0
D	3,200	0.0028	10	68	1.43	2.0	1.5	3.0
E	1,350	0.0037	10	85	1.53	2.5	1.5	3.0
F	1,600	0.0031	10	126	2.00	2.5	1.5	3.0
G	1,400	0.0021	10	99	1.88	2.5	1.5	3.0
H 21.67	^{ິງ} 2,550	0.0085	20	284	1.90	2.5	3.0	6.0
+2,20	^{ه ر} 550	(0.0040)	20	385	2.65	3.5	3.0	6.0
J	1,900	0.0047	10	101	1.66	2.5	1.5	3.0

Note: See Figures 5–1 and 5–2 for swale locations.

(a, b)

RIPRAP MATERIAL GRADATION REQUIREMENTS (a)

	D ஆ 50 (b)	Layer Thickness				,	Pe	rcent Pass	ing by Weig	ght			
Location	(inches)	inches) (inches) S	Sieve Size:	20 Inch	15 Inch	12 Inch	10 Inch	6 Inch	5 Inch	4 Inch	3 Inch	1 Inch	No. 4
Upper Section													
South Cell	· · 9	15											
Drainage Channel	15	23		100		28-40		8-21		2-14	0-10		
North Cell	,												
Drainage Channel	9	15			100		45-58		10-33		0-23		
North Diversion													
Ditch	6.0	10					100	28-51		13-36		0-9	
Buried Jetty	6.0	96					100	28-51		13-36		0-9	
Branch Swales H and I, Lower Reach of Runoff Control Ditch	3.0	, 6°			·		• .	100		45-67		0-22	
Soil/Rock Matrix, Branch Swales, Upper Reach of Runoff Control Ditch	1.5	3 -		, . ,			• • • • • • • • •				100	8-37	0-8

(a) The rock quality will be determined in accordance with Appendix D of the NRC's Staff Technical Position (STP) on "Design of Erosion Protection Covers" dated August 1990.

(b) Rock sizes shown will be oversized, if required, based on their rock quality rating by the methods provided in Appendix D of the NRC's STP.

(c) See Table 5.7 for bedding material requirements.

CanonieEnvironmental

•

Ì

Ditch

٦

Revised: July 8, 1992

Bedding Bedding D D 50 Thickness 50 **Bedding Material Gradation** Location **Bedding Layers** (inches) (inches) Sieve Size: (inches) 3-inch 3/4 inch No. 4 No. 10 No. 40 No. 200 Upper Section South Layer 1 0.02 3 Bedding Layer 1 0.02 100 85-100 65-100 47-94 23-70 15-30 **Cell Drainage Channel** Layer 2 0.35 3 Bedding Layer 2 0.35 65-100 43-80 22-60 15-38 5-12 0-10 North Cell Drainage Layer 1 0.02 3 Channel Layer 2 0.35 3 North Diversion Ditch Layer 1 0.02 3 Layer 2 0.35 3 **Buried Jetty** None NA NA Branch Swales H and I Layer 1 0.02 3 🔨 and Lower Reach of 3 Layer 2 0.35 **Runoff Control Ditch** Soil/Rock Matrix None NA NA Branch Swales and Upper 5 **Reach of Runoff Control**

31

0.02

Layer 1

BEDDING MATERIAL REQUIREMENTS

Section	Average Sideslopes (H:V)	Base Width _ <u>_(ft)_</u>	Channel Slope <u>(ft/ft)</u>	Contributing Drainage Basins	Maximum Flow Rate of PMF (cfs)	Normal Depth of Flow (ft)	Average Flow Velocity _(fps)
Т	2.5:1	18	0.0054	A ₂	1081	4.2	9.0
U	2.1:1	20	0.0071	$A_1 + A_2$	2265	5.7	12.0
v	7.6:1	20	0.0075	$A_1 + A_2$	2265	4.3	9.9
w	3.3:1	22	0.0075	$A_1 + A_2 + B$	5850	8.0	16.4
х	1.1:1	12	0.0075	A ₁ +A ₂ +B	5850	12.5	18.0

NORTH DIVERSION DITCH CHARACTERISTICS

Note: See Figure 5-6 for section locations.

NORTH DIVERSION DITCH TOTAL HEAD COMPARISONS AT CONFLUENCES WITH CONTRIBUTING TRIBUTARIES

Cross Section Location	Peak Discharge (cfs)	Channel Slope (ft/ft)	Depth of Flow (ft)	Flow Velocity (fps)	Velocity Head (ft)	Total Head (ft)
К	1081	0.00544	4.22	9.0	1.26	5.48
A1	. 383	0.044	0.88	11.2	1.95	2.93
L	2265	0.00714	5.69	12.5	2.43	8.12
A2	765	0.020	1.81	10.8	1.82	3.63
М	2265	0.00746	4.34	9.8	1.49	5.83
B	2046	0.019	2.48	13.2	2.17	5.19
N	5850	0.00746	8.02	15.1	3.54	11.56

Note: Figure 5–7 provides the cross section locations.

GEOMORPHOLOGICAL PARAMETERS FOR PIPELINE ARROYO AND NORTH FORK RIO PUERCO

		Date						
Area	Parameter	1952	1978	1983	1985			
Upstream of Nickpoint	Sinuosity	1.05	1.06	1.09	1.08			
	Width/Depth Ratio	10	40	50	40			
	Meander Wavelength (ft)	230	650	500	360			
	Meander Amplitude (ft)	50	170	150	110			
Downstream of	Sinuosity	1.13	1.03	1.08	1.12			
Nickpoint	Width/Depth Ratio	4	2	2	2			
	Meander Wavelength (ft)	310	640	500	320			
•	Meander Amplitude (ft)	95	105	145	145			
North Fork Rio Puerco	Sinuosity	1.51	NA	NA	1.37			
downstream of con-	Width/Depth Ratio	6	NA	NA	6			
fluence with Pipeline	Meander Wavelength (ft)	690	NA	NA	620			
Arroyo	Meander Amplitude (ft)	425	NA	NA	470			

NA = not available

DRAINAGE BASIN DESCRIPTIONS

Basin Destination	Area (square miles)	Maximum Relief (feet)	Longest Drainage Path (miles)	Curve Number	PMP _(inches)	PMF (cfs)
Pipeline Arroyo (a)	18.20	819	6.18	79	6.2	26300
North and South Diversion Ditches (a)						
A1	0.15	200	0.62	80	8.4	1220
A2	0.12	360	0.62	80	8.4	1080
B	0.57	440	1.23	80	8.4	3950
С	0.17	400	0.73	80	8.4	1370
Runoff Control Area (b)	0.052	88	1.06	80	8.5	270
South Cell (b)	0.20	66	0.59	77	8.5	1260
North Cell (b)						
Main Swale	0.15	55	0.75	77	8.5	840
Typical Branch	0.05	23	0.47	77	8.5	315

(a) See Figure 5–5 for basin locations.

(b) See Figures 5–1 and 5–2 for basin locations.

SUMMARY OF MEANDER PATTERNS

		P	ipeline Arro	уо		
Elevation Contour	Channel Distance (ft)	Slope (ft/ft)	Valley Distance (ft)	Sinuosity (ft/ft)	Average Meander Amplitude (ft)	Average Meander Wave Length (ft)
6840	<u> </u>					
6880	3800	0.011	3375	1.126	200	1150
6920	5200	0.008	5025	1.035	150	1250
6960	7000	0.006	6500	1.077	100	2275
7000	2000	0.020	1675	1.194	100	2000
7040	7200	0.006	6025	1.195	100	1750
7080	3600	0.011	3225	1.116	200	750

Watershed Area = 20.12 square miles Maximum Amplitude = 570 feet

Hard Ground Canyon

	Channel		Valley		Average Meander	Average Meander
Elevation	Distance	Slope	Distance	Sinuosity	Amplitude	Wave Length
Contour	(ft)	(ft/ft)	. (ft)	(ft/ft)	(ft)	(ft)
6800	0					
6840	5600	0.007	5300	1.057	150	1050
6880	3400	0.012	3300	1.030	150	675
6920	7000	0.006	6800	1.029	200	1800
6960	3300	0.012	2500	1.320	350	1000
7000	7900	0.005	7500	1.053	150	1780
7040	2800	0.014	2600	1.077	100	1400
7080	2300	0.017	2150	1.070	75	2000

Watershed Area = 14.11 square miles Maximum Amplitude = 350 feet

ESTIMATED FINAL RECLAMATION EARTHWORK QUANTITIES

	Estimated Area	Estimated Cut Volume	Estimated Fill Volume
Description	(acres)	(cubic yards)	(cubic yards)
Pipeline Arroyo and		· · · · · · · · · · · · · · · · · · ·	
Runoff Control Ditch	27	36,000	103,000
Buried Jetty		8,500 (a)	5,050
South Drainage Channel	1	84,000 (a)	NA
Evaporation Pond Closure	10	NA	.49,000
Soil Cover	100		109,000
Soil/Rock Matrix (Soil)	110	NA	60,000
Borrow Pit No. 2 Backfill	9		155,000
Soil Stockpile	10	352,600 (b)	

(a) Excess material used in fill sections near arroyo.

(b) Indicates anticipated volume of soil to be borrowed from stockpile.

6.0

ς. .

• .

, •

NRC GROUND WATER PROTECTION STANDARDS AND THEIR EXCEEDANCES BY FORMATION OF CONCERN (a)

Chemical <u>Constituent</u>	Ground Water (b) Protection Standard	Zone 3	Zone 1	Southwest <u>Alluvium</u>
Arsenic	= 0.05	Х		
Beryllium	= 0.05	х	Х	
Cadmium	= 0.01	х	Х	
Chloroform	= 0.001	Х		
Cyanide	= 0.005	X	Х	Х
Gross alpha (c)	= 15.0 (pCi/l)	Х	Х	Х
Lead	= 0.05	Х		Х
Lead-210	= 1.0 (pCi/l)	Х	х	
Naphthalene	= 0.001	Х		
Nickel	= 0.05	х	Х	
Selenium	= 0.01	X	Х	Х
Combined Radium-226 and Radium-228	= 5.0 (pCi/l)	х	х	Х
Uranium	= 0.3	Х	***	
Thorium-230	= 5.0 (pCi/l)	X	х	Х
Vanadium	= 0.1	х		

(a) X denotes that the NRC Standard is exceeded in the indicated formation. -- denotes that the standard has not been exceeded.

(b) mg/l except as noted.

(c) Minus gross alpha contribution from radon and uranium.

EPA CONTAMINANT-SPECIFIC GROUND WATER ARARS AND THEIR EXCEEDANCES BY FORMATION OF CONCERN (a)

	Applicable or Relevant			
Chemical	and Appropriate			Southwest
Constituent	Requirements (ARARs) (b)	<u>Zone 3</u>	<u>Zone 1</u>	<u>Alluvium</u>
Aluminum	5.0	Х	Х	`
Antimony	0.014			
Arsenic (c)	0.05	Х	Х	
Barium	1.0			
Beryllium	0.017			
Cadmium (c)	0.01	Х	Х	Х
Chromium	0.05			
Cobalt (c)	0.05	Х	Х	Х
Copper	1.0			
Iron.	5.5			
Lead	0.05			
Manganese	2.6	Х	Х	Х
mercury	0.002			
Molybdenum	1.0	Х	Х	Х
Nickel (c)	· 0.2	Х	Х	Х
Selenium (c)	0.01	Х	Х	Х
Silver	0.05			
Thallium	0.014			
Vanadium	0.7			
Zinc	10.0			
Chloride	250.0			
Sulfate	2,160.0			
Nitrate as N	30.0	Х	Х	Х
TDS	3,170.0	Х	Х	Х
Uranium-238	5.0			
Thorium-230	15 pCi/l			
Gross Alpha (c)	15 pCi/l (d)	Х	Х	X
Combined Radium-226 and Radium-228 (c)	5 pCi/l	X		

(a) X denotes that the NRC Standard is exceeded in the indicated formation. -- denotes that the standard has not been exceeded.

(b) mg/l except as noted.

(c) These constituents are of primary concern as identified in EPA's ROD (EPA, 1988a).

(d) Minus gross alpha contribution from radon and uranium.

PERFORMANCE MONITORING ANALYTES (a)

Arsenic Aluminum Cadmium Chloride Cobalt Nitrate Sulfate Ammonia Manganese Molybdenum Calcium Magnesium Sodium bicarbonate Potassium TDS Beryllium Chloroform Cyanide Lead Lead 210 Naphthalene Nickel Combined Radium-226, Radium-228 Selenium Thorium-230 Uranium Gross Alpha Vanadium

(a) Field pH and water levels will be measured when samples are collected.

IMPLEMENTATION OF THE CORRECTIVE ACTION PROGRAM UNITED NUCLEAR CHURCH ROCK SITE

	Activity	Date Started or Submitted	Date Completed	Date Start Operation	
1.	Installation of Evaporation Disposal System o Two-cell Evaporation Pond o Pond Misters o Distribution lines connecting the extraction wells to the system	10/88	1/89	1/5/89	
	o Distribution lines to the mist evaporation system on the tailings				
2.	Dewater Borrow Pit No. 2 o Originally scheduled to be completed by 10/89 o Continue operation of Zone 1 wells although borrow pit is dry	1/5/89	4/29/89	N/A	
3.	Installation of Zone 3 Extraction Wells o Install Wells 708 - 712 o Aquifer Test using Wells 708 - 712 o Refine system design based on test; eliminate Well 704 from system	5/3/89	6/29/89	8/7/89	
4.	Install Southwest Alluvium Extraction and Monitoring Wells o Install Extraction Wells 801 - 803 o Install Monitoring Wells 804 - 807 o Aquifer test o Install and test distribution lines to evaporation disposal system	8/3/89	8/30/89	10/16/89	
5.	 Submit 1989 Annual Review Well Installation Dewater Borrow Pit No. 2 Performance monitoring evaluation of Zone 3 and Zone 1 (water levels and water quality) Performance monitoring evaluation of Southwest Alluvium not applicable because system had not operated long enough to generate data for this report Evaporation disposal system performance Recommendations for continued operation 	12/31/89	N/A	N/A	·
			Canon	e Environme	ental

IMPLEMENTATION OF THE CORRECTIVE ACTION PROGRAM UNITED NUCLEAR CHURCH ROCK SITE (Continued)

	Activity	Date Started or Submitted	Date Completed	Date Start Operation
6.	 NRC and EPA submit comments to the 1989 Annual Review o Zone 3 system operating as designed o Add additional monitoring well to Zone 3 system o Continue operation of Zone 1 extraction wells although Borrow Pit No. 2 is dry; propose a modified pumping program o Continue operation of Southwest Alluvium system 	2/90	N/A	N/A
7.	 United Nuclear Response to Comments Add Well 126 as performance monitoring well for Zone 3 Demonstrate that mound in Zone 1 is dissipating in response to dewatering; however, the process is slow because of the low hydraulic conductivity of the formation Request permission to turn off existing Zone 1 wells. Continue operation of Southwest Alluvium system 	3/90	N/A	
8.	 Modified Zone 1 Pumping Program Required by NRC and EPA, request to turn off Zone 1 pumping wells denied. Decommission existing east and north cross-dike pump-back wells Operate revised east pump-back system consisting of Wells 615, 616, 617, and EPA 7 Continue to monitor performance monitoring wells designated in the RD 	6/11/90	Agency Approval	9/24/90
9.	 Submit 1990 Annual Review o Zone 3 system continues to perform as designed o Zone 1 revised east pump-back system performance further demonstrates that active remediation is not feasible o Southwest Alluvium system performs as designed 	12/31/90		
IMPLEMENTATION OF THE CORRECTIVE ACTION PROGRAM UNITED NUCLEAR CHURCH ROCK SITE (Continued)

	Activity	Date Started or Submitted	Date Completed	Date Start Operation	
10.	 NRC and EPA submit comments to the 1990 Annual Review Zone 3 performing as designed Requires installation of the Zone 3 Stage II wells as designed in the RD Requires proposal for final demonstration that active remediation in Zone 1 is not feasible Requires proposal for additional extraction well(s) in Southwest Alluvium to enhance the hydraulic barrier currently created by the system Requires revision to the data presentation in the next annual reviews including: Calculate the mass of hazardous constituents removed by the corrective action systems in all three formations Include water quality data for all wells monitored in tabular form within the main body of the report Include an isopach map of saturated thickness 	2/91	· .		
11.	 United Nuclear response to comments o Amendment request for installation of the Zone 3 Stage II wells (Wells 714 - 720) at the locations designated on Figure 2-4 of the RD o Amendment request for installation of a well o Presentation of data in future annual reviews will be modified as requested 	4/91		· · ·	
12.	United Nuclear proposes program for ALARA Demonstration	7/91			
13.	NRC and EPA approve proposals for amendments to Zone 3 and Southwest Alluvium systems, incorporated as Amendment 12	7/91			
14.	Install Wells o Zone 3 Stage II, Wells 714-720 o Southwest Alluvium Well 808	5/20/91	6/14/91	6/24/91 NieEnvironmer	ntal

DATA FROM ZONE 3 WELLS USED TO GENERATE ISOPACH MAP OF SATURATED THICKNESS (FIGURE 6-6)

Well <u>Number</u>	Top of Zone 3 (elevation, feet)	Bottom of Zone 3 (elevation, feet)	Water Level October 1987 (elevation, feet)	Saturated Thickness (feet)
TWQ-121	6,959.9	6,879.9	6,918.6	18.7
TWQ-125	6,938.4	6,883.4	6,902.5	19.1
TWQ-126	6,931.2	6,866.2	6,905.4	39.2
TWQ-127	6,926.3	6,851.3	6,900.4	49.1
51,0B	6,948.8	6,868.8	6,892.2	23.4
502B	6,913.9	6,943.9	6,896.3	52.4
503B	6,928.4	6,855.4	6,896.6	41.2
518	6,924.0	6,860.0	6,902.1	42.1
EPA-3	6,939.3	6,887.3	6,899.2	11.9
EPA-6	6,950.1	6,901.1	6,914.0	12.9
EPA-9	6,952.9	6,902.9	6,911.1	8.2
EPA-13	6,920.5	6,856.5	6,882.7	26.2
EPA-15	6,895.4	6,829.4	6,895.8	66.4
EPA-18	6,938.9	6,881.9	6,488.7	2.8
EPA-19	6,939.2	6,878.2	6,887.5	9.3

Source:

United Nuclear NRC monitoring program and well logs (United Nuclear, personal communication).

Year 1 Year 2 Year 3 Pumping Rate (b) Well Pumping Rate (b) Pumping Rate (b) Number (gpm) (gpm) (gpm) 1.5 1.5 2.5 1.5 2.5 1.5 Total

PUMPING RATES FOR ZONE 3 COMPUTER MODEL PERFORMANCE SIMULATION

3-year average pumping rate: 45 gpm

(a) These pumping rates utilized from the end of year 2 to the end of the model simulation at time equals 2.5 years.

(b) Well showing a zero pumping rate is either decommissioned or not installed.

Wells Specified in License Condition Parts A and B (a)	Extraction System Wells (b)
TWQ 106D	701
TWQ 9D	702
517	703
518	704 (c)
504-B	705
502-B	706
501-B	707
420	708
411	709
EPA-18	710
EPA-17	711
EPA-15	712
EPA-14	713
EPA-13	714
EPA-12	715
EPA-11 (d)	716
EPA-9	717
EPA-3	718
EPA-1	719
	720
	TWQ 126 (e)

ZONE 3 PERFORMANCE MONITORING WELLS

- (a) Wells in this column will be sampled quarterly for water level and constituents specified in Table 6.3.
- (b) Wells in this column will be monitored for water level only.
- (c) Well 704 was not installed because the results of the aquifer test conducted during installation of the Stage I wells indicated that inclusion of this well would detract from the performance of the system.
- (d) Well EPA 11 was abandoned after second quarter 1990 with approval from the NRC and EPA. The water level had dropped below the pump intake and the pump could not be lowered in the well.
- (e) Well TWQ 126 was added to monitor water levels at the request of the NRC and EPA in their comments to the 1989 Annual Review (Canonie, 1989c).

IMPLEMENTATION OF THE ZONE 3 CORRECTIVE ACTION PROGRAM

	Activity	Date Started or Submitted	Date <u>Completed</u>
1.	Install Zone 3 Stage I Extraction Wells o Install Wells 708 - 712 o Aquifer Test using Wells 708 - 712 o Refine system design based on test; eliminate Well 704 from system o Install Wells 701 - 707 excluding Well 704	5/3/89	6/29/89
2.	Start Zone 3 Stage I well operation	8/89	N/A
3.	Submit 1989 Annual Review o Description of Zone 3 Stage I Well Installation o Performance monitoring evaluation of Zone 3 (water levels and water quality) o Recommendations for continued operation	12/89	N/A
4.	NRC and EPA submit comments to the 1989 Annual Review o Zone 3 system operating as designed o Add additional monitoring well to Zone 3 system	2/90	N/A
5.	United Nuclear Response to Comments o Add Well 126 as performance monitoring well for Zone 3	3/90	7/90
6.	Well 126 added to Performance Monitoring Program o Included in Amendment 7 to the NRC License		4/90
7.	Submit 1990 Annual Review o Zone 3 system continues to perform as designed o Well EPA 11 abandoned	12/90	
8.	NRC and EPA submit comments to the 1990 Annual Review o Zone 3 performing as designed o Requires installation of the Zone 3 Stage II wells as designed in the RD	2/91	N/A

IMPLEMENTATION OF THE ZONE 3 CORRECTIVE ACTION PROGRAM (Continued)

	Activity	Date Started or Submitted	Date <u>Completed</u>	
9.	United Nuclear Response to Comments o Amendment request for installation of the Zone 3 - Stage II wells (Wells 714 - 720) at the locations designated on Figure 2-4 of the RD (Canonie, 1989d)	4/91	N/A	
10.	NRC and EPA approve proposals for amendment to Zone 3 o Included in Amendment 12 to the NRC License	7/91	N/A	
11.	Install Zone 3 - Stage II Wells o Install and test Wells 714-720	5/91	6/91	
12.	Start operation of Zone 3 - Stage II wells	8/91	N/A	

Well Number	(a) Automatic Control (yes/no)	Initial Pumping Rate (gpm)	Current (b) Pumping Rate (gpm)	Average (c) Pumping Rate (gpm)) Design (d) Pumping Rate (gpm)
701	No	4.2	6.3	5.4	5
702	Yes	1.3	0.4	~1.0	5
703	No	3.7	2.0	3.0	5
705	No	1.0	1.4	1.7	5
706	No	5.0	8.0	8.2	5
707	No	4.0	3.8	4.3	5
708	No	2.5	4.0	4.7	2.5
709	No	5.0	2.4	2.8	5
710	No	2.0	0.8	1.1	5
711	No	3.8	5.3	5.0	2.5
712	Yes	• 4.3	2.1	~2.7	5
713	Yes	3.0	2.6	3.0	5
			Total	43	55

SUMMARY OF 1989 OPERATIONAL DATA ZONE 3 – STAGE I WELLS

Total Volume Pumped = 5.6 million gallons (c)

- (a) Wells equipped with the automatic control pump in cycles. If the well is not pumping at the time of inspection, then the pumping rate cannot be recorded. The well meters record the cumulative flow and the flow rate is calculated based on these readings and the time elapsed between readings.
- (b) Average pumping rate reported for the week of November 10 through November 17, 1989.
- (c) Pumping rate and total volume pumped estimated for the period between August 7 through November 17, 1989.
- (d) The total design pumping rate presented in the RD (Canonie, 1989a) was 60 gpm. This rate included 5 gpm for Well 704, which has been excluded from the system.