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Abstract

This report documents the results of Phase II of a three phase research
program to develop and validate improved methods to model the cognitive
behavior of nuclear power plant (NPP) personnel. In Phase II a dynamic
simulation capability for modeling how people form intentions to act in NPP
emergency situations was developed based on techniques from artificial
intelligence. This modeling tool, Cognitive Environment Simulation or CES,
simulates the cognitive processes that determine situation assessment and
intention formation. It can be used to investigate analytically what situations
and factors lead to intention failures, what actions follow from intention
failures (e.g., errors of omission, errors of commission, common mode errors),
the ability to recover from errors or additional machine failures, and the
effects of changes in the NPP person-machine system.

The Cognitive Reliability Assessment Technique (or CREATE) was also
developed in Phase II to specify how CES can be used to enhance the
measurement of the human contribution to risk in probabilistic risk
assessment (PRA) studies.

The results are reported in three self-contained volumes that describe the
research from different perspectives. Volume 1 provides an overview of both
CES and CREATE. Volume 2 gives a detailed description of the structure
and content of the CES modeling environment and is intended for those who
want to know how CES models successful and erroneous intention formation.
Volume 3 describes the CREATE methodology for using CES to provide
enhanced human reliability estimates. Volume 3 is intended for those who
are interested in how the modeling capabilities of CES can be utilized in
human reliability assessment and PRA.
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1. Introduction

‘This report documents the results of Phase II of a three phase research
program sponsored by the U. S. Nuclear Regulatory Commission to develop
and validate improved methods to model the cognitive behavior of nuclear
power plant (NPP) personnel during emergency operations. In Phase II a
. model of how people form intentions to act in NPP emergency situations
(Cognitive Environment Simulation or CES) was developed using artificial
intelligence (AI) techniques. A methodology for using the model to enhance
measurement of the human contribution to risk in probabilistic risk
assessment (PRA) studies (Cognitive Reliability Assessment Technique or
CREATE) was also developed.

This volume (2) of the report describes the structure and content of the CES
cognitive model. It is intended for those who want to know about how CES
models successful and erroneous human intention formation. Volume 1
provides an overview of CES and CREATE. Volume 3 describes the
CREATE methodology. It outlines the steps involved in using CES as part
of HRA/PRA studies, and it describes how CES can be used to better
estimate human reliability. Volume 3 is intended for those who are interested
in how the modeling capabilities of CES can be utilized in HRA and PRA.

1.1 The Importance of Modeling Operator Cognxtwe Activity for
Human Reliability Assessment

The quality of human performance has been shown to be a substantial
contributor to nuclear power plant safety. Some PRA studies have found
that approximately one half of the public risk from reactor accidents can be
related to human error (Levine and Rasmussen, 1984; Joksimovich, 1984).
Studies of NPP operation and maintenance indicate from 30% to 80% of
actual incidents in nuclear power plants involve significant human
contribution (Trager, 1985). The analytical and empirical records clearly show
that the human contribution to total safety system performance is at. least as
large as that of hardware reliability (Joksimovich, 1984).

A significant factor in determining human action under emergency conditions
is sntention formation — deciding on what actions to perform.! Errors of
intention are an important element of overall human contribution to risk,
and the PRA community has recognized the need for more effective ways to
capture this component of human error (Levine and Rasmussen, 1984).

1'I‘M- is contrasted with ezecution of sntentions -- carrying out the sequence of actions decided upon.

1



The. U.S. Nuclear Regulatory Commission has embarked upon a program of
research to build a computer model of human intention formation (how
people decide on what actions are appropriate in a particular situation) in
order to better predict and reduce the human contribution to risk in NPPs.
The model simulates likely human responses and failure modes under
"different accident conditions, comparable to the analytic tools available for
modeling physical processes in the plant.

This research program consists of three phases. Phase I (completed in April
of 1986) was a feasibility study which determined that it is practical to build
such a cognitive model based on techniques from artificial intelligence (AI) to
provide useful input to human reliability analysis and probabilistic risk
assessment (the results of the assessment are reported in NUREG/CR-4532).
The feasibility study identified a specific AI software system which could
serve as a vehicle for model development.

Phase II of the research project focused on model development and
application to HRA based on the approach identified in Phase I. Specifically:

1. A model of how people form intentions to act in emergency
operations in NPPs was developed using AI techniques. The
model, called Cognitive Environment Simulation or CES, is the
" first analytic computer simulation tool which can be used to
explore human intention formation in the same way that reactor
codes are used to model thermodynamic processes in the plant.

2. A methodology, called Cognitive Reliability Assessment Technique
or CREATE, was developed which specifies how this capability
can be used to enhance measurement of the human contribution
to risk in PRA studies.

An additional phase of the research project is planned whose objective is to
conduct field evaluation and validation of the CES cognitive model and the
CREATE methodology.

1.2 The Role of Modeling of Human Intention Failures in Risk
Analysis

Model development addressed one part of human behavior: human intention
formation (deciding what to do) and erroneous intentions to act. This scope
was chosen, first, because models and techniques are already available to
assess the form and likelihood of execution errors in human reliability studies
(e.g., Reason & Mycielska, 1982; Swain & Guttman, 1983). A second reason



for selecting this scope is because erroneous intentions are a potent source of
human related common mode failures which can have a profound impact on
risk — as actual accidents such as Three Mile Island and Chernobyl have
amply demonstrated. Intentions to act are formed based on reasoning
processes. The scientific disciplines that study these processes are called
cognitive sciences or mind sciences and include a variety of fields such as
cognitive psychology and artificial intelligence. Models of these processes are
called “cognitive models.”

In Phase II a computer simulation of intention formation in emergency
operations was developed. This system, Cognitive Environment Simulation or
CES, is the first analytic computer simulation tool that can be used to
model human intention formation in the same way that reactor codes are
used to model thermodynamic processes in the plant.

CES is a simulation of cognitive processes that allows exploration of plausible
human responses in different emergency situations. It can be used to identify
what are difficult problem-solving situations, given the available problem-
solving resources (e.g., specific procedural guidance, operator knowledge,
person-machine interfaces). - By simulating the cognitive processes that
determine situation assessment and intention formation, it provides the
capability to establish analytically how people are likely to respond, given
that. these situations arise. This means one can investigate

o what situations and factors lead to intention failures,
o the form of the intention failure,

e the consequences of an intention failure including,

o what actions will not be attempted — errors of omission,

o what actions the intention failure will lead to — commission
errors and common mode failures, that is, those leading to
the failure of otherwise redundant and diverse systems due
to misperception of plant state or another cognitive
processing breakdown,

o error recovery — whether the human intention failures or
execution errors or failures of plant equipment to respond as
demanded will be caught and recovery action. taken (and
information on the time until recovery),



o “improvised” action sequences that operators may take in
different circumstances (responses other. than the nominal
response sequence in the procedure which hindsight suggests
was most appropriate).

The ability of CES to predict errors of commission is particularly important
since misapprehension of plant state by the operator can result in multiple
actions which can have broad systemic effects. Intention failures are a major
source of human related common mode faslures — multiple failures that are
attributable to a common element (namely, the erroneous intention).
Examples of this are cases where the situation is misperceived, and the
operator deliberately decides it is appropriate to turn off multiple, otherwise
redundant and diverse systems as occurred at Three Mile Island and
Chernobyl. The PRA community generally recognizes the importance of
identifying common mode failure points because they can have large and
widespread effects on risk. :

Because CES models the processes by which intentions to act are formed, it
can be used, not only to find intention error prone points, but also to
identify the sources of cognitive processing breakdowns and intention failures.
This means that it can help to develop or evaluate error reduction strategies.

CES. also provides an analytic tool for investigating the effects of changes in
NPP person-machine systems including new instrumentation, computer-based
displays, operator decision aids, procedure changes, training, multi-person or
multi-facility (e.g., technical support center) problem solving styles. This
means that proposed changes/enhancements to NPP person-machine systems
can be analytically evaluated before they have been implemented.

CES, as a modeling environment, is a specific instance of an artificial
intelligence problem solving system, EAGOL.? The EAGOL problem solving
architecture embodies unique capabilities for reasoning in dynamic situations
that include the possibility of multiple faults. CES uses these  capabilities: to

capture the kinds of cognitive processes that contribute to - intention
formation.

Cognitive Reliability Assessment Technique (CREATE) is the method for
using the capabilities of CES to better evaluate the potential for significant
human errors in PRA analysis. In CREATE, CES is run on multiple

zEAGOI. is a software system and proprietary product of Seer Systems. EAGOL builds on the coﬁeeptud

framework of the CADUCEUS Al problem-solving system developed for medical problem-solving applications
(Pople, 1988).



variants of accident sequences of interest. The variants are selected to
represent parametric combinations of a plausible range of values along the
dimensions that contribute to cognitive task complexity. The goal is to
identify sets of minimum necessary and sufficient conditions (characteristics of
the situation and/or the operator) that combine to produce intention failures
with significant risk consequences. Once the range of plausible intention
. errors and the conditions under which they will arise are identified, a
quantification procedure is used to assess the likelihood of these intention
€errors.

The CREATE methodology involves two main stages: a modeling stage
where CES is used to find situations that can lead to intention failures and
therefore to erroneous actions; and a systems analysis input stage where the
results of the cognitive modeling are integrated into the overall systems
analysis.

The main steps in the modeﬁng stage are:

e Decide what NPP situations to investigate with CES and how
these situations map into the CES simulation world,

"o Set up CES to be able to run NPP situations,

e Run CES over a plausible range of demand and resource settings,
given the analysis of this plant,

e Analyze CES behavior to identify the minimum conditions which
. produce intention failures and the actions that follow from an
intention failure.

Because CES is a simulation code, it requires detailed and complete. input to
run and outputs specific predictions about human intentions. This means
that using CES in the modeling stage ensures explicit consideration and
detailed analysis of the factors that contribute to human intention errors.

The main steps in the systems analysis input stage are:

e Modify the systems analysis event/fault trees to reflect the effects
of intention errors identified in the modeling stage.

e Employ a quantification procedure to assess the likelihood of these
intention errors, ’



e Combine intention error estimates with execution error estimates.

Note that CES plays the same role in the CREATE methodology that
simulation codes for physical plant processes play in reliability analyses of
physical systems. In both cases we are dealing with complex, dynamic
. processes whose behavior is affected by too large a set of interacting factors
to be tractable without a simulation. The modeling stage provides the
backbone of the analysis in that it defines the critical elements to be
aggregated and how they are to be aggregated. Frequency estimation
techniques are then used to establish the probabilities to be aggregated.

1.3 Background for Model Development

This section briefly describes the background for the model development work
carried out in Phase II including the goals to be satisfied, the behavioral
science and NPP scopes to be addressed, and what activities are to be
modeled. NUREG/CR-4532 contains a thorough discussion of these topics.

Objectives of Model Development. A
The goal of the Phase II model development was to enhance the ability to

predict human performance in NPPs, in particular, to enhance the ability: .

e to predict the human contribution to risk in human reliability
analysis (HRA) and probabilistic risk assessment (PRA);

to identify situations prone to human error, particularly human
related common mode errors and errors of commission;

to understand the mechanisms that produce human error;

o based on increased knowledge about ‘error mechanisms, to help
develop error and risk reduction strategies;

to predict the effects of changes in the NPP person-machine
system (procedures, training, sensors, displays, operator aids) on
human performance. o '

Intention Errors and Cognitive Processing.

Model development focused on one part of human behavior: human intention
formation (deciding what to do) and erroneous intentions to act. Intentions
to act are formed based on reasoning processes that determine how plant
data are monitored, what situation assessments are formed, what explanations
are built and what responses are judged appropriate to carry out under these
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perceived circumstances. The scientific disciplines that study these processes
are called cognitive sciences. Models of these processes are often called
“cognitive models.”

What is cognition? The word cognitive describes one approach to
understanding human behavior which assumes that description, explanation,
and prediction of observable human actions depends on understanding the
chain of information processing or mental events that mediate between
observable events in the world and human responses.

Definition of Cognition: The cognitive approach asserts that human
performance varies because of differences in the knowledge that a
person or team of people possess (both the form and the content),
in the activation of that knowledge, and in the expression or use of
knowledge. : '

How knowledge is activated and used is based fundamentally on an iterative
cycle of data-driven activation of knowledge and knowledge-driven observation
and action. An item in the world is noticed (e.g., an alarm) which triggers
some knowledge (e.g., what the message means about changes in system
state); this knowledge, in turn, leads to new observations or actions which
trigger other knowledge, etc. Cognitive models differ in the particulars of how
data activate knowledge and how activated knowledge leads to particular
observations and actions in different contexts. ’

Scope. v
The model development addresses the cognitive processes that affect

successful and erroneous human intention formation in NPP emergencies.
This area of human behavior includes what is sometimes called ‘‘rule-based”’
behavior and ‘“knowledge-based” behavior up to the point of creative
problem solving (Rasmussen, 1986).

Model development focused on one part of the NPP: operations during
abnormal and emergency conditions, i.e., activities carried out by the
emergency response system including the control room and branching out to
the technical support center.

What Cognitive Activities Need to be Modeled?

An effective cognitive model must be able to capture the kinds of cognitive
activities that occur in emergency operations in order to produce valid
predictions that are relevant to NPPs. Let’s call this target the basic
competencies of the desired cognitive model. These competencies are kinds of




behavior or information processing the model must exhibit that reflect
aspects of the processing that people carry out to meet the demands of
problem solving during control room emergencies. :

To build a model to do this we must know — What kinds of problem
. solving situations occur in NPP emergency operations? What must people
know and how must people use that knowledge to solve these problems?
How do people actually respond in these types of problem solving situations?
The answers to these questions come from current empirical and analytical
results on the cognitive demands and activities that arise in emergency
operations (these are described in Chapter 4 of NUREG/CR-4532).

There are four primary characteristics of the NPP world that determine the
kinds of problem solving situations that can arise in emergency operations.

1. NPPs are composed of a large number of highly interactive pa.rts
‘and processes (systems, functions, goals).

2. Emergency operations occur in a dynamic, event-driven world
where incidents unfold in time, and events can happen at
indeterminate times during an incident.

3. There is uncertainty — a demanded position indication may not
reflect actual position or sensors can fail — and there is risk -
possible outcomes can have large costs.

4. There is a high degree of automation which means that multiple
agents (machine controllers, machine decision makers, and multiple
people) are involved in the response to emergency incidents.

The result is that actual NPP emergency incidents are difficult because
multiple, interacting events (machine and human failures) can and do occur
in the face of uncertain evidence and risky choices.

To solve problems in a world with these characteristics, operators must know
about the many parts and processes and their interrelationships. They must
be able to use this knowledge in a changing situation to determine the state
of the plant (sustained monitoring) and how to respond (e.g., take into
account side effects). This is complicated by uncertainties in the available
evidence and the likelihood of multiple faults. Because of the high workload,
operators must make decisions about timesharing/scheduling of activities.
Because the world can be constantly changing, the ability to revise one’s
assessment of the situation, current goal, and current response strategy in
response to new information is basic to problem-solving in this domain. This

8



means the cognitive activities of the operator are best modeled as being
“opportunistic’’ or interruptable by perceived changes in the state of the
‘world. Emergency response can crystallize into a situation where the
operators must make a choice among response strategies based on an
uncertain situation assessment ‘and risky possible outcomes (e.g., as occurred
during the Ginna steam generator tube rupture incident).

In summary, the cogmtwe demands of NPP emergency operations produce
the following processxng requirements:

e process evidence to build a situation assessment given the
possibility of multiple failures,

o sustained monitoring of evidence because it is a dynamic changing
world,

e only a portion of the available evidence or possible explanations
can be examined or pursued at any point — attentional focus -
because of high workload and limited mental resources,

e there must be control and revision of attentional focus because it
' is a dynamic changing world,

o attentional focus is controlled through. an interactive cycle of
opportunistic, interruptable processing of new signals or events and
knowledge driven choices about where to focus next,

e choice under uncertainty and risk.

A Cognitive Model.

The principal aim of a model is to efficiently capture relations among
significant variables in order to describe, explain, and predict the behaviors
of interest. @ To do this, models contain concepts and relations among
concepts which specify what is really important in producing and controlling
behavior in the situation of interest.> The concepts suggest what to look at
and how to describe the situations that arise. CES is based on concepts
about how intentions are formed and how they go astray that are derived
from specific studies of human performance in NPP emergencies and general
results in cognitive psychology.

3As Eddington (1939, p. 65) remarked, “in physics everything depends on the Insight with which the
ideas are handled before they reach the mathematical stage.”

9



Second, models are representations of some aspects of the situation of
interest. They do not duplicate the modeled world; there is a relation
between the modeling system and the modeled system. CES is a modeling
environment designed as a parallel world to actual emergency operations.
CES translates from a description of the evolution of an incident and
recovery responses in terms of NPP engineering language to a description in
terms of a cognitive problem-solving language in order to identify difficult or
error prone problem-solving situations.

Third, models have some machinery to formalize the concepts and to
generate specific and reproducible outputs given some inputs. Concepts about
the processes involved in intention formation require formalization as
symbolic processing or Al mechanisms. CES was developed based on the
knowledge representation and processing mechanisms of the EAGOL Al
software system developed by H. Pople and Seer Systems.

This volume describes the concepts and scope of applicability for the
cognitive model, and the AI techniques used to formalize it. It is intended
for those who want to know about how CES models successful and erroneous
human intention formation.

Finally, models have multiple uses. This model was developed in order to
better capture the human contribution to risk in probabilistic risk assessment
studies. The methodology for using the cognitive model in PRA is
summarized in Chapter 3 of the executive summary and described in more
detail in Volume 3. Volume 3 is intended for those who are interested in
how the modeling capabilities of CES can be utilized in HRA and PRA.

10



2. The Approach to Modeling
Human Performance |

2.1 Introduction

The feasibility study done in Phase I found that all attempts to provide
causal models of human performance in worlds where a broad range of
cognitive activities occur result in framework models (e.g., Pew & Baron,
1083; Baron, 1984; Pew et al., 1986; Mancini et al., 1986). Framework
models use one kind of modeling concept or technique to build a structure
for the different kinds of cognitive activities that occur in the domain of
interest and to capture how they interact. Narrower scope modeling concepts
derived from heterogeneous sources provide depth at different points in the
structure. This modeling strategy is used in many domains because there is a
tradeoff between the desire for a formal model and the need to cover a
broad scope of human behavior when modeling complex technological worlds
(see sections 2.5 and 3.2 of NUREG/CR-4532).

The framework for the modeling system developed in this research program
is based on a model of the problem-solving environment that is emergency
operations. The emphasis is first on modeling the cognitive demands imposed
by the problem-solving environment (the nature of the emergency incident,
how it manifests itself through observable data to the operational staff, how
it evolves over time). Then, concepts from narrower scope psychologlca.l
models (monitoring dynamic systems, e.g., Moray, 1986; choice under
uncertainty and risk, etc.) can be brought to bear to represent the factors
that affect human behavior in meeting these demands and to constrain the
model of the problem-solving environment. The most fundamental
psychological constraint relevant to the NPP world is that people have
limited cognitive processing resources, and this cogmtlve model was designed
to simulate a [limited resource problem solver in a dynamie, uncertain and
complez situation.

Because this modeling approach was chosen, the resulting modeling capability
has been named a Cognitive Environment Simulation or CES.

CES is a causal model in the sense that it generates predictions about
operator action by simulating the processes by which intentions are formed.
This contrasts with correlational approaches that base predictions on
descriptive regularities between situational variables (e.g., time available to
respond) and performance (e.g., likelihood of making an error) without
simulating the processes that produce the error. The ability to simulate the
processes that lead to a particular intention makes it possible to predict
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likely behavior in complex and dynamic situations where operator intentions
depend on a large number of interacting factors (e.g., what plant data he
has available, number of issues competing for his attention, what he knows
about the meaning of observed plant behaviors, the order that different kinds
of explanations come to mind that could account for patterns of data) that
would otherwise be intractable. Furthermore, it enables identification of the
form of the error (e.g., a fixation error) and the sources of the error (what
aspects of the situation confronting the operator and/or his knowledge or
cognitive processing limitations contributed to the error.)

CES is formally expressed as an Al based computer problem solving system
that carries out cognitive processes that are critical to intention formation in
complex dynamic worlds — it monitors plant behavior, forms a situation
assessment, generates one or more explanations for the plant state, forms
expectations as to the future course of plant behavior (e.g., that automatic
systems will come on or off), and generates intentions to act. In particular,
CES is a specific instance of the EAGOL artificial intelligence problem
solving system that is capable of reasoning in complex dynamic worlds(see
Footnote 2). Among EAGOL’s unique strengths are the ability to reason in
multiple fault situations and to reason in situations that evolve over time
(i.e., where evidence accrues over time, where evidence may disappear or
become occluded by new events, where beliefs about the state of the world
must be revised, etc.). '

Degrading these capabilities or what we call the basic cognitive competencies
of CES, leads to error vulnerable problem solving behavior. Poor
performance — errors — emerges from a mismatch between demands (the
incident) and the knowledge and processing resources. Varying CES
knowledge and processing resources increases or decreases the program’s
vulnerability to getting offtrack or, once offtrack, staying offtrack. In this
view, errors are the outcome of a processing sequence, and a model of error
mechanisms depends on a model of processing mechanisms. Thus, the
cognitive activities that underlie the formation of an intention to act are
encompassed in CES and errors arise due to limitations of these cognitive
processes. This is the imperfect rationality approach to modeling human
performance and error (e.g., Rasmussen, Duncan & Leplat, 1987).

Modeling consists of matching CES resources to those present in some actual
or hypothetical NPP situation. The specific processing mechanisms in CES
are not intended to be ‘“micro” models of human cognitive processing. It is
the outcome of the computer’s processing activities that are assumed to be
the same — what data are monitored, what knowledge is called to mind,
what situation assessment is formed, what explanations are adopted, and
what intentions to act are formed, given the incident (the demands of the
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problem-solvmg situation), the representation of the world (i.e., as reflected
in the displays by which the operator interacts with ‘the world), and the set
of knowledge and processing limitations set up in CES.

The CES modeling environment provides powerful facilities for exploring how
what a person knows, what data about the world are available to him, and
his monitoring and problem-solving strategies can lead to successful. or
unsuccessful performance in different dynamic situations. Users of the model
can express different particular NPP situations by selecting the demands (the
incident or variant on the incident) and by adjusting the resources within
the simulation to analyze and predict ‘“what would happen if.”

2.2 Overview of the Cognitive Environment Simulation

CES is a dynamic simulation capability for human intention formation. As
shown in Figure 2-1, CES takes as input a time series of those values that
describe plant state which are available or are hypothesized to. be available
to be looked at by operational personnel. Any valid source of data about
how the plant would behave in the incident of interest can be used to create
the inputs to CES. This includes data on plant behavior in actual incidents
or simulation results derived from training simulation models, engineering
simulation models, thermohydraulic codes.

The dynamic stream of input data constitutes a wvirtual display board which
the CES simulation monitors to track the behavior of the plant over time, to -
recognize undesirable situations, and to generate responses which it thinks
will correct or cope with these situations (intentions to act). Its output is a
series of these intentions to act which are then executed and therefore
modify the course of the incident.

CES is a modeling environment for the supervisory role during emergency
operations. This is because CES does not actually execute its intentions.
Another mechanism is needed to actually carry out CES’s instructions on the
power plant. For example, a person who has access to controls to a dynamic
plant simulation can execute CES instructions. Whether this person executes
CES’s instructions correctly or not depends on the nature of the incident
which the CES user wishes to investigate.

CES watches the virtual display board of potentially observable plant
behaviors and generates actions that it thinks will correct or cope with the
perceived situation. To do this, inside of CES there are different kinds of
processing which are carried out “in paralle]” so that intermediate results
established by one processing activity can be utilized by another and  visa
versa. This allows a solution to be approached iteratively from different
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levels of analysis.* There are three basic kinds of activities that go on inside
of CES (Figure 2-2):

e Monitoring activities — what parts of the plant are tracked when;
are observed plant behaviors interpreted as normal-abnormal or
~ expected-unexpected?

¢ Explanation building activities — what explanations are considered,
in what order, and adopted to account for unexpected findings?

e Response management activities -- selecting responses, either
expected automatic system or manual operator actions, to correct
or cope with observed abnormalities, monitoring to determine if
the plans are carried out correctly, and adapting pre-planned
responses to unusual circumstances.

_ An analyst can look inside CES to observe these activities as the incident it
was stimulated with unfolds in time. The analyst can see what data the
computer simulation gathered, what situation assessments were formed, what
hypotheses were considered, pursued or abandoned, what plant behaviors
were expected or unexpected. This can be done interactively, assuming that
CES is being stimulated by dynamic plant simulation and assuming that
CES intentions are being executed on the simulated plant. Or an analyst can
examine a record or description of the knowledge activated and processed by
CES after it has been stimulated by an incident. In both cases CES’s
processing activities and resulting intentions to act are available to be
analyzed (1) to identify erroneous. intentions, (2) to look for the sources of

erroneous intentions, (3) to discover what other actions follow from erroneous
intentions (Figure 2-3).

‘The CES user can vary the demands placed on CES — how difficult are ‘the
problems - posed by the input incident. The CES user also varies the
resources within CES for solving the problems by modifying what knowledge
is available and how it is activated and utilized. The dimensions along which
CES performance can vary are called CES Performance Adjustment Factors
(or PAFs). There are a variety of these adjustment factors designed into
CES that provide tools for a human analyst to set up or model the
particular NPP situations which he or she wishes to investigate within the
cognitive environment simulated in CES. For example, CES should be

‘ln some psychological models there are linear stages of information processing where an input signal is
processed through a fixed sequence of stages. In CES, different processing occurs at the same time and
intermediate results are shared. This leads to formalisation as an Al program.
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Figure 2-1: CES is a dynamic simulation capability for human intention
formation. It takes ‘as input a time series of those values that describe plant
state which are available or are hypothesized to be available to be looked at
by operational personnel. The CES simulation watches this virtual display
board of potentially observable plant behaviors to track the behavior of the
plant over time, to recognize undesirable situations, and to generate responses
which it thinks will correct or cope with these situations (intentions to act).
Its output is a series of these intentions to act which are then executed and
therefore modify the course of the incident.
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Figure 2-2: Inside of CES there are different kinds of processing which are
carried out “in paralle]” so that intermediate results established by one
processing activity can be utilized by another and visa versa. This allows a
solution to be approached iteratively from different levels of analysis. There
are three basic kinds of activities that go on inside of CES: (a) monitoring
activities — what parts of the plant are tracked when and are observed plant
behaviors interpreted as normal-abnormal or expected-unexpected? (b)
explanation building activities — what explanations are considered, in what
order, and adopted to account for unexpected findings? (c) response
management activities — selecting responses, either expected automatic system
or manual operator actions, to correct or cope with observed abnormalities,
monitoring to determine if the plans are carried out correctly, and adapting
pre-planned responses to unusual circumstances.
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Figure 2-3: An analyst can look inside CES to observe these activities as
the incident it was stimulated with unfolds in time. The analyst can see
what data the computer simulation gathered, what situation assessments were
formed, what hypotheses were considered, pursued or abandoned, what plant
behaviors were expected or unexpected. CES’s processing activities and
resulting intentions to act are available to be analyzed (1) to identify
erroneous intentions, (2) to look for the sources of erroneous intentions, (3)
to discover what other actions follow from erroneous intentions.

The CES user varies the demands placed on CES — how difficult are the
problems posed by the input incident. The CES user also varies the
resources within CES for solving the problems by modifying what knowledge
is available and how it is activated and utilized. The dimensions along which

CES performance can vary are called CES Performance Adjustment Factors
(or PAFs).
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capable of responding in a “function-based” and/or in an ‘‘event-based”
fashion to faults, and CES should be capable of being fixation prone or not
being fixation prone in explanation building. Modeling NPP situations within
the CES simulation environment is, in effect, a translation from the
engineering languages of NPP incidents to a problem solving language as
" represented by the knowledge and processing mechanisms set up in CES.
CES is then run to find the conditions that lead to erroneous intentions and
the action consequences of these erroneous intentions.

This type of system can, in principle, function in the supervisory role of
operational personnel during an unfolding NPP incident. The relationship
between processing activities that occur in CES and processing activities of a
person or team of people in some NPP emergency situation varies depending

on the knowledge, processing resources, and processing mechanisms set up in
CES:

e CES may carry out NPP tasks competently, in the sense of
‘“‘ideal” performance;

e it may carry out these tasks like ‘‘good” huma.n operational
personnel or teams;

¢ it may err ‘in these tasks like human operational personnel or
teams err.

A human performance model must be built based on knowledge of what
people actually do in the situations of interest. If one knew this completely,
then the benefit of formal modeling is to eliminate subjectivity in the
application of this knowledge to specific cases. But our knowledge of human
performance in: complex dynamic worlds such as NPP operations is
incomplete (e.g., ‘Hollnagel,, Mancini & Woods, 1986). Given this state of
affairs, formal models are needed (a) to objectively express the current state
of knowledge, (b) to extrapolate from this to new situations, (c) to test
whether the current state of knowledge is adequate through comparisons to
new empirical cases, and (d) to revise and update the state of knowledge as
appropriate (the model as a repository of current knowledge/best
guesses/approximate models on operator behavior).

The Cognitive Environment Simulation allows one to formally represent the
‘state of knowledge about what people do in emergency operations (or
alternative views about what they do) and then to see the implications of
that knowledge (or point of view) for human intention formation in new
situations where there is no or sparse empirical data. Thus, a cognitive
environment simulation allows one to generate analytical data on human
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performance that complement, but do not replace, empirical data on human
performance. ,

This state of affairs is analogous to the situation with analytical computer
codes which model reactor behavior. In both cases, an ongoing cycle of model
evolution and change is needed as our state of knowledge* changes. The
Cognitive Environment Simulation, as repository of the best current
knowledge, then, becomes the best source for interpolating or extrapolating
what human behaviors are likely in cases where there is no or limited
experience — including evaluating changes to the human-machine system and
hypothetical situations that arise in postulated incidents for which there is no
or insufficient empirical data (rare incidents). Reactor thermodynamic models
are essential tools for design and risk assessment of the physical NPP. The
Cognitive Environment Simulation provides, for the first time, an analytical
model of human intention formation in NPP emergency operations which will
be an essential tool to assess human performance for the evaluation of
human-machine systems in the NPP and for assessment of the human
contribution to risk.

2.3 CES Development Process
The process by which CES was created is illustrated in Figure 2-4.

Concepts and relations about how intentions are formed and how they go
astray derived from empirical results and knowledge about the structure and
function of NPPs were used to formulate a set of basic cognitive
competencies that CES should exhibit. As mentioned earlier, the basic
competencies are imposed by the need to simulate a limited resource problem
solver in a dynamic, uncertain and complex situation.

If CES was to function as a modeling environment, the cognitive
competencies also needed to include the dimensions along which CES
performance should be variable — CES Performance Adjustment Factors
(PAFs). CES should be capable of competent performance given some set of
Performance Adjustment Factor settings, and should be capable of
incompetent performance given other Performance Adjustment Factor
settings. Furthermore, the performance breakdowns which CES exhibited
under different PAFs must be related to what is known about how human
problem-solving can break down in dynamic situations.

The concepts about intention formation were derived from general results in
cognitive psychology and from empirical studies of human performance in
NPP emergencies (cf., Chapter 4 of NUREG/CR-4532). Empirical results
used included both studies of operators solving simulated faults (Woods et
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Figure 2-4: The CES development process. Concepts and relations about
how intentions are formed and how they go astray were used to formulate a
set of basic cognitive competencies that CES should exhibit. A formalization
process followed where Al mechanisms were set up that could exhibit those
competencies. Several iterations of formalization, leading to more refined
statement of the basic competencies and then further formalization were
carried out to develop CES to its current state.
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al., 1982; Woods & Roth, 1982; and unpublished cases) and retrospective
investigations of operator decision making in actual incidents (e.g., the four
incidents analyzed in Pew et al., 1981; the Ginna and Oconne incidents
analyzed in Woods, 1982 and Brown & Wyrick, 1982; the Davis-Besse
incident reported in NUREG-1154; the San Onofre incident reported in
NUREG-1190; the Rancho Seco incident reported in NUREG-1195).

In the CES development process, the different types of knowledge that a
person might possess about the NPP were also taken into account. CES had
to be capable of representing these different kinds of knowledge and different
ways of organizing knowledge about the NPP. The formalism for organizing
knowledge about NPPs that informed CES development is based on
Gallagher et al. (1982), Woods & Hollnagel (1987), and Woods (in press).

Chapter 3 describes in detail the cognitive competencies which CES behavior
should exhibit.

A formalization process followed where Al mechanisms embodied in the
EAGOL artificial intelligence problem solving system were set up that could
exhibit those competencies. The basic software mechanisms had to be capable
of competent performance and capable of being degraded to exhibit the kinds
of performance breakdowns that humans exhibit in high cognitive demand
situations. Several iterations of formalization, leading to more refined
statement of the basic competencies and then further formalization were
carried out to develop CES to its current state.

Chapfer 4 describes the mechanisms by which CES exhibits the competencies -
and the current state of CES development. Chapter 4 also contains samples
of CES processing in different NPP situations.

2.4 Overview of the CES Architecture

As an instance of the EAGOL Al computer system, CES contains two major
types of information. First, it contains a knowledge base that represents the
operator’s (or the team of operators’) knowledge about the power plast, -
including the inter-relationships between physical structures, how processes
work or function, goals for safe plant operation, what evidence signals
abnormalities, and actions to correct abnormalities.

Second, it contains processing mechanisms (or inference engine) that
represents how operators process external information (displays, procedures)
and how knowledge is called to mind under the conditions present in NPP
emergencies (e.g., time pressure). This part of the model determines what
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-knowledge is accessed when and what cognitive activities (monitoring,
explanation building, response management) are scheduled when during an
evolving incident.

The knowledge representation formalism from EAGOL (i.e., how knowledge
about the NPP is expressed) provides a powerful and flexible mechanism for
"representing virtually any relation among NPP concepts. Concepts at any
level of abstraction, whether observable or not, can be represented (e.g, a
plant parameter reading; an intermediate disturbance category such as a
“mass imbalance’”; a fault category such as primary system break to
containment; or a response such as “turn off the emergency cooling system’).
Within the knowledge representation formalism, the full variety of relations’
among concepts that NPP operators would be expected to know such as
plant data-state evidence links, state-state links, and state-response links can
be  expressed. This includes encoding of symptom-response ‘shortcuts” that
form the basis for what has sometimes been termed operator ‘‘rule-based”
behavior, as well as encoding of more abstract and functional relations that
form the basis for more elaborated and thorough reasoning or what has
sometimes been termed ‘knowledge-based” behavior (Rasmussen, 1986).

Included in the knowledge representation is a description of what data about
plant state are directly available to the model to “see,” reflecting what plant
information would be directly available to the operator to :observe. This
description constitutes a virtual display board, that the model monitors to
acquire data about plant state. The CES knowledge base includes a list of
plant parameters or states that it can directly access (e.g., from a data file
or as output from a simulation program). Depending on the plant being
modeled these plant parameters can .be direct sensor readings, or more
integrated information about plant state such as the output of computerized
displays or decision aids). Associated with each element on the ‘virtual
display board’ are parameters that reflect characteristics of how that
information is presented in the plant being modeled (i.e., cha.ra.ctenstxcs of
the representation provided to the operator of that NPP).

=xe

The basic psychological concept behind CES is that people have limited
resources in a potentially high workload environment. This means that CES,
as a model of operational personnel, cannot access and utilize all possibly
relevant pieces of knowledge (i.e., not all potentially relevant knowledge in
the knowledge base can be activated) on any one model processing cycle, i.e.,
* time step). Similarly, CES cannot examine all of the plant data available at
any one processing cycle. Therefore, CES must be able to control what data
are examined when and what knowledge (and how much knowledge)

activated in a given cycle. This is one of the basic cognitive competencies
specified for CES. “
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Controlling what knowledge and how much knowledge is activated at a given
point in an unfolding incident depends on:

e A cycle or interaction between knowledge-driven processing (such
as looking for information to find an explanation for an
unexpected finding) and data-driven processing (where salient data
interrupts ongoing processing and shifts the focus).

e Resource/workload interactions where carrying out one type of
processing precludes the possibility of doing other processing if
there is competition for limited resources. Thus, there can be a
need to choose which processing activity should be carried out
next, e.g., acquire more data? or pursue possible explanations? or
genera.te/track responses to detected abnormalities?

e A hmlted problem solver should focus first on ‘‘nteresting”
Jindings. There are several layers of criteria that define which
findings are “interesting” or ‘‘important’” that affect control of
CES processing. For example, if an observation indicates an
abnormality, then there is a need to pursue how to correct or
- cope with it; if an observation is unexpected, then there is a need
to pursue what could account for it?

The formalization task then was to use the symbolic processing or Al
mechanisms in EAGOL to control a limited focus of attention in these ways,
e.g., what data are exammed when, what possible explanation is pursued
first.

The basic processing mechanism from the EAGOL system used in CES to
achieve this behavior is to spawn an ‘‘analyst” when some criterion is met,
who then performs some information processing work, accessing knowledge
available in the knowledge base as it needs it. There are three basic kinds of
‘“‘analysts’ each  with their own area of responsibility and with different
criteria that trigger their processing activities. These are:

e Behavior analysts responsible for monitoring and analyzing plant
behavior to decide if observed plant behaviors are expected or
unexpected.

o Situation analysts responsible for analyzing the perceived situations
and for postulating and pursuing possible explanations for
unexpected findings.

e Response plan analysts responsible for selecting and adapting plans
to correct or cope with perceived abnormal conditions.
23



These analysts are active processes that draw conclusions and ‘“post” their
results for other analysts to use as needed. Multiple instances of each basic
type of “analyst’” are generated or ‘“spawned” as needed. A fundamental
characteristic of this problem-solving architecture is that each analyst has a
very narrow field of view and responsibility, and that complete problem
solving involves communication and coordination among the -multiple
analysts.

Each analyst does not represent a different person, rather the cooperative set
of analysts are intended to model a single problem-solving system - be it an
individual operator or a team of operators. The multiple analysts are
intended to model the multiple types of processing (e.g., monitoring,
explanation building, response planning) and lines of reasoning (e.g., multiple

alternative . explanations pursued) that occur in parallel and are interwoven
during problem-solving

2.5 Modeling Human Intention Formation with CES

CES, as a modeling environment, is designed as a parallel world to actual
emergency operations. The parallel is established by capturing in the
simulation world the problem solving resources available in some actual or
hypothetical NPP situation (operators, training, procedures, control board,
etc.). If the parallel is well established, then the behavior of the simulation
(the monitoring, explanation building and response management behavior of

CES) in some incident corresponds to expected human behavior in the actual
world, under the same circumstances.

Note that the specific mechanisms in CES are not intended as ‘‘micro”
models of human mental operations. Rather CES was designed to exhibit the
monitoring, explanation building, and response management behaviors of a
limited resource problem solver in a dynamic and complex situation. For
example, a limited problem solver must ‘‘decide” what plant data to look at
a particular moment; therefore CES must be capable of tracking some data
to the exclusion of others. This specifies a cognitive competence which CES
should exhibit. If the mechanism that directs CES monitoring focuses its
limited resources on data that are not relevant or are even misleading with
respect to that actual state of the NPP, then CES can form erroneous
situation assessments and therefore select erroneous actions. This means that

CES is a dynamic simulation that can behave incorrectly if demands exceed
resources.

The basic assumption in this modeling approach is that degrading a
competency imposed by the problem solving environment can lead to more
error vulnerable problem solving behavior. The power of this approach is
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that, depending on how the competencies are formalized and implemented, it
is straightforward to provide different levels of resources and to create
different processes by which resources are allocated when competition occurs.
The constraint on defining these resource limitations is that they can lead to
“known forms of human errors such as fixation errors.

2.5.1 Changing CES Resources: Performance Adjustment Factors

CES is a deterministic model. Given the same dynamic incident scenario, the
same virtual display board characteristics, the same knowledge about the
NPP, and the same processing resources, CES will generate the same series
of intentions to act. There are large degrees of variability in human
behavior; even when performance is good, people take different trajectories to
reach the same outcome. CES is capable of large degrees of variation in its
behavior as well, and it is capable of taking different problem solving
trajectories to the same outcome.

Variability in CES behavior arises from several sources. First, variability in
CES behavior arises due to variability in details in how the incident in
question unfolds. This is one reason why dynamic plant behavior is needed
as input to CES. Second, CES behavior varies as a function of variations in
- its knowledge and processing resources. nThe assumption is that human
variability arises from differences in relatively enduring knowledge (e.g.,
knowledge of how x works) and processing characteristics (e.g., a fixation
prone personality), longer term changes in knowledge and skill (e.g., skill
acquisition from training or experience), or from more moment-to-moment
variations in processing resources (e.g., a narrow field of attention due to
stress or fatigue).

There are a set of factors designed into CES which allow one to vary CES
knowledge and processing resources. These Performance Adjustment Factors
(PAFs) provide the tools for a human analyst to establish parallels between
the cognitive environment simulated in CES and NPP situations which he or
she wishes to investigate. The analyst uses PAFs to represent the resources
available (or thought to be available) in a particular NPP situation within
the CES modeling environment. The CES user then stimulates CES with
data on plant behavior in different incidents, checks how CES solved those
problems (intention failures, omission and commission errors that follow from
intention failures, error recovery), re-adjusts PAFs to explore variants, and
reeruns CES to identify the conditions under which intention errors occur,
the consequences of intention errors, and the sources of intention errors.

Traditional performance shaping factors (e.g., experience level, stress,
organizational climate) are examples of variables that are thought to affect
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human behavior. CES Performance Adjustment Factors (PAFs) are variables
that affect CES behavior. To simulate a NPP situation in CES, the factors
operative in that situation which are thought to affect human behavior are
mapped into CES PAFs in a two step inference process. First, one must
specify what is the impact of the factor of interest (or a change in that
factor) on cognitive activities. This can be derived from theoretical concepts
(e.g., the effect of team structure on problem-solving processes), empirical
data, or analysis. In any case, it is the effects on the processes involved in
activating and utilizing knowledge which must be specified. Second, the

specified effects on cognitive processing are translated into adjustments in
PAFs.

For some kinds of performance shaping factors this two stage inference
process is a straightforward, tractable analytical task. For example, with
respect to the effect of procedures on performance, the specific guidance on
corrective responses encoded into the procedures (e.g., specification of
corrective responses to take) would be extracted and entered into the CES
knowledge base. With respect to issues of display quality, the relative
salience of different plant data on a control board or in a computer dxspla.y
system would be determined by the CES user ana.lytlca.lly and used in the
set up of the virtual display board.

Other kinds of factors can be specified based upon straightforward empirical
mvestxgatxon For example with respect to effects of training or experience,
one can use simple ‘“quick and dirty” techniques or more sophisticated
techniques to find out what particular operators actually do know about how
some plant process works (e g., natural circulation), about the basis for some
response strategy, or about what possible hypotheses are brought to mmd by

some pla.nt behavior(s). '

Finally, some factors require a specification of how they are assumed to affect
problem-solving processes in order to be mapped into CES PAFs. For
example, 'how.  does stress affect problem-solving (e.g., high stress might
narrow the field of attention) or how do different organizational structures
affect problem-solving? The answer to this question specifies what PAF
settings should be used to investigate the consequences of this factor on
intention formation errors in different incidents and over various other PAF
settings.

‘Note that the answer to this question requires taking a theoretical position
on how the factor in question impacts on the processes involved in problem
solving. The theoretical relation asserted can be derived from behavioral
science research (e.g., the impact of team structure on problem solving) or
analyst judgment. This is an example of how CES is a framework model
that utilizes more specxﬁc models in some areas.
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The mapping between the NPP and CES PAFs is many-to-many. This
means that there are many circumstances which might affect, for example,
the degree of fixation proneness (various external factors such as displays,
decision aids, team structure and various internal factors). Similarly, there
are multiple Performance Adjustment Factors which could be manipulated
individually or jointly to affect, for example, the degree to which CES is
prone to fixation. Different versions of CES can be set up via the PAFs to
represent different kinds of human problem-solving behavior, for example, a
fixation prone version of CES can represent a ‘“‘garden path” problem solver.
Table 2-1 contains other example pre-settings of CES processing PAFs that
might capture known emergent patterns of human cognitive processing.

Adjusting CES PAFs to represent different NPP situations requires
knowledge about what factors affect human cognitive activities, and it
requires knowledge about how CES represents knowledge and about how CES
processing mechanisms function.

2.5.2 Cogh.itive Processing and Erroneous Intentions

An analyst uses CES PAFs to change the knowledge and processing
characteristics within CES or the virtual display of data to CES. This allows
the CES user to explore under what conditions intention failures occur and
to see the consequences of intention failures for further actions on the plant
in different incidents or variations on a root incident. Errors - failures to
form the appropriate intentions for the -actual situation — depend on how
CES activates and uses knowledge, given the demands of the incident under
investigation. -

Finding intention failures with CES is based on the concept that the
difficulty of any given problem-solving situation is a function of

1. The problem-solving demands.

e Processing requirements imposed by the characteristics of the
incident (e.g., a multiple fault' incident where one masks the
evidence for another is inherently more difficult to isolate
that a single fault incident with a clear signature).

e The representation or window on the world by which the
problem-solver views and interacts with the incident (e.g, the
displays available on the control board; integrated
information available on computer-based displays). '
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Table 2-1: Examples of modeling different types of problem solvers
via Performance Adjustment Factors.

This table contains examples of some emergent patterns of human
cognitive processing which are relevant to NPP emergency operations and
the settings of CES PAFs which might produce these patterns in CES
behavior.

e 1. Vagabond: -
A vagabond problem solver (after Dorner, 1983) abandons the
current issue for each new one that arises. The tendency is to
jump from issue to issue without satisfactory resolution of any. It
is characterized by an incoherent view of the situation and
incoherent responses to incidents. This pattern could emerge due
to the following, especially when there is some time pressure:

o failure to synthesize or converge multiple views of the
situation,

o many potential views of the set of significant findings are
activated but remain independent,

o a response orientation emphasized over explanation building
so that more coherent explanations never emerge, ‘

o too interrupt-driven so that every new finding seizes priority.

¢ 2. Hamlet:
This type of problem solver looks ‘at each situation from multiple
viewpoints and considers many possible explanations of observed
findings. However, the result is a tendency to examine possibilities
too long before acting because

o its criterion for judging what is an acceptable explanation is
missing or is too general (too many possibilities satisfy it)

o explanation building is greatly emphasized over response
management activities. :
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Table 2-1, continued

e 3. Garden Path:
A garden path or fixation prone problem solver shows excessive
persistence on a single issue or activity — easily fixated, fails to
consider revision in face of disprepant evidence. PAFs relevant to
produce this type of behavior include:

o pursues (or is biased to pursue) only a single point of view
to explain findings;

o not interrupt driven enough; in the extreme case, No new
issue ' interrupts ongoing activity until scheduled activity is
completed;

o insensitive to violations of expectation, after an initial
explanation is accepted, because too narrow a field of view
or because response management overrides explanation
building.

o 4. Inspector Plodder: v

This type of problem. solver slowly and deliberately builds up and
then narrows in on possibilities. It exhibits very thorough
consideration of evidence and possible explanations via explicit
chains of reasoning (minimal reasoning shortcuts). The result is
good, thorough, but slow problem-solving. Performance adjustment
factors related to this pattern are a narrow field of attention; low
interruptability; sequential, deep exploration of possible
explanations, good criteria for scheduling competing activities, and
‘good criteria for what is a good explanation.

e 5. Expert Focuser:

This problem solver is adept at seeing and focusing in on the
critical data for the current context so that it is always working
on the most relevant part of the situation. The whole situation
tends to fall quickly into place, and revisions are easily made
when appropriate. Performance adjustment factors related to this
pattern are a wide field of attention; high level of interruptability;
good criteria for scheduling competing activities; good criteria for
what is a good explanation.
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2. The available problem-solving resources.

e The base of knowledge about the NPP that is available to
use in problem-solving. This includes knowledge about the
structure and function of the NPP and knowledge about
NPP disturbances/faults, and how to correct these.

o The processing mechanisms and their characteristics (e.g.,
size of the field of attention, how fixation prone, degree of
communication among different processing mechanisms).

Errors emerge when there is a mismatch between demands and resources.
For example, a narrow field of attention (low resources) cannot lead to
intention failures if the incident in question produces no situations where a

wide field of view is needed for timely detection of important plant behaviors
(low demands).

Intention formation errors are the end result of a processing sequence which
starts and develops due to failures to call to mind relevant knowledge - a
plant behavior is missed (which could happen due to several factors, such as,
because of low observability of the data or because the focus of attention is
elsewhere), the knowledge it would have evoked is not brought to mind and
does not lead to an accurate situation assessment (e.g., plant behavior x is
interpreted as expected instead of unexpected), the erroneous situation
assessment affects what explanations are pursued or not pursued and what
responses are evoked or not evoked. Varying CES processing resources
through PAFs increases or decreases the program’s vulnerability to getting
offtrack or, once offtrack, staying offtrack.

Failures to call to mind relevant knowledge are the seeds from which
intention errors emerge. But a failure to call to mind:knowledge at one point
in an evolving incident does not mean that erroneous intentions and actions
are inevitable. Often, they represent different paths by which someone sees,
thinks through, and acts in the same situation. Furthermore, as an incident
evolves there . are opportunities to update and revise one’s situation
assessment and get back on track. o :

An analyst observes CES attempt to recover from an incident just as he
might watch people attempt to recover from an incident on a training
-simulator or on a real plant. CES itself does not analyze its own behavior; a
user of CES can watch how it behaves in some situation and can judge
when it forms erroneous intentions and therefore would take erroneous
actions (although note that most of the difficulties that arise in analyzing
human behavior during simulated or real incidents, such as ambiguities in
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defining what are errors, will arise in analyzing how CES behaved in some
incident as well). The CES user can adjust problem-solving demands and the
available problem-solving resources and rerun CES to identify points where
mismatches occur — i.e., where errors emerge.

2.6 Expressing NPP Situations in CES

This section contains illustrative examples of how PAFs can be adjusted to
express different NPP operational situations within the CES modeling
framework.

In some plants the prescribed operational philosophy is that operators should
only monitor and verify proper automatic system responses for the first five
minutes following an automatic reactor shutdown (i.e., no operator diagnosis
and action). One expressed intent for this rule is help avoid erroneous initial
diagnoses. The evaluation question is: what is the impact of this operational
philosophy?

This philosophy can be translated into the CES simulation world in terms of
the relative priority between monitoring, explanation building, and response
management activities. In particular, monitoring activities dominate any
explanation building, and response management activities go on only with
respect to verifying expected automatic system responses. Note however that
observed findings cannot be prevented from calling to mind knowledge about
the situation or possible explanations. In CES terms this means data-driven
activation of explanations occurs although knowledge-driven pursuit of these
possibilities is temporarily postponed. This captures a finding from cognitive
psychology that people have difficulty in trymg to suppress the knowledge
evoked by some signal.

The .consequenceé of these processing modifications then can be investigated
by actually running CES in different incidents. For example, does this
philosophy result in a reduction in erroneous diagnoses or not?

2.6.1 Mu.ltiple People, Multiple Facility Problem-Solving

One question that frequently arises is how can a cognitive model address'
multi-person problem-solving situations? Is there a separate version of the
program to represent each person in the situation? The answer to the latter
question is no. Multiple people are represented in CES in another fashion.

In CES, as a symbolic processing based model, different kinds of processing
are carried out in ‘“in paralle]” so that intermediate results established by
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one processing activity can be utilized by others. This can be taken
advantage of to partition CES processing activities to represent the
interaction of multiple problem solvers in different roles or with different
NPP areas of responsibility.

Different roles played by different people can be represented. by mapping
each role into the kinds of processing activities within CES that are
associated with it, i.e., at a high level, the monitoring, explanation building,
and response management activities. When people play different roles, the
capacity of the corresponding processing activities is higher and bottlenecks
are reduced. However, just because there are multiple people present does
not mean they will amplify processing resources. For example, in the
technical support center during the Ginna incident (Woods, 1982) the entire
staff of this facility was engaged, for the most part, in deciding one choice
under uncertainty and risk (for about 90 minutes). The organizational
processes that went on in this incident resulted in most problem solving
resources being focused on one response management choice to the exclusion
of other problem solving activities (failures to observe other abnormal
situations that would have benefited from corrective action; cf., Woods,
1982). :

One way that multiple people are organized is by responsibility for different
areas of the NPP. For example, the usual prescribed organization of the
control room is one supervisor and two operators at the control board, one
responsible for the reactor systems (the reactor or RO operator) and the
other responsible for the balance of plant systems (the balance of plant or
BOP operator). Different areas of responsibility can be represented in CES
by partitioning plant data into groups corresponding to the different areas of
responsibility. Interesting plant behaviors within the area of respomnsibility
would trigger further - CES processing (data-driven processing), while
interesting plant behaviors.:outside of the area of responsibility could be
noticed and processed only if some processing activity specifically requested
to know the state of that piece of plant data (knowledge-driven processing).
This manipulation is one PAF. This type of partitioning means that explicit
communication between parts of CES is needed that corresponds to verbal
requests for information between people with different areas of monitoring
responsibility. Similarly, explanation building activities needs to be
partitioned into groups so that separate explanations are pursued, one
starting from findings about secondary side systems and the other from
findings about primary side systems. The partitioned explanation building
activities then need to explicitly communicate their own results if they are to
cooperate in accounting for unexpected findings. The communication between
these kinds of partitions within CES processing mechanisms can be varied to
represent crews with poor inter-communication or methods to increase
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communication, such as operator training (drill on calling out what they see
to the other operators) or display systems designed to provide a common
context among multiple operators.

For example, in a conventional control board configuration the reactor
operator position might not have direct visual access to data on the
secondary system (e.g., steam generator level). If this were the case, then
this operator would only know about the status of steam generator level if
he/she explicitly requested this information. For example, in one simulated
accident (Woods et al., 1982) a complicating factor was added to the
incident that removed the leading indicator of the disturbances (a loss of
offsite power preceded a steam generator tube rupture so that secondary
radiation indication was disabled). The reactor operator was trying to find
an explanation for a persistent decrease in pressurizer level and pressure.
After puzzling over this for several minutes, he asked the BOP operator, “do
you see anything funny about the steam generators?’’ It was only after this
prompt that the BOP operator realized and reported that there was clear
evidence for an abnormal steam generator — a finding that resulted in the
entire picture becoming clear for the team.

2.6.2 Procedures

Another major characteristic of emergency operations is that operators have
guidance available to them in the form of procedures. The role of the
guidance available in procedures in intention formation is handled by
decomposing procedures into the kinds of knowledge about the plant,
accidents, and corrective responses that they provide to operational personnel.
Procedures in the nuclear industry provide guidance about what situations
should be monitored for (e.g., symptoms, disturbances to safety functions,
accident classes), what evidence signals when a system or function is
disturbed, cues about when -to -monitor different parts of the plant or
different issues, and, of course, how to respond to different situations should
they arise. :

For the most part, the different types of knowledge carried in procedures is
represented in CES in the links in the knowledge base. The grain of response
varies both within a single set of procedures and across different styles of
procedures (event based versus symptom or function based). This is captured
in the structure of sets of situation-response links that are expressed in the
knowledge base. Note that there is no global performance shaping factor for
procedures requiring subjective judgments of what are ‘“‘good” or ‘“bad”
procedures. Instead, the CES user decomposes procedures into what guidance
they provide (a clear cut analytical task) and then runs CES for objective
results on how this guidance supports operational personnel during accident
recovery. ' '
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3. CES Cognitive Competencies

3.1 Introduction

This chapter describes the cognitive competencies which musf be exhibited
for a cognitive environment simulation to capture how intentions to act are
formed, both correctly and incorrectly, in NPP control rooms during
emergencies. It is a description on paper of the processing mechanisms
needed for CES to function as a modeling environment.

One can think of the competencies as the fundamental properties of a
problem-solving system within a particular kind of world, analogous to the
fundamental properties of thermodynamic systems. And one can think of the
processing mechanisms as a particular design for a particular purpose
(finding intention failures) analogous to a kind of reactor as a particular
design for particular purpose or tradeoffs. The commodities dealt with differ
— energy and water versus knowledge and information. The properties of
these are different; therefore, the principles and techniques applied are
different. But just as reactor behavior is modeled by computer simulations of
thermodynamic processes embodied in plant equipment, so human behavior
can be modeled by computer simulations of problem-solving mechanisms. The -
competencies needed to create such a simulation for NPP emergency
operations include control of attention in a limited resource and high mental
workload environment, monitoring a changing world, situation assessment
including forming expectations, qualitative reasoning, building explanations to
account for unexpected findings, and plan selection/monitoring/adaptation to

correct detected abnormalities. '

This chapter describes CES as a conceptual model, but a conceptual model
designed to be formalized through implementation as a symbolic processing
(or AI) computer program. The conceptual model (CES) describes the target
behaviors which should be exhibited by the computational machinery. The
Eagol software system provides the base of computational machinery for
formalizing the target capabilities of CES.

This chapter does not address the computational mechanisms themselves
which will implement CES concepts. This is addressed in Chapter 4. This
chapter also does not contain descriptions of how CES could be used in the
context of HRA or PRA. This is the subject of Volume 3.

35



3.2 Problem-Solving with Limited Resources and High Workload

Given that people have finite resources and that the NPP is dynamic and
consists of many highly coupled parts, a basic feature of the cognitive
environment is the need for control of attention. This means that a problem
solver cannot simultaneously attend to all data or evidence about the state
of the world and he/she/it cannot simultaneously think about all issues,
possible explanations or possible responses. Because of this limited capacity,
attentional processes about how to select, spread and change attentional focus
in pace with the changing state of the world are a critical part of CES. The
basic question is what factors affect, given some observed event in the world,
what is called to mind? An important source of performance breakdowns is
failures to call to mind relevant knowledge (although failures to call to mind
relevant knowledge do not always lead to observable erroneous actions).

What CES “calls to mind” depends on —~

e does it look and does it see the event in the world — é_baervation
Jaslures?

e does it have the relevant knowledge available to call to mind -
missing or inaccurate knowledge?

« does available relevant knowledge actually get called to mind given
other competing activities — snert knowlcdgc (e g Bransford et al
1986; Perkins & Martin, 1986)?

CES contains processing mechanisms which monitor the changing stream of
plant data, observe events or occurrences, and ‘‘call to mind” knowledge
relevant to what is observed. The mechanisms that control what knowledge
and how much knowledge is activated at a given point in' an unfolding
incident include: (a) an interactive cycle between knowledge-driven and data-
driven processing, (b) resource/workload interactions, (c) layers of criteria
which define what are ‘‘interesting” or ‘‘important” findings.

Attentional focus is partly determined by the incoming data stream where
salient data interrupt ongoing processing and shifts the attentional focus to
the issues called to mind by the observed data (interrupt- or data-driven
processing). Attentional focus is partly determined by ongoing processing such
as looking for the information needed to explain an unexpected finding or
the information needed to generate responses to correct perceived
abnormalities (knowledge-driven processing). An example of knowledge-driven
processing is when one decides to look at data on the letdown system,
pressurizer relief valves, and containment status because one is trying to find
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an explanation for an unexpected decrease in pressurizer level. An example of
data-driven processing is when an automatic safety injection signal occurs, an
operator interrupts a search to determine what caused an automatic reactor
shutdown and goes to verify proper automatic systems responses to the
safety injection signal.

Another critical factor in behavior is resource/workload interactions.
Processing activities have associated costs. Carrying out one type of
processing precludes the possibility of doing other processing when there is
competition for limited resources. Thus, a need to choose which processing
activity should be carried out next can arise - acquire more data, pursue
possible explanations, generate/track responses to detected abnormalities?

A major constraint on whether an individual processing act is carried out
and how well it is done is the degree to which mental resources are already
occupied. This is a function of how much processing resources are available
and how many processing activities are competing for those resources. A
processing activity may need to be suspended or dropped when new findings
demand unavailable resources. Alternatively, the implications of a new finding
may not pursued. Resource competition implies there is some agenda of
processing items that could be chosen to carry out next and a method for
selecting among these competing items. The degree to which resource
competition (new findings exceed the available resources) occurs depends on a
variety of factors — the incident partly determines the rate of possibly
interrupting stimuli, the amount of resources available can vary, the time it
takes to carry out selected processing is important because new events may
occur before the ongoing processing has been completed (relative pacing
between CES processing durations and the time evolution of the incident

itself).

A limited problem solver should focus first on ‘‘interesting’’ findings. The
question, then, is what is an interesting finding. There are several definitions
of what is interesting that control processing.

First, of all the things that could be observed about plant state, what
occurrences are worth noting? For continuous variables, departures from
target regions, limit crossings, direction of movement (up, down, stable), rate
of change (e.g., slow, fast, stable), or more complex behavior patterns (such
as decrease to a low equilibrium, increase to a maximum value and then
decrease) are all interesting plant behavior. For processes, systems or
components, interesting state changes include active-inactive, should/should
not be active, available-unavailable. If an ‘“interesting” occurrence is
observed, then there is a need to monitor and track the item in question.
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This level of criteria leaves a potentially large pool of “interesting’ findings
that could be pursued. One filter is a competition for a limited attentional
resource — is a potential findings salient? has its status been requested? If a
potential finding is observed — is it abnormal and is it expected? If it is
abnormal, then there is a need to pursue how to correct it or how to cope
with it? If it is unexpected, then there is a need to pursue what could
account for or explain it?

Another layer of filtering may be needed because there can be several
unexpected findings to explain and several abnormalities to correct. Strategic
choices may need to be made to decide whether to respond to current
perceived abnormalities or to build deeper explanations for findings and
therefore to select more effective responses, i.e., the relative priority between
monitoring, explanation building, and response management activities. Goal

or consequence information may be needed to chose which abnormality to
deal with first.

Depth of processing is controlled in part by the layers of answers to the
what is interesting question. If nothing interesting is perceived in some area
of the plant, then no processing effort is devoted to that area. As interesting
things begin to happen or to be observable, then more processing effort
should be allocated to that area, if it is available. When there are numerous
processing activities which could be pursued, then items need to be scheduled
to be carried out. For example, building an explanation for unexpected
findings may have to wait until responses to cope with perceived
abnormalities have been selected and correct execution verified.

We will now examine each of the basic competencies. It is important to note
that in specifying the desired cognitive competencies we are also specifying
the target performance adjustment factors for CES. These factors will
determine when CES exhibits competent performance and when it is prone to
cognitive failures. The cogmtxve competencies specified for CES are:

e Control of Attention,

o data-driven contrql of attention
o competition for limited resources

o evidence processing,
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Situation Assessment

o expectations
o qualitative reasoning
e Explanation Building

e Response Management

Knowledge Representation

8.3 Monitoring and the Control of Attention

A basic operator activity is monitoring plant state, that is, checking available
data in order to detect interesting changes that may have taken place. The
key here is the mechanisms that determine what data or plant issue are
checked when. The relevant questions are what governs where CES looks
next? Given it looks, what does it see? Given what is observed, what
knowledge is evoked?

The limited problem solver assumption means that CES can only process a
limited amount of the incoming plant data ‘“‘at one time.” The amount of
input data and, more importantly, which input signals it processes can be
thought of as a field of attention. The size of the field of attention to
changes in plant data will likely be smaller than the elements competing for
attention. Which evidence will be processed is determined by the cycle or
interaction between knowledge-driven and data-driven processing, how much
processing resources are available and how much demand there is for those
resources, criteria which define what are “interesting” or “important”
findings. (a composite function of factors associated with a piece of data such
as observability, interruptability, time value of information/time since last
observation). '

3.3.1 Data-driven Control of Attention

Data can be monitored when knowledge-driven processing is interested in the
state of some part of the plant. One major example of this is explanation
building activities where plant data are checked in order to account for
unexpected findings (see Sections 3.5 and 4.2.2 on explanation building). The
other major example of knowledge-driven search occurs in monitoring to
check whether desired responses (either automatic or manual) have occurred.
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However, salient data can interrupt ongoing processing and capture the focus
of attention. Interruptability is a function of two factors: how strongly a
datum shouts for attention or perceptual salience and how receptive one is to
incoming data in general or to incoming data on a particular issue or
receptivity.

Perceptual salience is a function of how much the physical signal commands
attention (signal strength) given the level of background activity (noise). An
example of signal strength is that associating an auditory signal or a blinking
visual signal with a state change or limit crossing increases the salience of
that change. An example of the level of background activity is that a
particular auditory signal is more salient against a quiet background than
against a background of many other similar auditory signals.

Another reason to check the state of some signal is periodic sampling of
available data in order to detect interesting changes that may have taken
place. This can be modeled through time dependent functions on salience on
plant signals that operators periodically sample.

Receptivity is a function of how “important” is the piece of data in the
current problem-solving context. If one is trying to account for an
unexpected level decrease, then one is more sensitive to incoming data that
help refine what accounts for the unexpected behavior. Thus, issues that
come to mind affect the level of snterest in a piece of data. It also depends
on the current workload. Interruptability depends on what other processing
activities are competing for limited resources.

One can think of the interaction of these factors as a threshold mechanism.
If the salience of a signal exceeds the threshold, then the signal is observed
and placed on an agenda for processing. However, receptivity affects the

threshold so that interest in an area means that lower salience signals will
exceed threshold.

There are a variety of possible interruption scenarios: a signal may fail to
interrupt ongoing processing, the new signal may be processed to check for
“interestingness” and control returned to the previous line of processing, or
the previous line of processing may be dropped completely and a new line,
prompted by the new signal, taken up. Notice that if one is too sensitive to
incoming signals (too interruptable), then processing of one issue may not be
finished before jumping to another and another. This models one source of
errors — vagabonding (cf., Dorner, 1983). If it is too difficult to interrupt
ongoing processing, then one may continue to work on the current issue
regardless of important new signals which should shift attention. This setting
models another source of errors — fixation. There have been several cases in
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NPPs and other complex worlds where fixation on one signal has retarded
observation of other important aspects of system state and contributed to an
accident (the most notable case of this is the Everglades L-1011 plane crash;
National Transportation Safety Board, 1973).

It is important to be able to control whether a particular plant behavior can
trigger or interrupt processing (i.e., is data-driven processing of a signal
possible). If changes in a signal cannot or do not trigger processing, the
plant behavior may still be observed, but only for a knowledge-driven reason
(i.e., to check on desired corrective responses or to narrow possible
explanations of an unexpected finding).

The inverse of the question, “when to look,” is the question, ‘“when to stop
looking.”” There are a variety of criteria for deciding when monitoring of a
data channel stops, for example, a time out or time decay function unless or
until there is a stimulus to continue monitoring the datum in question.

3.3.2 Competition for Limited Resources

A competition for limited resources implies an agenda of processing items
which could be chosen to carry out next and a method for selecting which
to do next. The need to choose which activity to suspend, drop, or not pick
up occurs when new findings exceed the available resources. For example,
when monitoring demands exceed capacity, which items will be dropped from
a monitoring agenda — the oldest item, the least important, at random?

The degree to which competition occurs depends on a variety of factors -
the incident partly determines the rate of possibly interrupting stimuli, the
amount of resources available can vary, the time it takes to carry out
selected processing is important because new events may occur before the
ongoing processing has been completed (the relative pacing between CES
processing duration and the time evolution of the incident itself).

As a result, the concept of effort can affect processing. For example, one
psychologically plausible rule is try to minimize resource expenditures unless
the situation demands it. This rule would lead one to look at easy to acquire
data first, or only to process a minimal set of evidence when checking the
state of some part of the plant — i.e.,, to use an evidence processing
shortcut. Only if there is some reason to suspect that the shortcut is
insufficient, e.g., an unexpected result occurs, is more thorough processing
invoked (assuming the knowledge needed to support more thorough
processing is in the knowledge base). The concept of effort is one reason to
be able to vary the depth of processing in CES. '

41



The level of effort may also vary during incidents because resources are not
fixed but are elastic — they stretch as a function of the demands placed on
the system. This means that the level of resources would not be fixed;
instead, there would be an elastic maximum capacity to monitor data which
varied with workload. When the processing demands are low because little
is occurring in the world to be processed, thorough processing (depth of
processing) may not occur because effort may be low (the resources available
are low). As more interesting findings are noted (abnormalities, unexpected
plant behavior) more thorough processing should occur (more resources
should be brought to bear on those particular issues and general level of
resources available increases). However, the thorough processing still may not
occur because demands may still outstrip resources. When a resource limit is
exceeded, there are two ways to cope: one could attempt each activity but
do each less well or one could carry out fewer activities (cf., research on
resource limited cognitive processing, e.g., Lane, 1982).

Time pressure is another potent factor that determines the level of resource
competition. In part time pressure is a demand characteristic of the incident
in question, i.e., the time available to perform tasks. Time pressure is also
a of function processing resources, i.e., how efficiently or quickly processing is
carried out. This can be modeled by varying the pacing (the relative timing)
between CES processing cycles and incident time progression (how much
information processing goes on for each step of time. in the incident
evolution, e.g., number of processing cycles) Increasing the rate at which the
incident evolves, relative to the processing cycles required by CES to
complete analysis, introduces time pressure and constrains depth of
processing.

The behavior of CES changes as the level of resource competition changes.
This depends on the nature of the incident itself, the level of resources
available, and how resources are allocated to different types of processing
activities. Competition "can also arise between the three basic processing
types: monitoring, explanation building, and response management. Specific
events during an incident could trigger an emphasis on one processing type
over the others. The most notable example of this is a reactor trip where
operators are drilled to go through a monitoring phase with little effort spent
on explanation building. Different operators (e.g., at different skill levels)
could emphasize one processing type over others. For example, a skilled
control room supervisor may place a high emphasis on obtaining feedback
‘about whether desired corrective responses were carried out correctly.
Relative emphasis across these three activities may also capture different
kinds of emergency response strategies A general bias towards response
management to the exclusion of explanation building represents weight on a
disturbance management approach to incident recovery (e.g., function or
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symptom based procedures) - prevent propagation of disturbances; the
reverse bias puts weight on spending resources to diagnose and to repair
broken equipment or systems (e.g., the latter emphasis was observed in the
Davis-Besse incident; NUREG-1154; Woods & Roth, 1986). The relative
emphasis on these three types of activity could also shift dynamically during
an incident. For example, early in an incident the emphasis’ might be on
monitoring the state of the plant. Later in the incident the emphasis would
then shift to explanation building. Following acceptance of a good
explanation the emphasis would then shift to response management (but, for
an ideal dynamic problem solver, note how the occurrence of a new fault
should re-shift the emphasis).

3.3.3 Evidence Processing

Knowledge about data-state mappings stored in the knowledge base, i.e., how
the available data function as evidence to answer questions about plant state
is another factor in CES monitoring activities.

There is a many-to-many mapping between available data and the states of
parts of the NPP. There are many pieces of evidence which testify to the
state of some part of the plant (many-to-one). One piece of data may testify
to the state of multiple parts of the plant (one-to-many). For example,
what is the state of the pressurizer spray system for controlling high primary
system pressure? The evidence available to determine an answer to this
question includes demanded valve position, actual valve position, automatic
system setpoints on high primary system pressure, primary system pressure,
the status of reactor coolant pumps, whether there is a steam space in the
pressurizer. In different situations created by various process faults, sensor
failures and automatic system failures, different parts of this evidence set
may be critical in determining the actual situation.

An issue that arises can trigger the need to evaluate evidence on the state of
that part of the plant — knowledge-driven processing. For example, if one
suspects that there might be a break in a pipe, then he, she or it.awould
check to see if there is any evidence which points to the presence of
abnormal amounts of water or energy in the container around the pipe
(e.g.,if this is the containment, the relevant set of evidence includes
containment sump level, high humidity, high temperature, high radiation).

When a particular piece of data about plant conditions (which can be seen
by an operator in the hypothesized control room of interest) is checked, what
could be called to mind depends on what that datum means about the state
of some functional or physical part of the plant. Take for example, an
auditory alarm sounds which indicates that a valve has closed. Most simply,
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this message signals a component status. If this piece of data is combined
with other knowledge about the valve or the current context, the change in
status may be expected or it may be abnormal. If it is abnormal and
depending on other knowledge, it could signal that a dormant process is
unavailable if needed (flow is prevented) or that an active process is
disturbed (there is no flow). This is an example of data-driven processing
where an observed signal triggers the activation of other knowledge.

There is always uncertainty in the conclusions that could be drawn from
observed data — the sensor system could have failed, the display can be
misread, only portions of the relevant set of evidence may be checked, a
single fault or multiple faults may have produced the pattern of evidence.
Uncertainty of a state assessment is related to attributes of recency,
completeness, consistency, strength.

Because the NPP is dynamic, the value of evidence obtained from a plant
parameter reading as an accurate indicator of plant state decays as a
function of time. Recency refers to how up-to-date is the data (or the state
computed from it). The rate at which old information decays or loses its
value (the data half life or the time value of information) can be expressed
as a function of the time since the data were last gathered and can vary for
.different data. There are a number of mechanisms for computing the
relationship between information worth and the time since last observation
which basically reflect the extent to which the last observation is a good
predictor of current state (cf., Moray, 1986).

Completeness refers to whether the state (a) was assumed based on inferences

or expectations, (b) was computed from a single datum, or (¢) was computed
from multiple data (Figure 3-1).

The question of consistency arises if multiple indications are used to
determine a state. Multiple pieces of evidence can reinforce the same result
(consistent evidence) or they can indicate different answers (inconsistent
evidence). If the evidence is inconsistent, the difference may be resolved and
a single answer passed on (with the appropriate basis indicated), or the
difference may not be resolved in which case the implications of all possible
answers may need to be examined.

Strength of relationship refers to how strongly a particular piece of evidence
testifies to the state of an entity. A simple example is that indication of the
demanded valve position is weaker evidence of valve position than an
" indication of actual valve position. Other examples are the reliability of the
data channel (e.g., sensor failure as an explanation is more plausible if there
is only a single as opposed to redundant sensor channels) and its precision
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Situation Assessment

Evidence
Set 1

Xy
) itxqy >y, then
] entity 1 = State / Xy >y i%?;‘igt?«s Entity 1: State A,
X o it x5 <z then complete
. Xo < z indicates
entity 1 = State A 2 State A
ifxy <2 then
X 3 entity 1 = State B -
| Set 2 _.
ifxg =w, then x| <z . B
entity 2 = State B indicates State B/ Entity 2: State B,
X 4 Xa =V ~ incomplete, inconsistent
indicataes State A

X4 not checked

Figure 3-1: Evidence Processing. Given interest in an entity, CES must be
able to examine the evidence set and corresponding data to compute the
state of that entity and, given a new datum, must be able.to establish what
that value signifies in terms of the entities that it is evidence for.
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(e.g., the error bounds on many measurements varies depending on
containment conditions). In the Oyster Creek incident analyzed in Pew et al.
(1981) operator difficulties were due, in part, to a lack of understanding of
the different strength of evidence values of different indicators of the state of
a critical plant function.

3.4 Situation Assessment

Situation assessment refers to the perceived state of the NPP at a point in
the evolution of an incident. The situation assessment at some point in an
incident in CES is the current results of ongoing processing activities
including what plant behaviors have been observed, which systems or
processes are perceived to be active, which expectations have been confirmed,
what observations are considered unexpected, what observations are seen to
be abnormal, what explanations have been established. It also includes
knowledge about the current state of the problem-solving process, such as
what items are currently being monitored and what explanations are under
consideration. Note that these results are distributed over the individual
processing activities. This is part of the organizational view of the mind.

Knowledge about intermediate results and ongoing activities can be posted
and made available to different processing mechanisms. For example, when
an explanation is established for an unexpected finding, knowledge about
automatic or manual responses appropriate to that situation is evoked and
can play a role in other processing activities, e.g, monitoring to check
whether the response has been executed correctly. Thus, situation assessment
is a virtual repository of information on the current, perceived state of the
incident. :

However, communication of processing results and ongoing activities among
parts of CES may be restricted. This is especially important- because it
allows the simulation to capture situations where multiple people or facilities
are involved in problem-solving (see Sectlon 2.6). -y

3.4.1 Context Sensitive Reasoning, Abnormal Plant Behavior, and
Unexpected Plant Behavior

An operator notices that steam generator level is a particular value. Is the
state indicated by this value “abnormal?” One answer to this question is
- that the state is abnormal if the actual value has departed from some target
value or region (e.g., “steam generator narrow range level should be at x%
post reactor trip”) or has crossed into an undesirable region (e.g., ‘“steam
generator narrow range level should not be less than y% otherwise heat
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removal through the steam generators is impaired”). In principle, if level has
departed from its target region or crossed into an undesirable region,
operational personnel should drive level back towards target (e.g., increase
feedwater flow) or supervise automatic system responses that do this if there
are any (response management activities). If level has departed from its
target region or crossed into an undesirable region and operational personnel
know of no active process which would explain this observation, then the
staff should pursue possible explanations that would account for this
observation (explanation building activities).

However, the interpretation of the level value, and therefore what is an
appropriate response to it, becomes more complicated depending on the
particular context. To understand the kind of complications that arise and
their consequences for cognitive processing in the NPP world, let us consider
several cases where the steam generator level value is observed to be less
than y%.

In Case 1, the reactor has just tripped off. Steam generator level is observed
to be less than y%. However, the operational personnel know that steam
generator level is always low for some period of time following a reactor trip
because of the thermodynamic consequences of rapidly stopping the reactor.
The operators do not pay further attention to this observation or to alarms
that. signal level is low (and given the assumption of limited problem-solving
resources, they should not expend resources on such an observation). In other
words, the operators “expect’” level to be low immediately following a reactor
trip, and the absence of this behavior -would be ‘‘surprising”, i.e., interesting
to pursue further.

In Case 2, the operator thinks that the steam generator is broken (e.g., a
break in the feedline to this steam generator). Given this situation
assessment, the observation of level less than y% is a consequence that
follows from the perceived fault. Again, the operators “expect” level to be
low given a feedline break, and corrective responses evoked by level less than
' y% do not apply to this situation. What would be surprising (i.e.,
interesting) is the absence of this behavior, given the situation assessment of
a feedline break. Ideally, the absence of the expected behavior implies that
either the situation assessment is erroneous (there is not a feedline break) or
there is an additional factor influencing steam generator level besides the
feedline break.

These cases illustrate the requirement for a high degree of context sensitive
reasoning, if one hopes to capture the problem-solving environment that is
NPP emergency operations (actually any dynamic reasoning situation with
limited resource problem-solving agents). These cases also point out the
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critical need to distinguish abnormalities or plant disturbances, which are
mismatches between the actual state and the desired state of parts of the
plant, and wunezpected findings or discrepancies, which are mismatches
between perceived state or anticipated state and newly seen evidence (cf.,
Woods, Elm & Easter, 1986; Woods & Hollnagel, 1987). Failure to clearly
distinguish these two concepts has greatly impeded study of fault diagnosis
behavior and retarded the development of fault diagnosis systems and aids.

A critical cognitive competence for CES is to be able to judge whether
observed plant behavior is expected or unexpected. Detection of an
unexpected finding starts explanation building or explanation revision in
order to account for the discrepancy. Thus, unexpected findings are a deeper
definition of what is interesting plant behavior which should attract
processing resources. Lack of sensitivity to discrepancies is one factor that
contributes to fixation prone problem-solving.

Another error form that can arise from computing expectations occurs when
an expected states is substituted for actual observation of the current state
and used as the current state by other processing mechanisms. This can be
efficient or necessary when resources are limited, i.e., strongly expected plant
behaviors are of less interest relative to other items competing for limited
attentional resources. However, it is also a source of observation failures
that. begin to lead processing astray.

In evidence processing activities, strength of expectation can interact with the
strength and completeness dimensions of evidence. Less evidence or weaker
evidence of some state may be sufficient to conclude that state if there is a
strong expectation.

3.4.2 Influences on Pl_ax';t__-thavior, Observable Plant Behavioi', and
Qualitative Reasoning ’

How can expectations be generated? Various states of the NPP (pressure,
energy, temperature, material inventories) are affected by various plant
processes (material balances, energy balances, material flows; cf., e.g.,
Gallagher et al., 1982; Rasmussen, 1986; Woods & Hollnagel, 1987).
Qualitative judgments about the behavior of these entities can be made
based on knowing what processes or influences are currently active and
dominance relations between these processes. There are a set of influences
that could affect a given parameter. If an influence is active, then it will act
to affect the parameter in question. How the parameter actually behaves
depends on the combined effects of the set of active influences and not on
the basis of the effect of a single influence. This is an important point:
concluding that an influence is acting on a part of the NPP does not mean
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that the observable behavior of that part of the plant will be consistent with
the active influence. The distinction between influences acting on a part of
the plant and the observable behavior of that part of the plant is critical in
being able to generate expectations, bulld explanations, and handle multiple
fault situations.

How are qualitative judgments about the behavior parts of the NPP made
from knowledge about active influences? In the simplest case where there is
only a single active influence, inferring expected behavior is straightforward -
if net charging inflow to the primary system is positive and there are no
other influences acting on pressurizer level, then level should be increasing. If
pressurizer level is observed to be decreasing, not increasing, then either net
charging is not positive, the observed behavior is erroneous (failed sensor) or
there is an additional unknown influence or influences acting on level that
dominate the charging effect. Note that the influence relationship is
deterministic; all of the uncertainty is displaced to questions about what is
the set of active influences. When an unexpected plant behavior is noticed,
. deeper processing of this finding is called for — explanation building (e.g., is
there an unknown influence that would account for this behavior?)

Knowing about what influences are acting on a parameter allows only
qualitative reasoning about its resulting behavior: determination of high
information value landmarks in the behavior of continuous parameters (e-g.,
expected direction of change or decreasing to a new equilibrium point) rather
than a complete statement of quantitative continuous functions. Consider the
case where a new influence begins to act on a parameter that is currently
increasing in value. Effective qualitative reasoning would allow one to know
whether or not the new influence is sufficient to cause the parameter to
reach a maximum and begin to decrea.se, whereas quantitative models would
allow one to know the time and maximum value as well

Qualitative reasoning is straightforward when there is only a single active
influence or when there are two or more active influences that have the same
kind of impact. Qualitative reasoning becomes much more difficult when
there are multiple active influences which have different impacts. If one
influence is to increase level and another is to decrease level, what will be
the resulting level behavior (up, down, stable)? Or if two influences act in
one direction but another one’s influence is in the other direction, what will
be the resulting behavior — do two influences always dominate one influence?
The difficulty is due in part to the need for information about ‘“‘degree of
influence.”
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This qualitative reasoning bottleneck can be dealt with in several ways.
First, dominance relations can be directly entered into the knowledge base.
Second, dominance relations can be learned. If the pattern of influences is
ambiguous with respect to expected behavior, then the resulting behavior can
be observed and remembered as the result of this pattern of influences for
- recall when this pattern is observed in the future.

However, knowledge of dominance relations will not be sufficient to
characterize behavior in all possible patterns of influences. But operators
clearly do not run mathematical models in their heads to calculate degree of
influence. How do skilled operators avoid this bottleneck? The answer is that
they do not try to directly estimate degree of ‘influence; they let the evidence
on continuing process behavior tell them dominance.

3.5 Explanation Building, Revision and Fixation

Evidence processing and other processing activities can generate a set of
significant findings (violations of expectations) to be explained or accounted
for. What is a good explanation that accounts for the current pattern of
significant findings? For example, what state accounts for primary system
level decreasing, primary system pressure slowly decreasing, and a very high
charging flow? A loss of coolant break to containment is one possibility that
may come to mind given this pattern.

Because the NPP is dynamic, the need to revise explanations also occurs.
Breakdowns in this process (failures to detect discrepancies, failures to revise
an explanation) are called fixation errors and are a major human error form
in studies of NPP problem-solving (e.g., Woods, 1984). What evidence
(unexpected findings) is sufficient to abandon or reconsider an accepted
explanation? For example, assume the above signs and explanation. Then
new evidence is observed that the primary system level and pressure decrease
stops at a level of 11%, letdown is isolated, and charging flow remains
extremely high. Does this -evidence produce a revision of explanation (to a
charging line break downstream of the flow sensor)?

Another critical capability for CES is reasoning in multiple failure situations.
Given the possibility of multiple failures (actually the probability of multiple
failures in  serious real incidents), there can be multiple
disturbances/discrepancies that have a single source or can be due to
‘multiple sources. Thus, there are different paths to build towards a
satisfactory explanation:

1. assume there is only one explanation for all significant findings --
severely fixation prone,

50



2. start with assumption of only one explanation; if it doesn’t work,
then consider multiple explanations - liable to fixate,

3. start with possibility of separate explanations for each significant
finding (assume multiple explanations first); then try to converge
on fewer explanations — fixation resistant but extra processing is
required (convergence of multiple views) when the explanation is
straightforward.

An operational definition of what constitutes a good explanation (e.g., the
simplest explanation or parsimony) affects the process of explanation building
by determining when a single explanation assumption should be abandoned
or by determining how to orchestrate and converge if possible when
considering multiple views.

Operator actions depend not only on building explanations to account for
patterns of findings, but also on commitment to an explanation. Commitment
refers to when an explanation is communicated to begin selection of
appropriate corrective responses. A problem solver can err by committing too
quickly (examine too little evidence) or too late (examine too much evidence
or wait too long for more evidence to accrue). Varying the criteria governing
commitment can affect how much evidence search will go on during
explanation building.

3.5.1 Multiple Explanations; Alternative Explanations

There is a need for some mechanism to deal with the fact that there can be
multiple explanations for a set of findings and alternative explanations for a
set of findings. One concept is to think of an ezplanation set and a
dimension of explanation where the number of explanations in the set ranges
from a maximum which is equal to the number of findings to be explained
to a minimum of one, or

1 < number of expla.natiéns < number of findings-to-be-explained.

The concept of an explanation set means that more than one explanation
may be needed to account for all of the current set of findings and that
there can be more than one way to map findings into explanations (Figure
3-2). The kind of explanation in the set can vary from a simple restatement
of the perceived abnormality (a disturbance such as high . pressure in a
volume) to a fault category such as a loss of coolant accident (LOCA) or a
response strategy category such as post-LOCA cooldown. More ‘integrated”
explanations account for larger numbers of the findings-to-be-explained. The
contents of the explanation set can vary in both the number and kind of
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explanations as an incident evolves. The criterion for what is a good set of
explanations can be modified to bias explanation building in different
directions, for example, to prefer fewer but more integrated explanations
when considering alternative ways to account for a set of findings.

This concept of an explanation set that is made up of a sliding number and
kind of explanations provides a framework that integrates: both function
based and event based approaches to incident response. When the number of
explanations used to account for findings is towards the maximum, the
interpretation of plant state is function based. When the level of explanations
is towards the minimum, the interpretation of plant state is fault oriented.
The former produces more flexible responses; it can generate useful partial
solutions and responses without waiting for a complete accounting for the
situation; and it is better suited when the level of available data and
knowledge about the plant supports only weak assessments of causes and
response strategies. It is how function or symptomatic procedures tell
operators to think. The latter supports stronger expectations about future
plant states and responses; it is better suited for maximum efficiency or
efficacy of response; and larger response strategies are selected rather than
built up from the selection of elemental responses. However, stronger
explanations lead to more brittle performance if the explanation would be

wrong or incomplete. It is how event oriented procedures tell an operator to
th.mk.

CES must try to build the ‘“‘best” set of explanations to account for the
perceived set of findings. For successful explanation building it must be able
to consider alternative interpretations for a set of findings at one point in
time and over time as new evidence is observed. For erroneous explanation
building to occur, under some conditions it must fail to consider possible
alternative explanations, again, at one point in time or over time as new
evidence is observed.

Building explanations to account for observed findings depends on access to
knowledge about how. plant behavior reflects different underlying plant states
(plant behavior-plant state links in the knowledge base). The possibility of
having explanations in terms of the perceived abnormality or disturbance
itself (e.g., high pressure in a volume) or in terms of a fault or response
strategy category (e.g., a loss of coolant accident) means that symptoms (i.e.,
observable plant behaviors) can be linked directly to fault or response
strategy categories as in most diagnostic models and systems, or indirectly
through the intermediate categories of different types of disturbances. This
structure can support symptomatic diagnostic search behavior or topographic
diagnostic search behavior or a mixture of both (Rasmussen, 1986) depending

on the structure of the plant behavior to plant state links in the knowledge .
base.
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Case 1:

Set of Findings Explanations for Findings
F1 '
F2 . El
F3

Case 2: _

Set of Findings Explanations for Findings

FI — |
> El

F2
F3 - E2

Figure 8-2: More than one explanation may be needed to account for all
of the current set of findings and that there can be more than one way to
map findings into explanations. In this example the same three findings can
be explained either by a single explanation for all three (E1 in Case 1) or
by using one explanation (El) to account for two of the findings and a
second explanation (E2) to account for the third finding. The kind of
explanation included in the explanation set can vary from a simple
restatement of the perceived abnormality (a disturbance such as high
pressure in a volume) to a fault category such as a loss of coolant accident
(LOCA) or a response strategy category such as post-LOCA cooldown. More
“integrated” explanations account for larger numbers of the findings-to-be-
explained. ‘
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The explanation set structure supports the need for changes in explanations
‘that can occur during the evolution of an incident. "For example, when there
are ambiguities because the evidence for the actual underlying fault(s)
emerges slowly over time, diagnostic behavior can follow a progressive
refinement process. The nature of the trouble is initially characterized at a
high level (e.g., there is enough evidence to recognize some form of loss of
water inventory from the primary system), and the situation assessment
becomes more refined as more evidence is gathered or becomes available (the-
loss is due to a steam generator tube rupture but the secondary radiation
alarms were missing for some reason). Woods, Wise & Hanes (1982) contains
decision protocols of operator performance in simulations of these kinds of
incidents that exhibit this progressive refinement diagnostic behavior.

One consequence of attaching explanations to subsets of findings is that the
explanation, as part of the situation assessment, can be linked to knowledge
about plant behavior (state-plant behavior links in the knowledge base). This
kind of knowledge can be used to generate ezpectations about current or
Juture plant behavior. Observing these behaviors (through scheduling of the
requisite monitoring activities and subject to the control of attention
mechanisms) tends to confirm the explanation. Failures to observe these
behaviors, or negative findings, weaken belief in the explanation and indicate
the need to revise the set of explanations - an explanation may be erroneous
or additional explanations may be required which in total account for the
complete pattern plant behavior.

Explanations can also be linked to sets of corrective responses. Different
kinds of explanations may be linked to different grains of pre-planned
corrective responses (see Section 3.6 on response management). For example,
more integrated explanations such as a fault category will generally be linked
to larger, more integrated sets of responses. This introduces the question of
when has sufficient explanation building gone on to accept an explanation
‘and to invoke the corrective responses linked to this explanation. This
involves deciding whether sufficient evidence has been gathered (e.g., Cohen,
1987). Both moving too quickly or taking too long to accept provisional
explanations can lead to intention failures. Notice that an explanation can be
accepted independent of accepting an entire explanation set. This provides a
constraint on further explanation building beca.use a subset of the findings
have now been accounted for.

3.5.2 Temporal Factors in Explanation Building

One .important challenge in building explanations is the role of time. Time
affects explanation building in several ways. First, there may be only weak
evidence for an explanation because more time must elapse for additional
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 evidence to accumulate or because it is the wrong explanation. For example,
a sensor value that is noticed and processed (say pressurizer relief tank --
PRT - temperature off target and increasing) may be evidence for a
disturbance in a plant entity (PRT as a sink for water and energy has
abnormal increasing contents). This generates expectations that there is other
evidence for PRT contents increasing (e.g., PRT pressure .off target and
increasing). If the simulation looks to see if this is the case but sees PRT
pressure normal, then a data inconsistency and discrepancy (violated
expectation) exist. A variety of possibilities exist to explain this: the PRT
might be normal and the temperature evidence due to a failed sensor; the
PRT might be abnormal but either too little time has elapsed for pressure
to show this or the pressure sensor is failed. @ Which of these outcomes
results or whether the simulation even tries to resolve the discrepancy
depends on the perceived state of the processes in which the PRT plays a
role and the agenda of items competing for the simulation’s resources (i.e.,
workload), e.g., is there an expectation that the PRT is active (a process in
which it participates is active) or should the PRT be active in the present
context (primary pressure has been high).

Because the NPP is a dynamic world, negative findings, the failure to
observe an expected plant behavior, can be detected only if there is a time
function that defines the window of opportunity for observing the expected
behavior. .

Another complication introduced by time is that disturbance propagation,
' automatic systems, or operator action may remove part or all of the evidence
that led to earlier explanations. Thus, the account for current findings must
include elements of past :explanations that may not be repeatable given
current evidence. For example, at one time step decreasing primary system
pressure and level and indications of abnormal containment conditions are
used to conclude the existence of a primary system break to containment. At
a subsequent time step, after emergency core cooling system (ECCS)
actuation has occurred, primary system pressure and level are increasing and
there are abnormal containment conditions. The simulation needs to” use the
past explanation that there is a break to conclude that ECCS inflow exceeds
break outflow and that reducing ECCS inflow may be appropriate. Note that
multiple explanations can be needed to account for the change in a finding
over time. In the above example, primary pressure and level behavior are
explained by the conjunction of a primary system break and ECCS flow
greater than brea.k flow.

Another aspect of time is time pressure. Time pressure is one kind of
resource limitation as was discussed earlier. With respect to explanation
building, when there is time pressure, it may not be possible to completely
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assess all potential explanations that could account for a finding, to converge
on a single explanation when considering multiple views, or to revise a
previously accepted explanation.

The problem-solving agent can be aware of the time available to carry out
tasks before negative consequences propagate (to a greater or lesser degree of
specificity). Operators can consciously use this kind of knowledge in deciding
how to respond in some emergency situations (e.g., the Davis-Besse incident;
NUREG-1154). This means the knowledge base will need to include
information about the time course of plant processes, the time course of
disturbance propagation, and time requirements for recovery tasks.

3.6 Response Management -- Plan Selection, Monitoring, and
Adaptation

Response management deals with

e how pre-planned responses that are relevant to the perceived
situation are.called to mind,

o how these response sei;uences are monitored to detect execution
errors or failures of equipment to respond as demanded,

e how pre-planned responses are adapted or gaps filled in when
unusual situations occur.

3.6.1 Plan Assembly

Situation assessment judgments (observed findings, explanations) trigger or
call to mind knowledge about how to respond to this perceived situation
(i.e., one kind of information in procedures). These can be responses both to
disturbances (e.g., decreasing pressurizer level) and to faults (e.g., steam
generator tube rupture). Response sequences include both automatic system
responses and manual human actions. There can be sequences or stages of
response over time, for example, as a disturbance grows, stronger and
stronger counter measures. For example, the script for a decreasing
progression in pressurizer level includes ‘“‘increase/maximize net charging
inflow” {‘“increase charging flow (automatic),” ‘“start additional charging
pump (optional manual),” “stop letdown outflow (automatic)”’} and, if this
response is insufficient, “switch to emergency injection (automatic).”

The basic process for forming intentions to act is plan assembly from pre-
stored plan chunks guided by the current assessment of the situation and

56



accepted explanations. This is because emergency operations is a heavily
proceduralized world. Situation assessment and explanation building control
selection among chunks of pre-planned responses which are stored in the
knowledge base. The type of response (function restoration or response to
fault categories) depends on the grain of the response chunk that is linked to
a particular perceived situation in the knowledge base. Judgments about
what and when responses should be made can be output from CES to
another mechanism which executes the action on a simulated plant or which
determines how this action would affect the behavior of the NPP.

In the plan assembly process, the same corrective response may be in the
knowledge base in several places, i.e., the same response is linked to the
different situations for which it is an appropriate corrective response. Because
responses are triggered from situation assessments, the different states linked
to a response or to a response chunk that contains this response represent
the different paths by which this knowledge could come to mind. This
mechanism provides for the possibility of inert knowledge about corrective
responses — the case where there is no link from the perceived situation to
what, in hindsight, is the appropriate response (cf., Bransford et al., 1986
and Perkins & Martin, 1986 for discussions of the cognitive processing
strategies and the problem of inert knowledge). In other words, even though
this response is located somewhere in the knowledge base (the operational
staff “know” the response in some context) it is not called to mind in this
situation. This is critical for CES to be able to model operational staff
behavior in incidents like the Oconee steam generator tube rupture (Brown
& Wyrick, 1982) and in the LOFT L2-5 test reactor experiment (Bray, 1982;
Bayless & Divine, 1982) where potentially relevant corrective responses were
not thought of given the staff’s perception of the situation.

~

3.6.2 Plan Monitoring

CES as a supervisor of other agents, both human and machine, needs to be
able to expect when responses should be made and to see that they occur
correctly. If a response is expected, then there is a need to monitor to see if
the response has happened (e.g., did letdown isolate?) and if the new
influence has affected the behavior of the datum in question (e.g., is level
now stable or increasing). Notice that the need to explain why level was
decreasing in the first place remains (what level influencer exists that is not
in the current set). The level behavior following the addition of a new (or
stronger) influence from the response script (assuming that the response was
actually made) provides more information for explanation building (did the
response counteract or dominate the unknown influence or does the unknown
influence continue the level decrease). If the unexpected behavior continues
unabated, one possibility is that the expected response was not properly
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carried out. In this way CES is capable of detecting human execution errors,
failures of automatic systems, and failures of equipment to respond as
demanded.

3.6.3 Plan Adaptation

Complications can arise in situations which go beyond pre-planned responses
sequences. Operational personnel sometimes face circumstances where they
need to (or think they need to) improvise action sequences that are not the
nominal response sequence in the procedure which hindsight suggests was
most appropriate. In these kinds of cases, choosing a response may require
more processing than the simple response assembly process.

Two or more items in the current explanation set may be linked to
incompatible intentions (e.g., the preferred response to x conflicts with the
preferred response to y). Incompatibilities also occur when an intention
generated by one explanation in the explanation set, if acted on, would
create a disturbance (an anticipated disturbance) given the current situation
assessment. Note that the latter implies a mechanism to envision the
consequences of the intended action before it is sent for execution. Usually,
the incompatibility can be resolved by choosing a response that satisfies both
(perhaps a less preferred but acceptable response) or by making multiple
responses (a second response is needed to prevent a negative side effect of
another response). A mechanism is needed to resolve mcompatlblhtxes by
ﬁndmg an mtended response that will sa.txsfy both.

Sometimes adapting responses goes beyond simple planning to include choice
under uncertainty and risk. For example, if no response can be identified to
_resolve incompatible options, then one must determine how to sacrifice one
(e.g., as occurred during the Ginna incident; Woods, 1982). These choice
situations include cases where one must decide whether to act on the basis
of the current explanation for observed findings or whether to gather more
data (which often means wait for more information to accrue) and cases
where one must decide whether to attempt to diagnose and repair the
disturbed system or process versus whether to implement alternative
processes in order to cope with the consequences of the disturbance
(disturbance management to prevent disturbance propagation in the short
term) as occurred in the Davis-Besse incident (NUREG-1154). These choices
can be based on knowledge about requirements and obligations associated
with actions on processes, side effects of an action in the current context, the
exposure of different operations (e.g., operators can be reluctant to implement
a higher exposure to risk alternative), the relative impact of alternative
actions on different goals, and goal priorities. This type of reasoning to

adapt plans also requires the capability to look ahead to envision the
consequences of potential action choices.

58



8.7 Representing Knowledge About the Plant

Knowledge about the NPP must be represented and made available for the
processing mechanisms in CES. The knowledge base expresses relationships
between NPP entities. This must include different kinds of relationships and
different kinds of NPP entities (e.g., data, system states, parameter behavior,
goal satisfaction, actions). For example, knowledge is needed about the
mapping between potentially observable data and states of plant functions,
systems, components and visa versa. CES monitoring activities use knowledge
about what are interesting changes in a particular piece of plant data.
Knowledge is needed about what observable behaviors occur if a plant
function, system, or component is in a particular state. Knowledge is needed
about how plant systems function to meet their design goals. Knowledge
about how one entity (process) influences another entity (a parameter or a
process) is needed to support the qualitative reasoning used to formulate
expectations. Knowledge is needed that links different plant states to pre-
planned response sequences.

Varying the kind of knowledge expressed in the CES knowledge base and the
structure of the knowledge will drastically affect CES problem solving.
Changes in the contents and organization of the knowledge base can be used
to capture many aspects of NPP person-machine systems including much of
training and procedures.

3.8 Representing What CES Can ‘“‘See’: A Virtual Display Board

The knowledge representation must also include a description of what data
about plant state are directly available to CES to ‘“see,” reflecting what
plant information would be directly available to operational personnel to
observe. This description constitutes a wvirtual display board, that CES
monitors to acquire data about plant state. )

Changes in control board instruments, the organization and layout of control
boards, computer-based displays of information, the organization of computer-
based display systems, human-computer interaction can be expressed in terms
of characteristics of the virtual display board. Not all of the dimensions
needed to capture variations between different concepts and media for
information display have been set up in the current implementation of CES.

One parameter is the salience of plant data which reflects the degree to
which the form or content of a data point commands attention or can
capture control of processing resources. For example, in terms of form,
changes in a datum displayed as a meter in a field of similar meters are less
likely to command attention compared to a representation of the changes as
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blinking lights or audible sounds. For example, in terms of content, changes
in some plant data are more “important” than others (e.g., better indicators
of system state; an operator’s idiosyncratic or favorite data points to check),
such as changes in pressurizer pressure are much more salient than changes
in pressurizer relief tank pressure, independent of the form of presentation.

A second parameter is the observability of plant data which expresses how
easy it is8 to see its value or state. This represents factors such as the cost
of acquiring data (physical or virtual distance), and the amount of processing
of the display needed to extract the desired information. The greater the
‘“cost’” to the operator of acquiring the information, the more likely it is. that
the display will not be examined unless knowledge is activated that indicates
that the information from that display is relevant to disambiguate a state or
contribute to problem solution (i.e., knowledge-driven monitoring).

A third measure is ease of integration. This reflects the extent to which the
displays in the control room collect and integrate the evidence available with
respect to issues (i.e., the number of data elements and computations
required to process directly observable data to reach a desired state
conclusions). For example, to determine subcooling margin, is there a single
display that provides that information (i.e., a one-bit decision) or does the
operator have to compute the margin by taking readings from multiple
sensors and performing some calculations?

The characteristics of the virtual display board contribute to CES monitoring
activities by specifying what data are available to be sampled on plant state
(typically, this is the sensors on display in the control room; however, it
could  include new computer-based displays or advanced interfaces,
telephone/intercom communication with remote personnel) and the
representational properties of the data such as observability and the cost or
effort to acquire (e.g.,physical distance, number of commands to call up a
computer display, potential for xmsrea.dxng displays, the amount of processing
needed to decide on a state).



4. Architecture of the
- Cognitive Environment Simulation

This chapter describes the current architecture of the Cognitive Environment
Simulation — what are the processing mechanisms that exhibit the target
cognitive competencies? In the process, this chapter also describes the current
state of implementation of this architecture.

As an Al-based computer system, CES has two basic parts. First, it contains
a knowledge base that represents the operator’s (or the team of operator’s)
knowledge about the power plant, including the inter-relationships between
physical structures, how processes work or function, goals for safe plant
operation, what evidence signals abnormalities, and actions to correct
abnormalities. Second, it contains processing mechanisms (or inference engine)
that represents how operators process external information (displays,
procedures) and how knowledge is called to mind under the conditions
present in NPP emergencies (e.g., time pressure). This part of the model
determines what knowledge is accessed when and what cognitive activities
(monitoring, explanation building, response management) are scheduled when
during an evolving incident.

The following sections describe the knowledge representation,  the current
processing mechanisms, samples of CES processing in different NPP
situations, and the ways the program’s behavior can be modified (CES
performance adjustment factors).

4.1 Knowledge Representation

The basic unit of knowledge representation consists of a link between two
pieces of knowledge. These knowledge couplers express a relation about the
NPP (Figure 4-la). For example, ‘pressurizer level” is coupled to “steam
generator tube rupture.” When either terminus (or node) is activated, the
item it is coupled with is suggested (thus reasoning can flow in both
directions). If “‘decreasing pressurizer level” is activated (e.g., a level decrease
is observed from some instrument or display), then it suggests the possibility
of “steam generator tube rupture’’; and if ‘“‘steam generator tube rupture’ is
activated (i.e., suspected or deduced), then it suggests ‘“‘decreasing pressurizer
level.”

The nodes can represent potentially observable plant behaviors (e.g.,
“decreasing pressurizer level”), plant states that are inferred from observable
data (e.g., “inadequate heat sink” or ‘“steam generator tube rupture”),
corrective responses (e.g., ‘‘automatic isolation of the letdown system” or
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“manually isolate feedwater to steam generator x). This means that
couplers in the knowledge base can encode knowledge operational personnel

would be expected to have about NPP data-state evidence links, state-state
links, and state-response links.

The relation expressed in the coupler can be qualified by the state of some
contextual knowledge (Figure 4—1a) Contextual knowledge expressed in a
qualifier modifies the coupler link in two ways.

1. It specifies different conditions that vary the specific nature of the
relationship between the two items. For example, the relationship
between ‘‘pressurizer level” and ‘‘steam generator tube rupture”
varies depending on “‘primary/secondary pressure differential.”

2. It specifies the conditions under which the relation expressed by
the coupler is relevant (one should not call to mind this
relationship unless X; similar to the ‘‘unless clause’’ construct of
Michalski & Winston, 1986). For example, the relationship
between ‘“‘primary/secondary pressure differential’’ and “pressurizer

level” is not relevant unless “steam generator tube rupture’” has
been activated.

The qualifier is a powerful concept because it governs under what conditions
one concept will activate another. Thus, it provides a measure of context
sensitivity so that the phenomenon of “inert” knowledge can arise, that is,
knowledge triggered only in very narrow contexts (e.g., failing to apply
procedures learned for responding to situation A, to situation B which
superficially appears different, but is fundamentally the same).

A coupler also encodes the strength of relation between the two items linked;
that is how strongly the activation of one item calls to mind the other
(Figure 4-1b). For example, associated with the coupler linking ‘“pressurizer
level” and “steam generator tube rupture” is a strength value that reflects
how strongly knowing that pressurizer level is decreasing would bring to
mind the possibility of a steam generator tube rupture. Since couplers allow
bi-directional inference and since the strength of implication need not be
identical in both directions, there are two strength values associated with
each coupler, one for the strength of association in the each direction. For
example, a steam generator tube rupture definitely is an influence to decrease
pressurizer level, given a positive primary-secondary pressure difference, while
decreasing pressurizer level by itself only suggests the possibility of a steam
generator tube rupture because it could indicate other conditions as well. The

strength parameters take on values between 1 and 5, with 5 mdxcatxng the
strongest relation.
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Figure 4-1: The basic unit of knowledge representation consists of a link
between two pieces of knowledge called knowledge couplers that express a
relation about the NPP (e.g. ‘“pressurizer level” is coupled to “steam
generator tube rupture.”) When either terminus (or node) is activated, the
item it is coupled with is suggested (bi-directional inference). The relation
expressed in the coupler can be qualified by the state of some contextual
knowledge (Figure 4-la). A coupler also encodes the strength of relation
between the two items linked, that is, how strongly the activation of one
item calls to mind the other (Figure 4-1b). There are two strength values
associated with each coupler, one for the strength of association in the each
direction. Couplers are used to build up larger structures of interconnections
between pieces of knowledge about the plant (Figure 4-1c).
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In CES the strength parameters can indicate how strongly each item in a
coupler would call to mind the other. The strength parameters bear some
similarity to certainty factors often used in conventional expert systems in
that these values can be used to indicate the degree of confidence in
inferring one item in a coupler from the other. One important use of this
information in CES is to order what knowledge is activated and processed
when there are multiple links from one item in the knowledge base (Figure
4-1c). For example, if there were couplers in the knowledge base linking
‘“decreasing pressurizer level” with ‘‘steam generator tube rupture” of
strength 2 and with “break to containment’ of strength 3, then CES would
consider the latter as a stronger possibility (all other factors being equal) or
as the first possibility that comes to mind, if resources are limited. The
strength parameters play an important role in determining which hypothesis
that could account for an observed finding will control' further CES
processing.

Couplers are used to build up larger structures of interconnections between
pieces of knowledge about the plant. One can think of a network or topology
of interconnections (Figure 4-1c). For example, a node is activated by some
processing mechanism, e.g., a behavior analyst notices ‘“‘decreasing pressurizer
level”. A relation in the knowledge base links this observation to the
possibility of ‘steam generator tube rupture.” This node, in turn, has
connections to other nodes that represent other observable behaviors
associated with this state (‘‘increasing steam generator level”), other plant
states (“loss of pnma.ry system water inventory”), and corrective responses
(“reduce primary system pressure”). Other processing analysts use these
relationships to draw conclusions within their areas of responsibility, if the
analyst is active and if it is the next scheduled activity.

The network of couplers provide a powerful and .flexible .mechanism for
representing virtually any knowledge about plant structure and function,
disturbances and faults, goals and responseés that NPP operators would be
expected to know. Set up of the knowledge base requires data or hypotheses
about what operational personnel do know (analysis of training programs).
Knowledge provided to operators through external means such as procedures
is also captured here. One can modify the information encoded in the
knowledge base to represent differences that might exist among operators
with respect to the depth and accuracy of the knowledge they possess about
a NPP issue (e.g., simplistic vs. highly accurate mental models of an NPP
process), and the accessibility or ease of calling to mind that knowledge. If
knowledge is mxssmg or distorted (buggy knowledge; e.g., Brown & VanLehn,
1080) and if it is relevant to the demands imposed by the nature of the
incident, then CES performance will be degraded.
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Couplers can be used to represent NPP knowledge at different levels of
abstraction, whether directly observable or not, such as a plant parameter
reading, an intermediate disturbance category such as a ‘“mass imbalance,” a
fault category such as primary system break to containment, or a response
such as “turn off the emergency cooling system.” The level or levels of
concepts depends on analytical or empirical results about how operators at
different experience levels think about the state of the plant or how different
procedure or training systems teach them to think about the plant.

The accessibility of knowledge is governed in part by the strength values
associated with couplers and by the existence and content of any qualifiers
on a coupler expressing a relation. Larger patterns among sets of couplers
also determine the contexts in which knowledge is called to mind so that
missing links can lead to inert knowledge.

The network of couplers also can represent different kinds of knowledge
about the plant. For example, there can be a multi-step thorough reasoning
process in going from observations to conclusions about plant state and
selecting corrective actions that includes the intermediate conclusions
operators may draw while systematically working through a problem. There
can be reasoning shortcuts where there is a direct link that shortcuts through
the multi-step reasoning, for example, a direct link from an observable plant
behavior to a response chunk, a direct link from an observable behavior -to
an explanation (such as a direct link between a radiation monitor reading in
the secondary side and a steam generator tube rupture event), or a direct
link from a plant state to a response chunk. The thorough reasoning path
will be more error resistant (assuming the knowledge is not buggy); the
shortcut will be more efficient. Either or both of these coupler structures can
be set up. The shortcut/thorough reasoning patterns are related to one
interpretation of Rasmussen’s ‘‘skill, rule, and knowledge” levels of reasoning
behavior (Rasmussen, 1986).

4.2 Processing Mechanisms

Not all possible couplers are accessed and utilized (i.e., activated) on any one
model processing cycle (i.e., following the input of one time step of plant
data). Similarly, not all the plant data available for processing at any one
processing cycle are examined.® The basic architecture of CES is designed to
control what knowledge (and how much knowledge) is activated in a given
cycle and what data are examined (the focus of attention).

s'l'lm statement that all available plant data are not processed is an over-simplification. In fact there is a
preprocessor that scans all available data at the start of each time step to check for parameter values that
meet the initial criterion to start processing by the model -- e.g., for spawning a behavior analyst.
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CES contains processing mechanisms that enable monitoring plant behavior,
situation assessment and explanation building to account for plant behavior,
and formulation of responses to the perceived plant situation. Processing in
CES is accomplished through the joint activity of multiple independent
processing agents or analysts. The basic processing mechanism is to spawn an
“analyst” when some criterion is met, who then performs some information
processing work accessing knowledge available in the knowledge base as it
needs it. There are three basic kinds of ‘“‘analysts’’ each with their own area
of responsibility. These are:

o Behavior analysts responsible for monitoring and analyzing plant
behavior to decide if observed plant behaviors are expected or
unexpected.

o Situation analysts responsible for analyzing the perceived situations
and for postulating and pursuing possible explanations for
unexpected findings.

o Response plan analysts responsible for selecting and adapting plans
to correct or cope with perceived abnormal conditions.

These analysts are active processes that draw conclusions and “‘post” their
results for other analysts to use as needed. Multiple instances of each basic
type of ‘“analyst’” are generated or ‘“‘spawned” as needed. A fundamental
characteristic of this problem-solving architecture is that each analyst has a
very narrow field of view and responsibility, and that complete problem-
solving involves communication and coordination among the multiple
analysts.

The knowledge base is accessed and utilized by the ‘analysts to provide
criteria for creating, interrupting, stopping analysts and to provide plant

knowledge the analysts draw on to generate expectations, draw conclusions,
and determine responses.

Each analyst does not represent a different person, rather the cooperative set
of analysts are intended to model a single problem-solving system — be it an
individual operator or a team of operators. The multiple analysts are
intended to model the multiple types of processing (e.g., monitoring,
explanation building, response planning) and lines of reasoning (e.g., multiple
alternative explanations pursued) that occur in parallel and are interwoven
during problem-solving, i.e., the organizational model of the mind. Each
analyst posts partial results from his unique point of view that other
analysts can access and build upon. The performance of this type problem-

solving system depends heavily on the degree of communication and
coordination among the analysts.
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4.2.1 Behavior Analysts

The first processing layer is focused on the behavior over time of potentially
observable data on the state of the NPP. Associated with each plant
parameter state is a behavior analyst who has the responsibility of tracking
that parameter (Figure 4-2). However, behavior analysts are not always
active (i.e., they are not automatically created at the start of a run). There
are two ways to create or ‘‘spawn’ a behavior analyst.

One way is ‘“data-driven” and occurs when a parameter or state change
meets some criterion. The criterion can be defined in terms of deviations
from target, out of limits, rates of change, or other change in behavior that
an operator would regard as worth tracking if it was noticed.

A second way a behavior analyst is created is “knowledge-driven’ and occurs
when a situation analyst or response plan analyst requires information about
a plant parameter for which a behavior analyst does not yet exist, and thus
creates one.

Once created a behavior analyst performs several functions. It monitors the
behavior of the datum which generated it based on criteria which define
what behaviors are “interesting” at this initial level of analysis (e.g., .
direction of change, rate of change; off target, limit violations) and produces
a stream of observed events, e.g., level is in a decreasing progression, limit x
has been crossed.

The behavior analyst uses perceived or expected active influences, the set of
processes which are presumed to be currently acting on the datum in
question — to determine lczpectcd behavior.

The behavior analyst then "assesses whether observed behavior is consistent
with the expected behavior. If the observed behavior is consistent with
expectations, then the behavior analyst continues to monitor the datum. If
the observed behavior is inconsistent with expectations, then an unknown
influence is postulated which needs to be identified.

A behavior analyst can report several types of findings to other analysts:
observed behavior, abnormalities, confirmation of expectations, violations of
expectations.
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Figure 4-2: The first processing layer in CES is focused on monitoring of
NPP data over time. Associated with each plant parameter state is a
behavior analyst who has the "responsibility of tracking that parameter
Behavior analysts are not always active. They are created either when a
plant parameter or state change meets some criterion (i.e., ‘‘data-driven’) or
when a situation analyst or response plan analyst requires information on the
parameter that it is responsible for monitoring (i.e., “knowledge-driven™).



4.2.2 Situation Analysts

Observed behavior that cannot be accounted for by the behavior analyst
given the presumed list of active influences constitute another answer to the
question of what is “interesting,” and these findings are passed on to a
second type of analyst — situation analysts. Violation of an expectation leads
to the creation of a situation analyst (assuming one does not already exist
trying to explain this datum’s behavior) or a new input to one that has
already been created (Figure 4-3).

The situation analyst’s responsibility is to try to ezplain the unaccounted for
behavior of the datum in question in the context of other data and
knowledge about the state of the NPP. The Situation Analyst considers what
changes in the active set of influences could account for the observed behavior.
For ~example, if the finding to be explained is a. decreasing progression in
primary system pressure, then the situation analyst would consider processes
that can influence pressure in this way, such as pressurizer power operated
relief valves (by considering elements linked to decreasing primary system
pressure in the knowledge base). To do this, the situation analyst explores to
see if other evidence about the state of the NPP 18 consistent with this
hypothesis (knowledge-driven data search) by asking or creating behavior
analysts to provide it with specific evidence (e.g., what is the state of the
pressurizer relief tank). They can also signal an active or newly created
behavior analyst that it is interested in future findings — setting a lead. For
example, notify me if any interesting changes occur in the pressurizer relief
tank. This has the effect of 1ncreasmg receptivity to incoming data poxnts
that are evxdence on particular issues. - :

How does a situation analyst work?

To illustrate the basic processing involved in explanation building, consider a
simple example where a single situation analyst is created to account for an
unexpected finding. A change is observed in a parameter (P,) which its

behavior analyst determines is unexpected given the current active influence
set for this parameter (e.g., I, suggests that P, should be increasing, but P,

is observed to be decreasing). This implies the existence of a.nother active
influence, which is the signal to activate a situation analyst — S,. S, calls

to mind potential influences on P, such as I, and eva.lua.tes the new
influence set (I, plus the hypothesis of L)) to see if it could explain the
observed P, behavior (Figure 4-4). Other potential influences are called to
mind and ordered as possible explanations, given the set of findings to be
accounted for.
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Figure 4-3: Observed behavior that cannot be accounted for by the
behavior analyst are passed on to a second type of analyst — situation
analysts. The situation analyst’s responsibility is to try to ezplain . the
unaccounted for behavior of the datum in question in the context of other
data and knowledge about the state of the NPP. The Situation Analyst
considers what changes in the active set of influences could account for the
observed behavior. To do this, the situation analyst explores to see if other
evidence about the state of the NPP 1is consistent with this hypothesis

(knowledge-driven data search) by asking or creating behavior analysts to
provide it with specific evidence.
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The strength values associated with couplers in the knowledge base play an
important role in this process of ordering possible explanations. For
example, if there were couplers in the knowledge base linking ‘‘decreasing
pressurizer level” with “steam generator tube rupture” of strength 2 and
with “break to containment” of strength 3, then CES would consider the
latter as a stronger possibility (given only that single finding) or as the first
possibility that comes to mind, if resources are limited. The strongest
possibility then controls further CES processing: the influence set of I, plus

the hypothesis of I, is evaluated to see if other plant behaviors are consistent
with this hypothesis.

Given unlimited resources, a situation analyst will explore all possible
explanations it knows about completely. However, it can be interrupted
before following up each possibility depending on the level of resources and
competing activities. This means the order in which CES considers possible
explanations can be an important determiner of what explanation is built to
account for unexpected findings. The strength parameters play an important
role in determining that ordering and can be used to implement whatever
ordering is plausible given the operators or hypothetical operators in
" question.

When a postulated influence could explain observed P, behavior, the next

step is to see if the postulated influence is consistent with other plant data
(is there evidence this influence is active? is the behavior of other parameters
consistent with this additional influence?). Thus, knowledge-driven data
gathering is triggered. In considering whether a postulated influence is
active, data gathering can consist of (a) simple requests to report currently
observed behavior, (b) setting leads for specific behaviors of interest, and (c)
triggering general searches of some region of the plant for “interesting”
behaviors. Setting a lead increases for some period of time the receptivity of
a behavior analyst to specific plant behaviors that are relevant to the
situation analyst’s explanation building activities. If behavior analysts return
with observations that are consistent with the explanation currently being
pursued, then the belief in that explanation increases. If behavior analysts
return with observations that are inconsistent with the explanation currently
being pursued, then the belief in that explanation decreases.

The order in which CES considers possible explanations affects the order in
. which knowledge-driven monitoring requests go out to behavior analysts. For
example, when operators detect a moderately fast unexplained decrease in
pressurizer level and pressure, they often check the pressurizer relief valves
and letdown system before they pursue the possibility of loss of coolant
break, before they pursue the possibility of charging system trouble (e.g.,
Woods et al.,, 1982). The ordering (i.e., the relative strengths on couplers in
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Figure 4-4: Case 1. A change is observed in a parameter (P,) which its
behavior analyst determines is unexpected given the current active influence
set for this parameter (e.g., I, suggests that P, should be increasing, but P,
is observed to be decreasing). This implies the existence of another active
influence so situation analyst S, is triggered. S, calls to mind potential

influences on P, such as L, and evaluates the new influence set (I, plus the
hypothesis of L)) to see if it could explain the observed P, behavior. Other

plant behaviors are then examined to see if they are also consistent with this
hypothesis.
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the knowledge base) could be based on any of several criteria for establishing
strength of association: strength of implication (e.g., decreasing primary
system pressure and level alone are stronger evidence for a loss of coolant
break than for a steam generator tube rupture), severity of comsequences
(e.g., a loss of coolant break has more severe safety consequences than a
charging line break), observability (e.g., it is easier to identify a stuck open
relief valve, assuming direct valve position indication, than a moderate size
loss of coolant break), empirical results (given some indications, operators
have been found to search possible explanations in this order).

Coordination among multiple situation analysts.

There can be multiple situation analysts active at one time, each trying to
explain different aspects of observed plant behavior. They can share results
of their exploration, converge on a single coherent explanation set for the
whole pattern of observed behavior, or develop multiple accounts for the
whole pattern. Since multiple alternate explanations for a given configuration
of evidence may be simultaneously pursued, a criterion is required to decide
when an explanation is sufficiently supported and coherent to be adopted (be
it provisionally) and acted upon. The responsibility for committing to an
explanation resides in the Decision Strategist. The explanation selected need
not be a single factor that accounts for all of the findings. It can be a set of
multiple factors that in combination account for the items to be explained.
While multiple criteria for a coherent explanation can be envisioned and
alternative approaches should be explored, the Decision Strategist, as
currently implemented, employs a simple parsimony criterion for committing
to an explanation. '

To illustrate the coordination and communication involved with multiple
situation analysts, let us consider a second example (Figure 4-5). In this
example there are two unexpected findings (P, is decreasing and P, is

increasing) that each trigger their own situation analyst- (S, & S,
respectively). S, calls to mind that either influence I, or I, could account for
the observed behavior of P, (Figure 4-5). However, L, has a higher strength
value than I, as a potential explanation for P, behavior, so that, given that
evidence alone, I, is provisionally the more likely explanation. Similarly S,
calls to mind that either I, or I, could account for the observed behavior of
P,, but that I, is the more likely explanation for P, behavior since it has a
higher strength value. Now, if S, and S, share results, then they can
converge on a single account for two unexpected findings since I, would
account for both P, and P, behavior. Note that a criterion for what is a
good explanation is needed to decide that one explanation for two findings
(I) is better than two explanations for two findings (even though each
explanation is stronger individually for each separate finding) — a criterion of
parsimony.
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CES explanation building behavior can be changed by varying when multiple
situation analysts are created, how they share results, how they converge on
a single explanation for the whole pattern of observed behavior or develop
multiple accounts for the whole pattern, and the criterion for what is a
coherent explanation. These variations provide performance adjustment factors
to model different situations, for example, a fixation prone person or team
structure.

In identifying the fault or set of faults that can account for plant behavior
there is always a tradeoff between efficient strategies that quickly converge
on a solution but are subject to error, and ‘more thorough strategies that are
less error prone but take more time and resources to converge on a coherent
explanation. In CES, the explanation building mechanisms were designed to
be able to represent three different strategies that range from efficient but
fixation prone to thorough but resource intensive.

Single explanation assumption.

At one extreme, CES can be made -to consider only single fault explanations
for plant behavior. Under this setting, only the first unexpected parameter
behavior will create a situation analyst; in the current example, unexpected
finding P, would trigger the creation of situation analyst S, (Figure 4-5). No
other situation analysts will be created. When a second parameter (P,) also
exhibits unexpected behavior, it does not create its own situation analyst.
Instead, the relevant behavior analyst reports the finding to the first
situation analyst — S . If the information is useful in narrowing down the set
of potential influences being considered by the one situation analyst, then the
limit on multiple situation analysts will not retard performance. This is true
in the current example where information on P, behavior can be used by
Situation Analyst 1 to focus in on I, as the most appropriate explanation
since I, can account for both P, and P, behavior. However the single
situation analyst strategy will only be efficient in single fault situations where

all the unexpected findings can be accounted for by a single unknown
influence. . 4

This extreme limit on multiple situation analysts leads to extreme fixation-
prone, garden-path behavior if CES starts down the wrong explanation or if
there are multiple failures (note that under the single explanation assumption
I, is never considered as a possible explanation in the current example).
Unexpected findings that cannot be accounted for by the first situation
analyst that happened to be created are ignored in the sense that no
explanation is sought for them. This behavior is psychologically plausible
under some conditions. Individuals who become fixated on the wrong
solution path often miss or ignore evidence that does not readily fit with the
hypotheses being entertained (e.g., Montmollin & De Keyser, 1986).
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Figure 4-5: Case 2: This example illustrates the coordination and
communication among multiple situation analysts. There are two unexpected
findings (P, is decreasing and P, is increasing) that each trigger their own
situation. analyst (S, & S, respectively). S, calls to mind that I, or secondly
I, could account for the observed behavior of P,. Similarly S, calls to mind
that. I, or secondly I, could account for the observed behavior of P,. By
sharing results, S, and S, converge on a single more parsimonious account
for two unexpected findings: I, would account for both P, and P, behavior.
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Multiple explanations.

An opposing approach to building explanations is to entertain multiple views
of what would account for a set of findings (multiple explanations in the
explanation set). Initially, in this strategy, separate explanations are sought
for each finding to be accounted for. This is accomplished by having each
unexpected finding create a situation analyst with the responsibility of
evaluating potential explanations for that finding. Multiple situation analysts
work largely independently of each other - each pursues an explanation for
one part of the total puzzle.

Subsequently, places where these separate accounts can converge are sought,
if possible. This is done by having multiple situation analysts share partial
results in order to recognize where a single explanation can account for
multiple findings. Convergence is based on adding the constraint that the
“best” explanation of those called to mind by either situation analyst must
account for union of the evidence seen by each situation analyst. This
convergence process requires criteria for selecting among alternative views
(alternative sets of explanations) and deciding when an explanation is
sufficiently supported and coherent to be adopted and acted on. Note the
difficulties in deciding which of multiple alternatives to pursue or to pass on
to response plan analysts to trigger selection of appropriate corrective
responses. This responsibility falls on the Decision Strategist who coordinates
the - activities of the . multiple situation analysts and commits to an
explanation or set of explanations. Changing the criteria for what is a good

or coherent explanation set will change which of the possible views of a set
of findings will be preferred.

A version of this strategy was built in the CADUCEUS problem solving
system (Pople, 1985). The virtue of this strategy is that it is highly fization
resistant because it can call to mind and thoroughly consider all of the ways
the set of findings can be put together, assuming it has sufficient resources
and time to complete the assessment. However, this strategy requires more
processing to arrive at an explanation, processing that is vulnerable to
breakdowns and that takes resources (time) to complete, when there is only
a single fault.

The example given in Figure 4-5 can be used to show how processing occurs
under the thorough fixation resistant explanation building strategy.
Unexpected finding P, triggers the creation of a situation analyst (S,) which

considers I, and secondly I, as poss:ble influences that could account for P,
behavior. The observation of second unexpected finding, P,, triggers a second
situation analyst (S,). S, calls to mind and establishes that I, and secondly
I, could account for the observed behavior of P,. In the convergence process
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the possible explanations called to mind by both situation analysts are
merged and ordered relative their ability to account for both P, and P,.
Under this additional constraint, the presence of I, would be the strongest
explanation because only it can account for both unexpected findings.

Now add to our example a third unexpected finding (P,) which leads to the
creation of a third situation analyst, S, (Figure 4-6). S, then calls to mind
I, as the strongest possibility to account for the observed P, behavior. This

produces a dilemma because there are two ways these results could be put
together: I, could be active which accounts for findings P, and P, and a

separate explanation for the unexpected P, behavior remains to be found, or
I, could be active which accounts for findings P, and P, and a separate
explanation for the unexpected P, behavior remains to be found. In this kind
of situation CES defers commitment and searches for more evidence.

Single explanation bias.

An intermediate explanation building strategy is first to try to build a single
explanation that accounts for all unexpected findings. Multiple explanations
are entertained only when a single explanation is unable to deal with all of
the findings. With this setting, the first situation analyst to be created (S,)

performs all explanation building activities as long as it can offer an
hypothesis to account for all ‘of the unexpected plant behavior encountered
up to that point. In the current example this means that when unexpected
. finding Py is reported, it is ‘“absorbed” by S,, if it helps distinguish among
the possible explanations being considered by S,. Therefore, no additional

situation analyst would be created. This absorption has two consequences.
First, it narrows the set of candidate explanations for P, behavior. The

presence of I is a stronger explanation than I, because it accounts for two
findings instead of one. Second, it precludes alternative explanations for P,
behavior from being called to mind (such as L). This can lead to fixation
effects because alternative explanations for P, behavior will be excluded from
consideration. For example, when P, is observed, a separate explanation will
be sought for this finding because it has already ‘“‘jumped to the conclusion”
that I, accounts for P, and P,. Thus, the possibility that I; accounts for
both P, and P, (Explanation Set B in Figure 4-6) will not be considered
and a potential influence on P; could be missed.

This strategy of a single explanation bias will perform well in many
situations because it is not completely limited to single fault hypotheses.
Nevertheless, this strategy is prone to garden path behavior. When plant
behavior is detected that is unexpected given the initial explanation
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Processing Cycle One:

Bz behavior % behavior 111 behavior

Potential Influences:

(Ordersd by Strength) 12 914 ? 13 ’14 ? 13?
Situation Analyst 1: Situation Analyst 2: Situation Analystv3:
Provisional Exp/anatlon - Provisional Explanation - Provisional Explanation -
i 12 were active, then N 13 were active, then it I3 were active, then
Py behavior would be P3 behavior would be P4 behavior would be
accounted for accounted for accournted for

Processing Cycl'e Two:

B‘, behavior P3 behavior Iﬁ behavior

N, |

Alternative Explanation A: 14 is active (it accounts for P2 and P3 ):
S3searches for another explanation for |

E, behavior E; behavior P, behavior

N/

Alternative Explanation B: 1, is active (it accounts for P3 and P4 ):
5, searches for another explanation for P,

9

‘Figurev 4-6: Case 3: This example is an extension of Case 2 in Figure 4-5.
A third unexpected finding (P,) is observed that leads to the creation of a

third situation analyst, S,. S; then calls to mind I, as the strongest
possiblity to account for the observed P, behavior. This produces. a dilemma
because there are two ways these results could be put together: I, could be
“active which accounts for findings P, and P, and a separate explanation for
the unexpected P, behavior remains to be found, or I, could be active which
accounts for findings P, and P, and a separate explanation for the
unexpected P, behavior remains to be found. In this kind of situation CES
defers committment and searches for more evidence. B
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generated, it will not reconsider its initial interpretation. It assumes that the
initial interpretation is correct and seeks an explanation for the residual
unexplained findings in light of the initial interpretation. This behavior is
very typical of the kinds of fixation effects observed in human problem
solving. Once an individual settles on an explanation, he may become
committed to it, and seek to ‘“rationalize” all new incoming data that are
unexplained by the initial interpretation. The single explanation bias
emphasizes processing efficiency, while being able to handle some multiple
fault situations.

4.2.3 Response Plan Analysts

Response plan analysts call to mind knowledge about pre-planned sequences
of responses (Figure 4-7 over time to disturbances (e.g., decreasing
pressurizer level) and faults (e.g., steam generator tube rupture). They are
responsible to monitor, adapt, and fill in these plans as needed. The response
sequences include both automatic system responses and human operator
responses. For example, the script for a decreasing progression in pressurizer
level might read “increase/maximize net charging inflow” {“increase charging
flow (automatic),” ‘“‘start additional charging pump (optional manual),” ‘“‘stop
letdown outflow (automatic)”} and, if this response is insufficient, “switch to
emergency injection (automatic).”

Knowledge about how to respond to a perceived situation can be triggered or
‘called to mind by (1) observed behavior (e.g., decreasing pressurizer level),
(2) accepted explanations, or (3) anticipated effects of hypothesized influences
(would x account for decreasing pressurizer level in the current context).

The kind of corrective response activated depends on what response
information is stored in the knowledge base —~ what response scripts and
what kinds of plant states they are linked to. This is one kind  of
information contained in procedures. The kind of corrective response
activated also depends on CES processing — what plant behavior has been
observed and what explanations have been constructed at that point in the
unfolding incident. Thus, the process is one of plan assembly from pre-stored
response plans.

The responses can be more function (symptom) based or more ‘‘event type’’
based. This depends on the grain at which responses are linked to states in
the knowledge base and on the grain of situation assessment at that point in
the unfolding incident. For example, early in an incident the response may
be more function based because deeper explanations of the situation have not
been built yet or because the evidence is not yet available; but this can shift
to more ‘“event type” as the evidence or time needed to build deeper
explanations becomes available. ’
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Knowledge called forth from these scripts about what actions on the plant to
expect can be used by the appropriate behavior analysts to check if the
response has happened (e.g., did letdown isolate?) and if the new influence
has affected the behavior of the datum in question (e.g., is level now stable
or increasing). In this way CES can be set up so that human execution
errors, failures of automatic systems, and failures of the machine to respond
as demanded can be detected. On the other hand, CES can fail to detect
these execution failures because of monitoring failures or because expectations
about what should have occurred are substituted for the results of actual
data checks, for example, when monitoring resources are limited.

Evoked responses which are executed manually can also be output to people

who close the loop from CES to the simulated plant by executing intentions
to act.

Responses can be evoked and monitored in parallel with explanation building
activities. For example, observation of decreasing level can trigger responses
appropriate to this state, at the same time that activities are underway to
explain why level was decreasing in the first place (what level influencer
exists that is not in the current set). While these activities can go on in

parallel, they can also compete for resources so that doing one blocks the
other.

The behavior of pressurizer level following the addition ‘of a new (or
stronger) influence from the response script (assuming that the response was
actually made) provides more information for the Situation Analyst (did the
response counteract or dominate the unknown influence or does the unknown
influence continue the level decrease). If the unexpected behavior continues

unabated, one possxbxlxty is that the expected response was not ‘properly
carned out

Currently, the plan assembly capabilities and the plan monitoring capabilities
(execution failure detection) of CES are implemented. ~Another important
desired competence for response management is choice under uncertainty and
risk, but this capability is not implemented at this time. This means that,
when selecting responses, CES cannot yet explicitly take into account factors
such as uncertainties across alternative explanations, consequences of actions
if wrong, goals, post-conditions to actions, or requirements for actions. More
creative plan generation capabilities that go beyond building new plans out

of more elemental existing responses (e g., planning by analogy) would
require another step increment.
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Figure 4-T7: Response plan analysts call to mind knowledge about pre-
planned sequences of responses over time to disturbances (e.g., decreasing
pressurizer level) and faults (e.g., steam generator tube rupture). They are
responsible to monitor, adapt, and fill in these plans as needed. The response

sequences;; include both automatic system responses and human operator
responses. ‘



4.2.4 Qualitative Reasoning

Couplers in the knowledge representation express relationships between NPP
entities. Some of the relationships expressed are that one entity (process)
influences another entity (parameter). Knowing about what influences are
acting on a parameter allows qualitative reasoning about its resulting
‘behavior. Qualitative reasoning attempts to determine high information value
landmarks in the behavior of continuous parameters (e.g., direction of
change, changes in the direction of change) rather than to completely
determine quantitative continuous functions. Simple numerical calculations
can play a role in forming expectations about plant behavior e.g., setpoint

crossings and categorized continuous values (absolute values or rates of
change).

If there is only a single active influence or multiple influences which have
the same direction of impact, CES computes expected behavior simply. When
the qualitative reasoning bottleneck arises (when there are multiple active
influences which have different impacts), CES can respond in two ways.
First, dominance relations, directly entered into the knowledge base, can be
read out to determine expected behavior. For example, the relief valve
pathway open effect to reduce primary system pressure dominates the
pressurizer heaters effect to increase pressure. Therefore, - if both constitute
- the active influence set for primary system pressure, then pressure would be
expected to decrease. Second, if the overall impact of multiple influences
cannot be resolved, then the default position is that any judgment about
what is expected or unexpected behavior is postponed, the behavior analyst
continues to monitor, and a situation analyst is not activated. However, CES
contains a mechanism which learns dominance relations for future use. If
the behavior analyst cannot infer expected behavior from the pattern of"
influences, the resulting behavior is noted in association with the pattern of
influences and can be recalled when this pattern occurs in the future.

4.2.5 Uncertainty

In the NPP world uncertainty arises at many points during the problem
solving process. One source of uncertainty arises because of the many-to-
many mapping between available data and plant physical or functional
structures. As a result a given piece of evidence may be accounted for in
many ways (e.g., “low pressurizer level” can arise due to an energy
imbalance caused by a secondary side disturbance; a leak or break into
containment; a leak in the charging line; a sensor failure, etc.). CES handles
uncertainty in several ways. First, the couplers explicitly encode the many to
many mapping that exists in a given NPP. For example, there would be
couplers linking ‘“low pressurizer level” to each of the many disturbances
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that it provides evidence for (i.e., there would be couplers explicitly encoding
all of the occurrences that could act as influences on pressurizer level).
Second, the directional strength of relationship parameters (i.e., evoking
strength and frequency) associated with a coupler are used to reflect the
degree of uncertainty there is in concluding one item in the -coupler given
the other. For example, in the coupler that links ‘“‘steam generator tube
rupture” and ‘“low pressurizer level”, the evoking strength of ‘“low pressurizer
level’” for ‘‘steam generator tube rupture’” would have a low value reflecting
the fact that “low pressurizer level”, by itself, provides weak evidence for a
steam generator tube rupture.

A second kind of uncertainty arises in explanation building. When multiple
views of a set of unexpected ﬁndings are considered (via a set of activated
situation analysts), uncertainty arises in the multiple ways that the pieces of
the puzzle can be put together. This is regulated through the Decision
Strategist and its criteria for what is a good explanation.

A third kind of uncertainty arises during response planning in selecting
among a set of alternative responses (e.g., attempt to reinstate a
malfunctioning process or substitute an alternative process that achieves the
same goal). Making response choices under risk and uncertainty is the
responsibility of the response plan analyst. While CES includes provisions for
a choice under risk and uncertamty module, this module is not part of the
current implementation.

4.3 The Virtual Display Board

Included in the knowledge representation is a description of what data about
plant state are directly available to the model to “see,” or what we call the
virtual display board. This description represents what plant information
would be directly available to the operators to observe. CES monitors the
virtual display board to acquire data about plant behavior.

The CES knowledge base includes a list of plant parameters or states that it
can directly access (e.g., from a data file or as output from a simulation
program). Depending on the plant being modeled these plant parameters can
be direct sensor readings, or more integrated information about plant state
such as the output of computerized displays or decision aids). Associated-
with each element on the virtual display board are parameters that reflect
characteristics of how that information is presented in the plant being
modeled (i.e., characteristics of the representation provided to the operator of
that NPP).

There is a parameter associated with plant data that reﬂécts the degree to
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which the form or content of a data point commands attention or can
capture control of processing resources — prominence or salience. For
example, in terms of form, changes in a datum displayed as meter in a field
of similar meters are less likely to command attention compared to a
representation of the changes as blinking lights or audible sounds. For
example, in terms of content, changes in some plant data are more
“important” than others (e.g., better indicators of system state; an operator’s
idiosyncratic or favorite data points to check), such as changes in pressurizer
pressure are much more salient than changes in pressurizer relief tank
pressure, independent of the form of presentation. The salience parameter is
a number that controls the priority or order in which behavior analysts
report their findings to other analysts (response plan or situation analysts).
Therefore, salience is one factor that effects whether an observed finding
captures or interrupts ongoing processing (e.g., changes in primary system
level, pressure and temperature take precedence, in general, over parameters
. such pressurizer relief valve position). The specific context (results of other
processing) also determines what processing is carried out next.

Another parameter associated with plant data expresses how easy it is to see
its value or state — observability. This represents factors such as the cost of
acquiring data (physical or virtual distance), the amount of processing of the
display to extract the desired information, the potential for misreading.
Observability is a number that controls whether any change in a datum can
spawn its behavior analyst. If the observability number exceeds a threshold
value, then a change in that datum can create a behavior analyst — data-
driven monitoring can occur. If the observability number is below the
threshold, that datum would be monitored only if other CES processing
analysts decided that information on the behavior of this piece of plant data
was needed (knowledge-driven data gathering). For example, pressurizer relief
tank (PRT) level is not normally monitored, but would become relevant to
monitor in specific contexts such as when pressurizér pressure is high and
the pressurizer relief valve pathway is open to the PRT (evidence of
increasing PRT contents would be expected) or when pressurizer pressure is
low and decreasing (called to mind as a possible explanation).

Currently in CES, data are correctly read out or there is no read out (i.e.,
it does not look). But data could also be misread or only approximate
answers read out (e.g., if the display is at the wrong resolution for the
intended judgment — x is in the area of the limit but whether it has crossed
it or not can not be seen). Misreadings and approximate readings are not
handled in the initial program (except as no read out).
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4.4 Samples of CES Processing

This section contains segments of CES processing behavior over different time
samples of plant data. The samples show how the CES architecture functions
to monitor plant data, form expectations, build explanations, and select
corrective responses. Following each sample there is a commentary about
what aspects of CES cognitive competencies are illustrated in that processing
segment. The samples are idealized versions of the actual behavior of the
current implementation of CES. Those capabilities which have not been
implemented are noted. The NPP situations used in the processing samples
are not chosen to be relevant to PRA studies; they are chosen from the
design incidents used to develop CES.

The first sample simply shows the processing needed to detect and correct a
stuck open pressurizer spray valve. The second sample focuses on a difficult
diagnostic situation (interfacing system break) where, depending upon the
Performance Adjustment Factor settings, the problem solver could fixate on
an erroneous diagnosis. In the third sample, there is a fault that leads to
excessive steam flow on the secondary side and reactor trip. CES must
reason across multiple disturbances to locate the source of the disturbance
chain, and it must decide whether the reactor trip has eliminated the source
of the trouble (a turbine problem) or whether disturbance continues to be
active (a steam break). In the fourth sample there are two faults that both
affect primary system pressure (the faults from samples 1 and 3). In this
case CES must recognize that disturbances remain after one fault has been
eliminated.

4.4.1 CES Processing Sample: 1

Time Step 1

Initial conditions (t,):
Plant is at steady state with reactor power = turbine power = 50%; major

parameters are all on target; pressurizer spray valve has just stuck open (see
valve PCV-455B in Figure 4-8). :

CES Processing :

A behavior analyst (#1) awakes and observes that a pressurizer spray valve
(PCV-455B) is open (observation of an ‘‘interesting’” plant behavior).
Behavior Analyst 1 continues to monitor for changes in the pressurizer spray
process.

The valve open indicates the pressurizer spray process is an active influence
on primary system pressure (decreasing progression) and an expectation is
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posted that a decreasing progression in primary system pressure will be
- observed.

Behavior Analyst 1 also notes that the pressurizer spray process is active
when primary system pressure is below the automatic system setpoint (2260
psig). This is an abnormality and triggers a response plan analyst to
consider appropriate responses to this situation. The first response would be
for an operator to correctly align the valve. The response plan analyst
generates an intention to close the spray valve (for output from CES as
well) and it posts the expecta.txon that the valve will be closed as expected

influence on the pressunzer spray process. Behavior Analyst 1 monitors for
this change.

Time Step 2

Plant state t;+30 seconds:
Primary system pressure continues to decrease; spray valve remains open.

CES Processing

Behavior Analyst 1 is monitoring the pressurizer spray process It expects
spray valve PCV-455B to be closed based on the expected influence posted
at Time Step 1, but observes that the spray valve is still open.

A behavior analyst (#2) awakes and observes a decreasing progression in
primary system pressure (observation of an “interesting’” plant behavior).
This behavior is consistent with the expectation generated for primary system
pressure behavior, given that the pressurizer spray process is active.

Behavior Analyst 2 observes that primary system pressure is abnormally low
(less than 2210) which triggers a response plan analyst (#2) to conmsider
appropriate responses to correct this. The response plan analyst invokes the
response script for decreasing primary system pressure. The first stage of
response is automatic activation of the backup heaters, and the response plan
analyst posts an expectation that the backup heaters will activate. The
second stage of response is automatic reactor trip, and the response plan
analyst posts an expectation that an automatic reactor trip will occur. The
third stage of response is an automatic safety injection signal (SI) and
initiation of emergency core cooling (ECCS), and the response plan analyst

posts an expectation that an automatic SI signal and ECCS initiation will
occur.
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Time Step 3

Plant state t;+300 seconds: :
Spray valve is manually closed; primary system pressure begins to recover.

CES Processing
Behavior Analyst 1 is monitoring the pressurizer spray process. It observes
that spray valve PCV-455B has closed. This confirms the expectation posted
at Time Step 1.

The pressurizer spray process is cleared as an active influence on primary
system pressure.

Behavior Analyst 2 is monitoring primary system pressure and observes a
change — it is now in an increasing progression (observation of an
“interesting” plant behavior).

This behavior is consistent with the perceived influences acting on primary
system pressure (in the absence of other influences primary system pressure
will move back to the current equilibrium value for this plant mode, e.g.,
2235 psig).

Commentary: Sample 1

Monitoring ‘

There are several aspects of monitoring that are illustrated in this processing
sample. First, it shows how adding and removing active influences changes
what is expected plant behavior.

Second, it shows how CES is capable of getting feedback on execution
failures or failures of components to respond as demanded (CES also needs
to be capable of failing to verify expected influences, for example, as a
function of resource competition). In this case, there is a verification of a
correct manual response to a detected abnormality.

A Dbasic discrimination problem in situation assessment following some
disturbance is judging whether the plant is returning to a ‘“‘normal’’ state or
whether there are any remaining disturbances? One usually thinks about the
need to discriminate abnormalities against the background of a previously
normal plant; it is also necessary to be able to discriminate the change from
a disturbed state back to a ‘‘normal” state after actions to correct the
perceived disturbances. This is part of being able to detect whether
corrective responses have been effective. In this case at Time Step 3, all
abnormalities have been eliminated, and CES perceives plant state to be
moving back to normal. If the responses are not effective, either because of
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execution errors, failures of the machine to respond as demanded, other
faults, erroneous situation assessment or erroneous intentions, then CES
should be capable of detecting that plant state is not responding as expected
and continue to monitor, to work towards an explanation, and to generate
corrective responses (see Processing Sample 4 for an example of this). Of
course, under some resource settings CES should fail to detect that its
intentions have not been effective.

Time Step 1 is an example of situations where a fault has just occurred
against a background of a normal plant, but there has been insufficient time
for the effects of the fault to propagate. There is only one signal available to
indicate the abnormality, in this case, a component (pressurizer spray valve)
is misaligned. If a problem solving agent has a complete field of view of
changes in the state of the plant (no resource limitation on monitoring), then
the abnormality can be detected at this stage. CES can be run with a
complete field of view for monitoring. With this setting, the misaligned
component is immediately detected (as in Time Step 1 in this example run).
There are circumstances where this may be a reasonable assumption about
the monitoring behavior of the operational staff. For example, at a shift
turnover the new crew often walks the board to review plant status; or in
the course of verifying automatic system responses following a reactor trip
the crew may walk the board and notice other changes in plant status (e.g.,
cases in Woods et al., 1982); or new personnel arriving to support the crew
after an incident has begun will review plant status; or the functional
organization of the Technical Support Center will dedicate several people just
to monitor plant status. :

However, this is generally not plausible from a human performance
perspective due to resource limitations and the goal to minimize unnecessary
effort. A particular abnormality can be directly detected even when there are
monitoring resource limitations, if the change in state is salient either in
form (the representation of plant behavior) or content. Some changes in some
parameters may be so perceptually salient (e.g., an associated auditory
alarm) that it triggers CES processing to assess what the change means in
the current context. Similarly, some parameters may be so important that
they are monitored at a sufficiently high rate to assure detection and
processing of noteworthy changes in its behavior. This is expressed formally
in CES by turning on or off the capability of changes in a datum to awaken
its behavior analyst. If the data-driven capability is turned off, changes in
the datum can still be observed, if another processing agent is interested in
the behavior of this part of the plant.

Changes in pressurizer spray valve position are probably not particularly
salient in the typical current control room. If an analyst judged this to be
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the case in a particular control room, then a change in this valve position
by itself should not be detected immediately and directly. In the CES
modeling environment this means that a change in this piece of data by
itself cannot trigger CES processing (i.e., it cannot trigger data-driven
processing). In Processing Sample 4, the capability of the pressurizer spray
valve to activate a behavior analyst is turned off. Thus, initially, the
misaligned spray valve is not noticed, but the disturbance that results,
decreasing primary system pressure, will be noticed. The the responsible
situation analyst invoked to account for this unexplained decrease may then
consider the state of the pressurizer spray process as one possible explanation
in its investigations.

Differences in the representation of the plant available to the operational
staff can make changes in a datum more or less salient, in other words, shift
the processing from that in Processing Sample 4 to that in Sample 1. For
example, a new computerized alarm system may have a rule that generates a
perceptually salient message if a spray valve is open when primary system
pressure is less than the automatic spray system actuation setpoint in
appropriate plant modes. If the effect of this change were to be investigated,
then CES should be run in a variety of NPP situations with the data-driven
capability turned off for data on the pressurizer spray valve position (the
current control room) and with the ca.pab1hty turned on (the control room
plus new alarm system). :

Response Management

This processing sample also illustrates the basic mechanism for activating
corrective responses. An abnormal finding triggers activation of response
plans that are linked to that perceived situation (response plans can also be

~ triggered by the results of explanation building as in Processing Sample 3).

This sample illustrates that corrective responses can be either manual human
actions or automatic system actions. This sample also illustrates that
response plans can be single actions, as at Time Step 1 or stages of
responses as a disturbance increases in severity, as at Time Step 2 (response
plans can also be sequences of actioms). :

The corrective response to a detected abnormality can be defined at several
levels (see Woods & Hollnagel, 1987). For example in this case, the
abnormality is, at the same time, a misaligned component and a process is
active which should not be active. The corrective response to the first is to
correctly align the component. The corrective response to the second
situation assessment is to identify an action or actions that will make the
process inactive, this includes correctly aligning the component in question,
but it also includes other ways to make the process inactive (e.g., is theré
another valve which can be closed, i.e., how can the flow path be blocked?
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can the pump be stopped, i.e., how can the force whxch moves the material
be stopped?).

To be plausible both from a NPP point of view and a human performance
point of view, the corrective response to be attempted first is the response
closest to the observed abnormality, e.g., the abnormality is the valve is
xmsahgned so that the first corrective response is to correctly align the valve
(see cases in Pew et al., 1981 and in Woods et al., 1982). If this response is
not successful, then the response plan analyst should shift its focus from the
valve misalignment to the process disturbed by this — the pressurizer spray
process is active when it should not be; therefore, consider alternative ways
to make this process inactive that it knows about.

The depth of processing for response management' to handle disturbances at
different levels of abstraction is not currently implemented within CES.

When considering responses to perceived plant states, a response plan analyst
can look ahead and anticipate responses that will be needed if the plant
continues on its current trajectory. For example, in Time Step 2, when
pressure crosses one abnormal limit, Response Plan Analyst 2 calls to mind
a series of automatic systems responses that are to be expected as pressure
continues to decrease. Alternatively, response plan analysts could be set up
to call to mind and output corrective responses only when their specific
triggering state has been met. In the case here this setting would mean that
the automatic safety injection signal would not be called to mind until the
pressure decrease crossed its activation setpoint.

4.4.2 CES Processing Sample: 2

Time Step 1
Initial conditions (t,): _ _
Plant is post-trip reactor power = turbine power = 0%; major parameters

are near and moving towards target regions except pressurizer level has
begun to fall (reference level = 25%; actual 19% and decreasing). The fault
is a break in reactor coolant pump seal injection line D; charging line flow
sensor reads 550 gpm; charging line pressure is less than primary system
pressure; seal injection flow loop D reads 550 gpm (see Figure 4-9). CES
enters situation with initial situation assessment that the plant is moving
towards normal post-trip status. '

Note: The fixation resistant explanation building strategy is used in this CES
run. .
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Figure 4-8: Partial representation of the primary system of a pressurized
water reactor relevant to CES Processing Samples 1 and 4.
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CES Processing

Figures 4-10 and 4-11 graphically illustrate CES processing at this time step.
A behavior analyst (#1) awakes and observes that pressurizer level is in a
decreasing progression (observation of an “interesting” plant behavior). This
behavior is not accounted for by any known influence (net inflow had been
slightly positive, i.e., charging flow slightly greater than letdown flow and all
other mass in/outflows inactive).

Behavior Analyst 1 notes that pressurizer level is abnormally low (less than
20%). This observed abnormality triggers a response plan analyst (#1) to
consider appropriate responses (Figure 4-11). The response plan analyst
invokes the response script for decreasing pressurizer level. The first stage of
response i8 automatic increase in charging flow, and the response plan
analyst posts an expectation that this will occur. The second stage of
response is automatic isolation of the letdown system, and the response plan
analyst posts an expectation that the letdown system will automatically
isolate. Behavior Analyst 1 continues to monitor for changes in pressurizer
level. '

A situation analyst (#1) awakes with the responsibility to explain the
unexpected pressurizer level behavior. It activates (calls to mind) the
knowledge that a decreasing progression in pressurizer level is associated with
loss of mass (a break) from the primary system to containment (i.e., this is
the strongest possibility given the evidence seen by this situation analyst). It
then activates the knowledge that a loss of primary coolant break to
containment (or loss of coolant) is associated with a decreasing progression in
primary system pressure, an increasing progression in containment pressure,
and indication of radiation in containment (Figure 4-10).

Situation Analyst 1 then directs monitoring activities by creating behavior
analysts to determine if the behavior of these data match these projected
observations (knowledge-driven monitoring). The behavior analysts report that
a decreasing progression on primary system pressure is not observed, an

increasing progression in containment pressure is observed and indication of
radiation in containment is observed.

Time Step 2

Plant state t,+200 seconds:

Letdown has isolated on pressurizer level less than 18%; pressurizer level is
decreasing slowly (the net outflow from the primary system is 12 gpm, i.e.,
the total seal return flow); primary system pressure is stable; charging line
flow sensor reads 550 gpm; charging line pressure is less than primary
system pressure; seal injection flow loop D reads 550 gpm.
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CES Processing

Figures 4-12, 4-13 and 4-14 graphically illustrate CES processing at this time
step. Behavior Analyst 1 is monitoring pressurizer level which is still in a
decreasing progression, but now at a very slow rate.

A behavior analyst awakes and observes an increasing progression in charging
flow. This finding is consistent with the expected influence posted at Time
Step 1 by Response Plan Analyst 1 that an automatic system would act to
increase charging flow.

A behavior analyst awakes and observes valve HVB8149A is closed (i.e.,
isolation of the letdown system). This finding is consistent with the
expectation posted on the Active Influence Set at Time Step 1 by Response
Plan Analyst 1 that an automatic system would act to isolate letdown.

Behavior Analyst 2 is monitoring primary system pressure. It does not
observe a decreasing progression as would be consistent with the lead posted
by Situation Analyst 1 at Time Step 1. Since the -behavior is not seen and
given that the time window allotted for its appearance has elapsed (checking
for an expected behavior or a confirming observation can have an elapsed
time criterion associated with it), this is noted as a finding by Situation
Analyst 1.

Based on primary system pressure behavior (stable), Situation Analyst 1 can
conclude that the influence of the postulated loss of coolant to containment
on pressurizer level (i.e., the unknown level influence) is dominated by the
influence of the charging system (i.e., maximum net charging).® -

A behavior analyst awakes and observes an increasing progression in water
flow through reactor coolant pump seal injection line D (Figure 4-13). This
behavior is not accounted for by any known influence which awakens a
situation analyst (#2) whose responsibility is to explain the unexpected
behavior. It activates (calls to mind) knowledge that seal injection flow is
associated with the charging system and triggers behavior analysts to check
charging flow and charging line pressure. These analysts report back that
charging flow is in an increasing progression and equals seal injection flow
-and that charging pressure is low and in a decreasing progression.

‘Thb means that Situation Analyst 1 would use its knowledge about meximum charging flow (given this
pump and the expected post-trip primary system pressure) to estimate the sise of break if it did not check
current charging flow, or it would check current charging flow and misinterpret this value as the sise of
break even though it is abnormally high (beyond the capability of the charging system to deliver at the
current primary system pressure).
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Based on this pattern of results, Situation Analyst 2 activates the possibility
of an interfacing system break in the seal injection area — charging pressure
< primary system pressure; seal injection flow = charging flow (i.e., this is
the strongest possibility given the evidence seen by this situation analyst).

Multiple situation analysts can communicate to consider possible convergence,
i.e., assume that both findings in this case (decreasing pressurizer level and
increasing seal injection flow) have a common explanation (Figure 4-14). For
example, in the convergence process Situation Analyst 1 considers accounting
for pressurizer level behavior given the possibility of an interfacing system
break rather than a loss of coolant to containment. The finding about
charging line pressure < primary system pressure changes the perceived
current inflow to the primary system to zero; letdown is isolated; seal
injection flow is zero (given the hypothesis of a seal line break); seal return
flow is 12 gpm. This pattern of influences would account for pressurizer level
~ behavior (a very small net outflow).

Thus, two or more situation analysts can work together to converge on a
single explanation which accounts for all observed behavior. In this case, the
best single explanation is the interfacing system break in seal injection: it
accounts for containment behavior (high radiation; increasing pressure),
pressurizer level behavior (low net outflow: inflow=0, outflow=seal return),
_primary system pressure behavior, charging system behavior (high flow, low
pressure, high seal injection flow).

The accepted explanation of an interfacing system break in seal injection can
then trigger a response plan analyst who looks up and outputs appropriate
responses to this perceived situation, i.e., attempt to isolate the break.
Expectations about changes in active influences, assuming isolation, are

posted (e.g., charging line pressure mcreasmg progression to normal range;
net charging inflow).

Commentary: Sample 2

Ezplanation Building

.For this processing sample CES explanation building was set up so that each
unexpected finding generates a situation analyst (the fixation resistant setting
on the explanation building strategy PAF). As a result, there are two active
situation analysts who possess different views of the curreant situation (Figure
4-14). Starting with pressurizer level behavior, Situation Analyst 1 interprets
the situation as a loss of coolant to containment (pressurizer level decreasing;
containment abnormalities). As a result of the decreasing level, automatic
systems have produced maximum net charging inflow to the primary system
(letdown is isolated; charging flow has increased to maximum). Because
primary system pressure is not falling and the level decrease has slowed, it
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has concluded that maximum net charging can compensate for the break.
Situation Analyst 1 has not seen and does not investigate data on the state
of the charging system and reactor coolant pump seal injection and return.

Starting with reactor coolant pump seal injection flow in an increasing
progression, Situation Analyst 2 interprets the situation as an interfacing
system break. Charging flow is higher than is possible for current primary
system pressure, assuming a normal (post-trip) charging system topology.
Charging pressure is less than primary system pressure which means that
there is no charging inflow to the primary system. Seal injection flow equals
charging line flow indicating that all of the flow is going to seal injection.
Containment indications (radiation; increasing pressure) show that there is an
active path to containment from a break in the seal injection area.

The second interpretation is a better explanation because it covers all of the
available findings. The first explanation is coherent only for a subset of the
data. The two situation analysts can share results to converge on an
explanation that accounts for the full range of findings within both areas of
responsibility. This is done by postulating that a single explanation accounts
for the findings of each situation analyst. Given this additional . constraint,
the interfacing system break hypothesis accounts for all of the findings.

Garden Path Behavior Prior to the observation of seal injection flow, CES is
focused on a reasonable but erroneous explanation. If the charging/seal
injection behavior is not seen or processed properly, then CES continues
down this garden path because it already has a good explanation for the
perceived state. This incident was given to three human subjects to solve in
an unpublished study. One of the subjects went down the garden path of a
loss of coolant break for a period of time.

Processing mechanisms and knowledge resources (performance adJustment »
factors) which would contrxbute to CES gomg down the garden path in this
case include: ,

e A situation analyst is not activated to pursue fmdmgs in
" charging/seal injection because

o the findings are not observed, which could occur because of

o low salience (turn off data-driven capability of
charging/seal data), or

e monitoring limitations;
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o a second situation analyst is not allowed to be created due

to a single explanation assumption or a single explanation
bias; '

o the criterion for a good explanation is satisfied by the initial
interpretation (loss of coolant) and further explanation
building and/or monitoring is carried out only in light of the
initial interpretation.

o the significance of the charging system and seal injection behavior
is not recognized due to bugs in the knowledge base, i.e., missing
the significance of the fact that charging pressure less than
primary system pressure (there is no charging inflow to the
primary system) and missing the significance of the fact that
charging flow is higher than is possible for current primary system
pressure, assuming a normal post-trip charging and primary
systems topology;

o the convergence process between multiple situation analysts breaks
down. '

For example, if this incident is run with charging system and seal injection
data obscured (i.e., the capability of changes in the charging and seal
injection data to capture CES processing turned off), then this garden path
behavior is exhibited. Exhibiting garden path behavior at one point in an
unfolding incident does not necessarily mean that recovery from the
erroneous situation assessment will not occur. The further evolution of the
incident may produce salient evidence of discrepancies which trigger revision
if PAF settings allow explanation building activities can be resumed.

Monitoring -

This processing sample illustrates knowledge-driven monitoring. At several
points, situation analysts create or prompt behavior analysts to monitor parts
of the plant in order to pursue a possible explanation for an unexpected
finding (knowledge-driven monitoring also can occur to verify expected
corrective responses). In some cases, the behavior analyst is looking for a
specific behavior, e.g., is primary system pressure in a decreasing progression
as some possible explanation suggests.

In other cases, there is no expectation about what specific behavior to look
for. Instead, there is a search for interesting behavior in items associated
with a data-driven finding (what could this finding mean?). For example,

Situation Analyst 2 follows up the seal injection flow finding by examining
data on the state of the charging system.
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This processing sample also illustrates the role of time in knowledge-driven
monitoring. At Time Step 2, Situation Analyst 1 checks to see if, consistent
with the possibility of a loss of coolant to containment, primary system
pressure is decreasing. The behavior analyst reports back that pressure is
stable. This is not inconsistent with the hypothesis because it may take time
before expected behavior is manifested in dynamic systems. In other
processing samples, the expected behavior does occur on a future time step
and is reported back to the relevant situation analyst and adds weight to
the hypothesis which set the lead. In the case here, the expected behavior
does not occur. At what point does the non-occurrence of the expected
behavior constitute a finding (a negative finding)? This is done by
associating with items in the knowledge base a time interval which expresses
knowledge about the expected time interval for the behavior to be manifested
(e.g., after a pump is turned off, flow may continue due to gradual coast
down). When the interval has elapsed following an inquiry, the non-
occurrence is counted as a finding by the situation analyst. On this basis,
Situation Analyst 1 treats the non-occurrence of a primary system pressure
decrease as a finding to be used in explanation building.

In this processing sample, response plan analysts post expected influences
based on knowledge about corrective responses. Monitoring to determine
whether expected responses in fact do occur could be done at three levels.
The weakest level is simply .to post the expectation; if the expected change is
observed (e.g., data-driven), then confirmation will occur (the behavior will
be evaluated as expected and this report communicated to the relevant
response plan analyst). The strongest level is to post the expected change
and to trigger monitoring activities to look for this change (e.g., letdown
isolation at Time Step 2). The intermediate case is to post the expected
change and to increase CES’s receptivity to the relevant data.

Calling to mind possible ezplanations

The phrase “knowledge is called to mind that x would account for y” is
used several times. This means that, when an unexpected finding is noted,
the set of possible explanations are ordered based on the strengths of
relationships encoded in the knowledge base and on the evidence evaluated
by that situation analyst up to that point. Knowledge about one possible
explanation is ‘‘activated” or ‘“called to mind,” i.e., the top item on the
. ordered list, and it directs current explanation building processing, e.g.,
knowledge-driven monitoring. For example, there are several possibilities
linked to the finding of unexpected pressurizer level decrease in the
knowledge base: change in net charging, break to containmeént, a steam
generator tube rupture, a decrease in primary system energy (note that these
also. can be hierarchically organized). Given no other evidence, the
relationship with the greatest strength is “called to mind” and directs further
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processing. All of the possibilities encoded in the knowledge base can be
entertained eventually. However, processing can stop because a ‘‘good”
explanation was found or because pf limited resources or limited time.

The order that possible explanations direct processing also depends on the
.order findings are noted. The relative strength of a possibility depends on
the evidence processed up to that point. The links and strengths built into
the knowledge base permit different knowledge to be activated depending on
the path taken.

Convergence between multiple situation analysts involves postulating a single
explanation that accounts for all of the triggering unexpected findings. This
means that possible explanations common to the set of situation analysts are
put into a new list and re-evaluated in light of all of the observations
available to all of the situation analysts.

Commitment to an ezplanation

Operator actions depend not only on building explanations to account for
patterns of ' findings, but also on commitment to an explanation.
Commitment refers ,to when an explanation is communicated to trigger
response plan analysts to begin selecting appropriate corrective responses. A
problem solver can err by committing too quickly (examine too little
evidence) or too late (examine too much evidence or wait too long for more
evidence to accrue). Varying the criteria governing commitment (in the
Decision strategist) varies how much evidence search will go on.

Commitment to an explanation can depend on the strength associated with
~that potential explanation, whether there are any strong competitors.
Interaction with the response management activities is needed so that
knowledge of consequences can be brought to bear (part of the choice under
uncertainty and risk mechanisms which are currently not built into CES).

4.4.3 CES Processing Sample: 8 |

Time Step 1
Initial conditions (t,):

Plant is at-steady state with reactor power = turbine power = 50%; major
parameters are all on target.

Plant state at t°+30 seconds:

Turbine throttle valve has failed and is ramping to 100% open over two
minutes which takes the turbine to 100% power. Power mismatch due to
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excessive energy outflow (reactor power = 56%; turbine power = 60%)
results in steam generator pressures less than normal and decreasing, steam
flows rapidly increasing, primary system temperature (t,., t.q 28nd t“') less
than normal and decreasing, primary system hotleg-coldleg delta t greater

than normal (t,,, minus t_,,), and primary system pressure less than normal
and decreasing.

bhot

CES Processing
A behavior analyst (#1) awakes and observes a decreasing progression in
primary system temperature, torg? (observation of an ‘‘interesting” plant

behavior). This behavior is not accounted for by any known influence (the
plant had been steady state at 50% power).

Behavior Analyst 1 notes that t, is abnormally low (less than t ). This
abnormality triggers a Response Plan Analyst (#1) to consider appropriate
responses. Response Plan Analyst 1 generates an expectation that an
automatic system (rod control) will act (pull rods) and posts the expected
influences on automatic rod control (moving out), nuclear power (increasing
progression) and t__ (increasing progression). Behavior Analyst 1 continues

avg
to monitor t_, . '
A situation analyst (#1) awakes with the responsibility to explain the
unexpected tove behavior. It activates (calls to mind) the knowledge that a
decreasing progression in L is associated with a decreasing progression in
primary system energy. Situation Analyst 1 then activates the knowledge
that, if this is the case, then it would be expected that pressurizer level is in
a decreasing progression and that primary system pressure is in a decreasing
progression.

Situation Analyst 1 then directs monitoring activities to determine if the
behavior of these data match these projected observations (knowledge-driven
monitoring). It creates a behavior analyst (#2) to monitor primary system
pressure (if a behavior analyst was already active for a parameter, the
situation analyst would only prompt it for the currently observed behavior).
Behavior Analyst 2 reports decreasing primary system pressure. This
observation is consistent with decreasing primary system energy. Situation
Analyst 1 creates another behavior analyst (#3) to monitor pressurizer level
behavior. This behavior analyst does not observe a decreasing progression on
pressurizer level. This is not inconsistent with decreasing primary system
energy because it may take more time before this behavior is manifested.

Behavior Analyst 2 also observes that primary system pressure is abnormally
low (less than 2210) which triggers a response plan analyst (#2) to consider
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appropriate responses to correct this. The response plan analyst invokes the
response script for decreasing primary system pressure. One stage of response
is automatic reactor trip, and the response plan analyst posts an expectation
that an automatic reactor trip will occur. Another stage of response is an
automatic safety injection signal (SI) and initiation of emergency core cooling
(ECCS), and the response plan analyst posts an expectation that an
automatic SI signal and ECCS initiation will occur.

Situation Analyst 1 deposits decreasing progression in primary system energy
as a plant behavior. Since there is no explanation to account for this
behavior, a situation analyst (#2) is set up to identify the unknown
influence (a behavior analyst mediates the chaining from Situation Analyst 1
to Situation Analyst 2). It activates the knowledge that a decreasing
progression in primary system energy is associated with an increasing
progression in energy transport from the primary system to the secondary
system (or pri-sec energy transport).

Situation Analyst 2 then activates the knowledge that, if this is the case,
then it would be expected that the temperature difference between the hotleg
and coldleg on each loop in the primary system (or primary system delta t)
is in an increasing progression and that steam flow from the steam
generators is high. Situation Analyst 2 creates one behavior analyst to
monitor the primary system delta t, who observes an increasing progression,
and another to monitor steam flow, who observes that steam flow is higher
than feed flow and increasing.

Situation Analyst 2 deposits increasing progression in pri-sec energy transport
~as a plant behavior. Since there is no explanation to account for this
behavior, a situation analyst (#3) is set up to identify the unknown
influence (again, a behavior analyst mediates this chaining). The situation
analyst activates the knowledge that an increasing progression in pri-sec
energy transport is associated with increased energy/steam outflow from the
secondary system. It then activates the knowledge that there are two avenues
for this (excessive turbine demand and steam break) and begins to drive
monitoring activities to distinguish these possibilities.

Time Step 2

Plant state t,+150 seconds:

Just prior to automatic reactor shutdown. Throttle valve is full open; turbine
power = 100% reactor power = 87%. The pattern of the previous time step

continues; the deviations are larger. Pressurizer level is now low and
decreasing.
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CES Processing

Behavior Analyst 1 still observes a decreasing progression in primary system
temperature, t, . There are two influences acting on this parameter a
decreasing 'progression from an unknown influence and an increasing
progression from increasing nuclear power (automatic rod control). The
behavior analyst notes and stores the dominance pattern, i.e., the unknown

influence on t_,_ is stronger than the automatic rod control system.

Behavior Analyst 2 is monitoring pressurizer level behavior (knowledge-driven
by Situation Analyst 1). It observes a decreasing progression in pressurizer
level. This is communicated to Situation Analyst 1 who notes that this
behavior is consistent with and reinforces the postulated decreasing
progression in primary system energy.

The evidence continues to support (and the increase in the expected direction
reinforces) the conclusions of the situation analysts about plant behavior —
decreasing progression in primary system energy, increasing progression in
pri-sec energy transport, and increasing progression in energy/steam outflow
from the secondary system.

Time Step 3

Plant state t,+500 seconds:
An automatic reactor shutdown (due to low primary system pressure) and
turbine shutdown have occurred. The turbine shutdown effectively isolates the
effect of the stuck open throttle valve. Plant parameters begin to return to
normal hot shutdown state.

CES Processing

A behavior analyst (#£4) awakes and observes an automatic reactor shutdown
(data-driven observation of an ‘interesting” finding). This finding triggers
expected influences on a number of plant parameters and systems including:
control rods, nuclear power, reactivity, turbine trip, turbine power, auxiliary
feedwater pumps, auxiliary feedwater valve alignment, auxiliary feedwater
flow, feedwater isolation, and primary system temperatures (moving to post-
trip targets). This finding confirms the expectation posted earlier based on
the observed decreasing progression in primary system pressure.

This observed behavior triggers a response plan analyst (#3) to consider
appropriate responses in this situation. The response plan analyst invokes the
response script for reactor trip. This script initiates a strong emphasis on
observing plant state both generally (increased semsitivity to interesting
changes) and specific items to be checked including control rods, nuclear
power, reactivity, primary system, turbine trip, turbine power, auxiliary
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feedwater pumps, auxiliary feedwater valve alignment, auxiliary feedwater
flow, feedwater isolation, primary system temperatures moving to post-trip
targets, primary system pressure, containment conditions (pressure,
temperature, radiation, etc.), reactor coolant pump trip criteria.

Behavior analysts report (among other things) primary system temperatures
moving to post-trip targets (e.g., t,, . increasing progression towards post-trip
target) and primary system pressure increasing progression towards target.

As tavs is now in an increasing progression towards target, Response Plan
Analyst 1 ends the response script for low t . and clears the associated
expected influences for automatic rod control and nuclear power.

As primary system pressure is now in an increasing progression towards
target, Response Plan Analyst 2 ends the response script for low pressure
and clears the associated expected influences, i.e.,, an automatic safety
injection signal and initiation of emergency core cooling.

The situation analysts now conclude from the evidence of temperatures and
pressure moving towards their post-trip targets that primary system energy is
in an increasing progression, pri-sec energy transport is in a decreasing
progression, and energy/steam outflow from the secondary system is in a
decreasing progression.

At Time Step 1 CES had concluded there was an unknown influence acting
on t“', prima.ry system energy, pri-sec energy transport, and energy/steam
outflow from the secondary system 'and that the unknown influence
dominated the automatic rod control system response. At this time step,
influences are removed (i.e., the reactor and turbine trips) and the behavior
reverses (the temperatures, pressure are. moving towards their post-trip
targets). This means that the unknown influence has been removed (there is
no new influence that could account for the reversal) and the plant is
returning to a ‘“normal’’ state. eTes

Commentary: Sample )

Ezplanation Building
This processing sample illustrates several aspects of explanation building.

At Time Step 1 the situation analysts build a higher level (i.e., not directly
observable) characterization of the behavior of the plant out of the pattern
of directly observable evidence. Thus, Situation Analyst 1 concludes that
there is a decreasing progression in primary system energy because t __ and

: avg
primary system pressure are decreasing. This characterization then activates
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knowledge that directs processing activities in a particular direction, in this
case, energy flow disturbances.

The inferred plant behavior can then be treated as any other plant behavior
— it can be tracked by a behavior analyst, changes can be judged expected
or unexpected, explanations sought for unexpected changes, and abnormal
changes can trigger responses via a response plan analyst.

The result of the explanation building at Time Step 1 is that there is an
unknown influence acting on tovg’ primary system energy, pri-sec energy
transport, and energy/steam outflow from the secondary system. The
unknown influence dominates the automatic rod control system response. The
source of this influence is being sought in the source of the increased
energy/steam outflow from the secondary system.

Note that CES has linked several disturbances into a single disturbance
chain, i.e.,, they have a common source. It also has made a judgment about
where in the disturbance chain to pursue the common source (this is related
to the concept of topographic search in diagnosis; Rasmussen, 1986).

At Time Step 3, the challenge for explanation building is what accounts for
the reversal of the abnormal trends: has the unknown influence been
eliminated by the changed pattern of influences (the turbine trip) as is
actually the case here or has another influence acting in the opposite
direction dominated the first unknown influence.

Monitoring

In this case, there are no resource limits on monitoring, e.g., there is no
limit on the number of behavior analysts that can be active simultaneously.
This case illustrates how quickly the number of active behavior analysts can
grow and how limits on monitoring resources can have a large impact on
problem solving behavior.

There is an issue that arises when feedback is sought to verify expected
actions (either automatic or manual). The feedback can come at several
levels; for example, in this case the automatic system response to low tave
could be seen in an automatic system activation signal, control rod
movement, the effect on nuclear power, the effect on tove: Operational
personnel do not always have unlimited resources to check for all of these
effects to confirm expected responses. The question then is which, if any, of
these potential signs will be checked? Relative salience of the different pieces
of data is one factor that would affect which data are checked. Monitoring
actions encoded in response scripts are another as illustrated for reactor trip
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response in Time Step 3. If an inconsistency among evidence is noted, then
the complete set (or a fuller set of evidence) could be pursued more deeply
(this relates to sets of evidence for issues, the possibility of inconsistent
evidence, and how completely an evidence set is examined).

Not only are expected responses added to the influence set, they sometimes
must also be removed from the influence set. In Time Step 3 there is a
case where an expected response needs to be removed from the influence set
because the situation has changed before the response could occur.

Response Management :
Response scripts can be tied to the observable datum or to the abstract
issue behind the data or to both, e.g., responses to abnormal primary system
energy and responses to abnormal e

Note that the change in tove and the reactor trip at Time Step 3 both
change influences on automatic rod control and nuclear power.

4.4.4 CES Processing Sample: 4

Tima Step 1 .
Initial conditions (t,):
Plant is at steady state with reactor power = turbine power = 50%; major

parameters are all on target; pressurizer spray valve has just stuck open (see -
valve PCV-455B in Figure 4-8).

- Plant state at t;+30 seconds:

Turbine throttle valve has failed and is ramping to 100% open over two
minutes which takes the turbine to 100% power. Power mismatch due to
excessive energy outflow (reactor power = 56%; turbine power = 60%)
results in steam generator pressures less than normal and decreasing, steam
flows rapidly increasing, primary system temperature (tyorr t cola» and t "‘) less
than normal and decreasing, primary system hotleg-coldleg delta t greater

than normal (t,,, minus t_,,), and primary system pressure less than normal
and decreasing.

Note: In this CES run, the capability of pressurizer spray valve position
indications to trigger data-driven processing has been turned off and the
“single explanation bias setting on explanation building strategy is used.
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CES Processing
A behavior analyst (#1) awakes and observes a decreasing progression in
primary system temperature, t . This behavior is not accounted for by any

known influence (the plant had been steady state at 50% power).

Behavior Analyst 1 notes that t,  is abnormally low (less than t_). This
abnormality triggers a Response Plan Analyst (#1) to consider appropriate
responses. Response Plan Analyst 1 generates an expectation that an
automatic system (rod control) will act (pull rods) and posts the expected
influences on automatic rod control (moving out), nuclear power (increasing
progression) and on t__ (increasing progression). Behavior Analyst 1

continues to monitor t“‘.

A situation analyst (#1) awakes with the responsibility to explain the
unexpected teve behavior. It activates the knowledge that a decreasing
progression in tve is associated with a decreasing progression in primary
system energy. Situation Analyst 1 then activates the knowledge that, if this
is the case, then it would be expected that pressurizer level is in a
decreasing progression and that primary system pressure is in a decreasing
progression.

A behavior analyst (#2) awakes and observes a decreasing progression in
primary system pressure. Given that CES is being run with the single
explanation bias strategy for explanation building, this finding is ‘‘absorbed”
by Situation Analyst 1 because it is relevant to the possible explanations it
is considering. '

Situation Analyst 1 then directs monitoring activities to determine if the
behavior of these data match these projected observations (knowledge-driven
monitoring). It prompts for primary system pressure behavior and Behavior
Analyst 2 communicates its observation of a decreasing progression. This
observation is consistent with decreasing primary system energy. Situation
Analyst 1 creates another behavior analyst (#3) to monitor pressurizer level
behavior. This behavior analyst does not observe a decreasing progression on
pressurizer level. This is not inconsistent with decreasing primary system
energy because it may take more time before this behavior is manifested.

Behavior Analyst 2 also observes that primary system pressure is abnormally
low (less than 2210) which triggers a response plan analyst (#2) to consider
appropriate responses to correct this. The response plan analyst invokes the
response script for decreasing primary system pressure. One stage of response
is automatic reactor trip, and the response plan analyst posts an expectation
that an automatic reactor trip will occur. Another stage of response is an
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automatic safety injection signal (SI) and initiation of emergency core cooling
(ECCS), and the response plan analyst posts an expectatlon that an
automatic SI signal and ECCS initiation w1ll occur.

Situation Analyst 1 deposits decreasing progression in primary system energy
as a plant behavior. Since there is no explanation to account for this
behavior, a situation analyst (#2) is set up to identify the unknown
influence (a behavior analyst mediates the chaining from Situation Analyst 1
to Situation Analyst 2). It activates the knowledge that a decreasing
progression in primary system energy is associated with an increasing
progression in energy transport from the primary system to the secondary
system (or pri-sec energy transport).

Situation Analyst 2 then activates the knowledge that, if this is the case,
then it would be expected that the temperature difference between the hotleg
and coldleg on each loop in the primary system (or primary system delta t)
is in an increasing progression and that steam flow from the steam
generators is high. Situation Analyst 2 creates one behavior analyst to
monitor the primary system delta t, who observes an increasing progression,
and another to monitor steam ﬂow, who observes that steam ﬂow is higher
than feed flow and increasing.

Situation Analyst 2 deposits increasing progression in pri-sec energy transport
as a plant behavior. Since there is no explanation to account for this
behavior, a situation analyst (#3) is set up to identify the unknown
influence (again, a behavior analyst mediates this chaining). The situation
analyst activates the knowledge that an increasing progression in pri-sec
energy transport is associated with increased energy/steam outflow from the
secondary system. It then activates the knowledge that there are two avenues
for this (excessive turbine demand and steam break) and begins to drive
monitoring activities to distinguish these possibilities. :

Time Step 2

Plant state t,+150 seconds:

Just prior to automatic reactor shutdown Throttle valve is full open; turbine
power = 100% reactor power = 87%. The pattern of the prevnous time step
continues; the deviations are larger. Pressurizer level is now low a.nd
decreasing. Pressurizer spray valve remains stuck open.

CES Processing
Behavior Analyst 1 still observes a decreasing progression in primary system
temperature, t .. There are two influences acting on this parameter a

decreasing progression from an unknown influence and an increasing
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progression from increasing nuclear power (automatic rod control). The
behavior analyst notes and stores the dominance pattern, i.e., the unknown

influence on tove is stronger than this the automatic rod control system.

Behavior Analyst 2 is monitoring pressurizer level behavior (knowledge-driven
by . Situation Analyst 1). It observes a decreasing progression in pressurizer
level. This is communicated to Situation Analyst 1 who notes that this
behavior is consistent with and reinforces the postulated decreasing
progression in primary system energy.

The evidence continues to support (and the increase in the expected direction
reinforces) the conclusions of the situation analysts about plant behavior —
decreasing progression in primary system energy, increasing progression in
pri-sec energy transport, and increasing progression in energy/steam outflow
from the secondary system.

Time Step 3

Plant state t;+500 seconds:

An automatic reactor shutdown (due to low primary system pressure) and
turbine shutdown have occurred. The turbine shutdown effectively isolates the
effect of the stuck open throttle valve. Plant parameters begin to return to
normal hot shutdown state except primary system pressure because the
pressurizer spray valve remains stuck open.

CES Processing _

A Dbehavior analyst (#4) awakes and observes an automatic reactor
shutdown. This finding triggers expected influences on a number of plant
parameters and systems including: control rods, nuclear power, reactivity,
turbine trip, turbine power, auxiliary feedwater pumps, auxiliary feedwater
valve alignment, auxiliary feedwater flow, feedwater isolation, and primary
system temperatures (moving to post-trip targets). This finding confirms the
expectation posted earlier based on the observed decreasing progression in
primary system pressure.

This observed behavior triggers a response plan analyst (#3) to consider
appropriate responses in this situation. The response plan analyst invokes the
response script for reactor trip. This script initiates a strong emphasis on
observing plant state both generally (increased sensitivity to interesting
changes) and specific items to be checked including control rods, nuclear
power, reactivity, primary system, turbine trip, turbine power, auxiliary
feedwater pumps, auxiliary feedwater valve alignment, auxiliary feedwater
flow, feedwater isolation, primary system temperatures moving to -post-trip-
targets, primary system pressure, containment conditions (pressure,
temperature, radiation, etc.), reactor coolant pump trip criteria.
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Behavior analysts report (among other things) primary system temperatures
moving to post-trip targets (e.g., tave increasing progression towards post-trip
target) but primary system pressure continues in a decreasing progression

although at a slower rate.

As L is now in an increasing progression towards target, Response Plan
Analyst 1 ends the response script for low tve and clears the associated
expected influences for automatic rod control and nuclear power.

The situation analysts now conclude from the evidence of temperatures
moving towards their post-trip targets that primary system energy is in an
increasing progression, pri-sec energy transport is in a decreasing progression,
and energy/steam outflow from the secondary system is in a decreasing
progression.

At Time Step 1 CES had concluded there was a single unknown influence
acting on t"‘, primary system energy, primary system pressure, pri-sec
energy transport, and energy/steam outflow from the secondary system and
that the unknown influence dominated the automatic rod control system
response. At this time step, influences are removed (i.e., the reactor and
turbine trips) and the behavior reverses (the temperatures, pressure are
moving towards their post-trip targets). This means that the unknown
influence has been removed and the plant should be returning to a ‘“normal”
state. The situation analysts set up to account for unexpected behaviors in
primary system energy, pri-sec energy transport, and energy/steam outflow
from the secondary system are cleared (note no situation analyst had been

set up previously whose respons1b111ty was to pursue primary system pressure
behavior). .

Given removal of the influence producing a decreasing progression in primary
system energy and the known influences acting on primary system pressure,
Behavior Analyst 2 notes that the continuing decreasing progression 1n
pressure is now unexpected.

A new situation analyst awakes with the responsibility to explain the
unexpected primary system pressure behavior. It activates (calls to mind) the
knowledge that the pressurizer spray system and a primary system break are
associated with the observed pressure behavior. It then activates the
knowledge that, if the former were active, then a pressurizer spray valve
would be open and activates a behavior analyst to monitor these valves.

A Dbehavior a.na.lyst awakes and observes that a pressurizer spray valve
(PCV-455B) is open. The valve open indicates the pressurizer spray process
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is an active influence on primary system pressure (decreasing progression)
and accounts for the observed pressure behavior.

This behavior analyst also notes that the pressurizer spray process is active
when primary system pressure is below the automatic system setpoint (2260
psig). This is an abnormality and triggers a response plan analyst to
consider appropriate responses to this situation. The first response would be
for an operator to correctly align the valve. The response plan analyst
generates an intention to close the spray valve and it posts the expectation
that the valve will be closed on the Active Influence Set for the pressurizer
spray process and the relevant behavior analyst monitors for this change.

Time Step 4

Plant state to+700 seconds: ‘
Spray valve is manually closed; primary system pressure begins to recover.

CES Processing
A behavior analyst is monitoring the pressurizer spray process. It observes
that spray valve PCV-455B has closed. This confirms the expectation posted
at Time Step 3.

The pressurizer spray process is cleared as an active influence on primary
system pressure.

Another behavior analyst (#2) is monitoring primary system pressure and
observes a change — it is now in an increasing progression.

This behavior is consistent with the perceived active influences on primary
system pressure (in the absence of other influences primary system pressure
will move back to the current equilibrium value for his plant mode, e.g.,
2235 psig). :

Commentary: Sample 4

In this incident two faults are present simultaneously. In particular, the
incident results from combining the faults present in Processing Samples 1
and 3. Thus, this sample illustrates the kinds of reasoning that can arise in
dealing with different kinds of multiple fault situations.

Monitoring

The capability of pressurizer spray valve position indications to trigger data-
driven processing was been turned off for this run (i.e., changes in these
valve positions cannot capture CES processing). As a result and in contrast
to Processing Sample 1, the misaligned valve and the disturbance in the .
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pressurizer spray process as a method of pressure control (i.e., spray is on
when pressure is below the automatic activation setpoint) are not noticed
directly. The next avenue to find this fault is to detect the effect on primary
system pressure (a resulting disturbance). However, there is another fault
present that results in an influence on primary system pressure in the same
direction as well as influences on other parts of the plant.

CES at Time Step 1 notices and pursues the unexplained tovs behavior first.
In the process of considering potential explanations for this behavior,
Situation Analyst 1 triggers monitoring of primary system pressure. The
observed decreasing progression is consistent with a decreasing progression in
primary system energy. This explanation accounts for both observations, and
CES continues to pursue explanations that would account for the inferred
decreasing progression in primary system energy.

CES could easily have taken a different tack (depending on the relative
salience values attached to each observable piece of data) where decreasing
pressure was noticed and pursued as an unexpected finding. If this occurred,
then the strength values between the observed pressure behavior and possible
explanations would govern the search order. Decreasing primary system
energy is linked to both decreasing pressure and decreasing energy in the
knowledge base but the relative strength values are different; thus, the order
in which it would control processing is different). For example, three human
subjects were given this incident to solve in an unpublished study. One
noticed the pressure decrease and began his search by checking the spray
system status. As a result, he first discovered the stuck open spray valve
(the other two first pursued explanations for decreasing primary energy).

This alternative flow illustrates how the order of observation can be affected
by the relative salience of incoming data and how the order of observation
can affect later processing (especially if there is resource competition).

Differences in the representation of the plant available to the operational
staff can make changes in a datum more or less salient and more or less
observable. For example, a new computerized alarm system may have a rule
that generates a perceptually salient message if a spray valve is open when
primary system pressure is less than the automatic spray system actuation
setpoint in appropriate plant modes. This change in the representation of
the plant would shift CES monitoring behavior from something like that in
Processing Sample 4 to something like that in Sample 1, depending on the
particular incident and other PAF settings.

Ezplanation Building
CES first pursues factors that affect primary system energy (e.g., steam line
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break). Following the reactor trip, the pattern of influences change because
the effects of the stuck open turbine governor valve are eliminated. In
Processing Sample 3, CES must detect that the influence of the\turbine fault
is removed and that all monitored parameters are trending back towards the
normal values for this plant mode. In this sample, CES must detect that
disturbances persist after some automatic or manual action has been taken.
In this case, it detects that the turbine fault is removed, but the behavior
analyst set up earlier to monitor primary system pressure notices that
primary system pressure continues to decrease.

This observation is unexplained (the primary energy influence has been
removed) and triggers a situation analyst to pursue what could account for
it. Note that, because CES first pursued the primary system energy issues
and because CES was run with the single explanation bias setting on
explanation building strategy, no situation analyst was set up earlier to
pursue the decreasing progression in primary system pressure as an
unexplained finding.

Also note that, when the decrease in primary system pressure continues, an
alternative view to the one above is that the initial interpretation of the
pattern of evidence (decreasing primary system energy, etc.) is wrong and the
entire pattern of evidence needs to be re-evaluated. But in this case, there is
no single possible explanation that would account for the entire pattern of
findings (e.g., temperature behaviors and the persistent pressure decrease).
Whether CES re-evaluates earlier interpretations and, if so, how it settles on
a set of explanations to account for the entire pattern of findings depends on
the settings of a variety of PAFs and the further evolution of the incident.

4.5 Current Stage of Implementation

The target capabilities for the Cognitive Environment Simulation are
formalized based on the architecture and processing mechanisms currently
available in the EAGOL Al problem-solving software system. The basic
architecture for CES has been set up and implemented via EAGOL to
exhibit some part of the major target cognitive competencies that were
specified. In many areas further work is needed to evolve CES mechanisms
within the current architecture to deal with the full range of target cognitive
competencies and to better capture current knowledge about human cognitive
processing in complex, dynamic worlds. In the longer term, further
development will occur as more is learned about human cognitive processing
from exercising CES in the NPP context and from new empirical results.

The current CES base of knowledge about the NPP that operators may
possess i8 very limited ‘at this time. It addresses primarily the primary
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system thermodynamic functions and can address significant portions of
primary break incidents against a background of non-pnma.ry breaks such as
cooldown mcldents (i.e., secondary breaks).

. The mechanisms for interacting with CES (setting up plant input, modifying
Performance Adjustment Factors) are currently very limited, as are the
mechanisms for watching and recording CES behavior when it is stimulated
by dynamic sequence of plant data. As a result, at this stage of development'
CES can be eﬁ'ectwely used only by people who have behavioral science
expertise, particularly in cognitive processes and human error, and intimate
knowledge of the Al computer structures used to implement CES (i.e., the
EAGOL software system). Mechanisms for interacting with CES can be
expanded and enhanced to improve productivity and accessibility.

CES currently runs on Symbolics-3600 class computers and is planned to run
on Sun-3 class computer as well. It is built on top of the EAGOL Al
software “‘shell” developed by H. Pople of Seer Systems which uses
Commonlisp and the Flavors object oriented programming environment. The
basic software engine and knowledge base is transportable to several
machines that can support the Commonlisp/Flavors software environment
such as Symbolics, Sun, or Vax computers (however, access to the model
software is done through software tools that are generally machine specific -
(e.g., window packages) so that some, one-time customization will probably
be required to set up access to the model software on machines other than
Sun or Symbolics).

Computer files of plant data in pa.rtxcula.r incidents are needed to stimulate
" CES. These data files consist of a series of ‘“snap-shots,” at some sampling
rate, of the set of alarms and sensor values that would be potcntmlly
available for operational personnel to examine as the incident unfolds. CES is
being set up for testing purposes to receive some of the plant data from a
plant simulation model used for engineering studies and operator training on
Westmghouse type pressurized water reactors. The current CES knoWledge
base is set up with knowledge about some parts of this type of reactor. It is
possible to stimulate CES with' data from other plants if it is encoded in a
format which can be read by the model software. Note that setting up CES
to run incidents on another reactor type assumes that the knowledge base
has been adjusted to reflect plant specific changes in setpoints and equipment
as well as differences in control board, procedures, etc.

The plant data for input to CES can come from data files or from a direct
hookup to some type of plant simulation model. A dynamic plant model is
preferred because CES is a dynamic model of the control of the NPP.
Potential sources of the data on plant behavior include actual reactor
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behavior, test reactor behavior, training simulation models, thermodynamic
codes. The CES user needs to decide what input source is appropriate for a
particular application of CES. Input sources to CES will vary in their ability
to validly capture plant behavior for the kinds of incidents of interest and in
the level of effort required to be interfaced to CES.
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5. Conclusions and Recommendations

5.1 Benefits of the CES Modeling Environment

CES is the first cognitive process simulation tool that allows exploration of
plausible human responses in different emergency situations. By simulating
the cognitive processes that determine situation assessment and intention
formation, it provides the capability to establish analytically what actions an
operator is likely to take under different accident conditions. This means one
can investigate the ability of humans to recover from equipment failures,
execution errors or intention failures to stop or mitigate their consequences.
Similarly, one can investigate errors of commission due to mxsperceptlon of
plant state or other forms of cogmtxve error.

The ability of CES to predict errors of commission is particularly important
since misapprehension of plant state by the operator can result in multiple
actions which can have broad systemic effects. Intention failures are a major
source of human related common mode faslures — multiple failures that are
attributable to a common element (namely, the erroneous intention). For
example, cases where the situation is misperceived, and the operator
deliberately decides it is appropriate to turn off multiple, otherwise
redundant and diverse systems as occurred at Three Mile Island and
Chernobyl. The PRA community generally recognizes the importance of
identifying common mode failure events because they can have large and
widespread effects on risk. CES represents the first cognitive process model
able to predict the wide spread consequences that can follow from an
intention failure.

There are other benefits that derive from the modeling capabilities of CES.
One can investigate the sources of cognitive processing breakdowns and
intention failures. Because CES encompasses the factors that affect the
available problem solving resources such as the specific form and content of
displays, training, and procedures, it provides an analytic tool for
investigating the effects of changes in NPP person-machine systems including
new instrumentation, computer-based displays, operator decision aids,
procedure changes, training, multi-person or multi-facility (e.g., technical
support center) problem solving styles. This means that proposed
changes/enhancements to NPP person-machine systems can be analytically
checked before they have been implemented. The cognitive model can be
used to filter which changes are sufficiently likely to improve performance
that prototype construction and empirical tests are justified. As such, it’
should provide a cost-effective complement to difficult and expensive high-
fidelity empirical evaluations.
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5.2 Recommendations

The next steps which are needed to take advantage of the capabilities of the
CES cognitive model:

e empirically validate the | correspondence between CES and human
behavior,

¢ evolve the model’s capabilities and its accessibility to the potential
user community.

The usefulness of the CES cognitive model depends on the ability of CES to
behave like people do, for the same situation and with the same external
and internal resources. In other words, the key question to be answered is
the validity of CES as a modeling tool for human intention formation. An
initial empirical evaluation and validation study is planned for Phase III of
the research project.

Analogous to the situation with analytical computer codes which model
reactor behavior, there needs to be an ongoing cycle of model evolution and
change as our state of knowledge changes. The Cognitive Environment
Simulation is the repository of the current state of knowledge on operator
cognitive activities and is the best source for interpolating or extrapolating
what human behaviors are likely in cases where there is no or limited
experience — including evaluating changes to the human-machine system and
hypothetical situations that arise in postulated incidents for which there is no
or insufficient empirical data. To fulfill this function CES needs to evolve as

new empirical data are gathered and as our understanding of human error
evolves.

The current implementation of CES does mnot exhibit all of the target
cognitive competencies specified for CES, and it addresses only a small
portion of the ideal scope of NPP tasks. The full range of cognitive

competencies needs to be incorporated into CES a.nd t.he NPP scope covered
by CES needs to be broadened.

The mechanisms for interacting with CES (setting up plant input, modifying
model performance adjustment factors) are currently very limited, as are the
mechanisms for watching and recording CES behavior when it is stimulated
by dynamic sequence of plant data. As a result, CES can be effectively used
‘only by people who have behavioral science expertise, particularly in
cognitive processes and human error, and intimate knowledge of the AI
computer structures used to implement CES (i.e,, the EAGOL software
system). Mechanisms for interacting with CES should be expanded and
enhanced to improve productivity and accessibility.
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5.3 Conclusion

As a result of the model development work in Phase II of this research
project, there exists, for the first time, a simulation model of the cognitive
processes that affect operator intention formation in NPP emergencies.
Reactor thermodynamic models are essential tools for design and risk
assessment of the physical NPP. Similarly, the CES cognitive model will be
an essential tool to assess human performance for the evaluation of human-
machine systems in the NPP and, via the CREATE methodology, for
assessment of the human contribution to risk.

Enough knowledge about operator cognitive activities in emergency situations
and enough knowledge about parts of the NPP have been incorporated for
CES to begin to be a useful tool to explore what would people do in NPP
situations of interest and to identify situations prone to intention failures.
The process of using CES will then provide useful information on human
performance and reliability at the same time that CES undergoes further
evolution, extensions and refinement.
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