

Radiation Center Oregon State University, 100 Radiation Center, Corvallis, Oregon 97331-5903 T 541-737-2341 | F 541-737-0480 | http://ne.oregonstate.edu/facilities/radiation\_center

October 26, 2010

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555

Reference: Oregon State University TRIGA Reactor (OSTR) Docket No. 50-243, License No. R-106

In accordance with section 6.7.1 of the OSTR Technical Specifications, we are hereby submitting the Oregon State University Radiation Center and OSTR Annual Report for the period July 1, 2009 through June 30, 2010.

The Annual Report continues the pattern established over the past few years by including information about the entire Radiation Center rather than concentrating primarily on the reactor. Because this report addresses a number of different interests, it is rather lengthy, but we have incorporated a short executive summary which highlights the Center's activities and accomplishments over the past year.

I declare under penalty of perjury that the foregoing is true and correct.

Executed on:  $10/z_6/10$ 

Sincerely,

Steven R. Reese Director

Cc: <u>Alexander Adams, USNRC</u> Craig Bassett, USNRC Ken Niles, ODOE Rick Spinrad, OSU Rich Holdren, OSU Todd Palmer, OSU

ALD ALD

Radiation Center and TRIGA Reactor Annual Report July 1-June 30, 2009-2010

Ĩ



| Submitted by:<br>Steve R. Reese, Director                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>Radiation Center<br>Oregon State University<br>Corvallis, Oregon 97331-5903<br>Telephone: (541) 737-2341<br>Fax: (541) 737-0480                                                                                                                                                   |
| To satisy the requirements of :<br>A. U.S. Nuclear Regulatory Commission, License No. R-106<br>(Docket No. 50-243), Technical Specification 6.7(e).<br>B. Battelle Energy Alliance, LLC; Subcontract Award No. 00074510.<br>C. Oregon Department of Energy, OOE Rule No. 345-030-010. |
|                                                                                                                                                                                                                                                                                       |

•



# Contents

•

| Part I—Overview      Executive Summary.    6      Introduction    6      Overview of the Radiation Center.    7                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Part II—People      Radiation Center Staff      Reactor Operations Committee      Professional & Research Faculty                                                   |
| Part III—FacilitiesResearch Reactor10Analytical Equipment.11Radioisotope Irradiation Sources11Laboratories & Classrooms12Instrument Repair & Calibration12Library12 |
| Part IV—Reactor<br>Operating Statistics                                                                                                                             |
| Introduction                                                                                                                                                        |
| Part VI—Work<br>Summary                                                                                                                                             |
| Part VII—Words<br>Documents Published or Accepted                                                                                                                   |

## Tables

| Table | Title Page                                                                    |
|-------|-------------------------------------------------------------------------------|
| III.1 | Gammacell 220 <sup>60</sup> Co Irradiator Use                                 |
| III.2 | Student Enrollment in Courses at the Radiation Center                         |
| IV.1  | Present OSTR Operating Statistics                                             |
| IV.2  | OSTR Use Time in Terms of Specific Use Categories                             |
| IV.3  | OSTR Multiple Use Time                                                        |
| IV.4  | Use of OSTR Reactor Experiments                                               |
| IV.5  | Unplanned Reactor Shutdowns and Scrams                                        |
| V.1   | Radiation Protection Program Requirements and Frequencies         34          |
| V.2   | Monthly Summary of Liquid Effluent Releases to the Sanitary Sewer             |
| V.3   | Annual Summary of Liquid Waste Generated and Transferred                      |
| V.4   | Monthly Summary of Gaseous Effluent Releases                                  |
| V.5   | Annual Summary of Solid Waste Generated and Transferred.                      |
| V.6   | Annual Summary of Personnel Radiation Doses Received                          |
| V.7   | Total Dose Equivalent Recorded Within the TRIGA Reactor Facility       40     |
| V.8   | Total Dose Equivalent Recorded on Area Within the Radiation Center.           |
| V.9   | Annual Summary of Radiation and Contamination Levels Within the Reactor       |
| V.10  | Total Dose Equivalent at the TRIGA Reactor Facility Fence                     |
| V.11  | Total Dose Equivalent at the Off-Site Gamma Radiation Monitoring Stations     |
| V.12  | Annual Average Concentration of the Total Net Beta Radioactivity.             |
| V.13  | Beta-Gamma Concentration and Range of LLD Values                              |
| V.14  | Radioactive Material Shipments under NRC General License R-106         48     |
| V.15  | Radioactive Material Shipments under Oregon License ORE 90005         49      |
| V.16  | Radioactive Material Shipments Under NRC General License 10 CFR 110.23        |
| VI.1  | Institutions and Agencies Which Utilized the Radiation Center                 |
| VI.2  | Graduate Student Research Which Utilized the Radiation Center                 |
| VI.3  | Listing of Major Research & Service Projects Performed and Their Funding      |
| VI.4  | Summary of Radiological Instrumentation Calibrated to Support OSU Departments |
| VI.5  | Summary of Radiological Instrumentation Calibrated to Support Other Agencies  |
| VI.6  | Summary of Visitors to the Radiation Center                                   |

## Figures

| Table | Title                                                           | Page |
|-------|-----------------------------------------------------------------|------|
| IV.1  | Monthly Surveillance and Maintenance (Sample Form)              | 22   |
| IV.2  | Quarterly Surveillance and Maintenance (Sample Form)            | 23   |
| IV.3  | Semi-Annual Surveillance and Maintenance (Sample Form)          | 25   |
| IV.4  | Annual Surveillance and Maintenance (Sample Form)               | 27   |
| V.1   | Monitoring Stations for the OSU TRIGA Reactor                   | 51   |
| VI.1  | Summary of the Types of Radiological Instrumentation Calibrated | 76   |

## Acknowledgements

The past year we have had the opportunity to catch our breath from the high intensity activities related to the conversion. In some ways a sense of normalization has returned that we have not seen for a few years now. It is important to realize that the effort that was put forth will reap benefits not just in terms of the new reactor core or the 20-year license extension but also by creating the ability to perform analyses and evaluate changes to the reactor that we were not previously in a position to do. This was precisely why the decision was made to perform as much of the license renew and conversion ourselves. We have in a very tangible sense taken true ownership of the reactor. This is something we should all be very proud of. In this regard, I for one am extremely grateful for all effort put forth by the Radiation Center Staff.

As this is an acknowledgement section, there are a couple of people whom deserve special recognition. First, I'd like to thank Dr. Rich Holdren for his unwavering support especially in this year of transition for the Vice President for Research. He has provided the continuity and support that has been both effective and appreciated. Secondly, I wish to send our warmest regards on the retirement of Shirley Campbell. She contributed to the Radiation Center across three decades of service with a level of dedication that is only rarely seen. More importantly, she has been a good friend. We wish her and her husband Bob all the best in retirement. She will be missed. This report is dedicated to her.



Shirley Cmapbell pictured with several of her current and past supervisors. Pictured left to right, Steve Reese, Radiation Center Director, Luke McIlvenny, Business and Engineering Business Center, Steve Binney and Art Johnson, Past Radiation Center Directors.

# Overview

## **Executive Summary**

The data from this reporting year shows that the use of the Radiation Center and the Oregon State TRIGA reactor (OSTR) has continued to grow in many areas.

The Radiation Center supported 54 different courses this year, mostly in the Department of Nuclear Engineering and Radiation Health Physics. About 30% of these courses involved the OSTR. The number of OSTR hours used for academic courses and training was 46, while 2,543 hours were used for research projects. Eighty-two percent of the OSTR research hours were in support of off-campus research projects, reflecting the use of the OSTR nationally and internationally. Radiation Center users published or submitted 109articles this year, and made 51 presentations on work that involved the OSTR or Radiation Center. The number of samples irradiated in the reactor during this reporting period was 688. Funded OSTR use hours comprised 88% of the research use.

Personnel at the Radiation Center conducted 106 tours of the facility, accommodating 2,132 visitors. The visitors included elementary, middle school, high school, and college students; relatives and friends; faculty; current and prospective clients; national laboratory and industrial scientists and engineers; and state, federal and international officials. The Radiation Center is a significant positive attraction on campus because visitors leave with a good impression of the facility and of Oregon State University.

The Radiation Center projects database continues to provide a useful way of tracking the many different aspects of work at the facility. The number of projects supported this year was 191. Reactor related projects comprised 74% of all projects. The total research supported by the Radiation Center, as reported by our researchers, was \$1,469,543. The actual total is likely considerably higher. This year the Radiation Center provided service to 55 different organizations/institutions, 35% of which were from other states and 20% of which were from outside the U. S. and Canada. So while the Center's primary mission is local, it is also a facility with a national and international clientele.

The Radiation Center web site provides an easy way for potential users to evaluate the Center's facilities and capabilities as well as to apply for a project and check use charges. The address is: http://radiationcenter.oregonstate.edu.

### Introduction

The current annual report of the Oregon State University Radiation Center and TRIGA Reactor follows the usual format by including information relating to the entire Radiation Center rather than just the reactor. However, the information is still presented in such a manner that data on the reactor may be examined separately, if desired. It should be noted that all annual data given in this report covers the period from July 1, 2009 through June 30, 2010. Cumulative reactor operating data in this report relates only to the LEU fueled core. This covers the period beginning July 1, 2008 to the present date. For a summary of data on the reactor's two other cores, the reader is referred to previous annual reports.

In addition to providing general information about the activities of the Radiation Center, this report is designed to meet the reporting requirements of the U. S. Nuclear Regulatory Commission, the U. S. Department of Energy, and the Oregon Department of Energy. Because of this, the report is divided into several distinct parts so that the reader may easily find the sections of interest.

### **Overview of the Radiation Center**

The Radiation Center is a unique facility which serves the entire OSU campus, all other institutions within the Oregon University System, and many other universities and organizations throughout the nation and the world. The Center also regularly provides special services to state and federal agencies, particularly agencies dealing with law enforcement, energy, health, and environmental quality, and renders assistance to Oregon industry. In addition, the Radiation Center provides permanent office and laboratory space for the OSU Department of Nuclear Engineering and Radiation Health Physics, the OSU Institute of Nuclear Science and Engineering, and for the OSU nuclear chemistry, radiation chemistry, geochemistry and radiochemistry programs. There is no other university facility with the combined capabilities of the OSU Radiation Center in the western half of the United States.

Located in the Radiation Center are many items of specialized equipment and unique teaching and research facilities. They include a TRIGA Mark II research nuclear reactor; a <sup>60</sup>Co gamma irradiator; a large number of state-of-the art computer-based gamma radiation spectrometers and associated germanium detectors; and a variety of instruments for radiation measurements and monitoring. Specialized facilities for radiation work include teaching and research laboratories with instrumentation and related equipment for performing neutron activation analysis and radiotracer studies; laboratories for plant experiments involving radioactivity; a facility for repair and calibration of radiation protection instrumentation; and facilities for packaging radioactive materials for shipment to national and international destinations.

A major non-nuclear facility housed in the Radiation Center is the one-quarter scale thermal hydraulic advanced plant experimental (APEX) test facility for the Westinghouse AP600 and AP1000 reactor designs. The AP600 and AP1000 are next-generation nuclear reactor designs which incorporate many passive safety features as well as considerably simplified plant systems and equipment. APEX operates at pressures up to 400 psia and temperatures up to 450°F using electrical heaters instead of nuclear fuel. All major components of the AP600 and AP1000 are included in APEX and all systems are appropriately scaled to enable the experimental measurements to be used for safety evaluations and licensing of the full scale plant. This world-class facility meets exacting quality assurance criteria to provide assurance of safety as well as validity of the test results.

Also housed in the Radiation Center is the Advanced Thermal Hydraulics Research Laboratory (ATHRL), which is used for state-of-the-art two-phase flow experiments.

The Radiation Center staff regularly provides direct support and assistance to OSU teaching and research programs. Areas of expertise commonly involved in such efforts include nuclear engineering, nuclear and radiation chemistry, neutron activation analysis, radiation effects on biological systems, radiation dosimetry, environmental radioactivity, production of short-lived radioisotopes, radiation shielding, nuclear instrumentation, emergency response, transportation of radioactive materials, instrument calibration, radiation health physics, radioactive waste disposal, and other related areas.

In addition to formal academic and research support, the Center's staff provides a wide variety of other services including public tours and instructional programs, and professional consultation associated with the feasibility, design, safety, and execution of experiments using radiation and radioactive materials.

## People

This section contains a listing of all people who were residents of the Radiation Center or who worked a significant amount of time at the Center during this reporting period.

It should be noted that not all of the faculty and students who used the Radiation Center for their teaching and research are listed. Summary information on the number of people involved is given in Table VI.1, while individual names and projects are listed in Tables VI.2 and VI.3.

## **Radiation Center Staff**

Steve Reese, Director Dina Pope, Office Manager Shirley Campbell, Business Manager Beth Lucason, Receptionist S. Todd Keller, Reactor Administrator Gary Wachs, Reactor Supervisor, Senior Reactor Operator Robert Schickler, Senior Reactor Operator Wade Marcum, Reactor Operator Scott Menn, Senior Health Physicist Jim Darrough, Health Physicist Leah Minc, Neutron Activation Analysis Manager Steve Smith, Scientific Instrument Technician, Senior Reactor Operator Erin Cimbri, Custodian Alison Arnold, Health Physics Monitor (Student) Ryne Burgess, Health Physics Monitor (Student) Kyle Combs, Health Physics Monitor (Student) Joel Moreno, Health Physics Monitor (Student) David Horn, Graduate Teaching Assistant

## **Reactor Operations Committee**

*Todd Palmer, Chair* OSU Nuclear Engineering and Radiation Health Physics

**Rainier Farmer** OSU Radiation Safety

*Abi Tavakoli Farsoni* OSU Nuclear Engineering and Radiation Health Physics

*Michael Hartman* University of Michigan

*Todd Keller* OSU Radiation Center

Mario Magana OSU Electrical Engineering

Scott Menn OSU Radiation Center

*Wade Richards* National Institute of Standards and Techology

Steve Reese (not voting) OSU Radiation Center

Gary Wachs (not voting) OSU Radiation Center

**Bill Warnes** OSU Mechanical Engineering

## **Professional and Research Faculty**

**Binney, Stephen E.** Director Emeritus, Radiation Center, Professor Emeritus, Nuclear Engineering and Radiation Health Physics

Daniels, Malcolm Professor Emeritus, Chemistry

\*Hamby, David Professor, Nuclear Engineering and Radiation Health Physics

*Hart, Lucas P.* Faculty Research Associate, Chemistry

\*Higginbotham, Jack F. Director, Oregon Space Grant, Professor, Nuclear Engineering and Radiation Health Physics

\**Higley, Kathryn A.* Professor, Nuclear Engineering and Radiation Health Physics

Johnson, Arthur G. Director Emeritus, Radiation Center, Professor Emeritus, Nuclear Engineering and Radiation Health Physics

*Keller, S. Todd* Reactor Administrator, Radiation Center

*Klein, Andrew C.* Professor, Nuclear Engineering and Radiation Health Physics

\*Krane, Kenneth S. Professor Emeritus, Physics

**Camille Lodwick** Assistant Professor, Nuclear Engineering and Radiation Health Physics

\*Loveland, Walter D. Professor, Chemistry

\**Menn, Scott A.* Senior Health Physicist, Radiation Center

\**Minc, Leab* Assistant Professor Senior Research, Radiation Center

\**Palmer, Todd S.* Associate Professor, Nuclear Engineering and Radiation Health Physics

\**Paulenova, Alena* Assistant Professor, Senior Research, Radiation Center

**Pope, Dina** Office Manager, Radiation Center \**Reese, Steven R.* Director, Radiation Center

*Reyes, Jr., José N.* Department Head, Nuclear Engineering and Radiation Health Physics, ATHRL Principal Investigator

*Ringle, John C.* Professor Emeritus, Nuclear Engineering and Radiation Health Physics

**Robinson, Alan H.** Department Head, Emeritus, Nuclear Engineering and Radiation Health Physics

\*Schmitt, Roman A. Professor Emeritus, Chemistry

\*Wachs, Gary Reactor Supervisor, Radiation Center

*Woods, Brian* Assistant Professor, Nuclear Engineering and Radiation Health Physics

*Wu, Qiao* Associate Professor, Nuclear Engineer and Radiation Health Physics

\*OSTR users for research and/or teaching

## Facilities

## **Research Reactor**

The Oregon State University TRIGA Reactor (OSTR) is a water-cooled, swimming pool type research reactor which uses uranium/zirconium hydride fuel elements in a circular grid array. The reactor core is surrounded by a ring of graphite which serves to reflect neutrons back into the core. The core is situated near the bottom of a 22-foot deep water-filled tank, and the tank is surrounded by a concrete bioshield which acts as a radiation shield and structural support. The reactor is licensed by the U.S. Nuclear Regulatory Commission to operate at a maximum steady state power of 1.1 MW and can also be pulsed up to a peak power of about 2500 MW.

The OSTR has a number of different irradiation facilities including a pneumatic transfer tube, a rotating rack, a thermal column, four beam ports, five sample holding (dummy) fuel elements for special in-core irradiations, an in-core irradiation tube, and a cadmium-lined in-core irradiation tube for experiments requiring a high energy neutron flux.

The **pneumatic transfer facility** enables samples to be inserted and removed from the core in four to five seconds. Consequently this facility is normally used for neutron activation analysis involving short-lived radionuclides. On the other hand, the **rotating rack** is used for much longer irradiation of samples (e.g., hours). The rack consists of a circular array of 40 tubular positions, each of which can hold two sample tubes. Rotation of the rack ensures that each sample will receive an identical irradiation.

The reactor's **thermal column** consists of a large stack of graphite blocks which slows down neutrons from the reactor core in order to increase thermal neutron activation of samples. Over 99% of the neutrons in the thermal column are thermal neutrons. Graphite blocks are removed from the thermal column to enable samples to be positioned inside for irradiation.

The **beam ports** are tubular penetrations in the reactor's main concrete shield which enable neutron and gamma radiation to stream from the core when a beam port's shield plugs are removed. The neutron radiography facility utilized the tangential beam port (beam port #3) to produce ASTM E545 category I radiography capability. The other beam ports are available for a variety of experiments.

If samples to be irradiated require a large neutron fluence, especially from higher energy neutrons, they may be inserted into a dummy fuel element. This device will then be placed into



one of the core's inner grid positions which would normally be occupied by a fuel element. Similarly samples can be placed in the **in-core irradiation tube (ICIT)** which can be inserted in the same core location.

#### The cadmium-lined in-core irradiation tube (CLICIT)

enables samples to be irradiated in a high flux region near the center of the core. The cadmium lining in the facility eliminates thermal neutrons and thus permits sample exposure to higher energy neutrons only. The cadmium-lined end of this air-filled aluminum irradiation tube is inserted into an inner grid position of the reactor core which would normally be occupied by a fuel element. It is the same as the ICIT except for the presence of the cadmium lining.

The two main uses of the OSTR are instruction and research.

#### Instruction

Instructional use of the reactor is twofold. First, it is used significantly for classes in Nuclear Engineering, Radiation Health Physics, and Chemistry at both the graduate and undergraduate levels to demonstrate numerous principles which have been presented in the classroom. Basic neutron behavior is the same in small reactors as it is in large power reactors, and many demonstrations and instructional experiments can be performed using the OSTR which cannot be carried out with a commercial power reactor. Shorter-term demonstration experiments are also performed for many undergraduate students in Physics, Chemistry, and Biology classes, as well as for visitors from other universities and colleges, from high schools, and from public groups.

The second instructional application of the OSTR involves educating reactor operators, operations managers, and health physicists. The OSTR is in a unique position to provide such education since curricula must include hands-on experience at an operating reactor and in associated laboratories. The many types of educational programs that the Radiation Center provides are more fully described in Part VI of this report.

During this reporting period the OSTR accommodated a number of different OSU academic classes and other academic programs. In addition, portions of classes from other Oregon universities were also supported by the OSTR.

#### Research

The OSTR is a unique and valuable tool for a wide variety of research applications and serves as an excellent source of neutrons and/or gamma radiation. The most commonly used experimental technique requiring reactor use is instrumental neutron activation analysis (INAA). This is a particularly sensitive method of elemental analysis which is described in more detail in Part VI.

The OSTR's irradiation facilities provide a wide range of neutron flux levels and neutron flux qualities which are sufficient to meet the needs of most researchers. This is true not only for INAA, but also for other experimental purposes such as the  $^{39}$ Ar/ $^{40}$ Ar ratio and fission track methods of age dating samples.

## **Analytical Equipment**

The Radiation Center has a large variety of radiation detection instrumentation. This equipment is upgraded as necessary, especially the gamma ray spectrometers with their associated computers and germanium detectors. Additional equipment for classroom use and an extensive inventory of portable radiation detection instrumentation are also available.

Radiation Center nuclear instrumentation receives intensive use in both teaching and research applications. In addition, service projects also use these systems and the combined use often results in 24-hour per day schedules for many of the analytical instruments. Use of Radiation Center equipment extends beyond that located at the Center and instrumentation may be made available on a loan basis to OSU researchers in other departments.

## **Radioisotope Irradiation Sources**

The Radiation Center is equipped with a 1,644 curie (as of 7/27/01) Gammacell 220 <sup>60</sup>Co irradiator which is capable of delivering high doses of gamma radiation over a range of dose rates to a variety of materials.

Typically, the irradiator is used by researchers wishing to perform mutation and other biological effects studies; studies in the area of radiation chemistry; dosimeter testing; sterilization of food materials, soils, sediments, biological specimen, and other media; gamma radiation damage studies; and other such applications. In addition to the <sup>60</sup>Co irradiator, the Center is also equipped with a variety of smaller <sup>60</sup>Co, <sup>137</sup>Cs, <sup>226</sup>Ra, plutonium-beryllium, and other isotopic sealed sources of various radioactivity levels which are available for use as irradiation sources.

During this reporting period there was a diverse group of projects using the <sup>60</sup>Co irradiator. These projects included the

irradiation of a variety of biological materials including different types of seeds.

In addition, the irradiator was used for sterilization of several media and the evaluation of the radiation effects on different materials. Table III.1 provides use data for the Gammacell 220 irradiator.

## **Laboratories and Classrooms**

The Radiation Center is equipped with a number of different radioactive material laboratories designed to accommodate research projects and classes offered by various OSU academic departments or off-campus groups.

Instructional facilities available at the Center include a laboratory especially equipped for teaching radiochemistry and a nuclear instrumentation teaching laboratory equipped with modular sets of counting equipment which can be configured to accommodate a variety of experiments involving the measurement of many types of radiation. The Center also has two student computer rooms.

In addition to these dedicated instructional facilities, many other research laboratories and pieces of specialized equipment are regularly used for teaching. In particular, classes are routinely given access to gamma spectrometry equipment located in Center laboratories. A number of classes also regularly use the OSTR and the Reactor Bay as an integral part of their instructional coursework.

There are two classrooms in the Radiation Center which are capable of holding about 35 and 18 students. In addition, there are two smaller conference rooms and a library suitable for graduate classes and thesis examinations. As a service to the student body, the Radiation Center also provides an office area for the student chapters of the American Nuclear Society and the Health Physics Society.

This reporting period saw continued high utilization of the Radiation Center's thermal hydraulics laboratory. This laboratory is being used by Nuclear Engineering faculty members to accommodate a one-quarter scale model of the Palisades Nuclear Power reactor. The multi-million dollar advanced plant experimental (APEX) facility was fully utilized by the U. S. Nuclear Regulatory Commission to provide licensing data and to test safety systems in "beyond design basis" accidents. The fully scaled, integral model APEX facility uses electrical heating elements to simulate the fuel elements, operates at 450°F and 400 psia, and responds at twice real time. It is the only facility of its type in the world and is owned by the U. S. Department of Energy and operated by OSU. In addition, a new building, Advanced Thermal Hydraulics Research Laboratory (ATHRL) was constructed next to the Reactor Building in 1998.

All of the laboratories and classrooms are used extensively during the academic year. A listing of courses accommodated at the Radiation Center during this reporting period along with their enrollments is given in Table III.2.

### Instrument Repair & Calibration Facility

The Radiation Center has a facility for the repair and calibration of essentially all types of radiation monitoring instrumentation. This includes instruments for the detection and measurement of alpha, beta, gamma, and neutron radiation. It encompasses both high range instruments for measuring intense radiation fields and low range instruments used to measure environmental levels of radioactivity.

The Center's instrument repair and calibration facility is used regularly throughout the year and is absolutely essential to the continued operation of the many different programs carried out at the Center. In addition, the absence of any comparable facility in the state has led to a greatly expanded instrument calibration program for the Center, including calibration of essentially all radiation detection instruments used by state and federal agencies in the state of Oregon. This includes instruments used on the OSU campus and all other institutions in the Oregon University System, plus instruments from the Oregon Health Division's Radiation Protection Services, the Oregon Department of Energy, the Oregon Public Utilities Commission, the Oregon Health Sciences University, the Army Corps of Engineers, and the U. S. Environmental Protection Agency.

## Library

The Radiation Center has a library containing a significant collections of texts, research reports, and videotapes relating to nuclear science, nuclear engineering, and radiation protection.

The Radiation Center is also a regular recipient of a great variety of publications from commercial publishers in the nuclear field, from many of the professional nuclear societies, from the U. S. Department of Energy, the U. S. Nuclear Regulatory Commission, and other federal agencies. Therefore, the Center

library maintains a current collection of leading nuclear research and regulatory documentation. In addition, the Center has a collection of a number of nuclear power reactor Safety Analysis Reports and Environmental Reports specifically prepared by utilities for their facilities.

The Center maintains an up-to-date set of reports from such organizations as the International Commission on Radiological Protection, the National Council on Radiation Protection and Measurements, and the International Commission on Radiological Units. Sets of the current U.S. Code of Federal Regulations for the U.S. Nuclear Regulatory Commission, the U.S. Department of Transportation, and other appropriate federal agencies, plus regulations of various state regulatory agencies are also available at the Center. The Radiation Center videotape library has over one hundred tapes on nuclear engineering, radiation protection, and radiological emergency response topics. In addition, the Radiation Center uses videotapes for most of the technical orientations which are required for personnel working with radiation and radioactive materials. These tapes reproduced, recorded, and edited by Radiation Center staff, using the Center's videotape equipment and the facilities of the OSU Communication Media Center.

The Radiation Center library is used mainly to provide reference material on an as-needed basis. It receives extensive use during the academic year. In addition, the orientation videotapes are used intensively during the beginning of each term and periodically thereafter.

| Purpose of Irradiation    | Samples                                    | Dose Range<br>(rads)                       | Number of<br>Irradiations | Use Time<br>(hours) |
|---------------------------|--------------------------------------------|--------------------------------------------|---------------------------|---------------------|
| <b>Biological Studies</b> | Mice                                       | 5.0x10 <sup>2</sup> to 9.0x10 <sup>2</sup> | 24                        | 1                   |
| Sterilization             | chitosan, mouse diet,<br>wood, bone cement | 2.0x10 <sup>6</sup> to 5.0x10 <sup>6</sup> | 42                        | 3384                |
| Material Evaluation       | polymers, chemicals,<br>silcon polymers    | 3.0x10 <sup>5</sup> to 8.0x10 <sup>6</sup> | 23                        | 892                 |
| Botanical Studies         | wheat seeds, seeds, wheat<br>germ          | 1.0x10 <sup>3</sup> to 7.5x10 <sup>4</sup> | 63                        | 14                  |
| Totals                    |                                            |                                            | 152                       | 4291                |

## Table III.1Gammacell 220 60Co Irradiator Use

## Table III.2

Facilities

## Student Enrollment in Courses Which are Taught or Partially Taught at the Radiation Center

|                     |        | Number of Students                                                  |                |              |                |                |
|---------------------|--------|---------------------------------------------------------------------|----------------|--------------|----------------|----------------|
| Course #            | CREDIT | COURSE TITLE                                                        | Summer<br>2009 | Fall<br>2009 | Winter<br>2010 | Spring<br>2010 |
| NE/ RHP 114*        | 2      | Introduction to Nuclear Engineering and Radiation<br>Health Physics |                | 43           |                |                |
| NE/ RHP 115         | 2      | Introduction to Nuclear Engineering and Radiation<br>Health Physics |                |              | 44             |                |
| NE/ RHP 116**       | 2      | Introduction to Nuclear Engineering and Radiation<br>Health Physics |                |              |                | 37             |
| NE/ RHP 234         | 4      | Nuclear and Radiation Physics I                                     |                | 41           |                |                |
| NE/ RHP 235         | 4      | Nuclear and Radiation Physics II                                    |                |              | 39             |                |
| NE/ RHP 236*        | · 4    | Nuclear Radiation Detection & Instrumentation                       |                |              |                | 38             |
| NE 311              | 4      | Intro to Thermal Fluids                                             |                | 20           | 7              |                |
| NE 312              | 4      | Thermodynamics                                                      |                |              | 16             | 11             |
| NE 319              | 3      | Societal Aspects of Nuclear technology                              |                |              | 49             |                |
| NE 331              | 4      | Intro to Fluid Mechanics                                            |                |              | 18             | 8              |
| NE 332              | 4      | Heat Transfer                                                       |                | 3            |                | 16             |
| NE/RHP 333          | 3      | Mathematical methods for NE/RHP                                     |                |              | 13             |                |
| NE/RHP 401/501/601  | 1-16   | Research                                                            |                |              |                | 1              |
| NE/RHP 405/505/605  | 1-16   | Reading and Conference                                              | 1              |              | 1              | 2              |
| NE/RHP 406/506/606  | 1-16   | Projects                                                            |                | 1            | 1              | 1              |
| NE/RHP 407/507/607  | 1      | Nuclear Engineering Seminar                                         |                | 57           | 69             | 15             |
| NE/ RHP 410/510/610 | 1-12   | Internship                                                          |                | 1            | 1              | 1              |
| NE/ RHP 415/515     | 2      | Nuclear Rules and Regulations                                       |                | 45           |                |                |
| NE 451/551          | 4      | Neutronic Analysis                                                  |                | 33           |                |                |
| NE 452/552          | 4      | Neutronic Analysis                                                  |                |              | 32             |                |
| NE 457**            |        | Neuclear Reactor Lab                                                |                |              |                | 23             |
| NE 467/567          | 4      | Nuclear Reactor Thermal Hydraulics                                  |                | 35           |                |                |
| NE 667              | 4      | Nuclear Reactor Thermal Hydraulics                                  |                |              |                |                |
| NE/RHP 435/535      |        | External Dosimetry & Radiation Shielding                            |                |              |                | 49             |
| NE 474/574          | 4      | Nuclear System Design I                                             |                |              | 26             |                |
| NE/RHP 475/575      | 4      | Nuclear System Design II                                            |                |              |                | 29             |
| NE/RHP 479*         | 1-4    | Individual Design Project                                           |                |              |                |                |
| NE/RHP 481*         | 4      | Radiation Protection                                                |                | 23           |                |                |

# Table III.2 (continued)Student Enrollment in Courses Which are Taught or<br/>Partially Taught at the Radiation Center

|                |        |                                              | נ              | Number of Students |                |                |  |
|----------------|--------|----------------------------------------------|----------------|--------------------|----------------|----------------|--|
| Course #       | CREDIT | COURSE TITLE                                 | Summer<br>2007 | Fall<br>2007       | Winter<br>2008 | Spring<br>2008 |  |
| NE/RHP 582*    | 4      | Applied Radiation Safety                     |                |                    | 29             |                |  |
| RHP 483/583    | 4      | Radiation Biology                            |                |                    | 43             |                |  |
| RHP 488/588*   | 3      | Radioecology                                 |                | 41                 |                |                |  |
| NE/RHP 590     | 4      | Internal Dosimetry                           |                |                    | 24             |                |  |
| NE/RHP 503/603 | 1      | Thesis                                       | 17             | 36                 | 32             | 32             |  |
| NE/ RHP 516*   | 4      | Radiochemistry                               | 16             |                    |                | 13             |  |
| NE 526         | 3      | Numerical Methods for Engineering Analysis   |                |                    |                |                |  |
| NE/RHP 531     | 3      | Nuclear Physics for Engineers and Scientists |                | 65                 |                |                |  |
| NE/RHP 536*    |        | Advanced Radiation Detection & Measurement   | 33             |                    | 22             |                |  |
| NE/RHP 537     |        | Digital Spectrometer Design                  |                |                    |                | 7              |  |
| MP 541         |        | Diagnostic Imaging Physics                   |                |                    |                |                |  |
| NE 550         | 3      | Nuclear Medicine                             |                |                    |                |                |  |
| NE 553*        | 3      | Advanced Nuclear Reactor Physics             |                |                    |                | 14             |  |
| NE 568         | 3      | Nuclear Reactor Safety 5                     |                |                    |                | T              |  |

#### Course From Other OSU Departments

| CH 123*  | 5 | General Chemistry                    |         | 312 |
|----------|---|--------------------------------------|---------|-----|
| CH 222*  | 5 | General Chemistry (Science Majors)   | 288     |     |
| CH 225H* | 5 | Honors General Chemistry             | 49      |     |
| CH 462*  | 3 | Experimental Chemistry II Laboratory | <br>19  |     |
| GEO 330* | 3 | Environmental Conservation           | <br>32  |     |
| PH 202   | 5 | General Physics                      | <br>217 |     |

ST Special Topics

\* OSTR used occasionally for demonstration and/or experiments

\*\* OSTR used heavily

# Reactor

## **Operating Status**

During the operating period between July 1, 2009 and June 30, 2010, the reactor produced 1126 MWH of thermal power during its 1259 critical hours. The new low enriched uranium (LEU) fuel loading continued to provide a neutron fluence consistent with SAR analysis values.

Tables IV.1 through IV.3 provide annual energy production, fuel usage and use request data on the original 20% enriched and the 70% enriched (FLIP) cores.

## **Experiments Performed**

During the current reporting period there were nine approved reactor experiments available for use in reactorrelated programs. They are:

- A-1 Normal TRIGA Operation (No Sample Irradiation).
- B-3 Irradiation of Materials in the Standard OSTR Irradiation Facilities.
- B-11 Irradiation of Materials Involving Specific Quantities of Uranium and Thorium in the Standard OSTR Irradiation Facilities.
- B-12 Exploratory Experiments.
- B-23 Studies Using TRIGA Thermal Column.
- B-29 Reactivity Worth of Fuel.
- B-31 TRIGA Flux Mapping.
- B-33 Irradiation of Combustible Liquids in Rotating Rack.
- B-34 Irradiation of enriched uranium in the Neutron Radiography Facility.
- B-35 Irradiation of enriched uranium in the PGNAA Facility.



Of these available experiments, three were used during the reporting period. Table IV.4 provides information related to the frequency of use and the general purpose of their use.

#### Inactive Experiments

Presently 33 experiments are in the inactive file. This consists of experiments which have been performed in the past and may be reactivated. Many of these experiments are now performed under the more general experiments listed in the previous section. The following list identifies these inactive experiments.

- A-2 Measurement of Reactor Power Level via Mn Activation.
- A-3 Measurement of Cd Ratios for Mn, In, and Au in Rotating Rack.

| A-4 | Neutron | Flux | Measurements | in | TRIGA. |
|-----|---------|------|--------------|----|--------|
|-----|---------|------|--------------|----|--------|

- A-5 Copper Wire Irradiation.
  - A-6 In-core Irradiation of LiF Crystals.
  - A-7 Investigation of TRIGA's Reactor Bath Water Temperature Coefficient and High Power Level Power Fluctuation.
  - B-1 Activation Analysis of Stone Meteorites, Other Meteorites, and Terrestrial Rocks.
  - B-2 Measurements of Cd Ratios of Mn, In, and Au in Thermal Column.
  - B-4 Flux Mapping.
  - B-5 In-core Irradiation of Foils for Neutron Spectral Measurements.
  - B-6 Measurements of Neutron Spectra in External Irradiation Facilities.
  - B-7 Measurements of Gamma Doses in External Irradiation Facilities.
  - B-8 Isotope Production.
  - B-9 Neutron Radiography.
  - B-10 Neutron Diffraction.
  - B-13 This experiment number was changed to A-7.
  - B-14 Detection of Chemically Bound Neutrons.
  - B-15 This experiment number was changed to C-1.
  - B-16 Production and Preparation of <sup>18</sup>F.
  - B-17 Fission Fragment Gamma Ray Angular Correlations.
  - B-18 A Study of Delayed Status (n, γ) Produced Nuclei.
  - B-19 Instrument Timing via Light Triggering.
  - B-20 Sinusoidal Pile Oscillator.
  - B-21 Beam Port #3 Neutron Radiography Facility.
  - B-22 Water Flow Measurements Through TRIGA Core.
  - B-24 General Neutron Radiography.
  - B-25 Neutron Flux Monitors.
  - B-26 Fast Neutron Spectrum Generator.
  - B-27 Neutron Flux Determination Adjacent to the OSTR Core.

- B-28 Gamma Scan of Sodium (TED) Capsule.
- B-30 NAA of Jet, Diesel, and Furnace Fuels.
- B-32 Argon Production Facility
- C-1 PuO<sub>2</sub> Transient Experiment.

#### **Unplanned Shutdowns**

There were two unplanned reactor shutdowns during the current reporting period. Table IV.5 details these events.

### Changes Pursuant to 10 CFR 50-59

Three new safety evaluations were performed in support of reactor operations this year. They are:

## 08-03, OSTROP 29, Reactor Re-Start with LEU 30/20 Fuel

#### Description

This is a new procedure written to allow the return to power of the OSTR using our low enriched conversion fuel.

#### 09-02 and 03, RCHHP 31 Procedural Changes

#### Description

RCHHP 31, Procedures for Sampling and Pumping the Liquid Waste Hold-Up Tank, was modified to be consistent with OSU policy for the discharge of radioactive material to the sanitary sewer system.

#### 10-01, Changes to experiment B35, Irradiation of Enriched Uranium in the Prompt Gamma Neutron Activation Analysis Facility

#### Description

This experiment change allows the re-use of previously irradiated HEU foils following an assessment of the accumulated fission product gases and their potential release to the reactor bay.

#### 09-10 Annual Report

## **Surveillance and Maintenance**

Non-Routine Maintenance

#### July 2009

- Replaced the EDG battery charger.
- Internal diaphragm on the reactor tank water level detector punctured during cleaning. A new capacitance type detector installed to upgrade.

#### August 2009

- Replaced demin filter due to accumulated material from the reflector gas release event.
- Reactor bay ventilation heater coils replaced with horizontally configured unit.

#### September 2009

 Cleaned old accumulated moly grease from the Transient rod drive system and relubricated with Lubriplate grease.

#### October 2009

 Replaced bearings in D204 Biology exhaust hood fan in D400.

#### December 2009

- Replaced all electrical buswork on the N-S crane electrical track, including the addition of a 4th ground rail.
- Tightened primary heat exchanger inlet piping flange due to leakage possibly caused by excessive low bay temperatures.
- Larger steam trap and drain line installed on the reactor bay ventilation heating system resulting in proper operation of the bay heating system.

#### February 2010

- Replaced secondary cooling pump seal.
- Replaced failed CAM master power on toggle switch.
- Replaced damaged bay steam heating valve diaphragm.
- Repaired a leak in the bay roof heat exchanger piping penetration.

#### March 2010

- Replaced failed Safe Channel UIC with spare CIC and repaired left hand drawer HV power supply.

#### May 2010

 Added a "post" to the control panel of the EDG to prevent actuation of the emergency shutdown switch when the access door is closed.

#### June 2010

 Replaced both detector and rate meter for failing ARM detector #7. 09-10 Annual Report \_\_\_\_\_

| Table IV.1         Present OSTR Operating Statistics             |                              |                   |  |  |  |  |  |
|------------------------------------------------------------------|------------------------------|-------------------|--|--|--|--|--|
| Operational Data For LEU Core                                    | Annual Values<br>(2009/2010) | Cumulative Values |  |  |  |  |  |
| MWH of energy produced                                           | 1126                         | 1975              |  |  |  |  |  |
| MWD of energy produced                                           | 46.9                         | 82:3              |  |  |  |  |  |
| Grams. <sup>235</sup> U used                                     | 65                           | 114               |  |  |  |  |  |
| Number of fuel elements added to (+) or removed(-) from the core | 0                            | .90               |  |  |  |  |  |
| Number of pulses                                                 | 20                           | 65                |  |  |  |  |  |
| Hours reactor critical                                           | 1259                         | 2205              |  |  |  |  |  |
| Hours at full power (1 MW)                                       | 1120                         | 1961              |  |  |  |  |  |
| Number of startup and shutdown checks                            | 252                          | 184               |  |  |  |  |  |
| Number of irradiation requests processed                         | 169                          | .188              |  |  |  |  |  |
| Number of samples irradiated                                     | 688                          | 1192              |  |  |  |  |  |

### 09-10 Annual Report

AST STANOT

| OSTR Use Time in T                 | Table IV.2<br>erms of Specific I | Jse Categories               |
|------------------------------------|----------------------------------|------------------------------|
| OSTR Use Category                  | Annual Values<br>(hours)         | Cumulative Values<br>(hours) |
| Teaching (departmental and others) | 34                               | 13,471.5                     |
| OSU Research                       | 455                              | 13,393                       |
| Off Campus research                | 2,088                            | 31,632                       |
| Demonstrations                     | 12                               | 17                           |
| Reactor preclude time              | 932                              | 28,472                       |
| Facility time                      | 5                                | 7,196                        |
| Total Reactor Use Time             | 3,526                            | 94,415.5                     |

5

|     | Ta          | ble   | · I.V | 3   |     |
|-----|-------------|-------|-------|-----|-----|
| OST | <b>R</b> Mi | iltip | le Us | e T | ime |

р -4 1

| Number of Users         | Annual Values (hours) | Cumulative Values<br>(hours) |
|-------------------------|-----------------------|------------------------------|
| Two                     | 425                   | 7,497                        |
| Three                   | •• 303                | 3;163                        |
| Four                    | 105                   | 1,442                        |
| Five                    | 13                    | 382                          |
| Six                     | 0                     | 97:5                         |
| Seven                   | 0                     | . 23                         |
| Total Multiple Use Time | 846                   | 12,604.5                     |

### 09-10 Annual Report \_\_\_\_

|                      | Use of OST | Table IV.4R Reactor Ex | periments |       |
|----------------------|------------|------------------------|-----------|-------|
| Experiment<br>Number | Research   | Teaching               | Other     | Total |
| A-1                  | 7          | 6                      | 0         | 13    |
| B-3                  | 116        | 39                     | 0         | 155   |
| B-35                 | 1          | 0                      | 0         | 1     |
| Total                | 124        | 45                     | 0         | 169   |

|               | Unplanned | Tabl<br>Reactor S        | le IV.5<br>Shutdowns and Scrams                                                                   |
|---------------|-----------|--------------------------|---------------------------------------------------------------------------------------------------|
| Type of Event |           | Number of<br>Occurrences | Cause of Event                                                                                    |
| Manual Scram  |           | 1                        | High reactor water activity alarm due to gas release from reflector.                              |
| Manual Scram  |           | 1,                       | Failed resistor in Safety Channel CIC HV power sup-<br>ply cause loss of Safe Channel indication. |

## Figure IV.1

## Monthly Surveillance and Maintenance (Sample Form)

OSTROP 13, Rev. LEU-1

Surveillance & Maintenance for the Month of \_\_\_\_\_

|        | SURVEILLANCE & MAINTENANCE<br>[SHADE INDICATES LICENSE REQUIREMENT]                                                        | LIMITS                             | AS FOUND                       | TARGET<br>DATE | DATE<br>NOT TO BE<br>EXCEEDED * | DATE<br>COMPLETED | REMARKS<br>&<br>INITIALS |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|----------------|---------------------------------|-------------------|--------------------------|--|--|--|
|        | REACTOR TANK HIGH AND LOW WATER 2012<br>LEVEL ALARMS                                                                       | MAXIMUM<br>MOVEMENT:<br>± 3 INCHES | UP:INCHES<br>DN:INCHES<br>ANN: |                |                                 |                   |                          |  |  |  |
| 2      | BULK WATER TEMPERATURE ALARM CHECK                                                                                         | FUNCTIONAL                         |                                |                |                                 |                   |                          |  |  |  |
| 3      | CHANNEL TEST OF REACTOR TOP CAM AND STACK CAM                                                                              | 3600 <u>+</u> 100 cpm              | Rx Top<br>Stack                |                |                                 |                   |                          |  |  |  |
| 4.A    | MEASUREMENT. OF REACTOR PRIMARY,<br>WATER CONDUCTIVITY                                                                     | <5¦µmhö∖cm                         | a second states                |                |                                 |                   |                          |  |  |  |
| 4.B    | PRIMARY WATER Ph MEASUREMENT                                                                                               | MIN: 5<br>MAX: 8.5                 |                                |                |                                 |                   |                          |  |  |  |
| 5      | BULK SHIELD TANK WATER Ph<br>MEASUREMENT                                                                                   | MIN: 5<br>MAX: 8.5                 | х.<br>                         |                |                                 |                   |                          |  |  |  |
| 6      | CHANGE LAZY SUSAN FILTER                                                                                                   | FILTER<br>CHANGED                  |                                |                |                                 |                   |                          |  |  |  |
| 7      | REACTOR TOP CAM OIL LEVEL CHECK                                                                                            | OSTROP 13.10                       | NEED OIL?                      |                |                                 |                   |                          |  |  |  |
| 8      | PROPANE TANK LIQUID LEVEL CHECK                                                                                            | > 50%                              |                                |                |                                 |                   |                          |  |  |  |
| 9      | PRIMARY PUMP BEARINGS OIL LEVEL CHECK                                                                                      | OSTROP 13.13                       | NEED OIL?                      |                |                                 |                   |                          |  |  |  |
| 10     | WATER MONITOR CHECK                                                                                                        |                                    |                                |                |                                 |                   |                          |  |  |  |
| * Date | * Date not to be exceeded is only applicable to shaded items. It is equal to the time completed last month plus six weeks. |                                    |                                |                |                                 |                   |                          |  |  |  |

|                          | <b>Figure IV.2</b><br>Quarterly Surveillance and Maintenance (Sample Form)                                                 |                          |          |                |                             |                   |                       |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|----------------|-----------------------------|-------------------|-----------------------|--|--|--|
| OST                      | OSTROP 14, Rev. LEU-1 Surveillance & Maintenance for the 1 <sup>st</sup> / 2 <sup>nd</sup> / 4 <sup>th</sup> Quarter of 20 |                          |          |                |                             |                   |                       |  |  |  |
|                          | SURVEILLANCE & MAINTENANCE<br>[SHADE INDICATES LICENSE REQUIREMENT]                                                        | LIMITS                   | AS FOUND | TARGET<br>DATE | DATE NOT TO<br>BE EXCEEDED* | DATE<br>COMPLETED | REMARKS &<br>INITIALS |  |  |  |
| Sil.                     | REACTOR OPERATION COMMITTEE (ROC) AUDIT                                                                                    | <b>QUARTERLY</b>         |          |                |                             |                   |                       |  |  |  |
| $\left  2 \right\rangle$ | QUARTERLY ROCIMEETING                                                                                                      | QUARTERLY                |          |                |                             |                   |                       |  |  |  |
| 3                        | NOT CURRENTLY USED                                                                                                         | N/A                      |          |                |                             |                   | N/A                   |  |  |  |
| 4                        | ERPINSPECTIONS                                                                                                             | QUARTERLY                |          |                |                             |                   |                       |  |  |  |
| 5                        | NÔT CURRENTLY USED                                                                                                         | N/A                      |          |                |                             |                   | N/Â                   |  |  |  |
| 6                        | ROTATING RACK CHECK FOR UNKNOWN SAMPLES                                                                                    | ЕМРТҮ                    |          |                |                             |                   | -                     |  |  |  |
| 7                        | WATER MONITOR ALARM CHECK                                                                                                  | FUNCTIONAL               |          |                |                             |                   |                       |  |  |  |
|                          |                                                                                                                            | MOTORS OILED             |          |                |                             |                   |                       |  |  |  |
| 8                        | STACK MONITOR CHECKS<br>(OIL DRIVE MOTORS, H.V. READINGS)                                                                  | PART: 1150 V <u>+</u> 50 | V        |                |                             |                   |                       |  |  |  |
|                          |                                                                                                                            | GAS: 900 V <u>+</u> 50   | V        |                |                             |                   |                       |  |  |  |
| . 9                      | CHECK FILTER TAPE SPEED ON STACK MONITOR                                                                                   | 1"/HR ± 0.2              |          |                | · · · ·                     |                   |                       |  |  |  |
| 10                       | INCORPORATE 50.59 & ROCAS INTO DOCUMENTATION                                                                               | QUARTERLY                |          |                |                             | ι.                |                       |  |  |  |
| 11                       | STACK MONITOR ALARM CIRCUIT CHECKS                                                                                         | ALARM ON<br>CONTACT      |          |                |                             |                   |                       |  |  |  |

## Reactor

|                                                                     | Figure IV.2 (continued)<br>Quarterly Surveillance and Maintenance (Sample Form)                                                              |      |      |    |    |    |   |   |           |     |    |    |    |        |          |                                                             |                             |                   |                       |              |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|------|----|----|----|---|---|-----------|-----|----|----|----|--------|----------|-------------------------------------------------------------|-----------------------------|-------------------|-----------------------|--------------|--|
| OST                                                                 | DSTROP 14, Rev. LEU-1 Surveillance & Maintenance for the 1 <sup>st</sup> / 2 <sup>nd</sup> / 3 <sup>rd</sup> / 4 <sup>th</sup> Quarter of 20 |      |      |    |    |    |   |   |           |     |    |    |    |        |          |                                                             |                             |                   |                       |              |  |
| SURVEILLANCE & MAINTENANCE<br>[SHADE INDICATES LICENSE REQUIREMENT] |                                                                                                                                              |      |      |    |    |    |   |   | CE<br>EME | NT] |    |    |    | LIMITS | AS FOUND | TARGET<br>DATE                                              | DATE NOT TO<br>BE EXCEEDED* | DATE<br>COMPLETED | REMARKS &<br>INITIALS |              |  |
|                                                                     | ARM SYSTEM ALARM CHECKS                                                                                                                      |      |      |    |    |    |   |   |           |     |    |    |    | -      |          |                                                             |                             |                   |                       |              |  |
|                                                                     | CHAN                                                                                                                                         | 1    | 2    | 35 | 3E | _4 | 5 | 7 | 8         | 9   | 10 | 11 | 12 | 13     | 14       |                                                             |                             |                   |                       |              |  |
| 12                                                                  | AUD                                                                                                                                          |      |      |    |    |    |   |   |           |     |    |    |    |        |          | FUNCTIONAL                                                  |                             |                   |                       |              |  |
|                                                                     |                                                                                                                                              |      |      |    |    |    |   |   |           |     |    |    |    |        |          |                                                             |                             |                   |                       |              |  |
|                                                                     | ANN                                                                                                                                          |      |      |    |    |    |   |   |           |     |    |    |    |        |          |                                                             |                             |                   |                       |              |  |
|                                                                     | OPER                                                                                                                                         | ATOI | r lo | G  |    |    |   |   |           |     |    |    |    |        |          |                                                             | a) TIME                     |                   | b) OPERAT             | ING EXERCISE |  |
|                                                                     |                                                                                                                                              |      |      |    |    |    |   |   |           |     |    |    |    |        |          | a) $\geq 4$ hours: at<br>console (RO) or as<br>Bx Sup (SPO) |                             |                   |                       |              |  |
| 13                                                                  |                                                                                                                                              |      |      |    |    |    |   |   |           |     |    |    |    |        |          | KX. 5up. (5KO)                                              |                             |                   |                       |              |  |
|                                                                     |                                                                                                                                              |      |      |    |    |    |   |   |           |     |    |    |    |        |          | b) Complete<br>Operating Exercise                           |                             |                   |                       |              |  |
| * Date                                                              | Date not be exceeded only applies to shaded items. It is equal to the date completed last quarter plus four months.                          |      |      |    |    |    |   |   |           |     |    |    |    |        |          |                                                             |                             |                   |                       |              |  |

## **Figure IV.3** Semi-Annual Surveillance and Maintenance (Sample Form)

OSTROP 15, Rev. LEU-1

#### Surveillance & Maintenance for the 1<sup>st</sup> / 2<sup>nd</sup> Half of 20

|     |                        | SURVEILLANCE & MAINTENANCE<br>[SHADE INDICATES LICENSE REQUIREMENT] | LIMITS            | AS FOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TARGET<br>DATE | DATE NOT<br>TO BE<br>EXCEEDED* | DATE<br>COMPLETED | REMARKS<br>&<br>INITIALS |
|-----|------------------------|---------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|-------------------|--------------------------|
|     |                        | NEUTRONSOURCE COUNTRATE INTERLOCK                                   | NOWITHDRAW        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     |                        |                                                                     | ≦≦5 cps → (§      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     |                        | TRANSIENT ROD AIR-INTERLOCK                                         | • NO PULSE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     | FUNCTIONAL             | PULSE PROHIBIT/ABOVE 1 kW                                           | ≥1 kW .           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     | REACTOR<br>INTERLOCKS  | TWO ROD WITHDRAWAL PROHIBIT                                         | s i only          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     |                        | PULSE MODE ROD MOVEMENT INTERLOCK                                   | NO MOVEMENT?"     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     |                        | MAXIMUM PULSE REACTIVITY INSERTION LIMIT                            | ≤ \$2:50.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     |                        | PULSE INTERLOCK ON RANGE SWITCH                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
| 2   | SAFETY<br>CIRCUIT TEST | PERIOD SCRAM                                                        | ≥3 sec            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
| 3.6 | NOTCURENTLY            | ED                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   |                          |
|     |                        |                                                                     | ≤20% <sup>1</sup> | P⊍LSE #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                |                   |                          |
| 4   | TEST PULSE             | $\frac{5}{\frac{1}{2}}$                                             | CHANGE            | 5<br><u> →</u><br><u> </u> |                |                                |                   |                          |
| 5   | NOT CURRENTLY U        | SED                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   | N/A                      |
| 6   | NOT CURRENTLY U        | SED                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   | N/A                      |
| 77  | NÔT CURRENTLY U        | SED                                                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                |                   | N/Â                      |

\*Date not to be exceeded is only applicable to shaded items. It is equal to the date last time plus 7 1/2 months.

## Figure IV.3 (continued)

## Semi-Annual Surveillance and Maintenance (Sample Form)

OSTROP 15, Rev. LEU-1

## Surveillance & Maintenance for the 1st / 2nd Half of 20\_

|    |                      | SURVEILLANCE & MAINT<br>[SHADE INDICATES LICENSE RI                            | ENANCE<br>EQUIREMENT]                                                                                                                                                                          | LIMITS              | AS FOUND | TARGET<br>DATE              | DATE NOT<br>TO BE<br>EXCEEDED* | DATE<br>COMPLETED | REMARKS &<br>INITIALS                       |
|----|----------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-----------------------------|--------------------------------|-------------------|---------------------------------------------|
|    | 8.4                  | CLEANING & EUBRICATION OF TRANSIENT RODICA                                     | RRIER INTERNAL BARREL                                                                                                                                                                          |                     |          | ()- et (2) (4)<br>8 (5) (4) |                                |                   |                                             |
|    | <u>, 9</u> , ,       | EUBRICATION OF BALL-NUT DRIVE ON TRANSIENT                                     | RODCARRIER                                                                                                                                                                                     |                     |          |                             |                                |                   |                                             |
|    | 10                   | LUBRICATION OF THE ROTATING RACK BEARINGS                                      | · · · ·                                                                                                                                                                                        | 10W OIL             |          |                             |                                |                   | - CALL COLOR STORE & CALL STORE (MANAGEMENT |
|    | 11                   | CONSOLE CHECK LIST                                                             |                                                                                                                                                                                                | OSTROP 15.XI        |          |                             |                                |                   |                                             |
|    | 12                   | INVERTER MAINTENANCE                                                           |                                                                                                                                                                                                | See User Manual     | •        |                             |                                |                   |                                             |
| 26 | _13                  | STANDARD CONTROL ROD MOTOR CHECKS                                              |                                                                                                                                                                                                | LO-17 Bodine Oil    |          |                             |                                |                   |                                             |
|    | . 14                 | ION CHAMBER RESISTANCE MEASUREMENTS WITH                                       | SAFETY CHANNEL                                                                                                                                                                                 | NONE<br>(Info Only) |          |                             |                                |                   |                                             |
|    | 14                   | MEGGAR INDUCED VOLTAGE                                                         | %POWER CHANNEL                                                                                                                                                                                 | NONE<br>(Info Only) |          |                             |                                |                   |                                             |
|    | 15                   | FISSION CHAMBER RESISTANCE<br>CALCULATION $R = \frac{800 \text{ V}}{\Delta I}$ | $\begin{array}{c} @ \ 100 \ V. \ I = \underline{\qquad} AMPS \\ @ \ 900 \ V. \ I = \underline{\qquad} AMPS \\ \Delta I = \underline{\qquad} AMPS \\ R = \underline{\qquad} \Omega \end{array}$ | NONE<br>(Info Only) |          |                             |                                |                   |                                             |
|    | 16                   | FUNCTIONAL CHECK OF HOLDUP TANK WATER LEV                                      | ELALARMS                                                                                                                                                                                       | OSTROP 15.XVIII     | HIGH     |                             |                                |                   | ~                                           |
|    |                      |                                                                                | BRUSH INSPECTION                                                                                                                                                                               |                     |          |                             |                                |                   |                                             |
|    | 17                   | INSPECTION OF THE PNEUMATIC TRANSFER                                           | SOLENOID VALVE INSPECTION                                                                                                                                                                      | FUNCTIONAL          |          |                             |                                |                   |                                             |
|    | 1/ <sub>.</sub><br>- | SYSTEM                                                                         | SAMPLE INSERTION TIME CHECK                                                                                                                                                                    | ≤6 SECONDS          |          |                             |                                | -                 |                                             |
|    | *Date                | not to be exceeded is only applicable to shaded items.                         | It is equal to the date last time plus 7 1/2 r                                                                                                                                                 | nonths.             | L        |                             |                                |                   |                                             |

| Annual Surveilla                                                                                                 | Figure IV.4<br>Annual Surveillance and Maintenance (Sample Form) |                        |                |                                |                   |                       |  |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------|----------------|--------------------------------|-------------------|-----------------------|--|--|--|
| OSTROP 16, Rev. LEU-1                                                                                            |                                                                  | An                     | nual Surveill  | ance and Mai                   | ntenance for      | 20                    |  |  |  |
| SURVEILLANCE AND MAINTENANCE<br>[SHADE INDICATES LICENSE REQUIREMENT]                                            | LIMITS                                                           | AS<br>FOUND            | TARGET<br>DATE | DATE NOT<br>TO BE<br>EXCEEDED* | DATE<br>COMPLETED | REMARKS<br>& INITIALS |  |  |  |
| 1         BIENNIAL INSPECTION. OF CONTROL         FFCRS           RODS:         TRANS                            | OSTROP12.0                                                       |                        |                |                                |                   |                       |  |  |  |
| 2 ANNUAL REPORT                                                                                                  | NOV 12                                                           |                        | OCT 1          | NoV:1                          |                   |                       |  |  |  |
| 3 CONTROL ROD CALIBRATION:                                                                                       | OSTROP.9!0                                                       |                        |                |                                |                   |                       |  |  |  |
| AICIT/DUMMY.                                                                                                     | OSTROP.8:0                                                       |                        |                |                                |                   |                       |  |  |  |
| 5 CALIBRATION OF REACTOR TANK WATER TEMP<br>TEMPERATURE METERS                                                   | OSTROP 16.5                                                      |                        |                |                                |                   |                       |  |  |  |
| 6 AIR MONITOR<br>CALIBRATION: Gas'Monitor                                                                        | RCHPP18                                                          |                        |                |                                |                   |                       |  |  |  |
| 7 STACK MONITOR<br>CALIBRATION Gas;Monitor                                                                       | RCHPP<br>18:&:26                                                 |                        |                |                                |                   |                       |  |  |  |
| 8 AREA RADIATION MONITOR CALIBRATION                                                                             | RCHPP 18:0                                                       |                        |                |                                |                   |                       |  |  |  |
| DECOMMISSIONING COST UPDATE     Tate not be exceeded is only applicable to shaded items. It is equal to the data | ate completed last year j                                        | N/A<br>plus 15 months. |                | AUGUST                         |                   |                       |  |  |  |

## **Figure IV.4** (continued) Annual Surveillance and Maintenance (Sample Form)

OSTROP 16, Rev. LEU-1

## Annual Surveillance and Maintenance for 20\_

| SURVEILLANCE AND MAINTENANCE<br>[SHADE INDICATES LICENSE REQUIREMEN                                                    | T]                        | LIMITS             | AS<br>FOUND | TARGET<br>DATE | DATE NOT<br>TO BE<br>EXCEEDED* | DATE<br>COMPLETED | REMARKS<br>& INITIALS |
|------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|-------------|----------------|--------------------------------|-------------------|-----------------------|
| 10 SNM PHYSICAL INVENTORY                                                                                              |                           |                    |             |                |                                |                   |                       |
| MATERIAL BALANCE/REPORTS                                                                                               |                           |                    |             |                |                                |                   |                       |
| 42 STANDARD CONTROL ROD DRIVE INSPECTION                                                                               |                           |                    |             |                |                                |                   |                       |
|                                                                                                                        |                           |                    | NORMAL      |                |                                |                   |                       |
| -13 CORE EXCESS                                                                                                        |                           | <. <u>≤</u> \$7:55 | CLICIT      |                |                                |                   |                       |
| CED TRAINING                                                                                                           |                           |                    |             |                |                                |                   |                       |
| GOOD SAM TRAINING                                                                                                      |                           |                    |             |                |                                |                   |                       |
| ERP REVIEW                                                                                                             |                           |                    |             |                |                                |                   |                       |
| ERP.DRILL                                                                                                              |                           |                    |             |                |                                |                   |                       |
| EMERGENCY<br>FIRST AID FOR:                                                                                            |                           |                    |             |                |                                |                   |                       |
| PLAN                                                                                                                   |                           |                    |             |                |                                |                   |                       |
| EVACUATION DRILE                                                                                                       |                           |                    |             |                |                                |                   |                       |
| AUTO EVAC ANNOUNCEME                                                                                                   | NT TËST.                  |                    |             |                |                                |                   |                       |
| ERPEQUIPMENTINVENTOR                                                                                                   | $\mathbf{Y} = \mathbf{Y}$ |                    |             |                |                                |                   |                       |
| BIENNIALSUPPORTAGREE                                                                                                   | MENTS                     |                    |             |                |                                |                   | Marshar.              |
| OSP/DPS TRAINING                                                                                                       |                           |                    |             |                |                                |                   |                       |
| <b>PSP/REVIEW</b>                                                                                                      |                           |                    |             |                | 2.162793.833.                  |                   |                       |
| PSP.DRILL                                                                                                              |                           |                    |             |                |                                |                   |                       |
| LOCK/SAFE COMBO CHANG                                                                                                  | ES <sup>1</sup>           |                    |             |                |                                |                   |                       |
| AUTHORIZATION LIST UPD                                                                                                 | ATE,                      |                    |             |                |                                |                   |                       |
| SPOOF MEASUREMENTS                                                                                                     |                           |                    |             |                |                                |                   |                       |
| * Date not be exceeded is only applicable to shaded items. It is equal to the date completed last year plus 15 months. |                           |                    |             |                |                                |                   |                       |

For biennial license requirements, it is equal to the date completed last time plus 2 1/2 years.

## 

|                                                     | Figure IV.4 (continued)<br>Annual Surveillance and Maintenance (Sample Form)                                                                                                                                               |                        |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|---------|----------|------|--------------------|----------------------------|-------------|----------------|------------------------------------------------|------------|-------------|----------------|------------|
| os                                                  | TROP 16, F                                                                                                                                                                                                                 | Rev. LEU               | -1             |         |          |      |                    |                            |             | Anr            | nual Surveilla                                 | nce and Ma | intenan     | ce for 2       | 20         |
| 16                                                  | KEY INVENT                                                                                                                                                                                                                 | ORY                    |                |         |          |      | AN                 | NUAL                       |             |                |                                                | -          |             |                |            |
| 17                                                  | CONTROL RODTRANSSAFESHIMREGWITHDRAWALSCRAM                                                                                                                                                                                 |                        |                |         |          |      |                    | 2 sec                      |             |                |                                                |            |             |                |            |
| 17     INSERTION & W/D       SCRAM TIMES     INSERT |                                                                                                                                                                                                                            |                        |                |         |          |      | <5<br><5           | 0 sec                      | ]           |                |                                                |            |             |                |            |
| 18                                                  | REACTOR BA<br>TEST                                                                                                                                                                                                         | Y VENTILI              | LATION S       | YSTEM   | SHUTI    | DOWN | DAN<br>CLOS<br>SEC | MPERS<br>SE IN ≤5<br>CONDS |             |                | 1 <sup>st</sup> Floor<br>2 <sup>nd</sup> Floor |            |             |                |            |
| 19                                                  | CALIBRATIO<br>TEMPERATU                                                                                                                                                                                                    | N OF THE F<br>RE CHANN | FUEL ELE<br>EL | MENT    |          |      | Che                | Per<br>cksheet             |             |                |                                                |            |             |                |            |
| 20 FUEL ELEMENT INSPECTION FOR SELECTED<br>ELEMENTS |                                                                                                                                                                                                                            |                        |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |
| 21                                                  | REACTOR TA                                                                                                                                                                                                                 | INK AND C              | ORE COM        | IPONEN  | <br>1.1. |      | NO W               | HITE<br>S                  |             |                |                                                |            |             |                |            |
| 22                                                  | EMERGENCY                                                                                                                                                                                                                  | LIGHT LO               | AD TEST        |         |          |      | RCHI               | PP 18.0                    |             |                |                                                |            |             |                |            |
|                                                     | REACTOR OF                                                                                                                                                                                                                 | PERATOR L              | ICENSE C       | CONDIT  | IONS     |      | ANN                | UAL REC                    | OPERAT      | TING TEST      | BIENNIAL                                       | MEDICAL    | APPLIC      | CATION         | EXPIRATION |
|                                                     |                                                                                                                                                                                                                            | OPER                   | ATOR NA        | ME      |          |      | DATE<br>DUE        | DATE<br>PASSED             | DATE<br>DUE | DATE<br>PASSED | DATE DUE                                       | COMPLETED  | DUE<br>DATE | DATE<br>MAILED | DATE       |
| 23                                                  |                                                                                                                                                                                                                            |                        |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |
|                                                     |                                                                                                                                                                                                                            |                        |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |
|                                                     |                                                                                                                                                                                                                            | •                      |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |
|                                                     |                                                                                                                                                                                                                            |                        |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |
| 24                                                  | NEUTRON RA                                                                                                                                                                                                                 | ADIOGRAP               | HY FACII       | LITY IN | TERLO    | CKS  |                    |                            |             |                |                                                |            |             |                |            |
| * Da<br>For                                         | * Date not be exceeded is only applicable to shaded items. It is equal to the date completed last year plus 15 months.<br>For biennial license requirements, it is equal to the date completed last time plus 2 1/2 years. |                        |                |         |          |      |                    |                            |             |                |                                                |            |             |                |            |

## Radiation Protection

## Introduction

The purpose of the radiation protection program is to ensure the safe use of radiation and radioactive material in the Center's teaching, research, and service activities, and in a similar manner to the fulfillment of all regulatory requirements of the State of Oregon, the U.S. Nuclear Regulatory Commission, and other regulatory agencies. The comprehensive nature of the program is shown in Table V.1, which lists the program's major radiation protection requirements and the performance frequency for each item.

The radiation protection program is implemented by a staff consisting of a Senior Health Physicist, a Health Physicist, and several part-time Health Physics Monitors (see Part II). Assistance is also provided by the reactor operations group, the neutron activation analysis group, the Scientific Instrument Technician, and the Radiation Center Director.

The data contained in the following sections have been prepared to comply with the current requirements of Nuclear Regulatory Commission (NRC) Facility License No. R-106 (Docket



No. 50-243) and the Technical Specifications contained in that license. The material has also been prepared in compliance with Oregon Department of Energy Rule No. 345-30-010, which requires an annual report of environmental effects due to research reactor operations.

Within the scope of Oregon State University's radiation protection program, it is standard operating policy to maintain all releases of radioactivity to the unrestricted environment and all exposures to radiation and radioactive materials at levels which are consistently "as low as reasonably achievable" (ALARA).

## **Environmental Releases**

The annual reporting requirements in the OSTR Technical Specifications state that the licensee (OSU) shall include "a summary of the nature and amount of radioactive effluents released or discharged to the environs beyond the effective control of the licensee, as measured at, or prior to, the point of such release or discharge." The liquid and gaseous effluents released, and the solid waste generated and transferred are discussed briefly below. Data regarding these effluents are also summarized in detail in the designated tables.

## Liquid Effluents Released

#### Liquid Effluents

30

Oregon State University has implemented a policy to reduce the volume of radioactive liquid effluents to an absolute minimum. For example, water used during the ion exchanger resin change is now recycled as reactor makeup water. Waste water from Radiation Center laboratories and the OSTR is collected at a holdup tank prior to release to the sanitary sewer. Liquid effluent are analyzed for radioactivity content at the time it is released to the collection point. For this reporting period, the Radiation Center and reactor made three liquid effluent releases to the sanitary sewer. All Radiation Center and reactor facility liquid effluent data pertaining to this release are contained in Table V.2.

#### Liquid Waste Generated and Transferred

Liquid waste generated from glassware and laboratory experiments is transferred by the campus Radiation Safety Office to its waste processing facility. The annual summary of liquid waste generated and transferred is contained in Table V.3.

## **Airborne Effluents Released**

Airborne effluents are discussed in terms of the gaseous component and the particulate component.

#### Gaseous Effluents

Gaseous effluents from the reactor facility are monitored by the reactor stack effluent monitor. Monitoring is continuous, i.e., prior to, during, and after reactor operations. It is normal for the reactor facility stack effluent monitor to begin operation as one of the first systems in the morning and to cease operation as one of the last systems at the end of the day. All gaseous effluent data for this reporting period are summarized in Table V.4.

Particulate effluents from the reactor facility are also monitored by the reactor facility stack effluent monitor.

#### Particulate Effluents

Evaluation of the detectable particulate radioactivity in the stack effluent confirmed its origin as naturally-occurring radon daughter products, within a range of approximately  $3x10^{-11} \mu$ Ci/ml to  $1 \times 10^{-9} \mu$ Ci/ml. This particulate radioactivity is predominantly <sup>214</sup>Pb and <sup>214</sup>Bi, which is not associated with reactor operations.

There was no release of particulate effluents with a half life greater than eight days and therefore the reporting of the average concentration of radioactive particulates with half lives greater than eight days is not applicable.

## **Solid Waste Released**

Data for the radioactive material in the solid waste generated and transferred during this reporting period are summarized in Table V.5 for both the reactor facility and the Radiation Center. Solid radioactive waste is routinely transferred to OSU Radiation Safety. Until this waste is disposed of by the Radiation Safety Office, it is held along with other campus radioactive waste on the University's State of Oregon radioactive materials license.

Solid radioactive waste is disposed of by OSU Radiation Safety by transfer to the University's radioactive waste disposal vendor, Thomas Gray Associates, Inc., for burial at its installation located near Richland, Washington.

## **Personnel Dose**

The OSTR annual reporting requirements specify that the licensee shall present a summary of the radiation exposure received by facility personnel and visitors. The summary includes all Radiation Center personnel who may have received exposure to radiation. These personnel have been categorized into six groups: facility operating personnel, key facility research personnel, facilities services maintenance personnel, students in laboratory classes, police and security personnel, and visitors.

Facility operating personnel include the reactor operations and health physics staff. The dosimeters used to monitor these individuals include quarterly TLD badges, quarterly track-etch/albedo neutron dosimeters, monthly TLD (finger) extremity dosimeters, pocket ion chambers, electronic dosimetry.

Key facility research personnel consist of Radiation Center staff, faculty, and graduate students who perform research using the reactor, reactor-activated materials, or using other research facilities present at the Center. The individual dosimetry requirements for these personnel will vary with the type of research being conducted, but will generally include a quarterly TLD film badge and TLD (finger) extremity dosimeters. If the possibility of neutron exposure exists, researchers are also monitored with a track-etch/ albedo neutron dosimeter.

Facilities Services maintenance personnel are normally issued a gamma sensitive electronic dosimeter as their basic monitoring device. A few Facilities Services personnel who routinely perform maintenance on mechanical or refrigeration equipment are issued a quarterly  $X \beta(\gamma)$  TLD badge and other dosimeters as appropriate for the work being performed.

Students attending laboratory classes are issued quarterly  $X\beta(\gamma)$  TLD badges, TLD (finger) extremity dosimeters, and track-etch/albedo or other neutron dosimeters, as appropriate.

Students or small groups of students who attend a one-time lab demonstration and do not handle radioactive materials are usually issued a gamma sensitive electronic dosimeter. These results are not included with the laboratory class students.

OSU police and security personnel are issued a quarterly  $X\mathfrak{K}(\gamma)$  TLD badge to be used during their patrols of the Radiation Center and reactor facility.

Visitors, depending on the locations visited, may be issued a gamma sensitive electronic dosimeters. OSU Radiation Center policy does not normally allow people in the visitor category to become actively involved in the use or handling of radioactive materials.

An annual summary of the radiation doses received by each of the above six groups is shown in Table V.6. There were no personnel radiation exposures in excess of the limits in 10 CFR 20 or State of Oregon regulations during the reporting period.

## **Facility Survey Data**

The OSTR Technical Specifications require an annual summary of the radiation levels and levels of contamination observed during routine surveys performed at the facility. The Center's comprehensive area radiation monitoring program encompasses the Radiation Center as well as the OSTR, and therefore monitoring results for both facilities are reported.

#### Area Radiation Dosimeters

Area monitoring dosimeters capable of integrating the radiation dose are located at strategic positions throughout the reactor facility and Radiation Center. All of these dosimeters contain at least a standard personnel-type beta-gamma film or TLD pack. In addition, for key locations in the reactor facility and for certain Radiation Center laboratories a CR-39 plastic track-etch neutron detector has also been included in the monitoring package.

The total dose equivalent recorded on the various reactor facility dosimeters is listed in Table V.7 and the total dose equivalent recorded on the Radiation Center area dosimeters is listed in Table V.8. Generally, the characters following the Monitor Radiation Center (MRC) designator show the room number or location.

#### Routine Radiation and Contamination Surveys

The Center's program for routine radiation and contamination surveys consists of daily, weekly, and monthly measurements throughout the TRIGA reactor facility and Radiation Center. The frequency of these surveys is based on the nature of the radiation work being carried out at a particular location or on other factors which indicate that surveillance over a specific area at a defined frequency is desirable.

The primary purpose of the routine radiation and contamination survey program is to assure regularly scheduled surveillance over selected work areas in the reactor facility and in the Radiation Center, in order to provide current and characteristic data on the status of radiological conditions. A second objective of the program is to assure frequent on-the-spot personal observations (along with recorded data), which will provide advance warning of needed corrections and thereby help to ensure the safe use and handling of radiation sources and radioactive materials. A third objective, which is really derived from successful execution of the first two objectives, is to gather and document information which will help to ensure that all phases of the operational and radiation protection programs are meeting the goal of keeping radiation doses to personnel and releases of radioactivity to the environment "as low as reasonably achievable" (ALARA).

The annual summary of radiation and contamination levels measured during routine facility surveys for the applicable reporting period is given in Table V.9.

## **Environmental Survey Data**

The annual reporting requirements of the OSTR Technical Specifications include "an annual summary of environmental surveys performed outside the facility."

## **Gamma Radiation Monitoring**

#### **On-site** Monitoring

Monitors used in the on-site gamma environmental radiation monitoring program at the Radiation Center consist of the reactor facility stack effluent monitor described in Section V and nine environmental monitoring stations.

During this reporting period, each fence environmental station utilized an LiF TLD monitoring packet supplied and processed by Global Dosimetry Solutions, Inc. (GDS), Irvine, California. Each GDS packet contained three LiF TLDs and was exchanged quarterly for a total of 108 samples during the reporting period (9 stations x 3 TLDs per station x 4 quarters). The total number of GDS TLD samples for the reporting period was 108. A summary of the GDS TLD data is also shown in Table V.10.

From Table V.10 it is concluded that the doses recorded by the dosimeters on the TRIGA facility fence can be attributed to natural back-ground radiation, which is about 110 mrem per year for Oregon (Refs. 1, 2).

#### **Off-site Monitoring**

The off-site gamma environmental radiation monitoring program consists of twenty monitoring stations surrounding the Radiation Center (see Figure V.1) and six stations located within a 5 mile radius of the Radiation Center.

Each monitoring station is located about four feet above the ground (MRCTE 21 and MRCTE 22 are mounted on the roof of the EPA Laboratory and National Forage Seed Laboratory, respectively). These monitors are exchanged and processed quarterly, and the total number of TLD samples during the current one-year reporting period was 240 (20 stations x 3 chips per station per quarter x 4 quarters per year). The total number of GDS TLD samples for the reporting period was 240. A summary of GDS TLD data for the off-site monitoring stations is given in Table V.11.

After a review of the data in Table V.11, it is concluded that, like the dosimeters on the TRIGA facility fence, all of the doses recorded by the off-site dosimeters can be attributed to natural background radiation, which is about 110 mrem per year for Oregon (Refs. 1, 2).

## Soil, Water, and Vegetation Surveys

The soil, water, and vegetation monitoring program consists of the collection and analysis of a limited number of samples in each category on a annual basis. The program monitors highly unlikely radioactive material releases from either the TRIGA reactor facility or the OSU Radiation Center, and also helps indicate the general trend of the radioactivity concentration in each of the various substances sampled. See Figure V.1 for the locations of the sampling stations for grass (G), soil (S), water (W) and rainwater (RW) samples. Most locations are within a 1000 foot radius of the reactor facility and the Radiation Center. In general, samples are collected over a local area having a radius of about ten feet at the positions indicated in Figure V.1.

There are a total of 22 sampling locations: four soil locations, four water locations (when water is available), and fourteen vegetation locations.

The annual concentration of total net beta radioactivity (minus tritium) for samples collected at each environmental soil, water, and vegetation sampling location (sampling station) is listed in Table V.12. Calculation of the total net beta disintegration rate incorporates subtraction of only the counting system back-ground from the gross beta counting rate, followed by application of an appropriate counting system efficiency.

The annual concentrations were calculated using sample results which exceeded the lower limit of detection (LLD), except that sample results which were less than or equal to the LLD were averaged in at the corresponding LLD concentration. Table V.13 gives the concentration and the range of values for each sample category for the current reporting period.

As used in this report, the LLD has been defined as the amount or concentration of radioactive material (in terms of  $\mu$ Ci per unit volume or unit mass) in a representative sample, which has a 95% probability of being detected.

Identification of specific radionuclides is not routinely carried out as part of this monitoring program, but would be conducted if unusual radioactivity levels above natural background were detected. However, from Table V.12 it can be seen that the levels of radioactivity detected were consistent with naturally occurring radioactivity and comparable to values reported in previous years.

## **Radioactive Materials Shipments**

A summary of the radioactive material shipments originating from the TRIGA reactor facility, NRC license R-106, is shown in Table V.14. A similar summary for shipments originating from the Radiation Center's State of Oregon radioactive materials license ORE 90005 is shown in Table V.15. A summary of radioactive material shipments exported under Nuclear Regulatory Commission general license 10 CFR 110.23 is shown in Table V.16.

### References

- 1. U. S. Environmental Protection Agency, "Estimates of Ionizing Radiation Doses in the United States, 1960-2000," ORP/CSD 72-1, Office of Radiation Programs, Rockville, Maryland (1972).
- U. S. Environmental Protection Agency, "Radiological Quality of the Environment in the United States, 1977," EPA 520/1-77-009, Office of Radiation Programs; Washington, D.C. 20460 (1977).

)

## **Radiation Protection Program Requirements and Frequencies**

| Frequency            | Radiation Protection Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Daily/Weekly/Monthly | Perform Routing area radiation/contamination monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Monthly              | Collect and analyze TRIGA primary, secondary, and make-up water.<br>Exchange personnel dosimeters and inside area monitoring dosimeters, and review<br>exposure reports.<br>Inspect laboratories.<br>Calculate previous month's gaseous effluent discharge.                                                                                                                                                                                                                                                                                                                                                                        |
| As Required          | Process and record solid waste and liquid effluent discharges.<br>Prepare and record radioactive material shipments.<br>Survey and record incoming radioactive materials receipts.<br>Perform and record special radiation surveys.<br>Perform thyroid and urinalysis bioassays.<br>Conduct orientations and training.<br>Issue radiation work permits and provide health physics coverage for maintenance<br>operations.                                                                                                                                                                                                          |
| Quarterly            | Prepare, exchange and process environmental TLD packs.<br>Conduct orientations for classes using radioactive materials.<br>Collect and analyze samples from reactor stack effluent line.<br>Exchange personnel dosimeters and inside area monitoring dosimeters, and review<br>exposure reports.                                                                                                                                                                                                                                                                                                                                   |
| Semi-Annual          | Leak test and inventory sealed sources.<br>Conduct floor survey of corridors and reactor bay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Annual               | Calibrate portable radiation monitoring instruments and personnel pocket ion chambers.<br>Calibrate reactor stack effluent monitor, continuous air monitors, remote area radiation<br>monitors, and air samplers.<br>Measure face air velocity in laboratory hoods and exchange dust-stop filters and HEPA<br>filters as necessary.<br>Inventory and inspect Radiation Center emergency equipment.<br>Conduct facility radiation survey of the <sup>60</sup> Co irradiators.<br>Conduct personnel dosimeter training.<br>Update decommissioning logbook.<br>Collect and process environmental soil, water, and vegetation samples. |
## **Monthly Summary** of Liquid Effluent Release to the Sanitary Sewer<sup>(1)</sup>

| Date of<br>Discharge<br>(Month and Year) | Total<br>Quantity of<br>Radioactivity<br>Released<br>(Curies) | Detectable<br>Radio-Nuclides in<br>the Waste | Specific Activity<br>For Each<br>Detectable<br>Radionuclide in<br>the Waste, Where<br>The Release Concentration<br>Was>1 x 10 <sup>-7</sup><br>(µCi ml <sup>-1</sup> ) | Total<br>Quantity of<br>Each<br>Detectable<br>Radionuclide<br>Released in<br>the Waste<br>(Curies) | Average<br>Concentration<br>Of Released<br>Radioactive<br>Material at the<br>Point of<br>Release<br>( $\mu$ Ci ml <sup>-1</sup> ) | Percent of<br>Applicable<br>Monthly Average<br>Concentration for<br>Released<br>Radioactive<br>Material<br>(%) <sup>(2)</sup> | Total<br>Volume of<br>Liquid<br>Effluent<br>Released<br>Including<br>Diluent<br>(gal) |
|------------------------------------------|---------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| September 2009                           | 1.46x10 <sup>-2</sup>                                         | H-3                                          | 1.5x10 <sup>-5</sup>                                                                                                                                                   | 1.46x10 <sup>-2</sup>                                                                              | 1.5x10 <sup>-5</sup>                                                                                                              | 0.15                                                                                                                          | 2,273                                                                                 |
| November 2009                            | 9.56x10-4                                                     | H-3                                          | 1.18x10-6                                                                                                                                                              | 9.56x10-4                                                                                          | 1.15x10-6                                                                                                                         | 0.01                                                                                                                          | 1,857                                                                                 |
| March 2010                               | 6.42x10 <sup>-3</sup>                                         | H-3                                          | 1.86x10 <sup>-5</sup>                                                                                                                                                  | 6.42x10 <sup>-3</sup>                                                                              | 1.86x10 <sup>-5</sup>                                                                                                             | 0.19                                                                                                                          | 1,964                                                                                 |
| Annual Total for<br>Radiation Center     | 2.2x10 <sup>-2</sup>                                          | H-3                                          | 3.48x10 <sup>-5</sup>                                                                                                                                                  | 2.2x10 <sup>-2</sup>                                                                               | 3.48x10 <sup>-5</sup>                                                                                                             | 0.35                                                                                                                          | 1,094                                                                                 |
| OSTR<br>Contribution to<br>Above         | 1.46x10 <sup>-2</sup>                                         | H-3                                          | 1.5x10 <sup>-5</sup>                                                                                                                                                   | 1.46x10 <sup>-2</sup>                                                                              | 1.5x10 <sup>-5</sup>                                                                                                              | 0.15                                                                                                                          | 2,273                                                                                 |

(1) The OSU operational policy is to subtract only detector background from the water analysis data and not background radioactivity in the Corvallis city water.

(2) Based on values listed in 10 CFR 20, Appendix B to 20.1001 - 10.2401, Table 3, which are applicable to sewer disposal.

# 09-10 Annual Report

## **Annual Summary of Liquid Waste Generated and Transferred**

| Origin of Liquid<br>Waste        | Volume of Liquid<br>Waste Packaged <sup>(1)</sup><br>(gallons) | Detectable<br>Radionuclides<br>in the Waste                                                       | Total Quantity of<br>Radioactivity in the<br>Waste (Curies) | Dates of Waste Pickup<br>for Transfer to the<br>Waste Processing<br>Facility |
|----------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|
| TRIGA<br>Reactor<br>Facility     | 20                                                             | H-3, Na-24, Mn-54,<br>Co-60, Sb-124, Ag-<br>110m, Sb-122, Sc-46,<br>Eu-152, Na-24, K-40,<br>Rb-89 | 1.792x10 <sup>-3</sup>                                      | 8/24/09<br>1/19/10<br>4/6/10                                                 |
| Radiation Center<br>Laboratories | 0.13                                                           | Cl-137                                                                                            | 8.0x10 <sup>-8</sup>                                        | 4/6/10                                                                       |
| TOTAL                            | 20.13                                                          |                                                                                                   | 1.792x10 <sup>-3</sup>                                      |                                                                              |

(1) OSTR and Radiation Center liquid waste is picked up by the Radiation Safety Office for transfer to its waste processing facility for final packaging.

# **Monthly TRIGA Reactor Gaseous Waste Discharges and Analysis**

| Month              | Total<br>Estimated<br>Activity<br>Released (Curies) | Total<br>Estimated Quantity<br>of Argon-41<br>Released <sup>(1)</sup> (Curies) | Estimated<br>Atmospheric Diluted<br>Concentration of<br>Argon-41 at Point of<br>Release<br>(µCi/cc) | Fraction of the Technical<br>Specification<br>Annual Average<br>Argon-41<br>Concentration Limit (%) |
|--------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| July               | 0.27                                                | 0.27                                                                           | 2.24x10 <sup>-8</sup>                                                                               | 0.56                                                                                                |
| August             | 0.18                                                | 0.18                                                                           | 1.47x10 <sup>-8</sup>                                                                               | 0.37                                                                                                |
| September          | 0.16                                                | 0.16                                                                           | 1.37x10 <sup>-8</sup>                                                                               | 0.34                                                                                                |
| October            | 0.14                                                | 0.14                                                                           | 1.12x10 <sup>-8</sup>                                                                               | 0.28                                                                                                |
| November           | 0.26                                                | 0.26                                                                           | 2.20x10 <sup>-8</sup>                                                                               | 0.55                                                                                                |
| December           | 0.34                                                | 0.34                                                                           | 2.78x10 <sup>-8</sup>                                                                               | 0.70                                                                                                |
| January            | 0.25                                                | 0.25                                                                           | 2.05x10 <sup>-8</sup>                                                                               | 0.51                                                                                                |
| February           | 0.27                                                | 0.27                                                                           | 2.49x10 <sup>-8</sup>                                                                               | 0.62                                                                                                |
| March              | 0.30                                                | 0.30                                                                           | 2.48x10 <sup>-8</sup>                                                                               | 0.62                                                                                                |
| April              | 0.30                                                | 0.30                                                                           | 2.50x10 <sup>-8</sup>                                                                               | 0.63                                                                                                |
| May                | 0.28                                                | 0.28                                                                           | 2.29x10 <sup>-8</sup>                                                                               | 0.57                                                                                                |
| June               | 0.27                                                | 0.17                                                                           | 2.27x10 <sup>-8</sup>                                                                               | 0.57                                                                                                |
| TOTAL<br>('09-'10) | 3.02                                                | 3.02                                                                           | <b>2.11x10<sup>-8<sup>(2)</sup></sup></b>                                                           | 0.53 <sup>(2)</sup>                                                                                 |

(1) Routine gamma spectroscopy analysis of the gaseous radioactivity in the OSTR stack discharge indicated the only detectable radionuclide was argon-41.

(2) Annual Average.

### Annual Summary of Solid Waste Generated and Transferred

| Origin of<br>Solid Waste            | Volume of<br>Solid Waste<br>Packaged <sup>(1)</sup><br>(Cubic Feet) | Detectable<br>Radionuclides<br>in the Waste                                                                                           | Total Quantity<br>of Radioactivity<br>in Solid Waste<br>(Curies) | Dates of Waste Pickup<br>for Transfer to the OSU<br>Waste Processing<br>Facility |
|-------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|
| TRIGA<br>Reactor<br>Facility        | 30                                                                  | Eu-154, H-3, Na-24, Sc-46,<br>Cr-51, Mn-54, Fe-59,<br>Co-58, Co-60, Zn-65, As-74,<br>Hf-181, Sb-124, Eu-152,<br>Cs-134, Cs-137, Sc-46 | 8.92x10 <sup>-4</sup>                                            | 8/24/09<br>1/19/10<br>4/6/10                                                     |
| Radiation<br>Center<br>Laboratories | 2                                                                   | Np-237, Pu-239                                                                                                                        | 2.0x10 <sup>-7</sup>                                             | 1/19/10                                                                          |
| TOTAL                               | 32                                                                  | See Above                                                                                                                             | 8.90x10 <sup>-4</sup>                                            |                                                                                  |

(1) OSTR and Radiation Center laboratory waste is picked up by OSU Radiation Safety for transfer to its waste processing facility for final packaging.

# Table V.6

## Annual Summary of Personnel Radiation Doses Received

|                                                 | Average<br>Do        | Annual<br>se <sup>(1)</sup> | Greatest I<br>Do     | ndividual<br>se <sup>(1)</sup> | Total Per<br>For the | Group <sup>(1)</sup>  |
|-------------------------------------------------|----------------------|-----------------------------|----------------------|--------------------------------|----------------------|-----------------------|
| Personnel Group                                 | Whole Body<br>(mrem) | Extremities<br>(mrem)       | Whole Body<br>(mrem) | Extremities<br>(mrem)          | Whole Body<br>(mrem) | Extremities<br>(mrem) |
| Facility Operating<br>Personnel                 | 63.71                | 212.71                      | 39                   | 478                            | 446                  | 1489                  |
| Key Facility<br>Research<br>Personnel           | 6.58                 | 0                           | 27                   | 0                              | 79                   | 0                     |
| Facilities Services<br>Maintenance<br>Personnel | 0.03                 | N/A                         | 0.2                  | N/A                            | 0.7                  | N/A                   |
| Laboratory Class Stu-<br>dents                  | 10.2                 | 20.5                        | 200                  | 173                            | 2000                 | 553                   |
| Campus Police and<br>Security Personnel         | 0.88                 | N/A                         | 12                   | N/A                            | 23                   | N/A                   |
| Visitors                                        | 0.17                 | N/A                         | 4.8                  | N/A                            | 62.2                 | N/A                   |

(1) "N/A" indicates that there was no extremity monitoring conducted or required for the group.

#### Total Dose Equivalent Recorded on Area Dosimeters Located Within the TRIGA Reactor Facility

| Monitor   | TRIGA Reactor                      | Total<br>Recorded | Dose Equivalent <sup>(1)(2)</sup> |
|-----------|------------------------------------|-------------------|-----------------------------------|
| I.D.      | (See Figure V.1)                   | Xß(γ)<br>(mrem)   | Neutron<br>(mrem)                 |
| MRCTNE    | D104: North Badge East Wall        | 261               | ND                                |
| MRCTSE    | D104: South Badge East Wall        | 173               | ND                                |
| MRCTSW    | D104: South Badge West Wall        | 372               | ND                                |
| MRCTNW    | D104: North Badge West Wall        | 135               | ND                                |
| MRCTWN    | D104: West Badge North Wall        | 349               | ND                                |
| MRCTEN    | D104: East Badge North Wall        | 386               | ND                                |
| MRCTES    | D104: East Badge South Wall        | 1289              | ND                                |
| MRCTWS    | D104: West Badge South Wall        | 295               | ND                                |
| MRCTTOP   | D104: Reactor Top Badge            | 521               | ND                                |
| MRCTHXS   | D104A: South Badge HX Room         | 686               | ND                                |
| MRCTHXW   | D104A: West Badge HX Room          | 252               | ND                                |
| MRCD-302  | D302: Reactor Control Room         | 336               | ND                                |
| MRCD-302A | D302A: Reactor Supervisor's Office | 93                | N/A                               |
| MRCBP1    | D104: Beam Port Number 1           | 281               | ND                                |
| MRCBP2    | D104: Beam Port Number 2           | 280               | ND                                |
| MRCBP3    | D104: Beam Port Number 3           | 709               | ND                                |
| MRCBP4    | D104: Beam Port Number 4           | 396               | ND                                |

(1) The total recorded dose equivalent values do not include natural background contribution and, reflect the summation of the results of four quarterly beta-gamma dosimeters or four quarterly fast neutron dosimeters for each location. A total dose equivalent of "ND" indicates that each of the dosimeters during the reporting period was less than the vendor's gamma dose reporting threshold of 10 mrem or that each of the fast neutron dosimeters was less than the vendor's threshold of 10 mrem. "N/A" indicates that there was no neutron monitor at that location.

(2) These dose equivalent values do not represent radiation exposure through an exterior wall directly into an unrestricted area.

#### Total Dose Equivalent Recorded on Area Dosimeters Located Within the Radiation Center

| Monitor   | Radiation Center                                | Total Re<br>Dose Equ | Total Recorded<br>Dose Equivalent <sup>(1)</sup> |  |  |
|-----------|-------------------------------------------------|----------------------|--------------------------------------------------|--|--|
| I.D.      | (See Figure V.1)                                | Xß(γ)<br>(mrem)      | Neutron<br>(mrem)                                |  |  |
| MRCA100   | A100: Receptionist's Office                     | 11                   | N/A                                              |  |  |
| MRCBRF    | A102H: Front Personnel Dosimetry Storage Rack   | 37                   | N/A                                              |  |  |
| MRCA120   | A120: Stock Room                                | 47                   | N/A                                              |  |  |
| MRCA120A  | A120A: NAA Temporary Storage                    | 0                    | N/A                                              |  |  |
| MRCA126   | A126: Radioisotope Research Lab                 | 89                   | N/A                                              |  |  |
| MRCCO-60  | A128: <sup>60</sup> Co Irradiator Room          | 241                  | N/A                                              |  |  |
| MRCA130   | A130: Shielded Exposure Room                    | 42                   | N/A                                              |  |  |
| MRCA132   | A132: TLD Equipment Room                        | 92                   | N/A                                              |  |  |
| MRCA138   | A138: Health Physics Laboratory                 | 61                   | N/A                                              |  |  |
| MRCA146   | A146: Gamma Analyzer Room (Storage Cave)        | 72                   | N/A                                              |  |  |
| MRCB100   | B100: Gamma Analyzer Room (Storage Cave)        | 0                    | N/A                                              |  |  |
| MRCB114   | B114: Lab ( <sup>226</sup> Ra Storage Facility) | 1551                 | ND                                               |  |  |
| MRCB119-1 | B119: Source Storage Room                       | 261                  | N/A                                              |  |  |
| MRCB119-2 | B119: Source Storage Room                       | 369                  | N/A                                              |  |  |
| MRCB119A  | B119A: Sealed Source Storage Room               | 3382                 | 3,410                                            |  |  |
| MRCB120   | B120: Instrument Calibration Facility           | 54                   | N/A                                              |  |  |
| MRCB122-2 | B122: Radioisotope Hood                         | 130                  | N/A                                              |  |  |
| MRCB122-3 | B122: Radioisotope Research Laboratory          | 35                   | N/A                                              |  |  |
| MRCB124-1 | B124: Radioisotope Research Lab (Hood)          | 59                   | N/A                                              |  |  |
| MRCB124-2 | B124: Radioisotope Research Laboratory          | 60                   | N/A                                              |  |  |
| MRCB124-6 | B124: Radioisotope Research Laboratory          | 63                   | N/A                                              |  |  |
| MRCB136   | B136 Gamma Analyzer Room                        | 22                   | N/A                                              |  |  |
| MRCB128   | B128: Instrument Repair Shop                    | 63                   | N/A                                              |  |  |
| MRCC100   | C100: Radiation Center Director's Office        | 11                   | N/A                                              |  |  |

(1) The total recorded dose equivalent values do not include natural background contribution and, reflect the summation of the results of four quarterly beta-gamma dosimeters or four quarterly fast neutron dosimeters for each location. A total dose equivalent of "ND" indicates that each of the dosimeters during the reporting period was less than the vendor's gamma dose reporting threshold of 10 mrem or that each of the fast neutron dosimeters was less than the vendor's threshold of 10 mrem. "N/A" indicates that there was no neutron monitor at that location.

#### Total Dose Equivalent Recorded on Area Dosimeters Located Within the Radiation Center

| Monitor   | Radiation Center                             | Total Recorded<br>Dose Equivalent <sup>(1)</sup> |                   |
|-----------|----------------------------------------------|--------------------------------------------------|-------------------|
| I.D.      | (See Figure V.1)                             | Xß(γ )<br>(mrem)                                 | Neutron<br>(mrem) |
| MRCC106A  | C106A: Office                                | 33                                               | N/A               |
| MRCC106B  | C106B: Custodian Supply Storage              | 25                                               | N/A               |
| MRCC106-H | C106H: East Loading Dock                     | 65                                               | N/A               |
| MRCC118   | C118: Radiochemistry Laboratory              | 10                                               | N/A               |
| MRCC120   | C120: Student Counting Laboratory            | 26                                               | N/A               |
| MRCF100   | F100: APEX Facility                          | 22                                               | N/A               |
| MRCF102   | F102: APEX Control Room                      | 21                                               | N/A               |
| MRCB125N  | B125: Gamma Analyzer Room (Storage Cave)     | 54                                               | N/A               |
| MRCN125S  | B125: Gamma Analyzer Room                    | 32                                               | N/A               |
| MRCC124   | C124: Classroom                              | 62                                               | N/A               |
| MRCC130   | C130: Radioisotope Laboratory (Hood)         | 48                                               | N/A               |
| MRCD100   | D100: Reactor Support Laboratory             | 88                                               | ND                |
| MRCD102   | D102: Pneumatic Transfer Terminal Lab`       | 181                                              | ND                |
| MRCD102-H | D102H: 1st Floor Corridor at D102            | 109                                              | ND                |
| MRCD106-H | D106H: 1st Floor Corridor at D106            | 231                                              | N/A               |
| MRCD200   | D200: Reactor Administrator's Office         | 200                                              | 25                |
| MRCD202   | D202: Senior Health Physicist's Office       | 220                                              | ND                |
| MRCBRR    | D200H: Rear Personnel Dosimetry Storage Rack | 69                                               | N/A               |
| MRCD204   | D204: Health Physicist Office                | 102                                              | ND                |
| MRCATHRL  | F104: ATHRL                                  | 22                                               | N/A               |
| MRCD300   | D300: 3rd Floor Conference Room              | 159                                              | ND                |

(1) The total recorded dose equivalent values do not include natural background contribution and, reflect the summation of the results of four quarterly beta-gamma dosimeters or four quarterly fast neutron dosimeters for each location. A total dose equivalent of "ND" indicates that each of the dosimeters during the reporting period was less than the vendor's gamma dose reporting threshold of 10 mrem or that each of the fast neutron dosimeters was less than the vendor's threshold of 10 mrem. "N/A" indicates that there was no neutron monitor at that location.

ſ

# Table V.9

#### Annual Summary of Radiation and Contamination Levels Observed Within the Reactor Facility and Radiation Center During Routine Radiation Surveys

| Accessible Location<br>(See Figure V.1)                                             | Whole Body<br>Radiation Levels<br>(mrem/hr) |          | Contamination<br>Levels <sup>(1)</sup><br>(dpm/cm <sup>2</sup> ) |         |
|-------------------------------------------------------------------------------------|---------------------------------------------|----------|------------------------------------------------------------------|---------|
| (/                                                                                  | Average                                     | Maximum  | Average                                                          | Maximum |
| TRIGA Reactor Facility:                                                             |                                             | <b>.</b> | <b></b>                                                          |         |
| Reactor Top (D104)                                                                  | 1.1                                         | 90       | <500                                                             | 4,600   |
| Reactor 2nd Deck Area (D104)                                                        | 5.6                                         | 30       | <500                                                             | <500    |
| Reactor Bay SW (D104)                                                               | <1                                          | 11       | <500                                                             | 1,200   |
| Reactor Bay NW (D104)                                                               | <1                                          | 60       | <500                                                             | 1,400   |
| Reactor Bay NE (D104)                                                               | <1                                          | 40       | <500                                                             | 3,000   |
| Reactor Bay SE (D104)                                                               | <1                                          | 14       | <500                                                             | 3,400   |
| Class Experiments (D104, D302)                                                      | <1                                          | <1       | <500                                                             | <500    |
| Demineralizer Tank & Make Up Water System<br>(D104A)                                | <1                                          | 14       | <500                                                             | 800     |
| Particulate FilterOutside Shielding (D104A)                                         | . <1                                        | 3.7      | <500                                                             | <500    |
| Radiation Center:                                                                   |                                             | •        |                                                                  |         |
| NAA Counting Rooms (A146, B100)                                                     | <1                                          | 1.2      | <500                                                             | <500    |
| Health Physics Laboratory (A138)                                                    | <1                                          | <1       | <500                                                             | <500    |
| <sup>60</sup> Co Irradiator Room and Calibration Rooms<br>(A128, B120, A130)        | <1                                          | 2.2      | <500                                                             | <500    |
| Radiation Research Labs (A126, A136)<br>(B108, B114, B122, B124, C126, C130, C132A) | . <1                                        | 4.6      | <500                                                             | 1,538   |
| Radioactive Source Storage (B119, B119A,<br>A120A, A132A)                           | <1                                          | 30       | <500                                                             | <500    |
| Student Chemistry Laboratory (C118)                                                 | <1                                          | <1       | <500                                                             | <500    |
| Student Counting Laboratory (C120)                                                  | <1                                          | <1       | <500                                                             | <500    |
| Operations Counting Room (B136, B125)                                               | <1                                          | 1.2      | <500                                                             | <500    |
| Pneumatic Transfer Laboratory (D102)                                                | <1                                          | 6        | <500                                                             | <500    |
| RX support Room (D100)                                                              | <1                                          | <1       | <500                                                             | 1,400   |

**Radiation** Protection

## Total Dose Equivalent at the TRIGA Reactor Facility Fence

| Fence<br>Environmental Monitoring Station<br>(See Figure V.1) | Total Recorded Dose Equivalent<br>(Including Background)<br>Based on GSD TLDs <sup>(1,2)</sup><br>(mrem) |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| MRCFE-1                                                       | 86 ± 3                                                                                                   |
| MRCFE-2                                                       | 80 ± 4                                                                                                   |
| MRCFE-3                                                       | 75 ± 6                                                                                                   |
| MRCFE-4                                                       | . 84 ± 5                                                                                                 |
| MRCFE-5                                                       | 79 ± 4                                                                                                   |
| MRCFE-6                                                       | 76 ± 3                                                                                                   |
| MRCFE-7                                                       | 81 ± 5                                                                                                   |
| MRCFE-8                                                       | 80 ± 6                                                                                                   |
| MRCFE-9                                                       | 79 ± 4                                                                                                   |

(1) Average Corvallis area natural background using GDS TLDs totals 73 ± 10 mrem for the same period.

(2)  $\pm$  values represent the standard deviation of the total value at the 95% confidence level.

#### Total Dose Equivalent at the Off-Site Gamma Radiation Monitoring Stations

| Off-Site Radiation<br>Monitoring Station<br>(See Figure V.1) | Total Recorded Dose Equivalent<br>(Including Background)<br>Based on GDS TLDs <sup>(1,2)</sup><br>(mrem) |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| MRCTE-2                                                      | 81 ± 5                                                                                                   |
| MRCTE-3                                                      | 86 ± 4                                                                                                   |
| MRCTE-4                                                      | 79 ± 5                                                                                                   |
| MRCTE-5                                                      | 88 ± 5                                                                                                   |
| MRCTE-6                                                      | 73 ± 6                                                                                                   |
| MRCTE-7                                                      | 79 ± 4                                                                                                   |
| MRCTE-8                                                      | 89 ± 5                                                                                                   |
| MRCTE-9                                                      | 84 ± 7                                                                                                   |
| MRCTE-10                                                     | 69 ± 2                                                                                                   |
| MRCTE-12                                                     | 96 ± 8                                                                                                   |
| MRCTE-13                                                     | 86 ± 5                                                                                                   |
| MRCTE-14                                                     | 83 ± 4                                                                                                   |
| MRCTE-15                                                     | 83 ± 14                                                                                                  |
| MRCTE-16                                                     | 84 ± 5                                                                                                   |
| MRCTE-17                                                     | 79 ± 6                                                                                                   |
| MRCTE-18 <sup>(3)</sup>                                      | 79 ± 4                                                                                                   |
| MRCTE-19                                                     | 78 ± 5                                                                                                   |
| MRCTE-20                                                     | 77 ± 5                                                                                                   |
| MRCTE-21                                                     | 68 ± 5                                                                                                   |
| MRCTE-22                                                     | 74 ± 6                                                                                                   |

(1) Average Corvallis area natural background using GDS TLDs totals 73 ± 10 mrem for the same period.

(2) ± values represent the standard deviation of the total value at the 95% confidence level.

(3) Only three quarters are reported.

#### Annual Average Concentration of the Total Net Beta Radioactivity (minus <sup>3</sup>H) for Environmental Soil, Water, and Vegetation Samples

| Sample<br>Location<br>(See Fig. V.1) | Sample<br>Type           | Annual Average Concentration<br>Of the Total Net Beta (Minus <sup>3</sup> H)<br>Radioactivity <sup>(1)</sup> | Reporting<br>Units              |
|--------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1-W                                  | Water                    | no water <sup>(2)</sup>                                                                                      | μCi ml <sup>-1</sup>            |
| 4-W                                  | Water                    | no water <sup>(2)</sup>                                                                                      | μCi ml <sup>-1</sup>            |
| 11-W                                 | Water                    | 6.34x10 <sup>-6<sup>(2)</sup></sup>                                                                          | μCi ml <sup>-1</sup>            |
| 19-RW                                | Water                    | 6.34x10 <sup>-6<sup>(2)</sup></sup>                                                                          | μCi ml <sup>-1</sup>            |
| 3-S                                  | Soil                     | $4.78 \times 10^{-5} \pm 7.65 \times 10^{-6}$                                                                | μCi g <sup>-1</sup> of dry soil |
| 5-S                                  | Soil                     | $1.39 \text{x} 10^{-5} \pm 5.68 \text{x} 10^{-6}$                                                            | µCi g <sup>-1</sup> of dry soil |
| 20-S                                 | Soil                     | $2.59 \text{x} 10^{-5} \pm 6.02 \text{x} 10^{-6}$                                                            | µCi g <sup>-1</sup> of dry soil |
| 21-S                                 | Soil                     | $2.46 \times 10^{-5} \pm 6.20 \times 10^{-6}$                                                                | μCi g <sup>-1</sup> of dry soil |
| 2-G                                  | Grass                    | $3.19 \times 10^{-4} \pm 3.05 \times 10^{-5}$                                                                | µCi g⁻¹ of dry ash              |
| 6-G                                  | Grass                    | $2.21 \text{x} 10^{-4} \pm 2.46 \text{x} 10^{-5}$                                                            | µCi g <sup>-1</sup> of dry ash  |
| 7-G                                  | Grass                    | $3.90 \text{x} 10^{-4} \pm 3.03 \text{x} 10^{-5}$                                                            | μCi g <sup>-1</sup> of dry ash  |
| 8-G                                  | Grass                    | $3.51 \times 10^{-4} \pm 2.73 \times 10^{-5}$                                                                | µCi g <sup>-1</sup> of dry ash  |
| 9-G                                  | Grass                    | $2.72 \text{x} 10^{-4} \pm 2.62 \text{x} 10^{-5}$                                                            | µCi g <sup>-1</sup> of dry ash  |
| 10-G                                 | Grass                    | $2.06 \times 10^{-4} \pm 2.38 \times 10^{-5}$                                                                | µCi g⁻¹ of dry ash              |
| 12-G                                 | Grass                    | $8.61 \times 10^{-5} \pm 9.34 \times 10^{-6}$                                                                | µCi g <sup>-1</sup> of dry ash  |
| 13-G                                 | Grass                    | $33.37 \times 10^{-4} \pm 3.36 \times 10^{-5}$                                                               | µCi g⁻¹ of dry ash              |
| 14-G                                 | Grass                    | $1.30 \times 10^{-4} \pm 3.23 \times 10^{-5}$                                                                | µCi g <sup>-1</sup> of dry ash  |
| 15-G                                 | Grass                    | $1.21 \times 10^{-4} \pm 2.21 \times 10^{-5}$                                                                | µCi g <sup>-1</sup> of dry ash  |
| 16-G                                 | Grass                    | $3.69 \times 10^{-4} \pm 3.15 \times 10^{-5}$                                                                | µCi g⁻¹ of dry ash              |
| 17-G                                 | Grass                    | 2.09x10 <sup>-4</sup> ± 1.86x10 <sup>-5</sup>                                                                | μCi g <sup>-1</sup> of dry ash  |
| 18-G                                 | Grass                    | 3.36x10 <sup>-4</sup> ± 2.27x10 <sup>-5</sup>                                                                | μCi g <sup>-1</sup> of dry ash  |
| 22-G                                 | Grass                    | $1.51 \times 10^{-4} \pm 1.59 \times 10^{-5}$                                                                | μCi g <sup>-1</sup> of dry ash  |
| (1) + values represen                | t the standard deviation | of the value at the 95% confidence level                                                                     |                                 |

± values represent the standard deviation of the value at the 95% confidence level.
Less than lower limit of detaction value above.

(2) Less than lower limit of detection value shown.

## Beta-Gamma Concentration and Range of LLD Values for Soil, Water, and Vegetation Samples

| Sample<br>Type | Average<br>Value          | Range of Values                                | Reporting Units                 |
|----------------|---------------------------|------------------------------------------------|---------------------------------|
| Soil           | 1.26x10 <sup>-5</sup>     | 1.19x10 <sup>-5</sup> to 1.38x10 <sup>-5</sup> | µCi g <sup>−1</sup> of dry soil |
| Water          | 6.34x10 <sup>-6 (1)</sup> | 6.34x10 <sup>-6 (1)</sup>                      | µCi ml <sup>-1</sup>            |
| Vegetation     | 3.80x10 <sup>-5</sup>     | 1.46x10 <sup>-5</sup> to 6.47x10 <sup>-5</sup> | μCi g <sup>-1</sup> of dry ash  |

(1) Less than lower limit of detection value shown.

## Annual Summary of Radioactive Material Shipments Originating From the TRIGA Reactor Facility's NRC License R-106

|                                                                      |                            | Number of Shipments |                     |           |            |       |
|----------------------------------------------------------------------|----------------------------|---------------------|---------------------|-----------|------------|-------|
| Shipped To                                                           | Total<br>Activity<br>(TBq) | Exempt              | Limited<br>Quantity | Yellow II | Yellow III | Total |
| Berkeley Geochronology Center<br>Berkeley, CA USA                    | 1.72x10 <sup>-6</sup>      | 3                   | 0                   | 2         | 0          | 5     |
| Brush Resources Inc.<br>Delta, UT USA                                | 9.44x10 <sup>-2</sup>      | 0                   | 0                   | 0         | 17         | 17    |
| Brush Wellman Inc.<br>Elmore, OH USA                                 | 9.62x10 <sup>-3</sup>      | 0                   | . 0                 | 0         | 1          | 1     |
| Cal State Fullerton<br>Fullerton, CA USA                             | 1.32x10 <sup>-8</sup>      | 2                   | 0                   | 0         | 0          | 2     |
| General Atomics<br>San Diego, CA USA                                 | 1.67x10 <sup>-9</sup>      | 1                   | 0                   | 0         | 0          | 1     |
| Occidental College<br>Los Angeles, CA USA                            | 4.51x10 <sup>-9</sup>      | 1                   | 0                   | 0         | 0          | 1     |
| Oregon Public Hlth Div. Radiation Protection Srv<br>Portland, OR USA | 2.42x10 <sup>-5</sup>      | 0                   | 0                   | 1         | 0          | 1     |
| Oregon State University<br>Corvallis, OR USA                         | 4.83x10 <sup>-6</sup>      | 0                   | 0                   | 3         | 0          | 3     |
| Penn State University<br>University Park, PA USA                     | 2.00x10 <sup>-10</sup>     | 1                   | 0                   | 0         | 0          | 1     |
| Plattsburgh State University<br>Plattsburgh, NY USA                  | 1.52x10 <sup>-8</sup>      | 2                   | 0                   | 0         | 0          | 2     |
| Syracuse University<br>Syracuse, NY USA                              | 1.61x10 <sup>-7</sup>      | 4                   | 0                   | 0         | 0          | 4     |
| Union College<br>Schenectady, NY USA                                 | 1.17x10 <sup>-8</sup>      | 1                   | 0                   | 0         | 0          | · 1   |
| University of Arizona<br>Tucson, AZ USA                              | 3.24x10 <sup>-6</sup>      | 2                   | 0                   | 1         | 0          | 3     |
| University of California at Berkeley<br>Berkeley, CA USA             | 3.81x10-6                  | 0                   | 0                   | 2         | 0          | 2     |
| University of California at Santa Barbara<br>Santa Barbara, CA USA   | 1.21x10 <sup>-7</sup>      | 1                   | 0                   | 0         | 0          | 1     |
| University of Florida<br>Gainesville, FL USA                         | 1.37x10 <sup>-7</sup>      | 2                   | 0                   | 0         | 0          | 2     |
| University of Michigan<br>Ann Arbor, MI USA                          | 3.79x10 <sup>-7</sup>      | 1                   | 0                   | 0         | 0          | 1     |
| University of Wisconsin-Madison<br>Madison, WI USA                   | 1.14x10 <sup>-5</sup>      | 1                   | 0                   | 3         | 0          | 4     |
| University of Wyoming<br>Laramie, WY USA                             | 6.67x10 <sup>-8</sup>      | 1                   | 0                   | 0         | 0          | 1     |
| Washington State University<br>Pullman, WA USA                       | 8.71x10 <sup>-7</sup>      | 1                   | 1                   | 0         | 0          | 2     |
| Totals                                                               | 1.04x10 <sup>-1</sup>      | 24                  | 1                   | 12        | 18         | 55    |

#### Annual Summary of Radioactive Material Shipments Originating From the Radiation Center's State of Oregon License ORE 90005

|                                                           |                        | Number of Shipments |                     |       |  |
|-----------------------------------------------------------|------------------------|---------------------|---------------------|-------|--|
| Shipped To                                                | Total Activity (TBq)   | Exempt              | Limited<br>Quantity | Total |  |
| Argonne National Lab<br>Argonne, IL USA                   | 4.14x10 <sup>-11</sup> | 2                   | 0                   | 2     |  |
| Eckert & Ziegler Isotope Products Inc.<br>Burbank, CA USA | 3.70x10 <sup>-8</sup>  | 1                   | 0                   | 1     |  |
| Idaho National Laboratory<br>Idaho Falls, ID USA          | 6.24x10 <sup>-7</sup>  | 1                   | 1                   | 2     |  |
| Idaho State University<br>Pocatello, ID USA               | 1.01x10 <sup>-11</sup> | 1                   | 0                   | 1     |  |
| Lawrence Livermore National Lab<br>Livermore, CA USA      | 2.18x10 <sup>-9</sup>  | 3                   | 0                   | 3     |  |
| Los Alamos National Lab<br>Los Alamos, NM USA             | 2.58x10 <sup>-10</sup> | 5                   | 0                   | 5     |  |
| Totals                                                    | 6.63x10 <sup>-7</sup>  | 13                  | 1                   | 14    |  |

## Annual Summary of Radioactive Material Shipments Exported Under NRC General License 10 CFR 110.23

|                                                                     |                         | Number of Shipments |                     |           |       |
|---------------------------------------------------------------------|-------------------------|---------------------|---------------------|-----------|-------|
| Shipped To                                                          | Total Activity<br>(TBq) | Exempt              | Limited<br>Quantity | Yellow II | Total |
| Dalhousie University<br>Halifax, Nova Scotia CANADA                 | 2.39x10 <sup>-8</sup>   | 2                   | 0                   | 0         | 2     |
| Institute of Geology, Academy of Sciences<br>Prague, CZECH REPUBLIC | 1.82x10 <sup>-8</sup>   | 2                   | 0                   | 0         | 2     |
| Polish Academy of Sciences<br>Krakow, POLAND                        | 1.17x10 <sup>-8</sup>   | 1                   | 0                   | 0         | . 1   |
| QUAD-Lab, Roskilde University<br>Roskilde, DENMARK                  | 2.03x10 <sup>-7</sup>   | 5                   | 0                   | 0         | 5     |
| TRIUMF<br>Vancouver, British Columbia CANADA                        | 1.60x10 <sup>-6</sup>   | 2                   | 0                   | 0         | 2     |
| Universita' Degli Studi di Bologna<br>Bologna, ITALY                | 1.33x10 <sup>-8</sup>   | 2                   | 0                   | 0         | 2     |
| Universitat Potsdam<br>Postdam, GERMANY                             | 1.56x10 <sup>-8</sup>   | 1                   | 0                   | 0         | 1     |
| University of Geneva<br>Geneva, SWITZERLAND                         | 3.05x10 <sup>-7</sup>   | 1                   | 1                   | 0         | 2     |
| University of Manchester<br>Manchester, UK                          | 2.48x10 <sup>-9</sup>   | 1                   | 0                   | 0         | 1     |
| University of Queensland<br>Brisbane, Queensland AUSTRALIA          | 3.16x10 <sup>-6</sup>   | 0                   | 1                   | 1         | 2     |
| University of Zurich<br>Zurich, SWITZERLAND                         | 3.85x10 <sup>-8</sup>   | 3                   | 0                   | 0         | 3     |
| Vrije Universiteit<br>Amsterdam, THE NETHERLANDS                    | 1.35x10 <sup>-6</sup>   | . 1                 | 0                   | 1         | 2     |
| Totals                                                              | 6.74x10 <sup>-6</sup>   | 21                  | 2                   | 2         | 25    |

# Figure V.1

# **Monitoring Stations for the OSU TRIGA Reactor**





## •

## Summary

The Radiation Center offers a wide variety of resources for teaching, research, and service related to radiation and radioactive materials. Some of these are discussed in detail in other parts of this report. The purpose of this section is to summarize the teaching, research, and service efforts carried out during the current reporting period.

## Teaching

An important responsibility of the Radiation Center and the reactor is to support OSU's academic programs. Implementation of this support occurs through direct involvement of the Center's staff and facilities in the teaching programs of various departments and through participation in University research programs. Table III.2 plus the "Training and Instuction" section (see next page) provide detailed information on the use of the Radiation Center and reactor for instruction and training.

## **Research and Service**

Almost all Radiation Center research and service work is tracked by means of a project database. When a request for facility use is received, a project number is assigned and the project is added to the database. The database includes such information as the project number, data about the person and institution requesting the work, information about students involved, a description of the project, Radiation Center resources needed, the Radiation Center project manager, status of individual runs, billing information, and the funding source.

Table VI.1 provides a summary of institutions which used the Radiation Center during this reporting period. This table also includes additional information about the number of academic personnel involved, the number of students involved, and the number of uses logged for each organization. Details on graduate student research which used the Radiation Center are given in Table VI.2.

The major table in this section is Table VI.3. This table provides a

listing of the research and service projects carried out during this reporting period and lists information relating to the personnel and institution involved, the type of project, and the funding agency. Projects which used the reactor are indicated by an asterisk. In addition to identifying specific projects carried out during the current reporting period, Part VI also highlights major Radiation Center capabilities in research and service. These unique Center functions are described in the following text.

#### Neutron Activation Analysis

Neutron activation analysis (NAA) stands at the forefront of techniques for the quantitative multi-element analysis of major, minor, trace, and rare elements. The principle involved in NAA consists of first irradiating a sample with neutrons in a nuclear reactor such as the OSTR to produce specific radionuclides. After the irradiation, the characteristic gamma rays emitted by the decaying radionuclides are quantitatively measured by suitable semiconductor radiation detectors, and the gamma rays detected at a particular energy are usually indicative of a specific radionuclide's presence. Computerized data reduction of the gamma ray spectra then yields the concentrations of the various elements in samples being studied. With sequential instrumental NAA it is possible to measure quantitatively about 35 elements in small samples (5 to 100 mg), and for activable elements the lower limit of detection is on the order of parts per million or parts per billion, depending on the element.

The Radiation Center's NAA laboratory has analyzed the major, minor, and trace element content of tens of thousands of samples covering essentially the complete spectrum of material types and involving virtually every scientific and technical field.

Ó

ļ

While some researchers perform their own sample counting on their own or on Radiation Center equipment, the Radiation Center provides a complete NAA service for researchers and others who may require it. This includes sample preparation, sequential irradiation and counting, and data reduction and analysis.

Data on NAA research and service performed during this reporting period are included in Table VI.3.

#### 09-10 Annual Report -

#### Irradiations

As described throughout this report, a major capability of the Radiation Center involves the irradiation of a large variety of substances with gamma rays and neutrons. Detailed data on these irradiations and their use are included in Part III as well as in the "Research & Service" text of this section.

#### Radiological Emergency Response Services

The Radiation Center has an emergency response team capable of responding to all types of radiological accidents. This team directly supports the City of Corvallis and Benton County emergency response organizations and medical facilities. The team can also provide assistance at the scene of any radiological incident anywhere in the state of Oregon on behalf of the Oregon Radiation Protection Services and the Oregon Department of Energy.

The Radiation Center maintains dedicated stocks of radiological emergency response equipment and instrumentation. These items are located at the Radiation Center and at the Good Samaritan Hospital in Corvallis.

During the current reporting period, the Radiation Center emergency response team conducted several training sessions and exercises, but was not required to respond to any actual incidents.

#### Training and Instruction

In addition to the academic laboratory classes and courses discussed in Parts III, and VI, and in addition to the routine training needed to meet the requirements of the OSTR Emergency Response Plan, Physical Security Plan, and operator requalification program, the Radiation Center is also used for special training programs. Radiation Center staff are well experienced in conducting these special programs and regularly offer training in areas such as research reactor operations, research reactor management, research reactor radiation protection, radiological emergency response, reactor



behavior (for nuclear power plant operators), neutron activation analysis, nuclear chemistry, and nuclear safety analysis.

Special training programs generally fall into one of several categories: visiting faculty and research scientists; International Atomic Energy Agency fellows; special short-term courses; or individual reactor operator or health physics training programs. During this reporting period there were a large number of such people as shown in Part II.

As has been the practice since 1985, Radiation Center personnel annually present a HAZMAT Response Team Radiological Course. This year the course was held at Oregon State University.

#### Radiation Protection Services

The primary purpose of the radiation protection program at the Radiation Center is to support the instruction and research conducted at the Center. However, due to the high quality of the program and the level of expertise and equipment available, the Radiation Center is also able to provide health physics services in support of OSU Radiation Safety and to assist other state and federal agencies. The Radiation Center does not compete with private industry, but supplies health physics services which are not readily available elsewhere. In the case of support provided to state agencies, this definitely helps to optimize the utilization of state resources.

The Radiation Center is capable of providing health physics services in any of the areas which are discussed in Part V. These include personnel monitoring, radiation surveys, sealed source leak testing, packaging and shipment of radioactive materials, calibration and repair of radiation monitoring instruments (discussed in detail in Part VI), radioactive waste disposal, radioactive material hood flow surveys, and radiation safety analysis and audits.

The Radiation Center also provides services and technical support as a radiation laboratory to the State of Oregon Radiation Protection Services (RPS) in the event of a radiological emergency within the state of Oregon. In this role, the Radiation Center will provide gamma ray spectrometric analysis of water, soil, milk, food products, vegetation, and air samples collected by RPS radiological response field teams. As part of the ongoing preparation for this emergency support, the Radiation Center participates in inter-institution drills.

#### Radiological Instrument Repair and Calibration

While repair of nuclear instrumentation is a practical neces-

sity, routine calibration of these instruments is a licensing and regulatory requirement which must be met. As a result, the Radiation Center operates a radiation instrument repair and calibration facility which can accommodate a wide variety of equipment.

The Center's scientific instrument repair facility performs maintenance and repair on all types of radiation detectors and other nuclear instrumentation. Since the Radiation Center's own programs regularly utilize a wide range of nuclear instruments, components for most common repairs are often on hand and repair time is therefore minimized.

In addition to the instrument repair capability, the Radiation Center has a facility for calibrating essentially all types of radiation monitoring instruments. This includes typical portable monitoring instrumentation for the detection and measurement of alpha, beta, gamma, and neutron radiation, as well as instruments designed for low-level environmental monitoring. Higher range instruments for use in radiation accident situations can also be calibrated in most cases. Instrument calibrations are performed using radiation sources certified by the National Institute of Standards and Technology (NIST) or traceable to NIST.

Table VI.4 is a summary of the instruments which were calibrated in support of the Radiation Center's instructional and research programs and the OSTR Emergency Plan, while Table VI.5 shows instruments calibrated for other OSU departments and non-OSU agencies.

#### Consultation

Radiation Center staff are available to provide consultation services in any of the areas discussed in this Annual Report, but in particular on the subjects of research reactor operations and use, radiation protection, neutron activation analysis, radiation shielding, radiological emergency response, and radiotracer methods.

Records are not normally kept of such consultations, as they often take the form of telephone conversations with researchers encountering problems or planning the design of experiments. Many faculty members housed in the Radiation Center have ongoing professional consulting functions with various organizations, in addition to sitting on numerous committees in advisory capacities.

#### Public Relations

The continued interest of the general public in the OSTR is evident by the number of people who have toured the facility. See Table VI.6 for statistics on scheduled visitors.

•

# Table VIInstitutions, Agencies and Groups Which<br/>Utilized the Radiation Center

| Intuitions, Agencies and Groups                                   | Number of<br>Projects Faculty Involvement |    | Number of<br>Students<br>Involved | Number of<br>Uses of Center<br>Facilities |
|-------------------------------------------------------------------|-------------------------------------------|----|-----------------------------------|-------------------------------------------|
| *Oregon State University <sup>(1)</sup><br>Corvallis, OR USA      | 19                                        | 31 | 9                                 | 192(2)                                    |
| *Oregon State University - Educational Tours<br>Corvallis, OR USA | • 4                                       | 18 | 0                                 | 44                                        |
| CH2M Hill Inc<br>Corvallis, OR USA                                | 1                                         | 0  | 0                                 | 1                                         |
| Eugene Sand & Gravel, Inc.<br>Eugene, OR USA                      | 1                                         | 0  | 0                                 | 1                                         |
| *Marist High School<br>Eugene, OR USA                             | 1                                         | 0  | 0                                 | 1                                         |
| Oregon Department of Energy<br>Salem, OR USA                      | 1                                         | 1  | 0                                 | 4                                         |
| Oregon State Fire Marshal<br>Salem, OR USA                        | 1                                         | 0  | 0                                 | 49                                        |
| SIGA Technologies, Inc<br>Corvallis, OR USA                       | 1                                         | 0  | 0                                 | . 2                                       |
| USDOE Albany Research Center<br>Albany, OR USA                    | 1                                         | 0  | 0                                 | 10                                        |
| *West Albany High School<br>Albany, OR USA                        | 1                                         | 0  | 0                                 | 1                                         |
| ESCO Corporation<br>Portland, OR USA                              | 1                                         | 0  | 0                                 | 6                                         |
| Gene Tools, LLC<br>Philomath, OR USA                              | 1                                         | 0  | 0                                 | 3                                         |
| Grande Ronde Hospital<br>La Grande, OR USA                        |                                           | 0  | 0                                 | 1                                         |
| Knife River<br>Tangent, OR USA                                    | 1                                         | 0  | 0                                 | 3                                         |
| Lebanon Community Hospital<br>Lebanon, OR USA                     | 1                                         | 0  | 0                                 | 1                                         |
| Occupational Health Lab<br>Portland, OR USA                       | 1                                         | 0  | 0                                 | 1                                         |

# • • D

# Table VI.1 (continued)Institutions, Agencies and Groups Which<br/>Utilized the Radiation Center

| Intuitions, Agencies and Groups                                     | Number of Times of<br>Faculty Involvement | Number of<br>Students<br>Involved | Number of<br>Uses of Center<br>Facilities |     |
|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|-----|
| Oregon Biomedical Engineering Institute<br>Portland, OR USA         | 1                                         | 0                                 | 0                                         | 1   |
| *Oregon Health Sciences University<br>Portland, OR USA              | 1                                         | 1                                 | 0                                         | 19  |
| Radiation Protection Services<br>Portland, OR USA                   | 1                                         | 0                                 | 0                                         | 94  |
| Rogue Community College<br>Grants Pass, OR USA                      | 1                                         | 0                                 | 0                                         | 1   |
| Umpqua Research Company<br>Bend, OR USA                             | 1                                         | 0                                 | 0                                         | · 1 |
| US National Parks Service<br>Crater Lake, OR USA                    | 1                                         | 0                                 | 0                                         | 3   |
| Veterinary Diagnostic Imaging & Cytopathology<br>Clackamas, OR USA  | 1                                         | 0                                 | 0                                         | 2   |
| Weyerhaeuser<br>Sweet Home, OR USA                                  | 1                                         | 0                                 | 0                                         | 1   |
| *Idaho National Laboratory<br>Idaho Falls, ID USA                   | 1                                         | 0                                 | 0                                         | 1   |
| *Pacific Northwest National Laboratory<br>Richland, WA USA          | 1                                         | 1                                 | 0                                         | 1   |
| *Berkeley Geochronology Center<br>Berkeley, CA USA                  | 1                                         | 0                                 | 9                                         | 7   |
| *California State University at Fullerton<br>Fullerton, CA USA      | 1                                         | 1                                 | 0                                         | 2   |
| Dalhousie University<br>Halifax Nova Scotia, CANADA                 | 1                                         | 2                                 | 0                                         | 2   |
| *Occidental College<br>Los Angeles, CA USA                          | 1                                         | 1 .                               | 0                                         | 1   |
| *University of California at Berkeley<br>Berkeley, CA USA           | 1                                         | 2                                 | 1                                         | 1   |
| *University of California at Santa Barbara<br>Santa Barbara, CA USA | 1                                         | 1                                 | 0                                         | 1   |

# Table VI.1 (continued)Institutions, Agencies and Groups Which<br/>Utilized the Radiation Center

Work

| Intuitions, Agencies and Groups                      | Number of<br>Projects | Number of Times of<br>Faculty Involvement | Number of<br>Students<br>Involved | Number of<br>Uses of Center<br>Facilities |
|------------------------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|
| *Brush Wellman<br>UT USA                             | 1                     | 0                                         | 0                                 | 18                                        |
| *University of Arizona<br>Tucson, AZ USA             | - 3                   | 3                                         | 1                                 | 4                                         |
| *University of Wisconsin<br>Madison, WI USA          | 1                     | 1                                         | 0                                 | 10                                        |
| *University of Michigan<br>Ann Arbor, MI USA         | 3                     | 7                                         | 0                                 | 10                                        |
| Wayne State University<br>Detroit, MI USA            | 1                     | 2                                         | 0                                 | 2                                         |
| *Brush-Wellman<br>Cleveland, OH USA                  | 1                     | 0                                         | 0                                 | 1                                         |
| University of Cincinnati<br>Cincinnati, OH USA       | 1                     | 0                                         | 0                                 | 2                                         |
| *Plattsburgh State University<br>Plattsburgh, NY USA | 1                     | 2                                         | 0                                 | 2                                         |
| *Syracuse University<br>Syracuse, NY USA             | 2                     | 2                                         | 4                                 | 3                                         |
| *Union College<br>Schenectady, NY USA                | 2                     | 3                                         | 8                                 | 3                                         |
| *Union College<br>Schenectady, NY USA                | 1                     | 1                                         |                                   | 2                                         |
| Arch Chemicals Inc.<br>Cheshire, CT USA              | 1                     | 1                                         | 6                                 | 2                                         |
| *University of Florida<br>Gainesville, FL USA        | 1                     | 1                                         | 6                                 | 2                                         |
| *Quaternary Dating Laboratory<br>Roskilde, Denmark   | 1                     | 0                                         | 0                                 | 5                                         |
| *University of Manchester<br>Manchester, UK          | 1                     | 0                                         | 0                                 | 1                                         |
| Genis, Inc.<br>Reykjavik, Iceland                    | 1                     | 0                                         | 0                                 | 6                                         |

# Table VI.1 (continued)Institutions, Agencies and Groups WhichUtilized the Radiation Center

| Intuitions, Agencies and Groups                                      | Number of<br>Projects | Number of Times of<br>Faculty Involvement | Number of<br>Students<br>Involved | Number of<br>Uses of Center<br>Facilities |
|----------------------------------------------------------------------|-----------------------|-------------------------------------------|-----------------------------------|-------------------------------------------|
| *Vrije Universiteit<br>Amsterdam, The Netherlands                    | 1                     | 1                                         | 4                                 | 3                                         |
| *Academy of Sciences of the Czech Republic<br>Prague, Czech Republic | 2                     | 1 ·                                       | 0                                 | 2                                         |
| *Academy of Sciences of the Czech Republic<br>Prague, CZECH REPUBLIC | 2                     | 1                                         | 0                                 | 2                                         |
| *Polish Academy of Sciences<br>Krakow, Poland                        | 1                     | 0                                         | 0                                 | 2                                         |
| *Universita' di Bologna<br>Bologna, Italy                            | 1                     | 1                                         | 0                                 | 2                                         |
| *Universitat Potsdam<br>Postdam, Germany                             | 1                     | 0                                         | 3                                 | 1                                         |
| *University of Basel<br>CH-4056 Basel, Switzerland                   | 1                     | 1                                         | 0                                 | 4                                         |
| *University of Geneva<br>Geneva, Switzerland                         | 1                     | 1                                         | 4                                 | 1                                         |
| *University of Queensland<br>Brisbane, Queensland Australia          | 1                     | 1                                         | 0                                 | 3                                         |
| Totals                                                               | 81                    | 85                                        | 41                                | 553                                       |

\* Project which involves the OSTR.

Use by Oregon State University does not include any teaching activities or classes accommodated by the Radiation Center.
This number does not include on going projects being performed by residents of the Radiation Center such as the APEX project, others in the Department of Nuclear Engineering and Radiation Health Physics or Department of Chemistry or projects conducted by Dr. Walt Loveland, which involve daily use of the Radiation Center facilities.

|                     | ~          | adarata C                                        | Table VI           | .2       | h Which                                                                                                                                    |
|---------------------|------------|--------------------------------------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                     | U)         | aquate S<br>Utilized                             | the Radia          | tion Ce  | nter                                                                                                                                       |
| Student's Name      | Degree     | Academic<br>Department                           | Faculty<br>Advisor | Project  | Thesis Topic                                                                                                                               |
| Berkeley Geochron   | ology Cei  | nter                                             |                    | <b>_</b> |                                                                                                                                            |
| Brownlee, Sarah     | PhD        | Geology                                          | Renne              | 920      | Application of 39Ar/40Ar Geochronology<br>Thermochronology and Paleomagnetism<br>of the Ecstall and related plutons in<br>British Columbia |
| Chang, Su-chin      | PhD        | Geology                                          | Renne              | 920      | Application of 39Ar/40Ar Geochronology<br>Permo- Triassic Boundry                                                                          |
| Hagan, Jeanette     | PhD        |                                                  | Renne              | 920      | Neogene Tectonics of Sierra Nevada,<br>California                                                                                          |
| Jarboe, Nick        | PhD        |                                                  | Renne              | 920      | Geochronology and Paleomagnetism of<br>Columbia River Basalts                                                                              |
| Letcher, Alice      | MS         |                                                  | Renne              | 920      | Deformation History of Puna Plateau,<br>NW Argentina                                                                                       |
| Morgan, Leah        | PhD        | Geology                                          | Renne              | 920      | Application of 39Ar/40Ar Geochronology<br>Geochronology of the Middle Stone Age<br>in Ethiopia                                             |
| Paine, Jeffery      | MS         | Geology                                          | Renne              | 920      | Experimental Studies of 39Ar Recoil<br>and Isotope Fractionation Relevant to<br>40Ar/39Ar Geochronology                                    |
| Verdel, Charlie     | PhD        |                                                  | Renne              | 920      | Core complexes of Saghand region, Iran                                                                                                     |
| Columbia Universit  | y          |                                                  |                    |          |                                                                                                                                            |
| Downing, Greg       | PhD        |                                                  | Hemming            | 1705     | Application of 39Ar/40Ar Geochronology                                                                                                     |
| Walker, Chris       | PhD        |                                                  | Anders             | 1705     | Application of 39Ar/40Ar Geochronology                                                                                                     |
| North Carolina Stat | te Univers | ity                                              |                    |          |                                                                                                                                            |
| Haynes, Elizabeth   | PhD        | Marine,<br>Earth, and<br>Atmospheric<br>Sciences | Fodor              | 1684     | Intrusion-related gold systems:<br>petrological and fluid geochemical<br>characteristics of gold-hosted granite<br>plutons                 |
| Oregon State Unive  | rsity      |                                                  |                    |          |                                                                                                                                            |
| Bytwerk, David      | PhD        | NERHP                                            | Higley             | 1847     |                                                                                                                                            |
| Mitushashi, June    | MS         | Wood<br>Science &<br>Engineering                 | Morell             | 815      | The effect of additives on copper losses from alkaline copper treated wood                                                                 |
| Sinton, Christopher | PhD        | Ocenography                                      | Duncan             | 444      | Age and Composition of Two Large<br>Igneous Provinces: The North Atlantic<br>Volcanic Rifted Margin and the<br>Caribbean Plateau           |

D

D

Ŏ

|                      | Gi         | Tal<br>raduate S<br>Utilized                    | ble VI.2 (c<br>tudents'<br>the Badi | ontinued)<br>Researcl | h Which                                                                                                                                                                                      |
|----------------------|------------|-------------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Student's Name       | Degree     | Academic<br>Department                          | Faculty<br>Advisor                  | Project               | Thesis Topic                                                                                                                                                                                 |
| VanHorn-Sealy, Jama  | MA         | NERHP                                           | Higley                              | 1842                  | Gel Decontamination                                                                                                                                                                          |
| Willis, Sam          | PhD        | Anthropology                                    | Davis                               | 1806                  |                                                                                                                                                                                              |
| Syracuse University  |            |                                                 |                                     |                       |                                                                                                                                                                                              |
| Monteleone, Brian    | PhD        | Noble Gas<br>Isotopic<br>Research<br>Laboratory | Baldwin                             | 1555                  | Timing and Conditions of the Formation<br>of the D'Entrecasteaux Islands, SE Papua<br>New Guniea                                                                                             |
| Taylor, Josh         | MS         |                                                 | Fitzgerald                          | 1555                  | Low Temperature Thermochronologic<br>Studies in the Adirondack Highlands<br>Thermochronology and Tectonics of<br>intraplate deformation in SE Mongolia                                       |
| Terrien, Jessica     | PhD        | Noble Gas<br>Isotopic<br>Research<br>Laborator  | Baldwin                             | 1555                  | Integration of Thermochronology, Gravity<br>and Aeromagnetic Data from the Catalina<br>Metamorphic Core Complex, AZ: Insight<br>in to the Role of Magmatism and the<br>Timing of Deformation |
| Wagner, Alec         | MS         | Noble Gas<br>Isotopic<br>Research<br>Laborator  | Baldwin                             | 1555                  |                                                                                                                                                                                              |
| Universitat Potsdam  | 1          |                                                 |                                     |                       |                                                                                                                                                                                              |
| Deeken, Anke         | PhD        |                                                 | Strecker                            | 1514                  | Age of initiation and growth pattern<br>of the Puna Plateau, NW-Argentina,<br>constrained by AFT thermochronology                                                                            |
| Mora, Andrés         | PhD        |                                                 |                                     | 1514                  | Late Cenozoic uplift and deformation<br>of the eastern flank of the Columbian<br>Eastern Cordillera.                                                                                         |
| Parra, Mauricio      | PhD        |                                                 | Strecker                            | 1514                  | Cenozoic tectonic evolution of the<br>northeastern Andean foreland basin,<br>Colombia                                                                                                        |
| University of Califo | rnia at Be | rkeley                                          |                                     |                       |                                                                                                                                                                                              |
| Herbison, Sarah      | PhD        | Department<br>of Chemistry                      | Nitsche                             | 1468                  | Applications of NAA                                                                                                                                                                          |
| University of Florid | a          |                                                 |                                     |                       |                                                                                                                                                                                              |
| Coyner, Samuel       | MS         |                                                 | Foster                              | 1621                  | Pb-Pb Geochronology and<br>Thermochronology of Titanite Using<br>MC-ICP-MS                                                                                                                   |

|   | Table VI.2 (continued)                   |
|---|------------------------------------------|
| • | <b>Graduate Students' Research Which</b> |
|   | Utilized the Radiation Center            |

| Student's Name      | Degree | Academic<br>Department                 | Faculty<br>Advisor | Project | Thesis Topic                                                                                                                                                     |
|---------------------|--------|----------------------------------------|--------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gifford, Jennifer   | MS     |                                        | Foster             | 1621    | Quantifying Eocene and Miocene<br>Extension in the Sevier Hinterland, NE<br>Nevada                                                                               |
| Grice, Warren       | MS     | Geology                                | Foster             | 1621    | Style and Timing of Mylonitization,<br>Detachment, Ductile Attenuation<br>and Metamorphism in the Anaconda<br>Metamorphic core Complex, West-<br>Central Montana |
| Newman, Virginia    | MA     | Geology                                | Foster             | 1621    | Exhumation of the Ruby Mountains<br>Metamorphic Core Complex                                                                                                     |
| Restrepo, Sergio    | PhD    | Geology                                | Foster             | 1621    | Long-Term vs. Short-Term Erosion<br>Rates in Columbian Tropical Andean<br>Ecosystems: Measuring the Dimension of<br>the Human Impact                             |
| Stroud, Misty       | PhD    |                                        | Foster             | 1621    | Significance of 2.4-2.0 Ga Orogeny in<br>SW Laurentia                                                                                                            |
| University of Gene  | va     |                                        |                    |         |                                                                                                                                                                  |
| Baumgartner, Regine | PhD    | Geological<br>Sciences                 | Fontbote           | 1617    | Pulsed High Sulfidation Hydrothermal<br>Activity in the Cerro de Pasco-Colquijirca<br>"super district," Peru                                                     |
| Luzieux, Leonard    | PhD    | Geological<br>Sciences                 | Spikings           | 1617    | The Origin and Accretionary History<br>of Basement Forearc Unites in Western<br>Ecuador                                                                          |
| Vallejo, Cristian   | PhD    | Geological<br>Sciences                 | Spikings           | 1617    | The Syn- and Post-Accretionary History<br>of the Western Cordillera of Ecuador                                                                                   |
| Villagomez, Diego   | PhD    | Geological<br>Sciences                 | Spikings           | 1617    | The Late-Cretaceous to Recent<br>Accretionary History of Western<br>Colombia                                                                                     |
| Vrije Universiteit  |        |                                        |                    |         |                                                                                                                                                                  |
| Beintema, Kike      | PhD    | Department<br>of Structural<br>Geology | White/Wijbrans     | 1074    | The Kinematics and Evolution Major<br>Structural Units of the Archean Pilbara<br>Craton, Western Australia                                                       |
| Carrapa, Barbara    | MA     | Isotope<br>Geochemistry                | Wijbrans/Bertotti  | 1074    | The tectonic record of detrital minerals on sun-orogenics clastic sediments                                                                                      |
| Kuiper, Klaudia     | PhD    | Isotope<br>Geochemistry                | Hilgen/Wijbrans    | 1074    | Intercalibration of astronomical and radioisotopic timescales                                                                                                    |

# Table VI.3Listing of Major Research and Service Projects Preformed or in Progress<br/>at the Radiation Center and Their Funding Agencies

|    | Project | Users                 | Organization Name                       | Project Title                                     | Description                                                                                                                                                                           | Funding                                          |
|----|---------|-----------------------|-----------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|    | 444     | Duncan                | Oregon State<br>University              | Ar-40/Ar-39 Dating of Oceanographic<br>Samples    | Production of Ar-39 from K-39 to measure radiometric ages on basaltic rocks from ocean basins.                                                                                        | OSU Oceanography<br>Department                   |
|    | 481     | Le                    | Oregon Health<br>Sciences University    | Instrument Calibration                            | Instrument calibration.                                                                                                                                                               | Oregon Health<br>Sciences University             |
|    | 488     | Farmer                | Oregon State<br>University              | Instrument Calibration                            | Instrument calibration.                                                                                                                                                               | OSU - various<br>departments                     |
|    | 664     | Reese                 | Oregon State<br>University              | Good Samaritan Hospital Instrument<br>Calibration | Instrument calibration.                                                                                                                                                               | OSU Radiation Center                             |
|    | 815     | Morrell               | Oregon State<br>University              | Sterilization of Wood Samples                     | Sterilization of wood samples to 2.5 Mrads in Co-60 irradiator for fungal evaluations.                                                                                                | OSU Forest Products                              |
| 62 | 920     | Becker                | Berkeley<br>Geochronology Center        | Ar-39/Ar-40 Age Dating                            | Production of Ar-39 from K-39 to determine ages in various anthropologic and geologic materials.                                                                                      | Berkeley<br>Geochronology Center                 |
| -  | 932     | Dumitru               | Stanford University                     | Fission Track Dating                              | Thermal column irradiation of geological samples for fission track age-dating.                                                                                                        | Stanford University<br>Geology Department        |
|    | 1018    | Gashwiler             | Occupational Health<br>Lab              | Calibration of Nuclear Instruments                | Instrument calibration.                                                                                                                                                               | Occupational Health<br>Laboratory                |
|    | 1074    | Wijbrans              | Vrije Universiteit                      | 40Ar-39 Ar Dating of Rocks and Minerals           | 40Ar-39Ar dating of rocks and minerals.                                                                                                                                               | Vrije Universiteit,<br>Amsterdam                 |
|    | 1075    | Teaching and<br>Tours | University of<br>California at Berkeley | Activation Analysis Experiment for NE<br>Class    | Activation Analysis Experiment for NE Class.<br>Irradiation of small, stainless steel discs for use in a<br>nuclear engineering radiation measurements laboratory.                    | University of California<br>at Berkeley          |
|    | 1177    | Garver                | Union College                           | Fission Track Analysis of Rock Ages               | Use of thermal column irradiations to perform fission track analysis to determine rock ages.                                                                                          | Union College, NY                                |
|    | 1188    | Salinas               | Rogue Community<br>College              | Photoplankton Growth in Southern<br>Oregon Lakes  | C-14 liquid scintillation counting of radiotracers<br>produced in a photoplankton study of southern Oregon<br>lakes: Miller Lake, Lake of the Woods, Diamond Lake,<br>and Waldo Lake. | Rogue Community<br>College                       |
|    | 1191    | Vasconcelos           | University of<br>Queensland             | Ar-39/Ar-40 Age Dating                            | Production of Ar-39 from K-39 to determine ages in various anthropologic and geologic materials.                                                                                      | Earth Sciences,<br>University of -<br>Queensland |

|  |  | $\bullet \bullet \bullet \bullet \bullet \bullet$ |  | $\bullet \bullet$ |
|--|--|---------------------------------------------------|--|-------------------|
|  |  |                                                   |  |                   |
|  |  |                                                   |  |                   |
|  |  |                                                   |  |                   |

# Table VI.3 (continued) Listing of Major Research and Service Projects Preformed or in Progress at the Radiation Center and Their Funding Agencies

|         | L                     | isting of Major<br>at the               | Table VI.3 (cor Research and Service Ie Radiation Center and 7                                         | ontinued)<br>Projects Preformed or in Progress<br>Their Funding Agencies                                                                                                                                                                                                       | 5                                                   |
|---------|-----------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Project | Users                 | Organization Name                       | Project Title                                                                                          | Description                                                                                                                                                                                                                                                                    | Funding                                             |
| 1267    | Hemming               | Columbia University                     | Geochronology by Ar/Ar Methods                                                                         | Snake River plain sanidine phenocrysts to evaluate<br>volcanic stratigraphy; sandine and biotite phenocrysts<br>from a late Miocene ash, Mallorca to more accurately<br>constrain stratigraphic horizon; hornblends and feldspar<br>from the Amazon to assess climatic change. | Columbia University                                 |
| 1354    | Lindsay               | Radiation Protection<br>Services        | Radiological Instrument Calibration                                                                    | Instrument calibration.                                                                                                                                                                                                                                                        | State of Oregon<br>Radiation Protection<br>Services |
| 1366    | Quidelleur            | Universite Paris-Sud                    | Ar-Ar Geochronology                                                                                    | Determination of geological samples via Ar-Ar radiometric dating.                                                                                                                                                                                                              | Universite Paris-Sud                                |
| 1404    | Riera-Lizarau         | Oregon State<br>University              | Evaluation of wheat DNA                                                                                | Gamma irradiation of wheat seeds                                                                                                                                                                                                                                               | OSU Crop and Soil<br>Science                        |
| 1415    | McGinness             | ESCO Corporation                        | Calibration of Instruments                                                                             | Instrument calibration                                                                                                                                                                                                                                                         | ESCO Corporation                                    |
| 1419    | Krane                 | Oregon State<br>University              | Nuclear Structure of N=90 Isotones                                                                     | Study of N=90 isotone structure (Sm-152, Gd-154,<br>Dy-156) from decays of Eu-152, Eu-152m, Eu-154,<br>Tb-154, and Ho-156. Samples will be counted at<br>LBNL.                                                                                                                 | OSU Physics<br>Department                           |
| 1423    | Turrin                | Rutgers                                 | 40Ar/39Ar Analysis                                                                                     | Petrology and geochemical evolution of the Damavand trachyandesite volcano in Northern Iran.                                                                                                                                                                                   | Department of<br>Geological Sciences                |
| 1464    | Slavens               | USDOE Albany<br>Research Center         | Instrument Calibration                                                                                 | Instrument calibration.                                                                                                                                                                                                                                                        | USDOE Albany<br>Research Center                     |
| 1465    | Singer                | University of<br>Wisconsin              | Ar-40/Ar-39 Dating of Young Geologic<br>Materials                                                      | Irradiation of geological materials such as volcanic rocks from sea floor, etc. for Ar-40/Ar-39 dating.                                                                                                                                                                        | University of<br>Wisconsin                          |
| 1468    | Hu                    | University of<br>California at Berkeley | Chemistry 146 Experiment                                                                               | NAA Laboratory experiment.                                                                                                                                                                                                                                                     | University of California<br>at Berkeley             |
| 1470    | Shatswell             | SIGA Technologies,<br>Inc.              | Instrument Calibration                                                                                 | Instrument calibration.                                                                                                                                                                                                                                                        | Siga Pharmaceuticals                                |
| 1489    | Roden-Tice            | Plattsburgh State<br>University         | Thermochronologic evidence linking<br>Adirondack and New England regions<br>Connecticut Valley Regions | The integration of apatite fission-track ages and track<br>length based model thermal histories, zircon fission-<br>track ages, and U-Th/He analyses to better define the<br>pattern of regional post-Early Cretaceous differential<br>unroofing in northeastern New York's    | Plattsburgh State<br>University                     |
| 1503    | Teaching and<br>Tours | Non-Educational<br>Tours                | Non-Educational Tours                                                                                  | Tours for guests, university functions, student recruitment.                                                                                                                                                                                                                   | OSU Radiation Center                                |

# Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progress<br/>at the Radiation Center and Their Funding Agencies

| Project | Users                 | Organization Name                                 | Project Title                                                    | Description                                                                                                                             | Funding                    |
|---------|-----------------------|---------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1504    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | OSU Nuclear Engineering & Radiation<br>Health Physics Department | OSTR tour and reactor lab.                                                                                                              | USDOE Reactor<br>Sharing   |
| 1505    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | OSU Chemistry Department                                         | OSTR tour, teaching labs, and/or half-life experiment.                                                                                  | USDOE Reactor<br>Sharing   |
| 1506    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | OSU Geosciences Department                                       | OSTR tour.                                                                                                                              | USDOE Reactor<br>Sharing   |
| 1507    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | OSU Physics Department                                           | OSTR tour.                                                                                                                              | USDOE Reactor<br>Sharing   |
| 1508    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Adventures in Learning Class                                     | Half Life Demonstration; Eric Miller, Forensic Science<br>Instructor.                                                                   | USDOE Reactor<br>Sharing   |
| 1509    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | HAZMAT course tours                                              | First responder training tours.                                                                                                         | Oregon Office of<br>Energy |
| 1510    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Science and Mathematics Investigative<br>Learning Experience     | OSTR tour and half-life experiment.                                                                                                     | USDOE Reactor<br>Sharing   |
| 1511    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Reactor Staff Use                                                | Reactor operation required for conduct of operations<br>testing, operator training, calibration runs, encapsulation<br>tests and other. | OSU Radiation Center       |
| 1512    | Teaching and<br>Tours | Linn Benton<br>Community College                  | Linn Benton Community College<br>Tours/Experiments               | OSTR tour and half-life experiment.                                                                                                     | USDOE Reactor<br>Sharing   |
| 1514    | Sobel                 | Universitat Potsdam                               | Apatite Fission Track Analysis                                   | Age determination of apatites by fission track analysis.                                                                                | Universitat Potsdam        |
| 1520    | Teaching and<br>Tours | Western Oregon<br>University                      | Western Oregon University                                        | OSTR tour and half-life experiment.                                                                                                     | USDOE Reactor<br>Sharing   |
| 1525    | Teaching and<br>Tours | Life Gate High School                             | Life Gate High School                                            | OSTR tour and half-life experiment.                                                                                                     | USDOE Reactor<br>Sharing   |
| 1527    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Odyssey Orientation Class                                        | OSTR tour.                                                                                                                              | USDOE Reactor<br>Sharing   |

| Table VI.3 (continued)     Listing of Major Research and Service Projects Preformed or in Progress at the Radiation Center and Their Funding Agencies     ect   Users   Organization Name   Project Title   Description   Funding     e   Teaching and Tours   Oregon State University - Educational Tours   Upward Bound   OSTR tour.   USDOE Reactor Sharing |                       |                                                   |               |             |                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------|---------------|-------------|--------------------------|--|
| ect                                                                                                                                                                                                                                                                                                                                                            | Users .               | Organization Name                                 | Project Title | Description | Funding                  |  |
|                                                                                                                                                                                                                                                                                                                                                                | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Upward Bound  | OSTR tour.  | USDOE Reactor<br>Sharing |  |
|                                                                                                                                                                                                                                                                                                                                                                | Teaching and          | Oregon State                                      |               |             | USDOF Pagetor            |  |

.

| Project | Users .               | Organization Name                                   | Project Title                                   | Description                         | Funding                                             |
|---------|-----------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------|-----------------------------------------------------|
| 1528    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours   | Upward Bound                                    | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1529    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours   | OSU Connect                                     | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1530    | Teaching and<br>Tours | Newport School<br>District                          | Newport School District                         | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1531    | Teaching and<br>Tours | Central Oregon<br>Community College                 | Central Oregon Community College<br>Engineering | OSTR tour for Engineering           | USDOE Reactor<br>Sharing                            |
| 1535    | Teaching and<br>Tours | Corvallis School<br>District                        | Corvallis School District                       | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1537    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours   | Naval Science Department                        | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1538    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours   | OSU Speech Department                           | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1540    | Teaching and<br>Tours | McKay High School                                   | McKay High School                               | OSTR tour and half-life experiment. | USDOE Reactor<br>Sharing                            |
| 1542    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours   | Engineering Sciences Classes                    | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1543    | Bailey                | Veterinary Diagnostic<br>Imaging &<br>Cytopathology | Instrument Calibration                          | Instrument calibration.             | Veterinary Diagnostic<br>Imaging &<br>Cytopathology |
| 1544    | Teaching and<br>Tours | West Albany High<br>School                          | West Albany High School                         | OSTR tour and half-life experiment. | USDOE Reactor<br>Sharing                            |
| 1545    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours   | OSU Educational Tours                           | OSTR tour.                          | USDOE Reactor<br>Sharing                            |
| 1548    | Teaching and<br>Tours | Willamette Valley<br>Community School               | Willamette Valley Community School              | OSTR tour.                          | USDOE Reactor<br>Sharing                            |

# Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progress<br/>at the Radiation Center and Their Funding Agencies

| Project | Users                 | Organization Name                 | Project Title                                | Description                                                                                                                                                                                                                     | Funding                           |
|---------|-----------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1555    | Fitzgerald            | Syracuse University               | Fission track thermochronology               | Irradiation to induce U-235 fission for fission track<br>thermal history dating, especially for hydrocarbon<br>exploration. The main thrust is towards tectonics, in<br>particular the uplift and formation of mountain ranges. | Syracuse University               |
| 1568    | Spell                 | University of Nevada<br>Las Vegas | Ar/Ar dating of rocks and minerals           | Irradiation of rocks and minerals for Ar/Ar dating to<br>determine eruption ages, emplacement<br>histories, and provenances studies.                                                                                            | University of Nevada<br>Las Vegas |
| 1583    | Teaching and<br>Tours | Neahkahnie High<br>School         | Neahkahnie High School                       | OSTR tour.                                                                                                                                                                                                                      | USDOE Reactor<br>Sharing          |
| 1584    | Teaching and<br>Tours | Reed College                      | Reed College Staff & Trainees                | OSTR tour for Reed College Staff & Trainees                                                                                                                                                                                     | USDOE Reactor<br>Sharing          |
| 1594    | Teaching and<br>Tours | Jefferson High School             | Jefferson High School                        | OSTR tour and half-life experiment.                                                                                                                                                                                             | USDOE Reactor<br>Sharing          |
| 1603    | Teaching and<br>Tours | Thurston High School              | Thurston High School Chemistry               | OSTR tour and half-life experiment for Chemistry Class                                                                                                                                                                          | USDOE Reactor<br>Sharing          |
| 1611    | Teaching and<br>Tours | Grants Pass High<br>School        | Grants Pass High School                      | OSTR tour.                                                                                                                                                                                                                      | USDOE Reactor<br>Sharing          |
| 1613    | Teaching and<br>Tours | Silver Falls School<br>District   | Silver Falls School District                 | OSTR tour.                                                                                                                                                                                                                      | USDOE Reactor<br>Sharing          |
| 1614    | Teaching and<br>Tours | Marist High School                | Marist High School                           | OSTR tour and half-life experiment.                                                                                                                                                                                             | USDOE Reactor<br>Sharing          |
| 1615    | Teaching and<br>Tours | Liberty Christian<br>High School  | Liberty Christian High School                | OSTR tour and half-life experiment.                                                                                                                                                                                             | USDOE Reactor<br>Sharing          |
| 1617    | Spikings              | University of Geneva              | Ar-Ar geochronology and Fission Track dating | Argon dating of Chilean granites.                                                                                                                                                                                               | University of Geneva              |
| 1618    | Teaching and<br>Tours | Falls City High School            | Fall City High School                        | OSTR tour and half-life experiment.                                                                                                                                                                                             | USDOE Reactor<br>Sharing          |
| 1619    | Teaching and<br>Tours | Sheridan High School              | Sheridan High School                         | OSTR tour and half-life experiment.                                                                                                                                                                                             | USDOE Reactor<br>Sharing          |
| 1620    | Teaching and<br>Tours | Eddyville High School             | Eddyville High School                        | OSTR tour.                                                                                                                                                                                                                      | USDOE Reactor<br>Sharing          |

# Table VI.3 (continued) Listing of Major Research and Service Projects Preformed or in Progress at the Radiation Center and Their Funding Agencies

|         |                       | Listing of Major<br>at the         | Table VI.3 (coResearch and Service IRadiation Center and '                            | ontinued)<br>Projects Preformed or in Progres<br>Their Funding Agencies                                                                                                                                   | S                              |
|---------|-----------------------|------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Project | Users                 | Organization Name                  | Project Title                                                                         | Description                                                                                                                                                                                               | Funding                        |
| 1621    | Foster                | University of Florida              | Irradiation for Ar/Ar Analysis                                                        | Ar/Ar analysis of geological samples.                                                                                                                                                                     | University of Florida          |
| 1622    | Reese                 | Oregon State<br>University         | Flux Measurements of OSTR                                                             | Measurement of neutron flux in various irradiation facilities.                                                                                                                                            | OSU Radiation Center           |
| 1623    | Blythe                | Occidental College                 | Fission Track Analysis                                                                | Fission track Thermochronology of geological samples                                                                                                                                                      | Occidental College             |
| 1653    | Teaching and<br>Tours | Madison High School                | Madison High School Senior Science<br>Class                                           | OSTR tour for Senior Science Class                                                                                                                                                                        | USDOE Reactor<br>Sharing       |
| 1655    | Teaching and<br>Tours | Future Farmers of<br>America       | OSTR Tour                                                                             | OSTR tour                                                                                                                                                                                                 | USDOE Reactor<br>Sharing       |
| 1657    | Teaching and<br>Tours | Richland High School               | Richland High School                                                                  | OSTR tour.                                                                                                                                                                                                | USDOE Reactor<br>Sharing       |
| 1660    | Reese                 | Oregon State<br>University         | Isotope and Container Testing                                                         | Testing of containers and source material                                                                                                                                                                 | OSU Radiation Center           |
| 1666    | Teaching and<br>Tours | Douglas High School                | Douglas High School AP Physics Class                                                  | OSTR tour and half-life experiment.                                                                                                                                                                       | USDOE Reactor<br>Sharing       |
| 1667    | Teaching and<br>Tours | Yamhill-Carlton High<br>School     | Teaching and Tour                                                                     |                                                                                                                                                                                                           | USDOE Reactor<br>Sharing       |
| 1670    | Teaching and<br>Tours | Toledo High School                 | Toledo High School                                                                    | OSTR tour and half-life experiment.                                                                                                                                                                       | USDOE Reactor<br>Sharing       |
| 1673    | Teaching and<br>Tours | Heal College                       | Heal College Physics Department                                                       | OSTR tour.                                                                                                                                                                                                | USDOE Reactor<br>Sharing       |
| 1674    | Niles                 | Oregon Department of<br>Energy     | Radiological Emergency Support                                                        | Radiological emergency support of OOE related to<br>instrument calibration, radiological and RAM transport<br>consulting, and maintenance of radiological analysis<br>laboratory at the Radiation Center. | Oregon Department of<br>Energy |
| 1677    | Zuffa                 | Universita' di Bologna             | Fission Track Dating                                                                  | Use of fission track from U-235 to determine uranium content in rock                                                                                                                                      | Universita' di Bologna         |
| 1684    | Fodor                 | North Carolina State<br>University | Geochemical Investigation                                                             | NAA to determine rare earth composition.                                                                                                                                                                  | USDOE Reactor<br>Sharing       |
| 1686    | Miller                | Nunhems USA, Inc.                  | Production of haploid and dihaploid<br>melon plants induced with irradiated<br>pollen | Irradiated melon pollen will be used to polliate female<br>melon plants to induce parthenogenetic embryos.<br>These embryos will be rescued and cultured for plant<br>production.                         | Sunseeds                       |

# Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progress<br/>at the Radiation Center and Their Funding Agencies

| Project | Users                 | Organization Name                                 | Project Title                                   | Description                                                                                                                                                                                      | Funding                              |
|---------|-----------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 1687    | Teaching and<br>Tours | Inavale Grade School                              | Reactor Tour                                    | General reactor tour                                                                                                                                                                             | USDOE Reactor<br>Sharing             |
| 1690    | Teaching and<br>Tours | Wilson High School                                | Reactor Tour                                    | D300 Reactor Tour                                                                                                                                                                                | USDOE Reactor<br>Sharing             |
| 1691    | Teaching and<br>Tours | Lost River High<br>School                         | Reactor Tour                                    | D300 Reactor Tour                                                                                                                                                                                | USDOE Reactor<br>Sharing             |
| 1692    | Choi                  | Arch Chemicals Inc.                               | Screening Tests of Wood Decay                   | This is to build up basic knowledge on the efficacy of a copper based preservative in preventing decay of wood inhabiting basidiomycetes.                                                        | Arch Chemical Inc.                   |
| 1695    | Teaching and<br>Tours | Transitional Learning                             | Reactor Tour                                    | Reactor Tour in D300 only                                                                                                                                                                        | USDOE Reactor<br>Sharing             |
| 1696    | Sayer                 | Marquess & Associates<br>Inc.                     | Instrument Calibration                          | Instrument calibration                                                                                                                                                                           | Marquess & Associates<br>Inc.        |
| 1697    | Teaching and<br>Tours | Crescent Valley High<br>School                    | Crescent Valley High School AP Physics<br>Class | This project supports the advanced placement physics<br>class at Cresent Valley High School. It will utilize<br>the reactor in ongoing research projects sponsored by<br>Radiation Center staff. | USDOE Reactor<br>Sharing             |
| 1699    | Teaching and<br>Tours | Philomath High<br>School                          | Reactor Tour                                    | Tour of NAA and gas chromatograph capabilities in the Radiation Center                                                                                                                           | USDOE Reactor<br>Sharing             |
| 1700    | Frantz                | Reed College                                      | Instrument calibration                          | Instrument calibration                                                                                                                                                                           | Reed College                         |
| 1714    |                       | Lebanon Community<br>Hospital                     | Instrument Calibration                          |                                                                                                                                                                                                  | Lebanon Community<br>Hospital        |
| 1717    | Baldwin               | Syracuse University                               | Ar/Ar Dating                                    | Ar/Ar Dating                                                                                                                                                                                     | Syracuse University                  |
| 1718    | Armstrong             | California State<br>University at Fullerton       | Fission Track Dating                            | Fission track age dating of apatite grains .                                                                                                                                                     | Department of<br>Geological Sciences |
| 1719    | Teaching and<br>Tours | Portland Community<br>College                     | Upward Bound                                    | OSTR Tour for Upward Bound                                                                                                                                                                       | USDOE Reactor<br>Sharing             |
| 1720    | Teaching and<br>Tours | Saturday Academy                                  | OSTR Tour                                       | OSTR Tour                                                                                                                                                                                        | USDOE Reactor                        |
| 1726    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Academic Learning Services                      | Cohort Class 199                                                                                                                                                                                 | USDOE Reactor<br>Sharing             |

|         | Table VI.3 (continued)<br>Listing of Major Research and Service Projects Preformed or in Progress<br>at the Radiation Center and Their Funding Agencies |                                                   |                                                 |                                                                                                                                                                                                  |                                             |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| Project | Users                                                                                                                                                   | Organization Name                                 | Project Title                                   | Description                                                                                                                                                                                      | Funding                                     |  |  |  |  |  |
| 1730    | Reese                                                                                                                                                   | Oregon State<br>University                        | Neutron Radiography                             | Neutron Radiography using the real-time and film imaging methods                                                                                                                                 | OSU Radiation Center                        |  |  |  |  |  |
| 1737    | Roullet                                                                                                                                                 | Oregon Health<br>Sciences University              | Silver Activation for Radiolabel                | Production of Ag-110m for Radiolabeled Molecules                                                                                                                                                 | Oregon Health<br>Sciences University        |  |  |  |  |  |
| 1739    | Teaching and<br>Tours                                                                                                                                   | Daly Middle School                                | Reactor Tour                                    | Reactor Tour                                                                                                                                                                                     | USDOE Reactor<br>Sharing                    |  |  |  |  |  |
| 1743    | Teaching and<br>Tours                                                                                                                                   | West Salem High<br>School                         | Reactor Tour                                    | Reactor Tour                                                                                                                                                                                     | USDOE Reactor<br>Sharing                    |  |  |  |  |  |
| 1745    | Girdner                                                                                                                                                 | US National Parks<br>Service                      | C14 Measurements                                | LSC analysis of samples for C14 measurements.                                                                                                                                                    | US National Parks<br>Service                |  |  |  |  |  |
| 1747    | Teaching and<br>Tours                                                                                                                                   | East Linn Christian<br>Academy                    | Reactor Tour                                    | Reactor Tour for Chemistry Class                                                                                                                                                                 | USDOE Reactor<br>Sharing                    |  |  |  |  |  |
| 1749    | Bottomley                                                                                                                                               | Oregon State<br>University                        | Hot Spots of Nitrogen Cycling in Soil           | Grant is focused upon nitrogen cycling in soil at the<br>small scale. We are trying to understand how physical<br>and biological parameters control the fate of ammonium<br>and nitrate in soil. | OSU Crop and Soil<br>Science                |  |  |  |  |  |
| 1758    | Teaching and<br>Tours                                                                                                                                   | Oregon State<br>University -<br>Educational Tours | Kids Spirit                                     | OSTR tour                                                                                                                                                                                        | USDOE Reactor<br>Sharing                    |  |  |  |  |  |
| 1763    | Svojtka                                                                                                                                                 | Academy of Sciences<br>of the Czech Republic      | Fission Track                                   | Fission Track                                                                                                                                                                                    | Academy of Sciences o<br>the Czech Republic |  |  |  |  |  |
| 1765    | Beaver                                                                                                                                                  | Weyerhaeuser                                      | Instrument Calibration                          | Calibration of radiological instruments.                                                                                                                                                         | Weyerhaeuser Foster                         |  |  |  |  |  |
| 1766    | Cosca                                                                                                                                                   | Universite de<br>Lausanne                         | Ar/Ar Geochronology                             |                                                                                                                                                                                                  | Universite de<br>Lausanne, Humense          |  |  |  |  |  |
| 1767    | Korlipara                                                                                                                                               | Terra Nova Nurseries,<br>Inc.                     | Genera Modifications using gamma<br>Irradiation | Use of gamma and fast neutron irradiations for genetic studies in genera.                                                                                                                        | Terra Nova Nurseries,<br>Inc.               |  |  |  |  |  |
| 1768    | Bringman                                                                                                                                                | Brush-Wellman                                     | Antimony Source Production                      | Production of Sb-124 sources                                                                                                                                                                     | Brush-Wellman                               |  |  |  |  |  |
| 1771    | Otjen                                                                                                                                                   | Oregon State Fire<br>Marshal                      | Instrument calibration                          | Calibration of radiological response kits                                                                                                                                                        | Oregon State Fire<br>Marshall               |  |  |  |  |  |
| 1777    | Storey                                                                                                                                                  | Quaternary Dating<br>Laboratory                   | Quaternary Dating                               | Production of Ar-39 from K-39 to determine radiometric ages of geological materials.                                                                                                             | Quaternary Dating<br>Laboratory             |  |  |  |  |  |

# Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progressat the Radiation Center and Their Funding Agencies

|    |         | 1                     |                                                   | 1/20/00                                                 |                                                                                                                                                                                                                                                 |                                                          |
|----|---------|-----------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
|    | Project | Users                 | Organization Name                                 | Project Title                                           | Description                                                                                                                                                                                                                                     | Funding                                                  |
|    | 1778    | Gislason              | Genis, Inc.                                       | Gamma Exposure of Chitosan polymer                      | This project subjects chitosan polymer in 40 and<br>70% DDA formulations to 9 and 18 Kgy, boundary<br>doses for commerical sterilization for the purpose of<br>determine changes in the molecular weight and product<br>formulation properites. | Genis, Inc.                                              |
|    | 1779    | Teaching and<br>Tours | Lebanon High School                               | Teaching and tours                                      | OSTR tour.                                                                                                                                                                                                                                      | USDOE Reactor<br>Sharing                                 |
|    | 1781    | Balogh                | Roswell Park Cancer<br>Institute                  | INAA of Au nanocomposites.                              | INAA to determine biodistribution Au nanocomposites in mouse tissue samples.                                                                                                                                                                    | Department of<br>Defense, Roswell Park<br>Cancer Institu |
|    | 1783    | Amrhein               | Amrhein Associates,<br>Inc                        | Instrument Calibration                                  | Instrument calibration                                                                                                                                                                                                                          | Amrhein Associates,<br>Inc.                              |
| 70 | 1786    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | Anthropology Department                                 | Anth 430/530 NAA class with Minc                                                                                                                                                                                                                | OSU Radiation Center                                     |
|    | 1790    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours | · · · · · · · · · · · · · · · · · · ·                   | OSTR Tour                                                                                                                                                                                                                                       |                                                          |
|    | 1791    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours |                                                         | RX Tour                                                                                                                                                                                                                                         |                                                          |
|    | 1794    | O'Kain                | Knife River                                       | Instrument Calibration                                  | Instrument calibration                                                                                                                                                                                                                          | Tangent Construction                                     |
|    | 1795    | Zubek                 | Eugene Sand &<br>Gravel, Inc                      | Instrument Calibration                                  | Instrument calibration                                                                                                                                                                                                                          |                                                          |
|    | 1796    | Hardy                 | CH2M Hill Inc                                     | Instrument Calibration                                  | Instrument calibration                                                                                                                                                                                                                          |                                                          |
|    | 1797    | Teaching and<br>Tours | Oregon State<br>University -<br>Educational Tours |                                                         | RX Tour                                                                                                                                                                                                                                         |                                                          |
|    | 1806    | Davis                 | Oregon State<br>University                        | INAA of Chert                                           | Trace-element analysis of geological and artifactual<br>chert from the Lower Salmon River Canyon of Idaho to<br>establish provenance.                                                                                                           | DOE University<br>Reactor Share                          |
|    | 1815    | Hamby                 | Oregon State<br>University                        | Proof of Concept for Beta/Gamma<br>Coincindent Counting | Cobalt source for simultaneous beta/gamma<br>spectroscopy. Production of radionuclides for detector<br>operability check.                                                                                                                       | OSU NERHP, Hamby                                         |
|         | Table VI.3 (continued)       "1         Listing of Major Research and Service Projects Preformed or in Progress       "1         at the Radiation Center and Their Funding Agencies       "3 |                                         |                                                                                    |                                                                                                                                                                                                                                                                          |                                        |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Project | Users                                                                                                                                                                                        | Organization Name                       | Project Title                                                                      | Description                                                                                                                                                                                                                                                              | Funding                                |  |
| 1817    | Costigan                                                                                                                                                                                     | City of Gresham                         | Instrument Calibration                                                             | Calibration of instruments                                                                                                                                                                                                                                               | City of Gresham                        |  |
| 1818    | Sabey                                                                                                                                                                                        | Brush Wellman                           | Antimony source production (Utah)                                                  |                                                                                                                                                                                                                                                                          | Brush-Wellman                          |  |
| 1819    | Vetter                                                                                                                                                                                       | University of<br>California at Berkeley | NE-104A INAA source                                                                | Stainless Steel disk source for INAA lab.                                                                                                                                                                                                                                | University of Californi<br>at Berkeley |  |
| 1820    | Jolivet                                                                                                                                                                                      | Universite Montpellier<br>II            | Fission Track Analysis                                                             | Use of fission track analysis for geochronology.                                                                                                                                                                                                                         | University of<br>Montpellier II        |  |
| 1824    | Kounov                                                                                                                                                                                       | University of Basel                     | Fission Track Analysis                                                             | Low temperature thermochronology is being used to<br>answer questions relating in general to tectonics and<br>basin analysis. The current project covers studies in<br>Madagascar, southern India, Sri Lanka where they are<br>trying to understand what happened to the | Geologisches Institut,<br>ETH Zentrum  |  |
| 1825    | Peterson                                                                                                                                                                                     | Oregon State<br>University              | INAA of Oregon pottery                                                             | Trace-element analysis to determine provenance of historic Oregon pottery.                                                                                                                                                                                               | DOE University<br>Reactor Share        |  |
| 1826    | Teaching and<br>Tours                                                                                                                                                                        | North Eugene High<br>School             |                                                                                    | OSTR Tour and half-life experiment                                                                                                                                                                                                                                       | USDOE Reactor<br>Sharing               |  |
| 1827    | Teaching and<br>Tours                                                                                                                                                                        | Stayton High School                     | ,                                                                                  | OSTR Tour and half-life experiment                                                                                                                                                                                                                                       | USDOE Reactor<br>Sharing               |  |
| 1828    | Teaching and<br>Tours                                                                                                                                                                        | Lincoln High School                     |                                                                                    | OSTR Tour and half-life experiment                                                                                                                                                                                                                                       | USDOE Reactor<br>Sharing               |  |
| 1829    | Rauch                                                                                                                                                                                        | Nu-Trek, Inc                            | RADFET dosimeter calibration and testing                                           | RADFET dosimeter calibration and testing using gamma and neutron sources.                                                                                                                                                                                                | Nu-Trek, Inc.                          |  |
| 1831    | Thomson                                                                                                                                                                                      | University of Arizona                   | Fission Track                                                                      | Fission track thermochronometry of the Patagonian<br>Andes and the Northern Apennines, Italy                                                                                                                                                                             | Yale University                        |  |
| 1836    | Hartman                                                                                                                                                                                      | University of Michigan                  | University of Michigan Nuclear<br>Engineering & Radiological Science<br>Class Labs | Various irradiations to support student laboratories at the University of Michigan.                                                                                                                                                                                      | University of Michigar                 |  |
| 1837    | Sterbentz                                                                                                                                                                                    | Idaho National<br>Laboratory            | Zirconium Reactivity Measurement                                                   | Measurement of reactivity worth of Zr slabs doped with gadolinium.                                                                                                                                                                                                       | Idaho National<br>Laboratory           |  |
| 1840    | Burgess                                                                                                                                                                                      | University of<br>Manchester             | Ar/Ar Dating                                                                       | Production of Ar-39 from K-39 for Ar-40/Ar-39 dating of geological samples                                                                                                                                                                                               | University of<br>Manchester            |  |
| 1841    | Swindle                                                                                                                                                                                      | University of Arizona                   | Ar/Ar dating of ordinary chondritic meterorites                                    | Ar/Ar dating of ordinary chondritic meterorites                                                                                                                                                                                                                          | University of Arizona                  |  |

-

# Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progressat the Radiation Center and Their Funding Agencies

| Project | Users       | Organization Name              | Project Title                                                                                      | Description                                                                                                                                                                                     | Funding                                            |
|---------|-------------|--------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1842    | Higley      | Oregon State<br>University     | Isotope production for decontamination studies                                                     | Study of removal of various isotopes from various surfaces by gel decontaminant.                                                                                                                | OSU NERHP                                          |
| 1843    | Fletcher    | Empiricos LLC                  | Instrument Calibration                                                                             | Instrument calibration                                                                                                                                                                          | Empiricos LLC                                      |
| 1845    | Alden       | University of Michigan         | INAA of Ancient Iranian Ceramics                                                                   | Trace-element of analysis of ceramics and clays from ancient Iran to monitor trade and exchange.                                                                                                | Oriental Institute,<br>University of Chicago       |
| 1847    | Higley      | Oregon State<br>University     | Ultra-trace uptake studies for allometric studies                                                  | NAA of ultra-trace elements in plant samples for application in allometric studies                                                                                                              | NERHP CRESP<br>Grant                               |
| 1848    | Hartman     | University of Michigan         | Development of Prompt Gamma<br>Neutron Activation Analysis at the<br>OSTR                          | Development of a PGNAA beam line on beam port #4.                                                                                                                                               | OSU Radiation Center                               |
| 1849    | Converse    | Sonoma State<br>University     | INAA of Bricks from Historic Fort<br>Vancouver                                                     | Trace-element analysis of bricks from historic Fort<br>Vancouver to determine provenance.                                                                                                       | OSU Radiation Center                               |
| 1850    | Mueller     | Argonne National<br>Laboratory | Ar-39 Isotope Production                                                                           | Production of Ar-39 for use as standards for Ar/Ar geochronology                                                                                                                                | Argonne National<br>Laboratory Physics<br>Division |
| 1851    | Chappell    | Oregon State<br>University     | Circadian regulation of gonadotropin-<br>releasing hormone                                         |                                                                                                                                                                                                 | OSU Zoology                                        |
| 1852    | McGuire     | Oregon State<br>University     | Antimicrobial activity of silanized silica<br>microspheres with covalently attached<br>PEO-PPO-PEO | co-polymer and nisin association. The project is<br>aimed at finding effective methods for coating surfaces<br>to enhance protein repellant activity and antimicrobial<br>activity using nisin. | Chemical,Biological &<br>Env Engr                  |
| 1853    | Ivestor     | Grande Ronde<br>Hospital       | Instrument Calibration                                                                             | Instrument calibration                                                                                                                                                                          | Grande Ronde<br>Hospital                           |
| 1854    | Loveland    | Oregon State<br>University     | Radiation Stability of Targets                                                                     | To determine material loss of thin U238 tagets.                                                                                                                                                 | OSU Chemistry /<br>Loveland DOE                    |
| 1855    | Anczkiewicz | Polish Academy of<br>Sciences  | Fission Track Services                                                                             | Verification of AFT data for illite-mechte data                                                                                                                                                 | Polish Academy of<br>Sciences                      |
| 1856    | Becker      | University of Michigan         | INAA of samples from PML site.                                                                     | Activation of soils and concrete from Phoenix Memorial<br>Lab and FNR site.                                                                                                                     | OSU Radiation Center                               |
| 1857    | Idleman     | Lehigh University              | Fission Track Services                                                                             |                                                                                                                                                                                                 | Lehigh University                                  |
| 1858    | Arbogast    | Gene Tools, LLC                | Instrument Calibration                                                                             | Calibration of instruments                                                                                                                                                                      | Gene Tools, LLC                                    |
| 1859    | Morris      | A. M. Todd Company<br>Inc.     | Gamma Irradiation for Crop Mutation<br>Breeding                                                    | Treat different plant tissues including cuttings, rhizomes,<br>and callus at different gamma irradiation dosages<br>in order to obtain useful mutants with beneficial<br>characteristics.       | A.M. Todd Company<br>Inc.                          |

72

### Table VI.3 (continued) Listing of Major Research and Service Projects Preformed or in Progress at the Radiation Center and Their Funding Agencies

|         | L                     | isting of Major<br>at the                       | Table VI.3 (columnResearch and Service IRadiation Center and '  | ontinued)<br>Projects Preformed or in Progress<br>Their Funding Agencies                                                                                                                                                                                                    | S                                            |
|---------|-----------------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Project | Users                 | Organization Name                               | Project Title                                                   | Description                                                                                                                                                                                                                                                                 | Funding `                                    |
| 1860    | Minc                  | Oregon State<br>University                      | INAA of Archaeological Ceramics                                 | Trace-element analysis of archaeological ceramics.                                                                                                                                                                                                                          | OSU Radiation Center                         |
| 1861    | Page                  | Lund University                                 | Lund University Geochronology                                   | Ar/Ar Geochronology                                                                                                                                                                                                                                                         | Lund University                              |
| 1862    | Reese                 | Oregon State<br>University                      | Coolant Temperature Measurements                                | Measurement of the primary coolant temperatures in the primary tank.                                                                                                                                                                                                        |                                              |
| 1863    | Chew                  | Trinity College                                 | Fission Track dating of Peruvian Andes<br>and East African Rift | Use of fission track to determine U content of samples from the Peruvian Andes and the East African Rift.                                                                                                                                                                   | Trinity College, Ireland                     |
| 1864    | Gans                  | University of<br>California at Santa<br>Barbara | Ar-40/Ar-39 Sample Dating                                       | Production of Ar-39 from K-40 to determine radiometric ages of geologic samples.                                                                                                                                                                                            | University of California<br>at Santa Barbara |
| 1865    | Carrapa               | University of<br>Wyoming                        | Fission Track Irradiations                                      | Apatite fission track to reveal the exhumation history of<br>rocks from the ID-WY-UY postion of the Sevier fold<br>and thrust belt, Nepal, and Argentina.                                                                                                                   | University of Wyoming                        |
| 1866    | Smith                 | Pacific Northwest<br>National Laboratory        | Irradiation of Uranium Foil                                     | Gather data with detection and spectroscopic equipment<br>on fission products produced by an irradiated uranium<br>foil                                                                                                                                                     | Pacific Northwest<br>National Laboratory     |
| 1867    | Paulenova             | Oregon State<br>University                      | Uranium Coating Studies                                         | Surface dynamics and morphology at nanometer and<br>micrometer scale of uranium and backing materials<br>irradiated by thermal neutrons.                                                                                                                                    | OSU Radiation Center                         |
| 1868    | Teaching and<br>Tours | Springfield High<br>School                      |                                                                 | OSTR Tour and half-life experiment                                                                                                                                                                                                                                          | OSU Radiation Center                         |
| 1869    | Spence                | Richard Spence                                  | INAA of Trace Metals                                            | Trace-element analyis of metal samples for precious metals.                                                                                                                                                                                                                 | Richard Spence                               |
| 1870    | Slavens               | USDOE Albany<br>Research Center                 | Sample Identification                                           | Determination of radioisotopic composition from various unknown samples                                                                                                                                                                                                     | USDOE Albany<br>Research Center              |
| 1871    | Arp                   | Oregon State<br>University                      | Isolation of Soil Archaeal Ammonia<br>Oxidizers                 | Recent discovery of autotrophic ammonia oxidizing<br>archaea and their ubiquity in aquatic and terrestrial<br>environments suggests that they have a major role in<br>global biogeochemical cycles. We are trying to isolate<br>ammonia oxidizing archaea from soil in a ho | OSU Botany & Plant<br>Pathology              |
| 1872    | Hartman               | University of Michigan                          | Evaluation of Borohydride Compounds<br>Using PGNAA              | Utilization of PGNAA to evaluate the material content<br>of various borohydride compounds.                                                                                                                                                                                  | University of Michigan                       |
| 1873    | Hines                 | Washington State<br>University                  | Fission Chamber Refurbishment                                   | Refurbishment of a fission chamber for transfer and use at Washington State University                                                                                                                                                                                      | Washington State<br>University               |

# Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progress<br/>at the Radiation Center and Their Funding Agencies

|   | Project | Users      | Organization Name                          | Project Title                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Funding                                             |
|---|---------|------------|--------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|   | 1874    | Williams   | Oregon State<br>University                 | Chemoprotection by dietary agents in<br>vivo against a xenograft of human T-cell<br>leukemia | Diindolylmethane (DIM), the primary acid<br>condensation product of indole-3-carbinol (I3C), has<br>been shown to be an effective chemoprotective agent in<br>vitro against a human T-cell lymphoblastic leukemia cell<br>line, CCRF-CEM. This project will test the abili                                                                                                                                           | OSU Linus Pauling<br>Institute                      |
|   | 1875    | Hosmer     | 102nd Oregon Civil<br>Support Unit         | Instrument Calibration                                                                       | Calibration of instruments                                                                                                                                                                                                                                                                                                                                                                                           | 102nd Oregon Civil<br>Support Unit                  |
|   | 1876    | Reese      | Oregon State<br>University                 | Utilization of the Prompt Gamma<br>Neutron Activation Analysis Facility                      | Development and utilization of the Prompt Gamma<br>Neutron Activation Analaysis Facility for use as a user<br>facility                                                                                                                                                                                                                                                                                               |                                                     |
| 7 | 1877    | Iwaniec    | Oregon State<br>University                 | Skeletal Response to Leptin                                                                  | Leptin, the protein product of the ob gene, acts on<br>multiple organs, including bone. We will test the<br>hypothesis that leptin has peripheral-mediated as well<br>as hypothalamic-mediated actions on bone. In this<br>experiment, will assess the skeletal effect of                                                                                                                                            | Department of<br>Nutrition and Exercise<br>Sciences |
| 4 | 1878    | Roden-Tice | Plattsburgh State<br>University            | Fission-track research                                                                       | Use of fission tracks to detrmine location of 235U, 232Th in natural rocks and minerals                                                                                                                                                                                                                                                                                                                              | Plattsburgh State<br>University                     |
| 1 | 1879    | Gregory    | Oregon Biomedical<br>Engineering Institute | AHA/AHADD                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                      | Oregon Biomedical<br>Engineering Institute          |
|   | 1880    | Merrill    | Oregon State<br>University                 | Selenium, Thioredoxin Reductase and<br>Cancer                                                | Determine whether deletion of the geme encoding<br>thioredoxin reductase in liver 1)increases or decreases<br>the rate of liver cancer, 2)impacts the cancer-preventive<br>activity of dietary selenium, 3)effects the pathways by<br>wich cells protect themselves from oxicative stress and<br>cancer                                                                                                              | OSU Biochemistry &<br>Biophysics                    |
|   | 1881    | Tanguay    | Oregon State<br>University                 | Nanoparticle Uptake in Zebrafish<br>Embryos                                                  | INAA to determine the uptake of various metals (Ag,<br>Cu, Co) in nanocomposite from by zebrafish embryos                                                                                                                                                                                                                                                                                                            |                                                     |
|   | 1882    | Bray       | Wayne State<br>University                  | INAA of Archaeological Ceramics from<br>South America                                        | Trace-element analysis of Inca-perios ceramics for provenance determination                                                                                                                                                                                                                                                                                                                                          | Wayne State University                              |
|   | 1883    | Wright     | University of Michigan                     | The Uruk Expansion                                                                           | INAA of ceramics from Uruk-period sites in<br>Mesopotamia and adjacent areas                                                                                                                                                                                                                                                                                                                                         | OSU Radiation Center                                |
|   | 1884    | Contreras  | Oregon State<br>University                 | Mutation breeding of Prunus<br>laurocerasus                                                  | Cherrylaurel is desired as a screening plant for its<br>attractive foliage and dense growth; however, its prolific<br>fruit loads contribute to litter and have begun to invade<br>natural areas. The current project is designed to identify<br>the LD50 rate of gamma irradiation so that large<br>seed lots may be irradiated in order to develop novel<br>phenotypes that exhibit reduced fertility or sterility | OSU Horticulture                                    |

|  | $\bullet \bullet \bullet \bullet \bullet$ |  | $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$ |
|--|-------------------------------------------|--|-----------------------------------------------------------|
|  |                                           |  |                                                           |
|  |                                           |  |                                                           |
|  |                                           |  |                                                           |

## Table VI.3 (continued)Listing of Major Research and Service Projects Preformed or in Progressat the Radiation Center and Their Funding Agencies

| Project | Users     | Organization Name                            | Project Title                                           | Description                                                                                                                                                                                                                                                                                                                                                                                        | Funding                                      |
|---------|-----------|----------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 1885    | Mireles   | Umpqua Research<br>Company                   | Water Sample Analysis                                   | Analyze water samples using the LSC to determine if tritium is the same in all samples                                                                                                                                                                                                                                                                                                             | Umpqua Research<br>Company                   |
| 1886    | Coutand   | Dalhousie University                         | Fission Track Irradiation                               | Fission track irradiations of apatite samples                                                                                                                                                                                                                                                                                                                                                      | Dalhousie University                         |
| 1887    | Farsoni   | Oregon State<br>University                   | Xenon Gas Production                                    | Production of xenon gas                                                                                                                                                                                                                                                                                                                                                                            | OSU NERHP                                    |
| 1888    | Misner    | Pacific Northwest<br>National Laboratory     | Detection of short-lived fission products               | Utilization fo the PGNAA fast shutter to observe short-<br>lived fission products                                                                                                                                                                                                                                                                                                                  | Pacific Northwest<br>National Laboratory     |
| 1889    | Paulenova | Oregon State<br>University                   | Hydrolysis and Radiolysis of synergistic<br>extractants | The goal of this project is to determine the effects of<br>hydrolysis and radiolysis on the extraction ability of a<br>diamide and chlorinated cobalt dicarbollide (CCD).<br>CCD and the diamide are synergistic extractants<br>and will be together in solution for hydrolysis and<br>radiolysis experiments. Effects will be measured with IR<br>spectroscopy and extraction distribution ratios | OSU Radiation Center                         |
| 1890    | Price     | Boeing                                       | Neutron Radiography of Electronic<br>Components         | Utilizazation of neutron radiography to examine various<br>electronic componentents to detect manufacturing<br>defects                                                                                                                                                                                                                                                                             | Boeing                                       |
| 1891    | Reese     | Oregon State<br>University                   | Development of a Neutron Depth<br>Profiling Instrument  | Development and use of a Neutron Depth Profiling<br>instrument in conjunction with PGNAA facility                                                                                                                                                                                                                                                                                                  |                                              |
| 1892    | Vildirim  | University of<br>Cincinnati                  | INAA of Koru ore deposits                               | Geology of Pb-Zn deposits in Koru area of Canakkale,<br>Turkey                                                                                                                                                                                                                                                                                                                                     | Istanbul Technical<br>University             |
| 1893    | Mueller   | University of Oregon                         | Soil Sterilization                                      | Sterilization of soils to remove microorganisns (i.e., fungi) without altering abiotic conditions                                                                                                                                                                                                                                                                                                  | University of Oregon                         |
| 1894    | Greene    | University of Chicago                        | INAA of Late Bronze-Age Ceramics,<br>Armenia            | Trace-element analyses of ceramics from Tsaghkahovit,<br>Armenia, to determine provenance                                                                                                                                                                                                                                                                                                          | University of Chicago                        |
| 1895    | Filip     | Academy of Sciences<br>of the Czech Republic | Bojemian Massif                                         | Fission-track dating                                                                                                                                                                                                                                                                                                                                                                               | Academy of Sciences of<br>the Czech Republic |
| 1896    | Hamby     | Oregon State<br>University                   | Beta Source Creation Through<br>Activation              | Activation of various materials for beta radiation<br>sources used in the development of beta spectroscopy<br>instrumentation                                                                                                                                                                                                                                                                      | OSU NERHP                                    |

75

09-10 Annual Re

#### **Figure VI.1** Summary of the Types of Radiological Instrumentation Calibrated to Support the OSU TRIGA Reactor and Radiation Center

#### Number of Calibrations



# Table VI.4Summary of Radiological InstrumentationCalibrated to Support OSU Departments

| OSUDepartment                        | Number of Calibrations |
|--------------------------------------|------------------------|
| Animal Science                       | 2                      |
| Biochem/Biophysics                   | 4                      |
| Botany                               | 6                      |
| Center for Gene Research             | 1                      |
| Chemistry                            | · 1                    |
| Civil and Construction Engineering   | 2                      |
| COAS                                 | 3                      |
| Environmental & Molecular Toxicology | 5 .                    |
| Environmental Engineering            | 1                      |
| Horticulture                         | 1                      |
| Linus Pauling Institute              | 2                      |
| Microbiology                         | 2                      |
| Nutrition & Exercise Science         | 3                      |
| Pharmacy                             | 4                      |
| Physics                              | 5                      |
| Radiation Safety Office              | 32                     |
| Veterinary Medicine                  | 10                     |
| Total                                | 84                     |
| Veterinary Medicine                  | 11                     |
| Zoology                              | 1                      |
| Total                                | 92                     |

# Table VI.5Summary of Radiological InstrumentationCalibrated to Support Other Agencies

| Agency                            | Number of Calibrations |
|-----------------------------------|------------------------|
| Benton County                     | 8                      |
| CH2MHill                          | 1                      |
| DOE Albany Research Center        | 5                      |
| ESCO Corporation                  | 7                      |
| Eugene Sand and Gravel            | 1                      |
| Fire Marshall                     | 121                    |
| Gene Tools                        | 3                      |
| Grand Ronde Hospital              | 5                      |
| Health Division                   | 99                     |
| Knife River                       | 3                      |
| Lebanon Community Hospital        | 2                      |
| Occupational Health Lab           | 7                      |
| ODOE/ Hazmat                      | 10                     |
| ODOT                              | 15                     |
| Oregon Health Sciences University | 28                     |
| Rouge Community College           | 1                      |
| Samaritan Hospital                | 9                      |
| SIGA Technologies                 | 2                      |
| VDIC                              | 2                      |
| Weyerhaeuser                      | 1                      |
| Total                             | 330                    |
| VDIC                              | 2                      |
| Weyerhaeuser                      | 1                      |
| Total                             | 341                    |

•

•

•

•

•

• • • •

•

| Date       | No. of Visitors | Group                |
|------------|-----------------|----------------------|
| 7/1/2009   | 21              | Chemistry 223        |
| 7/2/2009   | 2               | Family               |
| 7/7/2009   | 40              | Lane Electric Co-op  |
| 7/10/2009  | 5               | START group          |
| 7/16/2009  | 15              | Real Estate Agents   |
| 7/17/2009  | 2               | START group          |
| 7/23/2009  | 2               | START group          |
| 7/24/2009  | 27              | Engineering Camp     |
| 8/3/2009   | 20              | Chemistry 222        |
| 8/5/2009   | 19              | Chemistry 222        |
| 8/20/2009  | 2               | Perspective Students |
| 8/21/2009  | 6               | START group          |
| 8/24/2009  | 3               | Family               |
| 9/2/2009   | 30              | Chemistry 123        |
| 10/12/2009 | 30              | Alumni               |
| 10/12/2009 | 1               | Perspective Students |
| 10/19/2009 | 15              | Sheldon High School  |
| 10/20/2009 | 40              | ANS                  |
| 11/10/2009 | 25              | Engineering 111      |
| 11/11/2009 | 8               | Family               |
| 11/11/2009 | 40              | ANS                  |
| 11/12/2009 | 25              | Engineering 111      |

| Date       | No. of Visitors | Group                        |
|------------|-----------------|------------------------------|
| 11/12/2009 | 25              | Engineering 111              |
| 11/12/2009 | 46              | Engineering 111              |
| 11/12/2009 | 25              | Engineering 111              |
| 11/14/2009 | 83              | Dad's Weekend                |
| 11/20/2009 | 1               | COE                          |
| 11/20/2009 | 1               | Visitor                      |
| 11/21/2009 | 6               | Perspective Students         |
| 12/1/2009  | 4               | WOU Nuclear Chemistry Course |
| 12/1/2009  | 33              | OSU                          |
| 12/7/2009  | 1               | Visitor                      |
| 12/16/2009 | 2               | Senator Merkely's Staff      |
| 12/23/2009 | 4               | Family                       |
| 1/6/2010   | 19              | Chemistry 462                |
| 1/11/2010  | 9               | Chemistry 462                |
| 1/13/2010  | 9               | Chemistry 462                |
| 1/14/2010  | 5               | Boy Scouts                   |
| 1/14/2010  | 50              | OSU                          |
| 1/20/2010  | 60              | Intro to Engineering Class   |
| 1/20/2010  | 3               | PNNL                         |
| 1/21/2010  | 10              | COE Marketing                |
| 2/1/2010   | 25              | Chemistry 205 Sec 17         |
| 2/8/2010   | 24              | Chemistry 205- Sec 14        |
| 2/9/2010   | 24              | Chemistry 225 H              |
| 2/10/2010  | 24              | Chemistry 205- Sec 32        |
| 2/11/2010  | 24              | Chemistry 225 H              |

| Date      | No. of Visitors | Group                   |  |  |  |
|-----------|-----------------|-------------------------|--|--|--|
| 2/15/2010 | 24              | Chemistry 205 Sec 10    |  |  |  |
| 2/19/2010 | 4               | Good Samaritan          |  |  |  |
| 2/22/2010 | 24              | Chemistry 205 Sec 11    |  |  |  |
| 2/24/2010 | 24              | Chemistry 205 Sec 30    |  |  |  |
| 2/25/2010 | 1               | Oregon Stater Awardee   |  |  |  |
| 2/26/2010 | 2               | Kathyrn Brock           |  |  |  |
| 2/26/2010 | 6               | Chemistry 262           |  |  |  |
| 3/1/2010  | 14              | Mike Hartman            |  |  |  |
| 3/1/2010  | 24              | Chemistry 205 Sec 15    |  |  |  |
| 3/1/2010  | 24              | chemistry 205 Sec 12    |  |  |  |
| 3/2/2010  | 14              | Mike Hartman            |  |  |  |
| 3/3/2010  | 14              | Mike Hartman            |  |  |  |
| 3/3/2010  | 24              | Chemistry 205 Sec 31    |  |  |  |
| 3/4/2010  | 10              | Printing & Mailing      |  |  |  |
| 3/4/2010  | 14              | Mike Hartman            |  |  |  |
| 3/5/2010  | 7               | OSU                     |  |  |  |
| 3/8/2010  | 24              | Chemistry 205 Sec 16    |  |  |  |
| 3/8/2010  | 24              | Chemistry 205 Sec 13    |  |  |  |
| 3/9/2010  | 24              | Chemistry 205 Sec 22    |  |  |  |
| 3/10/2010 | 24              | Chemistry 205 Sec 33    |  |  |  |
| 3/10/2010 | 25              | NuScale                 |  |  |  |
| 3/10/2010 | 30              | Cheldelin Middle School |  |  |  |
| 3/12/2010 | 20              | LBCC                    |  |  |  |
| 3/30/2010 | 3               | Perspective Students    |  |  |  |

| Date      | No. of Visitors | Group                       |
|-----------|-----------------|-----------------------------|
| 4/6/2010  | 20              | Marist High School Group 1  |
| 4/6/2010  | 20              | Marist High School Group 2  |
| 4/7/2010  | 31              | ARCS Ladies                 |
| 4/8/2010  | 12              | HP                          |
| 4/16/2010 | 10              | Private School in Bend      |
| 4/21/2010 | 32              | East Linn Christian Academy |
| 4/22/2010 | 33              | Bethany Middle School       |
| 5/1/2010  | 217             | Mom's Weekend               |
| 5/3/2010  | 25              | Roseburg High School        |
| 5/3/2010  | 25              | Roseburg High School        |
| 5/14/2010 | 2               | Engineering Expo            |
| 5/14/2010 | 12              | Engineering Expo            |
| 5/14/2010 | 5               | Family                      |
| 5/17/2010 | 3               | Erin Miller & Family        |
| 5/18/2010 | 20              | West Albany High School     |
| 5/18/2010 | 20              | West Albany High School     |
| 5/19/2010 | 6               | Seth Cadell                 |
| 5/19/2010 | 27              | Sweet Home High School      |
| 5/20/2010 | 12              | Advisory Board              |
| 5/21/2010 | 40              | Lebanon High School         |
| 5/25/2010 | 12              | ODOT Transport              |
| 5/27/2010 | 1               | Perspective Students        |
| 5/29/2010 | 2               | Perspective Students        |
| 5/30/2010 | 2               | Perspective Students        |

## Table VI.6Summary of Visitors to the Radiation Center

82

•

•

•

•

| Date      | No. of Visitors | Group                   |
|-----------|-----------------|-------------------------|
| 6/1/2010  | 5               | Alumni                  |
| 6/9/2010  | 40              | Wade Marcum             |
| 6/11/2010 | 97              | OSU Nuclear Engineering |
| 6/11/2010 | 2               | Wade Marcum             |
| 6/17/2010 | 8               | Family                  |
| 6/21/2010 | 4               | Family                  |
| 6/22/2010 | 1               | Family                  |
| 6/24/2010 | 12              | NE 516                  |
| Total     | 2132            |                         |



# Words

#### Publications

Aciego, S.M., Jourdan, F., DePaolo, D.J., Kennedy, B.M., Renne, P.R., and Sims, K.W. (2010) Combined U-Th/He and 40Ar/39Ar Geochronology of Postshield Lavas from the Mauna Kea and Kohala volcanoes, Hawaii: Geochimica et Cosmochimica Acta 74: 1620-1635.

3ernet M., Brandon M., Garver J., Balestrieri M.L., Ventura B. & Zattin M. (2009) Exhuming the Alps through time: clues from detrital zircon fission-track thermochronology. Basin Research, 21, 781-798.

Brown, M Alex, et al. (2010) IOP Conf. Ser.: Mater. Sci. Eng. 9 012071 Investigation of Pu(IV)acetohydroxamic acid complex by solvent extraction with di(2-ethylhexyl) phosphoric acid doi: 10.1088/1757-899X/9/1/012071 http://iopscience. iop.org/1757-899X/9/1/012071

Brown, M Alex, Paulenova, A., Tkac, P. Investigation of Pu(IV)-acetohydroxamic acid complex by solvent extraction with di(2-ethylhexyl) phosphoric acid, IOP Conf. Ser.: Mater. Sci. Eng. 9 012071 (2010)

Brown, M. Alex, Tkac, Peter, Paulenova, Alena, Vandegrift, George F. Influence of temperature on the extraction of Pu(IV) by tri-n-butyl phosphate from acidic nitrate solutions Separation Science and Technology (2010), 45(1), 50-57.

Brownlee, S.J., and Renne, P.R. (2010) Thermal history of the Ecstall pluton from 40Ar/39Ar geochronology and thermal modeling: Geochimica et Cosmochimica Acta 74: 4375-4391.

Brownlee, Sarah Jo. "Revisiting the Baja-BC hypothesis: 40Ar/39Ar geochronology and paleomagnetism of the Ecstall, Butedale, and Smith Island plutons, British Columbia, Canada" PhD (2009), University of California, Berkeley Bytwerk, D., Limer, L., Albrecht, A., Marang, L., Smith, G., and Thorne, M. Sources and significance of variation in the dose estimates of 36Cl biosphere transfer models: a model intercomparison study Submitted to the Journal of Radiological Protection

Cassata, W.S., Renne, P.R., and Shuster, D.L. (2009) Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa: Geochimica et Cosmochimica Acta 73: 6600-6612.

- Cassata, W.S., Shuster, D.L., Renne, P.R., and Weiss, B.P. (2010) Evidence for shock heating and constraints on Martian surface temperatures revealed by 40Ar/39Ar thermochronometry of Martian meteorites: Geochimica et Cosmochimica Acta, in press.
- Cavazza W., Federici I., Okay A.I. & Zattin M. Pre-Cenozoic amalgamation of the Istanbul and Sakarya terranes (NW Turkey) – evidence from low-temperature thermochronology. Terra Nova, submitted.
- Cavazza W. & Zattin M. Apatite fission-track data as a proxy for convergence rates along the Andean continental margin: preliminary results from a Chilean transect between 23°S and 24°S. Geoacta, in press.
- Chang, S.-C., Zhang, H., Renne, P.R., and Fang, Y. (2009) High-precision 40Ar/39Ar age of the Jehol Biota: Paleogeography, Paleoecology, Paleoclimatology 280: 94-104.
- Cherry, John F., Faro, Elissa Z., and Minc, Leah. "Field Survey and Geochemical Characterization of the Southern Armenian Obsidian Sources", Journal of Field Archaeology 35.2, 2010, 147-163.

Cirilli, S., Marzoli, A., Tanner, L., Bertrand, H., Buratti, N. Jourdan, F., Bellieni, G., Kontak, D., and Renne, P.R. (2009) Latest Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): new stratigraphic constraints: Earth and Planetary Science Letters 286: 514-525.

Corrado S., Aldega L. & Zattin M. (2010) Sedimentary vs. tectonic burial and exhumation along the Apennines (Italy). In: (Eds.) Marco Beltrando, Angelo Peccerillo, Massimo Mattei, Sandro Conticelli, and Carlo Doglioni, The Geology of Italy, Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, volume 36, paper 15.

Corrado S., Invernizzi C., Aldega L., D'errico M., Di Leo P., Mazzoli S. & Zattin M. (2010) Testing the validity of organic and inorganic thermal indicators in different tectonic settings from continental subduction to collision: the case history of the Calabria-Lucania border (Southern Apennines, Italy). Journal of Geological Society of London, 167, 1-15.

Courtillot, V., Kravchinsky, V.A., Quidelleur, X., Renne, P.R., and Gladkochub, D.P. (2010) Preliminary dating of the Viluy traps (Eastern Siberia): eruption at the time of Late Devonian extinction events?: Earth and Planetary Science Letters, in press.

Deino, A.L., Scott, G.R., Saylor, B., Alene, M., Angelini, J.D., and Haile-Selassie, Y. (2010) 40Ar/39Ar dating, paleomagnetism, and tephrochemistry of Pliocene strata of the hominid-bearing Woranso-Mille area, west-central Afar Rift, Ethiopia: Journal of Human Evolution 58: 111-156.

Dombroski, B.A. (2010) Mineralogy, petrology, and geochemistry of Miocene silicic lavas and pyroclastic flows, Goldfield-Superstition volcanic province, central Arizona. Masters Thesis, North Carolina State University, Raleigh, 132 p.

Draper, S., Evans, J., Garver, J.I., and Kirschner, D. and Janecke, S.U. (2009) Arkosic rocks from the San Andreas Fault observatory at Depth (SAFOD) borehole, central California: implications for tectonics along the San Andreas Fault. Lithosphere 1; p. 206-226. Enkelmann, E., Zeitler, P.K., Pavlis, T.L., Garver, J.I., Ridgway, K.D. (2009) Intense Localized Rock Uplift and Erosion in the St. Elias Orogen of Alaska. Nature Geoscience 2, no. 5, p. 360-363. Words

Eusden, D., Foley, M., and Roden-Tice, M. (2009) The Ordovician to Carboniferous bedrock geology and cooling history of the Bronson Hill and central Maine belts, Presidential Range, New Hampshire. In Westerman, D.S. and Lathrop, A.S., eds., Guidebook for Field Trips in the Northeast Kingdom of Vermont and adjacent regions, New England Intercollegiate Geological Conference, 101st Meeting, p. A3-1 to A3-16

Federici I., Cavazza W., Okay A.I., Beyssac O., Zattin M., Corrado S. & Dellisanti F. Thermal evolution of the Permo-Triassic Karakaya subduction-accretion complex from the Biga peninsula to the Tokat Massif (Anatolia). Turkish Journal of Earth Sciences, in press.

Fodor, R.V., and Bauer, G.R. (2010) Kahoolawe Island, Hawaii: the role of an 'inaccessible' shield volcano in the petrology of the Hawaiian islands and plume. Chemie der Erde, 70: 101-123

Fodor, R.V., Vetter, S.K. Miocene basaltic magmatism in the Goldfield-Superstition volcanic province, central Arizona: geochemistry, mineralogy, and petrology Manuscript submitted (to Rocky Mountain Geology)

Foster, D.A., B.D. Goscombe, D.R, Gray. (2009) Rapid Exhumation of Deep Crust in an Obliquely Convergent Orogen: the Kaoko Belt of the Damara Orogen: Tectonics v. 28, TC4002, doi:10.1029/2008TC002317.

Foster, D.A., W.C. Grice, and T.J. Kalakay. (2010) Extension of the Anaconda metamorphic core complex: 40Ar/39Ar thermochronology with implications for Eocene tectonics of the northern Rocky Mountains and the Boulder batholith: Lithosphere v. 2 p. 232-246, doi: 10.1130/L94.1. Giaccio, B., Marra, F., Hajdas, I., Karner, D.B., Renne, P.R., and Sposato, A. (2009) 40Ar/39Ar and 14C geochronology of the Albano maar deposits: Implications for defining the age and eruptive style of the most recent explosive activity at Colli Albani Volcanic District, Central Italy: Journal of Volcanology and Geothermal Research 185: 203-213.

- Gombosi, D.J., Barbeau, D.L., Garver J.I. (2009) New thermochonometric constraints on the rapid Paleogene exhumation of the Cordillera Darwin complex related thrust sheets in the Fuegian Andes. Terra Nova, v. 21, n. 6, p. 507–515.
- Guo-Can Wang, Robert P. Wintsch, John I. Garver, Mary Roden-Tice, She-Fa Chen, Ke-Xin Zhang, Qi-Xiang Lin, Yun-Hai Zhu, Shu-Yuan Xiang and De-Wei Li (in press) Provenance and thermal history of the Bayan Har Group in the western-central Songpan– Ganzi–Bayan Har terrane: implications for tectonic evolution of the northern Tibetan Plateau. The Island Arc, Volume 18, Number 3, September 2009, pp. 444-466(23)
- Hagan, J.C., Busby, C.J., Putirka, K., and Renne, P.R. (2009)
  Cenozoic palaeocanyon evolution, Ancestral
  Cascades arc volcanism, and structure of the Hope
  Valley-Carson Pass region, Sierra Nevada, California:
  International Geology Review 51: 777-823.
- Haile-Selassie, Y., Saylor, B.Z., Deino, A., Alene, M., and Latimer, B.M. (2010) New Hominid Fossils From Woranso-Mille (Central Afar, Ethiopia) and Taxonomy of Early Australopithecus: American Journal of Physical Anthropology 141: 406-417.
- Hartig, Kyle; Paulenova, Alena. Radiolysis of neptunium in aqueous acidic solutions From Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010 (2010), NUCL-117.
- Hourigan, J., Brandon, M.T., Soloviev, A.V., Kirmasov,
  A.B., Garver, J.I., Stevenson, J., and Reiners, P.W.
  (2009) Eocene arc-continent collision and crustal consolidation in Kamchatka, Russian Far East.
  American Journal of Science. v. 309: p. 333-396.

- Jarboe, N.A., Coe, R.S., Renne, P.R., and Glen, J.M.G. (2010) The Age of the Steens Reversal and the Columbia River Basalt Group: Chemical Geology 274: 158-168.
- Higley, K. (2010) Estimating transfer parameters in the absence of data; Radiation and Environmental Biophysics; DOI: 10.1007/s00411-010-0326-9; Volume 49.
- Kirstein, L. A., Fellin, M. G., Willett, S. D., Carter, A., Chen, Y.- G. Garver, J.I., Lee, D.C. (2010) Pliocene onset of rapid exhumation in Taiwan during arc-continent collision: new insights from detrital thermochronometry; Basin Research, v. 22, n. 3, p. 270-285.
- Korsch, R.J., Adams, C.J., Black, L.P., Foster, D.A., Fraser,
  G.L., Murray, C.G., Foudoulis, C., and Griffin, W.L.
  (2009) Geochronology and provenance of the Late
  Paleozoic accretionary wedge and Gympie Terrane,
  New England Orogen, eastern Australia: Australian
  Journal of Earth Science, v. 56, p. 665-685, doi:
  10.1080/08120090902825776.
- Krane, K. S. "Neutron Capture by Ru: Neutron Cross Sections of 96,102,104Ru and gamma-ray Spectroscopy in the Decays of 97,103,105Ru," Phys. Rev. C 81,044310 (2010).
- Krane, K. S. "Gamma-ray Spectroscopy in the Decays of 80mBr and 82gBr," Applied Radiation and Isotopes (accepted; in press).
- Lapka, J L., et al. (2010) IOP Conf. Ser.: Mater. Sci. Eng. 9 012029. Coordination of uranium(VI) with N,N'-diethyl-N,N'-ditolyldipicolinamide doi: 10.1088/1757-899X/9/1/012029 http://iopscience. iop.org/1757-899X/9/1/012029
- Lapka, Joseph L., et al. (2010) IOP Conf. Ser.: Mater. Sci. Eng. 9 012068. The extraction of actinides from nitric acid solutions with diamides of dipicolinic acid doi: 10.1088/1757-899X/9/1/012068 http:// iopscience.iop.org/1757-899X/9/1/012068.

- Lapka, J. L.. Paulenova, A., Alyapyshev, M. Yu., Babain, V. A., Herbst, R. S., Law, J. D. Extraction of molybdenum and technetium with diamides of dipicolinic acid from nitric acid solutions Journal of Radioanalytical and Nuclear Chemistry (2009), 280(2), 307-313.
- Lapka, J. L., Paulenova, A., Alyapyshev, M. Yu., Babain, V. A., Herbst, R. S., Law, J. D. Extraction of uranium(VI) with diamides of dipicolinic acid from nitric acid solutions Radiochimica Acta (2009), 97(6), 291-296.
- Marsellos, A.E., Garver, J.I. (2010) Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation; American Mineralogist, Volume 95, pages 1192–1201.
- Marsellos, A.E., Kidd, W.S.F., and Garver, J.I. (2010) Extension and exhumation of the HP/LT rocks in the Hellenic foreare ridge; American Journal of Science, v. 310, p. 1–36, DOI 10.2475/01.2010.01
- Matteson, Brent S., et al. (2010) IOP Conf. Ser.: Mater. Sci. Eng. 9 012073 A study of the kinetics of the reduction of neptunium(VI) by acetohydroxamic acid in perchloric acid doi: 10.1088/1757-899X/9/1/012073 http://iopscience. iop.org/1757-899X/9/1/012073
- Matteson, Brent S.; Paulenova, Alena; Precek, Martin; Tkac, Peter. Reduction and complexation chemistry of acetohydroxamic acid with actinides and other metals under acidic conditions. From Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010 (2010), NUCL-137.
- Matteson, Brent S, Precek, M., Paulenova, A. (2010) A study of the kinetics of the reduction of neptunium(VI) by acetohydroxamic acid in perchloric acid, IOP Conf. Ser.: Mater. Sci. Eng. 9 012073.
- Mager, D., C. Xu, A. Forrest, W. Lesniak, S. Nigavekar,
  M., Kariapper, L. Minc, M. Khan, and L. Balogh.
  Physiologically-based model for in vivo disposition of nanoparticles in mice. Submitted to Nano Letters, December, 2009.

- Massironi M., Zattin M., Zampieri D., Selli L. & Martin S. New insights on the alpine tectonics onset in the eastern Southern Alps (Italy) through apatite fission track analysis. Swiss Journal of Geosciences, submitted.
- Mazzoli S., Jankowski L., Szaniawski R. & Zattin M. (2010) Low-T thermochronometric evidence for post thrusting (< 11 Ma) exhumation in the Western Outer Carpathians, Poland. Compte Rendue Geosciences, 342, 162-169.
- Merle, R., Jourdan, F., Marzoli, A., Renne, P.R., Grange, M., and Giradeau, J. (2009) Evidence of multi-phase Cretaceous to Quaternary alkaline magmatism on Tore-Madeira Rise and neighbouring seamounts from 40Ar/39Ar ages: Journal of the Geological Society 166: 879-894.
- Minc, L.D. A Compositional Perspective on Ceramic Exchange among Late Bronze Age Communities of the Tsaghkahovit Plain, Armenia. In The Archaeology and Geography of Ancient Transcaucasian Societies, Volume 1, edited by A. Smith, R.S. Badalyan, and P. Avetisyan. Oriental Institute Publication 134: pp. 381-391.
- Minc, L.D. Style and Substance: Evidence for Regionalization within the Aztec Market System. Latin American Antiquity 20(2): 343-374.
- Minc, L.D. and R.J. Sherman. Assessing Natural Clay Composition in the Valley of Oaxaca as a Basis for Ceramic Provenance Studies. Archaeometry, in press.
- Monegato G., Stefani S. & Zattin M. (2010) From present rivers to old terrigenous sediments: the evolution of the drainage system in the eastern Southern Alps. Terra Nova, 22, 218-226.
- Montario, M.J., and Garver, J.I. (2009) The thermal evolution of the Grenville Terrane revealed through U-Pb and Fission-Track analysis of detrital Zircon from Cambro-Ordovician quartz arenites of the Potsdam and Galway Formations; Journal of Geology, vol. 117, no. 6, p. 595-614.

- Mulcahy, S.R., Roeske, S.M., McLelland, W.C., Jourdan, F., Renne, P.R., Vervoort, J.D., and Vujovich, G.I. (2010) Structural evolution of a composite middle- to lowercrustal section: the Sierra de Pie de Palo, northwest Argentina: Tectonics, in press.
- Mundil R., Palfy J., Renne P.R., and Brack P. (2010) The Triassic time scale: New constraints and a review of geochronological data. In The Triassic Timescale (ed. S.G. Lucas), Geological Society, London, Special Publications 334: 41-60.
- Okay A.I., Zattin M. & Cavazza W. (2010) Apatite fissiontrack data for the Miocene Arabia-Eurasia collision. Geology, 38, 35-38.
- Opdyke, N.D., D.V. Kent, K. Huang, D.A. Foster, and J.P. Patel. (2010) Equatorial paleomagnetic timeaveraged field results from 0-5 Ma lavas from Kenya and the latitudinal variation of angular dispersion: Geochemistry, Geophysics and Geosystems, v. 11, Q05005, doi: 10.1029/2009GC002863.
- Parra, M., Mora, A., Sobel, E. R., Strecker, M. R., and González, R. (2009) Episodic orogenic-front migration in the northern Andes: constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia: Tectonics, v. 28, p. TC4004, doi:10.1029/2008TC002423.
- Perri F., Critelli S., Martin-Algarra A., Martin-Martin M., Perrone V., Mongelli G., Sonnino M. & Zattin M. Triassic redbeds in the Malaguide Complex (Betic Cordillera – Spain): petrography, geochemistry, and geodynamic implications. GSA Bulletin, submitted.
- Pignalosa A., Zattin M., Massironi M. & Cavazza W. -Thermochronological evidence for a late Pliocene climate-induced erosion rate increase in the Alps. International Journal of Earth Sciences, in press.
- Paszkowski, M., Rospondek, M., Matyasik, I., Kędzior, A., Gmur D., Porębski, S.J., Poprawa, P. (2009) Hidden Pennsylvanian Coals as Potential Source for Natural Gas in Central European Basin in Poland. \*AAPG Annual Convention and Exhibition, Denver, Colorado, June 7-10, 2009\*: Abstract: 162.

Paszkowski, M., Rospondek, M., Kędzior, A., Lewandowska,
A. (2009) Revealing Evolution of the Natural
Gases and Source Rocks of the Dismembered CoalBearing Variscan Fore-Deep developed on Avalonian
Bruno-Upper Silesia- Moesia-Istambul-Zonguldak
Superterrane. \*2nd International Symposium on the
Geology of the Black Sea, 5-9 Oct. 2009.\* Abstracts.

- Paulenova, Alena. Opportunities and challenges in education in nuclear sciences and radiochemistry From Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009 (2009), NUCL-207., Database: CAPLUS
- Paulenova, Alena; Lapka, Joseph L. (2010) Extraction of lanthanides and actinides with diamides of dipicolinic acid. From Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010, NUCL-41.
- Paulenova, Alena; Lapka, Joseph. (2009) Group separation of fission products and actinides with diamides of dipicolinic acid. From Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009, NUCL-103., Database: CAPLUS
- Pluhar, C.J., Deino, A.L., King, N.M., Busby, C., Hausback, B.P., Wright, T., and Fischer, C. (2009) Lithostratigraphy, magnetostratigraphy, and radiometric dating of the Stanislaus Group, CA, and age of the Little Walker Caldera: International Geology Review 51: 873-899.
- Precek, Martin and Paulenova, Alena. (2010) IOP Conf. Ser.: Mater. Sci. Eng. 9 012074 Kinetics of oxidation of pentavalent neptunium by pentavalent vanadium in solutions of nitric acid doi: 10.1088/1757-899X/9/1/012074 http://iopscience. iop.org/1757-899X/9/1/012074
- Precek, Martin and Paulenova, Alena. (2010) Kinetics of oxidation of pentavalent neptunium by pentavalent vanadium in solutions of nitric acid, IOP Conf. Ser.: Mater. Sci. Eng. 9 012074.

Precek, Martin and Paulenova, Alena. (2010) Kinetics of reduction of hexavalent neptunium by nitrous acid in solutions of nitric acid, Proceedings of conference Radchem 2010, Mariánské Lázně, April 18-23, 2010, Czech Republic, accepted by J. Radioanal Nucl Chem (provisional citation vol. 287, 2010) Volume 285.

Precek, Martin, Paulenova, Alena, Tkac, Peter, and Knapp, Nathan. Effect of methylurea and vanadium(V) on the redox speciation of neptunium in nitric acid solutions during gamma-radiolysis, Peer-reviewed proceedings of the First ACSEPT International Workshop 31 March - 2 April 2010, Lisbon, Portugal

Precek, Martin; Paulenova, Alena; Tkac, Peter; Knapp, Nathan. (2010) Effect of Gamma Irradiation on the Oxidation State of Neptunium in Nitric Acid in the Presence of Selected Scavengers, accepted by Separation Science and Technology (provisional citation vol. 45: issue 1–7.

Robinson, J. A., Hartman, M. R., and Reese, S. R. "Design, Construction, and Characterization of a Prompt Gamma Activation Analysis Facility at the Oregon State TRIGA Reactor," J. Radioanal. and Nucl. Chem., DOI 10.1007/s10967-009-0358-2.

Renne, P.R., Mundil, R., Balco, G., Min, K., and Ludwig, K.R. (2010) Joint determination of 40K decay constants and 40Ar\*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology: Geochimica et Cosmochimica Acta 74: 5349-5347.

Renne, P.R., Schwarcz, H.P., Kleindienst, M.R., Osinski, G.R., and Donovan, J.J., 2010, Age of the Dakhleh Impact Event and Implications for Middle Stone Age Archeology in the Western Desert of Egypt: Earth and Planetary Science Letters 291: 201-206.

Renne, P.R., Deino, A.L., Hames, W.E., Heizler, M.T., Hemming, S.R., Hodges, K.V., Koppers, A.A.P., Mark, D.F., Morgan\*, L.E., Phillips, D., Singer, B.S., Turrin, B.D., Villa, I.M., Villeneuve, M., and Wijbrans, J.R. (2009) Data reporting norms for 40Ar/39Ar geochronology: Quaternary Geochronology 4: 346-352. Roden-Tice, Mary. K., West, David P., Jr., Potter, Jaime K., Raymond, Sarah M., and Winch, Jenny L. (2009) Presence of a Long-Term Lithospheric Thermal Anomaly: Evidence from Apatite Fission-Track Analysis in Northern New England. The Journal of Geology, v. 117, p. 627-641. Words

- Rooney, A.D., Selby, D., Houzay, J.-P., and Renne, P.R. (2010) Re-Os geochronology of Mesoproterozoic sediments from the Taoudeni basin, Mauritania: Implications for basin-wide correlations, supercontinent reconstruction and Re-Os systematics of organic-rich sediments: Earth and Planetary Science Letters 289: 486-496.
- Ryder, M.P., K.F. Schilke, J.A. Auxier, J. McGuire and J.A. Neff. (2010) Nisin adsorption to polyethylene oxide layers and its resistance to elution in the presence of fibrinogen. J. Colloid Interface Sci. 350: 194-199.
- Schefer, S., Cvetković, V., Fügenschuh, B., Kounov, A., Ovtcharova, M., Schaltegger, U. and Schmid, S. (in review). Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula. International Journal of Earth Sciences.
- Schilke, K.F. and J. McGuire. Detection of nisin and fibrinogen adsorption on polyethylene oxide coated polymer surfaces by time-of-flight secondary ion mass spectroscopy. J. Colloid Interface Sci., submitted.
- Schmidt, K.L., Paterson, S.R., Blythe, A.E., and Kopf, C. (2009) Mountain building across a lithospheric boundary during arc construction: the Cretaceous Peninsular Ranges batholith in the Sierra San Pedro Martir of Baja California, Mexico, Tectonophysics, v. 477, p. 292-310.
- Singer K. I. (2009) Miocene magmatism in the southwestern Basin and Range province: mineralogy, petrology, and geochemistry of the Stewart Mountain basalt field, central Arizona. Masters Thesis, North Carolina State University, Raleigh, 67 p.

Shuster, D.L., Balco, G., Cassata\*, W.S., Fernandes\*\*, V.A., Garrick-Bethel, I., and Weiss, B.P. (2010) A record of impacts preserved in the lunar regolith: Earth and Planetary Science Letters 290: 155-165.

Simon, J.I., Vazquez, J.A., Renne, P.R., Schmitt, A.K, Bacon, C.R., and Reid, M.R. (2009) Accessory mineral U-Th-Pb ages, eruption chronology, and their bearing on rhyolitic magma evolution in the Pleistocene Coso volcanic field, California: Contributions to Mineralogy and Petrology 158: 421-446.

Sobel., E.R. and Seward, D. (2010) Influence of etching conditions on apatite fission-track etch pit diameter, Chemical Geology, v. 271, p. 59-69, doi:10.1016/j. chemgeo.2009.12.012.

Svojtka, Martin, Nývlt, Daniel, Murakami, Masaki, Vávrová, Jitka, Filip, Jiří and Mixa, Petr. Provenance and postdepositional low-temperature evolution of the James Ross Basin sedimentary rocks (Antarctic Peninsula) based on fission track analysis. Antarctic Science, Volume 21, Issue 06, December 2009, pp 593-607.

Thomson S.T., Brandon M.T., Reiners P.W., Zattin M., Isaacson P.J. & Balestrieri M.L. (2010) Thermochronologic evidence for orogen-parallel variability in wedge kinematics during extending convergent orogenesis of the northern Apennines, Italy. Geological Society of American Bullettin, 122, 1160-1179.

Tkac, P., Paulenova, A., Vandegrift, G. F., and Krebs, J. F.
Modeling of Pu(IV) Extraction by Tri-n-butyl
Phosphate from Acidic Nitrate Media Containing
Acetohydroxamic Acid; J. Chem. Eng. Data,
Publication Date (Web): June 8, 2010 (Article as soon as Publishable).

Tkac, P., Precek, M., Paulenova, A. Redox Reactions of Pu(IV) and Pu(III) in the Presence of Acetohydroxamic Acid in HNO3 Solutions Inorg. Chem., 2009, 48 (24), pp 11935–11944.

Tkac, Peter, Paulenova, Alena, Vandegrift, George F., Krebs, John F. (2009) Modeling of Pu(IV) Extraction from Acidic Nitrate Media by Tri-n-butyl Phosphate; Journal of Chemical & Engineering Data 54(7), 1967-1974. Tkac, Peter, Paulenova, Alena. (2010) Spectroscopic identification of tri-n-butyl phosphate adducts with Pu(IV) hydrolyzed species, IOP Conf. Ser.: Mater. Sci. Eng. 9 012072.

Tkac, Peter and Paulenova, Alena. (2010) IOP Conf.
Ser.: Mater. Sci. Eng. 9 012072 Spectroscopic identification of tri-n-butyl phosphate adducts with Pu(IV) hydrolyzed species doi: 10.1088/1757-899X/9/1/012072 http://iopscience.
iop.org/1757-899X/9/1/012072

Tkac, P., Paulenova, A., Vandegrift, G. F., Krebs, J. F. Distribution and identification of Plutonium(IV) species in tri-n-butyl phosphate/HNO3 extraction system containing acetohydroxamic acid Journal of Radioanalytical and Nuclear Chemistry (2009), 280(2), 339-342.

Tkac, Peter; Precek, Martin; Paulenova, Alena. Redox Reactions of Pu(IV) and Pu(III) in the Presence of Acetohydroxamic Acid in HNO3 Solutions. From Inorganic Chemistry (Washington, DC, United States) (2009), 48(24), 11935-11944.

Tkac, Peter; Paulenova, Alena; Vandegrift, George F.; Krebs, John F. Modeling of Pu(IV) Extraction from Acidic Nitrate Media by Tri-n-butyl Phosphate From Journal of Chemical & Engineering Data (2009), 54(7), 1967-1974.

Tremblay, A. and Roden-Tice, M.K. (submitted to The Journal of Geology in July 2010, in review). Late Jurassic faulting along the St. Lawrence Rift System, Eastern Canada: Evidence from apatite fission-track dating.

Turner, S., P. Haines, D. Foster, R. Powell, M. Sandiford, R. Offler. (2010) Did the Delameran Orogeny start in the Neoproterozoic?: Journal of Geology, v. 117, p. 575-583.

Ustaszewski, K., Kounov, A., Schmid, S., Schaltegger, U., Frank W., Krenn, E. and Fügenschuh, B. (in press). Cenozoic evolution of the Adria–Europe plate boundary along the northern Dinarides (Croatia, Bosnia-Hercegovina and Serbia) – from continentcontinent collision to back-arc extension. /Tectonics/. Van der Lelij, R., Spikings, R., Kerr, A., Kounov, A., Cosca, M., Chew, D. and Villagomez, D. (in press). Thermochronology and Tectonics of the Leeward Antilles: evolution of the Southern Caribbean Plate Boundary Zone. /Tectonics/.

Wilke, Franziska D.H., O'Brien, Patrick J., Sobel, Edward R., Stockli, Daniel F. Apatite fission track and (U-Th)/ He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: implications for an Eocene Plateau and Oligocene to Pliocene exhumation. International Journal of Earth Sciences, in review.

- WoldeGabriel, G., Ambrose, S.H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., DeGusta, D., Hart, W.K., Murray, A.M., Renne, P.R., Jolly-Saad, M.C., Stewart, K.M., and White, T.D. (2009) The Geological, Isotopic, Botanical, Invertebrate, and Lower Vertebrate Surroundings of Ardipithecus ramidus: Science 326: 65e1-65e5.
- Zattin M., Cavazza W., Okay A.I., Federici I., Fellin M.G., Pignalosa A. & Reiners P. (2010) A precursor of the North Anatolian Fault in the Marmara Sea region. Journal of Asian Earth Sciences, 39, 97-108.
- Zattin M., Talarico F. & Sandroni S. Integrated provenance and detrital thermochronology studies in the ANDRILL AND-2A drill core: Late Oligocene-Early Miocene exhumation of the Transantarctic Mountains (southern Victoria Land, Antarctica). Terra Nova, in press.

#### Presentations

- Ancuta, L., and Garver, J.I. (2010) Detrital zircon fission track ages of the Paleogene Kootznahoo Formation, Southeast Alaska. Cordilleran Section - 106th Annual Meeting, and Pacific Section, American Association of Petroleum Geologists (27-29 May 2010).
- Blythe, A.E., Longinotti, N., and Khalsa, S. (2009) Twostage exhumation of the Southern Sierra Nevada/ Tehachapi Mountains from fission-track and (U-Th)/ He analyses [abs.]: Geological Society of America Abstracts with Programs, v. 41, no. 7, p. 300.

- Blythe, Ann E., Longinotti, Nicole, and Khalsa, Sopurkh. (2010) Post 20 Ma exhumation of the Southern Sierra Nevada/Tehachapi Mountains, from fissiontrack and (U-Th)/He analyses [abs.]: Geological Society of America Abstracts with Programs, v. 42, no. 4, p. 67.
- Bytwerk, David "Chlorine 36 work at Oregon State" Cascade Chapter of the HPS.
- Bytwerk, D., Higley, K. Oregon State University Foliar Interception, Retention, and Translocation of 36Cl 55th Annual Meeting, 26 June-1 July 2010 - Salt Palace Convention Center, Salt Lake City, UT
- Cantarelli, V., Invernizzi, C., Corrado, S., Casas-Sainz, A., Gisbert, Aguilar, J., Aldega, L. & Zattin, M. (2009) Thermal and thermo-chronological integrated study of Late Paleozoic transtensional basins in the western Pyrenees. Geoitalia 2009, Rimini, 9-11 September 2009, Epitome, 178.
- Cavazza, W., Zattin, M. & Rossi, P.L. (2009) Lowtemperature thermochronological evolution along a chilean transect between 23° and 24° latitude south: a proxy of prolonged subduction along the andean continental margin. Geoitalia 2009, Rimini, 9-11 September 2009, Epitome, 389.
- Chambers, D., Higley, K., Kocher, D., Real, A. SENES Consultants Limited, Oregon State University, SENES Oak Ridge, Inc., CIEMAT Determining an Appropriate Dose-Modifying Factor for Biota 55th Annual Meeting, 26 June-1 July 2010 - Salt Palace Convention Center, Salt Lake City, UT
- Deeken, A., Hourigan, J.K., Thiede, R.C., Sobel, E. and Strecker, M. (2009) Long-term erosion and exhumation rates across different climatic zones in the Indian NW-Himalaya, AGU Fall meeting: Eos, Trans. AGU 90 (54): San Francisco.
- Deeken, A., Hourigan, J.K., Sobel, E., Strecker, M., and Thiede, R.C. (2010) Exhumational variability along-strike of the Himalayan orogen, 12th International Conference on Thermochronology, Thermo2010, Glasgow, 18-20 August, 2010, p. 88.

Enkelmann, E., Zeitler, P.K., Pavlis, T.L., Garver, J.I., Hooks, B.P. (2009) Overview of the Exhumation pattern in Southeast Alaska, Geological Society of America Abstracts with Programs, Vol. 41, No. 7, p. 305.

- Federici, I., Cavazza, W., Okai, A.I. & Zattin, M. (2009) Thermochronological evolution of the Karakaya Complex from the Biga Peninsula to the Tokat Massif. 2nd International Symposium on the Geology of the Black Sea region, Ankara, 5-9 October.
- Franziska, D., Wilke, H., O'Brien, Patrick J. (2009). The multistage exhumation history of the Kaghan Valley UHP series, Himalaya, NW Pakistan from U-Pb, Ar-Ar, Apatite fission track and U-Th/He ages. 24rd Himalaya-Karakoram-Tibet Workshop, Beijing, China (Aug.11-Aug.14). Abstracts, S-1.10, 27.
- Garver, J.I., Enkelmann, E., Kveton, K.J. (2010) Uplift and exhumation of the Chugach-Prince William Terrane, Alaska, revealed through variable annealing of fission tracks in detrital zircon; Geological Society of America Abstracts with Programs, vol. 42, no. 4, p. 46.
- Hartig, K., Paulenova, A. (2010) Radiolysis of neptunium in aqueous acidic solutions, Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, March 21-25, 2010, NUCL-117.
- Hay, Tristan Medical Radionuclide Impurities in Wastewater AAPM Presentations.
- Higley, K. Oregon State University The Need for Transparency in Choosing Transfer Factors for Radioecological and Radiological Assessments 55th Annual Meeting, 26 June-1 July 2010 - Salt Palace Convention Center, Salt Lake City, UT.
- Macaulay, E., Sobel, E. R., Mikolaichuk, A. and Kohn, B. (2010) Exhumation and deformation history of the Kyrgyz Tien Shan, 12th International Conference on Thermochronology, Thermo2010, Glasgow, 18-20 August, 2010, p. 211.

- Malusa, M., Polino, R. & Zattin, M. (2009) Fission track dating as a correlation tool for complex structural datasets: constraints for the postmetamorphic evolution of the axial NW Alps. Alpine Workshop 2009, Cogne, 16-18 September 2009.
- Marsellos, A.E., and Garver, J.I. (2009) Discriminating Fision-Track Ages of Low-Retentive Zircons using micro-Raman Spectroscopy, Eos Trans. AGU, 90 (22), Jt. Assem. Suppl., Abstract : V33E-03.
- Marsellos, A.E, and Garver, J. I. (2010) Channel incision and landslides identified by LiDAR in the lower reaches of Schoharie Creek, New York. Geological Society of America Abstracts with Programs, v. 42, n.1, p. 73.
- Martin, Zachary, and Blythe, Ann E. (2010) Exhumational history of the San Jacinto Mountains from apatite fission track analyses [abs.]: Geological Society of America Abstracts with Programs, v. 42, no. 4, p. 68.
- Matteson, B. S., Paulenova, A., Precek, M., Tkac, P.
  (2010) Reduction and complexation chemistry of acetohydroxamic acid with actinides and other metals under acidic conditions Abstracts of Papers, 239th ACS National Meeting, San Francisco, March 21-25, 2010, NUCL-137.
- Megan, Todd W., Roden-Tice, M.K., and Tremblay, A. (2010) Late Paleozoic to Early Mesozoic Unroofing of the Canadian Shield in Southern Quebec Based on Apatite Fission-Track Analysis. Geological Society of America Abstracts with Programs, v. 42, p. 84, Northeastern-Southeastern Section Meeting, March 14-16, 2010, Baltimore, MD.
- Minc, Leah. Measuring Neutron Capture Cross Sections: An Undergraduate Research Program Annual meeting of the American Association of Physics Teachers, Portland OR, July 2010.
- Minc, Leah. Academy for Lifelong Learning (ALL) presentation, April 29, 2009.
- Minc, Leah. (2010), Lab lectures for OSU Experimental Chemistry II (4 sections).

#### 

- Minc, Leah. (2010), Lab lectures for Honors General Chemistry (2 sections).
- Minc, Leah. (2010), Lab lectures for OSU General Chemistry (1 sections).
- Minc, Leah. (2010), Lab lectures for OSU Introduction to Nuclear Engineering and Radiation Health Physics (4 sections).
- Monegato, G., Stefani, C. & Zattin, M. (2009) Evolution of main drainage in the southeastern Alps inferred from petrographic and fission-track analyses. Geoitalia 2009, Rimini, 9-11 September 2009, Epitome, 87.
- Montario, M.J., and Garver, J. I. (2010) The timing of the low temperature thermal evolution of Lower Paleozoic cover strata and Grenville basement, eastern New York State. Geological Society of America Abstracts with Programs, Vol. 42, No. 1, p. 173.
- Parra, M., Sobel, E.R., Strecker, M.R., Mora, A., and Horton, B. K. (2010) Exhumation patterns in inverted orogens: Example from the Eastern Colombian Andes, Thermo 2010, 12th International Conference on Thermochronology, Glasgow, August 2010.
- Paulenova, Alena. (2009) Opportunities and Challenges in Education in Nuclear Sciences and Radiochemistry Abstracts of Papers, 238th ACS National Meeting, Washington, DC, United States, August 16-20, 2009, NUCL-207.
- Precek, M. and Paulenova, A. Kinetics of reduction of hexavalent neptunium by nitrous acid in solutions of nitric acid, Proceedings of conference Radchem 2010, Mariánské Lázně, April 18-23, 2010, Czech Republic.
- Precek, M., Paulenova, A., Tkac, P., Knapp, N. Effect of Gamma Irradiation on the Oxidation State of Neptunium in Nitric Acid in the Presence of Selected Scavengers, Proceedings 16th Symposium on Separation Science and technology, October 18-22, 2009.

- Precek, M., Paulenova, A., Tkac, P., Knapp, N. Effect of methylurea and vanadium(V) on the redox speciation of neptunium in nitric acid solutions during gammaradiolysis, Proceedings of the First ACSEPT International Workshop 31 March - 2 April 2010, Lisbon, Portugal.
- Roden-Tice, Mary K. Apatite fission-track evidence for Mesozoic Unroofing and Faulting along the Saint Lawrence Rift System and Saguenay River grabens, Québec, Invited Colloquium at the Institut National de la Recherche Scientifique, Centre – Eau Terre Environnement, Québec City, Québec, Canada, 10/9/09.
- Roden-Tice, Mary K. and Eusden, J. Dykstra, Jr. (2010). Cretaceous Unroofing Rates for the Presidential Range, New Hampshire Determined by the Relief Method Using Apatite Fission-Track Ages. Geological Society of America Abstracts with Programs, v. 42, p. 79. Northeastern-Southeastern Section Meeting, March 14-16, 2010, Baltimore, MD.
- Sobel, E.R., Schoenbohm, L., Chen, J. Thiede, R.C., Stockli, D.F., and Sudo, M. (2009) Structural and Temporal Evolution of the Chinese Pamir Constrained Along two Orogen Perpendicular Transects, AGU Fall meeting: Eos, Trans. AGU 90 (54): San Francisco.
- Schilke, K., Ryder, M., Auxier, J. McGuire, J. and Neff, J. AIChE Annual Meeting, Nashville, TN. 2009.
- Schilke, K., J. McGuire and J. Neff. AIChE Annual Meeting, Nashville, TN. 2009.
- Sobel, E. R., Schoenbohm, L., Chen, J., Thiede, R. Stockli,
  D., Sudo, M. and Strecker, M.R. (2010) Strike-slip fault deceleration constrained by thermochronology: Implications for the timing of Pamir - Tien Shan collision, 12th International Conference on Thermochronology, Thermo2010, Glasgow, 18-20 August, 2010, p. 207.
- Sobel, E. R., and Seward, D. (2010) Influence of etching conditions on apatite Dpar, 12th International Conference on Thermochronology, Thermo2010, Glasgow, 18-20 August, 2010, p. 150.

Words

Talarico, F.M., Zattin, M., & Sandroni, S. (2009). Ice dynamic variations and an Oligocene exhumation episode revealed by provenance and detrital thermochronology studies in the Late Cenozoic glacimarine sediments recovered by the ANDRILL AND-2/2A drillcore. Antarctic Climate Evolution Symposium, Granada, 7-11 September 2009.

- Tkac, P., Precek, M., Paulenova, A. Redox Reactions of Pu(IV/III) in the Presence of Acetohydroxamic Acid in Nitric Acid Solutions,, Gatlinburg, Oct 2009.
- Tremblay, A., and Roden-Tice, M.K. (2010). Iapetan Versus Atlantic Rifting History of Laurentia – Constraints from Field Mapping and AFT Dating of Precambrian Basement Rocks, Canada. Geological Society of America Abstracts with Programs, v. 42, p. 79, Northeastern-Southeastern Section Meeting, March 14-16, 2010, Baltimore, MD.
- Ustaszewski, K., Frank W., Fügenschuh, B., \*Kounov, A\*., Krenn, E., Schaltegger, U. and Schmid, S. (2010). Evolution of the Adria–Europe plate boundary in the northern Dinarides: from continent-continent collision to back-arc extension. EGU General Assembly 2010, Vienna, Austria, Geophysical Research Abstracts, Vol. 12, EGU2010-5619.
- Van der Lelij, R., Spikings, R., Kerr, A., \*Kounov, A\*., Cosca, M. and Chew, D. (2010). Thermochronology and Tectonics of the Leeward Antilles: evolution of the Southern Caribbean Plate Boundary Zone and accretion of the Bonaire Block. EGU General Assembly 2010, Vienna, Austria, Geophysical Research Abstracts, Vol. 12, EGU2010-2649.
- Zattin, M., Cavazza, W., Okay, A.I., Federici, I., Fellin, M.G., Pignalosa, A. & Reiners, P. (2009). Thermochronological evidence for a precursor of the North Anatolian Fault in the Marmara Sea region. 2nd International Symposium on the Geology of the Black Sea region, Ankara, 5-9 October.
- Zattin, M., Talarico, F.M., & Sandroni, S. (2009). Integrated provenance-detrital thermochronology studies in ANDRILL AND-2A drill core: first evidence of an Oligocene exhumation episode (McMurdo Sound, Antarctica). AGU Fall Meeting, San Francisco, 14-18 December 2009.

#### Students

- Alzahrani, Adadi MS student Oregon State University, advisor K. Higley.
- Ancuta, L. 2010 (BSc). (advisor: J.I. Garver, Union College)
  Detrital zircon fission track ages of the Paleogene
  Kootznahoo Formation, Kupreanof and Admiralty
  Islands, southeast Alaska. Department of Geology,
  Union College, Schenectady, New York, June 2010.
  93 p.
- Antić, Milorad, 2010 ongoing. "Serbo-Macedonian massif, an enigmatic terrain within the Eastern Mediterranean Alpine orogen". Supervisor: Dr. Alexandre Kounov, \*PhD Thesis\*, Basel University, Switzerland.
- Andreucci, Benedetta: "Termocronologia dei Carpazi esterni (Polonia meridionale)". PhD project at the University of Bologna. Advisor: Prof. Massimiliano Zattin.
- Bowman-Kamaha'o, Meilani, 2010, "Evolution of the eastern flank of the Queen Charlotte Basin, British Columbia, from apatite fission track analyses". B.A. Thesis, Occidental College, Advisor: Ann E Blythe.
- Brown, M. Alex MS Thesis (RHP/Radiochemistry) defended in April 2010; 2 papers, 4 talks.
- Bytwerk, David PhD student Oregon State University K Higley, advisor.
- Dauenhauer, Alex Neutron Capture Cross Sections, Resonance Integrals and Half-lives of Barium Isotopes; BS in physics (June 2010) K Krane, advisor.
- Dearmon, Howard Neutron Capture Cross Sections of Se Isotopes; BS in physics (expected June 2011); K Krane, advisor.
- Deeken, Anke (PhD expected in 2010) Long-term erosion and exhumation rates across different climatic zones in the Indian NW Himalaya. Advisor: Prof. M. Strecker.
- Euan Macaulay (PhD expected in 2011) Has late Cenozoic climate change lead to enhanced erosion in the Kyrgyz and Chinese Tien Shan? Advisor: Dr. E. Sobel.

- Federici, Ilaria: "Termotectonic evolution of the Marmara region (Turkey)". PhD project at the University of Bologna. Advisor: Prof. Massimiliano Zattin.
- Gicking, Alison Neutron Capture Cross Sections of Cd; BS in physics (expected June 2011); K Krane, advisor.
- Gifford, Jennifer N. (Ph.D. candidate) Evolution of the Great Falls Tectonic Zone (advisor David Foster).
- Hartig, Kyle (NucEng, junior u/grad): ACS Spring conference, Summer school in Nuc Fuel Cycle Chemistry .
- Hay, Tristan PhD student Oregon State University. K. Higley Advisor.
- Knapp, Nathan (RHP, senior, during summer 2009): 16th Separation Science and Technology Conference, Gatlinburg, Oct 2010.
- Kristin Dexter, Neutron Capture Cross Sections of Hg and Pt; BS in physics (expected June 2011); K Krane advisor.
- Martin, Zachary, 2010, "Apatite fission track analyses of the San Jacinto block, California: Constraining the exhumational history", B.A. Thesis, Occidental College, Advisor: Ann E Blythe.
- Matteson, Brent S.: PhD (Chemistry), defended in May 2010, 3 papers.
- Meagan, Todd W., an undergraduate BS geology major, gave the poster presentation listed above at the Northeastern-Southeastern Section Meeting, March 14-16, 2010, Baltimore, MD which was the result of two independent studies.
- Montario, M.R., (advisor: J.I. Garver, Union College) (PhD, SUNY Albany), Thermal evolution of the Adirondacks and surrounding rocks revealed through the analysis of SEM HDFT dating of zircon. (In progress, main supervisor).
- Perry. S.E., PhD, (Advisor: Paul Fitzgerald, Syracuse University), Tectonic evolution of the Central Alaska Range (PhD, In progress).

Precek, Martin (Chemistry, PhD candidate): 2 papers, 6 talks.

Corrie Black, MS in RHP/Radiochemistry.

Robinson, Joshua (MS) Advisor Mike Hartman.

- Stroud, Misty (Ph.D. candidate) Significance of 2.4-2.0 Ga Continental Crust in SW Laurentia (advisor David Foster).
- Ryder, Matthew. Nisin adsorption to PEO-PEO triblock copolymer layers and its resistance to elution by fibrinogen. M.S. Thesis. 2009. (advisor: Joe McGuire).
- Sol Torrel, Neutron Capture Cross-sections and Half-lives OF Cerium Isotopes BS in physics (June 2010); K Krane, advisor.

Wade, Emily MS in RHP/Radiochemistry.

- Wang, Xiuxi: "Tianshui-Huicheng Basin's response to the Cenozoic tectonic evolution of Northeast Tibetan Plateau and the relation with the uplift of west Qinling". PhD project of the Lanzhou University (China).
- Wilke, Franziska D.H. (2010). Quantifying crystalline exhumation in the Himalaya. PhD Thesis, University of Potsdam. http://opus.kobv.de/ubp/ volltexte/2010/4313/ Advisor: Prof. P. O'Brien.

Oregon State University Radiation Center, 100 Radiation Center, Corvallis, OR 96331



www.radiationcenter.oregonstate.edu

