

A subsidiary of Pinnacle West Capital Corporation

Palo Verde Nuclear Generating Station

> David M. Smith Plant Manager Nuclear Production

Tel. 623-393-6116 Fax. 623-393-6077 e-mail: DSMITH10@apsc.com Mail Station 7602 P.O. Box 52034 Phoenix, AZ 85072-2034

ID#: 291-03251-DMS/DEB/HCL April 27, 2005

Maricopa County Air Quality Department **Emissions Inventory Unit** 1001 N. Central Ave. Suite 100 Phoenix, AZ 85004

Dear Sir or Madam:

Palo Verde Nuclear Generating Station 2004 Air Emissions Inventory Subject:

Palo Verde Nuclear Generating Station (PVNGS) is herewith submitting the 2004 Air Emissions Inventory in accordance with instructions received from your office.

This year four new processes were added to the inventory. They include Security Substation L Emergency Generator, Process ID 31; Security Hubs 2, 3, 4 Emergency Generators, Process ID 32; Miscellaneous Diesel Burning Combustion Equipment, Process ID 33; and Miscellaneous LPG Burning Combustion Equipment, Process ID 34. Refer to the Emissions Inventory for more detailed information on these processes.

PVNGS used electronic versions of the forms for this Emissions Inventory Report. Deletions in the text are noted in red with a strikethrough. Additions to the text are shown in blue Italics.

If you have any questions regarding this submittal, please contact Mr. Harvey C. Lesan at (623) 393-6490.

Based on information and belief formed after reasonable inquiry, the statements and information in this submittal are true, accurate, and complete.

AM

DMS/DEB/HCL/hsc

Attachments

PALO VERDE NUCLEAR GENERATING STATION

2004 AIR EMISSIONS INVENTORY

Prepared for

MARICOPA COUNTY ENVIRONMENTAL SERVICES DEPARTMENT

Prepared by

ARIZONA PUBLIC SERVICE COMPANY PALO VERDE NUCLEAR GENERATING STATION ENVIRONMENTAL SECTION

GENERAL INFORMATION AND BUSINESS FORM

The following information is provided in this section:

- 1. Business Form
- 2. Process Identification Number Cross Reference Table

MARICOPA COUNTY AIR QUALITY DEPARTMENT

Emissions Inventory Unit (602) 506-6790 (602) 506-6985 (FAX) (602) 506-6704 (TDD)

2004 Annual Emissions Inventory

				Due Date:		05/02/20	04
Bu	isiness Form			Permit Nurr	ber:	8600896	, 030132
1.	Owner Name: ARIZONA	PUBLIC SER	VICE CO				
2.	Business Name: PAL0 VEF	RDE NUCLEA	R GENER	ATING STATI	ON		
3.	Business Street Address (Physic	al Location):	5801 S. W	/INTERSBURG	G RD		
4.	City: TONOPAH		5.	Zip Code:	8535	4-7529	
6.	Number Of Employees 209)7	7.	Property Size:	4080	.00 acres	
8.	SIC Code:		Primary:	4911	Seco	ndary:	
9.	NAICS Code		Primary:	221113	Seco	ndary:	221121
10.	Preparer of the Inventory (prima	ary contact for te	echnical que	estions concerni	ng this	s report):	
	Name: HARVEY C. LESA	N					
	Title: ENVIRONMENTAL	CONSULTA	NT				
	Employer: ARIZONA PU	BLIC SERVIC	E				
	Telephone: (623) 393-6490			Fa	x: ((523) 393-54	42
	E-mail address of preparer:	hlesan@apsc.c	com				
11.	Who should receive the Annual	Emissions Inve	entory Form	next year?:			
	Name: HARVEY C. LESA	Ν					
	Title: ENVIRONMENTAL	CONSULTA	NT				
	Employer: ARIZONA PUI	BLIC SERVIC	E				
	Address: PO BOX 52034 M	IS 7626					
	City: PHOENIX	State: A	Z	Zip Cod	e: <u>8</u>	5072-2034	
	Telephone: (623) 393-6490			Fa	x: ((523) 393-54	42
		Return the origin Maricopa Coun	1.2	ll completed form	s to:		
		Emissions Inven	ntory Unit				
		1001 N. Central Phoenix, AZ 85	· ·	100			

For more information, contact the Maricopa County Emissions Inventory Unit at (602) 506-6790. Detailed instructions, sample forms and reference materials are available at: www.maricopa.gov/envsvc/air/ei.asp

		FICATION NUMBER CROSS-RE		ABLE
PROCESS (P) ID NO. Or EVAP (E)		DESCRIPTION	STACK NO.	CONTROL DEVICE NO. (If applicable)
PROCESS S	OURCES			
1	Р	Lime Unloading Filter Separator	1	1
2	Р	Lime Storage Silos	2 Lime, 102 Recalcined lime	2 Lime, 102 recalcined lime
3	Р	Lime Supply Silos	3	3
4	Р	Soda Ash Unloading Filter Separator	4	4
5	Р	Soda Ash Storage Silos	5	5
6	Р	Soda Ash Supply Silo	6	6
7	Р	Miscellaneous Portable Diesel Engines	7	
8	Р	Miscellaneous Portable Gasoline Engines	8	
9	Р	EDGS (Unit 1, 2, and 3) Emergency Diesel Generators	9	
10	Р	Technical Support Center Diesel	10	
11	Р	Security Diesel	11	
12	Р	Fire Protection Pump Diesels	12	
13	Р	Administration Building A Diesel	13	
14	Р	Administration Building B Diesel	14	
16	Р	Auxiliary Boiler	16	
17	Р	Units 1, 2, and 3 Cooling Towers	17	
18, 19	P	Recalcination Furnace (RELEASE POINT REMOVED FROM PERMIT IN 2003)	18	18 quencher, venturi scrubber 19 impingement tray separator, 118 cyclone separator, 119 high lime content
20	Р	Gas Turbines	20	
21	Р	Chemical Storage Building Diesel	21	
22	Р	Portable Cooling Tower	22	
23	Р	Salt Silos	23	23 baghouse
24	Р	Rental Compressors-ILRT		
25	Р	WRF Rental Air Compressor (RELEASE POINT REMOVED FROM PERMIT IN 2002)		
26	Р	Abrasive Media Hopper	26	26
27	Р	S/G Chemical Cleaning – ADV Stacks (2 per unit) Units 1, 2, or 3	27	
28	Р	S/G Cleaning - Evaporator Discharge (RELEASE POINT REMOVED FROM PERMIT IN 2003)	28	
29	Р	S/G Cleaning – Evaporator Condenser	29	
30	Р	S/G Cleaning – Evaporator Condenser Cooling Tower	30	
31	P	Security Substation L Emergency Generator (179 Hp)		

IDENTIFICATION NUMBER CROSS-REFERENCE	TABLE
---------------------------------------	-------

PROCESS ID NO.	PROCESS (P) Or EVAP (E)	DESCRIPTION	STACK NO.	CONTROL DEVICE NO. (If applicable)
32	p	Security Hubs 2, 3, 4 Emergency Diesel Generators (Total Of 3 Engines At 35 Hp Each)		
33	P			
34	P	Misc. LPG Burning Combustion Equipment		
EVAPORATI	/E SOURCES			
Horizontal Fixed	d Roof Storage Ta	nks (Gasoline) AND Gasoline Fueling O	perations	
51	E	AS1 Working Losses		
52	E	AS1 Standing Losses		
53	E	AS1 Fueling		
54	E	AS2 Working Losses		
55	E	AS2 Standing Losses		
56	E	AS2 Loading	56	56
57	E	AS2 Fueling		
Other Evaporat	ive Process			
60	E	Adhesives		
61	E	Cleaners, Degreasers		
62	E	Lubricants		
63	E	Miscellaneous Chemical Use		
	E	Maintenance Coatings		
64		Coatings		
65		Solvent, Thinner , Diluent		
66		Surface Preparation Products		
67	E	Asphalt Paving Operations		
90	E	Ammonia Releases form Circulating Water Systems		

EMISSIONS SUMMARY

This section contains the Data Certification Form. Summary sheets for the General and Evaporative Processes have been provided for reference.

Data Certification Form 2004

For EACH pollution listed, total up all emissions recorded on your General Process and Evaporative Process Forms. Enter these numbers in column 1, "Totals from Process Forms". Report emissions from accidental releases in column 2. Add the figures in each row across, and enter the result in column 3, "Total Emissions."

Summary of 2004 Annual Emissions:	(1) Totals from Process Forms	(2) + Accidental Releases	(3) = TOTAL EMISSIONS
CO	34,634 lbs	0 lbs	34,634 lbs
NHx	14,938 lbs	0 lbs	14,938 lbs
Lead	0 lbs	0 lbs	0 lbs
HAP&NON			
VOC	59,248 lbs	0 lbs	59,24 8 lbs
NO _x	116,417 lbs	0 lbs	116,417 lbs
\$O _x	1,491lbs	0 lbs	1,491 lbs
PM ₁₀	69,246 lbs	0 lbs	69,2 46 lbs

TO COMPLETE YOUR EMISSIONS INVENTORY REPORT:

- Complete the Confidentiality Statement below.
- Sign and date this form below where indicated.
- Send the original copy of your completed forms to: Maricopa County Air Quality Dept., Emissions Inventory Unit, -1001 N. Central Ave., Suite 100, Phoenix, AZ 85004. Keep a copy of all forms for your records.

CONFIDENTIALITY STATEMENT:

YES X NO This annual emissions report contains requests to keep some data confidential. If you check "YES", you must submit documentation and meet certain requirements before your data can be deemed confidential. See enclosed instructions for further details.

CERTIFICATION STATEMENT:

I declare under penalty of perjury that the data (e.g. materials, quantities, emissions factors, controls, and annual emissions) presented herein represents the best available information and is true, accurate and complete to the best of my knowledge.

(623) 393-6116

a	0		CC-
Signature	Δt	owner/business	officer
Signature	U.	Owner/Dusiness	0111001

Telephone Number

David M. Smith Type or print full name of owner/business officer

Plant Manager Type or print full title

PALO VERDE NUCLEAR GENERATING STATION PERMIT N0.: 8600896, 030132

SUMMARY OF 2004 ANNUAL EMISSIONS

			EMISSIONS (pounds)						
		PROCESS FORMS		ACCIDENTAL RELEASES	TOTAL				
	General Process	Evaporative Process	Total Process Forms						
CO	34,634		34,634		34,634				
NHx	0	14,938	14,938		14,938				
Lead	0		0		0				
HAP & NON			0		0				
voc	26,201	33,047	59,248		59,248				
NOx	116,417		116,417		116,417				
SOx	1,491		1,491		1,491				
PM-10	69,246		69,246		69,246				
			TOTAL		246,402				
			EMISSIONS IN TONS		123				

PALO VERDE NUCLEAR GENERATING STATION 2004 EMISSIONS SUMMARY

GENERAL PROCESS SOURCE EMISSIONS (pounds)

SOURCE ID/ DESCRIPTION	CO	NOX	PM10	SOX	VOC	NH3
1. LIME UNLOAD		Пол	0	oox		
2. LIME STORAGE			538			
3. LIME SUPPLY			543			
4. SODA ASH UNLOAD			0.0			
5. SODA ASH STORAGE			284			
6. SODA ASH SUPPLY			284			
7. MISC DIESEL ENGINES	3,458	16,065	1,130	113	1,311	
8. MISC GAS ENGINES	4,795	124	. 8	7	232	
9. UNIT EMERG DIESELS	25,721	97,120	1,741	1,259	2,483	
10. TSC DIESEL	287	1,084	19	74	28	
11. SEC DIESEL	33	152	11	2	12	
12. FIRE PUMP DIESELS	54	249	18	2	20	
13. ADMIN A DIESEL	125	473	8	5	12	
14. ADMIN B DIESEL	51	239	17	2	20	
16. AUX BOILER	0	0	0	0	0	
17. COOLING TOWERS			63,592		22,065	
18. RECAL FURNACE						
20. GTG	69	718	151	26	0	
21. CHEM DIESEL	38	176	12	1	14	
22. PORT COOLING TOWER			275		4	
23. SALT SILOS			605			
24. ILRT LEAK RATE	0	0	0	0	0	
25. WRF COMPRESSOR	0	0	0	0	0	
26. ABRASIVES HOPPER			10			
27. S/G CLEAN - ADV (UNITS 1, 2, 3)	0				0	0
28. S/G CLEAN - EVAP						0
29. S/G CLEAN - EVAP COND					0	0
30. S/G CLEAN - COOL TWR			0		0	0
31. SEC SUBSTATION L EDG	2	8	0	0	0	
32. SEC HUBS 2,3,4 EDGS	1	8	0	0	0	
33. MISC COMB EQ - DIESEL	0	1	0	0	0	
34. MISC COMB EQ - LPG	0	0	0	0	0	

PROCESS SOURCE EMISSIONS SUM (pounds)	34,634	116,417	69,246	1,491	26,201	0
PROCESS SOURCE EMISSIONS SUM (tons)	17.3	58.2	34.6	0.7	13.1	0.0

EVAPORATIVE PROCESS SOURCE EMISSIONS (pounds)

SOURCE ID/ DESCRIPTION	VOC	NHX					
Gasoline Refueling Operations - Tank AS1							
51. AS1 GAS WORKING LOSS	594						
52. AS1 GAS STANDING LOSS	2,622						
53. AS1 GAS FUELING	709						
Gasoline Refueling Operations - Tan	k AS2						
54. AS2 GAS WORKING LOSS	594						
55. AS2 GAS STANDING LOSS	3,935						
56. AS2 GAS LOADING	0						
57. AS2 GAS FUELING	0						
Maintenance Processes							
60. ADHESIVES	7,975						
61. CLEANERS, DEGREASERS	2,145						
62. LUBRICANTS	641						
63. MISC CHEM USE	3,735						
64. MAINT COATINGS	4,502						
65. MAINT COAT SOLVENTS	1,441						
66. MAINT COAT SURFACE PREP	585						
67. ASPHALT PAVING OPERATIONS	3,569						
Operational processes							
90. AMMONIA RELEASES		14,938					

EVAPORATIVE SOURCE		
EMISSIONS SUM (pounds)	33,047	14,938

NOT TO BE REPORTED SEPARATELY Subgroups (reported in above totals) Spray Booth Vehicle Coating

327

STACK INFORMATION

The stack form contains stack information for each stationary stack that is connected to a control device or any stack that discharged more than 5 tons of combined pollutant emissions during the reporting year. Although no steam generator cleaning was conducted during the year, the stack information was left on the form for historical information.

The latitude and longitude coordinates of the stacks were included this year. There are several process release points that are identical and were historically assigned a common stack identification number. The separate coordinates of each stack were included unless they were physically located close together where separate coordinates would not provide additional location information. These differences are described below for each release point with multiple stacks:

<u>Lime Storage Silos</u> – Identical stacks associated with each of nine storage silo baghouses (six for pebble lime and three for recalcined lime) were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Lime Supply Silos</u> - Identical stacks associated with each of three supply silo baghouses were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Soda Ash Storage Silos</u> – Identical stacks associated with each of six storage silo baghouses were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Soda Ash Supply Silos</u> - Identical stacks associated with each of two supply silo baghouses were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Unit Emergency Diesel Generators</u> – Identical stacks associated with each of six identical generators were assigned a common stack identification number. Each operating Unit at PVNGS (Units 1, 2, and 3) contains a pair of generators. The coordinates represent the common location of each group of two individual stacks located in Units 1, 2, and 3.

<u>Unit Cooling Towers</u> – There are three identical individual cooling towers per unit for a total of nine cooling towers. The cooling towers were assigned a common stack identification number. The coordinates represent the common location of each group of three towers located in Units 1, 2, and 3.

<u>Steam Generator Cleaning Evaporator Condenser Discharge</u> – The equipment is only brought onsite during chemical cleaning. No cleaning was done during 2004 so no coordinates are available.

<u>Steam Generator Cleaning Evaporator Cooling Tower</u> - The equipment is only brought onsite during chemical cleaning. No cleaning was done during 2004 so no coordinates are available.

Stack Form 2004

1	2	3	4	5a O	R 5b	6a OF	6a OR 6b and 6c		7
Stack ID	Stack Type Code*	Stack Height**	Exit Gas Temperature	Velocity feet/sec	Flow Rate acfm	Diameter inside inch ⁽¹⁾ Length / Width inside inch			Stack Name/Description (Optional)
1	D	12 ft	120°F	98.8	2070.0	8			LIME UNLOADING FILTER SEPARATOR Lat: N 33.395 Long: W 112.857
2	D	60 ft	120°F	27.6	2030.0	15	9	20	EACH OF 6 LIME STORAGE SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
3	D	42 ft	120°F	19.8	1460.0	15	9	20	EACH OF 6 LIME SUPPLY SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
4	D	12 ft	120°F	98.8	2070.0	8			SODA ASH UNLOADING FILTER SEPARATOR Lat: N 33.395 Long: W 112.857
5	D	60 ft	120°F	27.0	1990.0	15	9	20	EACH OF 6 SODA ASH STORAGE SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
6	D	43 ft	120°F	12.2	900.0	15	9	20	EACH OF 2 SODA ASH SUPPLY SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
9	V	90 ft	1000°F	179.0	60000.0	32			EMERGENCY GENERATORS (EACH OF 6) Unit 1 – Lat: N 33.388 Long: W 112.861 Unit 2 – Lat: N 33.385 Long: W 112.864 Unit 3 – Lat: N 33.383 Long: W 112.864
17	V	64 ft	110°F	31.6	1342000.0	360			EACH OF 144 FANS (3 UNIT COOLING TOWERS) Unit 1 – Lat: N 33.391 Long: W 112.863 Unit 2 – Lat: N 33.388 Long: W 112.867 Unit 3 – Lat: N 33.383 Long: W 112.869
23 ⁽²⁾	D	36 ft	120°F	8.3	1992.0	27	6	94	EACH OF 2 SALT SILOS Lat: N 33.396 Long: W 112.858
26	Н	22 ft	120°F	9.3	1100.0	19	12	24	ABRASIVE BLAST MEDIA STORAGE HOPPER Lat: N 33.391 Long: W 112.860
27	V	89 ft	290°F	104.8	100000.0	54			EACH OF 6 ATMOS. DUMP VALVE DISCHARGE STACKS FOR UNITS 1-3 Unit 1 – Lat: N 33.388 Long: W 112.861 Unit 2 – Lat: N 33.385 Long: W 112.864 Unit 3 – Lat: N 33.383 Long: W 112.864
29	Н	20 ft	110 °F	21.2	2000.0	17 (4)			STM. GENERATOR CLEANING EVAP. CONDENSER DISCHARGE
30	V	9 ft	110 °F	48.0	23000.0	38	24	48	No coordinates – equipment not onsite STM. GENERATOR CLEANING EVAP. CONDENSER COOLING TOWER
									No Coordinates – equipment not onsite
56	Н	4ft	120°F			4			GASOLINE VAPOR BALANCE SYSTEM
			120 1						Lat: N 33.388 Long: W 112.857
102 ⁽³⁾	D	60 ft	120°F	8.1	600	15	9	20	EACH OF 3 RECALCINED LIME STORAGE SILO BAGHOUSES (TRANSFER MODE)
									Lat: N 33.395 Long: W 112.857

Stack Form 2004

1	2	3	4	5a O	R 5b	6a OR 6b and 6c 7		7		
Stack ID	Stack Type Code*	Stack Height**	Exit Gas Temperature	Velocity feet/sec	Flow Rate acfm	Diameter inside inch ⁽¹⁾	Length / Width inside inch	Stack Name/Description (Optional)		
¹ Effective diameters are reported for rectangular stack dimensions. Exit Velocities were calculated using the effective diameters.										
² The dis	charge is a cir	cumferentia	l slot around th	e bag housin	g. This slot is 6"	high. See next	page for sketch of	f filter and discharge.		
The othe lime trai	² The discharge is a circumferential slot around the bag housing. This slot is 6" high. See next page for sketch of filter and discharge. ³ There are 9 lime storage silos, Process ID 2. Six of those silos typically receive direct lime deliveries. The velocities and flow rates for those silos is shown under Stack 2. The other three lime storage silos are typically used for recalcined lime storage. Stack 102 flow rates and velocities represent the system operation using the recalcined lime transfer blower. Since the recalcined lime storage silos are permitted to receive direct lime deliveries, refer to the velocities and flow rates listed under Process ID 2 for direct transfer deliveries of lime to the recalcined lime storage silos.									
			r stack that end discharge point		nsisting of 12 in	ch horizontal pi	pe with two disch	arge points. The diameter reported is the effective		

* Stack Type Codes: V = Vertical unobstructed H = Horizontal unobstructed D= Downward unobstructed G = Goosneck W = Obstructed vertical (e.g. weather cap)

** Stack height is calculated relative to the surrounding terrain. For example: the stack height of a 10 foot stack sitting on a 20 foot building is <u>30 feet</u>.

CONTROL DEVICE INFORMATION

Process ID 2 represents 9 lime storage silos at PVNGS. The design and control equipment for all 9 silos is the same. There are two separate Stack and Control Device codes for the Lime Storage Silos.

- Stack 2/Control Device 2 represents the 6 silos that receive new lime deliveries.
- Stack 102/Control Device 102 represents the other three silos that receive recalcined lime.

The description for Control ID Number 26 was modified to include the type of control device.

The control equipment used for the recalcination furnace (Control ID Numbers 18, 19, 118 and 119) has been abandoned in place and is no longer used. However, information has been kept on the control device table for historical reference only.

Control Device Form 2004

Permit Number: 8600896, 030132

12ControlInstallation/ Reconstruction * DateSize of to the second sec		3	4	5	6
		Size or Rate Capacity**	Control Type Code	Control Device Name/Description	
1	1/1/84	2070. cfm	018	LIME UNLOADING FILTER SEPARATOR 518 SQ FT CLOTH AREA	1
2	1/1/84	2030. cfm	018	6 LIME STORAGE SILOS BAGHOUSES 189 SQ FT CLOTH AREA	2
3	1/1/84	1460. cfm	018	6 LIME SUPPLY SILOS BAGHOUSES 189 SQ FT CLOTH AREA	3
4	1/1/84	2070. cfm	018	SODA ASH UNLOADING FILTER SEPARATORE 518 SQ FT CLOTH AREA	4
5	1/1/84	1990. cfm	018	6 SODA ASH STORAGE SILOS BAGHOUSES 189 SQ FT CLOT AREA	5
6	1/1/84	900. cfm	018	2 SODA ASH STORAGE SILOS BAGHOUSES 189 SQ FT CLOT AREA	6
18	1/1/84	343. cfm	053	RECAL FURNACE QUENCHER & VENTURI SCRUBER (<i>NO LONGER IN USE – HISTORICAL</i> <i>REFERENCE ONLY</i>))	
19	1/1/84	343. cfm	055	RECAL FURNACE IMPINGEMENT TRAY SEPARATOR (NO LONGER IN USE – HISTORICAL REFERENCE ONLY)	
23	1/1/84	1092. cfm	018	2 SALT SILO BAGHOUSES, 31 SQ FT CLOTH AREA	23
26	02/15/00	1100. cfm	101	ABRASIVE BLAST MEDIA STORAGE HOPPER HEPA FILTER	26
56		cfm	096	VAPOR BALANCE FOR LOADING REUELING TRUCK	
102 ¹	1/1/84	600. cfm	018	3 RECAL LIME STORAGE SILOS BAGHOUSES 189 SQ FT CLOTH AREA	102
118	1/1/84	343. cfm	075	RECAL FURNACE CYCLONE SEPARATOR (NO LONGER IN USE – HISTORICAL REFERENCE ONLY)	
119	1/1/84	343. cfm	999	RECALCINATOR FURNACE, HIGH LIME CONTENT (NO LONGER IN USE – HISTORICAL REFERENCE ONLY)	

¹ Control device 102 flow rate (600 cfm) represents the flow rate from the recalcined lime transfer blower for the 3 lime storage silos that are typically used for recalcined lime storage. The design of these silos and emissions control systems is identical to the six lime storage silos represented by Control Device 2. All 9 silos were designed and permitted for storage of either direct lime deliveries or recalcined lime. When used for direct lime delivery, the silos represented by Control Device 102 have the same flow rates, velocities, and air to cloth ratios as Control Device 2.

* Reconstruction means any component of the control device was replaced and the cost (fixed capital) of the new component(s) was more than half of what it would have cost to purchase or construct a new control device.

** Air or water flow rate in the cubic feet per minute.

GENERAL PROCESS FORMS

The General Process Forms came preprinted with process information. PVNGS reentered the originals on electronic forms. The following summarizes the significant changes.

- 1. Four new emergency generator sets were added in 2004 as part of a security modification upgrade. Three of the units are identical and were grouped into one process. The other engine was listed as a separate process. The specific release points associated with these processes are:
 - Process ID 31, Security Substation L Emergency Diesel Generator (179 hp)
 - Process ID 32, Security Hubs 2, 3, 4 Emergency Generators (35 hp)
- Two new processes were added to the emissions report to address emissions from various small stationary and portable combustion units fired by diesel or liquefied petroleum gas (LPG). These processes were added to be consistent with the Non-Title V Permit application submitted to the County. The specific release points associated with these process are:
 - Process ID 33, Miscellaneous Diesel Fuel Burning Combustion Equipment (< 10 MMBtu / HR)
 - Process ID 34, Miscellaneous LPG Burning Combustion Equipment.
- 3. There were no rail deliveries of bulk chemicals during the reporting year.
- 4. Process ID 24, Compressor Rental ILRT Leak Test, was added in 2000. However, Integrated Leak Rate Testing (ILRT) is only performed periodically in accordance with Nuclear Regulatory Commission requirements. There were no emissions from this process during the reporting year.
- 5. The steam generating cleaning process was modified in 2003. The steam generator cleaning evaporator discharge (Process ID 28) was replaced with the steam generator evaporator condenser discharge (Process ID 29) and Steam generator evaporator condenser cooling tower (Process ID 30). The processes associated with chemical cleaning of the steam generators (S/G) typically occur once every five to seven years per Unit. Therefore, the release forms were written to cover releases from any Unit during a given year. The specific release points associated with this process are:
 - Process ID 27, Atmospheric Dump Valve Releases from S/G Chemical Cleaning (Units 1, 2, or 3)
 - Process ID 29, S/G Chemical Cleaning Evaporator Condenser Discharge
 - Process ID 30, S/G Chemical Cleaning Evaporator Condenser Cooling Tower

There was no steam generator cleaning conducted during the reporting year.

6. Emissions reported for miscellaneous diesel and gasoline engines include emissions from both small stationary engines (North Annex Back-up Generator & the Construction Pond Pumps) as well as from the remaining non-road engines.

GENERAL PROCESS FORMS (continued)

- 7. The County forms were pre-printed with emissions factors for the existing processes. A one-page emissions calculation page was included as supplemental information as necessary for each process. For some processes, additional information was necessary to calculate emissions. In these instances, additional information is supplied in the section titled, "Emissions Factor Calculation Sheets". Processes with additional information are noted below.
 - Combustion Sources using diesel fuel: The actual fuel sulfur content is used to determine sulfur dioxide emissions. Fuel analyses of the individual fuel sulfur contents were used as a basis for sulfur dioxide emission rates.
 - The VOC emission factor for the Unit Cooling Towers, Process ID 17, was adjusted to reflect site specific use of chemicals added to the towers.
 - The PM10 and VOC emission factors for the Portable Cooling Towers, Process ID 22, were adjusted to reflect days of operation to coincide with how records are maintained.
 - VOC emission factors for the Various Evaporative Processes, Process ID's 60 through 67, change slightly each year depending on actual chemical use. These factors were developed based on material balance for the current year's chemical usage.
 - The emission factors for the Auxiliary Boiler, Process ID 16, were different than the ones listed on the pre-printed form. The emission factors used were obtained from the Maricopa County Air Quality Department Website.
 - The emission factors for the new emergency diesel generators added as part of a security upgrade modification, Process ID 31 and Process ID 32, were based on manufacturer emission data for the specific type of engines installed.
 - The emission factors for miscellaneous diesel and LPG burning combustion equipment, Process ID 33 and Process ID 34, were obtained from the Maricopa County Air Quality Department Website.
 - The ammonia emission factor for Process ID 90 was updated based on release data from the year 2004.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 1

2. Process Type/Description: LIME UNLOADING FILTER SEPARATOR (USED FOR RR DELIVERIES OF LIME ONLY)

				· · · · · · · · · · · · · · · · · · ·
3.	Stack ID(s) (only if required on Stack Form) 1			
4.			NDUSTRIAL PROCESSI	ES
5.	<i>30510405</i> SCC Code: <u>30510498</u> (8 digit number)	BULK MATL UNLOAL Bulk Material U	DING: LIMESTONE <mark>NLOAD: LIME</mark>	
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> % M	lar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day <u>24</u> Da	ays/Week <u>7</u>	Hours/Year <u>0</u>	Weeks/Year
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00	End 23:59	
9.	Emissions based on: (name of material or other parameter, e.g. "roc	ck", "diesel", "vehicle miles	s traveled") <u>LIME DELIV</u>	ERED BY RAIL
10.	. Used (<i>input</i>) or Produced (<i>output</i>)			
11.	Annual Amount: (<i>a number</i>) <u>0</u>		12. – Fuel Sulfur Content	(in percent)%
13.	. Units of Measure: (for example: tons, gallons, million cu ft, acres, u	units produced etc.)	TONS	

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emission	Factor (EF) Infor		Control Device Information						
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	Ν	2	100.000	1		99.960	3	0 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PALO VERDE NUCLEAR GENERATING STATION

PERMIT NO.: 8600896, 030132

2004 EMISSIONS INVENTORY

Lime Unloading Filter-Separator	MC Process ID No.:	1
PVNGS Source No.: LSN-S01	MC Stack No.:	1
SCC: 30510405	MC Control ID No.:	1

Material Used

0 T

NO RAIL DELIVERIES

CRITERIA POLLUTANT	EMISSIONS FAC	TOR	SOURCE	ANNUAL EMISSIONS
PM10	4.00E-02	Ib/T loaded	by material balance	di 0

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 2

3.	Stack ID(s) (only if required on Stack Form) 2		102					
4.	Process TIER Code: 071099		MISCEL	LANEOUS	INDUSTRIAL P	ROCESSI	ES	
5.	SCC Code: <u>30510405</u> (8 digit number)		BULK N	IATL UNL	DADING: LIME	STONE		
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	<u>25%</u>
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	8760	Weeks/Year	
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start		00:00		End 23:59			
9.	Emissions based on: (name of material or other parameters)	eter, e.g. "	'rock", "diesel",	"vehicle mil	les traveled") LIM	IE		
10.	. Used (<i>input</i>) or Produced (<i>output</i>)							
11.	Annual Amount: (a number) <u>17,942</u>				12. – Fuel Sulfu	ur Content	(in percent)	
13.	. Units of Measure: (for example: tons, gallons, million	cu ft, acre	es, units produc	ed etc.)	TONS			
14.	. Unit Conversion Factor: (if needed to convert Unit of I	Measure t	o correlate with	emission fa	ctor units)			

	Emission	Factor (EF) Infor		Control Device Information						
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10 ¹	100	TON	Ν	2	100.000	2		99.970	3	538 lbs

¹ There are 9 lime storage silos. The emissions control system on each silo is the same. Since all lime used was direct loaded, the emission factors associated with the primary control device is 2 rather than 102. The primary control devices 2 and 102 are not in series.

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- **2** =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Lime Storage Silo	MC Process ID No.:	2
PVNGS Source ID No.: AWLSNTO1A-F, AWLSNTO2A-C	MC Stack No .:	2
SCC: 30510405	MC Control ID No.:	2, 102

Notes:

1) Vendor data given for PM. Assume PM ₁₀ = 1/2 * PM.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

The state of the second state

4) All of these factors are included in the emissions factor shown above.

5) Annual emissions reflects the sum of emissions from both recalcined lime and pebble lime.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 3

2.	Process Typ	e/Description	LOADING/UNI	OADING LIME	INTO SUPPLY SI	LOS (6)
<u> </u>	11000000 1 9 0	c Desemption.	Londino (One			

3.	Stack ID(s) (only if required on Stack Form)	3						
4.	Process TIER Code:071099		MISCE	LLANEOU	S INDUSTRIAL	PROCESS	ES	
5.	SCC Code: <u>30510405</u> (8 digit number)		BULK]	MATL UN	LOADING: LIMI	ESTONE		
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	<u>25%</u>
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	8760	Weeks/Year	
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Sta	rt	00:00		End 23:5	<u>9</u>		
9.	Emissions based on: (name of material or other param	neter, e.g.	. "rock", "diesel'	, "vehicle n	niles traveled") LI	ME (<mark>RECA</mark>	LCINED & Pl	EBBLE)
10	Used (<i>input</i>) or Produced (<i>output</i>)	ť)						
11	Annual Amount: (a number) <u>18,104</u>				12. – Fuel Sul	fur Content	(in percent)	%
13	. Units of Measure: (for example: tons, gallons, millio	n cu ft, ac	eres, units produc	ed etc.)	TONS			

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emission	Factor (EF) Infor	mation			Control Device Information				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	Ν	2	100.000	3		99.970	3	543 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Lime Supply Silos	MC Process ID No.:	3
PVNGS Source ID No.: AWLSNTO3A-F	MC Stack No.:	3
SCC: 30510405	MC Control ID No.:	3

Material Processed Lime Used

18,104 T

CRITERIA POLLUTANT	EMISSIONS FACTO	DR	SOURCE	ANNUAL EMISSIONS
PM10	3.00E-02	lb/T loaded	by material balance	543 lb

Notes:

1) Vendor data given for PM. Assume $PM_{10} = 1/2 * PM$.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process. 3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

5) Annual emissions reflects the sum of emissions from both recalcined lime and pebble lime.

6) The sum of recalcined lime produced and pebble lime delivered is used for the amount of material.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 4

2. Process Type/Description: SODA ASH UNLOADING FILTER SEPARATOR (USED FOR RAILROAD DELIVERIES OF SODA AS

	<u>ONLY)</u>	
3.	Stack ID(s) (only if required on Stack Form)	
4.	Process TIER Code: 071099 MISCELL	ANEOUS INDUSTRIAL PROCESSES
5.	SCC Code: 30510498 (8 digit number) BULK MA	TL UNLOADING: MINERAL
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> % Mar-May	<u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day 24 Days/Week	<u>7</u> Hours/Year <u>0</u> Weeks/Year
8.	Typical Hours of Operation: (military time) Start 00:00	End 23:59
9.	Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "	vehicle miles traveled") SODA ASH
10	. \square Used (<i>input</i>) or \square Produced (<i>output</i>)	
] 11	Annual Amount: (<i>a number</i>)	12. – Fuel Sulfur Content (in percent)%
13	• Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced	etc.) <u>TONS</u>

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emission	Factor (EF) Infor	mation			Control Device Information				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	Ν	2	100.000	4		99.960	3	0 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Soda Ash Unloading Filter-Separator	MC Process ID No.:	4
PVNGS Source ID No.: AWSXNS01	MC Stack No.:	4
SCC: 30510498	MC Control ID No.:	4

Material Processed 0 T NO RAIL DELIVERIES

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	ANNUAL EMISSIONS		
PM10	4.00E-02	lb/T loaded	by material balance	0 lb		

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 5

2.	Process Type/Description: LOADING/UNLOADING SODA ASH INTO STORAGE SILOS (6)	

3.	Stack ID(s) (only if required on Stack Form)	5							
4.	Process TIER Code: 071099		MISCELLANEOUS INDUSTRIAL PROCESSES						
5.	SCC Code: <u>30510498</u> (8 digit number)		BULK N	IATL UN	LOADING: MINERAL				
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>			
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year 8760	Weeks/Year			
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>)	Start	00:00		End 23:59				
9.	Emissions based on: (name of material or other pa	rameter, e.g	. "rock", "diesel"	, "vehicle	miles traveled") SODA ASH				
10.	Used (<i>input</i>) or Produced (<i>out</i>)	put)							
11.	Annual Amount: (a number) <u>9,471</u>				12. – Fuel Sulfur Content	(in percent)%			
13.	Units of Measure: (for example: tons, gallons, mil	lion cu ft, ac	cres, units produc	ed etc.)	TONS				

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emission	Factor (EF) Infor	mation			Control Device Information				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	Ν	2	100.000	5		99.970	3	284 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- **2** =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Soda Ash Storage SilosMC Process ID No.:5PVNGS Source ID No.: AWSXNTO1A-FMC Stack No.:5SCC: 30510498MC Control ID No.:5

Material Processed Soda Ash by Truck Soda Ash by Rail Sum	9,471 T 0 T 9,471 T			
CRITERIA POLLUTANT	EMISSIONS F. 3.00E-02	ACTOR lb/T loaded	SOURCE by material balance	ANNUAL EMISSIONS

Notes:

1) Vendor data given for PM. Assume PM₁₀ = 1/2 * PM.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 6

•			A CH DITO CHIDDLY CH OC (A)
<i>z</i> .	Process Type/Descript	on: LOADING/UNLOADING SODA	ASH INTO SUPPLY SILOS (2)

3.	Stack ID(s) (only if required on Stack Form) 6	<u> </u>		
4.	Process TIER Code:071099	MISCELLANEOUS I	NDUSTRIAL PROCESSE	CS
5.	SCC Code: <u>30510498</u> (8 digit number)	BULK MATL UNLOA	ADING: MINERAL	
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u>	% Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week 7	Hours/Year 8760	Weeks/Year
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00	End 23:59	
9.	Emissions based on: (name of material or other parameter,	, e.g. "rock", "diesel", "vehicle mile	es traveled") <u>SODA ASH</u>	
10.	Used (<i>input</i>) or Produced (<i>output</i>)			
11.	Annual Amount: (a number)9,452		12. – Fuel Sulfur Content (in percent)%
13.	Units of Measure: (for example: tons, gallons, million cu f	ft, acres, units produced etc.)	TONS	

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emission	Factor (EF) Infor	mation			Control	Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	Ν	2	100.000	6		99.970	3	284 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Soda Ash Supply Silo	MC Process ID No.:	6
PVNGS Source ID No.: AWSXNTO2A,B	MC Stack No.:	6
SCC: 30510498	MC Control ID No.:	6

Material Processed 9,

9,452 T

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	ANNUAL EMISSIONS
PM10	3.00E-02	lb/T loaded	by material balance	284 lb

Notes:

1) Vendor data given for PM. Assume PM $_{10}$ = 1/2 * PM.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

5) The amount of soda ash delivered is used as the amount of material.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 7

2. Process Type/Description: MISC. PORTABLE DIESEL ENGINES < 600 HP (NON-ROAD AND MOVABLE STATIONARY

		ENGINES)								
3. Stack	ID(s) (only if req	uired on Stack Forn	n)							
4. Proces	ss TIER Code:	020599			FUEL COM	B. INDUSTR	IAL: INTER	NAL COMBU	ISTION	
5. SCC 0	Code: <u>20200102</u>	(8 digit num	ber)		IND: DISTI	L. OIL (DIES	SEL) - RECH			
6. Season	nal Throughput P	ercent: Dec	-Feb	<u>25</u> % Ma	r-May <u>2</u>	<u>5</u> % Ju	n-Aug	<u>25</u> % Sep	-Nov <u>25</u>	<u>%</u>
7. Norma	al Operating Sche	dule: Hou	urs/Day <u>2</u>	2 <u>4</u> Day	/s/Week	<u>7</u> Ho	ours/Year	<u>8760</u> We	eks/Year	
8. <u>Typica</u>	al Hours of Opera	tion: (military tim	e) Start		00:00	En	d 23:59			
	-	ame of material or o	,	er, e.g. "rock	", "diesel", "ve	chicle miles tra	aveled") DIE S	SEL		
		Produc		<i>,</i> 0			,			
		<i>mber</i>) 26,598					17 _ Fuel	Sulfur Content	(in percent)	0.03 %
		example: tons, gallo		uft oorog ur	vita producad a	ta) C	ALS	Sunti Content		0.05_70
		: (if needed to conv			1	<i>,</i>		0.001		
14. Unit C	onversion ractor	. (If fielded to conv		leasure to con				0.001		
	Emission	Factor (EF) Infor	mation			Contro	l Device Info	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor	Controlled EF?	Calculation Method	Capture % Efficiency	Primary	Secondary	Control	Efficiency	Estimated Actual
	(Er) (number)	Unit (lbs per)	Yes or No	Code*	Efficiency	Control Device ID	Control Device ID	Device(s) % Efficiency	Reference Code**	Emissions
СО	(EF) (number) 130	M GALS			Efficiency					Emissions
CO NOX			Yes or No	Code*	Efficiency					Emissions 3,458 lbs
	130	M GALS	Yes or No N	Code* 5	Entency					Emissions 3,458 lbs 16,065 lbs
NOX	130 604	M GALS M GALS	Yes or No N N	Code* 5 5 5						Emissions 3,458 lbs 16,065 lbs 1,130 lbs
NOX PM-10	130 604 42.5	M GALS M GALS M GALS	Yes or No N N N N	Code* 5 5 5 5 5						

¹ Emission Factor updated with fuel sulfur content. See Calculation Sheet No. 1

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- **6** =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Miscellaneous Portable Diesel Engines MC Process ID No.: 7 PVNGS Source ID No.: None SCC: 20200102

Fuel Use	26,598 gal	l		
CRITERIA POLLUTANT	EMISSIONS I	FACTOR	SOURCE	ANNUAL EMISSIONS
CO	1.30E+02 lb/N	A gal	AP-42, Sect. 3.3	3,458 lb
NO ₂	6.04E+02 lb/N	/ gal	AP-42, Sect. 3.3	16,065 lb
PM10	4.25E+01 lb/N	/ gal	AP-42, Sect. 3.3	1,130 lb
SO ₂	4.26E+00 lb/N	A gal	by material balance	113 lb
Ozone (VOC)		A gal	AP-42, Sect. 3.3	1,311 lb

Notes:

1

í

1) Emissions calculations are for non-road engines and movable stationary sources.

2) All of this equipment was less than 600 hp. Emissions are based on fuel consumption.

3) A maximum fuel sulfur content of 0.03 % by weight at a fuel density of 7.1 lbs / gal was assumed.

4) Fuel use from movable stationary sources was 1,191 gallons. This represents 4.0% of the total emissions.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 8

2. Process Type/Description: MISC PORTABLE GASOLINE ENGINES (NON-ROAD AND MOVABLE STATIONARY ENGINES)

3.	Stack ID(s) (only if required on Stack Form)				
4.	Process TIER Code:020599	FUEL COMB. INDU	STRIAL: INTERNAL CO	MBUSTION	
5.	SCC Code: <u>20200301</u> (8 digit number)	IND: GASOLINE - R	ECIPROCATING		
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>	
7.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year 8760	Weeks/Year	
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00	End 23:59		
9.	Emissions based on: (name of material or other parameter, e.g.	"rock", "diesel", "vehicle mil	es traveled") GASOLINE		
10.	Used (<i>input</i>) or Produced (<i>output</i>)				
11.	Annual Amount: (a number) <u>607</u>		12. – Fuel Sulfur Content	(in percent)%	
13.	Units of Measure: (for example: tons, gallons, million cu ft, acr	es, units produced etc.)	GALS		
14.	Unit Conversion Factor: (if needed to convert Unit of Measure	to correlate with emission fac	etor units) 0.001		

	Emission	Factor (EF) Infor	mation			Control	Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	7900	M GALS	Ν	5						4,795 lbs
NOX	205	M GALS	Ν	5						124 lbs
PM-10	12.6	M GALS	Ν	5						8 lbs
SOX	11.1	M GALS	Ν	5						7 lbs
VOC	382	M GALS	Ν	5						232 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Miscellaneous Portable Gasoline Engines MC Process ID No.: 8 PVNGS Source ID No.: None SCC: 20200301

Fuel Use	607 gallons			
CRITERIA POLLUTANT	EMISSIONS FACTOR	SOURCE	EMISSIONS	
СО	7.90E+03 lb/Mgal	AP-42, Sect. 3.3	4,795 lb	
NO ₂	2.05E+02 lb/Mgal	AP-42, Sect. 3.3	124 lb	
PM10	1.26E+01 lb/Mgal	AP-42, Sect. 3.3	8 lb	
SO ₂	1.11E+01 lb/Mgal	AP-42, Sect. 3.3	7 lb	
Ozone (VOC)	3.82E+02 lb/Mgal	AP-42, Sect. 3.3	232 lb	

Notes:

1) Emissions rates are based fuel consumption.

2) Emissions factors are based on AP-42 Section 3.3 Gasoline and Diesel Industrial Engines dated 10/96.

3) Gasoline Heating Value is 20,300 BTU/lb.

4) Emissions calculations are for non-road engines. There were no movable stationary sources using gasoline used at PVNGS.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 9

2. Process Type/Description: <u>6 EMERGENCY GENERATORS</u> @ 7670 HP, NRC-SAFETY POWER "EDG"

3	. Stack ID(s) (only if required on Stack Form)		
4	Process TIER Code: 030202 020599	FUEL COMB. INDUSTRIAL: INTERNAL COMBUSTION FUEL COMB. OTHER: COMMERCIAL/INST OIL – DIST	FILLATE
5	. SCC Code: <u>20200401</u> (8 digit number)	INDUSTRIAL: LG. BORE ENGINE: DIESEL	
6	Seasonal Throughput Percent: Dec-Feb	<u>25</u> % Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov	25%
7	Normal Operating Schedule: Hours/Day	24 Days/Week <u>7</u> Hours/Year <u>518 587</u> Weeks/Yea	ar
8	. <u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00 End 23:59	
] 9	Emissions based on: (name of material or other parame	ter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL	
1	0. \square Used (<i>input</i>) or \square Produced (<i>output</i>)		
] 1	1. Annual Amount: (<i>a number</i>)221,735	12. – Fuel Sulfur Content (in percent)	0.04
1	2. Units of Measure: (for example: tons, gallons, million of	cu ft, acres, units produced etc.) GALS	
1	3. Unit Conversion Factor: (if needed to convert Unit of M	Aleasure to correlate with emission factor units)	

Emission Factor (EF) Information				Control Device Information				L		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	116	M GALS	Ν	5						25,721 lbs
NOX	438	M GALS	Ν	5						<i>97,120</i> lbs
PM-10	7.85	M GALS	Ν	5						<i>1,741</i> lbs
SOX ¹	5.68	M GALS	Ν	3						<i>1,259</i> lbs
VOC	11.2	M GALS	Ν	5						2,483 lbs
$l \mathbf{r} \cdot \cdot \cdot$		· 1 C 1 1C	C C I	1 01	AL 1					

¹ Emission Factor updated with fuel sulfur content. See Calculation Sheet No. 1

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Emergency Diesel Generators, Units 1-3,MC Process ID No.: 9PVNGS Source ID No.: 1,2,3 M-DGA, DGB-HO1MC Stack No.: 9SCC: 20200401MC Stack No.: 9

Operating Hours	586.6	hrs (aggregate)
Fuel Use Rate	378	gallons per hour
Total Fuel Use	221,735	gallons (estimated)

CRITERIA POLLUTANT	EMISSION	IS FACTOR	SOURCE	ANNUAL EMISSIONS	
CO	1,16E+02	lb/M gal	AP-42, Sect. 3.4	25,721 lb	
NO ₂	4,38E+02	lb/M gal	AP-42, Sect. 3.4	97,120 lb	
PM10	7.85E+00	lb/M gal	AP-42, Sect. 3.4	1,741 lb	
,	5.68E+00	lb/M gal	by material balance	1,259 lb	
SO ₂ Ozone (VOC)	1.12E+01	lb/M gal	AP-42, Sect. 3.4	2,483 lb	

Notes:

ı

1

ı.

L

1) Emissions rates are based on nameplate full load (maximum) fuel consumption.

2) The fuel sulfur content was 0.04 % S by weight at a density of 7.1 lbs fuel / gal.

3) Fuel heating value is 19,300 BTU/lb (137,000 BTU/gal at a density of 7.1 lb/gal)

PERMIT NO.: 8600896, 030132

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 10

2. Process Type/Description: TSC GENERATOR, 1000 HP

020599 FUEL COMB. INDUSTRIAL: INTERNAL COMBUSTION 4. Process TIER Code: 030202 5. SCC Code: 20200401 (8 digit number) INDUSTRIAL: I.G. BORE ENGINE: DIESEL 6. Seasonal Throughput Percent: Dec-Feb 25% 7. Normal Operating Schedule: Hours/Day 24 8. Typical Hours of Operation; (military time) Start 00:00 9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL 10. Used (input) or Produced (output) 11. Annual Amount: (a number) 2.475 12. – Fuel Sulfur Content (in percent) 0.21% 13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) GALS 14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) 0.001 Emission Factor (EF) Information Control Device Information 15 16 17 18 19 20 21 22 23 25 Pollutant Emission Factor Emission Factor Controllecies Meteres Control bevice Information Efficiency Estimated Actual Emissions Veit Vit <th>3.</th> <th>Stack II</th> <th>)(s) (only if requ</th> <th>uired on Stack Form</th> <th>u)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	3.	Stack II)(s) (only if requ	uired on Stack Form	u)							
5. SCC Code: 20200401 (8 digit number) INDUSTRIAL: LG. BORE ENGINE: DIESEL 6. Seasonal Throughput Percent: Dec-Feb 25% Mar-May 25% Jun-Aug 25% Sep-Nov 25% 7. Normal Operating Schedule: Hours/Day 24 Days/Week 7 Hours/Year 24.33 Weeks/Year	4.			020599								LATE
7. Normal Operating Schedule: Hours/Day 24 Days/Week 7 Hours/Year 24.33 Weeks/Year 8. Typical Hours of Operation: (military time) Start 00:00 End 23:59 9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL 10. Used (input) or Produced (output) 11. Annual Amount: (a number) 2.475 12. – Fuel Sulfur Content (in percent) 0.21 % 13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) GALS 14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) 0.001	5.				ver)		INDUSTRL					
 8. <u>Typical Hours of Operation:</u> (military time) Start00:00 End23:59 9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL 10. Used (input) orProduced (output) 11. Annual Amount: (a number)247512 Fuel Sulfur Content (in percent)% 13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.)% 14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)	6.	Seasona	ıl Throughput Pe	ercent: Dec	-Feb	<u>25</u> % Ma	r-May	<u>25</u> % Ju	in-Aug	<u>25</u> %	Sep-Nov	<u>25%</u>
9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL 10. □ Used (input) or □ Produced (output) 11. Annual Amount: (a number)	7.	Normal	Operating Schee	dule: Hou	rs/Day <u>2</u>	<u>4</u> Da	ys/Week	<u>7</u> H	ours/Year	<u>21 33</u>	Weeks/Year	
10. Used (input) or Produced (output) 11. Annual Amount: (a number)	8.	Typical	Hours of Operat	tion: (military time	e) Start		<u>00:00</u>	E	nd <u>23:59</u>			
11. Annual Amount: (a number)	9.	Emissio	ons based on: (na	me of material or o	ther paramet	er, e.g. "rock	", "diesel", "v	ehicle miles tr	aveled") <u>DIE</u>	SEL		
Interview of the second secon	10.	Use	d (<i>input</i>) or	Produce	ed (output)							
14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) 0.001 Emission Factor (EF) Information Control Device Information 15 16 17 18 19 20 21 22 23 23 25 Pollutant Emission Factor (EF) (number) Emission Factor Unit (lbs per) Controlled EF? Calculation Method Code* Capture % Efficiency Primary Control Device ID Secondary Control Device (ID Control Device(S) % Efficiency Reference Code** Estimated Actual Emissions] 11.	Annual	Amount: (a nun	nber) <u>2,475</u>				12	2. – Fuel Sulfu	ır Content (in	percent) <u>0</u>	.21%
Emission Factor (EF) Information Control Device Information 15 16 17 18 19 20 21 22 23 23 25 Pollutant Emission Factor (EF) (number) Emission Factor Unit (lbs per) Controlled EF? Yes or No Calculation Code* Capture % Efficiency Device ID Primary Control Device ID Secondary Control Device ID Control Device(s) % Efficiency Code** Efficiency Efficiency Estimated Actual Emissions	13.	Units of	f Measure: (for e	xample: tons, gallo	ns, million c	u ft, acres, ui	nits produced	etc.) <u>G</u>	ALS			
1516171819202122232325PollutantEmission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Code*Capture % EfficiencyPrimary Control Device IDSecondary Control Device IDControl Device IDEfficiency Control Device IDEfficiency Device IDEfficiency Control Device IDEfficiency Device IDEfficiency Control Device IDEfficiency Device IDEfficiency Devic	14.	Unit Co	nversion Factor:	(if needed to conv	ert Unit of M	leasure to co	rrelate with er	nission factor	units) <u>0.001</u>	1		
1516171819202122232325PollutantEmission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Code*Capture % EfficiencyPrimary Control Device IDSecondary Control Device IDControl Device IDControl EfficiencyEfficiency EfficiencyEfficiency EfficiencyEfficiency Control Device IDControl Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency Control Device IDEfficiency EfficiencyEfficiency Control Device IDEfficiency EfficiencyEfficiency Efficiency			Emission	Factor (EF) Infor	mation]		Contro	l Device Inf	ormation		
(EF) (number) Unit (lbs per) EF? Method Yes or No Efficiency Control Device ID Control Device ID Device(s) % Efficiency Reference Code** Emissions		15				19	20	21	22	23	23	25
	Р	ollutant			EF?	Method		Control	Control	Device(s) %	Reference	
CU 110 M GALS N 5 28/10	CC)	116	M GALS	Ν	5						287 lb
NOX 438 M GALS N 5 1,084 b	NC)X	438	M GALS	Ν	5						<i>1,084</i> lb
PM-10 7.85 M GALS N 5 19 lb			7.85	M GALS	Ν	5						<u>19</u> lb
SOX ¹ 27-29.8 M GALS N 3 74 lb	SO	X ¹	27- 29.8	M GALS	N	3						74 lb
VOC 11.2 M GALS N 5 28 lbs	VC	DC	11.2	M GALS	Ν	5						28 lb

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- **6** =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

......

Technical Support Center Emergency Diesel PVNGS Source ID No.: AMDGNOTO1 SCC: 20200401 MC Process ID No.: 10

MC Stack No.: 10

Operating Hours	33	hrs
Fuel Use Rate	75	gal/hr
Total Fuel Use	2,475	gal (estimated)

				ANNUAL
CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS
CO	1.16E+02	lb/M gal	AP-42, Sect. 3.4	287 lb
NO ₂	4.38E+02	lb/M gal	AP-42, Sect. 3.4	1084 lb
PM10	7.85E+00	lb/M gal	AP-42, Sect. 3.4	19 lb
SO ₂	2.98E+01	lb/M gal	by material balance	74 lb
Ozone (VOC)	1.12E+01	lb/M gal	AP-42, Sect. 3.4	28 lb

Notes:

i.

i

1

į.

ı

1) Operating hours were rounded to the nearest whole number

2) Emissions rates are based on nameplate full load (maximum) fuel consumption.

3) The fuel sulfur content was 0.21% by weight at a fuel density of 7.1 lbs / gal.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 11

2. Process Type/Description: SECURITY GENERATOR, 227 HP

3	Stack ID(s) (only if required on Stack Form)									
4	Process TIER Code: 020599	OMB. INI	DUSTRIAL: INTERNAL COMBUSTION							
5	SCC Code: <u>20200102</u> (8 digit number)		INDUSTRIAL: DISTILLATE OIL; RECIP							
6	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	25%		
7	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	21 28	Weeks/Year			
8	<u>Typical Hours of Operation:</u> (<i>military time</i>)	Start	00:00		End 23:5	<u>9</u>				
9	Emissions based on: (name of material or other pa	rameter, e.g	. "rock", "diesel"	, "vehicle r	niles traveled") DII	ESEL				
1	b. \square Used (<i>input</i>) or \square Produced (<i>out</i>)	put)								
1	Annual Amount: (a number)	12. – Fuel Sulfur Content (in percent) <u>0.06</u>								
1	. Units of Measure: (for example: tons, gallons, mil	for example: tons, gallons, million cu ft, acres, units produced etc.) <u>GALS</u>								
	. Unit Conversion Factor: (if needed to convert Uni			hamizzian	factor unita) 0.00	1				

Emission Factor (EF) Information					Control Device Information					
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	130	M GALS	Ν	5						<u>33</u> lbs
NOX	604	M GALS	Ν	5						152 lbs
PM-10	42.5	M GALS	Ν	5						11 lbs
SOX ¹	8.52	M GALS	Ν	3						2 lbs
VOC	49.3	M GALS	Ν	5						12 lbs
¹ Emission H	Factor updated w	vith fuel sulfur conte	ent. See Calc	ulation Shee	t No. 1					

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- **5** = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Security Headquarters Emergency Generator PVNGS Source ID No.: AASKNEO1 SCC: 20200102

Operating Hours28hrFuel Use Rate9gal/hrTotal Fuel Use252gal (estimated)

CRITERIA POLLUTANT	EMISSIONS FACTOR	SOURCE	ANNUAL EMISSIONS
СО	1.30E+02 lb/M gal	AP-42, Sect. 3.3	33 lb
NO ₂	6.04E+02 lb/M gal	AP-42, Sect. 3.3	152 lb
PM10	4.25E+01 lb/M gal	AP-42, Sect. 3.3	11 lb
SO ₂	8.52E+00 Ib/M gal	by material balance	2 lb
Ozone (VOC)	4.93E+01 Ib/M gal	AP-42, Sect. 3.3	12 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) The average fuel sulfur content was assumed to be 0.06% by weight at a fuel density of 7.1 lbs / gal.

PERMIT NO.: 8600896, 030132

MC Stack No.: 11

MC Process ID No.: 11

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 12

2. Process Type/Description: FIRE PROTECTION PUMPS, 2 @ 190 HP

3. Stack ID(s) (only if required on Stack Form))	
4. Process TIER Code: 020599	FUEL COM	B. INDUSTRIAL: INTERNAL COMBUSTION
5. SCC Code: <u>20200102</u> (8 digit number	er) <u>INDUSTRIA</u>	L: DISTILLATE OIL; RECIP
6. Seasonal Throughput Percent: Dec-	Feb <u>25</u> % Mar-May <u>2</u>	<u>5</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
7. Normal Operating Schedule: Hour	rs/Day <u>24</u> Days/Week <u>'</u>	7 Hours/Year <u>42</u> Weeks/Year
8. <u>Typical Hours of Operation:</u> (military time)) Start <u>00:00</u>	End 23:59
9. Emissions based on: (name of material or ot	her parameter, e.g. "rock", "diesel", "ve	chicle miles traveled") DIESEL
10. Used (<i>input</i>) or Produce	d (output)	
11. Annual Amount: (<i>a number</i>)	_	12. – Fuel Sulfur Content (in percent) <u>0.04</u>
13. Units of Measure: (for example: tons, gallon	s, million cu ft, acres, units produced e	tc.) <u>GALS</u>
		ission factor units) 0.001

Emission Factor (EF) Information			mation		Control Device Information					
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
CO	130	M GALS	Ν	5						54 lbs
NOX	604	M GALS	Ν	5						249 lbs
PM-10	42.5	M GALS	Ν	5						<u>18</u> lbs
SOX ¹	4.26 5.68	M GALS	Ν	3						2 lbs
VOC	49.3	M GALS	Ν	5						20 lbs
¹ Emission H	Factor updated w	ith fuel sulfur conte	ent. See Calc	ulation Shee	t No. 1					

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Fire Protection Pump	MC Process ID No.: 12
PVNGS Source ID No.: AMFPNPO1A/B	MC Stack No.: 12
SCC: 20200102	

Operating Hours	42	hours
Fuel Use Rate	9.8	gal/hr per pump
Total Fuel Use	412	gal (estimated)

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	ANNUAL EMISSIONS
СО	1.30E+02 lb/l	Vi gal	AP-42, Sect. 3.3	54 lb
NO ₂	6.04E+02 lb/	Vi gal	AP-42, Sect. 3.3	249 lb
PM10	4.25E+01 lb/	V gal	AP-42, Sect. 3.3	18 lb
SO2	5.68E+00 lb/l	Vi gal	by material balance	2 lb
Ozone (VOC)	4.93E+01 lb/l	Vi gal	AP-42, Sect. 3.3	20 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) The average fuel sulfur content was 0.04 % at a fuel density of 7.1 lbs / gal.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 13

2. Process Type/Description: ADMIN-A GENERATOR, 600 HP

	VI-IV	1.03	WI GALS	1	3						<u>0</u> IDS
	<u>ОХ</u> И-10	438 7.85	M GALS M GALS	N N	5 5						473 lbs 8 lbs
C		116	M GALS	Ν	5						125 lbs
F	Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	15	16	17	18	19	20	21	22	23	23	25
		Emission	Factor (EF) Infor	mation			Contr	ol Device Inf	ormation		
13	. Units of	f Measure: (for e	xample: tons, gallo (if needed to conv	<i>,</i>		1	etc.) <u>(</u>	GALS	× 1	,	
			<i>nber</i>) <u>1,080</u>				1	2. – Fuel Sulfu	r Content (in p	ercent) 0.03	<u>%</u>
9. 10					ci, c.g. 100k	x, uicsei, v		iaveleu) <u>DIE</u>	51/1/		
0. 9.		-	me of material or o	<i>,</i>							
8.			tion: (military time			<u>00:00</u>		End 23:59		<u> </u>	
0. 7.		Operating Schee				ys/Week		Iours/Year	-	eks/Year	
5. 6.		l Throughput Pe	<u>(8 digit numb</u> ercent: Dec	,)50/ Ma	IND: LG. B ar-May	ORE ENGI		<u>25</u> % Sep	o-Nov <u>25</u> %	
4.		TIER Code:				FUEL CON	<u>4B. OTHER</u>	COMMERC		- DISTILLAT	<u> </u>
		- (-) ()	020599	-)		FUEL COM	IB. INDUST	RIAL: INTER	NAL COMBUS	STION	
3.	Stack II	D(s) (only if requ	ired on Stack Form	າ)							

¹ Emission Factor updated with fuel sulfur content. See Calculation Sheet No. 1

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Administration Building A Diesel PVNGS Source ID No.: A Generator SCC: 20200401

PERMIT NO.: 8600896, 030132

MC Process ID No.: 13

MC Stack No.: 13

Operating Hours
Fuel Use Rate
Total Fuel Use

36	hr
30	gal/hr
1080	gal (estimated)

CRITERIA POLLUTANT	EMISSIONS FACT	OR SOURCE	ANNUAL EMISSIONS
CO	1.16E+02 lb/M gal	AP-42, Sect. 3.3	125 lb
NO ₂	4.38E+02 lb/M gal	AP-42, Sect. 3.3	473 lb
PM10	7.85E+00 lb/M gal	AP-42, Sect. 3.3	8 lb
SO ₂	4.26E+00 lb/M gal	by material balance	e 5 lb
Ozone (VOC)	1.12E+01 lb/M gal	AP-42, Sect. 3.3	12 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) The average fuel sulfur content was 0.03% by weight at a fuel density of 7.1 lbs / gal.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 14

2. Process Type/Description: ADMIN-B GENERATOR, 289 HP

3.	Stack ID(s) (only if required on Stack Form)							
4.	Process TIER Code: 020599		FUEL CO	OMB. INDU	STRIAL: INTE	RNAL CO	MBUSTION	
5.	SCC Code: 20200102 (8 digit number)		IND: DIS	TIL. OIL (E	DIESEL) -RECI	P		
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	25%
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	<u>30 33</u>	Weeks/Year	
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) S	tart	00:00		End 23:5	<u>9</u>		
9.	Emissions based on: (name of material or other par	ameter, e.g.	"rock", "diesel",	"vehicle mile	es traveled") DII	ESEL		
10	Used (<i>input</i>) or Produced (<i>outp</i>	ut)						
] 11	Annual Amount: (a number) <u>396</u>				12. – Fuel Sulf	fur Content	(in percent)	0.04
13	Units of Measure: (for example: tons, gallons, mill	ion cu ft, acr	es, units produce	ed etc.)	GALS			
14	Unit Conversion Factor: (if needed to convert Unit	of Measure	to correlate with	emission fac	tor units)0.00	1		

	Emission	Factor (EF) Inform	mation			Control	Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	130	M GALS	Ν	5						51 lbs
NOX	604	M GALS	Ν	5						239 lbs
PM-10	42.5	M GALS	Ν	5						17 lbs
SOX ¹	-4.26 5.68	M GALS	Ν	3						2 lbs
VOC	49.3	M GALS	Ν	5						20 lbs
¹ Emission H	Factor updated w	ith fuel sulfur conte	ent. See Calc	ulation Shee	t No. 1					

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- **2** =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Administration Building B Diesel	MC Process ID No.: 14
PVNGS Source ID No.: B Generator	MC Stack No.: 14
SCC: 20200102	

Operating Hours Fuel Use Rate Total Fuel Use	33 12 396	hr gal/hr gal (estimated)		
CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	ANNUAL EMISSIONS
CO	1.30E+02	lb/M gal	AP-42, Sect. 3.3	51 lb
NO ₂	6.04E+02	lb/M gal	AP-42, Sect. 3.3	239 lb
PM10	4.25E+01	lb/M gal	AP-42, Sect. 3.3	17 lb
SO ₂	5.68E+00	lb/M gal	by material balance	2 lb
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	20 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) The average fuel sulfur content was 0.04% by weight at a fuel density of 7.1 lbs / gal.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>16</u>

2.	Process Type/Descript	ion [.] AUXII	JARY BOILER	(PERMIT LIMIT: 53	5.500 GAL)

3. Stack I	D(s) (only if requ	ired on Stack Forn	1)							
4. Process	s TIER Code:	<i>020202</i> 010202				<mark>B.: INDUSTR</mark> B. ELEC. UT		<u>STALLATE</u>		
5. SCC C	ode: <u>10100501</u>	(8 digit numl	ber)		IND: GRDE	<u>S 1&2 OIL-N</u>	ORMFIRE			
6. Seasona	al Throughput Pe	rcent: Dec	-Feb	<u>25</u> % Ma	ır-May <u>2</u>	<u>5</u> % Jui	n-Aug	<u>25</u> % Sep	-Nov <u>25%</u>	<u>6</u>
7. Normal	l Operating Schee	lule: Hou	urs/Day <u>2</u>	2 <u>4</u> Da	ys/Week	<u>7</u> Ho	ours/Year	<u>1</u> We	eks/Year	
8. <u>Typical</u>	l Hours of Operat	ion:_(military tim	e) Start		<u>00:00</u>	En	d <u>23:59</u>			
9. Emissio	ons based on: (na	me of material or o	other paramet	er, e.g. "rock	«", "diesel", "ve	ehicle miles tra	aveled") DIE	SEL		
10. Use 11. Annual	ed (<i>input</i>) or I Amount: (<i>a nun</i>					12	. – Fuel Sulfu	r Content (in pe	(1)	4 %
		<i>.</i>							<u> </u>	/0
		xample: tons, gallo (if needed to conv	ons, million c		1	etc.) <u>G</u> A	ALS			
	onversion Factor:	xample: tons, gallo	ns, million c ert Unit of M		1	etc.) <u>GA</u>	ALS			
	onversion Factor:	xample: tons, gallo (if needed to conv	ns, million c ert Unit of M		1	etc.) <u>GA</u>	ALS units)0.001		23	
14. Unit Co	onversion Factor: Emission	xample: tons, gallo (if needed to conv Factor (EF) Infor	ns, million c ert Unit of M mation	leasure to co	rrelate with em	etc.) <u>G</u> A hission factor u Control	ALS	ormation		
14. Unit Co 15	enversion Factor: Emission 16 Emission Factor	xample: tons, gallo (if needed to conv Factor (EF) Infor 17 Emission Factor	ns, million c ert Unit of M mation 18 Controlled EF?	leasure to co 19 Calculation Method	rrelate with em	etc.) <u>G</u> A nission factor u Control 21 Primary Control	ALS inits) 0.001 Device Info 22 Secondary Control	ormation 23 Control Device(s) %	23 Efficiency Reference	25 Estimated Actual
14. Unit Co 15 Pollutant	Emission Factor: Emission 16 Emission Factor (EF) (number)	xample: tons, gallo (if needed to conv Factor (EF) Infor 17 Emission Factor Unit (lbs per)	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No	Ieasure to co 19 Calculation Method Code*	rrelate with em	etc.) <u>G</u> A nission factor u Control 21 Primary Control	ALS inits) 0.001 Device Info 22 Secondary Control	ormation 23 Control Device(s) %	23 Efficiency Reference	25 Estimated Actual Emissions
14. Unit Co 15 Pollutant CO NOX PM-10 ⁷	Emission Factor: Emission 16 Emission Factor (EF) (number) 5	xample: tons, gallo (if needed to conv Factor (EF) Infor 17 Emission Factor Unit (lbs per) M GALS	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N	19 Calculation Method Code* 6	rrelate with em	etc.) <u>G</u> A nission factor u Control 21 Primary Control	ALS inits) 0.001 Device Info 22 Secondary Control	ormation 23 Control Device(s) %	23 Efficiency Reference	25 Estimated Actual Emissions 0 1
14. Unit Co 15 Pollutant CO NOX PM-10 ¹ SOX ²	Emission Factor: Emission 16 Emission Factor (EF) (number) 5 24	xample: tons, gallo (if needed to conv Factor (EF) Infor 17 Emission Factor Unit (lbs per) M GALS M GALS	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N N	Ieasure to co 19 Calculation Method Code* 6 6 6	rrelate with em	etc.) <u>G</u> A nission factor u Control 21 Primary Control	ALS inits) 0.001 Device Info 22 Secondary Control	ormation 23 Control Device(s) %	23 Efficiency Reference	25 Estimated Actual Emissions 0 II 0 II
14. Unit Co 15 Pollutant CO NOX PM-10 ⁷	Emission Factor: Emission 16 Emission Factor (EF) (number) 5 24 4 4 2	xample: tons, gallo (if needed to conv Factor (EF) Infor 17 Emission Factor Unit (lbs per) M GALS M GALS M GALS	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N N N	leasure to co 19 Calculation Method Code* 6 6 6 6	rrelate with em	etc.) <u>G</u> A nission factor u Control 21 Primary Control	ALS inits) 0.001 Device Info 22 Secondary Control	ormation 23 Control Device(s) %	23 Efficiency Reference	25 Estimated Actual Emissions 0 11 0 11 0 11

² Emission Factor updated with fuel sulfur content. See Calculation Sheet No. 1

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- **2** =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Auxiliary Boiler	MC Process ID No.: 16
PVNGS Source ID No.: ASN-B02	MC Stack No.: 16
SCC: 10100501	

Hours of Operation	Less than 1 hr	
Fuel Consumption	1 gal	

CRITERIA POLLUTANT	EMISSION	NS FACTOR	SOURCE	ANNUAL EMISSIONS
CO	5.00E+00	lb/M gal	Maricopa County	0 lb
NO ₂	2.40E+01	lb/M gal	Maricopa County	0 lb
PM10	2.00E+00	lb/M gal	Maricopa County	0.0 lb
SO ₂	5.68E+00	lb/M gal	by material balance	0 lb
Ozone (VOC)	2.00E-01	lb/M gal	Maricopa County	0.00 lb

Notes:

1) Emissions are based on the metered fuel consumption.

2) The average fuel sulfur content was 0.04% by weight at a fuel density of 7.1 lbs / gal.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 17

2. Process Type/Description: <u>3 UNIT COOLING TOWERS, W/ 3 TOWERS PER UNIT (TOTAL HOURS OF OPERATION)</u>

3.	Stack ID(s) (only if required on Stack Form) 17			
	Process TIER Code: <u>140699</u>		COOLING TOWERS	
5.	SCC Code: <u>38500101</u> (8 digit number)			
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year 8760	Weeks/Year
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00	End 23:59	
9.	Emissions based on: (name of material or other parameter, e	e.g. "rock", "diesel", "vehicle mile	es traveled") HRS OF OPE	ERATION, AGGREGATE
10.	Used (<i>input</i>) or Produced (<i>output</i>)			
11.	Annual Amount: (a number) 23,880		12. – Fuel Sulfur Content	(in percent)%
13.	Units of Measure: (for example: tons, gallons, million cu ft,	acres, units produced etc.)	HRS OF OPERATION	

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

Emissio	n Factor (EF) Informa	ation			Control Device Information				
16	17	18	19	20	21	22	23	23	25
Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
2.663	HR OF OPERATI	Ν	2 8						63,592 lbs
0.924	HR OF OPERATI	Ν	2 8						<i>22,065</i> lbs
	16 Emission Factor (EF) (number) 2.663 0.867	1617Emission Factor (EF) (number)Emission Factor Unit (lbs per)2.663HR OF OPERATI0.867HR OF OPERATI	161718Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or No2.663HR OF OPERATI HR OF OPERATIN	16171819Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*2.663HR OF OPERATI HR OF OPERATIN2.8	1617181920Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % Efficiency2.663HR OF OPERATI NN2.80.867HR OF OPERATIN2.8	161718192021Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % Efficiency Device ID2.663HR OF OPERATI PRATIN2 80.867HR OF OPERATIN2 8	16171819202122Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % EfficiencyPrimary Control Device IDSecondary Control Device ID2.663HR OF OPERATIN2.80.867HR OF OPERATIN2.8	1617181920212223Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % EfficiencyPrimary Control Device IDSecondary Device IDControl Device ID2.663HR OF OPERATIN2 80.867HR OF OPERATIN2 8	161718192021222323Emission Factor (EF) (number)Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % Efficiency EfficiencyPrimary Control Device IDSecondary Device IDControl Device IDControl Device IDEfficiency Reference Code**2.663HR OF OPERATIN28 </td

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- **2** =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Units 1, 2, and 3 Cooling Tower	MC Process ID No.: 17 (includes all 3 units, all 9 towers)
PVNGS ID No.: CWN-W01,2,3	MC Stack No.: 17
SCC Code: 38500101	

Total Operating Days	995 days
Total Operating Hours	23,880 hours

POLLUTANTS	EMISSIONS FAC	TOR	SOURCE	ANNUAL EMISSIONS
PM10	2.663E+00	lb/day	Non-Title V Permit Application	63,592 lb
VOC (Total)	9.240E-01	lb/day	Materials balance & CARB	22,065 lb

Notes:

Non Chloroform VOC Emission Factor:

Non Chloroform VOC Emissions are based on chemical use in the unit cooling towers. During 2002, the defoaming agents used in the cooling towers contained VOC per manufacturer testing. The emissions factor was calculated based on the total VOC calculated to be added to the system by chemical use records divided by the total number of operating days.

Total Non Chloroform VOC = (23 totes of AF1091)(300 gallons AF1091 / tote)(2.55 lbs VOC / gallon) = 17,595 lbs Non Chloroform VOC Emission Factor = 17,595 lbs / 23,880 hr = 0.737 lb / hr

Chloroform VOC Emission Factor:

The chloroform emissions factor of 20 kg-s/cubic m-yr, was obtained from Table 8.6-2, Emission Factor for Volatile Organic Compounds from "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for California State Air Resources Board, August 11, 1981.

Chloroform VOC Emissions Factor = (20 kg-s/cubic m-yr)(1 yr/365 d)(1 d / 24 hr)(2.2 lb / kg) (1 min / 60 s) (1 cubic m / 264.1 gal) (Circulating Water Flow in gal / min) Chloroform VOC Emissions Factor = (20 kg-s/cubic m-yr)(1 yr/365 d)(1 d / 24 hr)(2.2 lb / kg) (1 min / 60 s) (1 cubic m / 264.1 gal) (590,000 gal/min) Chloroform VOC Emissions Factor = 0.187 lbs / hr

Total VOC Emission Factor: VOC Emissions Factor = Non Chloroform Emissions Factor + Chloroform Emissions Factor VOC Emissions Factor = 0.737 lb / hr + 0.187 lb / hr VOC Emissions Factor = 0.924 lb / hr

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 20

2. Process Type/Description: <u>2 DIESEL FIRED "GAS" TURBINES, NON-NRC LEVEL EMERGY POWER. CO, NOX, PM10</u> ESF FROM VENDOR DATA, PERMIT LIMIT 400 HRS

3.	Stack ID(s) (only if required on Stack Form)							
4.	<i>020599</i> Process TIER Code: <u>010599</u>				STRIAL: INTE .UTIL.: INTE			
5.	SCC Code: <u>20200101</u> (8 digit number)		INDUST	RIAL: DIST	ILLATE OIL:	TURBINE		
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	<u>25%</u>
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	67 51	Weeks/Year	
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start		00:00		End 23:	<u>59</u>		

9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL

10. \square Used (*input*) or \square Produced (*output*)

11. Annual Amount: (*a number*) _____6,137___

13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.)

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) ______0.001

	Emissio	n F	actor (EF) Infor	mation		Control Device Information						
15	16		17	18	19	20	21	22	23	23	25	
Pollutant	Emission Facto (EF) (number)		Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions	
СО	11.3		M GALS	Ν	2 9						<mark>69</mark> lbs	
NOX	117		M GALS	Ν	2 9						718 lbs	
PM-10	24.6		M GALS	Ν	2 9						151 lbs	
SOX ¹	4.3		M GALS	Ν	3						26 lbs	
VOC	0.057		M GALS	Ν	5						<i>0.3</i> lbs	
											lbs	

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- **6** = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

** Control Efficiency Reference Codes

12. – Fuel Sulfur Content (in percent) 0.03 %

GALS

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Station Blackstart Turbine	MC Process ID No.: 20
PVNGS Source ID No.: AMGTNKO1A/B	MC Stack No.: 20
SCC: 20200101	

2003 Operating Hours51hoursFuel Consumption6,137gallons (aggregate)

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	ANNUAL EMISSIONS
ĆO	1.13E+01	lb/M gal	Vendor data	69 lb
NO ₂	1.17E+02	lb/M gal	Vendor data	718 lb
PM10	2.46E+01	lb/M gal	Vendor data	151 lb
SO ₂	4.26E+00	lb/M gal	by material balance	26 lb
Ozone (VOC)	5.62E-02	lb/M gal	AP-42, Sect. 3.1	0.3 lb

Notes:

1) Fuel Consumption was based on fuel totalizer readings.

2) The average fuel sulfur content was 0.03% by weight at a fuel density of 7.1 lbs / gal.

3) Vendor data given for PM. PM10 assumed equivalent to PM.

4) The VOC emissions factor is based on AP-42 Section 3.1 Stationary Gas Turbines dated 04/00.

4) The Pb (lead) emissions factor is based on AP-42 Section 3.1 Stationary Gas Turbines dated 04/00.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 21

3.	Stack ID(s) (only if required on Stack Form)								
4.	Process TIER Code: 020599 FUEL COMB. INDUSTRIAL: INTERNAL COMBUSTION								
5.	SCC Code: <u>20200102</u> (8 digit number)		INDUST	RIAL: DIS	STILLATE OIL: RECIP				
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>			
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year <u>57 43</u>	Weeks/Year			
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) S	tart	00:00		End 23:59				
9.	Emissions based on: (name of material or other part	ameter, e.g.	"rock", "diesel'	', "vehicle n	niles traveled") DIESEL				
10.	Used (<i>input</i>) or Produced (<i>outp</i>	ut)							
11.	Annual Amount: (a number)				12. – Fuel Sulfur Conte	nt (in percent) <u>0.03</u> %			
13.	Units of Measure: (for example: tons, gallons, mill	ion cu ft, ac	res, units produc	ced etc.)	GALS				

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) ________0.001

	Emission	Factor (EF) Infor								
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
CO	130.0	M GALS	Ν	5						38 lbs
NOX	604.0	M GALS	Ν	5						176 lbs
PM-10	42.5	M GALS	Ν	5						12 lbs
SOX ¹	7.1-4.26	M GALS	Ν	3						1 lbs
VOC	49.3	M GALS	Ν	5						14 lbs
¹ Emission I	Factor updated w	vith fuel sulfur cont	ent. See Calc	ulation Shee	t No. 1					

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Chemical Storage Building Diesel PVNGS Source ID No.: C Generator SCC: 20200102 PERMIT NO.: 8600896, 030132

MC Process ID No.: 21 MC Stack No.: 21

Operating Hours	43	hrs
Fuel Use Rate	6.8	gal/hr
Total Fuel Use	292	gal (estimated)

CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	ANNUAL EMISSIONS
CO	1.30E+02	lb/M gal	AP-42, Sect. 3.3	38 lb
NO ₂	6.04E+02	lb/M gal	AP-42, Sect. 3.3	176 lb
PM10	4.25E+01	lb/M gal	AP-42, Sect. 3.3	12 lb
SO ₂	4.26E+00	lb/M gal	by material balance	1 lb
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	14 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) A maximum fuel sulfur content of 0.03 % by weight (4.3 lb/Mgal) was assumed for this calculation.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 22

2. Process Type/Description: PORTABLE COOLING TOWER (UNITS ARE BASED ON TDS-HRS, EF BACK CALCULATED)

3.	Stack ID(s) (only if required on Stack Form)								
4.	Process TIER Code: 140699		MISCE	LLANEOU	JS: COOLING T	OWERS			-
5.	SCC Code: <u>38500101</u> (8 digit number)		COOLI	NG TOWI	ERS: PROC COO	LING: MEC	CH DRAFT		-
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	25%	
7.	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	<u>2016 1,87</u> 2	2 Weeks/Y	ear	_
8.	<u>Typical Hours of Operation:</u> (military time) S	tart	00:00		End 23:	<u>59</u>			
9.	Emissions based on: (name of material or other part	ameter, e.g	. "rock", "diesel'	, "vehicle	miles traveled") H	RS OF OPE	RATION		-
10.	Used (<i>input</i>) or Produced (<i>outp</i>	ut)							
11.	Annual Amount: (a number) <u>1,872</u>				12. – Fuel Su	lfur Content ((in percent) _		%
13.	Units of Measure: (for example: tons, gallons, mill	ion cu ft, ac	eres, units produc	ed etc.)	HRS OF OP	ERATION	_		
					a				

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emissio	n Factor (EF) Informa			Control Device Information					
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10 ¹	19 -0.147	HR OF OPERATI	Ν	5						275 lbs
VOC ¹	0.0019	HR OF OPERATI	Ν	2						4 lbs

¹ Emissions factor back-calculated using AP-42 methodology and published VOC emissions factors. See Calculation Sheet No. 3

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- **5** = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- **10** =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- **6** =Estimated, based on a published value

PORTABLE COOLING SCC Code: 38500101	TOWER			MC Process ID No.: 22 MC Stack No.: 22	
Average TDS Operating Days Operating Hours	2,430 ppm 78 days 1872 hours				
POLLUTANTS PM10 VOC (Chloroform)	EMISSIONS 1.47E-01 1.90E-03	b/day b/day	SOURCE manufacturer's data CARB Reference	ANNUAL EMISSIONS 275 lb 4 lb	

Notes:

The emissions inventory forms allow the use of only one conversion factor unit per source (i.e. hours or TDS). "Hours of Operation" has been selected as the common unit. Emissions and emissions factors calculations are provided below.

Emissions factors for PM₁₀ and chloroform are derived from formulas below.

Where:CFR = circulating flow rate (gpm) (2 cells) = 6,000F1 = Liquid Drift Rate (fraction of flow rate) = 0.002% = 0.00002

Particulate Matter:

PM-10 (lb/hr) = CFR x F1 x 8.4 lb/gal x 60 min/hr x (1/1,000,000 ppm) x Average TDS PM-10 (lb/hr) = {6000 x 0.00002 x 8.4 x 60 x (1/1,000,000) x 2,430}= 0.147 lbs/hr

Chloroform:

The chloroform emissions factor of 20 kg-s/cubic m-yr, was obtained from Table 8.6-2, Emission Factor for Volatile Organic Compounds from "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for California State Air Resources Board, August 11, 1981.

Chloroform VOC Emissions Factor = (20 kg-s/cubic m-yr)(1 yr/365 d)(1 d / 24 hr)(2.2 lb / kg) (1 min / 60 s) (1 cubic m / 264.1 gal) (Circulating Water Flow in gal / min) Chloroform VOC Emissions Factor = (20 kg-s/m-yr)(1 yr/365 d)(1 d / 24 hr)(2.2 lb / kg) (1 min / 60 s) (1 cubic m / 264.1 gal) (6,000 gal/min)

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 23

2.	Process Type/Description	:: LOADING/UNLOADING SALT SILOS (2	2)

3.	Stack ID(s) (only if required on Stack Form) 23			
4.	Process TIER Code:071099	MISCELLANEOUS	INDUSTRIAL PROCESS	ES
5.	SCC Code: <u>30510498</u> (8 digit number)	BULK MATL UNLO	DADING: MINERAL	
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year 8760	Weeks/Year
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00	End 23:59	
9.	Emissions based on: (name of material or other parameter, e.g.	"rock", "diesel", "vehicle mi	les traveled") SALT	
10.	Used (<i>input</i>) or Produced (<i>output</i>)			
11.	Annual Amount: (a number)6,047		12. – Fuel Sulfur Content	(in percent)
13.	Units of Measure: (for example: tons, gallons, million cu ft, ac	res, units produced etc.)	<u>TONS</u>	
14.	Unit Conversion Factor: (if needed to convert Unit of Measure	to correlate with emission fa	ctor units)	

	Emission	Factor (EF) Infor	mation			Control Device Information				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	10.0	TON	Ν	2	100.000	23		99.000	3	<u>605</u> lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- = Material balance 3
- = Source Test Measurements (Stack Test) 4
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- 9 =Vendor Emission Factor
- **10** =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- **2** =Tested efficiency / other source test method
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Salt Silos	MC Process ID No.:	23
PVNGS Source ID No.: AMSSMS02A,B	MC Stack No.:	23
SCC: 30510498	MC Control ID No.:	23

Material Processed 6,047 T

CRITERIA POLLUTANT	EMISSIONS FA	CTOR	SOURCE	ANNUAL EMISSIONS
PM10	1.00E-01	lb/T loaded	by material balance	605 lb

Notes:

1) Vendor data given for PM. Assume PM $_{10}$ = 1/2 x PM.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

The salt delivered is a large particle size.

A conservative estimate of 1.0% going to the filter was used, 99% dropout inherent in transfer process.

3) Filter efficiency is 99%.

4) All of these factors are included in the emissions factor shown above.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 24

2. Process Type/Description: ILRT LEAK TEST RENTAL COMPRESSOR - REQUIRED EVERY 10 YEARS NOT PERFORMED IN 2002

3.	Stack ID(s) (only if required on Stack Form)	<u> </u>		
4.	Process TIER Code: 020599	FUEL COMB. INDUS	STRIAL: INTERNAL CO	MBUSTION
5.	SCC Code: <u>20200102</u> (8 digit number)	INDUSTRIAL: DIST	ILLATE OIL: RECIP	
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> % Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day 2	24 Days/Week <u>7</u>	Hours/Year <u>0</u>	Weeks/Year
8.	<u>Typical Hours of Operation:</u> (<i>military time</i>) Start	00:00	End 23:59	
9.	Emissions based on: (name of material or other paramet	ter, e.g. "rock", "diesel", "vehicle mile	es traveled") DIESEL,	
10.	Used (<i>input</i>) or Produced (<i>output</i>)			
] 11.	Annual Amount: (a number)		12. – Fuel Sulfur Content	(in percent)%
13.	Units of Measure: (for example: tons, gallons, million c	cu ft, acres, units produced etc.)	GALS	
14.	Unit Conversion Factor: (if needed to convert Unit of M	Aeasure to correlate with emission fac	tor units) 0.001	

	Emission Factor (EF) Information					Control	Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	0.74	M GALS	Ν	7						0 lbs
NOX	6.1	M GALS	Ν	7						0 lbs
PM-10	0.1	M GALS	Ν	7						0 lbs
SOX	0.0852	M GALS	Ν	7						0 lbs
VOC	0.02	M GALS	Ν	7						0 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 26

2. Process Type/Description: ABRASIVE BLAST MEDIA STORAGE HOPPER

]	Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	25 Estimated Actual Emissions
										23	25
	15	16	17	18	19	20	21	22	23	23	
		Emissio	n Factor (EF) Info	rmation			Control	Device Inf	ormation]
			example: tons, galle r: (if needed to conv			-	·	DNS nits)			
			umber) <u>48</u>		0	• • •			r Content (in pe	rcent)	[%] 0
1			r Produc				10	F 10.10			A /
			ame of material or o	-	ei, e.g. 10ck	, diesel, ve	enicle nines tra	iveled) <u>ADF</u>	ASIVE DLAS	I MILDIA	
8. 9.		-	ation: (military time			<u>00:00</u> " "diagal" "w		d <u>23:59</u>			
7. •				-	-	ys/Week					
6. 7		• •	Percent: Development: Development: Development: Ho			r-May <u>2</u>		n-Aug		-Nov <u>2</u> : eks/Year	
5.			l(8 digit num)5 0/ Ma		BLASTING:			Nor 2	0/
4. 5		TIER Code:		-h)			NEOUS IND				
3.		TIED C 1	071000			MICOPITA			DOCECCEC		

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- **10** =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- **6** =Estimated, based on a published value

			1
Abrasive Media Hopper	MC Process ID No.:	26	
PVNGS Source No None Assigned	MC Stack No.:	26	
SCC 30900201	MC Control ID No.:	26]

PERMIT NO.: 8600896, 030132

Material Loaded 48

т

CRITERIA POLLUTANT	EMISSIONS FACT	OR	SOURCE	ANNUAL EMISSIONS
PM10	2.00E-01	Ib/T loaded	by material balance	10 lb

Notes:

£.

ı.

Į.

1) Assumes 99% dropout rate of material due to large particle size. Only 1% goes to filter.

2) Filter efficiency based on typical value for HEPA filters of 99.00 %

3) Assumes all emissions are PM10.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 27

2. Process Type/Description: STEAM GENERATOR CHEMICAL CLEANING - ATMOS. DUMP VALVE STACKS UNITS 1, 2, 3

	O OC HX	Factor (EF) (number) 9.9 102 9.9	Unit (lbs per) HR OF OPERATI HR OF OPERATI HR OF OPERATI	Yes or No N N N N	Code* 2 2 2 2 2		Device ID	Device ID	Efficiency	Reference Code**	Emissions Olbs Olbs
		(number) 9.9	HR OF OPERATI	Yes or No N	Code*						<i>l</i> bs
		(number)	Unit (lbs per)	-		Efficiency					Emissions
I	Pollutant	Emission	Emission Factor	Controlled EF?	Calculation Method	Capture % Efficiency	Primary Control	Secondary Control	Control Device(s) %	Efficiency	Estimated Actual
	15	16	17	18	19	20	21	22	23	23	25
		Emiss	sion Factor (EF) Inform	mation		Control Device Information					
			ictor: (if needed to conve				· · · ·				
			for example: tons, gallo		u ft, acres, ur	nits produced		RS OF OPE		, <u> </u>	
			a number)				12	2. – Fuel Sulfi	ur Content (in p	ercent)	%
10). XUse	ed (input)	or Produce	ed (output)							
9.	Emissio	ons based or	: (name of material or of	ther paramet	er, e.g. "rock	", "diesel", "v	vehicle miles tr	aveled" <u>) HR</u>	S OF OPERAT	TION (VENT	<u>TIME)</u>
8.	Typical	Hours of O	peration: (military time	e) Start		<u>00:00</u>	Er	nd <u>23:59</u>	<u>)</u>		
7.	Normal	Operating S	Schedule: Hou	rs/Day <u>1</u>	<u>2</u> Day	ys/Week	<u>1</u> He	ours/Year	<u>12</u> W	eeks/Year	
6.	Seasona	ıl Throughp	ut Percent: Dec	-Feb	<u>0</u> % Ma	r-May	<u>0</u> % Ju	n-Aug	<u>0%</u> Se	p-Nov	<u>100%</u>
5.	SCC Co	ode: <u>39999</u>	9999 (8 digit numb	er)		MISC. IND	USTRIAL PC	ORCESS: OT	THER NOT CL	LASSIFIED	
4.	Process	TIER Code	: <u>071099</u>			MISCELLA	ANEOUS IND	USTRIAL P	ROCESSES		
3.	Stack II										

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- = Source Test Measurements (Stack Test) 4
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- **10** =Trade Group Emission Factor

- =Tested efficiency / EPA reference method 1
- =Tested efficiency / other source test method 2
- 3 =Design value from manufacturer
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 29

2. Process Type/Description: STEAM GENERATOR CHEMICAL CLEANING – EVAPORATOR CONDENSER DISCHARGE

3.	Stack II	D(s) (only if	requ	ired on Stack For	m) <u>2</u>	.9							
4.	Process	TIER Code	:	071099			MISCELL	ANEOUS IN	DUSTRIAL H	PROCESSES			
5.	SCC Co	ode: <u>39999</u>	999	(8 digit nur	nber)		MISC. IND	DUSTRIAL P	ROCESS: OT	THER NOT (CLASSIFIE	ED	
6.	Seasona	al Throughp	ut Pe	rcent: De	ec-Feb	<u>0</u> % Ma	ır-May	<u>0</u> %	un-Aug	<u>0%</u>	Sep-Nov	<u>100%</u>	
7.	Normal	Operating S	Schee	tule: He	ours/Day	<u>24</u> Da	ys/Week	7	Hours/Year	1080	Weeks/Year		
8.	Typical	Hours of O	perat	tion: (military tin	ne) Start		<u>00:00</u>]	End <u>23:5</u>	<u>)</u>			
9.	Emissic	ons based on	: (na	me of material or	other parame	ter, e.g. "rock	«", "diesel", "	vehicle miles	traveled") <u>GA</u>	LLONS PRO	DCESSED		
10.	Use	ed (input)	or	Produ	ced (output)								
11.	Annual	Amount: (a	a nun	nber) <u>0</u>				1	2. – Fuel Sulf	ur Content (in	percent) _		_ %
13.	Units of	f Measure: (for e	xample: tons, gal	lons, million c	eu ft, acres, u	nits produced	etc.)	GALS				
14.	Unit Co	onversion Fa	ctor:	(if needed to con	vert Unit of M	leasure to co	rrelate with e	mission factor	r units)				
		Emiss	sion	Factor (EF) Info	ormation			Contr	ol Device Int	formation			
	15	16		17	18	19	20	21	22	23	23		25
Ро	ollutant	Emission Fa (EF) (numb		Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	6 Efficie 6 Refere Code	nce	Estimated Actual Emissions
NH	3	0.032247	7	GALLONS	Ν	2							0 lbs
								_					

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- **10** =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 30

2. Process Type/Description: STEAM GENERATOR CHEMICAL CLEANING - EVAPORATOR COOLING TOWER

3.	Stack II	D(s) (only	if r	equired on Stack Form)	3	0						
4.	Process	TIER Co	de:	071099			MISCELL	ANEOUS IND	USTRIAL P	ROCESSES		
5.	SCC Co	ode: <u>399</u>	9999	99(8 digit numbe	er)		MISC. INI	DUSTRIAL PR	OCESS: OT	THER NOT CL	ASSIFIED	
6.	Seasona	al Throug	hput	Percent: Dec-	Feb	<u>0</u> % Ma	ur-May	<u>0</u> % Ju	n-Aug	<u>0%</u> Sep	o-Nov <u>10</u>	<u>0%</u>
7.	Normal	Operatin	g Sc	hedule: Hour	s/Day 2	<u>4</u> Da	ys/Week	<u>7</u> Ho	ours/Year	1080		
8.	Typical	Hours of	Ope	eration: (military time)) Start		<u>00:00</u>	En	d <u>23:59</u>	<u>)</u>		
9.	Emissic	ons based	on:	(name of material or oth	ner paramet	er, e.g. "rock	«", "diesel", "	vehicle miles tra	aveled") HO	URS OF OPER	ATION	
1(or Produced	-							
] 11	11. Annual Amount: (a number) θ 12. – Fuel Sulfur Content (in percent) %											
13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) HRS OF OPERATION												
14	• Unit Co	onversion	Fact	or: (if needed to conver	t Unit of M	leasure to co	rrelate with e	mission factor u	units)			
		Em	issio	on Factor (EF) Inform	nation			Contro	l Device Inf	formation		
	15	16		17	18	19	20	21	22	23	23	25
	Pollutant	Emissic Factor (E (numbe	EF)	Emission Factor Unit (lbs per)	Controlle d EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
P	M10	0.015		HR OF OPERATI	Ν	2						<i>0</i> lb

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>31</u>

2. Process Type/Description: <u>SECURITY SUBSTATION L EMERGENCY GENERATOR (179 HP)</u>

									-
3.	Stack ID(s) (only if required on Stack Form)								
4.	Process TIER Code: <u>020599</u>		<u>FUEL C</u>	<u>OMB. INDUS</u>	TRIAL: INTER	NAL COM	BUSTION		_
5.	SCC Code: <u>20200102</u> (8 digit number)		<u>INDUST</u>	RIAL: DISTA	ALLATE OIL: RE	ECIP			_
6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	<u>25%</u>	
7.	Normal Operating Schedule: Hours/Day	<u>24</u>	Days/Week	7	Hours/Year	2.3	Weeks/Year		
8.	Typical Hours of Operation: (military time) Start		00:00		End 23:59				
9.	Emissions based on: (name of material or other parameters)	eter, e.g. "	rock", "diesel"	, "vehicle mile	es traveled") DIES	<u>SEL</u>			_
10.	Used (<i>input</i>) or Produced (<i>output</i>)								
11.	Annual Amount: (a number) <u>19</u>				12. – Fuel Sulfu	r Content ((in percent)	0.03	_%
13.	Units of Measure: (for example: tons, gallons, million	cu ft, acre	es, units produc	ed etc.)	<u>GALS</u>				
14.	Unit Conversion Factor: (if needed to convert Unit of	Measure to	o correlate with	n emission fac	tor units) <u>0.001</u>				_

	Emission	Factor (EF) Infor	mation			Control Device Information				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
<u>C01</u>	<u>106</u>	<u>M GALS</u>	N	<u>7</u>						2 lbs
<u>NOX1</u>	<u>407</u>	<u>M GALS</u>	N	<u>7</u>						<mark>8</mark> lbs
<u>PM-101</u>	<u>14.6</u>	<u>M GALS</u>	N	<u>7</u>						<mark>0</mark> lbs
SOX2	<u>4.26</u>	<u>M GALS</u>	N	3						<mark>0</mark> lbs
<u>V0C1</u>	<u>6.34</u>	<u>M GALS</u>	N	7						<i>0</i> lbs

¹ Emissions factor from vendor testing. See Calculation Sheet No. 6

² Emission Factor updated with fuel sulfur content. See Calculation Sheet No. 1

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- **3** = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- **6** = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Security Substation L Emergency Diesel Generator MC Process ID No.: 31 PVNGS Source ID No.: AMQFNH01*A*Engine SCC: 20200102

Operating Hours	2.3	hr
Fuel Use Rate	8.2	gal/hr
Fuel Use	19	gal

CRITERIA POLLUTANT	EMISSIONS FACTOR	SOURCE	ANNUAL EMISSIONS
CO	1.06E+02 lb/Mgal	Vendor Data	2 lb
NO ₂	4.07E+02 lb/Mgal	Vendor Data	8 lb
PM10	1.46E+01 lb/Mgal	Vendor Data	0 lb
SO ₂	4.26E+00 lb/Mgal	by material balance	0 lb
Ozone (VOC)	6.34E+00 lb/Mgal	Vendor Data	0 lb

Notes:

- 1) A maximum fuel sulfur content of 0.03 % by weight at a fuel density of 7.1 lbs / gal was assumed.
- 2) Calculated from the following vendor emission data, engine power of 170 bhp, and fuel use rate of 8.2 gal / hr: CO (lb/Mgal) = [(2.33 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 106 lb / Mgal NOx (lb/hr) = [(8.92 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 407 lb NOx / Mgal PM10 (lb/hr) = [(0.33 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 14.6 lb PM10 / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: **32**

2. Process Type/Description: SECURITY HUBS 2, 3, 4 EMERGENCY DIESEL GENERATORS (TOTAL OF 3 ENGINES AT 35 HP EACH)

3.	Stack ID(s) (only if required on Stack Form)						
4.	Process TIER Code: <u>020599</u>	_	<u>FUEL C</u>	OMB. INL	DUSTRIAL: INTERNAL COM	<u>MBUSTION</u>	_
5.	SCC Code: <u>20200102</u> (8 digit number)		<u>INDUST</u>	TRIAL: DI	STILLATE OIL - RECIP		_
6.	Seasonal Throughput Percent: Dec-Feb	<u></u> %	Mar-May	<u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>	
7.	Normal Operating Schedule: Hours/D	ay <u>24</u>	Days/Week	7	Hours/Year <u>9.5</u>	Weeks/Year	
8.	Typical Hours of Operation: (military time)	Start	00:00		End <u>23:59</u>		
9.	Emissions based on: (name of material or other	parameter, e.g	. "rock", "diesel"	, "vehicle 1	miles traveled") DIESEL (AG	GREGATE)	_
10.	Used (<i>input</i>) or Produced (a	utput)					
11.	Annual Amount: (a number) <u>20</u>				12. – Fuel Sulfur Content	t (in percent) <u>0.03</u>	_ %
13.	Units of Measure: (for example: tons, gallons, r	illion cu ft, ac	eres, units produc	ed etc.)	GALS		
1 4			. 1		C (· ·) 0.001		

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) 0.001

	Emission	Factor (EF) Infor	mation			Control	Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
<u>C0</u>	<u>54.8</u>	<u>M GALS</u>	N	<u>7</u>						1 lbs
NOX	<u>385</u>	<u>M GALS</u>	N	<u>7</u>						<mark>8</mark> lbs
<u>PM-10</u>	<u>7.14</u>	<u>M GALS</u>	N	<u>7</u>						0 lbs
<u>SOX</u>	<u>4.26</u>	<u>M GALS</u>	N	<u>3</u>						0 lbs
VOC	<u>21.9</u>	<u>M GALS</u>	N	<u>7</u>						0 lbs

¹ Emissions factor from vendor testing.. See Calculation Sheet No. 7

² Emission Factor updated with fuel sulfur content. See Calculation Sheet No. 1

*Calculation Method Codes

- = Continuous Emissions Monitoring Measurements 1
- = Best Guess/ Engineering Judgment 2
- = Material balance 3
- = Source Test Measurements (Stack Test) 4 5
- = AP-42/Fire Method or Emission Factor

- **6** = State or Local Agency Emission Factor
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- =Tested efficiency / EPA reference method 1
- =Tested efficiency / other source test method 2
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Security Hubs 2-4 Emergency Diesel Generators MC Process ID No.: 32 PVNGS Source ID No.: AMQFNH01*B*Engine; AMQFNH01*C*Engine; AMQFNH01*D*Engine SCC: 20200102

Operating Hours (aggregate) Fuel Use Rate Fuel Use	9.5 2.1 20	hr gal/hr gal		
CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	ANNUAL EMISSIONS
CO	5.48E+01	lb/Mgal	Vendor Data	1 lb
NO ₂	3.85E+02	lb/Mgal	Vendor Data	8 lb
PM10	7.14E+00	lb/Mgal	Vendor Data	0 lb
SO ₂	4.26E+00	lb/Mgal	by material balance	0 lb
Ozone (VOC)	2.19E+01	ib/Mgal	Vendor Data	0 lb

Notes:

- 1) A maximum fuel sulfur content of 0.03 % by weight at a fuel density of 7.1 lbs / gal was assumed.
- 2) Calculated from the following vendor emission data, engine power of 170 bhp, and fuel use rate of 2.1 gal / hr: CO (lb/Mgal) = [(1.49 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 54.8 lb / Mgal NOx (lb/hr) = [(10.5 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 385 lb NOx / Mgal PM10 (lb/hr) = [(0.20 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 7.14 lb PM10 / Mgal VOC (lb/hr) = [0.60 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 21.9 lb VOC / Mgal

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>33</u>

2. Process Type/Description: <u>MISC. DIESEL FUEL BURNING COMBUSTION EQUIPMENT (< 10 MMBTU / HR)</u>

3.	Stack ID	O(s) (only if requ	ired on Stack Form	ı)							
4.]	Process	TIER Code:	<u>010202</u>			FUEL COM	B. ELEC. UT	IL.: OIL-DIS	TALLATE		
5.	SCC Co	de: <u>10200503</u>	(8 digit numb	per)		<u>INDUSTRIA</u>	L; DISTALL	<u> ATE OIL < 1</u>	<u>0 MMBTU</u>		
6.	Seasonal	l Throughput Pe	rcent: Dec	-Feb	<u>25</u> % Ma	r-May <u>2</u>	<u>5</u> % Ju	n-Aug	<u>25</u> % Sej	p-Nov <u>25</u>	<u>%</u>
7.	Normal	Operating Scheo	lule: Hou	rs/Day 2	24 Day	ys/Week	<u>7</u> Ho	ours/Year		Week	s/Year
8.	Typical	Hours of Operat	ion: (military time	e) Start		<u>00:00</u>	Er	nd <u>23:59</u>			
9.	Emissio	ns based on: (na	me of material or o	ther paramet	er, e.g. "rock	a", "diesel", "ve	ehicle miles tra	aveled") DIE	<u>SEL</u>		
11 13. I	Annual Annual A	Amount: (<i>a nun</i> Measure: (for e	<i>ber</i>) <u>53</u> xample: tons, gallo (if needed to conve	ns, million c		-	etc.) <u>G</u>	<u>4LS</u>		ercent) <u>0.0</u>	3%
	Γ	Emission	Factor (EF) Infor	mation			Contro	l Device Inf	ormation		
1	15	16	17	18	19	20	21	22	23	23	25
Pol	lutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF?	Calculation Method	Capture % Efficiency	Primary Control	Secondary Control	Control Device(s) %	Efficiency Reference	Estimated Actual Emissions
				Yes or No	Code*		Device ID	Device ID	Efficiency	Code**	
<u>C0</u>		<u>5</u>	<u>M GALS</u>	Yes or No	Code*		Device ID	Device ID	Efficiency	Code**	<i>0</i> lt
<u>CO</u> <u>NOX</u>	ĸ		<u>M GALS</u> <u>M GALS</u>				Device ID	Device ID	Efficiency	Code**	
	_	5		<u>N</u>	<u>6</u>		Device ID	Device ID	Efficiency	Code**	<i>1</i> Ik
NOX	<u>101</u>	<u>5</u> <u>20</u>	<u>M GALS</u>	<u>N</u> <u>N</u>	<u>6</u> <u>6</u>		Device ID	Device ID		Code**	0 11 1 11 0 11 0 11
NOX PM-	<u>101</u> (<u>2</u>	<u>5</u> <u>20</u> <u>2</u>	<u>M GALS</u> <u>M GALS</u>	<u>N</u> <u>N</u> <u>N</u>	<u>6</u> <u>6</u> <u>6</u>		Device ID			Code**	1 lk 0 lk

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- **4** = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PERMIT NO.: 8600896, 030132

Misc Diesel Fuel Burning Combustion Equipment	MC Process ID No.: 33
PVNGS Source ID No.: None	MC Stack No.: None
SCC: 10200503	

Fuel Consumption 53 gal

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	ANNUAL EMISSIONS	
СО	5.00E+00	lb/M gal	AP-42, Sect. 1.3	0 lb	
NO ₂	2.00E+01	lb/M gal	AP-42, Sect. 1.3	1 lb	
PM10	2.00E+00	lb/M gal	AP-42, Sect. 1.3	0.1 lb	
SO ₂	4.26E+00	lb/M gal	by material balance	0 lb	
Ozone (VOC)	2.00E-01	lb/M gal	AP-42, Sect. 1.3	0.01 lb	

Notes:

1) Emissions are based on the metered fuel consumption.

2) The average fuel sulfur content was 0.03% by weight at a fuel density of 7.1 lbs / gal.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>34</u>

2. Process Type/Description: <u>MISC. LPG BURNING COMBUSTION EQUIPMENT</u>

3.		D(s) (only if re	1									
4.	Process	TIER Code:	<u>01</u>	<u>0301</u>		<u>FUEL COMB. ELEC. UTIL.: GAS</u>						
5.	SCC Co	ode: <u>1020100</u>	<u>)2 (</u>	8 digit numb	per)	INDUSTRIAL; LPG: PROPANE						
6.	Seasonal Throughput Percent: Dec-Feb			-Feb	<mark>25</mark> % Ma	ur-May	<u>5</u> % Ju	n-Aug	<u>25</u> % Sep	-Nov <u>25</u>	<u>//o</u>	
7.	Normal Operating Schedule: Hours/Day _			rs/Day	24 Da	ys/Week	<u>7</u> Ho	ours/Year	<u>1</u> We	eks/Year		
8.	Typical	Hours of Ope	ration: (military time	e) Start		<u>00:00</u>	En	d <u>23:59</u>			
9.	Emissio	ns based on: (name of 1	naterial or o	ther paramet	er, e.g. "rocl	k", "diesel", "v	ehicle miles tra	aveled") <u>LPG</u>	<u>(PROPANE)</u>		
10.	Use	d (<i>input</i>)	or	Produce	ed (<i>output</i>)							
		Amount: (a n						12	. – Fuel Sulfu	ır Content (in pe	rcent)	%
13.	Units of	Measure: (fo	r example	e: tons, gallo	ns, million c	u ft, acres, u	nits produced e	etc.) <u>G</u>	4 <u>LS</u>			
14.	Unit Co	nversion Fact	or: (if nee	eded to conve	ert Unit of M	leasure to co	rrelate with en	nission factor u	units) <u>0.001</u>	1		
		Emissic	n Factor	(EF) Infor	mation			Contro	l Device Inf	ormation		
	15	16		17	18	19	20	21	22	23	23	25
Po	ollutant	Emission Facto (EF) (number		ssion Factor iit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
<i>C0</i>	1	3.2	M G.	ALS	N	6						0 lbs
NO	X^1	<u>19</u>	M G.	ALS	N	6						0 lbs
110	<i>I-10</i> ¹	0.6	M G	ALS	N	6						0 lbs
РМ	X^{-1}	0.02	M G	ALS	N	6			ļ			0 lbs
PM SO		0.6	M G	ALS	N	6						0 lbs
РМ	<i>C</i> ¹											

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- **2** = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- **3** =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- **6** =Estimated, based on a published value

24

gal

PERMIT NO.: 8600896, 030132

Misc LPG Burning Combustion Equipment	MC Process ID No.: 34
PVNGS Source ID No.: None	MC Stack No.: None
SCC: 10201002	

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	ANNUAL EMISSIONS
СО	3.20E+00	lb/M gal	Maricopa County	0.08 lb
NO ₂	1.90E+01	lb/M gal	Maricopa County	0.46 lb
PM10	6.00E-01	lb/M gal	Maricopa County	0.01 lb
SO ₂	2.00E-02	lb/M gal	Maricopa County	0.00 lb
Ozone (VOC)	6.00E-01	lb/M gal	Maricopa County	0.01 lb

Notes:

Fuel Consumption

1) A Sulfur content for LPG was assumed to be the same as butane, 0.18 gr per cubic meter, per footnote in Table 1.5-2 of AP-42.

EVAPORATIVE PROCESS FORMS

The Evaporative Process Forms were preprinted with much of the process information.

Van refueling operations from a bulk delivery vessel are no longer conducted. The gasoline emissions for working and Standing losses, Process ID's 51, 52, 54, and 55, were determined using EPA Tanks 4.09b computer program. Emissions for loading operations, Process ID's 53, 56, and 57, were determined using County emissions factors. Supplemental emissions information is provided under the section titled, "Gasoline Tank Emissions."

Evaporative Process ID's 60 through 67 were determined from site wide product use information by merging database information from material purchase and distribution, material chemical information, and daily user logs. The amount of materials and VOC emissions were determined by this compilation. The emissions factor was back-calculated from these results. This submittal includes the summary information for each evaporative process. Detailed information is maintained and available upon request.

A detailed ammonia emissions analysis for water treatment activities was conducted for the 1998 emissions summary. During 2004 this analysis was updated based on current emissions calculations and use data. These results are now used as a basis to estimate ammonia emissions. The summary data is provided for Process ID 90, Ammonia Releases.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: HORIZONTAL FIXED ROOF STORAGE TANKS, CALC USING EPA TANKS 4.09B

- 2. Process TIER Code: 090212
 STORAGE & TRANSPORT: PETROLEUM PROD NON-RESALE

 3. Seasonal Throughput Percent: Dec-Feb 25% Mar-May 25% Jun-Aug 25% Sep-Nov 25%

 4. Normal Operating Schedule: Hours/Day 24
 Days/Week 7
- 5. Typical Hours of Operation: (*military time*)

Start **00:00** End **23:59**

6	7	8	9		10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
51		GASOLINE (AS1), WORKING	60,605	GL	VOC	0.00981 0.00980	GAL		%		%		594
52		GASOLINE (AS1), STANDING	2,622	LB	VOC	1.0	LB		%		%		2,622
54		GASOLINE (AS2), WORKING	60,605	GL	VOC	0.00981 0.00980	GAL		%		%		594
55		GASOLINE (AS2), STANDING	3,935	LB	VOC	1.0	LB		%		%		3,935

The emissions for Process ID's 51 through 55 were determined using the EPA Tanks 4.09b computer program. See the section "Gasoline Tank Emissions" for more information on these processes.

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 = Design value from manufacturer
- 6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: GAS. LOADING LOSSES: #53 CONSUMER; #56 TO REFUEL TRUCK; #57 VANS FROM

	TRUCKS	
2.	Process TIER Code: 090212	STORAGE & TRANSPORT: PETROLEUM PROD – NON-RESALE
3.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %
4.	Normal Operating Schedule: Hours/Day 24	Days/Week <u>7</u> Hours/Year <u>8760</u>
5.	Typical Hours of Operation: (military time)	Start <u>00:00</u> End <u>23:59</u>

6	7	8	9		10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
53		GASOLINE (AS1), LOADING	60,605	GL	VOC	0.0117	GAL		%		%		709
56	56	GASOLINE (AS2), LOADING	0	GL	VOC	0.01045	GAL		100.00 %	56	%	6	0
57		GASOLINE (AS2), FUELING	0	GL	VOC	0.0117	GAL		%		%		0
See the s	See the section "Gasoline Tank Emissions" for more information on these processes.												

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 = Design value from manufacturer
- 6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: ADHESIVES (GLUES, EPOXY GLUES, CAULKS, ETC.)

2.	Process TIER Code: 080401	SOLVENT USE: SURFACE COATING- INDUSTRIAL ADHESIVES
3.	Seasonal Throughput Percent: Dec-Feb 25	% Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %
4.	Normal Operating Schedule: Hours/Day 24	Days/Week <u>7</u> Hours/Year <u>8760</u>
5.	Typical Hours of Operation: (military time)	Start 00:00 End 23:59

6	7	8	9		10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
60		ADHESIVES	4,485	GL	VOC	0.831 1.7781	GAL		%		%		7975
¹ Emissic	¹ Emissions factor back-calculated using material balance. See Calculation Sheet No. 4.												

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method 5 =Calculated, based on material balance
- 3 = Design value from manufacturer

4 = Best Guess / engineering estimate

- - 6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: <u>CLEANERS, DEGREASERS, ETC.</u>

2.	Process TIER Code: 080103	SOLVENT USE: DEGREASING – COLD CLEANING	
3.	Seasonal Throughput Percent: Dec-Feb	6 Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %	
4.	Normal Operating Schedule: Hours/Day 24	Days/Week <u>7</u> Hours/Year <u>8760</u>	
5.	Typical Hours of Operation: (military time)	Start 00:00 End 23:59	

6	7	8	9		10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
61		CLEANERS	550	GL	VOC	3.7432 4.7545	GAL	470	%		%		2,145
¹ Emissions factor back-calculated using material balance. See Calculation Sheet No. 4. Refer to Waste Stream Number 01 for detailed information regarding disposal.													

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance

3 = Design value from manufacturer

6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: <u>LUBRICANTS</u>

2.	Process TIER Code: 071099	MISCELLANEOUS INDUSTRIAL PROCESSES									
3.	Seasonal Throughput Percent: Dec-Feb 25	% Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %									
4.	Normal Operating Schedule: Hours/Day 24	Days/Week <u>7</u> Hours/Year <u>8760</u>									
5.	Typical Hours of Operation: (military time)	Start 00:00 End 23:59									

6	7	8	9	_	10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
62		LUBRICANTS	626	GL	VOC	3.36 1.024	GAL		%		%		641
¹ Emissio	¹ Emissions factor back-calculated using material balance. See Calculation Sheet No. 4.												

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method 4 = Best Guess / engineering estimate
- 2 = Tested efficiency / other source test method 5 = Calculated, based on material balance

3 = Design value from manufacturer

6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: MISCELLANEOUS (INCLUDES LABORATORY & WATER TREATMENT CHEMICALS, INKS, JANITORIAL

	ETC)	
2.	Process TIER Code: 071099	MISCELLANEOUS INDUSTRIAL PROCESSES
3.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	6 Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %
4.	Normal Operating Schedule: Hours/Day 24	Days/Week 7 Hours/Year 8760
5.	Typical Hours of Operation: (military time)	Start 00:00 End 23:59

6	7	8	9		10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
63		MISC CHEMICALS	2,845	GL	VOC	1.2624 1.3128	GAL		%		%		3,735
¹ Emissio	¹ Emissions factor back-calculated using material balance. See Calculation Sheet No. 4.												

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 = Design value from manufacturer
 - 6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: <u>GENERAL MAINTENANCE PAINTING (PAINTS, SOLVENTS, THINNERS, SEALANTS, ETC.)</u>

2.	Process TIER Code:080419		SOLVENT	<u>USE: SURFACE</u>	E COATING-	MAINTENANCE	COATING
3.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May 25	% Jun-Au	g <u>25</u> %	Sep-Nov 25	<u>.</u> %
4.	Normal Operating Schedule: Hours/Day	24	Days/Week <u>7</u> H	lours/Year <u>87</u>	<u>60</u>		
5.	Typical Hours of Operation: (military time)		Start 00:00 End	23:59			

6	7	8	9		10	11		12	13	14			15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
64		COATINGS	3,933	GL	VOC	1.5844 1.1447	GAL		%		%		4,502
65		SOLVENTS, THINNERS	354	GL	VOC	7.115 7.0904	GAL	1,069	%		%		1,441
66		SURFACE PREP FILLERS, CLNRS, ETC	743	GL	VOC	2.0899 0.7873	GAL		%		%		585
¹ Emissio	¹ Emissions factor back-calculated using material balance. See Calculation Sheet No.4.												

Refer to Waste Stream Number 02 for detailed information regarding disposal.

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance

3 = Design value from manufacturer

6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: **ASPHALT PAVING OPERATIONS**

2. Process TIER Code:080602	SOLVENT USE: NONINDUSTRIAL – OTHER ASPHALT
3. Seasonal Throughput Percent: Dec-Feb	<u>25</u> % Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %
4. Normal Operating Schedule: Hours/Day	24 Days/Week 7 Hours/Year 8760
5. Typical Hours of Operation: (<i>military time</i>)) Start <u>00:00</u> End <u>23:59</u>

6	7	8	9		10	11	-	12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
67		ASPHALT PRODUCTS	3,070	GL	VOC	0.2500 1.1625	GAL		%		%		3,569
¹ Emissic	¹ Emissions factor back-calculated using material balance. See Calculation Sheet No. 4.												

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 = Design value from manufacturer
- 6 = Estimated, based on a published value

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: AMMONIA RELEASES FROM CIRCULATING WATER SYSTEMS

2.	Process TIER Code: 071099	MISCELLANEOUS INDUSTRIAL PROCESSES
3.	Seasonal Throughput Percent: Dec-Feb 25	% Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %
4.	Normal Operating Schedule: Hours/Day 24	Days/Week <u>7</u> Hours/Year <u>8760</u>
5.	Typical Hours of Operation: (military time)	Start <u>00:00</u> End <u>23:59</u>

6	7	8	9		10	11		12	13		14		15
Process ID	Stack ID(s)	Material Type	Annual Usage Input	lb or gal	VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
90		AMMONIUM HYDROXIDE	592,298	LB	NHX	0.2996 0.02522	LB		%		%		14,938
¹ Emissio	¹ Emissions factor back-calculated using material balance. See Calculation Sheet No. 9												

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 = Design value from manufacturer
 - 6 = Estimated, based on a published value

Gasoline Tank Emissions

The EPA Tanks 4.09b computer program was used to determine the working and standing losses for gasoline storage tanks. A printout of the reports from that program is provided in this section.

The loading and filling losses are determined based on the emissions factors provided by Maricopa County.

GASOLINE EMISSIONS YEAR 2004

This sheet contains the Emissions Calculations and Emissions Factors Information for the Year 2004 Gasoline Emissions. The Gasoline VOC Emissions for 2004 have been reduced from the previous years primarily due to decreased usage resulting from the elimination of van refueling activities.

The Gasoline Working and Standing (or Breathing) Emissions (Sources 51, 52, 54, and 55) are determined by the EPA 4.09b computer model (computer printouts are attached). Gasoline Loading Emissions (Source 53, 56, and 57) are based on County Emissions Factors.

Since van refueling operations using a bulk delivery truck were discontinued in 2000, there was no direct distribution to vehicles from Tank AS-2. The contents of Tank AS-2 were transferred to Tank AS-1 for distribution to vehicles. As a result, there were no vehicle fuel loading losses from Tank AS-2. In addition, emission estimates conservatively assume that the total throughput for the year went through both tanks and includes working and standing losses from each tank.

2004 Gasoline Tank Throughput (gallons)

AS-1 = 60,605	Assumes a throughput volume equal to the amount of fuel delivered to both tanks (60,605 gal).
AS-2 = 60,605	Assumes a throughput volume equal to the total amount of fuel delivered. Assumed contents of tank were transferred to AS-1 for delivery to vehicles.

Average Reid Vapor Pressure Readings = 9 (maximum value based on fuel receipt records)

Gasoline Working and Standing Emissions

The gasoline working and standing (or breathing) emissions are determined by the EPA Tanks 4.09b program. The program uses the tank characteristics (including tank size), fuel throughput for each gasoline tank, fuel characteristics, and regional weather data. The working and standing emissions determined by the program for the year 2004 are:

Tank No.	Working Losses (lbs)	Standing Losses (Ibs)
AS-1	594	2,622
AS-2	594	3,935

The Emissions Factors for the Standing Losses are 1.0. Therefore, the Annual Usage is equal to the Estimated Emissions.

The Emissions Factors for the Working Losses are back-calculated from the throughput and calculated emissions. For example:

AS-1 Estimated Emissions = 594 lbs; and throughput = 60,605 gal.

AS-1 Working Loss Emissions Factor = 594 lbs / 60,605 gal = 0.00980 lbs/gal

Gasoline Loading Losses

The gasoline loading losses are based on County emissions factors. Since van refueling operations using a bulk delivery vehicle stopped, there is no direct distribution of gasoline from Tank AS-2. Therefore, all loading losses were assumed to occur at Tank AS-1 and were based on the total throughput of Tank AS-1 (assumes that the contents of Tank AS-2 passed through AS-1). A sample calculation is provided below:

AS-1 Throughput = 60,605 gal and the Loading Emissions factor preprinted on emissions form = 0.0117AS-1 Emissions = 60,605 gal x 0.0117 lb/gal = 709 lbs

GASOLINE EMISSIONS YEAR 2004

Source No. and Description	Annual Usage	Emissions Factor	Emissions Calculation Method	Control Device Efficiency	VOC Emissions	
			AS1			
51 working losses	60,605 gal	0.00980 lb/gal	Tanks 4.0	NA	594 lbs	
52 standing losses	2,622 lb	1.0000 lb/lb	Tanks 4.0	NA	2,622 lbs	
53 loading losses vehicle fueling	60,605 gal	0.0117 lb/gal	County Emissions Factor	NA	709 lbs	
			AS2			
54 working losses	60,605 gai	0.00980 lb/gal	Tanks 4.0	NA	594 lbs	
55 standing losses	3,935 lb	1.0000 lb/lb	Tanks 4.0	NA	3,935 lbs	
56 loading losses refueling truck	0 gal	0.01045 lb/gai	County Emissions Factor	90%	0 lbs	
57 loading losses for remote van fueling	0 gal	0.0117 lb/gal	County Emissions Factor	NA	0 lbs	

Total

8,454 lbs

TANKS 4.0 Emissions Report - Summary Format Tank Identification and Physical Characteristics

Identification

Identification	
User Identification:	AS-1 (2004 Emissions)
City:	Tonopah
State:	Arizona
Company:	Palo Verde Nuclear Generating Station - APS
Type of Tank:	Horizontal Tank
Description:	Small gasoline tank at autoshop
·	

Tank Dimensions

ank Dimensions		
Shell Length (ft):		32.00
Diameter (ft):		7.90
Volume (gallons):		12,000.00
Turnovers:		5.05
Net Throughput (gal/yr):		60,605.00
Is Tank Heated (y/n):	N	
Is Tank Underground (y/n):	Ν	

Paint Characteristics

Shell Color/Shade:	White/White
Shell Condition:	Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	-0.06 0.12

Meteorological Data used in Emissions Calculations: Phoenix, Arizona (Avg Atmospheric Pressure = 14.12 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

			· ··· -		Liquid								
	Manla	Tempera	iquid Surf. tures (deg F) Min.	Max.	Bulk Temp (deg F)	Vapor F Avg.	^o ressures (psia) Min.	Max.	Vapor Mol. Weight	Liquid Mass Fract	Vapor Mass Fract		Basis for Vapor Pressure Calculations
Mixture/Component	Month	Avg	WINT.		(dog i)	,							
Gasoline (RVP 9)	Ail	75,04	68.08	81.99	72.61	6,1481	5.3933	6.9851	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3

-

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

	· - ··	 	Losses(lbs)	
Components		 Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 9)		 594.40	2,621.95	3,216.35

TANKS 4.0 **Emissions Report - Summary Format** Tank Identification and Physical Characteristics

Identification

Identification	
User Identification:	AS-2 (2004 Emissions)
City:	Tonopah
State:	Arizona
Company:	Palo Verde Nuclear Generating Station - APS
Type of Tank:	Horizontal Tank
Description:	Large gasoline tank at autoshop
Taul Dimensions	

Tank Dimensions

dirk Dimensions		
Shell Length (ft):		37.00
Diameter (ft):		9.50
Volume (gallons):		20,000.00
Turnovers:		3.03
Net Throughput (gal/yr):		60,605.00
Is Tank Heated (y/n)	N	
Is Tank Underground (y/n):	Ν	

Paint Characteristics

Paint Characteristics Shell Color/Shade: Shell Condition:	White/White Good	
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig):	-0.06 0.12	

Meteorological Data used in Emissions Calculations: Phoenix, Arizona (Avg Atmospheric Pressure = 14.12 psia)

TANKS 4.0 Emissions Report - Summary Format Liquid Contents of Storage Tank

					Liquid			n					
			y Liquid Surf. eratures (deg F)		Bulk Temp.		Pressures (psia)	Max	Vapor Mol. Weight	Liquid Mass Fract	Vapor Mass Fract.		Basis for Vapor Pressure Calculations
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	vveigin		r laci.		
Gasoline (RVP 9)	All	75.04	68.08	81.99	72.61	6.1481	5.3933	6.9851	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3

TANKS 4.0 Emissions Report - Summary Format Individual Tank Emission Totals

Annual Emissions Report

_ · · · · · · · ·			Loscoc(lbc)	
· · · · · · · · · · · · · · · ·				
Components		Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 9)		594.40	3,935.43	4,529.83
	 A second sec second second sec		and the second	

TANKS 4.0 Emissions Report - Summary Format Total Emissions Summaries - All Tanks in Report

Annual Emissions Report

Tank Identification AS-1 (2004 Emissions)	Palo Verde Nuclear Generating	Horizontal Tank	Tonopah, Arizona	Losses (lbs) 3,216.35
AS-2 (2004 Emissions)	Station - APS Palo Verde Nuclear Generating Station - APS	Horizontal Tank	Tonopah, Arizona	4,529.83
Total Emissions for all Tanks:			n an	7,746.17

Additional emissions calculation information has been provided for the following processes:

Calculation Sheet No. 1 – Diesel Fuel Combustion Sources (Process ID 7, 9, 10, 11, 12, 13, 14, 16, 20, 21, 24, 31, 32, 33) Calculation Sheet No. 2 – Unit Cooling Towers (Process ID 17) Calculation Sheet No. 3 – Portable Cooling Tower (Process ID 22) Calculation Sheet No. 4 – Various Evaporative Processes (Process ID 60, 61, 62, 63, 64, 65, 66, 67) Calculation Sheet No. 5 – Auxiliary Boiler (Process ID 16) Calculation Sheet No. 6 – Security Substation L EDG (Process ID 31) Calculation Sheet No. 7 – Security Hubs 2, 3, 4 EDGs (Process ID 32) Calculation Sheet No. 8 – Misc. Diesel Burning Combustion Equipment (Process ID 33) Calculation Sheet No. 9 – Misc. LPG Burning Combustion Equipment (Process ID 34) Calculation Sheet No. 10 - Ammonia Releases from Circulating Water Systems (Process ID 90)

Permit Number: **8600896, 030132**

Process ID No.	7, 9, 10	, 11, 12, 13, 14, 16, 20, 21, 24, 31, 32, 33	
Process Descript	tion: Di	esel Combustion Sources	_
Description of Co	prrection:	Calculation of Fuel Sulfur Content and SOX Emission Factors	_

 SO_2 emissions are derived from the fuel sulfur content. All sulfur in the fuel is assumed to be converted to SO_2 during combustion. The following method was used to calculate the SO_2 emissions factor.

SO₂ Emissions Factor (Ib SO₂ / M GAL) Calculation Method:

SO₂ Emissions Factor = Fuel Sulfur Content (%S) x (1 lb S/100 lb fuel) x (2 lb SO₂/lb S) x (7.1 lb fuel/gal) x (1000 gal/M GAL)

= Fuel Sulfur Content (%S) x (142)

SO₂ Emission Factors:

Diesel fuel was sampled and analyzed for fuel sulfur content during the year 2004. Emissions factors were calculated using the above formula and the average fuel sulfur content for each combustion source. The table below shows the fuel sulfur content and the corresponding emissions factor for each Process ID that combusts diesel fuel:

General Process ID	Process Description	Fuel Sulfur Content (% S by wt)	Emission Factor (Ib SO ₂ / M GAL)
7	Miscellaneous Portable Diesel Engines	0.03	4.26
9	Unit Emergency Diesel Generators	0.04	5.68
10	Technical Support Center Diesel Generator	0.21	29.82
11	Security Diesel Generator	0.06	8.52
12	Fire Protection Pump Diesels	0.04	5.68
13	Administration Building A Diesel Generator	0.03	4.26
14	Administration Building B Diesel Generator	0.04	5.68
16	Auxiliary Boiler	0.04	5.68
20	Emergency Gas Turbine Generators	0.03	4.26
21	Chemical Storage Building Diesel Generator	0.03	4.26
24	ILRT Testing Rental Compressor	*	*
31	Security Substation L Diesel Generator	0.03	4.26
32	Security Hubs 2, 3, 4 Diesel Generators	0.03	4.26
33	Misc. Diesel Burning Combustion Equipment	0.03	4.26

* There were no emissions from this process during the year. The emissions factor was not calculated.

Permit Number:	8600896,	030132

Process ID No. 17

Process Description: Unit Cooling Towers

Description of Correction: Updated to PM-10 and VOC Emission Factors

The methodology for calculating PM-10 and VOC Emissions from the Unit Cooling Towers was re-evaluated as part of the Non-Title V permit application update. The methodology is a refinement of the AP-42 method that calculated a critical droplet diameter that contains enough dissolved solids that will create a 10-micron diameter solid particle upon evaporation of the water. Based on a measured particle size distribution, the mass fraction of droplets less than the critical droplet diameter can then be used to estimate the PM-10 fraction emitted from the towers. The method was reviewed by the USEPA and approved for use at PVNGS (see attached correspondence)

VOC emissions from the cooling towers were re-assessed. Chloroform emissions were calculated using an emissions factor obtained from Table 8.6-2 in "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for the California State Air Resources Board and dated August 11, 1981.

The water treatment chemicals used in the cooling tower were evaluated for VOC content. Some of the chemicals contained VOC as measured using EPA test method 24. EPA test method 24 is used to measure VOC in paints and inks by heating small weighed quantity of the paint / ink in an oven to drive off organic solvents and water. The dried material is weighed again to determine the weight of material lost. The loss is corrected for water and exempt compounds to determine VOC content. However, this method may not be applicable to very dilute concentrations water treatments chemicals (ppm levels) since the vapor pressure of the water treatment chemical and operating temperature of the cooling towers is very low. However, it was conservatively assumed that all of the VOC added to the towers evaporated.

The following sections describe the methods used to derive the emissions factors used.

PM-10 Emission Factor Calculation Method:

The attached document provides the formula approved by the USEPA for calculating PM-10 emissions. A maximum PM-10 emissions rate, based on days of operation with a Total Dissolved Solids (TDS) concentration in the range of 0 to 30,000 ppm was calculated to be 0.03196 Tons PM-10 / day. This factor was used to determine the emissions factor as follows:

PM-10 Emissions Factor = (0.03196 Tons PM-10 / Day) (2000 lbs / Ton) (1 Day / 24 hr) = 2.663 lbs / hr

Permit Number: 8600896, 030132

Process ID No. 17

Process Description: Unit Cooling Towers

Description of Correction: Updated to PM-10 and VOC Emission Factors

VOC Emission Factor Calculation Method:

The cooling towers were examined for VOC emissions. Testing indicates that chloroform is formed as a by-product when the cooling tower circulating water is chlorinated. The amount of chloroform produced can vary widely. Chloroform emissions were calculated from an emissions factor (20 kg-s/m³-yr) obtained from Table 8.6-2 in "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for the California State Air Resources Board and dated August 11, 1981 (see attached copy of table). The design circulating flow rate of 590,000 gallons per minute was used in the calculation.

VOC Emissions Factor 1 = $(20 \text{ kg-s/m}^3\text{-yr})(1 \text{ yr}/365 \text{ d})(2.2 \text{ lb / kg})(1 \text{ min / 60 s})$ X (1 m³ / 264.1 gal) (590,000 gal / min) (1 d / 24 hr) = 0.187 lb VOC / hr

Water treatment chemicals are also added to the cooling tower water to reduce potential foaming of the water. The concentration in the circulating water is maintained in the parts per million level. Conservatively assuming that all of the VOC contained in the water treatment chemicals evaporates through the towers, a non-chloroform VOC emissions factor can be determined.

One chemical was used during 2004 that contained VOC as measured by EPA method 24. The VOC concentrations of the chemical was 2.55 lbs / gallon for AF1091. The amounts used during 2004 were based on use records and total operating hours. During 2004, twenty-three totes containing 300 gallons each of AF1091 (6,900 gallons total) were purchased. The non-chloroform emissions were calculated from the following:

VOC Emissions Factor 2 = (6,900 gal AF1091) (2.55 lb / gal) / 23,880 hr = 0.737 lbs / hr

The VOC Emissions Factor is the sum of the chloroform and non-chloroform VOC emissions factors.

VOC Emission Factor = 0.187 + 0.737 = 0.924 lbs/hr

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX 75 Hawthorne Street San Francisco, CA 94105-3901

March 27, 2003

RECEIVED

Dale Lieb Maticopa County Environmental Services Department Air Quality Division 1001 North Central Ave. Suite 200 Phoenix, AZ 85004

APR (1 2003

PVNGS Environmental

Dear Mr. Lieb:

Thank you for consulting EPA on the issue of PM_{10} emissions from cooling tower at the Palo Verde Nuclear Generating Station (PVNGS). EPA has reviewed the cooling tower PM_{10} emissions documentation provided by Mr. Harvey Lesan of Arizona Public Service. EPA concurs with the methodology used to estimate the quantity of PM_{10} emissions from the cooling tower, and accepts the following equation proposed by PVNGS to calculate the maximum potential emissions of PM_{10} from those cooling towers: PM_{10} (tons per year) = .03196*D, where D is the number of operating days per year.

The documentation provided by Mr. Lesan included 1) the letter from Mr. Lesan to Emmanuelle Rapicavoli of EPA Region 9 on "Palo Verde Nuclear Generating Station (PVNGS) PM_{10} Emissions Calculations for Units 1, 2, 3 Cooling Towers", dated 12/30/02, 2) the letter from Mr. Lesan to Ms. Rapicavoli, same subject but dated 1/7/03, with attached "Review of Palo Verde Cooling Tower PM_{10} Calculations" by Mr. Kenneth Hennon of Power Generation Technologies, and 3) the document " PM_{10} Emissions Calculations: Supplemental Information", incorporating the 1990 "Drift Test Report of a 16 Cell Crossflow Circular Mechanical Cooling Tower" and more recent calculations and correspondence. These documents were reviewed by EPA Region IX and by EPA's Office of Air Quality Planning and Standards (OAQPS).

After consultation with OAQPS, Region IX believes the method used by PVNGS to be a valid method for measuring PM_{10} emissions from their cooling towers because PVNGS did conduct source-specific testing, using methods favorably reviewed by a contractor in the cooling tower field and by EPA.

EPA had initially been concerned about the emissions levels being considerably less than would be calculated from AP-42 ("Compilation of Air Pollutant Emission Factors", section 13.4). This is admittedly a conservative method, since it assumes that 100% of the dissolved material in cooling tower drift droplets ends up as PM_{10} ; in reality, much of this material ends up in larger particles. However, some recent submissions from permit applicants to EPA Region IX suggested that only a few percent of the dissolved material ends up as PM_{10} . These estimates were based on calculations that accounted for droplet size distribution, but the latter was

measured by uncertain methods, measured at cooling towers of different types and in different condition than those applicants' facilities and did not account for the solids concentration of the cooling tower recirculating water. In addition, cooling tower configuration and maintenance history can affect drift and drift droplet size.

In short, cooling tower emission calculations that differ from AP-42 should be based on source tests of drift and droplet size and include a reasonable range of recirculating water solids concentrations. All permits, including minor source permits, for sources that include cooling towers should include a provision for good maintenance practices, including periodic inspection and repair of the drift eliminators.

The issue of PM_{10} from cooling towers is of increasing importance because of the large number of gas-fired power plants being built, for which the cooling towers can be the largest PM_{10} emission source. In some cases, the applicability of New Source Review (NSR), Prevention of Significant Deterioration (PSD), or of Title V requirements (as here for PVNGS), can hinge on the cooling tower emissions.

Should you have further questions on this issue, please contact Scott Bohning (415/947-4127, bohning.scott@epa.gov) or Emmanuelle Rapicavoli (415/972-3969, rapicavoli.emmanuelle@epa.gov).

Sincerely,

Gerardo C. Rios Chief, Permits Office

cc: Harvey Lesan, Arizona Public Service

Permit Number: 8600896, 030132

Process ID No. 22

Process Description: Portable Cooling Tower

Description of Correction: Updated PM-10 and VOC Emission Factors

The emissions inventory forms allow the use of only one conversion factor unit per process (i.e. hours or TDS). "Hours of Operation" has been selected as the common unit. Emissions and emissions factors that were back calculated are provided below.

PM-10 Emission Factor Calculation:

PM-10 emissions can be calculated from the following formula:

PM (lb/hr) = CFR x F1 x 8.4 lb/gal x 60 min/hr x ($1/10^{6}$ ppm) x TDS

Where:

CFR = circulating flow rate (gpm) (2 cells) = 6,000 F1 = Liquid Drift Rate (fraction of flow rate) = 0.002% = 0.00002 Average TDS = 2,430 ppm

Substituting in the parameters gives:

PM (lbhr) = $[6000 \times 0.00002 \times 8.4 \times 60 \times (1/10^6) \times 2,430]$ lbs/hr = 0.147 lb / hr

VOC Emissions Factor Calculation Method

Chloroform VOC emissions were calculated from an emissions factor (20 kg-s/m³-yr) obtained from Table 8.6-2 in "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for the California State Air Resources Board and dated August 11, 1981 (see Calculation Sheet No. 2 for copy of table). The design circulating flow rate of 6,000 gallons per minute was used in the calculation.

VOC Emissions Factor 1 = $(20 \text{ kg-s/m}^3\text{-yr})(1 \text{ yr}/365 \text{ d})(2.2 \text{ lb / kg})(1 \text{ min / 60 s})$ X (1 m³ / 264.1 gal) (6,000 gal / min) (1 d / 24 hr) = 0.0019 lb VOC / hr

Permit Number:	8600896	, 030132			
Process ID No.	60, 61, 6	60, 61, 62, 63, 64, 65, 66, 67			
Process Descripti	Process Description: Various Evaporative Processes				
Description of Co	rrection:	Updated VOC Emissions Factors			

Evaporative Process ID's 60 through 67 were determined from site wide product use information by merging database information from material purchase and distribution, material chemical information, and daily user logs. The amount of materials and VOC emissions were determined by this compilation. The emissions factor was back-calculated from these results. This submittal includes the summary information for each evaporative process. Detailed information is maintained and available upon request.

The emissions factors used were determined from the following equation:

VOC Emission Factor = (Total lbs VOC Emitted) / (Total gallons material used)

A summary of the evaporative data and emission factor calculations is provided below:

Process ID	Process Description	Total VOC Emitted (Ibs)	Total Gallons Used (gal)	VOC Emissions Factor (Ib / gal)
60	Adhesives	7975	4485	1.7781
61	Cleaners	2,615	550	4.7545
62	Lubricants	641	626	1.0240
63	Misc	3,735	2845	1.3128
64	Coatings - Paints	4,502	3933	1.1447
65	Coatings - Solvents	2,510	354	7.0904
66	Coatings - Surface Prep	585	743	0.7873
67	Asphalt Products	3,569	3,070	1.1625

Permit Number: 8600896, 030132

Process ID No. 16

Process Description: Auxiliary Boiler

Description of Correction: Updated PM10 and VOC Emission Factors

All emission factors, except for SO_x were obtained from the County Website for SCC Code 10100501 (see attached). Refer to Emission Factor Calculation Sheet No. 1 for the SO_x emission factor calculation method.

	Emission Factor							
Industry Category	SCC Description	SCC Code	со	NOx	PM10	SOx	VOC	Emission Factor Unit
	Pile Forming: Stacker, Load out, Mining / Plant Feed							lb/ton sand/gravel
Sand/Gravel	Handling with Watering	30502505			0.00055 controlled			processed
Sand/Gravel	Bulk Loading	30502506			0.0024			lb/ton sand/gravel
Sand/Gravel	Stockpiles, raw material storage	30502507			630			lb/acre-yr stored
Sand/Gravel	Crushing (Primary, secondary, tertiary)	30502510			0.00054 controlled			lb/ton sand/gravel
Sand/Gravel	Screening	30502511			0.00074 controlled			lb/ton sand/gravel
	Electrical Windings Reclamation Single Chamber							
Electrical Equipment	Incinerator/Oven	31307001	10	3	4.7	2.5	3	lb/ton charged
^ ^ ^	Electrical Windings Reclamation Multiple Chamber							
Electrical Equipment	Incinerator/Oven	31307002	10	3	4.7	2.5	3	lb/ton charged
Transportation Equipment	Brake Shoe Debonding Single Chamber Incinerator	31401001	10	3	4.7	2.5	3	lb/ton charged
Transportation Equipment	Brake Shoe Debonding Multiple Chamber Incinerator	31401002	10	3	4.7	2.5	3	lb/ton charged
Government Solid Waste Disposal	Incineration: Sludge Multiple Hearth	50100515	31	5	8.2	20	1.7	lb/ton dried sludge burned
Commercial/Institutional Solid Waste								
Disposal	Incineration: General Multiple Chamber Incinerator	50200101	10	3	4.7	2.5	3	lb/ton waste burned
Commercial/Institutional Solid Waste	Incineration: Special Purpose Pathological &							lb/ton medical waste
Disposal	Cremation	50200505	0.6	11	0.8	1.4	0.2	burned
Industrial Solid Waste Disposal	Incineration: General Multiple Chamber Incinerator	50300101	10	3	4.7	2.5	3	lb/ton charged
Utility:	Residual Oil #6 Normal Firing	10100401	5	47	9.2(S) + 3.2	163(S)	0.76	lb/1000 gallons
Utility:	Residual Oil #6 Tangential Firing	10100404		32	9.2(S) + 3.2	163(S)	0.76	lb/1000 gallons
Utility:	Distillate Oil Normal Firing	10100501	5	24	2	143.6(S)	0.2	lb/1000 gallons
Utility:	Natural Gas Normal Firing > 100 MM Btu/Hr	10100601	84	190	7.6	0.6	5.5	lb/MM cu ft
Utility:	Natural Gas Normal Firing < 100 MMBtu/Hr	10100602	84	100	7.6	0.6	5.5	lb/MM cu ft
Utility:	Natural Gas Tangential Firing	10100604	24	170	7.6	0.6	5.5	lb/MM cu ft
Industrial	Residual Oil #6 10-100 MMBtu/Hr	10200402	5	55	8.03(S) + 2.65	159(S)	0.28	lb/1000 gallons
Industrial	Residual Oil #6 < 10 MMBtu/Hr	10200403	5	55	8.03(S) + 2.65	159(S)	0.28	lb/1000 gallons
Industrial	Residual Oil #5 > 10 MMBtu/Hr	10200404	5	47	8.6	162.7(S)	0.28	lb/1000 gallons
Industrial	Distillate Oil #1 or $#2 > 10$ MMBtu/Hr	10200501	5	24	2	147.7(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil 10-100 MMBtu/Hr	10200502	5	20	2	144(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil < 10 MMBtu/Hr	10200503	5	20	2	144(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil #4 > 100 MM Btu/Hr	10200504	5	47	6	155.7(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil Cogeneration Boiler	10200505	5	20	1	143.6(S)	0.2	lb/1000 gallons
Industrial	Natural Gas Over 100 MMBtu/Hr	10200601	84	280	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas 10-100 MMBtu/Hr	10200602	84	100	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas < 10 MMBtu/Hr	10200603	84	100	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas Cogeneration Boiler	10200604	24	170	7.6	0.6	5.5	lb/MM cu ft
Industrial	LPG: Butane	10201001	3.6	21	0.6	0.09(S)	0.6	lb/1000 gallons
Industrial	LPG: Propane	10201002	3.2	19	0.6	0.02	0.6	lb/1000 gallons
Commercial/Institutional	Distillate Oil Grade 1 & 2 Oil	10300501	5	24	1.08	142(S)		lb/1000 gallons

Permit Number: 8600896, 030132

Process ID No. 31

Process Description: Security Substation L Emergency Generator

Description of Correction: CO, NOx, PM-10 & VOC Emission Factors

Engine manufacturer emission data were used to determine the CO, NOx, PM-10, and VOC emission factors for the Security Substation L Emergency Generator. A copy of the manufacturer exhaust emission data sheet for the specific engine is attached. The emission factors were calculated based on an engine horse power of 170 bhp @ 1800 rpm and fuel use rate of 8.2 gal / hr while loaded. The specific calculations are described below. The SOx Emission Factor was calculated based on mass balance. Refer to Calculation Sheet 1 for a description of how the SOx Emission Factor was calculated.

CO Emission Factor:

$$CO(lb/Mgal) = \frac{(2.33 g/hp \cdot hr)(170 hp)(1lb/454 g)}{(8.2 gal fuel/hr)(1Mgal/1000 gal)} = 106 lb/Mgal$$

NOx Emission Factor:

$$NOx (lb / Mgal) = \frac{(8.92 g / hp \cdot hr)(170 hp)(1lb / 454 g)}{(8.2 gal fuel / hr)(1Mgal / 1000 gal)} = 407 lb / Mgal$$

PM-10 Emission Factor:

$$PM-10 (lb / Mgal) = \frac{(0.33 g / hp \cdot hr)(170 hp)(1 lb / 454 g)}{(8.2 gal fuel / hr)(1 Mgal / 1000 gal)} = 14.6 lb / Mgal$$

VOC Emission Factor:

$$VOC (lb/Mgal) = \frac{(0.14 g/hp \cdot hr)(170 hp)(1lb/454 g)}{(8.2 gal fuel/hr)(1Mgal/1000 gal)} = 6.34 lb/Mgal$$

Exhaust Emission Data Sheet 100DGDB 60 Hz Diesel Generator Set

Engine Info Model:		, Inc 6BT5.9-G6	Bore:	4.02 in. (102 mm)
Туре:	4 Cycle, I	n-line, 6 Cylinder Diesel	Stroke:	4.72 in. (120 mm)
Aspiration:	Turbocha	rged	Displacement:	359 cu. in. (5.9 liters)
Compression F	Ratio:	16.5:1		
Emission Cont	rol Device:	Turbocharger		

	Standby	Prime
PERFORMANCE DATA		
BHP @ 1800 RPM (60 Hz)	170	155
Fuel Consumption (gal/Hr)	8.2	7.6
Exhaust Gas Flow (CFM)	835	790
Exhaust Gas Temperature (°F)	995	955
EXHAUST EMISSION DATA		
HC (Total Unburned Hydrocarbons)	0.14	0.17
NOx (Oxides of Nitrogen as NO2)	8.92	8.02
CO (carbon Monoxide)	2.33	1.64
PM (Particular Matter)	0.33	0.28
		All values are Grams per HP-Hour

TEST CONDITIONS

Data was recorded during steady-state rated engine speed (± 25 RPM) with full load (±2%). Pressures, temperatures, and emission rates were stabilized.

Fuel Specification:	ASTM D975 No. 2-D diesel fuel with 0.03-0.05% sulfur content (by weight), and 40-48 cetane number.
Fuel Temperature:	99 \pm 9 °F (at fuel pump inlet)
Intake Air Temperature:	77 ± 9 °F
Barometric Pressure:	29.6 ± 1 in. Hg
Humidity:	NOx measurement corrected to 75 grains H2O/lb dry air
Reference Standard:	ISO 8178

The NOx, HC, CO and PM emission data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may results in elevated emission levels.

Cummins Power Generation

Permit Number: 8600896, 030132

Process ID No. 32

Process Description: Security Hubs 2, 3, 4 Emergency Generators

Description of Correction: CO, NOx, PM-10 & VOC Emission Factors

Engine manufacturer emission data were used to determine the CO, NOx, PM-10, and VOC emission factors for the Security Hubs 2, 3, and 4 Emergency Generators. A copy of the manufacturer exhaust emission data sheet for the specific engines is attached. The emission factors were calculated based on an engine horse power of 35 bhp @ 1800 rpm and fuel use rate of 2.1 gal / hr while loaded. The specific calculations are described below. The SOx Emission Factor was calculated based on mass balance. Refer to Calculation Sheet 1 for a description of how the SOx Emission Factor was calculated.

CO Emission Factor:

$$CO(lb/Mgal) = \frac{(1.49 g/hp \cdot hr)(35 hp)(1lb/454 g)}{(2.1 gal fuel/hr)(1Mgal/1000 gal)} = 54.8 lb/Mgal$$

NOx Emission Factor:

$$NOx (lb/Mgal) = \frac{(10.5 g/hp \cdot hr)(35 hp)(1lb/454 g)}{(2.1 gal fuel/hr)(1Mgal/1000 gal)} = 385 lb/Mgal$$

PM-10 Emission Factor:

$$PM-10 (lb/Mgal) = \frac{(0.20 g/hp \cdot hr)(35 hp)(1lb/454 g)}{(2.1 gal fuel/hr)(1Mgal/1000 gal)} = 7.14 lb/Mgal$$

VOC Emission Factor:

$$VOC (lb/Mgal) = \frac{(0.60 g/hp \cdot hr)(35 hp)(1lb/454 g)}{(2.1 gal fuel/hr)(1Mgal/1000 gal)} = 21.9 lb/Mgal$$

Exhaust Emission Data Sheet 20DNAF 60 Hz Diesel Generator Set

	ation:			
Model:	Onan 4-cy	linder-Turbo Water-cooled	Bore:	3.38 in. (86 mm)
Type:	4 Cycle, Ir	n-line, 4 Cylinder Diesel	Stroke:	3.15 in. (80 mm)
Aspiration:	Turbocharg		Displacemen	
Compression Ratio);	16.2:1	•	(
Emission Control E	Device:	Turbocharger		

1	Standby	Prime
PERFORMANCE DATA		
BHP @ 1800 RPM (60 Hz)	35	32
Fuel Consumption (gal/Hr)	2.1	1.9
Exhaust Gas Flow (CFM)	150	150
Exhaust Gas Temperature (°F)	750	715
EXHAUST EMISSION DATA		
HC (Total Unburned Hydrocarbons)	0.60	N/A
NOx (Oxides of Nitrogen as NO2)	10.50	N/A
CO (carbon Monoxide)	1.49	N/A
PM (Particular Matter)	0.20	N/A
L	·····	All values are Grams per HP-Hour

TEST CONDITIONS

Data was recorded during steady-state rated engine speed (\pm 25 RPM) with full load (\pm 2%). Pressures, temperatures, and emission rates were stabilized.

Fuel Specification:	ASTM D975 No. 2-D diesel fuel with 0.03-0.05% sulfur content (by weight), and 40-48 cetane number.
Fuel Temperature:	99 ± 9 °F (at fuel pump inlet)
Intake Air Temperature:	77±9°F
Barometric Pressure:	29.6 ± 1 in. Hg
Humidity:	NOx measurement corrected to 75 grains H2O/lb dry air
Reference Standard:	ISO 8178

The NOx, HC, CO and PM emission data tabulated here were taken from a single engine under the test conditions shown above. Data for the other components are estimated. These data are subjected to instrumentation and engine-to-engine variability. Field emission test data are not guaranteed to these levels. Actual field test results may vary due to test site conditions, installation, fuel specification, test procedures and instrumentation. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may results in elevated emission levels.

Data and Specifications Subject to Change Without Notice

Permit Number: 8600896, 030132

Process ID No. 33

Process Description: Misc. Diesel Burning Combustion Sources

Description of Correction: CO, NOx, PM-10 & VOC Emission Factors

All emission factors, except for SO_x were obtained from the County Website for SCC Code 10200503 (see attached). Refer to Emission Factor Calculation Sheet No. 1 for the SO_x emission factor calculation method.

	Emission Factor							
Industry Category	SCC Description	SCC Code	со	NOx	PM10	SOx	VOC	Emission Factor Unit
	Pile Forming: Stacker, Load out, Mining / Plant Feed							lb/ton sand/gravel
Sand/Gravel	Handling with Watering	30502505			0.00055 controlled			processed
Sand/Gravel	Bulk Loading	30502506			0.0024			lb/ton sand/gravel
Sand/Gravel	Stockpiles, raw material storage	30502507			630			lb/acre-yr stored
Sand/Gravel	Crushing (Primary, secondary, tertiary)	30502510			0.00054 controlled			lb/ton sand/gravel
Sand/Gravel	Screening	30502511			0.00074 controlled			lb/ton sand/gravel
	Electrical Windings Reclamation Single Chamber							
Electrical Equipment	Incinerator/Oven	31307001	10	3	4.7	2.5	3	lb/ton charged
^ ^ ^	Electrical Windings Reclamation Multiple Chamber							
Electrical Equipment	Incinerator/Oven	31307002	10	3	4.7	2.5	3	lb/ton charged
Transportation Equipment	Brake Shoe Debonding Single Chamber Incinerator	31401001	10	3	4.7	2.5	3	lb/ton charged
Transportation Equipment	Brake Shoe Debonding Multiple Chamber Incinerator	31401002	10	3	4.7	2.5	3	lb/ton charged
Government Solid Waste Disposal	Incineration: Sludge Multiple Hearth	50100515	31	5	8.2	20	1.7	lb/ton dried sludge burned
Commercial/Institutional Solid Waste								
Disposal	Incineration: General Multiple Chamber Incinerator	50200101	10	3	4.7	2.5	3	lb/ton waste burned
Commercial/Institutional Solid Waste	Incineration: Special Purpose Pathological &							lb/ton medical waste
Disposal	Cremation	50200505	0.6	11	0.8	1.4	0.2	burned
Industrial Solid Waste Disposal	Incineration: General Multiple Chamber Incinerator	50300101	10	3	4.7	2.5	3	lb/ton charged
Utility:	Residual Oil #6 Normal Firing	10100401	5	47	9.2(S) + 3.2	163(S)	0.76	lb/1000 gallons
Utility:	Residual Oil #6 Tangential Firing	10100404		32	9.2(S) + 3.2	163(S)	0.76	lb/1000 gallons
Utility:	Distillate Oil Normal Firing	10100501	5	24	2	143.6(S)	0.2	lb/1000 gallons
Utility:	Natural Gas Normal Firing > 100 MM Btu/Hr	10100601	84	190	7.6	0.6	5.5	lb/MM cu ft
Utility:	Natural Gas Normal Firing < 100 MMBtu/Hr	10100602	84	100	7.6	0.6	5.5	lb/MM cu ft
Utility:	Natural Gas Tangential Firing	10100604	24	170	7.6	0.6	5.5	lb/MM cu ft
Industrial	Residual Oil #6 10-100 MMBtu/Hr	10200402	5	55	8.03(S) + 2.65	159(S)	0.28	lb/1000 gallons
Industrial	Residual Oil #6 < 10 MMBtu/Hr	10200403	5	55	8.03(S) + 2.65	159(S)	0.28	lb/1000 gallons
Industrial	Residual Oil #5 > 10 MMBtu/Hr	10200404	5	47	8.6	162.7(S)	0.28	lb/1000 gallons
Industrial	Distillate Oil #1 or $#2 > 10$ MMBtu/Hr	10200501	5	24	2	147.7(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil 10-100 MMBtu/Hr	10200502	5	20	2	144(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil < 10 MMBtu/Hr	10200503	5	20	2	144(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil #4 > 100 MM Btu/Hr	10200504	5	47	6	155.7(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil Cogeneration Boiler	10200505	5	20	1	143.6(S)	0.2	lb/1000 gallons
Industrial	Natural Gas Over 100 MMBtu/Hr	10200601	84	280	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas 10-100 MMBtu/Hr	10200602	84	100	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas < 10 MMBtu/Hr	10200603	84	100	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas Cogeneration Boiler	10200604	24	170	7.6	0.6	5.5	lb/MM cu ft
Industrial	LPG: Butane	10201001	3.6	21	0.6	0.09(S)	0.6	lb/1000 gallons
Industrial	LPG: Propane	10201002	3.2	19	0.6	0.02	0.6	lb/1000 gallons
Commercial/Institutional	Distillate Oil Grade 1 & 2 Oil	10300501	5	24	1.08	142(S)		lb/1000 gallons

Permit Number: 8600896, 030132

Process ID No. 34

Process Description: Misc. LPG Burning Combustion Sources

Description of Correction: CO, NOx, PM-10 & VOC Emission Factors

All emission factors, except for SO_x were obtained from the County Website for SCC Code 10201002 (see attached). Refer to Emission Factor Calculation Sheet No. 1 for the SO_x emission factor calculation method.

	Emission Factor							
Industry Category	SCC Description	SCC Code	со	NOx	PM10	SOx	VOC	Emission Factor Unit
	Pile Forming: Stacker, Load out, Mining / Plant Feed							lb/ton sand/gravel
Sand/Gravel	Handling with Watering	30502505			0.00055 controlled			processed
Sand/Gravel	Bulk Loading	30502506			0.0024			lb/ton sand/gravel
Sand/Gravel	Stockpiles, raw material storage	30502507			630			lb/acre-yr stored
Sand/Gravel	Crushing (Primary, secondary, tertiary)	30502510			0.00054 controlled			lb/ton sand/gravel
Sand/Gravel	Screening	30502511			0.00074 controlled			lb/ton sand/gravel
	Electrical Windings Reclamation Single Chamber							
Electrical Equipment	Incinerator/Oven	31307001	10	3	4.7	2.5	3	lb/ton charged
^ ^ ^	Electrical Windings Reclamation Multiple Chamber							
Electrical Equipment	Incinerator/Oven	31307002	10	3	4.7	2.5	3	lb/ton charged
Transportation Equipment	Brake Shoe Debonding Single Chamber Incinerator	31401001	10	3	4.7	2.5	3	lb/ton charged
Transportation Equipment	Brake Shoe Debonding Multiple Chamber Incinerator	31401002	10	3	4.7	2.5	3	lb/ton charged
Government Solid Waste Disposal	Incineration: Sludge Multiple Hearth	50100515	31	5	8.2	20	1.7	lb/ton dried sludge burned
Commercial/Institutional Solid Waste								
Disposal	Incineration: General Multiple Chamber Incinerator	50200101	10	3	4.7	2.5	3	lb/ton waste burned
Commercial/Institutional Solid Waste	Incineration: Special Purpose Pathological &							lb/ton medical waste
Disposal	Cremation	50200505	0.6	11	0.8	1.4	0.2	burned
Industrial Solid Waste Disposal	Incineration: General Multiple Chamber Incinerator	50300101	10	3	4.7	2.5	3	lb/ton charged
Utility:	Residual Oil #6 Normal Firing	10100401	5	47	9.2(S) + 3.2	163(S)	0.76	lb/1000 gallons
Utility:	Residual Oil #6 Tangential Firing	10100404		32	9.2(S) + 3.2	163(S)	0.76	lb/1000 gallons
Utility:	Distillate Oil Normal Firing	10100501	5	24	2	143.6(S)	0.2	lb/1000 gallons
Utility:	Natural Gas Normal Firing > 100 MM Btu/Hr	10100601	84	190	7.6	0.6	5.5	lb/MM cu ft
Utility:	Natural Gas Normal Firing < 100 MMBtu/Hr	10100602	84	100	7.6	0.6	5.5	lb/MM cu ft
Utility:	Natural Gas Tangential Firing	10100604	24	170	7.6	0.6	5.5	lb/MM cu ft
Industrial	Residual Oil #6 10-100 MMBtu/Hr	10200402	5	55	8.03(S) + 2.65	159(S)	0.28	lb/1000 gallons
Industrial	Residual Oil #6 < 10 MMBtu/Hr	10200403	5	55	8.03(S) + 2.65	159(S)	0.28	lb/1000 gallons
Industrial	Residual Oil #5 > 10 MMBtu/Hr	10200404	5	47	8.6	162.7(S)	0.28	lb/1000 gallons
Industrial	Distillate Oil #1 or $#2 > 10$ MMBtu/Hr	10200501	5	24	2	147.7(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil 10-100 MMBtu/Hr	10200502	5	20	2	144(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil < 10 MMBtu/Hr	10200503	5	20	2	144(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil #4 > 100 MM Btu/Hr	10200504	5	47	6	155.7(S)	0.2	lb/1000 gallons
Industrial	Distillate Oil Cogeneration Boiler	10200505	5	20	1	143.6(S)	0.2	lb/1000 gallons
Industrial	Natural Gas Over 100 MMBtu/Hr	10200601	84	280	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas 10-100 MMBtu/Hr	10200602	84	100	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas < 10 MMBtu/Hr	10200603	84	100	7.6	0.6	5.5	lb/MM cu ft
Industrial	Natural Gas Cogeneration Boiler	10200604	24	170	7.6	0.6	5.5	lb/MM cu ft
Industrial	LPG: Butane	10201001	3.6	21	0.6	0.09(S)	0.6	lb/1000 gallons
Industrial	LPG: Propane	10201002	3.2	19	0.6	0.02	0.6	lb/1000 gallons
Commercial/Institutional	Distillate Oil Grade 1 & 2 Oil	10300501	5	24	1.08	142(S)		lb/1000 gallons

Description of Co	rrection:	Ammonia Emission Factor	_	
Process Description: AMMONIA RELEASES FROM CIRCULATING WATER SYSTEMS				
Process ID No.	90		_	
Permit Number:	8600896	, 030132	_	

Ammonia releases were based on operational data obtained during 1998. A detailed ammonia emissions analysis for water treatment activities was repeated during 2004. Ammonia releases from all emissions sources due to use of ammonium hydroxide during the year 2004 was recalculated in order to update the emissions factor. Results of the calculations are attached. The emissions factor was based on the total amount of ammonia released during 2004 (excluding the amount released from the S/G cleaning process) and the total amount of ammonium hydroxide used during the year. The emissions factor accounts for all releases of ammonia due to use in the secondary system.

Ammonia EF (lb / NH₃OH lb) = (total ammonia released in lbs) / (total ammonium hydroxide used in lbs)

= (14,938 lbs) / (592,298 NH₃OH lbs)

= 0.02522 (lb / NH₃OH lb)

AMMONIA RELEASE CALCULATIONS AMMONIA USE (JANUARY 1 TO DECEMBER 31, 2004)

Operating Parameter Data									
PARAMETER FULL FLOW BYPASS OUTAGE ANY TIME									
%NH3 CONC	10.00	10.00	0.00	N/A					
NH3 USE RATE (in/day-unit)	40.00	20.00	0.00	N/A					
CONVERSION (gal / in)	N/A	N/A	N/A	6.50					
DAY TANK VOLUME (gal)	N/A	N/A	N/A	200					
NH3 BULK CONC (wt%)	N/A	N/A	N/A	30.00					
BULK NH3 S.G.	N/A	N/A	N/A	0.90					

Calculation Results									
UNIT 1									
PARAMETER	FULL FLOW	BYPASS	OUTAGE	TOTAL					
NH3 DAY TANK USE (gal)	82,680	130	0	82,810					
NH3 DAY TANK FILLS	413	1	0	414					
NH3 BULK USE (gal)	27,560	43	0	27,603					
NH3 BULK USE (lbs)	206,865	325	0	207,191					
	U	NIT 2							
PARAMETER	FULL FLOW	BYPASS	OUTAGE	TOTAL					
NH3 DAY TANK USE (gal)	71,500	8,320	0	79,820					
NH3 DAY TANK FILLS	358	42	0	400					
NH3 BULK USE (gal)	23,833	2,773	0	26,607					
NH3 BULK USE (lbs)	178,893	20,817	0	199,710					
	U	NIT 3							
PARAMETER	FULL FLOW	BYPASS	OUTAGE	TOTAL					
NH3 DAY TANK USE (gal)	74,100	0	0	74,100					
NH3 DAY TANK FILLS	371	0	0	371					
NH3 BULK USE (gal)	24,700	0	0	24,700					
NH3 BULK USE (lbs)	185,398	0	0	185,398					
	то	TALS							
PARAMETER	FULL FLOW	BYPASS	OUTAGE	TOTAL					
NH3 DAY TANK USE (gal)	228,280	8,450	0	236,730					
NH3 DAY TANK FILLS	1,142	43	0	1,185					
NH3 BULK USE (gal)	76,093	2,817	0	78,910					
NH3 BULK USE (lbs)	571,157	21,142	0	592,298					

AMMONIA RELEASE CALCULATIONS OPERATING HISTORY (JANUARY 1 TO DECEMBER 31, 2004)

Operating Pa	arameter D	ata	
PARAMETER	FULL FLOW	BYPASS	OUTAGE
AMMONIA CONC (PPM) IN CONDENSER - UNI	1.56	20.16	0.00
AMMONIA CONC (PPM) IN CONDENSER - UNI	0.71	18.16	0.00
AMMONIA CONC (PPM) IN CONDENSER - UNI	2.68	0.00	0.00
AMMONIA DAY TANK CONC (wt%)	10.00	10.00	0.00

	Unit 1 Opera	ating Histo	ry	
DEMIN STATUS	START DATE	END DATE	DAYS	% NH3 CONC
FULL FLOW	1/1/2004	2/3/2004	33	10.00
OUTAGE	2/3/2004	2/7/2004	4	0.00
FULL FLOW	2/7/2004	4/2/2004	55	10.00
OUTAGE	4/2/2004	5/9/2004	37	0.00
FULL FLOW	5/9/2004	6/15/2004	37	10.00
OUTAGE	6/15/2004	6/21/2004	6	0.00
FULL FLOW	6/21/2004	11/9/2004	141	10.00
BYPASS	11/9/2004	11/10/2004	1	10.00
FULL FLOW	11/10/2004	1/1/2005	52	10.00

	Unit 2 Opera	ating Histo	ry	
DEMIN STATUS	START DATE	END DATE	DAYS	% NH3 CONC
FULL FLOW	1/1/2004	2/19/2004	49	10.00
OUTAGE	2/19/2004	3/8/2004	18	0.00
FULL FLOW	3/8/2004	6/12/2004	96	10.00
BYPASS	6/12/2004	6/15/2004	3	10.00
OUTAGE	6/15/2004	6/19/2004	4	0.00
FULL FLOW	6/19/2004	6/29/2004	10	10.00
FULL FLOW	6/29/2004	7/13/2004	14	10.00
OUTAGE	7/13/2004	7/18/2004	5	0.00
FULL FLOW	7/18/2004	11/1/2004	106	10.00
BYPASS	11/1/2004	1/1/2005	61	10.00

	Unit 3 Opera	ating Histo	ory	
DEMIN STATUS	START DATE	END DATE	DAYS	% NH3 CONC
FULL FLOW	1/1/2004	2/28/2004	58	10.00
OUTAGE	2/28/2004	3/7/2004	8	0.00
FULL FLOW	3/7/2004	6/7/2004	92	10.00
OUTAGE	6/7/2004	6/10/2004	3	0.00
FULL FLOW	6/10/2004	6/15/2004	5	10.00
OUTAGE	6/15/2004	6/20/2004	5	0.00
FULL FLOW	6/20/2004	10/2/2004	104	10.00
OUTAGE	10/2/2004	12/6/2004	65	0.00
FULL FLOW	12/6/2004	1/1/2005	26	10.00

	SUMI	MARY		
UNIT	DAYS IN FULL FLOW	DAYS IN BYPASS	DAYS IN OUTAGE	TOTAL DAYS
UNIT 1	318	1	47	366
UNIT 2	275	64	27	366
UNIT 3	285	0	81	366
ALL UNITS	878	65	155	1,098

AMMONIA RELEASE CALCULATIONS RELEASE SUMMARY (JANUARY 1 TO DECEMBER 31, 2004)

RP #	RELEASE POINT DESCRIPTION	AMMONIA RELEASE (lbs)
1	Units 1, 2, 3 Secondary System Fugitive Emissions*	1,169
2-1	Unit 1 Secondary System Water Treatment Chemical Day Tank Vent	
2-2	Unit 2 Secondary System Water Treatment Chemical Day Tank Vent	4,325
2-3	Unit 3 Secondary System Water Treatment Chemical Day Tank Vent	4,011
3-1	Unit 1 Maint Steam Safety Relief Valves	6
3-2	Unit 2 Maint Steam Safety Relief Valves	39
3-3	Unit 3 Maint Steam Safety Relief Valves	11
4-1	Unit 1 Atmospheric Dump Valves (Operation)	0
4-2	Unit 2 Atmospheric Dump Valves (Operation)	0
4-3	Unit 3 Atmospheric Dump Valves (Operation)	0
4-1	Unit 1 Atmospheric Dump Valves (Cleaning)	0
4-2	Unit 2 Atmospheric Dump Valves (Cleaning)	0
4-3	Unit 3 Atmospheric Dump Valves (Cleaning)	0
5-1	Unit 1 Condenser Off Gas / Gland Seal Exhaust	6
5-2	Unit 1 Condenser Off Gas / Gland Seal Exhaust	16
5-3	Unit 1 Condenser Off Gas / Gland Seal Exhaust	9
6-1	Unit 1 Miscellaneous Secondary Steam Leaks	21
6-2	Unit 2 Miscellaneous Secondary Steam Leaks	55
6-3	Unit 3 Miscellaneous Secondary Steam Leaks	31
7	Retention Basins	4,168
8	Evaporation Ponds	0
9	Steam Generator Chemical Cleaning Evaporator Discharge	0
10	WRF Fugitive Emissions	0
11-1	Unit 1 Cooling Towers	291
11-2	Unit 2 Cooling Towers	309
11-3	Unit 3 Cooling Towers	260
12	Steam Generator Chemical Cleaning Condenser System Exhaust	0
	Total	14,938

*Includes ammonia losses from spill reports. Total losses in pounds = 0.00

Comments

- Fugitive emissions from Release Point 10 result were not calculated due to the low concentration of ammonia. They were assumed to be negligible.
 Evaporation pond emissions were considered insignificant and not
- calculated due to low ammonia concentration and incorporation into(3) Unit cooling tower emissions only included those from the STP since other ammonia in water was not plant related.

Off-Site Recycling / Disposal Forms 2004

There were two waste streams identified that sent material offsite for disposal.

Waste Stream Number: 01 – Waste cold cleaning solvents / degreasers

These materials were spent solvents that were used for parts cleaning operations. These materials were sent offsite for disposal.

Waste Stream Number: 02 - Waste paint thinners / cleaning solvents

These materials were the paint thinners and cleaning solvents that could not be recycled onsite. All materials were sent offsite for disposal.

WASTE DEGREASERS

Web Form

Off-Site Recycling/Disposal Form 2	2004	
------------------------------------	------	--

Permit number(s) _____8600896, 030132

pounds

Provide one off-site recycling/disposal form for each waste stream at your business location. A waste stream is the waste from one or more processes mixed together to make one waste product before it is taken off site for recycling, disposal or combustion.

1)	Assign a unique two-digit ID number to identify the waste stream that will be described below. 01	_
	(Start with ID# 01 for first waste stream. Make a copy of this blank form and use 02 for second, etc.)	
		Check one:

- What was the average pollutant content of the waste stream? NOTE: Report in the same units (pounds or gallons) as used in Line 2.

VOC0.95 lbs/unit	HAP&NON0lbs/unit	NHxlbs/unit
------------------	------------------	-------------

 Calculate the total annual pollutant content of the waste in this waste stream. (volume of waste, from Line 2) x (pollutant content, from Line 3) = Total pollutants in waste stream, in lbs/yr.

VOC 470 lbs/yr	HAP&NONlbs/yr	NHxN/A_lbs/yr
----------------	---------------	---------------

5) List the process ID numbers of the processes contributing to this waste stream. Also estimate the pounds of pollutant that each process contributed to this waste stream.

NOTE: Column totals in the table below must equal the total for each pollutant type reported on line 4. The quantities you report below for each pollutant and process must also be reported in column 12 on the Evaporative Process Form. See the Instructions for an example of a completed Off-Site Recycling/Disposal Form.

	Process ID	Annual VOC (lbs)	Annual HAP&NON (lbs)	Annual NHx (lbs)
61	Contributed about	470 lbs	N/A Ibs	N/A Ibs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	ibs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	Ibs	lbs	lbs
	Contributed about	lbs	lbs	lbs

WASTE PAINT THINNER

Off-Site Recycling/Disposal Form 2004

Permit number(s) _____8600896, 030132

Check one:

Provide one off-site recycling/disposal form for each waste stream at your business location. A waste stream is the waste from one or more processes mixed together to make one waste product before it is taken off site for recycling, disposal or combustion.

- Assign a unique two-digit ID number to identify the waste stream that will be described below.
 <u>02</u> (Start with ID# 01 for first waste stream. Make a copy of this blank form and use 02 for second, etc.)
- 2) What was the quantity of this waste stream in 2004?
 Indicate whether this quantity is reported in pounds or gallons. Keep waste disposal company manifests as proof that this amount of waste was taken off site.
- 3) What was the average pollutant content of the waste stream? NOTE: Report in the same units (pounds or gallons) as used in Line 2.

VOC0.95 lbs/unit HAP&NON0 lbs/unit NHx(

4) Calculate the total annual pollutant content of the waste in this waste stream.
 (volume of waste, from Line 2) x (pollutant content, from Line 3) = Total pollutants in waste stream, in lbs/yr.

	VOC 1069 lbs/yr	HAP&NONN/A_lbs/yr	NHxN/A_lbs/yr
--	-----------------	-------------------	---------------

5) List the process ID numbers of the processes contributing to this waste stream. Also estimate the pounds of pollutant that each process contributed to this waste stream.

NOTE: Column totals in the table below must equal the total for each pollutant type reported on line 4. The quantities you report below for each pollutant and process must also be reported in column 12 on the Evaporative Process Form. See the Instructions for an example of a completed Off-Site Recycling/Disposal Form.

	Process ID	Annual VOC (lbs)	Annual HAP&NON (lbs)	Annual NHx (lbs)
65	Contributed about	1069 lbs	N/A lbs	N/A Ibs
	Contributed about	lbs	lbs	lbs
	Contributed about	łbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs