Attachment 5

TVA Letter Dated November 5, 2010

Description of Commitments and Requested Vendor Documents

Watts Bar Unit 2 ARPI System Upgrade, "CERPI System Requirements Specification" (Nonproprietary), WNS-DS-00001-WBT-NP, Revision 2, dated June 2009

Westinghouse Non-Proprietary Class 3

Watts Bar Unit 2 ARPI System Upgrade

CERPI System Requirements Specification

WNS-DS-00001-WBT-NP, Rev. 2

June 2009

APPROVALS

Function	Name and Signature	
Author	Timothy S. Meyers* Senior Engineer, Rod Control Systems Engineering	
Reviewer	Kenneth A. Morgan* Senior Engineer, Electro-Mechanical Product Engineering	
Approver	Michael S. Warshafsky* Project Manager, RRAS Watts Bar 2 Completion Project, Rod Control Systems Engineering	
	William J. Rosko* Product Manager, RRAS Watts Bar 2 Completion Project, Rod Control Systems Engineering	
	Andrew P. Drake* Program Manager, RRAS Watts Bar 2 Completion Project, Safety & Monitoring Systems	

^{*}Electronically approved records are authenticated in the electronic document management system.

LIST OF CONTRIBUTORS

Revision	Name and Title
0	Kenneth A. Morgan Senior Engineer, Electro-Mechanical Product Engineering
. 0	Jenna L. Tyger Editorial Specialist, Technical Writing and Editing Group
2	David W. Dietz III Editorial Specialist, Technical Communications

REVISION HISTORY

RECORD OF CHANGES

Revision	Author	Description	Completed
0	Timothy S. Meyers	Original Issue	August 7, 2008
1	Timothy S. Meyers	Updated proprietary information	September 15, 2008
2	Timothy S. Meyers	Updated for system separation	See EDMS

DOCUMENT TRACEABILITY & COMPLIANCE

Created to Support the Following Document(s)	Document Number	Revision
N/A		

OPEN ITEMS

Item	Description	Status
None.		

TABLE OF CONTENTS

Section	Title	Page
	LIST OF CONTRIBUTORS	i
•	REVISION HISTORY	
	TABLE OF CONTENTS	
	LIST OF TABLES	vii
	LIST OF FIGURES	vii
	ACRONYMS AND TRADEMARKS	viii
	GLOSSARY OF TERMS	
	REFERENCES	x
	REQUIREMENTS	xi
SECTION 1	INTRODUCTION	1-1
1.1	PURPOSE	1-1
1.2	SCOPE	
1.3	OVERVIEW	1-1
1.3.1	Existing RPI System	
1.3.2	CERPI System	
SECTION 2	GENERAL SYSTEM REQUIREMENTS	2-1
2.1	DESIGN CONSTRAINTS	2-1
2.1.1	Physical Layout Constraints	2-1
2.1.2	Environmental Constraints.	2-1
2.1.3	Redundancy Requirements	2-1
2.1.4	Retention of PLC Data	
.2.2	SYSTEM PERFORMANCE REQUIREMENTS	2-2
2.2.1	System Accuracy Requirements	2-2
2.2.1.1	Total System Accuracy Error Terms	2-2
2.2.1.2	System Error Budget Allowances	2-3
2.2.2	System Throughput Requirements	2-3
SECTION 3	DETECTOR INTERFACE CIRCUITRY REQUIREMENTS	3-1
3.1	DETECTOR INTERFACE CIRCUITRY FUNCTIONAL REQUIREMENTS	3-1
3.1.1	General	3-1
3.1.2	Detector Interface Board	3-1
3.1.2.1	General	
3.1.2.2	Inputs	3-1
3.1.2.3	Processing	, 3-2
3.1.2.4	Outputs	3-3
3.1.3	Oscillator Board	
3.1.3.1	General	3-4

3.1.3.2	Inputs	. 3-4
3.1.3.3	Processing	. 3-4
3.1.3.4	Outputs	. 3-5
3.2	DETECTOR INTERFACE CIRCUITRY USER INTERFACE REQUIREMENTS	3-5
3.2.1	General	. 3-5
3.2.2	Detector Interface Boards	. 3-5
3.2.2.1	Test Points	. 3-5
3.2.3	Oscillator Board	. 3-6
3.2.3.1	Test Points	. 3-6
3.2.3.2	Indicators	. 3-6
3.2.4	Backplane	. 3-6
SECTION 4	PLC REQUIREMENTS	. 4-1
4.1	PLC FUNCTIONAL REQUIREMENTS	. 4- 1
4.1.1	Position Signal Algorithm.	. 4-1
4.1.1.1	General	. 4-1
4.1.1.2	Inputs	. 4-1
4.1.1.3	Processing	. 4-1
4.1.1.4	Outputs	. 4-2
4.1.2	Temperature Compensation Algorithm	. 4-3
4.1.2.1	General	. 4-3
4.1.2.2	Inputs	. 4-3
4.1.2.3	Processing	. 4-3
4.1.2.4	Outputs	. 4-4
4.1.3	Rod Bottom Bypass Algorithm	. 4-4
4.1.3.1	General	. 4-4
4.1.3.2	Inputs	. 4-5
4.1.3.3	Processing	. 4-5
4.1.3.4	Outputs	. 4-5
4.1.4	Bank Calibrate Algorithm	. 4-6
4.1.4.1	General	. 4-6
4.1.4.2	Inputs	. 4-6
4.1.4.3	Processing	. 4-6
4.1.4.4	Outputs	. 4-7
4.1.5	Oscillator Supervision and Control Algorithm	. 4-7
4.1.5.1	General	. 4-7
4.1.5.2	Inputs	. 4-8
4.1.5.3	Processing	. 4-9
4.1.5.4	Outputs	. 4-10
4.1.6	Rod Deviation Alarm Algorithms	, 4-11
4.1.6.1	General	
4.1.6.2	Inputs	. 4-11
4.1.6.3	Processing	. 4-11
4.1.6.4	Outputs	
4.1.7	Rod Insertion Limit Algorithm	. 4-13

4.1.7.1	General	4-13
4.1.7.2	Inputs	4-14
4.1.7.3	Processing	4-14
4.1.7.4	Outputs	4-15
4.1.8	Rod Speed Indicator Algorithm	4-15
4.1.8.1	General	4-15
4.1.8.2	Inputs	4-16
4.1.8.3	Processing	4-16
4.1.8.4	Outputs	
4.1.9	Rod Demand from Passive Summer Indicator Algorithm	4-16
4.1.9.1	General	4-16
4.1.9.2	Inputs	4-16
4.1.9.3	Processing	4-16
4.1.9.4	Outputs	4-17
4.1.10	Rod Bottom Alarm Algorithms.	
4.1.10.1	General	
4.1.10.2	Inputs	4-17
4.1.10.3	Processing	
4.1.10.4	Outputs	
4.1.11	Control Bank D Withdrawal Limit Alarm Algorithm	
4.1.11.1	General	
4.1.11.2	Inputs	
4.1.11.3	Processing	
4.1.11.4	Outputs	
4.1.12	Rod Drop Test Computer Trouble (RDTC) Alarm Algorithm	
4.1.12.1	General	
4.1.12.2	Inputs	
4.1.12.3	Processing	
4.1.12.4	Outputs	
4.1.13	Maintenance and Test Panel and Operator Module Trouble Alarm Algorithm	
4.1.13.1	General	
4.1.13.2	Inputs	
4.1.13.3	Processing	
4.1.13.4	Outputs	
4.1.14	AF100 Link Trouble Alarm Algorithm.	
4.1.14.1	General	
4.1.14.2	Inputs	
4.1.14.3	Outputs	
4.1,15	RPI System Trouble Alarm Algorithm	
4.1.15.1	General	
4.1.15.2	Inputs	
4.1.15.3	Processing	
4.1.15.4	Outputs	
4.1.16	PLC Trouble Alarm Algorithm	
4.1.16.1	General	
4.1.16.2	Inputs	
	•	

4.1.16.3	Processing	4-24
4.1.16.4	Outputs	4-24
4.1.16.5	Outputs Alarm Action	4-24
4.1.17	PLC Watchdog Timeout Alarm Algorithm	
4.1.17.1	General	4-24
4.1.17.2	Alarm Outputs	4-25
4.1.17.3	Alarm Action	
4.2	PLC USER INTERFACE REQUIREMENTS	4-25
4.2.1	Maintenance and Test Panel	4-25
4.2.1.1	General	4-25
4.2.1.2	Calibration Adjustments	4-25
4.2.1.3	Security Features	4-26
4.2.1.4	Plant Computer (ICS) Connection	4-26
4.2.1.5	MTP Displays	
4.2.2	Operator Flat Panel Display	4-30
4.2.2.1	General	4-30
4.2.2.2	Calibration Adjustments	4-31
4.2.2.3	Security Features	4-31
4.2.2.4	OM Displays	4-31
SECTION 5	BLOCK DIAGRAMS	5-1
5.1	CORE MAP []°5-1

TABLE OF CONTENTS (Cont'd)

LIST OF TABLES

Table	Title	Page
None.		
	LIST OF FIGURES	
Figure	Title	Page
Figure 5.1-1 []°	5-1

ACRONYMS AND TRADEMARKS

Acronyms used in the document are defined in WNA-PS-00016-GEN, "Standard Acronyms and Definitions" (Reference 1), or included below to ensure unambiguous understanding of their use within this document.

Acronyms	Definition
4PDT	Four Pole, Double Throw
CBA	Control Bank A
CBB	Control Bank B
CBC	Control Bank C
CBD	Control Bank D
CERPI	Computer Enhanced Rod Position Indication
CRDM	Control Rod Drive Mechanism
DIB	Detector Interface Board
EMI	Electro-Magnetic Interference
ICS	TVA Integrated Computer System
MCR	Main Control Room
MTP	Maintenance and Test Panel
OFPD	Operator Flat Panel Display
PC	Personal Computer
PLC	Programmable Logic Controller
Q .	Filter Quality
RC	Resistance Capacitance
[] a
RIL	Rod Insertion Limit
RPI	Rod Position Indication
RWL	Rod Withdrawal Limit
SBA	Shutdown Bank A
SBB	Shutdown Bank B
SBC	Shutdown Bank C
SBD	Shutdown Bank D
TVA	Tennessee Valley Authority
WNA	Westinghouse Nuclear Automation

Advant® is a registered trademark of ABB Process Automation Corporation.

All product and corporate names used in this document may be trademarks or registered trademarks of other companies, and are used only for explanation and to the owners' benefit, without intent to infringe.

GLOSSARY OF TERMS

Standard terms used in the document are defined in WNA-PS-00016-GEN, "Standard Acronyms and Definitions" (Reference 1), or included below to ensure unambiguous understanding of their use within this document.

Term	Definitions
PLC Train	One redundant set of signal processing equipment including one Programmable Logic Controller (PLC), its associated maintenance and test panel, fiber optic modems, power supplies, and other hardware not shared as inputs to the redundant PLCs.
Tunable	A system parameter that can be adjusted.

REFERENCES

Following is a list of references used throughout this document.

1. WNA-PS-00016-GEN, Rev. 3, "Standard Acronyms and Abbreviations," Westinghouse Electric Company LLC.

REQUIREMENTS

Design and/or other requirements have been identified in this document. Following is a list of the requirement numbers and the document page on which the requirement is identified.

R1011-1	R3153-2
R1021-1	R3163-3
R1031-1	R317,3-3
R1041-1	R3183-3
R1051-2	R3193-3
R1071-2	R3203-3
R1081-2	R3213-3
R1091-2	R3223-3
R1101-2	R3233-4
R1111-2	R324 3-4
R1121-2	R3253-4
R2012-1	R3263-4
R2022-1	R3273-4
R2032-1	R3283-4
R2042-1	R3293-4
R2052-1	R3303-4
R2072-1	R3313-4
R2082-1	R3323-5
R2092-1	R3333-5
R2102-1	R3343-5
R2112-2	R335 3-5
R2122-2	R336 3-5
R2132-2	R3373-5
R2142-2	R338 3-6
R2152-2	R3393-6
R2162-2	R3403-6
R2172-3	R3413-6
R3013-1	R4014-1
R3023-1	R4024-1
R3033-1	R403 4-1
R3043-1	R4044-1
R3053-1	R4054-2
R3063-1	R406 4-2
R3073-1	R4074-2
R3083-1	R4084-2
R3093-2	R409 4-2
R3103-2	R4104-2
R3113-2	R4114-2
R3123-2	R4124-2
R3133-2	R4134-2
R3143-2	R4144-2

R415 4-2	R463	4_9
R4164-3	R464	
R4174-3	R465	
R4184-3	R466	
R4194-3	R467	
R4204-3	R468	
R4214-3	R469	
R4224-3	R470	
R4234-4	R471	
R4244-4	R472	
R4254-4	R473	
R4254-4	R474	
R427 4-4	R474	
R427 4-4	R476	
R4284-4	R477	
•		
R4324-5	R478	
R4334-5	R479	
R4344-5	R480	
R4354-5	R481	•
R4364-5	R482	
R4374-5	R483	
R4384-6	R484	
R4394-6	R485	
R4404-6	R486	
R4414-6	R487	
R4424-6	R488	
R4434-7	R489	
R4444-7	R490	
R4454-7	R491	
R4464-7	R492	
R4474-7	R493	
R4484-7	R494	
R4494-8	R495	
R4504-8	R496	
R4514-8	R497	
R4524-8	R498	
R4534-8	R499	
R4544-8	R500	
R4554-9	R501	
R4564-9	R502	
R4574-9	R503	
R4584-9	R504	
R4594-9	R505	
R4604-9	R506	
R4614-9	R507	
R4624-9	R508	4-15

R509		R556	
R512		R557	. 4-23
R513	.4-15	R559	. 4-24
R514		R560	. 4-24
R515		R561	. 4-24
R516	.4-16	R562	4-24
R517	.4-16	R563	. 4-24
R518	. 4-16	R564	. 4-25
R519	. 4-17	R565	. 4-25
R520	.4-17	R567	. 4-25
R521	. 4-17	R568	. 4-25
R522	. 4-17	R569	. 4-25
R523	. 4-17	R570	. 4-25
R524	.4-17	Ř571	. 4-25
R525	. 4-18	R572	. 4-25
R526	.4-18	R573	. 4-26
R527	.4-18	R575	. 4-26
R528	.4-18	R576	. 4-26
R529	.4-18	R577	. 4-26
R530	.4-18	R578	
R531	.4-18	R579	. 4-26
R532	. 4-18	R580	. 4-26
R533	.4-19	R581	
R534		R582	
R535		R583	
R536		R584	
R538		R585	
R539		R586	
R540		R587	
R541		R588	
R542		R590	
R543		R591	. 4-27
R544	.4-20	R592	. 4-27
R545	.4-20	R593	. 4-27
R546	.4-20	R594	
R547	.4-21	R595	
R548		R597	
R549		R598	
R550		R599	
R551	•	R600	
R552		R601	
R545	· · · · · · · · · · · · · · · · · · ·	R602	
R546		R603	
R552		R604	
R553		R605	
R554		R606	
	· -		~

R607	
R608	4-28
R609	4-28
R610	4-28
R611	4-28
R612	4-29
R613	
R614	
R615	
R616	4-29
R617	
R618	
R619	4-30
R620	
R621	4-30
R622	4-30
R623	4-30
R624	4-30
R625	4-30
R626	4-30
R627	
R628	
R630	
R631	
R632	
R633	
R634	
R635	
R636	
R637	
R638	
R639	
R640	4-32
R641	
R642	
R643	
R644	
R645	
R646	
R647	
R648	
117.40	4 22

(Last Page of Front Matter)

SECTION 1 INTRODUCTION

1.1 PURPOSE

This specification presents the Westinghouse Computer Enhanced Rod Position Indication (CERPI) system hardware and software requirements for the Watts Bar Nuclear Plant Unit 2.

1.2 SCOPE

The requirements presented herein apply to the detector interface circuitry, the programmable controllers, and the Human-System Interfaces (HSIs) of the CERPI system.

This is not a commercial document and does not define project scope of supply.

1.3 **OVERVIEW**

1.3.1 Existing RPI System

The existing rod position indication (RPI) system provides indication for 57 rods. It is used for plant technical specification compliance and is non-safety related.

The RPI detector is a linear voltage transformer. Detector primary excitation is provided by a constant current source. Detector Secondary voltage is rectified and signal-conditioned to provide analog outputs to control board meters and to the plant's Integrated Computer System (ICS). Rod bottom alarm indication is provided to the plant computer and to the main control room (MCR).

1.3.2 CERPI System

R101

[The CERPI system shall use the existing RPI detectors.]

R102

[Improved detector primary excitation and secondary signal conditioning shall be incorporated.]

R103

[Individual rod bottom alarm functions shall be provided.]

R104

R105

¢

R107

[Two PLCs – called "PLC A" and "PLC B," respectively – shall independently calculate rod positions and other algorithms described in this document.]

R108

[The only electrical commonality between the PLCs shall be the detector interface boards and the Oscillator control switch.]

R109

[A Maintenance and Test Panel (MTP) for each PLC shall be utilized for calibration and maintenance use at the instrument rack, and for establishing the Ethernet connections to the ICS.]

R110

[The MTPs shall also be capable of displaying rod positions.]

R111

[Rod position information determined by the redundant PLCs shall be provided to the Operator's Module (OM) on the Main Control Board (MCB) utilizing the Advant® Fieldbus 100 (AF100) bus, and to the ICS using the Ethernet connection.]

Guidance: PLC A communicates its information to a dedicated OM that is only capable of displaying information from PLC A. Likewise, PLC B communicates its information to a dedicated OM that is only capable of displaying information from PLC B.

R112

[Each PLC train shall have a dedicated control-board-mounted OM, AF100 network, and Ethernet connection to the ICS.]

SECTION 2 GENERAL SYSTEM REQUIREMENTS

2.1 DESIGN CONSTRAINTS

2.1.1 Physical Layout Constraints

R201

[The CERPI replacement system electronics shall occupy no more than the four (4) cabinets of the existing RPI system electronics, with minimal structural changes to maintain the seismic qualification.]

R202

C

2.1.2 Environmental Constraints

R203

[The CERPI system shall function in an ambient room temperature varying between 65°F and 120°F.]

2.1.3 Redundancy Requirements

R204

[Redundant PLCs, power supplies, MTPs, fiber optic modems, and other related hardware to each PLC train shall be implemented in the CERPI design.]

R205

[Redundant Rod Bottom Bypass Logic control signals shall be provided via each redundant PLC train.]

R207

[Alarms shall be provided via signal relays for PLC Trouble, PLC Watchdog, [

]^a, Oscillator Trouble, Rod-to-Bank Deviation, Rod-to-Rod Deviation, Insertion Limit Low, Insertion Limit Low-Low, Control Bank D (CBD) Withdrawal Limit, Any Rod On Bottom, All Rods On Bottom, and Power Supply Fail.]

R208

[The outputs in R207 shall be provided by each PLC train.]

Guidance: The system used for alarms in the plant shall determine which of the two redundant PLCs to consider.

R209

[Two OMs with redundant communication connections to their respective PLC train shall be provided.]

R210

[Each PLC shall provide rod position and rod bottom information to its respective MTP and OM.]

R211

[Each MTP shall be capable of providing the rod position information it receives from the PLC to the ICS via the fiber optic Ethernet connection.]

R212

[Redundant Oscillators shall be implemented in the system. [

c٦

R213

[Redundant 24 VDC power supplies shall be utilized for each PLC train. Diode auctioneering and fault indicators shall be utilized.]

2.1.4 Retention of PLC Data

R214

[Application program shall be stored in non-volatile memory (flash Programmable Read-Only Memory [PROM]).]

2.2 SYSTEM PERFORMANCE REQUIREMENTS

2.2.1 System Accuracy Requirements

R215

[The total system accuracy shall be at least ± 12 steps for reactor plant steady-state conditions between zero power hot standby and full power operation over a fuel cycle of 18 months, including throughout rod movement.]

2.2.1.1 Total System Accuracy Error Terms

_R216		_
•		
•		

2.2.1.2 {System Error Budget Allowances

The following error budget allowances are based on a calibrated span of 0-231 steps.

_	Error Budget Term	Error Allowance (Steps)	Error Allowance (% of Calibrated Span)
	,		
_	Total Allowance	±12	±5,19%

2.2.2 System Throughput Requirements

R217

[The time that is required to process the rod position signal and rod bottom alarm from input to the detector interface board (DIB) shall be less than 2 seconds.]

SECTION 3 DETECTOR INTERFACE CIRCUITRY REQUIREMENTS

3.1	DETECTOR INTERFACE CIRCUITRY FUNCTIONAL REQUIREMENTS	
3.1,1	General	
	atts Bar Unit 2 CERPI system detector interface circuitry shall consist of 57 DIBs, one for each rod, and two Oscillator boards (main and backup).]	
R302 [The DI	Bs shall perform RPI detector primary excitation and secondary filtering, rectification, and [c]	
- R303		-c
– _ R304		_ -
R305 [The ma	in Oscillator shall be the normal source of DIB frequency references.]	_
-	vent of a main Oscillator failure, the DIB frequencies shall be automatically switched to be from the backup Oscillator.]	
3.1.2	Detector Interface Board	
3.1.2.1	General	
_ R307 _		c
3.1.2.2	Inputs	
_ R308		c

_	_ R309	c
L	3.1.2.3 Processing	
	3.1.2.3.1 Rod Position Signal	
Γ	_ R310	<u>c</u>
	D241	
	_ R311	Ĭ
	R312 [Each DIB reference frequency shall be provided by the Oscillator board.]	
	Guidance: The existing detector couples AC voltage from the primary winding to the secondary winding in response to actual rod position.	
Г	_ R313	c
Γ	_R314	c
L	_ _R315	c
	- -	

R316		c
3.1.2.3.2 RPI Detector Resistance Signal		
R317		c
		- c
R320		c
3.1.2.4 Outputs		
3.1.2.4.1 Position Signal Outputs		
R321 [Each DIB shall provide two redundant [position.]] ^c output signals proportional to rod	
		$\frac{c}{}$
R322		e

3.1.2.4.2 []* R324	R323	$\frac{c}{\Box}$
R325 R326 C R326 C 3.1.3 Oscillator Board 3.1.3.1 General R327 R328 [There shall be two Oscillator boards: a main and a backup. [
R325 R326 C 3.1.3 Oscillator Board 3.1.3.1 General R327 R328 [There shall be two Oscillator boards: a main and a backup. [3.1.2.4.2 [] ^c	
R326 R327 R328 [There shall be two Oscillator boards: a main and a backup. [R324	c
R326 R327 R328 [There shall be two Oscillator boards: a main and a backup. [
R326 R327 R328 [There shall be two Oscillator boards: a main and a backup. [
R326 R327 R328 [There shall be two Oscillator boards: a main and a backup. [ب
3.1.3. Oscillator Board 3.1.3.1 General R327 C R328 [There shall be two Oscillator boards: a main and a backup. []*] R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C	R325	Ť
3.1.3. Oscillator Board 3.1.3.1 General R327 C R328 [There shall be two Oscillator boards: a main and a backup. []*] R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C		
R327 R328 [There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C	_R326	c
R327 R328 [There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C		
R327 R328 [There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C	3.1.3 Oscillator Board	
R328 [There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330		
R328 [There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C	3.1.3.1 General	
[There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330	R327	c
[There shall be two Oscillator boards: a main and a backup. [R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330		
R329 [In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing		
[In the event of a main Oscillator failure, the reference frequency busses shall be automatically switched to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C C C C C C C C C C C C C		
to the backup Oscillator.] 3.1.3.2 Inputs C 3.1.3.3 Processing R330 C C		
3.1.3.3 Processing		
3.1.3.3 Processing	3.1.3.2 Inputs	
	Γ΄	ç
	3.1.3.3 Processing	
	_R330	c
	<u>.</u>	
	R331	c

_R332		_
		_
		_
3.1.3.4	Outputs	
_R334		<u>c</u>
R335		
3.2	DETECTOR INTERFACE CIRCUITRY USER INTERFACE REQUIREMENTS	لــ
3.2.1	General	
	ocated on the DIBs and Oscillator boards shall be fixed, utilizing sockets to allow replacement soldering.]	
3.2.2	Detector Interface Boards	
3.2.2.1	Test Points	
R337		a
, The state of the		
		لـــ

3.2.3 Oscillator Board

3.2.3.1 Test Points

R338

a

3.2.3.2 Indicators

R339

[A green front card edge Light Emitting Diode (LED) shall be provided for each Oscillator frequency.]

R340

[The LED shall be lit by the applicable reference frequency.]

3.2.4 Backplane

R341

[Each backplane slot shall have a connector for interfacing the RPI detector to the DIB located in the slot.]

SECTION 4 PLC REQUIREMENTS

4.1 PLC FUNCTIONAL REQUIREMENTS

Note

The CERPI system shall have two redundant PLC trains. Both PLC trains shall have identical programs to fulfill the functional requirements described in this section. The requirements below describe one PLC train, which is acceptable because each PLC train is identically designed.

4.1.1	Position	Signal	Algorithm

4.1.1.1 General

Ĭ	D	1	ſ	ì	1	
ı	•		ŧ	,	я	

R403

R404

	DIB and provide the following functions:

R405			c
R406			
D 407			
R407			
R408			c
4.1.1.3.2 Position Signal Linearization			
R409			c
R411			c
R412			c
			c
R414		<u>-</u>	c
4.1.1.4 Outputs			c

•	4.1.2	Temperature Compensation Algor	rithm		
	4.1.2.1	General			
	R416				c
	R417				c
	R418		·		- c
	4.1.2.2	Inputs			<u>c</u>
			 		
	4122	Dunagaina	L		
	4.1.2.3	Processing	,	•	
Γ	R419				$\frac{c}{\Box}$
	R420				 _c
				,	
L					
	R421				Ċ
	R422				<u>_c</u>
L	-				· _

4.1.2.4 **Outputs**

_	<u> </u>		
		,	
			· · · · · · · · · · · · · · · · · · ·
_	•		

__R428

4.1.3 Rod Bottom Bypass Algorithm

4.1.3.1 General

·	<u>-</u> C
·	
<u> </u>	
_R431	<u>-c</u>

_R432					
	•	,			
-	T				
4.1.3.2	Inputs				
<u>.</u>					· · · · · · · · · · · · · · · · · · ·
4.1.3.3	Processing		•	•	
_R433					
_ _R434					
_					
- _R435					
_1(100					
- D426					
_R436					
-					
R437		·			
-					
4.1.3.4	Outputs				•
	<u> </u>			·	
				,	· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·		<u></u>

	4.1.4	Bank Calibrate Algorith	m		
	4.1.4.1	General			
_	R438				c
	_		•		
	R439				c
					,
	,				
	4.1.4.2	Inputs			c
		·			
		,			
					· · · · · · · · · · · · · · · · · · ·
_	4.1.4.3	Processing			
	4.1.4.3.1		ion Null Adjustment		
	R440	remperature compensate	Trum Aragustinent		<u>c</u>
Г	R441			·	c
	R442				
L					

	7.1.7.3.2	1 Usition Zero Augustinent				
	R443					c
	4.1.4.3.3	Position Span Adjustment				
	R444					c
	D <i>aae</i>					
	R445					<u>c</u>
	4.1.4.4	Outputs				
$\overline{}$					 	$\neg \overset{c}{\lnot}$
						_ '
	4.1.5 4.1.5.1	Oscillator Supervision and C	Control Algorith	m		
	R446					_ _
	_R447 _					<u>c</u>
	<u>R</u> 448			·		e

_R449				<u>c</u>
		•		
 R450				c
R451 Intentionally Left Blank.				
R452				<u>c</u>
			•	
R453			,	<u>_c</u>
				_
R454				. <u> </u>
		,		
			I	
4152 Innute				
4.1.5.2 Inputs		•		_c
4.1.5.2 inputs	· · · · · · · · · · · · · · · · · · ·	• • •		
4.1.5.2 Inputs				
4.1.5.2 Inputs				<u>c</u>
4.1.5.2 Inputs				<u>c</u>
4.1.5.2 Inputs				<u>c</u>
4.1.5.2 Imputs				<u>c</u>
4.1.5.2 Inputs				
4.1.5.2 Inputs				

4-8

R464

Intentionally Left Blank.

	,	
,		

4.1.6	Rod Deviation Alarm Algorithms		
4.1.6.1	General		
R474			c
I			
 R475			_ <u>c</u>
4.1.6.2	Inputs		<u>c</u>
	·		
:			
4.1.6.3	Processing		
4.1.6.3.1	Rod-to-Rod Deviation		
R476			<u>c</u>
	·		
_			_
R477			<u>c</u>
			<u>c</u>
R479 Intention	ally Left Blank.		

_R480		<u>c</u>
		_
_R481	•	c
R482		
Intentionally Left Blank.		
_R483		<u>c</u>
R484		c
4.1.6.3.2 Rod-to-Bank Deviation		
	•	
_R485		. <u>c</u>
L		لــ
_R486		<u>c</u>
	·	_
	•	c
K460	•	
_R489		c
·		•
,		
	•	_
_R490		<u>c</u>
,		
<u>_</u>		
_R491		<u>c</u>
<u> </u>		

R492 Intentionally Left Blank.	·	
R493		c
R494		c
R495 Intentionally Left Blank.		_
R496		c
		_
R498		e
4.1.6.4 Outputs		
4.1.7 Rod Insertion Limit Algorithm	L	
4.1.7.1 General		
R499		ic i

_R500						_	c
					•		
		-					
						-	Ļ
R501						, <u>•</u>	c T
		,				_	
4.1.7.2 Inputs						1	с
				·			Ĭ
	-				· · · · · · · · · · · · · · · · · · ·		
			e .				
4.1.7.3 Processing							
_R502							c
KS02							Ť
			•				
R503						-	_
KSUS	•					-	٦
				,			l
	•						
D #04						-	
R504							e T
						_	╛
R505			•				c
						_	П

_R506			c
			:
R507			
		•	
R508			ے د
R509			_
Intentionally Left Blank.			
4.1.7.4 Outputs			·c
· [
<u> </u>	' '		
	<u> </u>		
R512			
Intentionally Left Blank.			
_R513			c
4.1.8 Rod Speed Indicator Algorithm			
4.1.8.1 General	•		
R514			<u>c</u>

_R515						$\frac{c}{\Box}$
L	•					
4.1.8.2	Inputs					c
				\perp		
4.1.8.3	Processing		•			_
_R516						: <u>c</u>
4.1.8.4	Outputs					
						$ \mathring{\Box}$
					· · · · · · · · · · · · · · · · · · ·	
	_					
4.1.9	Rod Demand from Passive	Summe	er Indicator <i>A</i>	Algo	rithm	
4.1.9.1	General					
_R517						c
	•					
L						
4.1.9.2	Inputs					c
4.1.9.3	Processing					
	1 Tocessing					2
R518						c
					•	

4.1.9.4 Outputs		<u>c</u>
4.1.10 Rod Bottom Alarm Algorithms		
4.1.10.1 General		
_R519		<u>c</u>
R520		<u>c</u>
		<u> </u>
4.1.10.2 Inputs		c
4.1.10.3 Processing		
4.1.10.3.1 Rod Bottom Alarms		
_R522		<u>c</u>
		_
R523 Intentionally Left Blank.		
R524 Intentionally Left Blank		

_R525				. <u>c</u>
			* .	
_R526				c
4.1.10,3.2 Any Rod On Bottom	Alarm		,	
R527 Intentionally Left Blank.				
_R528				<u>, c</u>
4.1.10.3.3 All Rods On Bottom	Alarm			
R529 Intentionally Left Blank				
_R530				<u>e</u>
4.1.10.4 Outputs		•		
				_ <u>c</u>
	·			
			<u> </u>	
				1
4.1.11 Control Bank D With	hdrawal Limit Alarm A	Algorithm		
4.1.11.1 General		. *		
_R531	•			:c
R532				- c
1002				

4.1.11.2 Inputs			c
4.1.11.3 Processing	-		
_R533			e
L_		•	
R534 Intentionally Left Blank.			
		,	e
R535			
R536			c
_R538			c
	·		
<u></u>	,		
4.1.11.4 Outputs	,		<u>c</u>
4.1.12 Rod Drop Test Co	omputer Trouble (RDTC) A	Alarm Algorithm	_
4.1.12.1 General			
•			
R539	,		<u>.</u>
_R540			<u>'a</u>
			_

4.1.12.2 Inputs				
	-			
4.1.12.3 Processing				
R541				
	,			
R542 Intentionally Left Blank.				
R543				
D544				
R544				
4.1.12.4 Outputs				
4.1.12.4 Outputs				· · · · · · · · · · · · · · · · · · ·
4.1.13 Maintenance and	Test Panel and	Operator Mo	dule Trouble Alarn	ı Algorithm
4.1.13.1 General				
R545				
R546				

·			· · · · · · · · · · · · · · · · · · ·
	i		

4.1.13.3 Processing

R547

[The heartbeat alarms shall be implemented using counters.]

R548

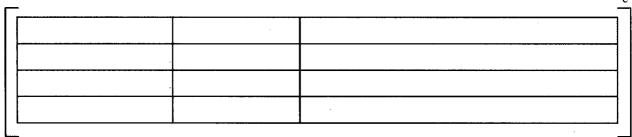
Intentionally Left Blank.

R549

Intentionally Left Blank.

R550

Intentionally Left Blank.


R551

Intentionally Left Blank.

R552

Intentionally Left Blank.

4.1.13.4 Outputs

4.1.14	AF100 Link Trouble Ala	ırm Algorithm			
4.1.14.1	General				
R545					c
	•		•		
R546			•	/	c
· ·					
4.1.14.2	Inputs				
	-	Τ	T		<u>c</u>
			, , , , , , , , , , , , , , , , , , , ,	.	
41143	Outunts	1.			
4.1.14.3	Outputs	.	······································		<u>c</u>
4.1.15	RPI System Trouble Ala	arm Algorithm			
4.1.15.1	General				
R552		,		·	c
	•				
,					
R553					<u>c</u>
1					

4.1.15.2 Inputs						<u>c</u>
		·	·			
				 		_
						\dashv
<u> </u>						\dashv
				 		\dashv
			, J	 		<u> </u>
4.1.15.3 Processing						
R554						_
_						_
4.1.15.4 Outputs						_0
						\neg
						1
						ヿ
	A 3 . * 4 3					_
4.1.16 PLC Trouble Alarm	Algorithm					
4.1.16.1 General						
_R556						_
						_
_R557						_

Watts Bar Unit 2 ARPI System Upgrade	CER	PI System Requirements Specification
		<u>c</u>
4.1.16.2 Inputs		<u>c</u>
4.1.16.3 Processing		
_R559		<u> </u>
41.16.4 Outputs		·
4.1.16.4 Outputs		<u>c</u>
_R560		c
_R561		<u>_c</u>
4.1.16.5 Alarm Action		_
R562		<u>c</u>
4.1.17 PLC Watchdog Timeout Aları	m Algorithm	
4.1.17.1 General	m mgamin	
_R563		c
		_
_		

4.1.17.2	Alarm Outputs		
_R564			c
_			
_R565			c
_			
4.1.17.3	Alarm Action	·	
_R567			c
4.2	PLC USER INTERFACE REQUIREMENTS		
4.2.1	Maintenance and Test Panel		
4.2.1.1	General		
R568 [One M]	ΓP shall be provided with each PLC train.]		
R569 [The M]	TP shall provide the means to:		
•	Calibrate the CERPI system		
	Communicate with the Plant Computer Reset the Oscillator transfer function		
	Show indication of the rod positions		
•	Evaluate system health]		
R570			
[The M]	TP shall serve as a gateway between the PLC and the ICS.]		
R571			
[I ne IVI]	[P shall be a PC Node Box with a touch-screen flat panel display.]		
4.2.1.2	Calibration Adjustments		
_R572			<u>c</u>

R583

4.2.1.5 MTP Displays

4.2.1.5.1 Control Banks A, B, C, and D Rod Positions Display

R584

[A display screen shall be provided to show the positions of the rods in CBA, CBB, CBC, and CBD in a bar graph format.]

R585

[The ability to identify a rod position value affected by a faulty analog input shall be provided.]

R586

[An indication for the rod bottom position of each rod shall be provided.]

R587

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R588

(

R590

[The "Rod Demand from Passive Summer" and "Rod Speed" indicators shall be provided in bar graph format.]

4.2.1.5.2 Shutdown Banks A, B, C, and D Rod Position Display

R591

[A display screen shall be provided to show the positions of the rods in Shutdown Banks A, B, C, and D (SBA, SBB, SBC, SBD) in a bar graph format.]

R592

[The ability to identify a rod position value affected by a faulty analog input shall be provided.]

R593

[An indication for the rod bottom position of each rod shall be provided.]

R594

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R595

_

[The "Rod Demand from Passive Summer" and "Rod Speed" indicators shall be provided in bar graph format.]

4.2.1.5.3 All Rods Display

R598

[A display screen which shows all system rod position values simultaneously shall be provided.]

R599

[The ability to identify a rod position value affected by a faulty analog input shall be provided.]

R600

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R601

R602

[The "Rod Demand from Passive Summer" and "Rod Speed" indicators shall be provided in bar graph format.]

4.2.1.5.4 Bank Demands Display

R603

[A display screen shall be provided to show the demand positions for all the control and shutdown banks.]

R604

[Rod Withdrawal limit for CBD and its associated alarm condition, and rod insertion LOW and LOW-LOW limits for CBA, CBB, CBC, and CBD and the associated alarm conditions shall be displayed.]

R605

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R606

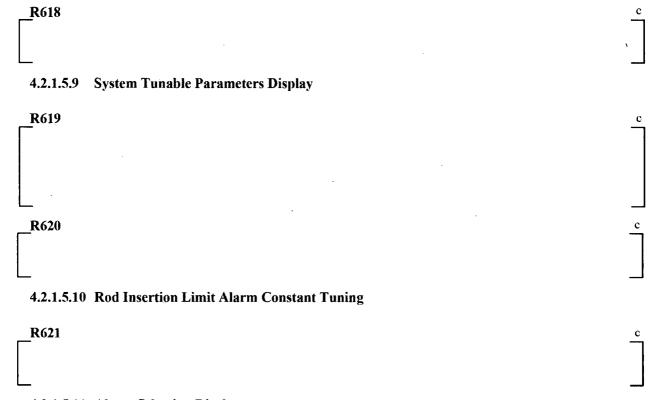
_

R607

[The "Rod Demand from Passive Summer," "Rod Speed," and "Rod Direction" indicators shall be provided.]

4.2.1.5.5 Bank Calibration Display

R608


[A display screen which allows for bank automatic calibration adjustments of a selected rod bank shall be provided.]

_R609	<u>c`</u>
_R610	c
4.2.1.5.6 Individual Rod Calibration Display	.
4.2.1.5.0 Individual Rod Cambradon Dispray	c
Calibration Tunable Parameter Adjustments	
_R611	c ¬
·	
·	
	!
R612	c ¬
,	
L.	ا_
R613	<u>e</u>
4.2.1.5.7 System Status Display	
4.2.1.3.7 System Status Display	
_R614	c
L ·	
_R615	c
	,—
R616	c
·	
L.	

4.2.1.5.8 System Resets Display

R617

[A display screen containing a reset button for transferring the Oscillator switch-over function back to the main Oscillator for recovery from an Auto-Transfer event shall be provided.]

4.2.1.5.11 Alarm Selection Display

R622

[A display screen that contains an enable/disable toggle button for each "Rod-to-Rod Deviation," "Rod-to-Bank Deviation," "Rod Bottom," "Any Rod On Bottom," "All Rods On Bottom," "Rod Withdrawal Limit," and "RDTC Trouble" alarm shall be provided.]

4.2.2 Operator Flat Panel Display

4.2.2.1 General

R623

[There shall be two OMs in the MCR: one for each PLC train.]

R624

[Each OM shall consist of four (4) operator-selectable screens that are selectable from either the touch-screen or trackballs that are connected to each OM.]

[Operator functions shall be limited to:

- Selecting screens
- Monitoring individual rod positions
- Evaluating system status]

R626

[No operator action shall be capable of affecting CERPI system calibration or programming.]

R627

[Each OM shall consist of:

- A PC Node Box
- A touch-screen flat panel display
- A trackball

4.2.2.2 Calibration Adjustments

R628

[PLC tunable parameters or the PLC calibration constants shall not be adjustable via OM.]

4.2.2.3 Security Features

R629

[There shall not be any password-protected screens on the OM.]

4.2.2.4 OM Displays

Note

Each OM shall be capable of accessing all the displays described in this section.

4.2.2.4.1 Control Banks A, B, C, and D Rod Position Display

R630

[A display screen shall be provided to show the positions of the rods in CBA, CBB, CBC, and CBD in a bar graph format.]

R631

[The ability to identify a rod position value affected by a faulty analog input shall be provided.]

R632

[An indication for the rod bottom position of each rod shall be provided.]

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R634

R635

[The "Rod Demand from Passive Summer" and "Rod Speed" indicators shall be provided in bar graph format.]

4.2.2.4.2 Shutdown Banks A, B, C, and D Rod Position Display

R636

[A display screen shall be provided to show the positions of the rods in SBA, SBB, SBC, and SBD in a bar graph format.]

R637

[The ability to identify a rod position value affected by a faulty analog input shall be provided.]

R638

[An indication for the rod bottom position of each rod shall be provided.]

R639

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R640

R641

[The "Rod Demand from Passive Summer" and "Rod Speed" indicators shall be provided in a bar graph format.]

4.2.2.4.3 All Rods Display

R642

[A display screen shall be provided which shows all system rod position values simultaneously.]

R643

[The ability to identify a rod position value affected by a faulty analog input shall be provided.]

["Any Rod On Bottom," "All Rods On Bottom," "Rod-to-Bank Deviation," "Rod-to-Rod Deviation," and "RPI System Trouble" alarm signals shall be displayed on this screen.]

R645

c

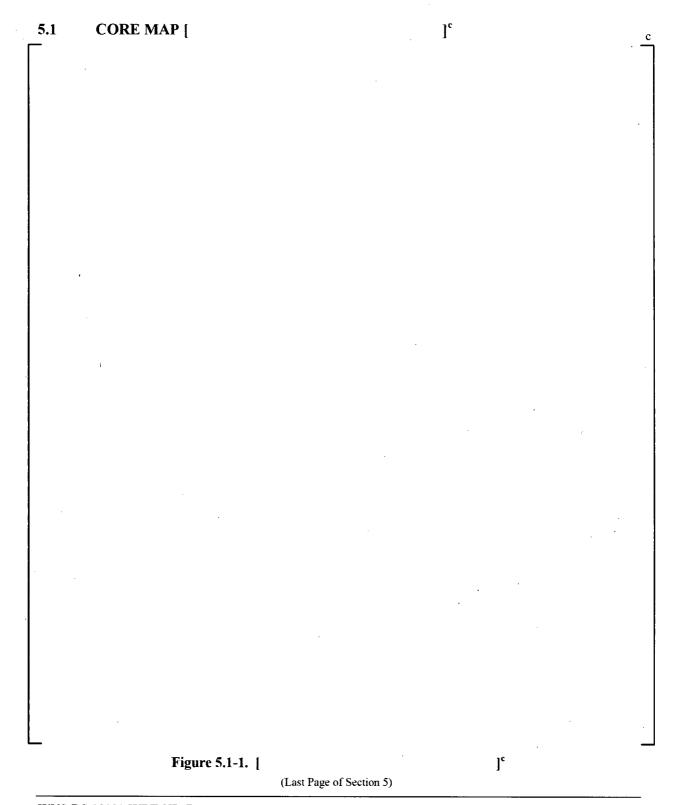
R646

[The "Rod Demand from Passive Summer" and "Rod Speed" indicators shall be provided in a bar graph format.]

4.2.2.4.4 System Status Display

R647

[CPU and I/O health information for both PLCs shall be on this screen to assist diagnosing and isolating system faults.]


R648

[The display shall show the Main Oscillator Failure, Backup Oscillator Failure, Heartbeat Alarm, RDTC Failure, Power Supply Failure, and ICS Data Link Failure status bits.]

R649

c

SECTION 5 BLOCK DIAGRAMS

Attachment 6

TVA Letter Dated November 5, 2010

Description of Commitments and Requested Vendor Documents

Application For Withholding Proprietary Information From Public Disclosure WNS-DS-00001-WBT-P, Revision2, "Watts Bar Unit 2 ARPI System Upgrade, CERPI System Requirements Specification," (Proprietary), CAW-10-2981, dated October 8, 2010

Westinghouse Electric Company Nuclear Services P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 USA

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 Direct tel: (412) 374-4643 Direct fax: (412) 374-3846

e-mail: greshaja@westinghouse.com

Proj:letter: WBT-D-2487

CAW-10-2981

October 8, 2010

APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE

Subject: WNS-DS-00001-WBT-P, Rev. 2, "Watts Bar Unit 2 ARPI System Upgrade, CERPI System

Requirements Specification" (Proprietary)

The proprietary information for which withholding is being requested in the above-referenced report is further identified in Affidavit CAW-10-2981 signed by the owner of the proprietary information, Westinghouse Electric Company LLC. The affidavit, which accompanies this letter, sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of 10 CFR Section 2.390 of the Commission's regulations.

Accordingly, this letter authorizes the utilization of the accompanying affidavit by Tennessee Valley Authority.

Correspondence with respect to the proprietary aspects of the application for withholding or the Westinghouse affidavit should reference this letter, CAW-10-2981, and should be addressed to J. A. Gresham, Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.

√ery truly yours,

J. A. Gresham, Manager

Regulatory Compliance and Plant Licensing

Enclosures

AFFIDAVIT

COMMONWEALTH OF PENNSYLVANIA:

SS

COUNTY OF ALLEGHENY:

Before me, the undersigned authority, personally appeared J. A. Gresham, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Company LLC (Westinghouse), and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

J. A. Gresham, Manager

Regulatory Compliance and Plant Licensing

Sworn to and subscribed before me this 8th day of October 2010

Notary Public

COMMONWEALTH OF PENNSYLVANIA

Notarial Seal Cynthia Olesky, Notary Public Manor Boro, Westmoreland County My Commission Expires July 16, 2014

Member. Pennsylvania Association of Notaries

- I am Manager, Regulatory Compliance and Plant Licensing, in Nuclear Services, Westinghouse Electric Company LLC (Westinghouse), and as such, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rule making proceedings, and am authorized to apply for its withholding on behalf of Westinghouse.
- (2) I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.390 of the Commission's regulations and in conjunction with the Westinghouse Application for Withholding Proprietary Information from Public Disclosure accompanying this Affidavit.
- (3) I have personal knowledge of the criteria and procedures utilized by Westinghouse in designating information as a trade secret, privileged or as confidential commercial or financial information.
- (4) Pursuant to the provisions of paragraph (b)(4) of Section 2.390 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.
 - (i) The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse.
 - (ii) The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the public. Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

Under that system, information is held in confidence if it falls in one or more of several types, the release of which might result in the loss of an existing or potential competitive advantage, as follows:

(a) The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.) where prevention of its use by any of

Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companies.

- (b) It consists of supporting data, including test data, relative to a process (or component, structure, tool, method, etc.), the application of which data secures a competitive economic advantage, e.g., by optimization or improved marketability.
- (c) Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.
- (d) It reveals cost or price information, production capacities, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.
- (e) It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.
- (f) It contains patentable ideas, for which patent protection may be desirable.

There are sound policy reasons behind the Westinghouse system which include the following:

- (a) The use of such information by Westinghouse gives Westinghouse a competitive advantage over its competitors. It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.
- (b) It is information that is marketable in many ways. The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.
- (c) Use by our competitor would put Westinghouse at a competitive disadvantage by reducing his expenditure of resources at our expense.

- (d) Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.
- (e) Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries.
- (f) The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.
- (iii) The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR Section 2.390; it is to be received in confidence by the Commission.
- (iv) The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge and belief.
- (v) The proprietary information sought to be withheld in this submittal is that which is appropriately marked in WNS-DS-00001-WBT-P, Rev. 2, "Watts Bar Unit 2 ARPI System Upgrade, CERPI System Requirements Specification," (Proprietary) dated June 2009, for submittal to the Commission, being transmitted by Tennessee Valley Authority letter and Application for Withholding Proprietary Information from Public Disclosure, to the Document Control Desk. The proprietary information as submitted by Westinghouse is that associated with CERPI System Requirements Specification for Watts Bar Unit 2 and may be used only for that purpose.

This information is part of that which will enable Westinghouse to:

(a) Provide environmental and seismic qualification testing to Westinghouse customers.

Further this information has substantial commercial value as follows:

- (a) Westinghouse plans to sell the use of similar information to its customers.
- (b) Westinghouse can sell support and defense of licensing of the CERPI system.
- (c) The information requested to be withheld reveals the distinguishing aspects of a methodology which was developed by Westinghouse.

Public disclosure of this proprietary information is likely to cause substantial harm to the competitive position of Westinghouse because it would enhance the ability of competitors to provide similar evaluations/test reports and licensing defense services for commercial power reactors without commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.

The development of the technology described in part by the information is the result of applying the results of many years of experience in an intensive Westinghouse effort and the expenditure of a considerable sum of money.

In order for competitors of Westinghouse to duplicate this information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience, would have to be expended.

Further the deponent sayeth not.

PROPRIETARY INFORMATION NOTICE

Transmitted herewith are proprietary and/or non-proprietary versions of documents furnished to the NRC in connection with requests for generic and/or plant-specific review and approval.

In order to conform to the requirements of 10 CFR 2.390 of the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, the information which is proprietary in the proprietary versions is contained within brackets, and where the proprietary information has been deleted in the non-proprietary versions, only the brackets remain (the information that was contained within the brackets in the proprietary versions having been deleted). The justification for claiming the information so designated as proprietary is indicated in both versions by means of lower case letters (a) through (f) located as a superscript immediately following the brackets enclosing each item of information being identified as proprietary or in the margin opposite such information. These lower case letters refer to the types of information Westinghouse customarily holds in confidence identified in Sections (4)(ii)(a) through (4)(ii)(f) of the affidavit accompanying this transmittal pursuant to 10 CFR 2.390(b)(1).

COPYRIGHT NOTICE

The reports transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies of the information contained in these reports which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2.390 regarding restrictions on public disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright protection notwithstanding. With respect to the non-proprietary versions of these reports, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in the public document room in Washington, DC and in local public document rooms as may be required by NRC regulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice if the original was identified as proprietary.

Tennessee Valley Authority

Letter for Transmittal to the NRC

The following paragraphs should be included in your letter to the NRC:

Enclosed are:

- 1. 2 copies of WNS-DS-00001-WBT-P, Rev. 2, "Watts Bar Unit 2 ARPI System Upgrade, CERPI System Requirements Specification," (Proprietary)
- 2. 2 copies of WNS-DS-00001-WBT-NP, Rev. 2, "Watts Bar Unit 2 ARPI System Upgrade, CERPI System Requirements Specification," (Non-Proprietary)

Also enclosed is the Westinghouse Application for Withholding Proprietary Information from Public Disclosure CAW-10-2981, accompanying Affidavit, Proprietary Information Notice, and Copyright Notice.

As Item 1 contains information proprietary to Westinghouse Electric Company LLC, it is supported by an affidavit signed by Westinghouse, the owner of the information. The affidavit sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of Section 2.390 of the Commission's regulations.

Accordingly, it is respectfully requested that the information which is proprietary to Westinghouse be withheld from public disclosure in accordance with 10 CFR Section 2.390 of the Commission's regulations.

Correspondence with respect to the copyright or proprietary aspects of the items listed above or the supporting Westinghouse affidavit should reference CAW-10-2981 and should be addressed to J. A. Gresham, Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.

Attachment 8

TVA Letter Dated November 5, 2010

Description of Commitments and Requested Vendor Documents

Westinghouse Document: RRAS, Watts Bar NSSS Completion I&C Projects, Eagle 21 Factory Acceptance Test Specification, WNA-DS-01963-WBTNP-Excerpt, Revision 0, Westinghouse Proprietary Class 3,* Section 7, Cabinet Specific FAT Test Requirements, page 7-1

SECTION 7 CABINET SPECIFIC FAT TEST REQUIREMENTS

Cabinet 1							
	Test Name	,				Test T	ype
I	[] ^{a,c}		,				
1.	E21-INT-001			[] ^{a,c}		
II.	[] ^{a,c} Tests		,				
Α.	[] ^{a,c} Tests						
1.	E21-TSP-300] ^{a,c}	
B.	[]a.c						
1.	E21-CAL-003						
C.	[Tests	, .] ^{a,c}				
							Test Type
1.	E21-SRV-205	F-414	[] ^{a,c} .	Standard
2.	E21-SRV-205	F-434	[]a,c	Standard
3.	E21-SRV-211	L-459	[] ^{a,c}		Standard
4.	E21-SRV-205	F-444	[] ^{a,c}	Standard
5.	E21-SRV-205	F-424	[.] ^{a,c}	Standard
6.	E21-SRV-210	P-455	[·] ^{a,c}		Standard L/L
III.	[] ^{a,c} Tests						
1.	E21-CON-205	F-414	[] ^{a,c}	Standard
2.	E21-CON-205	F-434	[] ^{a,c}	Standard
3.	E21-CON-211	L-459	[] ^{a,c}	-	Standard
4.	E21-CON-205	F-444	[]a.c	Standard
• 5.	E21-CON-205	F-424	[] ^{a,c}	Standard
6.	E21-CON-210	P-455	[] ^{a,c}		Standard L/L

Attachment 9

TVA Letter Dated November 5, 2010

Description of Commitments and Requested Vendor Documents

Application For Withholding Proprietary Information From Public Disclosure, WNA-DS-01963-WBT P-Excerpt, Revision 0 from "RRAS Watts Bar Unit 2 NSSS Completion I&C Projects, Eagle 21 Factory Acceptance Test Specification" (Proprietary), CAW-10-2967, dated October 25, 2010

Westinghouse Electric Company Nuclear Services P.O. Box 355 Pittsburgh, Pennsylvania 15230-0355 USA

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 Direct tel: (412) 374-4643 Direct fax: (412) 374-3846

e-mail: greshaja@westinghouse.com

Proj letter: WBT-D-2439

CAW-10-2967

October 25, 2010

APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE

Subject: WNA-DS-01963-WBT P-Excerpt, Rev. 0 from "RRAS Watts Bar Unit 2 NSSS Completion I&C Projects, Eagle 21 Factory Acceptance Test Specification" (Proprietary)

The proprietary information for which withholding is being requested in the above-referenced document is further identified in Affidavit CAW-10-2967 signed by the owner of the proprietary information, Westinghouse Electric Company LLC. The affidavit, which accompanies this letter, sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of 10 CFR Section 2.390 of the Commission's regulations.

Accordingly, this letter authorizes the utilization of the accompanying affidavit by Tennessee Valley Authority.

Correspondence with respect to the proprietary aspects of the application for withholding or the Westinghouse affidavit should reference this letter, CAW-10-2967, and should be addressed to J. A. Gresham, Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.

Very truly yours,

J. A. Gresham, Manager

Regulatory Compliance and Plant Licensing

Enclosures

AFFIDAVIT

COMMONWEALTH OF PENNSYLVANIA:

SS

COUNTY OF ALLEGHENY:

Before me, the undersigned authority, personally appeared H. A. Sepp, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Company LLC (Westinghouse), and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

H. A. Sepp, Director

Safety Analysis and Licensing

Sworn to and subscribed before me this 25th day of October 2010

Notary Public

COMMONWEALTH OF PENNSYLVANIA

Notarial Seal Cynthia Olesky, Notary Public Manor Boro, Westmoreland County My Commission Expires July 16, 2014

Member. Pennsylvania Association of Notaries

- (1) I am Director, Safety Analysis and Licensing, in Nuclear Services, Westinghouse Electric Company LLC (Westinghouse), and as such, I have been specifically delegated the function of reviewing the proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rule making proceedings, and am authorized to apply for its withholding on behalf of Westinghouse.
- (2) I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.390 of the Commission's regulations and in conjunction with the Westinghouse Application for Withholding Proprietary Information from Public Disclosure accompanying this Affidavit.
- (3) I have personal knowledge of the criteria and procedures utilized by Westinghouse in designating information as a trade secret, privileged or as confidential commercial or financial information.
- (4) Pursuant to the provisions of paragraph (b)(4) of Section 2.390 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.
 - (i) The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse.
 - (ii) The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the public. Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

Under that system, information is held in confidence if it falls in one or more of several types, the release of which might result in the loss of an existing or potential competitive advantage, as follows:

(a) The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.) where prevention of its use by any of

Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companies.

- (b) It consists of supporting data, including test data, relative to a process (or component, structure, tool, method, etc.), the application of which data secures a competitive economic advantage, e.g., by optimization or improved marketability.
- (c) Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.
- (d) It reveals cost or price information, production capacities, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.
- (e) It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.
- (f) It contains patentable ideas, for which patent protection may be desirable.

There are sound policy reasons behind the Westinghouse system which include the following:

- (a) The use of such information by Westinghouse gives Westinghouse a competitive advantage over its competitors. It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.
- (b) It is information that is marketable in many ways. The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.
- (c) Use by our competitor would put Westinghouse at a competitive disadvantage by reducing his expenditure of resources at our expense.

- (d) Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.
- (e) Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries.
- (f) The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.
- (iii) The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR Section 2.390; it is to be received in confidence by the Commission.
- (iv) The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge and belief.
 - (v) The proprietary information sought to be withheld in this submittal is that which is appropriately marked in WNA-DS-01963-WBT P-Excerpt, Rev. 0 from "RRAS Watts Bar Unit 2 NSSS Completion I&C Projects, Eagle 21 Factory Acceptance Test Specification" (Proprietary) for submittal to the Commission, being transmitted by Tennessee Valley Authority letter and Application for Withholding Proprietary Information from Public Disclosure, to the Document Control Desk. The proprietary information as submitted by Westinghouse is that associated with the Watts Bar Unit 2 Eagle 21 System and may be used only for that purpose.

This information is part of that which will enable Westinghouse to:

(a) Perform equipment tests to ensure safe operation of the Reactor Coolant System.

- (b) Allow Westinghouse to support and sell Licensing activities.
- (c) Ensure proper system configuration for safe and reliable operation.

Further this information has substantial commercial value as follows:

- (a) Westinghouse plans to sell the use of similar information to its customers for purpose of safety related control systems.
- (b) Westinghouse can sell support and defense of plant licensing.
- (c) The information requested to be withheld reveals the distinguishing aspects of a methodology which was developed by Westinghouse.

Public disclosure of this proprietary information is likely to cause substantial harm to the competitive position of Westinghouse because it would enhance the ability of competitors to provide similar test procedures and licensing defense services for commercial power reactors without commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.

The development of the technology described in part by the information is the result of applying the results of many years of experience in an intensive Westinghouse effort and the expenditure of a considerable sum of money.

In order for competitors of Westinghouse to duplicate this information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience, would have to be expended.

Further the deponent sayeth not.

PROPRIETARY INFORMATION NOTICE

Transmitted herewith are proprietary and/or non-proprietary versions of documents furnished to the NRC in connection with requests for generic and/or plant-specific review and approval.

In order to conform to the requirements of 10 CFR 2.390 of the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, the information which is proprietary in the proprietary versions is contained within brackets, and where the proprietary information has been deleted in the non-proprietary versions, only the brackets remain (the information that was contained within the brackets in the proprietary versions having been deleted). The justification for claiming the information so designated as proprietary is indicated in both versions by means of lower case letters (a) through (f) located as a superscript immediately following the brackets enclosing each item of information being identified as proprietary or in the margin opposite such information. These lower case letters refer to the types of information Westinghouse customarily holds in confidence identified in Sections (4)(ii)(a) through (4)(ii)(f) of the affidavit accompanying this transmittal pursuant to 10 CFR 2.390(b)(1).

COPYRIGHT NOTICE

The reports transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies of the information contained in these reports which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2.390 regarding restrictions on public disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright protection notwithstanding. With respect to the non-proprietary versions of these reports, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in the public document room in Washington, DC and in local public document rooms as may be required by NRC regulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice if the original was identified as proprietary.

Tennessee Valley Authority

Letter for Transmittal to the NRC

The following paragraphs should be included in your letter to the NRC:

Enclosed are:

- copies of WNA-DS-01963-WBT P-Excerpt, Rev. 0 from "RRAS Watts Bar Unit 2 NSSS Completion I&C Projects, Eagle 21 Factory Acceptance Test Specification" (Proprietary)
- 2. __copies of WNA-DS-01963-WBT NP-Excerpt, Rev. 0 from "RRAS Watts Bar Unit 2 NSSS Completion I&C Projects, Eagle 21 Factory Acceptance Test Specification" (Non-Proprietary)

Also enclosed is the Westinghouse Application for Withholding Proprietary Information from Public Disclosure CAW-10-2967, accompanying Affidavit, Proprietary Information Notice, and Copyright Notice.

As Item 1 contains information proprietary to Westinghouse Electric Company LLC, it is supported by an affidavit signed by Westinghouse, the owner of the information. The affidavit sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of Section 2.390 of the Commission's regulations.

Accordingly, it is respectfully requested that the information which is proprietary to Westinghouse be withheld from public disclosure in accordance with 10 CFR Section 2.390 of the Commission's regulations.

Correspondence with respect to the copyright or proprietary aspects of the items listed above or the supporting Westinghouse affidavit should reference CAW-10-2967 and should be addressed to J. A. Gresham, Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.

Enclosure 2

TVA Letter Dated November 5, 2010

Regulatory Commitments

1. The AAF definition will be revised in FSAR Amendment 102 to read:

"A tolerance band on either side of the NTSP which defines the limits of acceptable instrument performance, beyond which the channel may be considered degraded and must be evaluated for operability prior to returning it to service. Channels which exceed the AAF will be entered into the Corrective Action Program for further evaluation and trending. The Acceptable As Found tolerance is the SRSS combination of drift, maintenance and test equipment (M&TE) accuracy and readability, and calibration/reference accuracy. Other uncertainties may be included in the AAF if applicable."

This revision eliminates the concern regarding uncertainties. Attachment 3 contained in the October 29, 2010 letter provided the revised FSAR Section 7.1.2.1.9 that will be included in FSAR Amendment 102 that reflects this change.

2. The AAL definition will be revised in FSAR Amendment 102 to read:

"A tolerance band on either side of the NTSP within which an instrument or instrument loop is left after calibration or setpoint verification. The Acceptable As Left tolerance is equal to or less than the SRSS combination of reference accuracy, M&TE accuracy and M&TE readability. Other uncertainties may be included in the AAL if applicable."

This revision eliminates the concern regarding calibration history. Attachment 3 contained in the October 29, 2010 letter provided the revised FSAR Section 7.1.2.1.9 that will be included in FSAR Amendment 102 that reflects this change.