

A subsidiary of Pinnacle West Capital Corporation

Palo Verde Nuclear Generating Station Robert S. Bement Vice President Nuclear Operations

Tel (623) 393-6116 Fax (623) 393-6077 Mail Station 7602 PO Box 52034 Phoenix, Arizona 85072-2034

291-03737-RSB/STRECEIVED June 12, 2007

JUN 1 3 2007

HAND DELIVERED

MANUCOPA COUNTY AIR QUALITY DEPARTMENT

MCAQD One Stop Shop Emissions Inventory Intake 501 N. 44th Street, Suite 200 Phoenix, AZ 85008-6538

Dear Sir or Madam:

Subject: Palo Verde Nuclear Generating Station 2006 Annual Air Emissions Inventory

Palo Verde Nuclear Generating Station (PVNGS) is submitting the 2006 Air Emissions Inventory in accordance with instructions received from your office. In addition, in accordance with the PVNGS Non-Title V Air Permit (#030132) Condition 21 we are also providing a Hazardous Air Pollutant (HAPs) report (Attachment 2). Permit Condition 21 requires PVNGS to calculate emissions of HAPs emitted in quantities above 500 pounds per calendar year, and specifically requires the calculation and reporting of emissions of chloroform, xylenes and ethyl benzene.

PVNGS used electronic versions of the forms for this Emissions Inventory Report. Deletions in the text are noted in red with a strikethrough. Additions to the text are shown in blue Italics.

If you have any questions regarding this submittal, please contact Mr. Sreenath Thota at (623) 393-6537.

Based on information and belief formed after reasonable inquiry, the statements and information in this submittal are true, accurate, and complete.

Sincerely,

RBernent

RSB/ST/hsc

Attachments

PALO VERDE NUCLEAR GENERATING STATION

2006 AIR EMISSIONS INVENTORY

Prepared for

MARICOPA COUNTY ENVIRONMENTAL SERVICES DEPARTMENT

Prepared by

ARIZONA PUBLIC SERVICE COMPANY PALO VERDE NUCLEAR GENERATING STATION ENVIRONMENTAL SECTION

GENERAL INFORMATION AND BUSINESS FORM

The following information is provided in this section:

- 1. Business Form
- 2. Process Identification Number Cross Reference Table

MARICOPA COUNTY AIR QUALITY DEPARTMENT

Emissions Inventory Unit (602) 506-6790 (602) 506-6985 (FAX) (602) 506-6704 (TDD)

2006 Annual Emissions Inventory

				Due Date:		06/13/2007
Bu	isiness Form			Permit Num	ber:	030132
1.	Owner Name:	ARIZONA PUBLIC SER	VICE CO	··		
2.	Business Name:	PALO VERDE NUCLEA	R GENER	ATING STATI	ON	
3.	Business Street Ad	ldress (Physical Location):	5801 S. W	VINTERSBURG	<u>G RD</u>	
4.	City: TONO	РАН	5.	Zip Code:	8535	54-7529
6.	Number Of Employ	yees 2200	7.	Property Size:	4080	0.00 acres
8.	SIC Code:		Primary:	4911	Seco	ndary:
9.	NAICS Code		Primary:	221113	Seco	ondary: <u>221121</u>
10.	Preparer of the Inv	entory (primary contact for t	echnical qu	estions concerni	ng thi	s report):
	Name: MART	FIN P. EROH				
	Title: ENVIR	ONMENTAL SECTION L	EADER			
	Employer: AR	IZONA PUBLIC SERVIC	E			
	Telephone: (62	3) 393-6688		Fa	x: _(623) 393-5442
	E-mail address o	f preparer: <u>meroh@aps</u>	.com			······································
11.	Who should receiv	e the Annual Emissions Inve	entory Form	next year?:		
	Name: MART	'IN P. EROH				
	Title: ENVIR	ONMENTAL SECTION L	EADER			
	Employer: AR	IZONA PUBLIC SERVIC	E			
	Address: PO B	BOX 52034 MS 7626				
	City: PHOEN	VIX State: A	. <u>Z</u>	Zip Coc	le: <u>8</u>	5072-2034
	Telephone: <u>(6</u>	23) 393-6688		Fa	ix: _(623) 393-5442
					··	
		Return the origi	nal copy of a	ll completed form	is to:	
		Emissions Inve	stop Snop entory Intak	e		
		501 N. 44 th Stro Phoenix A7.84	eet, Suite 20(5008 -6538	0		
h		<u> </u>			· · · · · · · · · · · · ·	<u></u>

For more information, contact the Maricopa County Emissions Inventory Unit at (602) 506-6790. Detailed instructions, sample forms and reference materials are available at: www.maricopa.gov/aq/divisions/planning_analysis/emissions_inventory/default.aspx

EMISSIONS SUMMARY

This section contains the Data Certification Form. Summary sheets for the General and Evaporative Processes have been provided for reference.

Data Certification Form 2006

For EACH pollution listed, total up all emissions recorded on your General Process and Evaporative Process Forms. Enter these numbers in column 1, "Totals from Process Forms". Report emissions from accidental releases in column 2. Add the figures in each row across, and enter the result in column 3, "Total Emissions."

Summary of 2006Annual Emissions:	(1) Totals from Process Forms	(2) + Accidental Releases	(3) = TOTAL EMISSIONS
СО	53727 lbs	0 lbs	53727 lbs
NHx	3159 lbs	0 lbs	3159 lbs
Lead	0 lbs	0 lbs	0 lbs
HAP&NON			an <i>m</i> 14
VOC	42641 lbs	0 lbs	42641 lbs
NO	182190 lbs	0 lbs	182190 lbs
SO SO	2802 lbs	0 lbs	2802 lbs
PM_{10}	55971 lbs	0 lbs	55971 lbs

TO COMPLETE YOUR EMISSIONS INVENTORY REPORT:

- Complete the Confidentiality Statement below.
- Sign and date this form below where indicated.
- Send the original copy of your completed forms to: Maricopa County Air Quality Dept., Emissions Inventory Unit, One Stop Shop, Emissions Inventory Intake, 501 N. 44th Street, Suite 200, Phoenix, AZ 85008-6538.
- Keep a copy of all forms for your records.

CONFIDENTIALITY STATEMENT:

🛛 NO YES This annual emissions report contains requests to keep some data confidential. If you check "YES", you must submit documentation and meet certain requirements before your data can be deemed confidential. See enclosed instructions for further details.

CERTIFICATION STATEMENT:

I declare under penalty of perjury that the data (e.g. materials, quantities, emissions factors, controls, and annual emissions) presented herein represents the best available information and is true, accurate and complete to the best of my knowledge.

Signature of owner/business officer

ROBERT S. BEMENT

Type or print full name of owner/business officer

Date of Signature

Telephone Number

VP Nuclear Operations Type or print full title

PROCESS ID/ DESCRIPTION	60	NOX	PM10	SOX	VOC	COMMENTS
LIME UNI CAD			0			
			503			
			505 600			
			509			
SODA ASH UNLOAD						
SODA ASH STORAGE			151			
SODA ASH SUPPLY			145			
MISC DIESEL ENGINES	223	1,038	73	12	85	A
MISC DIESEL ENGINES (PERMIT EXEMPT)	8,824	41.000	482	482	3,346	
MISC GAS ENGINES (PERMITTED)	0	n	0	0	0	
MISC GAS ENGINES (PERMIT EXEMPT)	7,687	199	12	11	372	····
UNIT EMERG DIESELS	36.232	136,395	2,427	2,208	0,489	
0, TSC DIESEL	328	1,233	22	20	32	
1. SEC DIESEL	47	217	15	3	18	
2. FIRE PUMP DIESELS	77	356	25	4	29	
3. ADMIN A DIEBEL	130	489	9	8	13	
4. ADMIN B DIESEL	48	223	16		18	
6 AUX BOILER	0		0	0	0	
7 UNIT COOLING TOWERS			47.084		5,047	
						Release point no longer used. Historical
IN REAL FURNAGE						Information only. Release point no longer used. Historical
IS. REVAL FURNAUE (SUX)				+		information only.
20, GTG	74	766	161	47		<u> </u>
21. CHEM DIESEL	35	164	12	2	2 13	
22. PORT COOLING TOWER	-		290	<u>'</u>		
23. SALT SILOS			694	4		
24. ILRT LEAK RATE						Only performed whe LRT testing is required
25. WRF COMPRESSOR						Information only.
26. ABRASIVES HOPPER			0	- 10		
27. SAG CLEAN - ADV (UNITS 1, 2, 3)						Only applicable when S/G Cleaning in progress.
28. S/G CLEAN - EVAP						Release point no longer used. Historical information only.
29. SIG CLEAN - EVAP COND						Only applicable when S/G Cleaning in progress.
30. S/G CLEAN - COOL TWR						Only applicable when S/G Cleaning in progress.
31, SEC SUBSTATION L EDG	14	ı 5	4	2	1	1
32 SEC HUBS 23 & EDGS		5	4	1	1	3
11 MISC COMB EQ. DIESEL		1	1	0	0	0
			0	0	0	o
		<u>+</u>		0	0	0
35. PORTABLE BOLER (CONTRACTOR)	·····	1				
36, ABRASIVE BLASTING OPERATIONS	<u> </u>		3.33			
51. GAS TANK ASI WORKING LOSS					-	0
52. GAS TANK AS2 STANDING LOSS					2,62	2
52 CAR TANK ARI FUELING					1,10	5
64 CAR TANK AR2 WORKING DEC		+	+	1 _	97	76
ES CAS TANK AST STANDING LOSS	+	+ <u> </u>	+	+	3.97	5
DO. GAS IANK ASZ SIANDING LUSS	+	+	+	+		a
DE. GAS TANK ASE LOADING	+	+	+	+	+	· · · · · · · · · · · · · · · · · · ·
57. GAS TANK AS2 FUELING	+				+	
60. ADHESIVES	·	ļ		- 		
81. CLEANERS					4.2	*0
62. LUBRICANTS					1.0	53
63. MISC CHEM USE					4,7	72
64. MAINT COATINGS					7,3	86
65. MAINT BOLVENTS					2,9	37
66. MAINT COAT SURFACE PREP				-		21
67. ASPHALT PAVING OPERATIONS	-				4	27
[- -	-1			
PERMITTED SOURCES ONLY	37,2	16 140,9	90 55,4	77 2,3	109 38,9	24
Emissions in Ton	s: 18.	61 70.	50 27.	.74 1	.15 19.	45
			·· T	1		
PERMITTED AND PERMIT EXEMPT SOURCES	53,7	27 182.1	80 55,9	171 2,1	42,8	41
Emissions in Tor	5: 28.	96 91	09 27	.99 1	40 21	32

EMISSIONS BY PROCESS

ATTACHMENT 1

2006 Annual Air Emission Inventory

IDENTIFICATION NUMBER CROSS-REFERENCE TABLE								
PROCESS PROCESS (P) ID NO. Or EVAP (E)		DESCRIPTION	STACK NO.	CONTROL DEVICE NO. (If applicable)				
PROCESS S	OURCES		I					
1	Р	Lime Unloading Filter Separator	1	1				
2	Р	Lime Storage Silos	2 Lime, 102 Recalcined lime	2 Lime, 102 recalcined lime				
3	P	Lime Supply Silos	3	3				
4	Р	Soda Ash Unloading Filter Separator	4	4				
5	Р	Soda Ash Storage Silos	5	5				
6	Р	Soda Ash Supply Silo	6	6				
7	Р	Miscellaneous Portable Diesel Engines	7					
8	Р	Miscellaneous Portable Gasoline Engines	8					
9	P	EDGS (Unit 1, 2, and 3) Emergency Diesel Generators	9					
10	Р	Technical Support Center Diesel	10					
11	Р	Security Diesel	11					
12	Р	Fire Protection Pump Diesels	12					
13	Р	Administration Building A Diesel	13					
14	P	Administration Building B Diesel	14					
16	Р	Auxiliary Boiler	16	·				
17	P	Units 1, 2, and 3 Cooling Towers	17					
18, 19	P	Recalcination Furnace (RELEASE POINT REMOVED FROM PERMIT IN 2003)	18	 18 quencher, venturi scrubber, 19 impingement tray separator, 118 cyclone separator, 119 high lime content 				
20	P	Gas Turbines	20	· · · · · · · · · · · · · · · · · · ·				
21	Р	Chemical Storage Building Diesel	21					
22	Р	Portable Cooling Tower	22					
23	Р	Salt Silos	23	23 baghouse				
24	P	Rental Compressors-ILRT						
25	Р	WRF Rental Air Compressor (RELEASE POINT REMOVED FROM PERMIT IN 2002)						
26	Р	Abrasive Media Hopper	26	26				
27	Р	S/G Chemical Cleaning – ADV Stacks (2 per unit) Units 1, 2, or 3	27					
28	P	S/G Cleaning - Evaporator Discharge (RELEASE POINT REMOVED FROM PERMIT IN 2003)	28					
29	Р	S/G Cleaning - Evaporator Condenser	29					
30	P	S/G Cleaning – Evaporator Condenser Cooling Tower	30					
31	Р	Security Substation L Emergency Generator (179 Hp)						

IDENTIFICATION NUMBER CROSS-REFERENCE TABLE

PROCESS ID NO.	PROCESS (P) Or EVAP (E)	DESCRIPTION	STACK NO.	CONTROL DEVICE NO. (If applicable)
32	Ρ	Security Hubs 2, 3, 4 Emergency Diesel Generators (Total Of 3 Engines At 35 Hp Each)		
33	Р	Misc. Diesel Fuel Burning Combustion Equipment (< 10 MMBtu / Hr)		
34	Р	Misc. LPG Burning Combustion Equipment		
35	Р	Contractor Portable Boiler		
36	Р	Abrasive Blasting Operations (confined & unconfined)		
EVAPORATIV	E SOURCES			
Horizontal Fixed	Roof Storage Ta	nks (Gasoline) AND Gasoline Fueling Ope	rations	
51	E	AS1 Working Losses		
52	E	AS1 Standing Losses		
53	E	AS1 Fueling		
54	E	AS2 Working Losses		
55	E	AS2 Standing Losses		
56	E	AS2 Loading	56	56
57	E	AS2 Fueling		
Other Evaporati	ve Process			
60	E	Adhesives		
61	E	Cleaners, Degreasers		
62	E	Lubricants		
63	E	Miscellaneous Chemical Use		
	E	Maintenance Coatings		
64		Coatings		
65		Solvent, Thinner , Diluent		
66		Surface Preparation Products		
67	E	Asphalt Paving Operations		
		•		
90	E	Ammonia Releases from Circulating Water Systems		

STACK INFORMATION

The stack form contains stack information for each stationary stack that is connected to a control device or any stack that discharged more than 5 tons of combined pollutant emissions during the reporting year. Although no steam generator cleaning was conducted during the year, the stack information was left on the form for historical information.

The latitude and longitude coordinates of the stacks were included this year. There are several process release points that are identical and were historically assigned a common stack identification number. The separate coordinates of each stack were included unless they were physically located close together where separate coordinates would not provide additional location information. These differences are described below for each release point with multiple stacks:

<u>Lime Storage Silos</u> – Identical stacks associated with each of nine storage silo baghouses (six for pebble lime and three for recalcined lime) were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Lime Supply Silos</u> - Identical stacks associated with each of three supply silo baghouses were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Soda Ash Storage Silos</u> – Identical stacks associated with each of six storage silo baghouses were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Soda Ash Supply Silos</u> - Identical stacks associated with each of two supply silo baghouses were assigned a common stack identification number. The coordinates represent the common location of the group of stacks.

<u>Unit Emergency Diesel Generators</u> – Identical stacks associated with each of six identical generators were assigned a common stack identification number. Each operating Unit at PVNGS (Units 1, 2, and 3) contains a pair of generators. The coordinates represent the common location of each group of two individual stacks located in Units 1, 2, and 3.

<u>Unit Cooling Towers</u> – There are three identical individual cooling towers per unit for a total of nine cooling towers. The cooling towers were assigned a common stack identification number. The coordinates represent the common location of each group of three towers located in Units 1, 2, and 3.

<u>Steam Generator Cleaning Evaporator Condenser Discharge</u> – The equipment is only brought onsite during chemical cleaning. No cleaning was done during 2004 so no coordinates are available.

<u>Steam Generator Cleaning Evaporator Cooling Tower</u> - The equipment is only brought onsite during chemical cleaning. No cleaning was done during 2004 so no coordinates are available.

Stack Form 2006

1	2	3	4	5a 0	R 5b	6a O	R 6b	and 6c	7
Stack ID	Stack Type Code*	Stack Height**	Exit Gas Temperature	Velocity feet/sec	Flow Rate acfm	Diameter inside inch ⁽¹⁾	Leng ins	th / Width ide inch	Stack Name/Description (Optional)
1	D	12 ft	120°F	98.8	2070.0	8			LIME UNLOADING FILTER SEPARATOR Lat: N 33.395 Long: W 112.857
2	D	60 ft	120°F	27.6	2030.0	15	9	20	EACH OF 6 LIME STORAGE SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
3	D	42 ft	120°F	19.8	1460.0	15	9	20	EACH OF 6 LIME SUPPLY SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
4	D	12 ft	1 20°F	98.8	2070.0	8			SODA ASH UNLOADING FILTER SEPARATOR Lat: N 33.395 Long: W 112.857
5	D	60 ft	120°F	27.0	1990.0	15	9	20	EACH OF 6 SODA ASH STORAGE SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
6	D	43 ft	120°F	12.2	900.0	15	9	20	EACH OF 2 SODA ASH SUPPLY SILO BAGHOUSES Lat: N 33.395 Long: W 112.857
9	v	90 ft	1000°F	179.0	60000.0	32			EMERGENCY GENERATORS (EACH OF 6) Unit 1 – Lat: N 33.388 Long: W 112.861 Unit 2 – Lat: N 33.385 Long: W 112.864 Unit 3 – Lat: N 33.383 Long: W 112.864
17	v	64 ft	110°F	31.6	1342000.0	360			EACH OF 144 FANS (3 UNIT COOLING TOWERS) Unit 1 – Lat: N 33.391 Long: W 112.863 Unit 2 – Lat: N 33.388 Long: W 112.867 Unit 3 – Lat: N 33.383 Long: W 112.869
23 ⁽²⁾	D	36 ft	120°F	8.3	1992.0	27	6	94	EACH OF 2 SALT SILOS Lat: N 33.396 Long: W 112.858
26	н	22 ft	120°F	9.3	1100.0	19	12	24	ABRASIVE BLAST MEDIA STORAGE HOPPER Lat: N 33.391 Long: W 112.860
27	V	89 ft	290°F	104.8	100000.0	54			EACH OF 6 ATMOS. DUMP VALVE DISCHARGE STACKS FOR UNITS 1-3 Unit 1 – Lat: N 33.388 Long: W 112.861 Unit 2 – Lat: N 33.385 Long: W 112.864 Unit 3 – Lat: N 33.383 Long: W 112.864
29	Н	20 ft	110 °F	21.1	2000.0	17 (4)			STM. GENERATOR CLEANING EVAP. CONDENSER DISCHARGE
30	v	9 ft	110 °F	48.7	23000.0	38	24	48	No coordinates – equipment not onsite STM. GENERATOR CLEANING EVAP. CONDENSER COOLING TOWER
				<u> </u>					No Coordinates – equipment not onsite
56	Н	4ft	120°F			4]	Lat: N 33.388 Long: W 112.857
102(3)	D	60 ft	120°F	8.1	600	15	9	20	EACH OF 3 RECALCINED LIME STORAGE SILO BAGHOUSES (TRANSFER MODE)
		1							Lat: N 33.395 Long: W 112.857

Stack Form 2006

1	2	3	4	5a_0	0R 5b	6a OF	t 6b and 6c	7
Stack ID	Stack Type Code*	Stack Height**	Exit Gas Temperature	Velocity feet/sec	Flow Rate acfm	Diameter inside inch ⁽¹⁾	Length / Width inside inch	Stack Name/Description (Optional)
¹ Effectiv	ve diameters a	re reported f	for rectangular	stack dimen	sions. Exit Veloci	ties were calcul	ated using the eff	ective diameters.
2 The dis	2 The discharge is a circumferential slot around the bag housing. This slot is 6" high. See next page for sketch of filter and discharge.							
3 Thora o	$\frac{3}{3}$ There are 0 lime storage siles Process ID 2. Six of these siles typically receive direct lime deliveries. The velocities and flow rates for those siles is shown under Stack 2.							

There are 9 lime storage silos, Process ID 2. Six of those silos typically receive affect time deliveries. The velocities and flow rates for mose silos is shown inder stack 2. The other three lime storage silos are typically used for recalcined lime storage. Stack 102 flow rates and velocities represent the system operation using the recalcined lime transfer blower. Since the recalcined lime storage silos are permitted to receive direct lime deliveries, refer to the velocities and flow rates listed under Process ID 2 for direct transfer deliveries of lime to the recalcined lime storage silos.

⁴The stack is a twelve inch diameter stack that ends at a "T" consisting of 12 inch horizontal pipe with two discharge points. The diameter reported is the effective diameter of both 12 inch diameter discharge points.

* Stack Type Codes: V = Vertical unobstructed H = Horizontal unobstructed D= Downward unobstructed G = Goosneck W = Obstructed vertical (e.g. weather cap)

** Stack height is calculated relative to the surrounding terrain. For example: the stack height of a 10 foot stack sitting on a 20 foot building is <u>30 feet</u>.

CONTROL DEVICE INFORMATION

Process ID 2 represents 9 lime storage silos at PVNGS. The design and control equipment for all 9 silos is the same. There are two separate Stack and Control Device codes for the Lime Storage Silos.

- Stack 2/Control Device 2 represents the 6 silos that receive new lime deliveries.
- Stack 102/Control Device 102 represents the other three silos that receive recalcined lime.

The description for Control ID Number 26 was modified to include the type of control device.

The control equipment used for the recalcination furnace (Control ID Numbers 18, 19, 118 and 119) has been abandoned in place and is no longer used. However, information has been kept on the control device table for historical reference only.

Permit Number: 030132

1	2	3		4	5	
Control ID	Installation/ Reconstruction * Date	Size or Rate Cap	acity**	Control Type Code	Control Device Name/Description	Stack ID
1	1/1/84	2070.	cfm	018	LIME UNLOADING FILTER SEPARATOR 518 SQ FT CLOTH AREA	1
2	1/1/84	2030.	cfm	018	6 LIME STORAGE SILOS BAGHOUSES 189 SQ FT CLOTH AREA	2
3	1/1/84	1460.	cfm	018	6 LIME SUPPLY SILOS BAGHOUSES 189 SQ FT CLOTH AREA	3
4	1/1/84	2070.	cfm	018	SODA ASH UNLOADING FILTER SEPARATORE 518 SQ FT CLOTH AREA	4
5	1/1/84	1990.	cfm	018	6 SODA ASH STORAGE SILOS BAGHOUSES 189 SQ FT CLOTH AREA	5
6	1/1/84	900.	cfm	018	2 SODA ASH STORAGE SILOS BAGHOUSES 189 SQ FT CLOTH AREA	6
18	1/1/84	343.	cfm	053	RECAL FURNACE QUENCHER & VENTURI SCRUBER (NO LONGER IN USE – HISTORICAL REFERENCE ONLY))	
19	1/1/84	343.	cfm	055	RECAL FURNACE IMPINGEMENT TRAY SEPARATOR (NO LONGER IN USE – HISTORICAL REFERENCE ONLY)	
23	1/1/84	1092.	cfm	018	2 SALT SILO BAGHOUSES, 31 SQ FT CLOTH AREA	23
26	02/15/2000	1100.	cfm	101	ABRASIVE BLAST MEDIA STORAGE HOPPER HEPA FILTER	26
56			cfm	096	VAPOR BALANCE FOR LOADING REUELING TRUCK	
102 ¹	1/1/84	600.	cfm	018	3 RECAL LIME STORAGE SILOS BAGHOUSES 189 SQ FT CLOTH AREA	102
118	1/1/84	343.	cfm	075	RECAL FURNACE CYCLONE SEPARATOR (NO LONGER IN USE – HISTORICAL REFERENCE ONLY)	
119	1/1/84	343.	cfm	999	RECALCINATOR FURNACE, HIGH LIME CONTENT (NO LONGER IN USE – HISTORICAL REFERENCE ONLY)	

¹ Control device 102 flow rate (600 cfm) represents the flow rate from the recalcined lime transfer blower for the 3 lime storage silos that are typically used for recalcined lime storage. The design of these silos and emissions control systems is identical to the six lime storage silos represented by Control Device 2. All 9 silos were designed and permitted for storage of either direct lime deliveries or recalcined lime. When used for direct lime delivery, the silos represented by Control Device 102 have the same flow rates, velocities, and air to cloth ratios as Control Device 2.

* Reconstruction means any component of the control device was replaced and the cost (fixed capital) of the new component(s) was more than half of what it would have cost to purchase or construct a new control device.

** Air or water flow rate in the cubic feet per minute.

GENERAL PROCESS FORMS

The General Process Forms came preprinted with process information. PVNGS reentered the originals on electronic forms. The following summarizes the significant changes.

- Two new processes were added to the emissions report. The first is for a portable diesel fired boiler used to heat water in order to perform <u>in situ</u> pipe repairs. The equipment is owned and operated by a contractor and is not stored at the facility when not in use. The second is for abrasive blasting operations (confined and unconfined) conducted at the facility. The specific release points associated with these process are:
 - Process ID 35, Contractor Portable Boiler
 - Process ID 34, Abrasive Blasting Operations (confined and unconfined).
- 2. There were no rail deliveries of bulk chemicals during the reporting year.
- Process ID 24, Compressor Rental ILRT Leak Test, was added in 2000. However, Integrated Leak Rate Testing (ILRT) is only performed periodically in accordance with Nuclear Regulatory Commission requirements. There were no emissions from this process during the reporting year.
- 4. The steam generating cleaning process was modified in 2003. The steam generator cleaning evaporator discharge (Process ID 28) was replaced with the steam generator evaporator condenser discharge (Process ID 29) and Steam generator evaporator condenser cooling tower (Process ID 30). The processes associated with chemical cleaning of the steam generators (S/G) typically occur once every five to seven years per Unit. Therefore, the release forms were written to cover releases from any Unit during a given year. The specific release points associated with this process are:
 - Process ID 27, Atmospheric Dump Valve Releases from S/G Chemical Cleaning (Units 1, 2, or 3)
 - Process ID 29, S/G Chemical Cleaning Evaporator Condenser Discharge
 - Process ID 30, S/G Chemical Cleaning Evaporator Condenser Cooling Tower

There was no steam generator cleaning conducted during the reporting year.

5. Emissions reported for miscellaneous diesel and gasoline engines include emissions from both small stationary engines (North Annex Back-up Generator & the Construction Pond Pumps) as well as from the remaining non-road engines.

GENERAL PROCESS FORMS (continued)

- 6. The County forms were pre-printed with emissions factors for the existing processes. A one-page emissions calculation page was included as supplemental information as necessary for each process. For some processes, additional information was necessary to calculate emissions. In these instances, additional information is supplied in the section titled, "Emissions Factor Calculation Sheets". Processes with additional information are noted below.
 - Combustion Sources using diesel fuel: Since actual fuel sulfur content typically varies at a value less than 0.05% by weight, the permit limit of 0.05% was used to calculate emissions in lieu of specific fuel sulfur analysis data. Actual emissions would be lower than those calculated.
 - The PM10 emissions for the Unit Cooling Towers were calculated in accordance with the methodology in Permit Condition 55b. Since the emissions are a function of the TDS concentration and resulting critical droplet size diameter, the emissions factor was back calculated from the total emissions and actual operating hours.
 - The VOC emission factor for the Unit Cooling Towers, Process ID 17, was adjusted to reflect site specific use of chemicals added to the towers.
 - The PM10 emission factor for the Portable Cooling Towers, Process ID 22, is a function of the average measured TDS concentration. Since this concentration will vary, the emissions factor was back calculated from the total emissions and actual operating hours.
 - VOC emission factors for the Various Evaporative Processes, Process ID's 60 through 67, change slightly each year depending on actual chemical use. These factors were developed based on material balance for the current year's chemical usage.
 - The emission factors for the Auxiliary Boiler, Process ID 16, were different than the ones listed on the pre-printed form. The emission factors used were obtained from the Maricopa County Air Quality Department Website for SIC Code 10100501.
 - The emissions factors for the Contractor Portable Boiler, Process ID 35, were obtained from the Maricopa County Air Quality Department Website for SIC Code 10200502 (Industrial Boiler Distillate Oil < 10 MMBtu/hr).
 - The emission factor for the Abrasive Blasting Operations, Process ID 36, was obtained from AP-42, Table 13.2.6-1.
 - The ammonia emission factor for Process ID 90 was updated based on release data from the year 2006.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

	n ID.	1
1.	Process ID:	1

2. Process Type/Description: LIME UNLOADING FILTER SEPARATOR (USED FOR RR DELIVERIES OF LIME ONLY)

3.	Stack ID(s) (only if required on Stack Form)		
4.	Process TIER Code:071099	MISCELLANEOUS	INDUSTRIAL PROCESSES
sc	C Code: 30510405(8 digit number)	BULK MATL UNLO	DADING: LIMESTONE
5.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
6.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year <u>0</u> Weeks/Year
7.	Typical Hours of Operation: (military time) Start	<u> 00:00</u>	End <u>23:59</u>
8.	Emissions based on: (name of material or other parameter, e.g	g. "rock", "diesel", "vehicle mi	les traveled") LIME DELIVERED BY RAIL
9.	Used (input) or Produced (output)		
	Annual Amount: (<i>a number</i>)		12. – Fuel Sulfur Content (in percent)%
13	. Units of Measure: (for example: tons, gallons, million cu ft, a	acres, units produced etc.)	TONS
14	. Unit Conversion Factor: (if needed to convert Unit of Measure	re to correlate with emission fa	actor units)

	Emission	Eactor (FF) Infor	mation			Control	Device Info	ormation		
	Ellission	17	18	19	20	21	22	23	23	25
15 Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF?	Calculation Method	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
			Yes or NO	2	100.000	1		99,960	3	0 lbs
<u>PM-10</u>	100	TON	1		100.000					
				<u> </u>						
						<u> </u>	+			

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

	MC Process ID No.:	1
Lime Unloading Filter-Separator	MC Stack No.:	1
PVNGS Source No.: LSN-SUI	MC Control ID No.:	1
SCC: 30510405		

Material Delivered by Rail	0 Tor	IS		
CRITERIA POLLUTANT	EMISSIONS F	ACTOR	SOURCE	EMISSIONS
PM10	4.00E-02	lb/T loaded	by material balance	0.0 10

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

2 1 Process ID:

3.	Stack ID	(s) (only if requir	ed on Stack Form)	2		<u>102</u> MISCELLAN	EOUS INDU	STRIAL PR	OCESSES		
4. 5. 6. 7. 8	Process SCC Coo Seasonal Normal <u>Typical</u>	de: <u>30510405</u> I Throughput Pero Operating Schedu <u>Hours of Operati</u> ns based on: (nan	(8 digit number cent: Dec- ile: Hour <u>on:(military time</u> ne of material or ot	er) Feb <u>2</u> rs/Day <u>24</u>) Start her paramete	<u>5</u> % Mar- <u>4</u> Day: 0 er, e.g. "rock"	BULK MAT -May25 s/Week7 0:00 ', "diesel", "vel	L UNLOADI % Jun- Hou End	NG: LIMES' -Aug nrs/Year i23:59 veled") <u>LIMI</u>	<u>FONE</u> <u>25</u> % Sep-1 <u>8760</u> Weel	Nov <u>25%</u> ks/Year	2
>	. L/III/3510		Produce	d (output)							0/
1] 1 1 1	 MUse Annual Units of Unit Co 	d (<i>mput</i>) or Amount: (<i>a num</i> f Measure: (for ex onversion Factor:	ber) <u>16761</u> ample: tons, gallon (if needed to conve	ns, million cu ert Unit of M	u ft, acres, un leasure to cor	its produced e	12. tc.) <u>TO</u> ission factor u	Fuel Sulfu <u> DNS</u> nits)	· Content (in per	cent)	0
1] 1 1 1	 MUse Annual Units of Unit Co 	Amount: (<i>a num</i> f Measure: (for exponses) fonversion Factor:	ber) <u>16761</u> cample: tons, gallon (if needed to conve Factor (EF) Inform	ns, million cu ert Unit of M mation	u ft, acres, un leasure to cor	its produced e relate with em	12. tc.) <u>TO</u> ission factor u <u>Control</u>	- Fuel Sulfur DNS nits) Device Info	Content (in per prmation	cent)	25
	 Wuse Annual Units of Unit Co 	Amount: (<i>a num</i> f Measure: (for exponversion Factor: Emission 1 16	ber) <u>16761</u> ample: tons, gallon (if needed to conve Factor (EF) Infor 17	ns, million cu ert Unit of M mation 18	u ft, acres, un leasure to cor 19	its produced e relate with em	12. tc.) <u>TO</u> ission factor u <u>Control</u> 21	Fuel Sulfur <u>DNS</u> nits) Device Info 22	Content (in per prmation 23 Control	23 Efficiency	%
	 Use Annual Units of Unit Construction The second second	Amount: (<i>a num</i> f Measure: (for exponversion Factor: Emission I 16 Emission Factor (EF) (number)	ber) <u>16761</u> cample: tons, gallon (if needed to conve Factor (EF) Inform <u>17</u> Emission Factor Unit (lbs per)	ns, million cu ert Unit of M mation 18 Controlled EF?	u ft, acres, un leasure to cor 19 Calculation Method Code*	its produced e relate with em 20 Capture % Efficiency	12. tc.) <u>TO</u> ission factor u <u>Control</u> 21 Primary Control Device ID	- Fuel Sulfur DNS nits) Device Info 22 Secondary Control Device ID	Content (in per prmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	
	 Use Annual Units of Unit Constraint 	Amount: (a num f Measure: (for ex onversion Factor: Emission Factor (EF) (number)	ber) <u>16761</u> tample: tons, gallon (if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per)	ns, million cu ert Unit of M mation 18 Controlled EF? Yes or No	u ft, acres, un leasure to cor 19 Calculation Method Code* 2	its produced e relate with em 20 Capture % Efficiency 100.000	12. tc.) <u>TO</u> ission factor u <u>Control</u> <u>21</u> Primary Control Device ID 2	- Fuel Sulfur NS nits) Device Info 22 Secondary Control Device ID	Content (in per ormation 23 Control Device(s) % Efficiency 99.970	23 Efficiency Reference Code** 3	25 Estimated Actual Emissions 503 lb
	 Use Annual Units of Unit Co Unit Co 15 Pollutant PM-10 ¹	Amount: (a num f Measure: (for ex onversion Factor: Emission I 16 Emission Factor (EF) (number) 100	ber) <u>16761</u> cample: tons, gallon (if needed to conve Factor (EF) Infor <u>17</u> Emission Factor Unit (lbs per) TON	ns, million cu ert Unit of M mation 18 Controlled EF? Yes or No N	u ft, acres, un leasure to cor 19 Calculation Method Code* 2	its produced e relate with em 20 Capture % Efficiency 100.000	12. itc.) <u>TO</u> ission factor u <u>Control</u> <u>21</u> Primary Control Device ID <u>2</u>	- Fuel Sulfur DNS nits) Device Info 22 Secondary Control Device ID	Content (in per prmation 23 Control Device(s) % Efficiency 99.970	23 Efficiency Reference Code** 3	25 Estimated Actual Emissions 503 lb
	 O. Use O. Use O. O. O	Amount: (a num f Measure: (for exponversion Factor: Emission I 16 Emission Factor (EF) (number) 100	ber) <u>16761</u> cample: tons, gallon (if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per) TON	ns, million cu ert Unit of M mation 18 Controlled EF? Yes or No N	u ft, acres, un leasure to cor 19 Calculation Method Code* 2	its produced e relate with em 20 Capture % Efficiency 100.000	12. tc.) <u>TO</u> ission factor u <u>Control</u> 21 Primary Control Device ID 2	Fuel Sulfur NS nits) Device Info 22 Secondary Control Device ID	Content (in per prmation 23 Control Device(s) % Efficiency 99.970	23 Efficiency Reference Code** 3	25 Estimated Actual Emissions 503 lb

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- =Vendor Emission Factor 9
- =Trade Group Emission Factor 10

- =Tested efficiency / EPA reference method 1
- =Tested efficiency / other source test method 2
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Lime Storage Silo	MC Process ID No.:	2	
PVNGS Source ID No.: AWLSNTO1A-F, AWLSNTO2A-C	MC Stack No.:	2	
SCC: 30510405	MC Control ID No.:	2, 102	

Material Processed:		
Recalcined Lime	N/A	Tons
Lime by Truck	16,761	Tons
Lime by Rail	0	Tons
Sum	16,761	Tons

CRITERIA POLLUTANT	EMISSIONS FACTOR	l	SOURCE	EMISSIONS
PM10	3.00E-02	lb/T loaded	by material balance	502.8 lb

Notes:

1) Vendor data given for PM. Assume $PM_{10} = 1/2 * PM$.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

5) Annual emissions reflects the sum of emissions from both recalcined lime and pebble lime.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>3</u>

2. Process Type/Description: LOADING/UNLOADING LIME INTO SUPPLY SILOS (6)

_										
3		Stack ID(s) (only if required on Stack Form)				·		····		
4	۱.	Process TIER Code:071099		MISCE	<u>LLANEOUS I</u>	NDUSTRIA	<u>L PROCESSI</u>	ES		
5	5.	SCC Code: <u>30510405</u> (8 digit number)		BULK	MATL UNLO	ADING: LI	MESTONE			
6	j.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u>25</u> %	Sep-Nov	<u>25%</u>	
7	<i>'</i> .	Normal Operating Schedule: Hours/Day	24	Days/Week	7	Hours/Year	<u> </u>	Weeks/Year		
8	3.	Typical Hours of Operation: (military time)	tart	00:00		End <u>23</u>	:59			
9).	Emissions based on: (name of material or other pa	rameter, e.g.	"rock", "diesel	", "vehicle mile	es traveled") <u>I</u>	IME PEBBL	E		
1	0.	Used (input) or Produced (out	out)							
] 1	1.	Annual Amount: (a number) <u>16978</u>				12. – Fuel S	ulfur Content ((in percent)		%
1	3.	Units of Measure: (for example: tons, gallons, mil	ion cu ft, acr	es, units produ	ced etc.)	TONS				

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

Factor (EF) Infor	mation			Control Device Information				
17	18	19	20	21	22	23	23	25
Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
TON	N	2	100.000	3		99.970	3	<i>509</i> lbs
			······					
			· <u></u>			1. 18 ¹⁰ - 192 - 2 ⁴¹ - 1991 - 2 ⁴¹		
	17 Emission Factor Unit (lbs per) TON	17 18 Emission Factor Unit (lbs per) Controlled EF? Yes or No TON N	17 18 19 Emission Factor Unit (lbs per) Controlled EF? Yes or No Calculation Method Code* TON N 2	17 18 19 20 Emission Factor Unit (lbs per) Controlled EF? Yes or No Calculation Method Code* Capture % Efficiency TON N 2 100.000	17 18 19 20 21 Emission Factor Unit (lbs per) Controlled EF? Yes or No Calculation Method Code* Capture % Efficiency Primary Control Device ID TON N 2 100.000 3	17 18 19 20 21 22 Emission Factor Unit (lbs per) Controlled EF? Yes or No Calculation Method Code* Capture % Efficiency Primary Control Device ID Secondary Control Device ID TON N 2 100.000 3	17181920212223Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % EfficiencyPrimary Control Device IDSecondary Device IDControl Device(S) % EfficiencyTONN2100.000399.970	1718192021222323Emission Factor Unit (lbs per)Controlled EF? Yes or NoCalculation Method Code*Capture % EfficiencyPrimary Control Device IDSecondary Control Device IDControl Device IDEfficiency Control Device IDControl Device IDEfficiency Control Device IDTONN2100.000399.9703

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Lime Supply Silos				MC Process ID No.:	3
PVNGS Source ID No.: AWL	SNTO3A-F			MC Stack No.:	3
SCC: 30510405				MC Control ID No.:	3
Material Processed	16 070 T				
	10,970				
CRITERIA POLLUTANT	EMISSIONS F	ACTOR	SOURCE	EMISSIONS	
PM10	3.00E-02	lb/T loaded	by material balance	509.3 lb	_

Notes:

1) Vendor data given for PM. Assume $PM_{10} = 1/2 * PM$.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

5) Annual emissions reflects the sum of emissions from both recalcined lime and pebble lime.

6) The sum of recalcined lime produced and pebble lime delivered is used for the amount of material.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

- 1. Process ID: _____ 4____
- 2. Process Type/Description: SODA ASH UNLOADING FILTER SEPARATOR (USED FOR RAILROAD DELIVERIES OF SODA ASH

	ONLY)	
3	. Stack ID(s) (only if required on Stack Form)	
4	. Process TIER Code:O71099 MISCELLANEOU	US INDUSTRIAL PROCESSES
5	. SCC Code: <u>30510498</u> (8 digit number) <u>BULK MATL UN</u>	LOADING: MINERAL
6	. Seasonal Throughput Percent: Dec-Feb <u>25</u> % Mar-May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
7	. Normal Operating Schedule: Hours/Day <u>24</u> Days/Week <u>7</u>	Hours/Year Weeks/Year
8	. <u>Typical Hours of Operation:</u> (military time) Start00:00	End <u>23:59</u>
] 9	Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle n	miles traveled") SODA ASH
1	0. \square Used (<i>input</i>) or \square Produced (<i>output</i>)	
] 1	1. Annual Amount: (a number)	12. – Fuel Sulfur Content (in percent)%
1	3. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.)	TONS

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)

	Emission	Factor (EF) Infor	mation			Contro	l Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	N	2	100.000	4		99.960	3	0 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Soda Ash Unloading Filter-Separator	MC Process ID No.:	4
PVNGS Source ID No.: AWSXNS01	MC Stack No.:	4
SCC: 30510498	MC Control ID No.:	4

Material Delivered by Rail 0 Tons

CRITERIA POLLUTANTEMISSIONS FACTORSOURCEEMISSIONSPM104.00E-02lb/T loadedby material balance0.0 lb

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____5

2.	Process Type/Description: LOADING/UNLOADING SODA ASH INTO STORAGE SILOS (6)	
3.	Stack ID(s) (only if required on Stack Form)	
4.	Process TIER Code: 071099 MISCELLANEOUS INDUSTRIAL PROCESSES	
5.	SCC Code: <u>30510498</u> (8 digit number) BULK MATL UNLOADING: MINERAL	
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> % Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %	<u>/o</u>
7.	Normal Operating Schedule: Hours/Day 24 Days/Week 7 Hours/Year 8760 Weeks/Year	
8.	Typical Hours of Operation: (military time) Start00:00 End3:59	
9.	Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") SODA ASH	
10.	. Used (<i>input</i>) or Produced (<i>output</i>)	
11.	Annual Amount: (a number) 5042 12. – Fuel Sulfur Content (in percent)	%
13.	• Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) <u>TONS</u>	
14.	. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)	

	Emission	Factor (EF) Infor	mation			Contro	l Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	N	2	100.000	5		99.970	3	151 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Soda Ash Storage Silos	MC Process ID No.:	5	
PVNGS Source ID No.: AWSXNTO1A-F	MC Stack No.:	5	
SCC: 30510498	MC Control ID No.:	5	

Soda Ash by Truck Soda Ash by Rail Sum	5,042 T 0 T 5,042 T	ons ons ons		
CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS
PM10	3.00E-02	lb/T loaded	by material balance	151.3 lb

Notes:

Material Processed

1) Vendor data given for PM. Assume $PM_{10} = 1/2 * PM$.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>6</u>

2. Process Type/Description: LOADING/UNLOADING SODA ASH INTO SUPPLY SILOS (2)

Sep-Nov 25%
Sep-Nov 25%
Sen-Nov 25%
0 Weeks/Year
<u>H</u>
ent (in percent)

	Emission	Factor (EF) Infor	mation			Contro	Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	100	TON	N	2	100.000	6		99.970	3	145 lbs
			<u></u>							
1				1		1				

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Soda Ash Supply Silo	MC Process ID No.:	6
PVNGS Source ID No.: AWSXNTO2A,B	MC Stack No.:	6
SCC: 30510498	MC Control ID No.:	6

Material Processed

4,830 Tons

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS		
PM10	3.00E-02	lb/T loaded	by material balance	144.9 lb		

Notes:

1) Vendor data given for PM. Assume $PM_{10} = 1/2 * PM$.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

A conservative estimate of 10% going to the filter was used, 90% dropout inherent in transfer process.

3) Filter efficiency is 99.97%.

4) All of these factors are included in the emissions factor shown above.

5) The amount of soda ash delivered is used as the amount of material.

Permit Number(s): 030132

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____7

2. Process Type/Description: MISC. PORTABLE DIESEL ENGINES < 600 HP (NON-ROAD AND MOVABLE STATIONARY

		ENGINES)								
3. Sta	ck ID(s) (only if requ	ired on Stack Form	n)							
4. Pro	cess TIER Code:	020599			FUEL COM	B. INDUSTR	IAL: INTEF	RNAL COMB	USTION	
5. SC	C Code: 20200102	(8 digit numb	ber)		IND: DISTI	L <mark>. OIL (D</mark> IES	EL) - RECI	2		
6. Sea	sonal Throughput Pe	rcent: Dec	-Feb	<u>25</u> % Ma	r-May 2	5 % Ju	n-Aug _	<u>25</u> % Se	p-Nov <u>25</u>	<u>1%</u>
7. Noi	mal Operating Sched	lule: Hou	ars/Day2	<u>4</u> Day	ys/Week	<u>7</u> Ho	ours/Year	<u>8760</u> Wo	eeks/Year	
8. <u>Tyr</u>	bical Hours of Operat	ion:_(military time	e) Start		<u>00:00</u>	En	d <u>23:59</u>			
9. Em	issions based on: (na	me of material or o	ther paramet	er, e.g. "rock	", "diesel", "ve	chicle miles tra	aveled") DIE	SEL		<u></u>
10 🕅	Used (input) or	Produce	ed (output)	-						
איייי ראיי			••• (•••••				10 East	Cultur Contant	(:	0.05 0/
11 Δn	mal Amount (a min	1hor) 678811					12 Fuel	Sunur Coment	(in percent) _	0.05 %
J 11. Am	nual Amount: (<i>a nun</i>	<i>iber</i>) <u>67880</u>	ne million c	u ft acres w	vits produced e	tc) G	12 Fuel	Sunur Comeni	(in percent) _	<u>0.05</u> %
J 11. Ani 13. Uni	ts of Measure: (for est	<i>iber</i>) <u>67880</u> xample: tons, gallo	ns, million c	u ft, acres, u	nits produced e	tc.) <u>G</u>	ALS	0 001	(in percent) _	<u>_0,05</u> _%
J 11. Ani 13. Uni 14. Uni	tual Amount: (<i>a nun</i> ts of Measure: (for e: t Conversion Factor:	(if needed to conv	ns, million c ert Unit of M	u ft, acres, u leasure to con	nits produced e rrelate with em	tc.) <u>G</u>	12. – Fuer ALS mits)	0.001	(in percent) _	<u></u> %
J 11. Ani 13. Uni 14. Uni	ts of Measure: (a nun ts of Measure: (for ex t Conversion Factor: Emission	tber) <u>67880</u> xample: tons, gallo (if needed to conv Factor (EF) Infor	ns, million c ert Unit of M mation	u ft, acres, ur leasure to con	nits produced e rrelate with em	tc.) <u>G</u> dission factor u Contro	12. – Fuel ALS	0.001	(in percent)	<u>0.05</u> %
J 11. Ani 13. Uni 14. Uni	ts of Measure: (a num ts of Measure: (for ex t Conversion Factor: Emission	aber) <u>67880</u> xample: tons, gallo (if needed to conv Factor (EF) Infor 17	ns, million c ert Unit of M mation 18	u ft, acres, ur leasure to con	nits produced e rrelate with em	tc.) <u>G</u> ission factor u Contro 21	12. – Fuel ALS units) 1 Device Info 22	0.001 ormation 23		25
J 11. Ani 13. Uni 14. Uni 15 Pollutar	ts of Measure: (a num ts of Measure: (for ex t Conversion Factor: Emission 16 at Emission Factor (EF) (number)	tber) <u>67880</u> xample: tons, gallo (if needed to conve Factor (EF) Infor <u>17</u> Emission Factor Unit (lbs per)	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No	u ft, acres, ur leasure to con 19 Calculation Method Code*	nits produced e rrelate with em 20 Capture % Efficiency	tc.) <u>G</u> ission factor u Contro 21 Primary Control Device ID	IZ. – Fuel ALS I Device Info 22 Secondary Control Device ID	0.001 0.	23 Efficiency Reference Code**	25 Estimated Actual Emissions
J 11. Ani 13. Uni 14. Uni 15. Pollutar	ts of Measure: (a nun ts of Measure: (for e: t Conversion Factor: Emission 7 16 at Emission Factor (EF) (number) 130	tber) <u>67880</u> xample: tons, gallo (if needed to conve Factor (EF) Infor <u>17</u> Emission Factor Unit (lbs per) M GALS	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N	u ft, acres, ur leasure to con 19 Calculation Method Code* 5	nits produced e rrelate with em 20 Capture % Efficiency	tc.) <u>G</u> ission factor u Contro 21 Primary Control Device ID	I Device Inf	0.001 0.	23 Efficiency Reference Code**	25 Estimated Actual Emissions 8824 lbs
J 11. Ani 13. Uni 14. Uni 15 Polluta CO NOX	ts of Measure: (a num ts of Measure: (for ex t Conversion Factor: Emission 7 16 1t Emission Factor (EF) (number) 130 604	aber) <u>67880</u> xample: tons, gallo (if needed to conver- Factor (EF) Infor <u>17</u> Emission Factor Unit (lbs per) <u>M GALS</u> <u>M GALS</u>	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N N	u ft, acres, ur leasure to con 19 Calculation Method Code* 5 5 5	nits produced e rrelate with em 20 Capture % Efficiency	tc.) <u>G</u> ission factor u Contro 21 Primary Control Device ID	I Device Info Secondary Control Device ID	0.001 0.001 0rmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions 8824 lbs 4100 lbs
J 11. Ann 13. Uni 14. Uni 15 Pollutar CO NOX PM-10	ts of Measure: (a num ts of Measure: (for e: t Conversion Factor: Emission 7 16 t Emission Factor (EF) (number) 130 604 42.5	tber) <u>67880</u> xample: tons, gallo (if needed to conver- Factor (EF) Infor <u>17</u> Emission Factor Unit (lbs per) <u>M GALS</u> <u>M GALS</u> <u>M GALS</u>	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N N N	u ft, acres, un leasure to con 19 Calculation Method Code* 5 5 5 5	hits produced e rrelate with em 20 Capture % Efficiency	tc.) <u>G</u> ission factor u Contro 21 Primary Control Device ID	12. – Fuel ALS	0.001 0.	23 Efficiency Reference Code**	25 Estimated Actual Emissions 8824 lbs 4100 lbs 482 lbs
J 11. Ann 13. Uni 14. Uni 15 Pollutar CO NOX PM-10 SOX	ts of Measure: (a num ts of Measure: (for ex t Conversion Factor: Emission 7 16 nt Emission Factor (EF) (number) 130 604 42.5 7.1	aber) <u>67880</u> xample: tons, gallo (if needed to conver- Factor (EF) Infor 17 Emission Factor Unit (lbs per) M GALS M GALS M GALS M GALS	ns, million c ert Unit of M mation 18 Controlled EF? Yes or No N N N N	u ft, acres, ur leasure to con 19 Calculation Method Code* 5 5 5 5 3	hits produced e rrelate with em 20 Capture % Efficiency	tc.) <u>G</u> ission factor u Contro 21 Primary Control Device ID	I Device Info Secondary Control Device ID	0.001 0.	23 Efficiency Reference Code**	25 Estimated Actual Emissions 8824 lbs 4100 lbs 482 lbs 482 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Miscellaneous Portable Diesel Engines (Permitted)	MC Process ID No.: 7
PVNGS Source ID No.: None	
SCC: 20200102	

Fuel Use

1,718 gal

CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	EMISSIONS	
CO	1.30E+02	lb/M gal	AP-42, Sect. 3.3	223 lb	
NOa	6.04E+02	lb/M gal	AP-42, Sect. 3.3	1,038 lb	
PM10	4.25E+01	lb/M gal	AP-42, Sect. 3.3	73 lb	
SO ₂	7.10E+00	lb/M gal	by material balance	12 lb	
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	85 lb	

Notes:

1) Emissions calculations are for non-road engines and movable stationary sources.

2) All of this equipment was less than 600 hp. Emissions are based on fuel consumption.

3) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____ 8

2. Process Type/Description: MISC PORTABLE GASOLINE ENGINES (NON-ROAD AND MOVABLE STATIONARY ENGINES)

	3. Sta	ick ID(s) (0	nly if requ	ired on Stack Form)	<u> </u>					ISTION	
	4. Pr	ocess TIER	Code:	020599			FUEL COM	<u>B. INDUSTR</u>	IAL: INTER	INAL COMID		<u></u>
	5. SC	CC Code: 20200301 (8 digit number)					IND: GASO	LINE - RECI	PROCATIN	<u>G</u>		
	6. Se	asonal Thro	ughput Pe	rcent: Dec-	Feb <u>2</u>	<u>5</u> % Mai	r-May <u>2</u>	<u>5</u> % Ju	n-Aug _	<u>25</u> % Sej	p-Nov <u>25%</u>	<u>o</u>
	7. No	rmal Opera	ting Schee	dule: Hou	rs/Day <u>2</u> 4	4 Day	/s/Week	<u>7</u> Ho	ours/Year	<u>8760</u> We	eks/Year	
	8 Tx	nical Hours	s of Operat	tion: (military time) Start	(<u>00:00</u>	En	d <u>23:59</u>			
	0 Er	nissions has	ed on: (na	me of material or ot	her paramete	er, e.g. "rock	", "diesel", "v	ehicle miles tra	aveled") <u>GAS</u>	OLINE		
يناين .	9. Li		A		d (output)							
1	10.	Used (inp	ul) or		u (ouipui)			12	. – Fuel Sulfu	r Content (in p	ercent)	%
	11. A	nnual Amou	int: (<i>a nur</i>	nber) <u>973</u>		_			AT 6			
	13. U	nits of Meas	sure: (for e	example: tons, gallor	ns, million cu	1 ft, acres, ur	nts produced e	etc.) <u>G</u>	ALS			
	14. U	nit Convers	ion Factor:	: (if needed to conve	ert Unit of M	easure to con	rrelate with en	nission factor u	units) <u>0.001</u>			
								Contro	1 Device Inf	ormation		
	r		Emission	Factor (EF) Infor	nation	10		21		23	23	25
	15		16	17	18	19	20	21	44	<u>45</u>	Efficiency	Retimated Actual
	Pollu	ant Emis (EF	ssion Factor (number)	Emission Factor Unit (lbs per)	Controlled EF?	Calculation Method	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Device(s) % Efficiency	Reference Code**	Emissions
			7000	MONE	N	5						7,687 lbs
	CO		/900	MGALS		5			-			<i>199</i> lbs
	NOX		205	M GALS		3			·			12 lbs
	PM-1	0	12.6	M GALS	<u>N</u>	5					-+	11 lbs
	SOX		11.1	M GALS	<u>N</u>	3						372 Ibs
	voc		382	M GALS	N	5			+			572 103

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- = Material balance 3
- = Source Test Measurements (Stack Test) 4
- = AP-42/Fire Method or Emission Factor 5

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- =Vendor Emission Factor 9
- =Trade Group Emission Factor 10

- =Tested efficiency / EPA reference method 1
- 2 =Tested efficiency / other source test method
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Miscellaneous Portable Gasoline Engines (Permitted)	MC Process ID No.: 8
PVNGS Source ID No.: None	
SCC: 20200301	

Fuel Use

0 gal

CRITERIA POLLUTANT	EMISSIONS FACTOR	SOURCE	EMISSIONS
СО	7.90E+03 lb/Mgal	AP-42, Sect. 3.3	0 lb
NO ₂	2.05E+02 lb/Mgal	AP-42, Sect. 3.3	0 lb
PM10	1.26E+01 lb/Mgal	AP-42, Sect. 3.3	0 lb
SO ₂	1.11E+01 lb/Mgal	AP-42, Sect. 3.3	0 lb
Ozone (VOC)	3.82E+02 lb/Mgal	AP-42, Sect. 3.3	0 lb

Notes:

1) Emissions rates are based fuel consumption.

2) Emissions factors are based on AP-42 Section 3.3 Gasoline and Diesel Industrial Engines dated 10/96.

3) Gasoline Heating Value is 20,300 BTU/lb.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____9

2. Process Type/Description: <u>6 EMERGENCY GENERATORS @ 7670 HP, NRC-SAFETY POWER "EDG"</u>

•	3.	Stack ID(s) (only if required on Stack Form))						
	4.	Process TIER Code: <u>020599</u>		<u>FUEL C</u>	OMB. INDUS	TRIAL: INTE	RNAL COM	BUSTION	
:	5.	SCC Code: 20200401 (8 digit number)		INDUST	<u>'RIAL: LG. B</u>	<u>ORE ENGINI</u>	E: DIESEL		
(6.	Seasonal Throughput Percent: Dec-Feb	<u>25</u> %	Mar-May	<u>25</u> %	Jun-Aug	<u> 25</u> %	Sep-Nov	25%
	7.	Normal Operating Schedule: Hours/Day	<u>24</u>	Days/Week	7	Hours/Year	<u>705</u>	Weeks/Year	· <u>52</u>
:	8.	<u>Typical Hours of Operation:</u> (military time) Start		00:00		End	<u>59</u>		
]	9.	Emissions based on: (name of material or other parame	ter, e.g. "	rock", "diesel'	, "vehicle mile	s traveled") DI	ESEL	·····	
	10.	Used (<i>input</i>) or Produced (<i>output</i>)							
]	11.	Annual Amount: (a number)311056				12. – Fuel Sul	fur Content (in percent) _	0.05%
	12.	Units of Measure: (for example: tons, gallons, million of	cu ft, acre	es, units produ	ced etc.) G	ALS			

13. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) ______0.001

	Emission Factor (EF) Information				Control Device Information					
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	116	M GALS	N	5						36232 lbs
NOX	438	M GALS	N	5						136395 lbs
PM-10	7.85	M GALS	N	5						2427 Ibs
SOX	7.1	M GALS	N	3						2208 lbs
VOC	11.2	M GALS	N	5						<i>3489</i> lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Emergency Diesel Generators, Units 1-3,	MC Process ID No.: 9
PVNGS Source ID No.: 1,2,3 M-DGA, DGB-HO1	MC Stack No.: 9
SCC: 20200401	

Operating Hours822.9 hrs (aggregate)Fuel Use Rate378 gallons per hourTotal Fuel Use311,056 gallons (estimated)

CRITERIA POLLUTANT	EMISSION	S FACTOR	SOURCE	EMISSIONS
СО	1.165E+02	lb/M gal	AP-42, Sect. 3.4	36,232 lb
NO ₂	4.385E+02	lb/M gal	AP-42, Sect. 3.4	136,395 lb
PM10	7.804E+00	lb/M gal	AP-42, Sect. 3.4	2,427 lb
SO ₂	7.100E+00	lb/M gal	by material balance	2,208 lb
Ozone (VOC)	1.122E+01	lb/M gal	AP-42, Sect. 3.4	3,489 lb

Notes:

1) Emissions rates are based on nameplate full load (maximum) fuel consumption.

2) The fuel sulfur content was 0.04 % S by weight at a density of 7.1 lbs fuel / gal.

3) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05% by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____10___

1

2. Process Type/Description: <u>TSC GENERATOR, 1000 HP</u>

3. Stack ID(s) (only if required on Stack Form)

	ions based on: (name of ma	errar of other parameter,	e.g. lock, diesel,	venicie nines trave								
10 Mu	ad (insult) or	D roduced (output)	e.g. lock, dieser,	veniere nines trave			<u>,</u>					
10. 🛛 Us	sed (<i>input</i>) or	Produced (output)										
	$\frac{12}{12} = \frac{12}{12} = 12$											
] 11. Annua	I Amount: (a number)	2813		11. Annual Amount: (<i>a number</i>) 2813 12. – Fuel Sulfur Content (in percent) 0.05 %								

Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	116	M GALS	N	5						<i>328</i> lbs
NOX	438	M GALS	N	5						<i>1233</i> lbs
PM-10	7.85	M GALS	N	5						22 lbs
SOX	7.1	M GALS	N	3						20 lbs
VOC	11.2	M GALS	N	5						<i>32</i> lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value
| Technical Support Center Emergency Diesel | MC Process ID No.: 10 |
|---|-----------------------|
| PVNGS Source ID No.: AMDGNOTO1 | MC Stack No.: 10 |
| SCC: 20200401 | |

Operating Hours	37.5	hrs
Fuel Use Rate	75	gal/hr
Total Fuel Use	2,813	gal (estimated)

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS	
СО	1.165E+02	lb/M gal	AP-42, Sect. 3.4	328 lb	
NO ₂	4.385E+02	lb/M gal	AP-42, Sect. 3.4	1233 lb	
PM10	7.804E+00	lb/M gal	AP-42, Sect. 3.4	22 lb	
SO ₂	7.100E+00	lb/M gal	by material balance	20 lb	
Ozone (VOC)	1.122E+01	lb/M gai	AP-42, Sect. 3.4	32 lb	

Notes:

1) Operating hours were rounded to the nearest whole number

2) Emissions rates are based on nameplate full load (maximum) fuel consumption.

3) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID:_____ 11

2. Process Type/Description: SECURITY GENERATOR, 227 HP

NO	X	604		M GALS	N	5						217 lbs
со		130		M GALS	Ν	5						47 lbs
Po	ollutant	Emission Fact (EF) (number	ior r)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	15	16		17	18	19	20	21	22	23	23	25
		Emissi	on Fa	actor (EF) Infor	mation]		Cont	rol Device I	nformation		
14.	Unit Co	nversion Fact	tor: (i	f needed to conve	ert Unit of M	leasure to co	rrelate with o	emission facto	r units) <u>0.0</u>	01		
13.	Units of	f Measure: (fo	or exa	mple: tons, gallo	ns, million c	u ft, acres, u	nits produced	d etc.)	GALS			
11.	Annual	Amount: (a)	numb	er) <u>360</u>					12. – Fuel Su	lfur Content (in J	percent) <u>0.05</u>	0%
 10.	Use	ed (input)	or	Produce	ed (output)							
9.	Emissio	ons based on:	(nam	e of material or o	ther paramet	er, e.g. "rock	c", "diesel", '	vehicle miles	traveled") D	ESEL		
8.	<u>Typical</u>	Hours of Ope	eratio	<u>n:</u> (military time	e) Start		<u>00:00</u>		End <u>23:</u>	<u>59</u>		
7.	Normal	Operating Sc	hedu	le: Hou	rs/Day <u>2</u>	2 <u>4</u> Da	ys/Week _	7	Hours/Year	<u> </u>	/eeks/Year <u>52</u>	
6.	Seasona	al Throughput	Perc	ent: Dec	-Feb	<u>25</u> % Ma	r-May	<u>25</u> %	Jun-Aug	<u> 25</u> % Se	ep-Nov <u>25</u>	5%
5.	SCC Code: <u>20200102</u> (8 digit number)				Code: 20200102 (8 digit number) INDUSTRIAL: DISTILLATE OIL; RECIP						<u></u>	
4.	Process	TIER Code:		020599			FUEL CO	MB. INDUST	RIAL: INT	ERNAL COMB	USTION	
3.	Stack II	D(s) (only if r	equir	ed on Stack Form	ı) <u> </u>					<u>.</u>	<u></u>	
											······	

*Calculation Method Codes

PM-10

SOX

VOC

1 = Continuous Emissions Monitoring Measurements

M GALS

M GALS

M GALS

- 2 = Best Guess/ Engineering Judgment
- = Material balance 3
- = Source Test Measurements (Stack Test) 4

42.5

7.1

49.3

5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7

5

3

5

Ν

Ν

Ν

- =Site-Specific Emission Factor 8
- =Vendor Emission Factor 9
- =Trade Group Emission Factor 10

****** Control Efficiency Reference Codes

=Tested efficiency / EPA reference method 1

15 lbs

3 lbs

18 lbs

- =Tested efficiency / other source test method 2
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Security Headquarters Emergency Generator	MC Process ID No.: 11
PVNGS Source ID No.: AASKNEO1	MC Stack No.: 11
SCC: 20200102	

Operating Hours	40	hr
Fuel Use Rate	9	gal/hr
Total Fuel Use	360	gal (estimated)

CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	MONTHLY EMISSIONS	
СО	1.30E+02	lb/M gal	AP-42, Sect. 3.3	47 lb	
NO ₂	6.04E+02	lb/M gal	AP-42, Sect. 3.3	217 lb	
PM10	4.25E+01	lb/M gal	AP-42, Sect. 3.3	15 lb	
SO ₂	7.10E+00	lb/M gal	by material balance	3 lb	
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	18 lb	

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID:_____ 12

2. Process Type/Description: FIRE PROTECTION PUMPS, 2 @ 190 HP \square

14. Po	Emission 15 16 Dilutant Emission Factor (EF) (number)	Factor (EF) Inform 17 Emission Factor Unit (lbs per)	nation 18 Controlled EF? Yes or No	19 Calculation Cap Method Effi Code*	Co 20 21 ture % Prima ciency Contr Device Device	ontrol Device In 22 ary Secondary col Control Device ID	formation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Emissio
14.	Emission 15 16	Factor (EF) Infor	mation 18	19	Cc 20 21	ontrol Device In 22	formation 23	23	25
14.	Emission	Factor (EF) Infor	mation		Co	ontrol Device In	formation		
14.						· · · · · · · · · · · · · · · · · · ·			
14	Ona Conversion racior.			buie to conclate	man onnooron ta		· •		
1.7.	Unit Conversion Factor:	(if needed to conv	ert Unit of Mea	sure to correlate	with emission fa	ctor units) 0.00)1		
13	Units of Measure: (for e	vample: tops_gallor	– ns million cu f	t acres units pr	oduced etc.)	GALS	im contont (m p		
] 11.	Annual Amount: (a nur	nher) 590	•			12. – Fuel Sult	fur Content (in pe	ercent) 0.05	%
10.	Used (<i>input</i>) or	Produce	ed (output)						
] 9.	Emissions based on: (na	me of material or of	ther parameter.	, e.g. "rock", "die	sel", "vehicle mi	les traveled") DI	ESEL		
8.	Typical Hours of Operat	tion:_(military time	e) Start	00:00		End	<u>9</u>		
7.	Normal Operating Sche	iule: Hou	rs/Day <u>24</u>	Days/We	ek <u>7</u>	Hours/Year	<u>60.2</u> We	eks/Year	
6.	Seasonal Throughput Pe	rcent: Dec	-Feb <u>25</u>	% Mar-May	<u> </u>	Jun-Aug	<u>25</u> % Sej	o-Nov <u>25%</u>	Ď
5.	SCC Code: 20200102	(8 digit numb	number) INDUSTRIAL: DISTILLATE OIL; RECIP						
••	Process TIER Code:	020599		<u>FUE</u>	<u>L COMB. INDI</u>	USTRIAL: INTE	RNAL COMBU	JSTION	
4.									
3. 4.	Stack ID(s) (only if requ	uired on Stack Form	ı)						

	Emission]		Contro	l Device Info	ormation				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	130	M GALS	N	5						77 lbs
NOX	604	M GALS	N	5						356 lbs
PM-10	42.5	M GALS	N	5						25 lbs
SOX	7.1	M GALS	N	3						4 lbs
VOC	49.3	M GALS	N	5						<i>29</i> lbs

*Calculation Method Codes

- **1** = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- = Material balance 3
- = Source Test Measurements (Stack Test) 4
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- 9 =Vendor Emission Factor
- =Trade Group Emission Factor 10

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- =Design value from manufacturer 3
- 4 =Best Guess / engineering estimate
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Fire Protection Pump	MC Process ID No.: 12
PVNGS Source ID No.: AMFPNPO1A/B	MC Stack No.: 12
SCC: 20200102	

Operating Hours	60	hours
Fuel Use Rate	9.8	gal/hr per pump
Total Fuel Use	590	gal (estimated)

CRITERIA POLLUTANT EMISSIONS FACTOR		NS FACTOR	SOURCE	EMISSIONS
СО	1.30E+02	lb/M gal	AP-42, Sect. 3.3	77 lb
NO ₂	6.04E+02	lb/M gal	AP-42, Sect. 3.3	356 lb
PM10	4.25E+01	lb/M gal	AP-42, Sect. 3.3	25 lb
SO ₂	7.10E+00	lb/M gal	by material balance	4 lb
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	29 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____13

2. Process Type/Description: <u>ADMIN-A GENERATOR, 600 HP</u>

3.	Stack ID(s) (only if required on Stack Form)		
4	Process TIER Code:020599	FUEL COMB. INDU	USTRIAL: INTERNAL COMBUSTION-
5	SCC Code: <u>20200401</u> (8 digit number)	IND: LG, BORE EN	IGINE-DIESEL
6	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
7	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year Weeks/Year
8	Typical Hours of Operation: (military time) Start	00:00	End 23:59
] 9	Emissions based on: (name of material or other parameter, e.g.	"rock", "diesel", "vehicle mi	iles traveled") DIESEL
1	Discrete (input) or Produced (output)		

11. Annual Amount: (a number) <u>1116</u>

13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.)

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) _______

		ormation	Device Info	Control			mation	Factor (EF) Infor	Emission	
25	23	23	22	21	20	19	18	17	16	15
Estimated Actual Emissions	Efficiency Reference Code**	Control Device(s) % Efficiency	Secondary Control Device ID	Primary Control Device ID	Capture % Efficiency	Calculation Method Code*	Controlled EF? Yes or No	Emission Factor Unit (lbs per)	Emission Factor (EF) (number)	Pollutant
130 lbs						5	N	M GALS	116	CO
489 lbs						5	N	M GALS	438	NOX
<u>9 lbs</u>						5	N	M GALS	7.85	PM-10
8 lbs						3	N	MGALS	71	SOX
<i>13</i> lbs						5	N	MGALS	11.2	VOC

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

** Control Efficiency Reference Codes

12. - Fuel Sulfur Content (in percent) _____0.05_

<u>GALS</u>

1 =Tested efficiency / EPA reference method

%

- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Administration Building A Diesel	MC Process ID No.: 13
PVNGS Source ID No.: A Generator	MC Stack No.: 13
SCC: 20200401	

Operating Hours	37	hr
Fuel Use Rate	30	gal/hr
Total Fuel Use	1116	gal (estimated)

CRITERIA POLLUTANT	EMISSIONS FACTOR	SOURCE	EMISSIONS
СО	1.165E+02 lb/M gal	AP-42, Sect. 3.3	130 lb
NO ₂	4.385E+02 lb/M gal	AP-42, Sect. 3.3	489 lb
PM10	7.804E+00 lb/M gal	AP-42, Sect. 3.3	9 lb
SO ₂	7.100E+00 lb/M gal	by material balance	8 lb
Ozone (VOC)	1.122E+01 lb/M gal	AP-42, Sect. 3.3	13 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 14

2. Process Type/Description: ADMIN-B GENERATOR, 289 HP

	3.	Stack ID(s) (only if required on Stack Form)			
	4.	Process TIER Code: 020599		FUEL COMB.	INDUSTRIAL: INTERNAL COMBUSTION
	5.	SCC Code: 20200102 (8 digit number)		IND: DISTIL.	OIL (DIESEL) -RECIP
	6.	Seasonal Throughput Percent: Dec-Feb	<u> 25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
	7.	Normal Operating Schedule: Hours/Day	24	Days/Week <u>7</u>	Hours/Year <u>30.8</u> Weeks/Year
	8.	Typical Hours of Operation: (military time) St	tart	00:00	End23:59
	9.	Emissions based on: (name of material or other par	ameter, e.g.	"rock", "diesel", "vehi	cle miles traveled") DIESEL
	10.	Used (<i>input</i>) or Produced (<i>outp</i>	ut)		
	11.	Annual Amount: (<i>a number</i>) <u>369.6</u>			12. – Fuel Sulfur Content (in percent)
	13.	Units of Measure: (for example: tons, gallons, milli	on cu ft, acr	es, units produced etc.) <u>GALS</u>
	14.	Unit Conversion Factor: (if needed to convert Unit	of Measure	to correlate with emiss	ion factor units)
					
r		Emission Factor (EF) Information			Control Device Information

15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	130	M GALS	N	5						48 lbs
NOX	604	M GALS	N	5						223 lbs
PM-10	42.5	M GALS	N	5						<i>16</i> lbs
SOX	7.1	M GALS	N	3						3 lbs
VOC	49.3	M GALS	N	5						<i>18</i> lbs

*Calculation Method Codes

Γ

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 = Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Administration Building B Diesel	MC Process ID No.: 14
PVNGS Source ID No.: B Generator	MC Stack No.: 14
SCC: 20200102	

Operating Hours	31	hr
Fuel Use Rate	12	gal/hr
Total Fuel Use	370	gal (estimated)

	EMISSIO	NS FACTOR	SOURCE	EMISSIONS
CAITEMATOLEOTIM	1.30E+02	lb/M gal	AP-42, Sect. 3.3	48 lb
NO	6.04E+02	lb/M gal	AP-42, Sect. 3.3	223 lb
	4.25E+01	lb/M gal	AP-42, Sect. 3.3	16 lb
PMI0	7.10E+00	lb/M gai	by material balance	3 lb
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	18 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 16

2. Process Type/Description: AUXILIARY BOILER

3. Stack ID(s) (only if required on Stack Form)

4.	Process TIER Code:020202		<u>FUEL COMB. IND</u>	USTRIAL: OIL-DISTILL	ATE
5.	SCC Code: <u>10100501</u> (8 digit	number)	UTIL: GRDES 1&2	2 OIL-NORMFIRE	
6.	Seasonal Throughput Percent:	Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>
7.	Normal Operating Schedule:	Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year <u>0</u>	Weeks/Year
8.	Typical Hours of Operation: (militar	y time) Start	<u> 00:00</u>	End 23:59	

9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL

10. Used (input) Produced (output) or

11. Annual Amount: (a number) 0 12. – Fuel Sulfur Content (in percent) 0.05

GALS

%

13. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.)

14. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) 0.001

-	Emission Factor (EF) Information					Control Device Information				
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
со	5	M GALS	N	5						0 lbs
NOX	24	M GALS	N	5						0 lbs
PM-10 ⁷	2	M GALS	N	5						0 lbs
SOX	7.1	M GALS	N	3						<u>0</u> lbs
VOC ¹	0.2	M GALS	N	6						0 lbs
										lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- = Source Test Measurements (Stack Test) 4
- = AP-42/Fire Method or Emission Factor 5

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- =Vendor Emission Factor 9
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- =Tested efficiency / other source test method 2
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Auxiliary Boiler PVNGS Source ID No.: A SCC: 10100501	MC Process ID No.: 16 MC Stack No.: 16			
Hours of Operation Fuel Consumption	Less than 1 h 0 g	nr gal		
CRITERIA POLLUTANT	EMISSION	IS FACTOR	SOURCE	EMISSIONS
CO	5.00E+00	lb/M gal	Maricopa County	0 lb
NO ₂	2.40E+01	lb/M gai	Maricopa County	0 lb
PM10	2.00E+00	lb/M gai	Maricopa County	0.0 lb
SO ₂	7.10E+00	lb/M gal	by material balance	0 lb
Ozone (VOC)	2.00E-01	lb/M gal	Maricopa County	0.00 lb

Notes:

1) Emissions are based on the metered fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>17</u>

2. Process Type/Description: <u>3 UNIT COOLING TOWERS, W/ 3 TOWERS PER UNIT (TOTAL HOURS OF OPERATION)</u>

-10'	1.9/			}						
,	1.05	HR OF OPERATI	N	28						47,084 lbs
ollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
15	16	17	18	19	20	21	22	23	23	25
[Emissio	on Factor (EF) Informa	ation	Control Device Information						
Unit Cor	nversion Factor	: (if needed to convert U	nit of Measu	re to correla	te with emis	ssion factor u	nits)			<u></u>
Units of	Measure: (for e	example: tons, gallons, m	nillion cu ft,	acres, units p	produced etc	:.) <u>H</u>	RS OF OPE	RATION		
Annual	Amount: (a nur	nber)				12.	- Fuel Sulfu	r Content (in pe	rcent)	%
Use	d (<i>input</i>) or	Produced (o	utput)							
Emission	ns based on: (na	me of material or other	parameter, e.	g. "rock", "d	liesel", "veh	icle miles tra	veled") <u>HRS</u>	OF OPERAT	ION, AGGRE	<u>CGATE</u>
Typical	Hours of Opera	tion:_(military time)	Start	00:0	<u>0</u>	End	1			
Normal	Operating Sche	dule: Hours/D	ay <u>24</u>	Days/W	/eek <u>7</u>	Ho	urs/Year _	<u>8760</u> We	eks/Year	n,
Seasonal	1 Throughput Pe	ercent: Dec-Feb	<u> 25</u> %	Mar-Ma	ay <u>25</u>	% Jun	-Aug _	<u>25</u> % Sep	-Nov <u>25</u>	<u>%</u>
SCC Co	de: <u>38500101</u>	(8 digit number)								
Process '	TIER Code:	140699		<u>MI</u>	SCELLAN	EOUS: COO	DLING TOV	VERS		
Stack ID	o(s) (only if requ	ired on Stack Form)	17	<u> </u>						
	Stack IE Process SCC Co Seasona Normal Typical Emissio MUse Annual Units of Unit Co 15 Ilutant	Stack ID(s) (only if requProcess TIER Code:	Stack ID(s) (only if required on Stack Form) Process TIER Code: 140699 SCC Code: 38500101 (8 digit number) Seasonal Throughput Percent: Dec-Feb Normal Operating Schedule: Hours/D Typical Hours of Operation: (military time) Emissions based on: (name of material or other) \square Used (input) or Produced (o Annual Amount: (a number) 0 Units of Measure: (for example: tons, gallons, n Unit Conversion Factor: (if needed to convert U Emission Factor Emission Factor Ilutant Emission Factor Emission Factor Unit (Ibs per) Unit (Ibs per)	Stack ID(s) (only if required on Stack Form) 17 Process TIER Code: 140699 SCC Code: 38500101 (8 digit number) Seasonal Throughput Percent: Dec-Feb 25% Normal Operating Schedule: Hours/Day 24 Typical Hours of Operation: (military time) Start Emissions based on: (name of material or other parameter, e. \square Used (input) or \square Produced (output) Annual Amount: (a number) 0 Units of Measure: (for example: tons, gallons, million cu ft, for example: 10 Unit Conversion Factor: (if needed to convert Unit of Measure) 15 16 17 18 Ilutant Emission Factor Controlled EF? Ves or No Ves or No Yes or No	Stack ID(s) (only if required on Stack Form) 17 Process TIER Code: 140699 SCC Code: 38500101 (8 digit number) Seasonal Throughput Percent: Dec-Feb 25% Normal Operating Schedule: Hours/Day 24 Normal Operating Schedule: Hours/Day 24 Typical Hours of Operation: (military time) Start 00:0 Emissions based on: (name of material or other parameter, e.g. "rock", "co Used (input) or Produced (output) Annual Amount: (a number) 0	Stack ID(s) (only if required on Stack Form) 17 Process TIER Code: 140699 MISCELLAN SCC Code: 38500101 (8 digit number)	Stack ID(s) (only if required on Stack Form) 17 Process TIER Code: 140699 MISCELLANEOUS: COO SCC Code: 38500101 (8 digit number) Seasonal Throughput Percent: Dec-Feb 25% Mar-May 25% Normal Operating Schedule: Hours/Day 24 Days/Week 7 Hours/Day Typical Hours of Operation: (military time) Start 00:00 End Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles trae MISCELLANEOUS: COO Muscel (input) or Produced (output) End Annual Amount: (a number) 0 12. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) HI Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor unit Conversion Factor: Control 15 16 17 18 19 20 21 Ilutant Emission Factor Emission Factor Controlled EF? Calculation Method Efficiency Primary Control Device ID Unit (lbs per) Ves or No Code* Primary Efficiency <td< td=""><td>Stack ID(s) (only if required on Stack Form) 17 Process TIER Code: 140699 MISCELLANEOUS: COOLING TOW SCC Code: 38500101 (8 digit number) Seasonal Throughput Percent: Dec-Feb Dec-Feb 25% Mar-May 25% Jun-Aug Normal Operating Schedule: Hours/Day Hours of Operation: (military time) Start 00:00 Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") MISCELLANEOUS: Control Produced (output) Annual Amount: (a number) 0 12. – Fuel Sulfu Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) Init Conversion Factor: Emission Factor (EF) Information Control Device In Control Device In 15 16 17 Ilutant Emission Factor Controlled EF? Calculation Method Capture % Primary Secondary Control Device ID Device ID Device ID Device ID</td><td>Stack ID(s) (only if required on Stack Form) 17 </td><td>Stack ID(s) (only if required on Stack Form) 17 </td></td<>	Stack ID(s) (only if required on Stack Form) 17 Process TIER Code: 140699 MISCELLANEOUS: COOLING TOW SCC Code: 38500101 (8 digit number) Seasonal Throughput Percent: Dec-Feb Dec-Feb 25% Mar-May 25% Jun-Aug Normal Operating Schedule: Hours/Day Hours of Operation: (military time) Start 00:00 Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") MISCELLANEOUS: Control Produced (output) Annual Amount: (a number) 0 12. – Fuel Sulfu Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) Init Conversion Factor: Emission Factor (EF) Information Control Device In Control Device In 15 16 17 Ilutant Emission Factor Controlled EF? Calculation Method Capture % Primary Secondary Control Device ID Device ID Device ID Device ID	Stack ID(s) (only if required on Stack Form) 17	Stack ID(s) (only if required on Stack Form) 17

¹ Emission factors updated based on engineering calculation and material balance. See Calculation Sheet No. 2.

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Units 1, 2, and 3 Cooling Tower PVNGS ID No.: CWN-W01,2,3 SCC Code: 38500101

Cumulative Operating Days (all units):992.0 daysCumulative Operating Hours (all Units)23,808 hrs

POLLUTANTS	EMISSIONS FACTO	R	SOURCE	ANNUAL EMISSIONS	
PMIO	1.9776E+00	lb/hr	Non-Title V Permit Application	47,084 lb	
VOC (Total)	2.120E-01	lb/hr	Materials balance & CARB	5,047 lb	

n Chloroform VOC Emission Factor:
al Non Chloroform VOC = (9,000 gallons of AF1091)(0.067 lbs VOC / gallon) = 0,600 lbs
n Chloroform VOC Emission Factor = (600 lbs) / (23808 hr) = 0.025 lb / hr

Chloroform VOC Emission Factor:

The chloroform emissions factor of 20 kg-s/cubic m-yr, was obtained from Table 8.6-2, Emission Factor for Volatile Organic Compounds from "Emissions Characteristics of Cooling Towers. Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for California State Air Resources Board, August 11, 1981.

Chloroform VOC Emissions Factor = (20 kg-s/cubic m-yr)(1 yr/365 d)(1 d/24 hr)(2.2 lb/ kg)(1 min/60 s)(1 cubic m/264.1 gal) (Circulating Water Flow in gal / min) Chloroform VOC Emissions Factor = (20 kg-s/cubic m-yr)(1 yr/365 d)(1 d/24 hr)(2.2 lb/ kg)(1 min/60 s)(1 cubic m/264.1 gal)(590,000 gal/min)Chloroform VOC Emissions Factor = 0.187 lbs/hr

Total VOC Emission Factor:

VOC Emissions Factor = Non Chloroform Emissions Factor + Chloroform Emissions Factor

VOC Emissions Factor = 0.025 lb / hr + 0.187 lb / hr

VOC Emissions Factor = 0.212 lb / hr

MC Process ID No.: 17 (includes all 3 units, all 9 towers) MC Stack No.: 17

.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

	1. 2.	Process I Process 7	D:20 Type/Description:	2 DIESEL FIRE ESF FROM VE	<u>D "GAS" T</u> NDOR	URBINES,	NRC LEVEL	EMERGY P	OWER. CO	<u>NOX, PM10</u>		
	3.	Stack ID	(s) (only if requir	ed on Stack Form)								
	 4. 5. 6. 7. 8. 9. 10. 11. 13. 14. 	 Process TIER Code: <u>020599</u> SCC Code: <u>20200101</u> (8 digit number) Seasonal Throughput Percent: Dec-Feb Normal Operating Schedule: Hours/Day <u>Typical Hours of Operation:</u> (military time) S Emissions based on: (name of material or other par 0. Used (<i>input</i>) or Produced (<i>outp</i> Annual Amount: (a number) <u>6551</u> Units of Measure: (for example: tons, gallons, mill 			er) Feb <u>2</u> rs/Day <u>2</u>) Start ther paramete ed (<i>output</i>) ns, million cr ert Unit of M	FUEL COMB. INDUSTRIAL: INTERNAL COMBUSTION- INDUSTRIAL: DISTILLATE OIL: TURBINE						<u>//o</u>
		Emission Factor (EF) Information			mation			Contro	1 Device Inf	ormation		~~
l		15	16	17	18	19	20	21	22	23	23	Z5
	F	Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Ves or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
			11.2	MGAIS	N	9						74 lbs
		<u>ן</u> אר	11.5	MGALS	N	9						766 lbs
		JA // 10	24.6	MGALS	N	9						<u>161 lbs</u>
		N ¹	71	MGALS	N	3						47 lbs
		<u>2A</u>	0.057	MGALS	N	5						0 lbs
			0.037									lbs
	19	SOX Emis.	sion Factor updat	ted with fuel sulfur	content. See	e Calculation	She et No. 1			·····		

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- = Source Test Measurements (Stack Test) 4
- = AP-42/Fire Method or Emission Factor 5

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- =Vendor Emission Factor 9
- =Trade Group Emission Factor 10

Control Efficiency Reference

- =Tested efficiency / EPA reference method 1
- =Tested efficiency / other source test method 2
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

MC Process ID No.: 20
MC Stack No.: 20

Operating Hours	54	hours
Fuel Consumption	6,551	gallons (aggregate)

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS	
СО	1.13E+01	lb/M gal	Vendor data	74 lb	
NO ₂	1.17E+02	lb/M gal	Vendor data	766 lb	
PM10	2.46E+01	lb/M gal	Vendor data	161 lb	
SO ₂	7.10E+00	lb/M gal	by material balance	47 lb	
Ozone (VOC)	5.62E-02	lb/M gal	AP-42, Sect. 3.1	0.4 lb	

Notes:

1) Fuel Consumption was based on fuel totalizer readings.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05 % by weight at a fuel density of 7.1 lbs / gal was assumed.

3) Vendor data given for PM. PM10 assumed equivalent to PM.

4) The VOC emissions factor is based on AP-42 Section 3.1 Stationary Gas Turbines dated 04/00.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____ 21

Π	2	Process Type/Description:	CHEMICAL STORAGE BLDG GENERATOR, 150 HP
	Au .	1100033 1 900 Desemption.	

PM-1	10	42.5	M GALS	N	5]		12
NOX		604.0	M GALS	<u>N</u>	5						164
co		130.0	M GALS	N	5	ļ					35
Poll	itant Emis (EF)	ion Factor (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
1	5	16	17	18	19	20	21	22	23	23	25
Emission Factor (EF) Information		rmation	Control Device Information								
13. (14. (Jnits of Meas Jnit Conversi	are: (for on Factor	example: tons, galle r: (if needed to conv	ons, million c	u ft, acres, ui leasure to co	rrelate with er	nission factor u	units) <u>0.00</u>	L		
11. A	Annual Amou	nt: (<i>a nu</i>	umber) <u>272</u>			•. • •	12	. – Fuel Sulfu	ır Content (in p	ercent) 0.05%	
 10.	Used (inp	ut) o	r Produc	ed (output)							
9. E	missions bas	ed on: (n	ame of material or o	other paramet	er, e.g. "rock	«", "diesel", "v	ehicle miles tra	aveled") DIE	SEL		
<u>8. 1</u>	ypical Hours	of Opera	ation: _(military tim	e) Start		<u>00:00</u>	En	d <u>23:59</u>	•		
7. N	Iormal Opera	ting Sche	edule: Ho	urs/Day2	<u>4</u> Da	ys/Week	<u>7</u> Ho	ours/Year 4	<u>0</u> We	eeks/Year	
6. S	easonal Thro	ughput P	ercent: Dec	-Feb	<u>25</u> % Ma	r-May	<u>25</u> % Ju	n-Aug _	<u></u> Sej	p-Nov <u>25</u>	<u>%</u>
5. S	CC Code: 2	0200102	(8 digit num	ber)		INDUSTRL	<u>AL: DISTILL</u>	<u>ATE OIL: R</u>	ECIP		······
4. P	rocess TIER	Code:	020599			FUEL COM	<u>IB. INDUSTR</u>	IAL: INTER	RNAL COMBI	USTION	
3. S	tack ID(s) (o	nly if req	uired on Stack Forn	n)							

*Calculation Method Codes

SOX

VOC

1 = Continuous Emissions Monitoring Measurements

M GALS

M GALS

Ν

Ν

- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- = Source Test Measurements (Stack Test) 4

7.1

49.3

5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7

3

5

- =Site-Specific Emission Factor 8
- =Vendor Emission Factor 9
- 10 =Trade Group Emission Factor

****** Control Efficiency Reference Codes

- 1 =Tested efficiency / EPA reference method
- =Tested efficiency / other source test method 2

35 lbs 164 lbs 12 lbs

2 lbs

13 lbs

- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- 5 =Calculated, based on material balance
- =Estimated, based on a published value 6

Chemical Storage Building Diesel	MC Process ID No.: 21
PVNGS Source ID No.: C Generator	MC Stack No.: 21
SCC: 20200102	

Operating Hours	40	hrs
Fuel Use Rate	6.8	gal/hr
Total Fuel Use	272	gal (estimated)

CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	EMISSIONS
СО	1.30E+02	lb/M gal	AP-42, Sect. 3.3	35 lb
NO ₂	6.04E+02	lb/M gal	AP-42, Sect. 3.3	164 lb
PM10	4.25E+01	lb/M gal	AP-42, Sect. 3.3	12 lb
SO ₂	7.10E+00	lb/M gal	by material balance	2 lb
Ozone (VOC)	4.93E+01	lb/M gal	AP-42, Sect. 3.3	13 lb

Notes:

1) Emission rates are based on the nameplate full load (maximum) fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05% by weight at a fuel density of 7.1 lbs / gal was assumed.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID:__ 22

Process Type/Description: PORTABLE COOLING TOWER (UNITS ARE BASED ON TDS-HRS, EF BACK CALCULATED) 2.

	Poll	utant	Emission Factor (FF) (number)	Emission Factor	Controlled EF?	Calculation Method	Capture % Efficiency	Primary Control	Secondary Control	Control Device(s) %	Efficience Reference	Estimated Act	
	1	5	16	17	18	19	20	21	22	23	23	25	
	Emission Factor (EF) Information			ation			Cont	rol Device I	nformation				
	14. (Jnit Cor	nversion Factor:	(if needed to convert U	nit of Measu	re to correla	te with emiss	sion factor l	inits)				
	13. U	Jnits of	Measure: (for ex	xample: tons, gallons, n	nillion cu ft,	acres, units p	produced etc.	.) <u>H</u>	<u>RS OF OPE</u>	RATION			
	11. <i>I</i>	Annual A	Amount: (a num	aber) <u>3440</u>				12	. – Fuel Sulfi	ur Content (in	percent)	%	
—	10.	XUsed	d (<i>input</i>) or		output)						,	•	
Ш	9. I	Emissio	ns based on: (nai	me of material or other	parameter, e	.g. "rock", "c	liesel", "vehi	icle miles tra	aveled") HR	<u>S OF OPERA</u>	ATION		
	8.]	ypical	Hours of Operat	ion: _(military time)	Start	00:0	0	En	id <u>23:59</u>	2			
	7. 1	Normal	Operating Sched	lule: _ Hours/D	ay <u>24</u>	Days/W	/eek <u>7</u>	Но	ours/Year _	<u>1392</u>	Weeks/Yea	r	
	6. 5	leasonai	l Throughput Pe	rcent: Dec-Feb	<u>25</u> %	Mar-Ma	ay <u>25</u> %	% Ju	n-Aug _	<u>25</u> %	Sep-Nov	25%	
	5. 8	SCC Co	de: <u>38500101</u>	(8 digit number)		COOLING TOWERS: PROC COOLING: MECH DRAFT							
	4. I	rocess	TIER Code:	140699		MISCELLANEOUS: COOLING TOWERS							
	3. 8	stack ID	(s) (only if requ	ired on Stack Form)									

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Yes or No	Code*	 Device ID	Device ID
0.113	HR OF OPERATI	N	5		
0.0019	HR OF OPERATI	N	2		

¹ Emissions factor back-calculated using AP-42 methodology and published VOC emissions factors. See Calculation Sheet No. 3

*Calculation Method Codes

PM-10⁷ **VOC**¹

1 = Continuous Emissions Monitoring Measurements

Unit (lbs per)

2 = Best Guess/ Engineering Judgment

(EF) (number)

- = Material balance 3
- = Source Test Measurements (Stack Test) 4
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7

- =Site-Specific Emission Factor 8
- 9 =Vendor Emission Factor
- =Trade Group Emission Factor 10

****** Control Efficiency Reference Codes

Efficiency

=Tested efficiency / EPA reference method 1

Code**

Actual

290 lbs

3 lbs

- 2 =Tested efficiency / other source test method
- =Design value from manufacturer 3
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

PORTABLE COOLING	GTOWER		MC Process ID No.: 22					
SCC Code: 38500101				MC Stack No.: 22				
Average TDS Operating Days	3,440 ppm 58 days							
Operating Hours	1392 hours							
POLLUTANTS	EMISSION	S FACTOR	SOURCE	EMISSIONS				
PM10	2.08E-01	lb/hr	manufacturer's data	290 lb				
VOC (Chloroform)	1.90E-03	lb/hr	CARB Reference	3 lb				
Particulate Matter:								
Emissions factors for PM ₁₀ and	d chloroform are derived from forr	nulas below.						
Where:	CFR = circulating flow rate	e (gpm) (2 cells) = 6,	.000					
	F1 = Liquid Drift Rate (frac	tion of flow rate) = (0.002% = 0.00002					
PM-10 (lb/hr) = CFR x F1 x 8.	.4 lb/gal x 60 min/hr x (1/1,000,00	0 ppm) x Average T	DS					
PM-10 (lb/hr) = {6000 x 0.000	02 x 8.4 x 60 x (1/1,000,000) x 3,	440}= 0.208 lbs/hr						

Chloroform:

The chloroform emissions factor of 20 kg-s/cubic m-yr, was obtained from Table 8.6-2, Emission Factor for Volatile Organic Compounds from "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for California State Air Resources Board, August 11, 1981.

Chloroform VOC Emissions Factor = (20 kg-s/cubic m-yr)(1 yr/365 d)(1 d / 24 hr)(2.2 lb / kg) (1 min / 60 s) (1 cubic m / 264.1 gal) (Circulating Water Flow in gal / min Chloroform VOC Emissions Factor = (20 kg-s/m-yr)(1 yr/365 d)(1 d / 24 hr)(2.2 lb / kg) (1 min / 60 s) (1 cubic m / 264.1 gal) (6,000 gal/min) Chloroform VOC Emissions Factor = 0.00190 lb / hr

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID:_____ 23

2. Process Type/Description: <u>LOADING/UNLOADING SALT SILOS (2)</u>

3. 4	•	Stack ID(s) (only if required on Stack Form) 22			
4		Stack $HD(S)$ (only if required on Stack Form) <u>25</u>			
	•	Process TIER Code:071099	MISCELLANEOU	S INDUSTRIAL PROCESSES	
5.	•	SCC Code: <u>30510498</u> (8 digit number)	BULK MATL UNL	OADING: MINERAL	
6.	•	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>	
7.	•	Normal Operating Schedule: _ Hours/Day _24	Days/Week <u>7</u>	Hours/Year <u>8760</u> Weeks/Year	
8.	•	Typical Hours of Operation: _(military time) Start	<u> 00:00</u>	End 23:59	
9.	•	Emissions based on: (name of material or other parameter, e.g.	"rock", "diesel", "vehicle m	niles traveled") <u>SALT</u>	
1(0.	Used (input) or Produced (output)			
11	1.	Annual Amount: (a number) <u>6936</u>		12. – Fuel Sulfur Content (in percent)	
13	3.	Units of Measure: (for example: tons, gallons, million cu ft, act	res, units produced etc.)	TONS	
14	4.	Unit Conversion Factor: (if needed to convert Unit of Measure	to correlate with emission fa	actor units)	

	Emissie	on Factor (EF) Inf	ormation		Control Device Information					
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Fact (EF) (number	Dr Emission Factor) Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
PM-10	10.0	TON	<u>N</u>	2	100.000	23		99.000	3	<i>694</i> lbs
		-								

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- = Best Guess/ Engineering Judgment 2
- = Material balance 3
- = Source Test Measurements (Stack Test) 4
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- =Design value from manufacturer 3
- 4 =Best Guess / engineering estimate
- =Calculated, based on material balance 5
- 6 =Estimated, based on a published value

Salt Silos				MC Process ID No.:	23				
PVNGS Source ID No.: AN	ISSMS02A,B			MC Stack No.: 23					
SCC: 30510498				MC Control ID No.:	23				
Material Processed	6,936 T	Tons							
CRITERIA POLLUTANT	EMISSIONS	S FACTOR	SOURCE	EMISSIONS					
PM10	1.00E-01	lb/T loaded	by material balance	694.0 lb					
Notes:									

1) Vendor data given for PM. Assume $PM_{10} = 1/2 \times PM$.

2) The silo acts as an expansions vessel, allowing most of the particulate to fall out due to gravity.

The salt delivered is a large particle size.

A conservative estimate of 1.0% going to the filter was used, 99% dropout inherent in transfer process.

3) Filter efficiency is 99%.

4) All of these factors are included in the emissions factor shown above.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 24

2. Process Type/Description: ILRT LEAK TEST RENTAL COMPRESSOR - REQUIRED EVERY 10 YEARS

3.	Stack ID(s) (only if required on Stack Form)		
4.	Process TIER Code: 020599	FUEL COMB. INDUS	STRIAL: INTERNAL COMBUSTION
5.	SCC Code: <u>20200102</u> (8 digit number)	NDUSTRIAL: DISTI	ILLATE OIL: RECIP
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> % Mar-	May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov 25%
7.	Normal Operating Schedule: _ Hours/Day _24 Days	/Week <u>7</u>	Hours/Year <u>0</u> Weeks/Year
 8.	Typical Hours of Operation: _(military time) Start 00	<u>:00</u>	End
9.	Emissions based on: (name of material or other parameter, e.g. "rock",	"diesel", "vehicle mile	s traveled") DIESEL,
10.	Used (<i>input</i>) or Produced (<i>output</i>)		
11.	Annual Amount: (a number)		12. – Fuel Sulfur Content (in percent) %
13.	Units of Measure: (for example: tons, gallons, million cu ft, acres, unit	s produced etc.)	GALS
14.	Unit Conversion Factor: (if needed to convert Unit of Measure to corre	late with emission facto	or units)

······	Emission	Factor (EF) Infor	mation							
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	0.74	M GALS	N	7					Code	0 lbs
NOX	6.1	M GALS	N	7						0 Ibs
PM-10	0.1	M GALS	N	7			<u> </u>			
SOX	0.0852	M GALS	N	7			<u> </u>			
VOC	0.02	M GALS	N	7						
										<u> </u>

*Calculation Method Codes

GR 5

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- = Material balance 3
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- =Best Guess / engineering estimate 4
- =Calculated, based on material balance 5
- =Estimated, based on a published value 6

Release Point 24: ILRT Compressors

NOT INCLUDED - ONLY NEED TO ADD ONCE PER 10 YEARS.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____26

2. Process Type/Description: ABRASIVE BLAST MEDIA STORAGE HOPPER

	3.	Stack I	D(s) (only if:	rea	uired on Stack Forr	n) ^)6						
	4.	Process	s TIER Code:		071099			MISCELL	ANEQUE DIE				
	5.	SCC C	ode: <u>309002</u>	201	(8 digit num	ber)		ABRASIV	E BLASTING	: METAL : G	<u>'ROCESSES</u>		<u> </u>
	6.	Season	al Throughpu	it Pe	ercent: Dec	-Feb	<u>25</u> % Ma	ar-May	<u>25</u> % Ju	in-Aug	<u>25</u> % Se	p-Nov	25%
	7.	Norma	Operating S	che	dule: Hou	urs/Day	2 <u>4</u> Da	ys/Week	<u>7</u> H	ours/Year _	<u>8760</u> We	eks/Year	
	8.	<u>Typical</u>	Hours of Op	era	tion: (military tim	e) Start		00:00	Er	nd)		
	9.	Emissio	ons based on:	(na	me of material or o	ther parame	ter, e.g. "rocl	k", "diesel", "	vehicle miles tr	aveled") ABI	RASIVE BLAS	T MEDIA	
	10. Used (input) or Produced (output)												
	11.	11. Annual Amount: (a number) 94											
	13.	Units of	f Measure: (fo	or e	xample: tons, gallo	ns, million c	u ft, acres, u	nits produced	etc.) <u>T(</u>	ONS	· •	/	
	14.	Unit Co	nversion Fac	tor:	(if needed to conve	ert Unit of M	leasure to co	rrelate with er	nission factor u	inits)			
_			Emissi	on	Factor (EF) Infor	mation]	Control Device Information					7
╞		15	<u>16</u>		17	18	19	20	21	22	23	23	25
	Po	llutant	Emission Fact (EF) (number	tor r)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	PM	-10	20	1	TONS	N	2	100.000	26		99.00	3	Ølbs
\vdash													
-													
┢													
L									1				

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 = Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Abrasive Media Hopper	MC Process ID No.:	26
PVNGS Source No None Assigned	MC Stack No.:	26
SCC 30900201	MC Control ID No.:	. 26

Material Loaded

0 Tons

CRITERIA POLLUTANT	EMISSIONS FACTO	DR	SOURCE	EMISSIONS		
PM10	2.00E-01	lb/T loaded	by material balance	0.0 lb		

Notes:

1) Assumes 99% dropout rate of material due to large particle size. Only 1% goes to filter.

2) Filter efficiency based on typical value for HEPA filters of 99.00 %

3) Assumes all emissions are PM10.

.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 27

2. Process Type/Description: STEAM GENERATOR CHEMICAL CLEANING - ATMOS. DUMP VALVE STACKS UNITS 1, 2, 3

VC		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1	1		,	
	DC	102	HR OF OPERATI	N	2						0 lbs
CC)	9.9	HR OF OPERATI	N	2						0 lbs
Р	ollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	15	16	17	18	19	20	21	22	23	23	25
		Emiss	sion Factor (EF) Inform	mation			Contro	Device Inf	ormation		
14.	Unit Co	nversion Fa	ctor: (if needed to conve	ert Unit of M	leasure to co	rrelate with en	nission factor u	units)			<u></u>
13.	Units of	Measure: (for example: tons, gallor	ns, million c	u ft, acres, u	nits produced e	etc.) <u>H</u>	<u>RS OF OPEI</u>	RATION		
11.	Annual	Amount: (a	a number)0	_			12	. – Fuel Sulfu	ır Content (in pe	ercent)	<u>%</u>
10.	Use	d (<i>input</i>)	or Produce	ed (output)							
9.	Emissio	ns based on	: (name of material or o	ther paramet	ter, e.g. "rock	«", "diesel", "v	ehicle miles tra	aveled" <u>) HRS</u>	S OF OPERAT	ION (VENT	<u>TIME)</u>
8.	Typical	Hours of O	peration: (military time	e) Start		<u>00:00</u>	En	d <u>23:59</u>			
7.	Normal	Operating S	Schedule: Hou	rs/Day <u>1</u>	2 Da	ys/Week	<u>1</u> Ho	ours/Year _	<u>12</u> We	eks/Year	
6.	Seasona	l Throughp	ut Percent: Dec	-Feb	<u>0</u> % Ma	ır-May <u>(</u>	<u>)</u> % Ju	n-Aug _	<u>0%</u> Sep	o-Nov <u>1</u>	<u>)0%</u>
5.	SCC Co	ode: <u>39999</u>	9999(8 digit numb	per)		MISC. IND	<u>USTRIAL PO</u>	RCESS: OT	<u>'HER NOT CL</u>	ASSIFIED	
4.	Process	TIER Code	: <u>071099</u>			MISCELLA	NEOUS IND	<u>USTRIAL P</u>	ROCESSES		
Ј.	Stack IL	D(s) (only if	required on Stack Form	ı) <u>2</u>	7						

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 = Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- ****** Control Efficiency Reference Codes
 - 1 =Tested efficiency / EPA reference method
 - 2 =Tested efficiency / other source test method
 - 3 =Design value from manufacturer
 - 4 =Best Guess / engineering estimate
 - 5 =Calculated, based on material balance
 - 6 =Estimated, based on a published value

Release Point 27: SG Cleaning (ADV)

NOTE: THIS RELEASE POINT IS ONLY ACTIVE WHEN S/G CLEANING OCCURRED.

Permit Number(s): 030132

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 29

2. Process Type/Description: STEAM GENERATOR CHEMICAL CLEANING - EVAPORATOR CONDENSER DISCHARGE

3.	Stack II	D(s) (only if re	equ	ired on Stack Form	1) <u>2</u>	.9						
4.	Process	TIER Code:		071099			MISCELL A	ANEOUS IND	USTRIAL H	ROCESSES		
5.	SCC Co	ode: <u>3999999</u>	99	(8 digit numl	per)		MISC. IND	<u>USTRIAL PF</u>	ROCESS: OT	THER NOT C	LASSIFIED	
6.	Seasona	al Throughput	Pe	rcent: Dec	-Feb	<u>0</u> % Ma	ar-May	<u>0</u> % Ju	n-Aug	<u>0%</u> Se	p-Nov10	0%
7.	Normal	Operating Sc	hed	lule: Hou	urs/Day	<u>24</u> Da	ys/Week	<u>7</u> H	ours/Year	<u>1080</u> W	eeks/Year	
8.	Typical	Hours of Ope	erat	ion: (military time	e) Start		<u>00:00</u>	Ei	nd <u>23:59</u>	2		
9.	Emissic	ons based on: (naı	me of material or o	ther paramet	ter, e.g. "rocl	k", "diesel", "v	ehicle miles tr	aveled") GA	LLONS PROC	CESSED	
10.	Use	d (input)	or	Produce	ed (output)		-		/ <u></u>		<u></u>	
] 11.	Annual	Amount: (a n	um	ıber)0	_			12	. – Fuel Sulfi	ır Content (in p	ercent)	%
13.	Units of	f Measure: (fo	r ex	cample: tons, gallo	ns, million c	u ft, acres, u	nits produced	etc.) <u>G</u>	ALS			
14.	Unit Co	nversion Fact	or:	(if needed to conve	ert Unit of M	leasure to co	rrelate with en	nission factor	units)			
		Emissic	n l	Factor (EF) Infor	mation			Contro	l Device Inf	ormation		
	15	16		17	18	19	20	21	22	23	23	25
Ро	llutant	Emission Facto (EF) (number)	or)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
NH	X	0.032247		GALLONS	N	2						0 lbs
			200 200									
ļ												

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 = Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Release Point 29: SG Cleaning (Evaporator Condenser)

NOTE: THIS RELEASE POINT IS ONLY ACTIVE WHEN S/G CLEANING OCCURRED.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____ 30

2. Process Type/Description: STEAM GENERATOR CHEMICAL CLEANING - EVAPORATOR COOLING TOWER

PN	410	0.015	HR OF OPERATI	Yes or No N	2				<u> </u>		0 lbs
		(number)		Yes or No							
1	Pollutant	Emission Factor (EF)	Emission Factor Unit (lbs per)	Controlle d EF?	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	15	16	17	18	19	20	21	22	23	23	25
		Emiss	ion Factor (EF) Inform	ation][Contro	l Device Infe	ormation		
13	• Unit Co	onversion Fac	ctor: (if needed to conver	t Unit of M	leasure to cor	relate with en	nission factor u	mits)			
] 11	. Annual	Amount: (a	number) <u>0</u>	, million of	u ft oorog um	its produced a	12	. – Fuel Sulfu	r Content (in pe	rcent)	%
10	. XUse	ed (input)	or Produced	l (output)	_						
9.	Emissic	ons based on:	(name of material or oth	ner paramet	er, e.g. "rock	", "diesel", "v	ehicle miles tra	aveled") HOU	JRS OF OPER	ATION	
8.	Typical	Hours of Or	eration: (military time)	Start		<u>)0:00</u>	En	d <u>23:59</u>			
7.	Normal	Operating S	chedule: Hours	s/Day <u>2</u>	2 <u>4</u> Day	/s/Week	<u>7</u> Ho	ours/Year	1080		
6.	Seasona	al Throughpu	t Percent: Dec-I	Feb	<u>0</u> % Mai	r-May <u>0</u>	% Ju	n-Aug _	<u>0%</u> Sep	-Nov <u>100</u>	<u>%</u>
5.	SCC Co	ode: <u>399999</u>	999 (8 digit numbe	er)		MISC. IND	USTRIAL PR	OCESS: OT	HER NOT CL.	ASSIFIED	
	Process	TIER Code:	071099			MISCELLA	NEOUS IND	USTRIAL P	ROCESSES		
4.	D										

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Release Point 30: SG Cleaning (Cooling Tower)

NOTE: THIS RELEASE POINT IS ONLY ACTIVE WHEN S/G CLEANING OCCURRED.

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 31

2. Process Type/Description: <u>SECURITY SUBSTATION L EMERGENCY GENERATOR (179 HP)</u>

3.	Stack ID(s) (only if required on Stack Form)	······	
4.	Process TIER Code:020599	FUEL COMB. IND	USTRIAL: INTERNAL COMBUSTION
5.	SCC Code: <u>20200102</u> (8 digit number)	INDUSTRIAL: DIS	TALLATE OIL: RECIP
6.	Seasonal Throughput Percent: Dec-Feb <u>25</u> %	Mar-May <u>25</u> %	Jun-Aug <u>25</u> % Sep-Nov <u>25%</u>
7.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year <u>16</u> Weeks/Year 52
8.	<u>Typical Hours of Operation:</u> (military time) Start	<u> </u>	End <u>23:59</u>
9.	Emissions based on: (name of material or other parameter, e.g	g. "rock", "diesel", "vehicle m	iles traveled") DIESEL
10.	Used (input) or Produced (output)		
11.	Annual Amount: (a number) <u>133</u>		12. – Fuel Sulfur Content (in percent) <u>0.05</u> %
13.	Units of Measure: (for example: tons, gallons, million cu ft, a	cres, units produced etc.)	GALS

	Emissio	n Factor (EF)	Information			Contro	l Device Inf	ormation		
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Facto (EF) (number)	or Emission F Unit (lbs j	actor Controlled per) EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	106	M GALS	N	7						<i>14</i> lbs
NOX	407	M GALS	N	7						54 lbs
PM-10	14.6	M GALS	N	7						2 lbs
SOX	7.1	M GALS	N	3						1 lbs
voc	6.34	M GALS	N	7						/ 1bs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 = Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

Security Substation L Emergency Diesel Generator MC Process ID No PVNGS Source ID No.: AMQFNH01*A*Engine SCC: 20200102							
Operating Hours Fuel Use Rate Fuel Use	16.2 8.2 133	hr gal/hr gal	r				
CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	EMISSIONS			
СО	1.06E+02	lb/Mgal	Vendor Data	14 lb			
NO ₂	4.07E+02	lb/Mgal	Vendor Data	54 lb			
PM10	1.46E+01	lb/Mgal	Vendor Data	2 lb			
SO ₂	7.10E+00	lb/Mgal	by material balance	1 lb			
Ozone (VOC)	6.34E+00	lb/Mgal	Vendor Data	1 lb			

Notes:

1) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05% by weight at a fuel density of 7.1 lbs / gal was assumed.

2) Calculated from the following vendor emission data, engine power of 170 bhp, and fuel use rate of 8.2 gal / hr:
 CO (lb/Mgal) = [(2.33 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 106 lb / Mgal
 NOx (lb/hr) = [(8.92 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 407 lb NOx / Mgal

PM10 (lb/hr) = [(0.33 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 15.1 lb PM10 / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / 454 g)] / [(8.2 gal fuel / hr) (1 Mgal / 1000 gal)] = 6.34 lb VOC / Mgal VOC (lb/hr) = [0.14 g / hp - hr) (170 hp) (1 lb / hp - hr) (170 hp) (1 lb / hp - hr) (170 hp - hr) (

.
General Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: 32

2

2. Process Type/Description: SECURITY HUBS 2, 3, 4 EMERGENCY DIESEL GENERATORS (TOTAL OF 3 ENGINES AT 35 HP EACH)

	3.	Stack ID(s) (only if required on Stack Form)							
	4.	Process TIER Code:020599	FUEL COMB, INDU	STRIAL: INTERNAL CO	MBUSTION				
	5.	SCC Code: <u>20200102</u> (8 digit number)	INDUSTRIAL; DISTILLATE OIL - RECIP						
	6.	Seasonal Throughput Percent: Dec-Feb	Mar-May <u>25</u> %	Jun-Aug <u>25</u> %	Sep-Nov <u>25%</u>				
	7.	Normal Operating Schedule: Hours/Day <u>24</u>	Days/Week <u>7</u>	Hours/Year <u>66</u>	Weeks/Year 52				
	8.	Typical Hours of Operation: (military time) Start	00:00	End 23:59					
	9.	Emissions based on: (name of material or other parameter, e	.g. "rock", "diesel", "vehicle mil	les traveled") DIESEL (AG	GREGATE)				
	10.	Used (<i>input</i>) or Produced (<i>output</i>)							
2 ¹	11.	Annual Amount: (a number)		12. – Fuel Sulfur Content	(in percent)%				
	13.	Units of Measure: (for example: tons, gallons, million cu ft,	acres, units produced etc.)	GALS					
	14.	Unit Conversion Factor: (if needed to convert Unit of Measured	are to correlate with emission fac	ctor units)					

	Emission	Factor (EF) Infor	mation							
15	16	17	18	19	20	21	22	23	23	25
Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
СО	54.8	M GALS	N	7						<u> </u>
NOX	385	M GALS	N	7						54 lbs
PM-10	7.14	M GALS	N	7						<i>l</i> lbs
SOX	7.1	M GALS	N	3						1 lbs
VOC	21.9	M GALS	N	7						3 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 = Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

** Control Efficiency Reference Codes

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PALO VERDE NUCLEAR GENERATING STATION Air Quality Permit Number: 030132 Annual Emissions Calculation for 2006

Security Hubs 2-4 Emergency Diesel Generators MC Process ID No.: 32 PVNGS Source ID No.: AMQFNH01*B, C, & D*Engine SCC: 20200102										
Operating Hours (aggregate) Fuel Use Rate Fuel Use	66.2 2.1 139	hr gal/hr gal								
CRITERIA POLLUTANT	EMISSIO	NS FACTOR	SOURCE	EMISSIONS						
СО	5.47E+01	lb/Mgal	Vendor Data	8 lb						
NO ₂	3.85E+02	lb/Mgal	Vendor Data	54 lb						
PM10	7.14E+00	lb/Mgal	Vendor Data	1 lb						
SO ₂	7.10E+00	lb/Mgal	by material balance	1 lb						
Ozone (VOC)	2.20E+01	lb/Mgal	Vendor Data	3 lb						

Notes:

1) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05% by weight at a fuel density of 7.1 lbs / gal was assumed.

2) Calculated from the following vendor emission data, engine power of 170 bhp, and fuel use rate of 2.1 gal / hr:

CO (lb/Mgal) = [(1.49 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 54.7 lb / Mgal

NOx (lb/hr) = [(10.5 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 385 lb NOx / Mgal

PM10 (lb/hr) = [(0.20 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 7.34 lb PM10 / Mgal VOC (lb/hr) = [0.60 g / hp - hr) (35 hp) (1 lb / 454 g)] / [(2.1 gal fuel / hr) (1 Mgal / 1000 gal)] = 22.0 lb VOC / Mgal

.

General Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: <u>33</u>

2. Process Type/Description: MISC. DIESEL FUEL BURNING COMBUSTION EQUIPMENT (< 10 MMBTU / HR)

	3.	Stack II	D(s) (only if re	quired on Stack Forr	n)					<u> </u>		
	4.	Process	TIER Code: _	010202			FUEL CON	1 B. ELEC. U	ГIL.: OIL-I	ISTALLATE		
	5.	SCC Co	ode: <u>1020050</u>	<u>3(8 digit num</u>	ber)	INDUSTRIAL; DISTALLATE OIL < 10 MMBTU						
	6. Seasonal Throughput Percent: Dec-Feb					<u>25</u> % Ma	r-May	25 % Ju	n-Aug	<u> 25</u> % Se	p-Nov <u>259</u>	<u>%</u>
	7. Normal Operating Schedule: Hours/Day			urs/Day2	2 <u>4</u> Da	Days/Week <u>7</u>		Hours/Year <u>17.8</u>		Weeks	s/Year <u>52</u>	
	8. <u>Typical Hours of Operation:</u> (military time)						<u>00:00</u>	E	nd <u>23:5</u>	<u>9</u>		
9. Emissions based on: (name of material or other parameter, e.g. "rock", "diesel", "vehicle miles traveled") DIESEL												
	10. Used (input) or Produced (output) 11. Annual Amount: (a number)											5%
			Emissio	n Factor (EF) Infor	mation			Contro	l Device In	formation		
		15	16	17	18	19	20	21	22	23	23	25
	Ро	ollutant	Emission Facto (EF) (number)	r Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	со		5	M GALS	Ν	6						0 lbs
	NO	X	20	M GALS	N	6						1 lbs
	PM	-10	2	M GALS	N	6						0 lbs
	SOX 7.1 M GALS N			Ν	3						0 lbs	
	vo	\mathbf{c}	0.2	M GALS	N	6						0 lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

****** Control Efficiency Reference Codes

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PALO VERDE NUCLEAR GENERATING STATION Air Quality Permit Number: 030132 **Annual Emissions Calculation for 2006**

Misc Diesel Fuel Burning Combustion Equipment	MC Process ID	No.: 33
PVNGS Source ID No.: None	MC Stack No.:	None
SCC: 10200503		

Fuel Consumption

50 gal

CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS	
СО	5.00E+00	lb/M gal	AP-42, Sect. 1.3	0 lb	
NO ₂ .	2.00E+01	lb/M gal	AP-42, Sect. 1.3	1 lb	
PM10	2.00E+00	lb/M gal	AP-42, Sect. 1.3	0.1 lb	
SO ₂	7.10E+00	lb/M gal	by material balance	0 lb	
Ozone (VOC)	2.00E-01	lb/M gal	AP-42, Sect. 1.3	0.01 lb	

Notes:

1) Emissions are based on the metered fuel consumption. 2) Low summation (<0.05% 5 by withis burned in this equipment. However, for calculation purposes, a maximum rule summit content of 0.05% by waight at a fual daneity of 7.1 lbe / gal was assumed

General Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process ID: _____ 34___

	2.	Process	Type/Descripti	on: MISC, LPG B	URNING C	OMBUSTIC	<u>ON EQUIPM</u>	ENT			·	
	3.	Stack II	D(s) (only if req	uired on Stack Form	l)							
	4.	Process	TIER Code:	010301			FUEL CON	<u>1B. ELEC. U'</u>	ГIL.: GAS			
	5.	SCC Co	ode: <u>10201002</u>		per)		<u>INDUSTRI</u>	AL; LPG: PR	OPANE			
	6.	Seasona	l Throughput P	ercent: Dec	-Feb	<u>25</u> % Ma	r-May	<u>0</u>				
	7.	Normal	Operating Sche	edule: Hou	rs/Day 2	 24 Da	ys/Week	<u>7</u> H	ours/Year _	<u>2.1</u> We	eks/Year <u>52</u>	
	8.	Typical	Hours of Opera	ation: (military time	e) Start		00:00	— Ei	nd 23:59			
	9.	Emissio	ons based on: (n	ame of material or o	ther paramet	er, e.g. "rock	 c". "diesel". "v	vehicle miles tr	aveled") LPG	(PROPANE)		
أستنب	10		d (innut)	r Droduo	ad (output)	,	-,,					
	11.	Annual	Amount: (a nu	mber) 19	eu (output)	1	2. – Fuel Sulf	fur Content (in	percent)			%
243	13	Units of	f Measure: (for	example: tons_gallo	– ns. million c	uft acres m	nits produced	etc) G	ALS			
	14.	Unit Co	nversion Factor	r: (if needed to conve	ert Unit of M	leasure to co	rrelate with er	nission factor	units)0.001	L		
			Emission	Factor (EF) Infor	mation]	Control Device Information					
		15	16	17	18	19	20	21	22	23	23	25
ì	Po	ollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	Efficiency Reference Code**	Estimated Actual Emissions
	со)	3.2	M GALS	N	6						0 lbs
	NO	X	19	M GALS	N	6						0 lbs
	PM	[-10	0.6	MGALS	N	6						0 lbs
	SO	X	0.02	M GALS	N	6						0 lbs
	vo	C	0.6	M GALS	N	6						0 lbs
				1								lbs

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

** Control Efficiency Reference Codes

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PALO VERDE NUCLEAR GENERATING STATION Air Quality Permit Number: 030132 Annual Emissions Calculation for 2006

Misc LPG Burning Combustion Equipment	MC Process ID	No.: 34
PVNGS Source ID No.: None	MC Stack No.:	None
SCC: 10201002		

Fuel Consumption

19 gal

				ANNUAL
CRITERIA POLLUTANT	EMISSIONS	FACTOR	SOURCE	EMISSIONS
СО	3.20E+00	lb/M gal	Maricopa County	0.06 lb
NO ₂	1.90E+01	lb/M gai	Maricopa County	0.36 lb
PM10	6.00E-01	lb/M gal	Maricopa County	0.01 lb
SO ₂	2.00E-02	lb/M gal	Maricopa County	0.00 lb
Ozone (VOC)	6.00E-01	lb/M gal	Maricopa County	0.01 lb

Notes:

1) A Sulfur content for LPG was assumed to be the same as butane, 0.18 gr per cubic meter, per footnote in Table 1.5-2 of AP-42.

General Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential. **15.** Process ID: ______35

16. Process Type/Description: <u>Contractor Portable Boiler - Not in use in 2006</u>

	17. Stack I	D(s) (only if r	equ	ired on Stack Form	ı)			<u> </u>			<u> </u>		
	18. Process	TIER Code:		010202			FUEL COM	B. ELEC. UT	<u>IL.: OIL- DIS</u>	STILLATE			
	19. SCC C	ode: <u>102005</u>	<u>03</u>	(8 digit numb	per)	INDUSTRIAL, DISTILLATE OIL: < 10MMBTU/HR							
	20. Season	al Throughput	Pe	rcent: Dec	-Feb	<u>25</u> % Ma	nr-May <u>2</u>	2 <u>5</u> % Ju	n-Aug _	_ <u>25</u> % Sep	o-Nov <u>25</u>	<u>%</u>	
	21. Norma	Operating Sc	hec	lule: Hou	rs/Day <u>2</u>	4 Da	ys/Week	<u>7</u> Ho	ours/Year	<u>99</u> We	eks/Year		
	22. <u>Typica</u>	l Hours of Ope	erat	ion: (military time	e) Start		<u>00:00</u>	En	d <u>23:59</u>				
	23. Emissio	ons based on:	(na:	me of material or o	ther paramet	er, e.g. "rock	«", "diesel", "v	ehicle miles tra	aveled") <i>DIES</i>	EL			
	24. Us	ed (input)	or	Produce	ed (output)								
$\sqrt{2}$	25. Annual Amount: (a number) 0 12. – Fuel Sulfur Content (in percent) 0.05%												
	 26. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) 27. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units)												
	27. Unit Co	onversion Fact	tor:	(if needed to conve	ert Unit of M	leasure to co	rrelate with en	nission factor u	<u>1LS</u> 				
	27. Unit Co	Emissio	tor:	(if needed to conve Factor (EF) Infor	ert Unit of M	leasure to co	rrelate with em	nission factor u Control	nits) <u>0.001</u> Device Info	ormation			
	27. Unit Co 15	Emission 16	tor:	(if needed to convo Factor (EF) Infor	ert Unit of M mation	leasure to co	rrelate with em	nission factor u Control	11.5 mits) <u>0.001</u> l Device Info 22	ormation 23	23	25	
	27. Unit Co 15 Pollutant	Emission Emissio 16 Emission Fact (EF) (number	or	(if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per)	ert Unit of M mation 18 Controlled EF? Yes or No	19 Calculation Method Code*	20 Capture % Efficiency	nission factor u Control 21 Primary Control Device ID	anits) <u>0.001</u> Device Info 22 Secondary Control Device ID	Drmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions	
	27. Unit Co 15 Pollutant CO	Emission 16 Emission Fact (EF) (number 5.0	or	(if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per) M GALS	ert Unit of M mation 18 Controlled EF? Yes or No N	leasure to con 19 Calculation Method Code* 5	20 Capture % Efficiency	nission factor u Control 21 Primary Control Device ID	ILS inits) <u>0.001</u> Device Info 22 Secondary Control Device ID	Drmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions Ø lbs	
	27. Unit Co 15 Pollutant CO NOX	Emission Fact Emission Emission Fact (EF) (number 5.0 20.0	or	(if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per) M GALS M GALS	ert Unit of M mation 18 Controlled EF? Yes or No N N	19 Calculation Method Code* 5 5	20 Capture % Efficiency	nission factor u Control 21 Primary Control Device ID	anits) <u>0.001</u> Device Info 22 Secondary Control Device ID	Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions Ø lbs Ø lbs	
	27. Unit Co 15 Pollutant CO NOX PM-10	Emission Fact Emission Fact (EF) (number 5.0 20.0 2.0	or)	(if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per) M GALS M GALS M GALS	ert Unit of M mation 18 Controlled EF? Yes or No N N N	leasure to con 19 Calculation Method Code* 5 5 5	20 Capture % Efficiency	nission factor u Control 21 Primary Control Device ID	ILS units)0.001 I Device Info 22 Secondary Control Device ID	Drmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions 0 lbs 0 lbs 0 lbs	
	27. Unit Co 15 Pollutant CO NOX PM-10 SOX	Emission Fact Emission Emission Fact (EF) (number 5.0 20.0 2.0 7.2	or	<pre>(if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per) M GALS M GALS M GALS M GALS</pre>	ert Unit of M mation 18 Controlled EF? Yes or No N N N N	19 Calculation Method Code* 5 5 5 5 5	20 Capture % Efficiency	nission factor u Control 21 Primary Control Device ID	anits) <u>0.001</u> Device Info 22 Secondary Control Device ID	Drmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions 0 lbs 0 lbs 0 lbs 0 lbs 0 lbs	
	27. Unit Co 15 Pollutant CO NOX PM-10 SOX VOC	Emission Fact Emission Fact (EF) (number 5.0 20.0 2.0 7.2 0.2	or)	(if needed to conve Factor (EF) Inform 17 Emission Factor Unit (lbs per) M GALS M GALS M GALS M GALS M GALS	ert Unit of M mation 18 Controlled EF? Yes or No N N N N N N	leasure to con 19 Calculation Method Code* 5 5 5 5 5 5	20 Capture % Efficiency	nission factor u Control 21 Primary Control Device ID	ILS inits)0.001 I Device Info 22 Secondary Control Device ID	Drmation 23 Control Device(s) % Efficiency	23 Efficiency Reference Code**	25 Estimated Actual Emissions 0 lbs 0 lbs 0 lbs 0 lbs 0 lbs 0 lbs	

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- 3 = Material balance
- 4 = Source Test Measurements (Stack Test)
- 5 = AP-42/Fire Method or Emission Factor

- 6 = State or Local Agency Emission Factor
- 7 =Manufacturer Specifications
- 8 =Site-Specific Emission Factor
- 9 =Vendor Emission Factor
- 10 =Trade Group Emission Factor

** Control Efficiency Reference Codes

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- 4 =Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PALO VERDE NUCLEAR GENERATING STATION Air Quality Permit Number: 030132 Annual Emissions Calculation for 2006

Contractor Portable Boiler PVNGS Source ID No.: N/A				MC Process ID No.: 35 MC Stack No.: 35
SCC: 10200503				
Hours of Operation	N/A	hr		
Fuel Consumption	0	gal		
CRITERIA POLLUTANT	EMISSION	IS FACTOR	SOURCE	EMISSIONS
00	5.00E+00	lb/M gal	Maricopa County	0 lb
NO ₂	5.00E+00 2.00E+01	lb/M gal lb/M gal	Maricopa County Maricopa County	0 lb 0 lb
CO NO ₂ PM10	5.00E+00 2.00E+01 2.00E+00	ib/M gai ib/M gai ib/M gai	Maricopa County Maricopa County Maricopa County	0 lb 0 lb 0 lb
CO NO ₂ PM10 SO ₂	5.00E+00 2.00E+01 2.00E+00 7.10E+00	Ib/M gal Ib/M gal Ib/M gal Ib/M gal	Maricopa County Maricopa County Maricopa County by material balance	0 lb 0 lb 0 lb 0 lb

1) Emissions are based on fuel consumption.

2) Low sulfur fuel (<0.05% S by wt) is burned in this equipment. However, for calculation purposes, a maximum fuel sulfur content of 0.05% by weight at a fuel density of 7.1 lbs / gal was assumed.

General Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential. **28.** Process ID:_____ 36

29. Process Type/Description: ABRASIVE BLASTING OPERATIONS (CONFINED & UNCONFINED)

					<u></u>						
	30. Stack I	D(s) (only if req	uired on Stack Form	ı)		****	.			_ _	
	31. Process	s TIER Code:	071099								
	32. SCC C	ode: <u>30900201</u>	(8 digit numb	per)							
	33. Season	al Throughput P	ercent: Dec	-Feb	<u>25</u> % Ma	r-May	2 <u>5</u> % Ju	n-Aug	<u>25</u> %	Sep-Nov <u>25</u>	<u>%</u>
	34. Norma	l Operating Sche	edule: Hou	urs/Day	<u>24</u> Day	Days/Week <u>7</u> Hours/Year <u>1080</u> Weeks/Year <u>52</u>					
	35. <u>Typica</u>	l Hours of Opera	tion: (military time	e) Start		<u>00:00</u>	Er	nd <u>23:59</u>	2		
	36. Emissi	ons based on: (na	ame of material or o	ther paramet	ter, e.g. "rock	«", "diesel", "v	ehicle miles tr	aveled") ABI	RASIVE BLA	AST MEDIA	
	37. XUs	ed (input) or		ed (output)							
38. Annual Amount: (a number) 128.4 12. – Fuel Sulfur Content (in percent)											%
 39. Units of Measure: (for example: tons, gallons, million cu ft, acres, units produced etc.) 40. Unit Conversion Factor: (if needed to convert Unit of Measure to correlate with emission factor units) 											
		Emission	Factor (EF) Infor	mation]	С		Control Device Information			
	15	16	17	18	19	20	21	22	23	23	25
	Pollutant	Emission Factor (EF) (number)	Emission Factor Unit (lbs per)	Controlled EF? Yes or No	Calculation Method Code*	Capture % Efficiency	Primary Control Device ID	Secondary Control Device ID	Control Device(s) % Efficiency	6 Efficiency Reference Code**	Estimated Actual Emissions
	PM-10	26	TONS	N	5						3338 lbs
											——————————————————————————————————————
					· · · -· · · · · · · · · · · ·						
											· · · · · · · · · · · · · · · · · · ·
					1						

*Calculation Method Codes

- 1 = Continuous Emissions Monitoring Measurements
- 2 = Best Guess/ Engineering Judgment
- = Material balance 3
- = Source Test Measurements (Stack Test) 4
- 5 = AP-42/Fire Method or Emission Factor

- = State or Local Agency Emission Factor 6
- =Manufacturer Specifications 7
- =Site-Specific Emission Factor 8
- 9 =Vendor Emission Factor
- =Trade Group Emission Factor 10

** Control Efficiency Reference Codes

- 1 =Tested efficiency / EPA reference method
- 2 =Tested efficiency / other source test method
- 3 =Design value from manufacturer
- =Best Guess / engineering estimate 4
- 5 =Calculated, based on material balance
- 6 =Estimated, based on a published value

PALO VERDE NUCLEAR GENERATING STATION Air Quality Permit Number: 030132 Annual Emissions Calculation for 2006

Abrasive Blasting Operations (confined & unconfined)	MC Process ID No.:	36
PVNGS Source No None Assigned	MC Stack No.:	N/A
SCC 30900202	MC Control ID No.:	N/A

Material Loaded

256,784 lbs 128.392 Tons

CRITERIA POLLUTANT	EMISSIONS FACTO	DR	SOURCE	EMISSIONS		
PM10	2.60E+01	lb/T abrasive	AP-42, Table 13.2.6-1	3338.2 lb		

Notes:

1) Then PM10 Emissions factor obtained from Table 13.2.6-1 from AP-42 for sand blasting of mild steel panels without controls. The emissions factor was adjusted for units of tons of abrasive.

PM10 Emission Factor = (13 lb PM10 / 1,000 lb abrasive) (2000 lb abrasive / ton abrasive) = 26 lb / ton

EVAPORATIVE PROCESS FORMS

The Evaporative Process Forms were preprinted with much of the process information.

Van refueling operations from a bulk delivery vessel are no longer conducted. The gasoline emissions for working and Standing losses, Process ID's 51, 52, 54, and 55, were determined using EPA Tanks 4.0.9d computer program. Emissions for loading operations, Process ID's 53, 56, and 57, were determined using County emissions factors. Supplemental emissions information is provided under the section titled, "Gasoline Tank Emissions."

Evaporative Process ID's 60 through 67 were determined from site wide product use information by merging database information from material purchase and distribution, material chemical information, and daily user logs. The amount of materials and VOC emissions were determined by this compilation. The emissions factor was back-calculated from these results. This submittal includes the summary information for each evaporative process. Detailed information is maintained and available upon request.

A detailed ammonia emissions analysis for water treatment activities was conducted for the 1998 emissions summary. During 2006 this analysis was updated based on current emissions calculations and use data. These results are now used as a basis to estimate ammonia emissions. The summary data is provided for Process ID 90, Ammonia Releases.

Evaporative Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: HORIZONTAL FIXED ROOF STORAGE TANKS, CALC USING EPA TANKS 4.0.9D 0

2. Process TIER Code: 090212 STORAGE & TRANSPORT: PETROLEUM PH	<u>'ROD – NON-RESALE</u>
--	--------------------------

3. Seasonal Throughput Percent: Dec-Feb 25%

Mar-May 25% Jun-Aug 25% Sep-Nov 25%

<u>7</u> Hours/Year <u>8760</u> Weeks/Year 4. Normal Operating Schedule: Hours/Day Days/Week 24

5. Typical Hours of Operation: (*military time*)

Start _____00:00 End **23:59**

6	7	8	9		10	11	·	12	13		15		
Process ID	Stack ID(s)	Material Type	Annual Usage Input		VOC. HAP&NON or NHx	Emission Factor	EF Units (lbs per)	Pounds of pollutant* sent off site	Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)
51		GASOLINE (AS1), WORKING	0	GL	VOC	0.0117	GAL		%		%		0
52		GASOLINE (AS1), STANDING	2622	LB	VOC	1.0	LB		%		%		2,622
54		GASOLINE (AS2), WORKING	94430	GL	VOC	0.00981	GAL		%		%		926.14
55		GASOLINE (AS2), STANDING	3395	LB	VOC	1.0	LB		%		%		3,935

The emissions for Process ID's 51 through 55 were determined using the EPA Tanks 4.09d computer program. See the section "Gasoline Tank Emissions" for more information on these processes.

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

**Control Efficiency Reference Codes

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 = Design value from manufacturer
- 6 = Estimated, based on a published value

Evaporative Process Form 2006

Place an X in any gray cell to mark data requested to be held confidential. See Instructions for requirements for information to be deemed confidential.

1. Process Type/Description: GAS. LOADING LOSSES: #53 CONSUMER; #56 TO REFUEL TRUCK; #57 VANS FROM

	TRUCKS	
2.	Process TIER Code: 090212	STORAGE & TRANSPORT: PETROLEUM PROD – NON-RESALE
3.	Seasonal Throughput Percent: Dec-Feb	6 Mar-May <u>25</u> % Jun-Aug <u>25</u> % Sep-Nov <u>25</u> %
4.	Normal Operating Schedule: Hours/Day 24	Days/Week <u>7</u> Hours/Year <u>8760</u> Weeks/Year
5.	Typical Hours of Operation: (military time)	Start <u>00:00</u> End <u>23:59</u>

6	7	8	9		10	11		12	13		15		
Process ID	Stack ID(s)	Material Type	Annual UsagelbVOC.EmissionEF UnitsPounds ofofInputorHAP&NONFactor(lbs per)pollutant*galorNHxoff site				Capture % Efficiency	Control ID	Control % Efficiency	Control Efficiency Code**	Estimated Emissions (lbs/yr)		
53		GASOLINE (AS1), LOADING	94430	GL	voc	0.0117	GAL		%		%		1105
56	56	GASOLINE (AS2), LOADING	0	GL	voc	0.01045	GAL		100.00 %	56	90.00%	6	0
57		GASOLINE (AS2), FUELING	0	GL	voc	0.0117	GAL		%		%		0
See the	section "	Gasoline Tank Emissions" for mo	re information on	these	processes.	• • • • • • • • • • • • • • • • • • •		.	4				

NOTE: Do NOT change pre-printed Process ID numbers. See the instructions for information on how to delete materials that are no longer used, or to assign Process ID numbers for new materials.

* If you have off-site recycling/disposal of any of the materials listed above, you must complete an Off-Site Recycling/Disposal Form to receive credit for reduced emissions.

****Control Efficiency Reference Codes**

- 1 = Tested efficiency / EPA reference method
- 2 = Tested efficiency / other source test method
- 4 = Best Guess / engineering estimate
- 5 =Calculated, based on material balance
- 3 =Design value from manufacturer
- 6 = Estimated, based on a published value

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

-

Identification User Identification: City: State: Company: Type of Tank: Description:	AS-1 (2006 Emissions) Tonopah Arizona Palo Verde Nuclear Generating Station - APS Horizontal Tank Small gasoline tank at autoshop
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	32.00 7.90 12,000.00 7.23 94,430.00 N N
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.06 0.12

.

Meterological Data used in Emissions Calculations: Phoenix, Arizona (Avg Atmospheric Pressure = 14.12 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

-

AS-1 (2006 Emissions) - Horizontal Tank Tonopah, Arizona

*

					en land ann agus ann tha bar tha gur ant an taithe				*** ****				
		Da Tem	aily Liquid S perature (de	urf. eg F}	Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Casaline (B)/P (0)	ΔH	75.04	68.08	81 99	72.61	6 1481	5 3033	6 9851	67 0000			92.00	Option 4: RVP=9 ASTM Slope=3
1.2.4-Trimethylbenzene	~"	10.04	00.00	01.55	12.01	0.0365	0.0281	0.0471	120.1900	0.0250	0.0002	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.7472	1.4553	2.0858	78.1100	0.0180	0.0070	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cyclohexane						1.7957	1.5019	2.1351	84.1600	0.0024	0.0010	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1799	0.1430	0.2245	106.1700	0.0140	0.0006	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.7927	2.3522	3.2983	86.1700	0.0100	0.0062	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isooctane						0.9536	0.7676	1.1526	114,2200	0.0400	0.0085	114.22	Option 1: VP70 = .812 VP80 = 1.093
Isopropyl benzene						0.0880	0.0688	0.1117	120.2000	0.0050	0.0001	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Toluene						0.5189	0.4227	0.6331	92.1300	0.0700	0.0081	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						7.8127	7.7672	7.7723	66.3456	0.7456	0.9659	89.36	
Xylene (-m)						0.1505	0.1194	0.1884	106.1700	0.0700	0.0024	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

 \sim

Emissions Report for: Annual

.

AS-1 (2006 Emissions) - Horizontal Tank Tonopah, Arizona

Components	Working Loss	Breathing Loss	Total Emissions
Gasoline (RVP 9)	926.14	2,621.95	3,548.09
Hexane (-n)	5.78	16.35	22.13
Benzene	6.51	18.42	24.92
Isooctane	7.89	22.34	30.23
Toluene	7.51	21.27	28.79
Ethylbenzene	0.52	1.47	2.00
Xylene (-m)	2.18	6.17	8.35
Isopropyl benzene	0.09	0.26	0.35
1,2,4-Trimethylbenzene	0.19	0.53	0.72
Cyclohexane	0.89	2.52	3.42
Unidentified Components	894.59	2,532.61	3,427.19

TANKS 4.0.9d Emissions Report - Summary Format Tank Indentification and Physical Characteristics

-

Identification User Identification: City: State: Company: Type of Tank: Description:	AS-2 (2006 Emissions) Tonopah Arizona Palo Verde Nuclear Generating Station - APS Horizonta! Tank Large gasoline tank at autoshop					
Tank Dimensions Shell Length (ft): Diameter (ft): Volume (gallons): Turnovers: Net Throughput(gal/yr): Is Tank Heated (y/n): Is Tank Underground (y/n):	37.00 9.50 20,000.00 4.72 94,430.00 N					
Paint Characteristics Shell Color/Shade: Shell Condition	White/White Good					
Breather Vent Settings Vacuum Settings (psig): Pressure Settings (psig)	-0.06 0.12					

.

Meterological Data used in Emissions Calculations: Phoenix, Arizona (Avg Atmospheric Pressure = 14.12 psia)

TANKS 4.0.9d Emissions Report - Summary Format Liquid Contents of Storage Tank

-

AS-2 (2006 Emissions) - Horizontal Tank Tonopah, Arizona

					/w/.wt			1920 a. A. A	-1				
		Da Tem	ily Liquid Si perature (de	urf. ∋gF)	Liquid Bulk Temp	Vapo	or Pressure	(psia)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight.	Fract.	Fract.	Weight	Calculations
Gasoline (RVP 9)	All	75.04	68.08	81.99	72.61	6.1481	5.3933	6.9851	67.0000			92.00	Option 4: RVP=9, ASTM Slope=3
1,2,4-Trimethylbenzene						0.0365	0.0281	0.0471	120.1900	0.0250	0.0002	120.19	Option 2: A=7.04383, B=1573.267, C=208.56
Benzene						1.7472	1.4553	2.0858	78.1100	0.0180	0.0070	78.11	Option 2: A=6.905, B=1211.033, C=220.79
Cyclohexane						1.7957	1.5019	2.1351	84.1600	0.0024	0.0010	84.16	Option 2: A=6.841, B=1201.53, C=222.65
Ethylbenzene						0.1799	0.1430	0.2245	106.1700	0.0140	0.0006	106.17	Option 2: A=6.975, B=1424.255, C=213.21
Hexane (-n)						2.7927	2.3522	3.2983	86.1700	0.0100	0.0062	86.17	Option 2: A=6.876, B=1171.17, C=224.41
Isooctane						0.9536	0.7676	1.1526	114.2200	0.0400	0.0085	114.22	Option 1: VP70 = .812 VP80 = 1.093
Isopropyl benzene						0.0880	0.0688	0.1117	120.2000	0.0050	0.0001	120.20	Option 2: A=6.963, B=1460.793, C=207.78
Toluene						0.5189	0.4227	0.6331	92.1300	0.0700	0.0081	92.13	Option 2: A=6.954, B=1344.8, C=219.48
Unidentified Components						7.8127	7.7672	7.7723	66.3456	0.7456	0.9659	89.36	
Xylene (-m)						0.1505	0.1194	0.1884	106.1700	0.0700	0.0024	106.17	Option 2: A=7.009, B=1462.266, C=215.11

TANKS 4.0.9d Emissions Report - Summary Format Individual Tank Emission Totals

÷

Emissions Report for: Annual

.

AS-2 (2006 Emissions) - Horizontal Tank Tonopah, Arizona

	Losses(lbs)									
Components	Working Loss	Breathing Loss	Total Emissions							
Gasoline (RVP 9)	926.14	3,935.43	4,861.57							
Hexane (-n)	5.78	24.55	30.32							
Benzene	6.51	27.64	34.15							
Isooctane	7.89	33.53	41.42							
Toluene	7.51	31.93	39.44							
Ethylbenzene	0.52	2.21	2.73							
Xylene (-m)	2.18	9.26	11.44							
Isopropyl benzene	0.09	0.39	0.48							
1,2,4-Trimethylbenzene	0.19	0.80	0.99							
Cyclohexane	0.89	3.79	4.68							
Unidentified Components	894.59	3,801.33	4,695.92							

Additional emissions calculation information has been provided for the following processes:

Calculation Sheet No. 1 – Diesel Fuel Combustion Sources (Process ID 7, 9, 10, 11, 12, 13, 14, 16, 20, 21, 24, 31, 32, 33, 35) Calculation Sheet No. 2 – Unit Cooling Towers (Process ID 17) Calculation Sheet No. 3 – Portable Cooling Tower (Process ID 22) Calculation Sheet No. 4 – Various Evaporative Processes (Process ID 60, 61, 62, 63, 64, 65, 66, 67) Calculation Sheet No. 5 – Abrasive Blasting Operations (confined & unconfined) (Process ID 36)

 Permit Number:
 030132

 Process ID No.
 7, 9, 10, 11, 12, 13, 14, 16, 20, 21, 24, 31, 32, 33, 35

 Process Description:
 Diesel Combustion Sources

 Description of Correction:
 Calculation of Fuel Sulfur Content and SOX Emission Factors

 SO_2 emissions are derived from the fuel sulfur content. All sulfur in the fuel is assumed to be converted to SO_2 during combustion. In lieu of actual fuel sulfur analyses, a maximum fuel sulfur content at the permit limit of 0.05% was used in all of the calculations. Actual fuel sulfur content was less than this value so actual emissions will be lower. The following method was used to calculate the SO_2 emissions factor.

SO₂ Emissions Factor (Ib SO₂ / M GAL) Calculation Method:

SO₂ Emissions Factor = Fuel Sulfur Content (%S) x (1 lb S/100 lb fuel) x (2 lb SO₂/lb S) x (7.1 lb fuel/gal) x (1000 gal/M GAL)

= Fuel Sulfur Content (%S) x (142)

= (0.05) x (142) = 0.71 lb SO₂ / M GAL

Permit Number:	03013	2	
Process ID No.	17		
Process Descript	ion: l	Jnit Cooling Towers	······
Description of Co	rrectior	Updated to PM-10 and VOC Emission Factors	<u> </u>

The methodology for calculating PM-10 and VOC Emissions from the Unit Cooling Towers was re-evaluated as part of the Non-Title V permit application update. The methodology is a refinement of the AP-42 method that calculated a critical droplet diameter that contains enough dissolved solids that will create a 10-micron diameter solid particle upon evaporation of the water. Based on a measured particle size distribution, the mass fraction of droplets less than the critical droplet diameter can then be used to estimate the PM-10 fraction emitted from the towers. This method was incorporated into permit Condition 55b.

VOC emissions from the cooling towers were re-assessed. Chloroform emissions were calculated using an emissions factor obtained from Table 8.6-2 in "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for the California State Air Resources Board and dated August 11, 1981.

The water treatment chemicals used in the cooling tower were evaluated for VOC content. It was conservatively assumed that all of the VOC added to the towers evaporated.

The following sections describe the methods used to derive the emissions factors used.

PM-10 Emission Factor Calculation Method:

PM-10 emissions were calculated using the formula presented in Permit Condition 55b. This formula uses monthly average TDS concentrations and operating hours to calculate a critical droplet diameter. The mass fraction of droplets with diameters equal or less than the critical droplet diameters can be extrapolated from the table included as part of Permit Condition 55b. These calculations need to be performed monthly. The emissions factor used was based on the total monthly emissions calculated using the formula in permit condition 55b divided by the total operating hours in the year. Copies of the permit pages and monthly calculation results attached.

The emissions factor reported on the form was calculated as follows:

PM-10 Emissions Factor for year = (47,084 lb PM-10) / (23,808 hr) = 1.97 lbs PM10 / hr

The PM-10 Emissions Factor for December 2006 = (308 lb PM-10) / (2232 hr)= 0.14 lbs PM10/hr

New Emission approved by Maricopa County after source test.

Permit Number: 0)301	32
------------------	------	----

Process ID No. 17

Process Description: Unit Cooling Towers

Description of Correction: Updated to PM-10 and VOC Emission Factors

VOC Emission Factor Calculation Method:

The cooling towers were examined for VOC emissions. Testing indicates that chloroform is formed as a by-product when the cooling tower circulating water is chlorinated. The amount of chloroform produced can vary widely. Chloroform emissions were calculated from an emissions factor (20 kg-s/m³-yr) obtained from Table 8.6-2 in "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for the California State Air Resources Board and dated August 11, 1981 (see attached copy of table). The design circulating flow rate of 590,000 gallons per minute was used in the calculation.

VOC Emissions Factor 1 = $(20 \text{ kg-s/m}^3\text{-yr})(1 \text{ yr}/365 \text{ d})(2.2 \text{ lb / kg})(1 \text{ min / }60 \text{ s})$ X (1 m³ / 264.1 gal) (590,000 gal / min) (1 d / 24 hr) = 0.187 lb VOC / hr

Water treatment chemicals are also added to the cooling tower water to reduce potential foaming of the water. The concentration in the circulating water is maintained in the parts per million level. Conservatively assuming that all of the VOC contained in the water treatment chemicals evaporates through the towers, a non-chloroform VOC emissions factor can be determined.

One chemical used during 2006 that contained VOC at a tested concentration of 0.07 lbs / gallon was Foamtrol AF1091. The amounts used during 2006 were based on use records and total operating hours. During 2006, thirty totes containing 300 gallons each of AF1091 (9,000 gallons total) were purchased. The non-chloroform emissions were calculated from the following:

VOC Emissions Factor 2 = (9,000 gal AF1091) (0.07 lb / gal) / 23,808 hr = 0.026 lbs / hr

The VOC Emissions Factor is the sum of the chloroform and non-chloroform VOC emissions factors.

VOC Emission Factor = 0.187 + 0.026 = 0.213 lbs/hr

PERMIT CONDITIONS

PALO VERDE NUCLEAR GENERATING STATION Permit Number 030132

e. Description of recommended actions.

The Permittee shall complete and submit the Compliance Plan within 120 days of exceeding the hydrogen sulfide emission limitation. [Rule 220, §303]

COOLING TOWERS OPERATIONS

54. Operating Limitations:

The Permittee shall limit the total dissolved solids (TDS) concentration of the circulating water of each cooling tower unit to 30,000 ppm. The Permittee may calculate this value as a rolling average for the month based on the weekly TDS sampling described below.

[Rule 220, §302.2]

55. Monitoring & Record Keeping:

The Permittee shall conduct the following monitoring and shall retain records on-site for a period of no less than 5 years from the date of such record.

- a. Total Dissolved Solids Concentration (TDS):
 - On a weekly basis, when the towers are in operation, the Permittee shall measure and record the TDS concentration in the circulating water of each unit cooling tower system (only one sample is required for each unit cooling tower system. A cooling tower system consists of three towers and a common circulating water system.). If the towers are not in operation on the scheduled day for sampling, the Permittee shall obtain a sample on the next day the cooling tower is operating.
 - 2. On a monthly basis, the Permittee shall calculate and record an arithmetic average of the weekly samples collected in the calendar month.
 - 3. On a monthly basis, when the portable cooling tower is in operation, the Permittee shall measure and record the TDS concentration in the circulating water of each portable cooling tower system. If the towers are not in operation for the entire month, no sample is required.

[Rule 220 §302.5] [Locally enforceable only]

- b. Emissions Calculations:
 - 1. On a monthly basis within 20 days following the end of each calendar month, the Permittee shall calculate and record PM10 emissions from each cooling tower unit using the applicable equation specified below. Emissions from the portable cooling tower are not required to be calculated during months it has not been operated:

PERMIT CONDITIONS

PALO VERDE NUCLEAR GENERATING STATION Permit Number 030132

(a) For each unit cooling tower system (one for each of Units 1, 2, and 3), monthly emissions shall be calculated using the following equation:

 $PM10 = (8.4 \times 10^{-6})(24)(60) (F_1) (F_D) (CFR) (TDS) (D)$

 $PM10 = 0.0121 (F_1) (F_D) (CFR) (TDS) (D)$

where,

PM10 = PM10 emissions (tons/number of operating days);

CFR = circulating water flowrate in gallons per minute;

TDS = the monthly average total dissolved solids concentration (ppm);

- D = the cumulative days of cooling tower operation during the month (days).
- $F_1 = 0.00001 (0.00075\% \text{ from salt drift study});$
- F_D = the cumulative mass fraction of drift droplets emitted that will result in PM₁₀ emissions determined by linear interpolation from Table 1 using the droplet diameter calculated from the following equation:

$$D_{c} = \frac{1301}{TDS^{1/3}}$$

where:

 D_{C} = the drift droplet diameter that will evaporate and produce a solid particle with a diameter of 10 microns.

PERMIT CONDITIONS

PALO VERDE NUCLEAR GENERATING STATION Permit Number 030132

Table 1 PVNGS Unit Cooling Tower Particle Size Distribution

D _c	F _D	D _c	F _D
Droplet Diameter	Cumulative Mass	Droplet Diameter	Cumulative Mass
(micron, µm)	Fraction	(micron, µm)	Fraction
	(< Diameter)		(< Diameter)
0	0.00000	475	0.36724
15	0.00009	550	0.39493
25	0.00036	650	0.40655
35	0.00500	750	0.41994
45	0.02828	850	0.43192
55	0.06739	950	0.44923
65	0.09640	1100	0.47234
85	0.12894	1300	0.51496
100	0.14447	1500	0.56629
120	0.15897	1700	0.59469
140	0.17381	1900	0.65639
165	0.19692	2100	0.71808
195	0.21905	2300	0.84833
225	0.23927	2500	0.84833
255	0.25994	2700	0.84833
285	0.27691	2900	0.90231
325	0.30455	3100	0.90231
375	0.32817	3300	0.90231
425	0.34979	3500	1.00000

After the completion of the source test in Permit Condition 56, and after the Permittee has received a written approval of the source test report by the Department, the Permittee

PALO VERDE NUCLEAR GENERATING STATION

Air Quality Permit Number: 030132

Annual Emissions Calculation for 2006

UNIT 1									
·····		Operating	Critical Droplet		PM10 Emissions (libs) D	Lower Table Values		Upper Table Values	
Month	Average TDS (ppm)	Days (days)	Diameter (µm)	Mass Fraction		Diameter	Mass Fraction	Diameter	Mass Frection
January	17,472	31.0	50.14	0.04838	1,870.2	45	0.02828	55	0.06739
February	17,965	28.0	49.67	0.04654	1,670.8	45	0.02828	55	0.06739
March	17,135	31.0	50.46	0.04963	1,881.5	45	0.02828	55	0.06739
April	11,700	8.0	57.31	0.07409	494.9	55	0.06739	65	0.09640
May	0	31.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
June	o	30.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
July	14,765	31.0	53.03	0.05969	1,949.9	45	0.02828	55	0.06739
August	27,872	31.0	42.91	0.02341	1,443.6	35	0.00500	45	0.02828
September	23,120	30.0	45.67	0.0309	1,529.6	45	0.02828	55	0.06739
October	19,225	31.0	48.56	0.0422	1,795.0	45	0.02828	55	0.06739
November	23,780	30.0	45.24	0.02922	1,487.7	45	0.02828	55	0.06739
December	25,265	31.0	44.34	0.02674	1,494.7	35	0.00500	45	0.02828
Totals for Year	N/A	343.0	N/A	N/A	15,618	N/A	N/A	N/A	N/A

JNIT 2										
		Operating			PM10	Lower Tab	Lower Table Values Upper		Table Values	
Month	Average TDS (ppm)	Days (days)	Critical Droplet Diameter (µm)	Cumulative Mass Fraction	Emissions for (lbs)	Diameter	Mass Fraction	Diameter	Mass Fraction	
January	28,336	31.0	42.67	0.02286	1,433.2	35	0.00500	45	0.02828	
February	27,075	28.0	43.33	0.02439	1.319.6	35	0.00500	45	0.02828	
March	25,755	31.0	44.05	0.02607	1,485.5	35	0.00500	45	0.02828	
April	27,220	30.0	43.25	0.02421	1,411.0	35	0.00500	45	0.02828	
May	29,255	31.0	42.22	0.02181	1,411.7	35	0.00500	45	0.02828	
June	28,140	30.0	42.77	0.02309	1,391.2	35	0.00500	45	0.02828	
July	26,490	31.0	43.64	0.02511	1,471.7	35	0.00500	45	0.02828	
August	25,704	31.0	44.08	0.02614	1,486.6	35	0.00500	45	0.02828	
September	25,715	30.0	44.08	0.02614	1,439.2	35	0.00500	45	0.02628	
October	12,650	3.0	55.84	0.06983	189.1	55	0.06739	65	0.09640	
November	13,252	15.0	54.98	0.06731	954,9	45	0.02828	55	0.06739	
December	23,570	31.0	45.38	0.02977	1,552.4	45	0.02828	55	0.06739	
Totals for Year	N/A	322.0	N/A	N/A	15,546	N/A	N/A	N/A	N/A	

	T	Operating	I		PM10	Lower Ta	ble Values	Upper Tal	ole Values
Month	Average TDS (ppm)	Days (days)	Critical Droplet Diameter (µm)	Cumulative Mass Fraction	Emissions for (lbs)	Diameter	Mass Fraction	Diameter	Mass Fraction
January	27,192	31.0	43.26	0.02423	1,457.7	35	0.00500	45	0.02828
February	27,555	28.0	43.07	0.02379	1,310.0	35	0.00500	45	0.02828
March	24,345	31.0	44.89	0.02802	1,509.2	35	0.00500	45	0.02828
April	1,256	3.0	120.58	0.1594	42.9	120	0.15897	140	0.17381
May	10,686	22.0	59.07	0.0792	1,328.9	55	0.06739	65	0.09640
June	27,856	30.0	42.92	0.02344	1,398.0	35	0.00500	45	0.02828
July	26,295	31.0	43.75	0.02537	1,475.9	35	0.00500	45	0.02828
August	27,080	31.0	43.32	0.02437	1,460.1	35	0.00500	45	0.02828
September	25,735	30.0	44.07	0.02611	1,438.7	35	0.00500	45	0.02828
October	24,675	29.0	44.69	0.02756	1,407.5	35	0.00500	45	0.02828
November	22,235	30.0	46.27	0.03325	1,582.9	45	0.02828	55	0.06739
December	24,445	31.0	44.83	0.02768	1,507.9	35	0.00500	45	0.02828
Totals for Year	N/A	327.0	N/A	N/A	15,920	N/A	N/A	N/A	N/A

.

.

Permit Number: 030132

Process ID No. 22

Process Description: **Portable Cooling Tower**

Description of Correction: Updated PM-10 and VOC Emission Factors

The emissions inventory forms allow the use of only one conversion factor unit per process (i.e. hours or TDS). "Hours of Operation" has been selected as the common unit. Emissions and emissions factors that were back calculated are provided below.

PM-10 Emission Factor Calculation:

PM-10 emissions can be calculated from the following formula:

PM (lb/hr) = CFR x F1 x 8.4 lb/gal x 60 min/hr x ($1/10^6$ ppm) x TDS

Where:

CFR = circulating flow rate (gpm) (2 cells) = 6,000 F1 = Liquid Drift Rate (fraction of flow rate) = 0.002% = 0.00002 Average TDS = 3,440 ppm

Substituting in the parameters gives:

PM (lbhr) = $[6000 \times 0.00002 \times 8.4 \times 60 \times (1/10^6) \times 3,440]$ lbs/hr = 0.208 lb / hr

VOC Emissions Factor Calculation Method

Chloroform VOC emissions were calculated from an emissions factor (20 kg-s/m³-yr) obtained from Table 8.6-2 in "Emissions Characteristics of Cooling Towers Using Reclaimed Wastewater in California", Science Applications, Inc., prepared for the California State Air Resources Board and dated August 11, 1981 (see Calculation Sheet No. 2 for copy of table). The design circulating flow rate of 6,000 gallons per minute was used in the calculation.

VOC Emissions Factor 1 = $(20 \text{ kg-s/m}^3\text{-yr})(1 \text{ yr}/365 \text{ d})(2.2 \text{ lb / kg})(1 \text{ min / 60 s})$ X (1 m³ / 264.1 gal) (6,000 gal / min) (1 d / 24 hr) = 0.0019 lb VOC / hr

Permit Number:	030132		
Process ID No.	60, 61, 6	2, 63, 64, 65, 66, 67	
Process Descript	ion: Var	ious Evaporative Processes	
Description of Co	rrection:	Updated VOC Emissions Factors	

Evaporative Process ID's 60 through 67 were determined from site wide product use information by merging database information from material purchase and distribution, material chemical information, and daily user logs. The amount of materials and VOC emissions were determined by this compilation. The emissions factor was back-calculated from these results. This submittal includes the summary information for each evaporative process. Detailed information is maintained and available upon request.

The emissions factors used were determined from the following equation:

VOC Emission Factor = (Total lbs VOC Emitted) / (Total gallons material used)

A summary of the evaporative data and emission factor calculations is provided below:

Process ID	Process Description	Total VOC Emitted (Ibs)	Total Gallons Used (gal)	VOC Emissions Factor (Ib / gal)
60	Adhesives	659	443	1.4875
61	Cleaners	4298	1083	3.9686
62	Lubricants	1085	477	2.2746
63	Misc	4777	5024	0.9508
64	Coatings - Paints	7386	8471	0.8719
65	Coatings - Solvents	2937	933	3.1479
66	Coatings - Surface Prep	21	80	0.2625
67	Asphalt Products	427	5169	0.0826

Permit Number: 030132

Process ID No. 36

Process Description: Abrasive Blasting (confined & unconfined)

Description of Correction: **PM-10 Emission Factors**

The PM-10 emission factor was obtained from Table 13.2.6-1 from AP-42. The value listed in the table for sand blasting mild steel panels without controls was 13 lb / 1000 lb of abrasive media. The emission factor was adjusted to units of tons:

PM-10 Emissions (lb / ton) = (13 lb PM-10 / 1000 lb media) (2000 lb / ton) = 26 lb PM-10 / ton

13.2.6 Abrasive Blasting

13.2.6.1 General¹⁻²

Abrasive blasting is the use of abrasive material to clean or texturize a material such as metal or masonry. Sand is the most widely used blasting abrasive. Other abrasive materials include coal slag, smelter slags, mineral abrasives, metallic abrasives, and synthetic abrasives. Industries that use abrasive blasting include the shipbuilding industry, automotive industry, and other industries that involve surface preparation and painting. The majority of shipyards no longer use sand for abrasive blasting because of concerns about silicosis, a condition caused by respiratory exposure to crystalline silica. In 1991, about 4.5 million tons of abrasives, including 2.5 million tons of sand, 1 million tons of coal slag, 500 thousand tons of smelter slag, and 500 thousand tons of other abrasives were used for domestic abrasive blasting operations.

13.2.6.2 Process Description¹⁻⁹

Abrasive blasting systems typically include three essential components: an abrasive container (i. e., blasting pot); a propelling device; and a blasting nozzle or nozzles. The exact equipment used depends to a large extent on the specific application and type(s) of abrasive.

Three basic methods can be used to project the abrasive towards the surface being cleaned: air pressure; centrifugal wheels; or water pressure. Air blast (or dry) systems use compressed air to propel the abrasive using either a suction-type or pressure-type process. Centrifugal wheel systems use a rotating impeller to mechanically propel the abrasive by a combination of centrifugal and inertial forces. Finally, the water (or wet) blast method uses either air pressure or water pressure to propel an abrasive slurry towards the cleaned surface.

Abrasive materials used in blasting can generally be classified as sand, slag, metallic shot or grit, synthetic, or other. The cost and properties associated with the abrasive material dictate its application. The following discusses the general classes of commonly used abrasives.

Silica sand is commonly used for abrasive blasting where reclaiming is not feasible, such as in unconfined abrasive blasting operations. Sand has a rather high breakdown rate, which can result in substantial dust generation. Worker exposure to free crystalline silica is of concern when silica sand is used for abrasive blasting.

Coal and smelter slags are commonly used for abrasive blasting at shipyards. Black BeautyTM, which consists of crushed slag from coal-fired utility boilers, is a commonly used slag. Slags have the advantage of low silica content, but have been documented to release other contaminants, including hazardous air pollutants (HAP), into the air.

Metallic abrasives include cast iron shot, cast iron grit, and steel shot. Cast iron shot is hard and brittle and is produced by spraying molten cast iron into a water bath. Cast iron grit is produced by crushing oversized and irregular particles formed during the manufacture of cast iron shot. Steel shot is produced by blowing molten steel. Steel shot is not as hard as cast iron shot, but is much more durable. These materials typically are reclaimed and reused. Synthetic abrasives, such as silicon carbide and aluminum oxide, are becoming popular substitutes for sand. These abrasives are more durable and create less dust than sand. These materials typically are reclaimed and reused.

Other abrasives include mineral abrasives (such as garnet, olivine, and staurolite), cut plastic, glass beads, crushed glass, and nutshells. As with metallic and synthetic abrasives, these other abrasives are generally used in operations where the material is reclaimed. Mineral abrasives are reported to create significantly less dust than sand and slag abrasives.

The type of abrasive used in a particular application is usually specific to the blasting method. Dry blasting is usually done with sand, metallic grit or shot, aluminum oxide (alumina), or silicon carbide. Wet blasters are operated with either sand, glass beads, or other materials that remain suspended in water.

13.2.6.3 Emissions And Controls^{1,3,5-11}

Emissions ----

Particulate matter (PM) and particulate HAP are the major concerns relative to abrasive blasting. Table 13.2.6-1 presents total PM emission factors for abrasive blasting as a function of wind speed. Higher wind speeds increase emissions by enhanced ventilation of the process and by retardation of coarse particle deposition.

Table 13.2.6-1 also presents fine particulate emission factors for abrasive blasting. Emission factors are presented for PM-10 and PM-2.5, which denote particles equal to or smaller than 10 and 2.5 microns in aerodynamic diameter, respectively. Emissions of PM of these size fractions are not significantly wind-speed dependent. Table 13.2.6-1 also presents an emission factor for controlled emissions from an enclosed abrasive blasting operation controlled by a fabric filter; the blasting media was 30/40 mesh garnet.

Limited data from Reference 3 give a comparison of total PM emissions from abrasive blasting using various media. The study indicates that, on the basis of tons of abrasive used, total PM emissions from abrasive blasting using grit are about 24 percent of total PM emissions from abrasive blasting with sand. The study also indicates that total PM emissions from abrasive blasting using shot are about 10 percent of total PM emissions from abrasive blasting with sand.

Hazardous air pollutants, typically particulate metals, are emitted from some abrasive blasting operations. These emissions are dependent on both the abrasive material and the targeted surface.

Controls ----

A number of different methods have been used to control the emissions from abrasive blasting. Theses methods include: blast enclosures; vacuum blasters; drapes; water curtains; wet blasting; and reclaim systems. Wet blasting controls include not only traditional wet blasting processes but also high pressure water blasting, high pressure water and abrasive blasting, and air and water abrasive blasting. For wet blasting, control efficiencies between 50 and 93 percent have been reported. Fabric filters are used to control emissions from enclosed abrasive blasting operations.

Table 13.2.6-1. PARTICULATE EMISSION FACTORS FOR ABRASIVE BLASTING^a

Source	Particle size	Emission factor, lb/1,000 lb abrasive
Sand blasting of mild steel panels ^b (SCC 3-09-002-02)	Total PM 5 mph wind speed 10 mph wind speed 15 mph wind speed PM-10 ^c PM-2.5 ^c	27 55 91 13 1.3
Abrasive blasting of unspecified metal parts, controlled with a fabric filter ^d (SCC 3-09-002-04)	Total PM	0.69

EMISSION FACTOR RATING: E

a One lb/1,000 lb is equal to 1 kg/Mg. Factors represent uncontrolled emissions, unless noted. SCC = Source Classification Code.

- ^b Reference 10.
- ^c Emissions of PM-10 and PM-2.5 are not significantly wind-speed dependent.
- ^d Reference 11. Abrasive blasting with garnet blast media.

References For Section 13.2.6

- 1. C. Cowherd and J. Kinsey, *Development Of Particulate And Hazardous Emission Factors For Outdoor Abrasive Blasting*, EPA Contract No. 68-D2-0159, Midwest Research Institute, Kansas City, MO, June 1995.
- 2. Written communication from J. D. Hansink, Barton Mines Corporation, Golden, CO, to Attendees of the American Waterways Shipyard Conference, Pedido Beach, AL, October 28, 1991.
- 3. South Coast Air Quality Management District, *Section 2: Unconfined Abrasive Blasting*, Draft Document, El Monte, CA, September 8, 1988.
- 4. A. W. Mallory, "Guidelines For Centrifugal Blast Cleaning", J. Protective Coatings And Linings, 1(1), June 1984.
- 5. B. Baldwin, "Methods Of Dust-Free Abrasive Blast Clearing", *Plant Engineering*, 32(4), February 16, 1978.
- 6. B. R Appleman and J. A. Bruno, Jr., "Evaluation Of Wet Blast Cleaning Units", J. Protective Coatings And Linings, 2(8), August 1985.

- 7. M. K. Snyder and D. Bendersky, *Removal Of Lead-Based Bridge Paints*, NCHRP Report 265, Transportation Research Board, Washington, DC, December 1983.
- 8. J. A. Bruno, "Evaluation Of Wet Abrasive Blasting Equipment", *Proceedings Of The 2nd Annual International Bridge Conference*, Pittsburgh, PA, June 17-19, 1985.
- 9. J. S. Kinsey, *Assessment Of Outdoor Abrasive Blasting*, Interim Report, EPA Contract No. 68-02 4395, Work Assignment No. 29, U. S. Environmental Protection Agency, Research Triangle Park, NC, September 11, 1989.
- J. S. Kinsey, S. Schliesser, P. Murowchick, and C. Cowherd, *Development Of Particulate Emission Factors For Uncontrolled Abrasive Blasting Operations*, EPA Contract No. 68-D2-0159, Midwest Research Institute, Kansas City, MO, February 1995.
- 11. Summary Of Source Test Results, Poly Engineering, Richmond, CA, Bay Area Air Quality Management District, San Francisco, CA, November 19, 1990.
- 12. Emission Factor Documentation For AP-42 Section 13.2.6, Abrasive Blasting, Final Report, Midwest Research Institute, Cary, NC, September 1997.

Off-Site Recycling / Disposal Forms 2006

There were two waste streams identified that sent material offsite for disposal.

Waste Stream Number: 01 - Waste cold cleaning solvents / degreasers

These materials were spent solvents that were used for parts cleaning operations. These materials were sent offsite for disposal.

Waste Stream Number: 02 – Waste paint thinners / cleaning solvents

These materials were the paint thinners and cleaning solvents that could not be recycled onsite. All materials were sent offsite for disposal.

.
WASTE PAINT THINNER

Off-Site Recycling/Disposal Form 2006 030132 Permit number(s) Provide one off-site recycling/disposal form for each waste stream at your business location. A waste stream is the waste from one or more processes mixed together to make one waste product before it is taken off site for recycling, disposal or combustion. 1) Assign a unique two-digit ID number to identify the waste stream that will be described below.__ 02 (Start with ID# 01 for first waste stream. Make a copy of this blank form and use 02 for second, etc.) Check one: 🖌 pounds 285 gallons 2) What was the quantity of this waste stream in 2006? Indicate whether this quantity is reported in pounds or gallons. Keep waste disposal company manifests as proof that this amount of waste was taken off site. 3) What was the average pollutant content of the waste stream? NOTE: Report in the same units (pounds or gallons) as used in Line 2. 0.95 lbs/unit NHx _____ VOC ____ HAP&NON _______ lbs/unit 0_{lbs/unit} 4) Calculate the total annual pollutant content of the waste in this waste stream. (volume of waste, from Line 2) x (pollutant content, from Line 3) = Total pollutants in waste stream, in lbs/yr.

VOC _____ 271 lbs/yr HAP&NON _____ N/A lbs/yr NHx _____ N/A lbs/yr

5) List the process ID numbers of the processes contributing to this waste stream. Also estimate the pounds of pollutant that each process contributed to this waste stream.

NOTE: Column totals in the table below must equal the total for each pollutant type reported on line 4. The quantities you report below for each pollutant and process must also be reported in column 12 on the Evaporative Process Form. See the Instructions for an example of a completed Off-Site Recycling/Disposal Form.

<u></u>	Process ID	Annual VOC (lbs)	Annual HAP&NON (lbs)	Annual NHx (lbs)
61	Contributed about	271 lbs	N/A lbs	N/A lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs
	Contributed about	lbs	lbs	lbs

WASTE DEGREASERS

6	Off-Site Recycling	Disposal Form/	2006	Permit number(s)	030132	
Pro on	ovide one off-site recyclin e or more processes mixed	g/disposal form for ea d together to make on	ach <u>waste stream</u> at your e waste product before i	business location. A w t is taken off site for rec	vaste stream is the wa ycling, disposal or co	aste from ombustion.
1)	Assign a unique two-dig (Start with 1D# 01 for fir	it ID number to identi st waste stream. Mak	ify the waste stream that are a copy of this blank for	t will be described below orm and use 02 for secor	/01 nd, etc.)	
2)	What was the quantity o Indicate whether this qua of waste was taken off sit	f this waste stream in antity is reported in po te.	2006 ? ounds or gallons. Keep	waste disposal company	174 [manifests as proof t	Check one: pounds gallons hat this amount
3)	What was the average p in Line 2.	ollutant content of the	e waste stream? NOTE:	Report in the same unit	ts (pounds or gallons) as used
	VOC0.95	lbs/unit H	IAP&NON	<u>0</u> lbs/unit N	Hx	0_lbs/unit
4)	Calculate the total annu (volume of waste, from	al pollutant content of Line 2) x (pollutant c	f the waste in this waste ontent, from Line $3 = 1$	stream. 'otal pollutants in waste	stream, in lbs/yr.	
	VOC165	. lbs/yr F	IAP&NONN	<mark>l/A_lbs/yr</mark> NH	IxN/A	lbs/yr

5) List the process ID numbers of the processes contributing to this waste stream. Also estimate the pounds of pollutant that each process contributed to this waste stream.

NOTE: Column totals in the table below must equal the total for each pollutant type reported on line 4. The quantities you report below for each pollutant and process must also be reported in column 12 on the Evaporative Process Form. See the Instructions for an example of a completed Off-Site Recycling/Disposal Form.

Process ID		Annual VOC (lbs)	Annual HAP&NON (lbs)	Annual NHx (lbs)	
61	Contributed about	165 lbs	N/A lbs	N/A lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	
	Contributed about	lbs	lbs	lbs	

ATTACHMENT 2

2006 Annual HAPS Report

.

Palo Verde Nuclear Generating Station Air Quality Permit 030132 2006 Annual HAPS Report

Summary of 2006 Annual Emissions	Total Process Emissions* (tons)	Accidental Releases (tons)	Total Emissions (tons)
Xylene	1.34	0	1.34
Ethyl Benzene	0.19	0	0.19
Chloroform	2.23	0	2.23
Total	3.76	0	3.76

* - In accordance with Permit Condition 21, only those HAPS with emissions for the calendar year greater than 500 lbs are listed.