GOTHIC Application to GL2008-01 Issues

Numerical Applications, Inc

Objectives

- Advance NRC understanding of GOTHIC
 - General Capabilities
 - Areas of Application
 - Technical Basis
 - Validation Basis
- Describe GOTHIC Application for GL2008-01 Issues
 - Modeling Methods
 - Related Validation

Agenda

- Monday Afternoon
 - GOTHIC Overview (open)
 - Selected GOTHIC Applications (open)
- Tuesday
 - GOTHIC Validation (open)
 - GOTHIC Technical Basis (equations and methods) (closed)
 - Modeling Methods for Gas Transport (closed)

GOTHIC: Overview

Numerical Applications, Inc

GOTHIC

- General Purpose Thermal-Hydraulic Analysis
- Special Features for Nuclear Plant Modeling
- Ongoing Development and Maintenance Support by the EPRI GOTHIC Enhancement Project (since 1993).

Ancestry

```
COBRA (~1965)
 ↑ COBRA-III (~1970)

↑ COBRA-IV (~1977)

      → VIPRE (~1979)
      → COBRA-WC (~1980)
      → COBRA-SF (~1984)
       COBRA-TF (~1979)

↑ COBRA-TRAC (~1981)

          → WCOBRA-TRAC (~1985)
          COBRA-NC (~1983)
           → FATHOMS (~1985)
             + GOTHIC (~1989)
```

GOTHIC Development

COBRA-NC

- · Graphical Interface, Junction Model
- · Components (pumps, hx, etc.)
- Separate Drop Energy Equation
- . Design Review, QA

• **GOTHIC 4.0**

- k-e Turbulence Model, Hydrogen Burn, Fan Coolers
- . Improve Interphase Heat and Mass Transfer
- · Control Variables, Radioactive Isotopes, Radiant Heat Transfer

• **GOTHIC 6.0**

- Porous Body Model, Rectangular Coordinates, 3D Connectors
- DLM for Heat and Mass Transfer, Flow Networks, 2nd Order Numerics

• **GOTHIC 7.0**

- Dissolved Gases, Solid Particles, Freezing, 2D Conduction
- Multiple Drop Fields, Parallel Processing
- · Improved Water Properties, Improved Interphase Drag

• **GOTHIC 8.0**

Multi-Zone Modeling

- Combine Lumped and Subdivided Volumes
- Superimposed Conductors
- Finite VolumeSolution
 - Semi-explicit

Multiphase/Multicomponent

- Vapor
 - Steam
 - N Gas Components
- Drops
 - N Fields
- Liquid
 - Films
 - Pools
 - Slugs
 - Stratified Flow
- Mist
- Ice

Lumped

Subdivided

Equation Set

Phase	Description	Mass Balance	Energy Balance	Mom. Balance
Vapor	Steam, gas components in bubbles or free vapor	Steam, each gas component	Yes	Yes
Liquid	Continuous liquid in pools, films, slugs, bubbly flow	Yes	Yes	Yes
Drops	Water drops	Yes	Yes	Yes
Mist	Very small water droplets	Yes	T=T _{sat}	U=U _v
Ice	Ice formation and melting on conductor surfaces	Yes	Yes	No

Comprehensive Drop Behavior Models

- Drop Breakup
 - Hydrodynamic Forces
 - Flashing
- General Entrainment Model
 - Relative Velocity
 - Film/Pool Thickness
 - Fluid Properties
- Depositions Models
 - Diffusion
 - Turbulent Impaction
 - Bends

Multiple Drop Fields

- Interacting drop fields to model wide range of drop sizes in single model
 - Fog- O(<10 μ m)
 - Pipe Break $O(100 \mu m)$
 - Spray– $O(1000 \mu m)$
- Separate Mass, Energy and Momentum Balances maintained for each drop field.
- Models for agglomeration, breakup, deposition and entrainment.

Interphase Heat, Mass and Momentum Transfer

- Drop/Vapor and Liquid Vapor Interfaces
- Evaporation
- Condensation
 - Diffusion Layer Model for Noncondensing Gas Effects
- Boiling/Flashing
- Drop Entrainment
- Drop Deposition
- Ice Formation and Melting

Air Bubble

Liquid Component Dissolved Gas

- Gas Absorption
- Dissolved Gas Transport
 - Molecular and turbulent diffusion
- Gas Release
 - Incubation phase
 - Bubble nucleation and early growth
 - Undetectable gas release
 - Duration depends on Reynolds number
 - ~1.5 seconds (longer for low velocities)
 - Activity phase
 - Rapid gas release
 - Up to 10% of gas released
 - 5-10 seconds
 - Bubble Growth phase
 - Slow gas release toward equilibrium

Atmosphere

$$P = P_{Air} + P_{Steam}$$

Pool.

$$c_{Air} = S(T)P_{Air}$$

Liquid Component Particle Transport

- Bed Load
 - Rolling and sliding of particles in the bed
 - Shear controlled
 - Saltation jumping particles
 - Momentum controlled
- Suspended Load
 - Diffusion (turbulent) controlled resuspension
 - Gravitational settling

<u>Particle Transport – Sample</u>

Problem

- 0-1000s
 - Horizontal injection at 2 ft/s with 2% particles
- 800-1800s
 - Vertical injection at increasing velocity with no particles

Mixing and Stratification

- Buoyant Flows
- Forced Convection
- Jet Induced Mixing
- Diffusion
 - Molecular
 - Turbulent k-e Model
 - Mass Diffusion Vapor
 - Thermal Diffusion Vapor/Liquid
 - Momentum Diffusion -Vapor/Liquid

Steam Plume Source

Hydrogen Combustion

- Recombiners
- Lumped Parameter
 - HECTR Model
 - User Specified Propagation
- Subdivided Volume
 - Calculated Propagation
 - Laminar
 - Turbulent
 - Eddy Diffusivity Model

Radioactive Nuclides

- User specified sources
- Transport in the vapor phase
- Radioactive decay and daughtering
- Filter component

PCS Activity with 1% Fuel Failure

Equipment Models

- Pumps/Fans
- Valves
- Vacuum Breakers
- Heat Exchangers
- Fan Coolers
- Igniters
- Recombiners
- Heaters/Coolers
- Spray Nozzles

- Controls
 - Trips
 - Forcing Function
 - Control Systems

Piping and Duct Networks

- Networks Consist of Links and Nodes
- Full Implicit Solution
- Two-phase Homogenous Equilibrium Flow
- Heat Addition/Extraction at Nodes
- Connect to
 - Lumped Volumes
 - Subvolumes
 - Boundary Conditions

Tank System Ventilation

Piping System Modeling

- Loop Performance
 - Pumps
 - Heat Exchangers
- Gas Transport
- Pressure Surge
- Water Hammer
- NPSH
- Thermal Mixing

Subdivided Volumes

- Volume and Area
 Porosity Factors to
 Model Obstructions
 and Irregular
 Boundaries
- Slip/No-Slip
 Boundaries
- Easy User Interface

3D Connectors

- Connect Subdivided
 Volumes to
 - Lumped Volumes
 - Subdivided Volumes
- Embedded Grids
- Full 3D Momentum
 Solution
- Diffusion Across Connection

3D Connectors at interface between coarse and fine grids.

Multiple Detail Levels

Variable Porosity and Local Control Variables

- User control on cell porosity parameters
 - Allows modeling transient geometry changes
- Local Control Variables use local conditions for evaluation
 - For example, use a single set of control variables to control many recombiners using conditions local to the recombiner.

Variable Porosity Tube Collapse

Tube

Wall Heat Transfer and Condensation

- Free Convection
- Forced Convection
- Radiation
 - Wall Steam
 - Wall Wall
- Condensation
 - Uchida
 - Tagami
 - Gido-Koestel
 - Mist/Diffusion
 Layer Model

Wall Condensation Model

- Sensible Heat Transfer
 - Free Convection
 - Forced Convection
 - Radiation to Steam
- Mass Transfer
 - Mass Transfer
 Coefficient from
 Heat/Mass Transfer
 Analogy
 - Mist Formation in the Boundary Layer

Building Leakage

- Long term leakage through cracks and small holes
 - Laminar
 - Turbulent
 - Combined
- Tuning parameters to match test data

Solution Methods

- Conductor Solution
 - Full implicit finite volume
- Fluids Solution
 - Semi-implicit finite volume
 - 1st and 2nd order upwind differencing options
 - Multigrid, Conjugate Gradient, Block Iterative and Direct Matrix solution options.
- Parallel Processing
 - Shared memory

Parallel Processing Speedup for Large Problem

Code Coupling

- GOTHIC can be coupled with other codes for more complete system solution
 - InterProcess Communication (IPC) examples

GOTHIC GOTHIC SW/CCW Loops

2 GOTHIC Containment

RELAP Primary System

- Dynamically Linked Libraries (DLL) examples
 - Recombiner Performance Model

• Data Transfer

User Interface

- Graphical model construction
- Structured tables for input parameters
- Consistency and range testing
- Link to Excel
- Model comparison
- Graphical and tabular output

Quality Assurance

- GOTHIC is maintained under NAI's QA Program.
- Conformance to 10CFR50 Appendix B requirements.
- Meets intent of ASME NQA-1
- Audited by NUPIC
- Built in QA features
 - Event Logging

• File Comparison Utility

Selected GOTHIC Applications

Numerical Applications, Inc.

Applications by NAI and Others

- DBA Licensing Analysis
 - Containment Peak Pressure and Temperature
 - Post LOCA cool down
 - Minimum Pressure for ECCS
 - Subcompartment Analysis
- HELB outside containment
- Loss of ventilation/cooling in secondary buildings
 - Station blackout
- Other applications

Containment Peak Pressure and Temperature

- LOCA and MSLB
 - Mass and Energy from Fuel Vendor
- Replace existing Licensing Analysis and Power Uprate
 - Large Dry Containment PWR
 - Mark I BWR
 - Mark 2 BWR
 - Mark 3 BWR
 - Ice Condenser PWR
- New Plant Licensing
 - AP1000 Westinghouse (WGOTHIC)
 - US-APWR Mitsubishi
 - ABWR Toshiba-Westinghouse
 - EPR Areva

Containment Pressure/Temperature Analysis

Large Dry Containment - PWR

HELB Outside Containment

- Mass and Energy Release
 - Bounding Analysis
- Local compartment pressure and temperature
- Building performance
 - Blowout panels
 - Loss of ventilation and/or cooling
- Flooding Analysis
 - Door failure
 - Drain system

Turbine Building HELB

Room Heat Up in Secondary Buildings

- LOCA Heat Loads
 - Loss of Off Site Power
- Loss of cooling and/or ventilation
 - Normal operation
 - Accident heat loads
 - Mitigating actions
 - Door positioning
 - Temporary ventilation equipment
 - Whole building and local circulation effects

Typical Auxiliary Building Model

Annulus Pressurization

 Loads on RPV due to break inside annulus

2D Annulus Pressure Response

Fast H₂ Burn in a Recycle Holdup Tank

- H₂ accumulates in annular space between tank wall and diaphragm
- H₂ concentrations > 30% observed
- Consequences of H2 burn questioned by NRC – Possible tank explosion
- No known ignition source

Fast H₂ Burn in a Recycle Holdup Tank

- H2 accumulates in annular space between tank wall and diaphragm
- H2 concentrations > 30% observed
- Consequences of H2 burn questioned

Infinite flame propagation rate

assumed in azimuthal direction (2D model)

Predicted Pressures on Tank Lid

Gas Accumulation in ECCS Piping

- Gas voids have been found in ECCS piping in many plants with potential consequences:
 - Pump damage or failure due to gas ingestion
 - Pressure pulse on pump start up or valve opening
 - Water hammer when gas is expelled through an orifice
- Generic Letter 2008-01: Managing Gas Accumulation In Emergency Core Cooling, Decay Heat Removal, And Containment Spray Systems
 - Licensees must ensure that gas accumulation is maintained less than the amount that challenges operability.
 - Licensees must take appropriate action when conditions adverse to quality are identified.

Problem

- Gas void discovered in multiple locations in WCGS ECCS piping in January 2008
 - Residual Heat Removal Pump suction and discharge (14" lines)
 - Safety Injection Pump suction and discharge (6" lines)
 - Charging Pump suction and discharge (6" lines)
 - Voids were predominately air with some hydrogen
 - Various void size in various piping sizes.

Typical System Piping Model

Model Detail

WCGS Simulation Results

- Minimum RCS Pressure
 - Maximum Pump Flow

RHR Pump Intake

SI Pump Intake

WCGS Simulation Results

 Pressure Pulses Downstream of Pumps and Valves

0.25 ft³ Air Bubble in 10" Line

1.0 ft³ Air Bubble in 10" Line

Harris SI H₂ Bubble Migration

UHS / Long Term Cooling

UHS / Long Term Cooling

- Heat Exchanger Performance
 - Configurations (Tube and Shell, Counter-flow, Cross Flow, Parallel Flow, Fins)
 - Fouling
 - Convection Correlations
 - Tuning Parameters
- Air Coolers
 - Versatile Geometry Input
 - Condensation

UHS / Long Term Cooling

Spray Pond

- Spray cooling
- Spray evaporation
- Spray drift loss
- Spray bypass (out of service spray lines)
- Pool evaporation
- Pool solar heating
- Thermal radiation to sky
- Variable atmospheric wind speed, temperature and humidity effects

Water Hammer in Hose Reel 60° **Fire Protection Systems Example Installation** 2" Wet Pipe 30° Water Tank Dry Pipe Pressure Sensor Sprays Main () Jockey Pump Pump

12" Main

2,000+ ft

6" Deluge Valve

Pressure Transient in Main Piping

Deluge Valve Opens at Time = 0s

Water Hammer in Fire Protection Systems

Water Hammer BWR Turbine Exhaust Isolation

Turbine Exhaust Water Hammer

Turbine Exhaust Water Hammer

Charcoal Filter Thermal Analysis

End View

Top View

GOTHIC Filter Model

Filter Noding

Heat Generation

- Iodine Decay
- Conservative Estimate for Oxidation

Steady State Behavior

Shutdown Heatup Analysis for 4 Loop PWR

Events

- Loss of Residual Heat Removal (RHR) systems
- Open vessel drain

Times of Interest

- Time to RCS > 300F
- Time to Core Boiling
- Time to Core Uncovery
- Time RHR Pressure Relief Valve Lift
- Time to Pressurizer Relief Valve Lift
- Time to Steam Generator Dryout (secondary side)
- Time to Steam Generator Tube Drain
- Time to Core Outlet Temperature > 1200F

GOTHIC Model

4 Loop PWR

GOTHIC Model

RPV and and 1 SG

Typical Results – Loss of RHR

Core Vapor Volume Fraction

Sump Screen Hydraulic Loads During RCS Venting

To RCS

- The drop line is initially full of cold water.
- The RCS contains saturated water at 90 psia.
- Suction from the sump simultaneous with RCS venting.
- Consider
 - Initial water jet loads during drop line water purge.
 - Two phase jet loads after drop line water purge.
 - Possibility of voiding at the suction inlet.

Drop line

Sump

Screen

Sump Screen Hydraulic Loads

Cage Door

Containment Boundary

Minimum = 0.01 (rel) Maximum = 0.1 (rel) Time = 25.0079 seconds / Yolume : Channels : Levels/ /1:46-111:1-6/

Spray Induced Mixing for Dose Analysis

GOTHIC Containment Mixing Model

Effective Mixing Rate for Lumped Model

- Initialized lower containment volume with tracer gas.
- Adjusted lumped model mixing fans to approximate CFD model mixing.

Control Room Habitability CO₂ In Leakage

- Objective: Determine local CO₂ and odorant concentrations in the Control Room following a CO₂ release in the Equipment Room below.
- Include Control Room ventilation effects
- Conservative treatment of the CO₂ gas generation from ice. Benchmark to plant data.

Control Room, Environs and Ventilation

Leak

CO2 and Odorant Concentrations

Activity in Primary Coolant System

- Objective: Determine the activity in the PCS assuming 1% fuel failure.
- Include nuclide source from fuel, decay and daughtering.
- Include system filters.
- ORIGEN used to provide End of Cycle nuclide inventory.

PCS Activity

PANDA Tests (PSI)

PANDA Tests (PSI)

Helium Distribution

Other Applications by NAI and Others

- Hydrogen distribution in containment
- Valve EQ for exposure to high water temperature
- Freezing potential in outdoor tank
- Loss of fuel pool cooling
- Gamma heating in fuel pool concrete
- Storage cask refill analysis
- Flooding/Drain analysis
- Drawdown analysis
- Loss of building insulation
- Long term mass and energy release
- Suppression pool swell
- Tornado
- Fan cooler boiling

- NUREG/CP-0119, "Proceedings of the Nineteenth Water Reactor Safety Information Meeting, Volume 2: Severe Accident Research, Severe Accident Policy Implementation, Accident Management, Bethesda, MD, 10/28-30/91 (ML042230460).
 - Comparisons between HDR H2 Distribution Experiments E11.2 and E11.4 and several computer codes with Section 5 focusing on GOTHIC
- Revision 0 to SMNH-94051, "Turbine Building Leak Detection," 1/30/95 (ML033000499).
 - Estimates the temperature rise in the Main Steam Line Area of the Turbine Building at Hatch with a design basis steam leak

- Kewaunee, Flooding Significance Risk Determination Process Risk Assessment Report, 10/31/05 (ML053180483)
 - Dynamic flood level analysis using GOTHIC
- Three Mile Island Nuclear Station, Unit 1 Response to Request for Additional Information Regarding Generic Letter 2004-002, 11/9/09 (ML093220202).
 - GOTHIC used to assess transient NPSH
- Framatome ANP- Non-Proprietary Safety Evaluation Topical Report BAW-10252 (P), Rev. 0, 8/31/05
 - Analysis of Containment Response to Postulated Pipe Ruptures Using GOTHIC

- Acceptance Review Results for Topical Report WCAP-17065-P Rev. 0, Westinghouse ABWR Subcompartment Analysis Methodology Using GOTHIC Related to South Texas Project Units 3 & 4 Combined License, 6/2/10 (ML101530006)
- IR 05000400/2002-006; Shearon Harris Nuclear Power Plant; special inspection to inspect and assess the circumstances associated with gas accumulation in the safety injection system, 5/10/02 (ML021340182).
 - Page 9, Section 06 regarding past operability reviews briefly discusses the NAI analysis to assess gas transport to Charging - Safety Injection pumps
- LER 04-001-01 for Catawba, Unit 1, Gas Accumulation in Centrifugal Charging Pump Suction Piping, 6/15/04 (ML041750112)
 - Independent analytical flow model for gas transport completed with GOTHIC

- TMI Event Notification Report Retraction for Event #42475, 6/5/06
 - States the NAI analysis of suction side gas transport indicated past operability of the LPI and HPI pumps which supported withdrawal of the event notification
- Flame Acceleration and Deflagration-to-Detonation
 Transition in Nuclear Safety, 8/31/00 (ML031340619)
 - Discusses GOTHIC briefly
- Non-Proprietary SER for Topical Report WCAP-16608-P, Westinghouse Containment Analysis Methodology, 1/27/09 (ML090230441)

- South Texas Project, Units 1 and 2 Closeout of Generic Letter 96-06, "Assurance of Equipment Operability and Containment Integrity During Design-Basis Accident Conditions" (TAC Nos. M96868 and M96869)
 - GOTHIC used to evaluate the creation of two-phase flow in the CCW system
- Approved Topical Report DOM-NAF-3 NP-A, "GOTHIC Methodology for Analyzing the Response to Postulated Pipe Ruptures Inside Containment" (ML063190467)
 - GOTHIC used for containment response, post-reflood mass & energy release and primary and secondary modeling

- Containment Air Cooler Heat Transfer During Loss of Coolant Accident with Loss of Offsite Power (ML003687036)
 - Discusses GOTHIC heat transfer and creation of steam regions

GOTHIC Qualification Validation and Verification Selected Examples

GOTHIC Qualification

- Separate Effects Tests
 - Comparison with analytic solutions
 - Comparison with experimental data
 - Component functionality
- Combined Effects Tests
 - Comparison with experimental data
- Most of the tests are document in the GOTHIC "Qualification Report", NAI 8907-09

GOTHIC Qualification Matrix

- Cross References Tests and Modeled Phenomena
- Included in the Qualification Report

Qualification Matrix (portion)

		4	8	8	2	8	2	3	7	5	1	1	0	0	9	3	5	1	3	1	4	5	1	17	10	7	10	4	1	1	12	1
Test		Drop Entrainment	Drop Deposition	Drop Settling	Drop Breakup	Drop Evaporation	Drop Condensation	Drop Aglomeration	MistGeneration	Mist Depletion	Pressure Wave Propagation	Surface Wave Propagation	Impact Loads	Drag Loads	Pressure Drop / Single Phase	Pressure Drop / Bubbly Flow	Pressure Drop / Film-Drop Flow	Pressure Drop / Stratified Flow	Pressure Drop / Slug Flow	Stratified Flow Transition to Slug	Bouyancy Induced Stratification	Flashing	Boiling Heat Transfer	Natural Convection	Forced Convection	Mixed Convection	Thermal Conduction in Solids	Thermal Diffusion in Vapor	Thermal Diffusion in Liqud	Thermal Radiation	Condensation on Walls	Pool boiling
1	Drop Entrainment	х	х						_			•,								,		_		_			·	•	•	·	Ū	
2	Drop Settling Velocity			х																												
3	Jet and Drop Breakup				х																	х										
4	Drop Heat and Mass Transfer					х																										
5	GSP 27 - Heat Transfer Options																							х							х	
6	GSP 14 - CSNI Numerical Benchmark																										х					
7	Horizontal Cylinder in A Rectangular Cavity																							х								

Basic Phenomena and Thermodynamics

- Gas compression and work
- Thermal and mass diffusion
- Buoyancy Driven Flows
- Multiphase phenomena
 - Interphase heat and mass transfer
 - Drop/Vapor
 - Liquid/Vapor
 - Interphase drag
 - Drop/Vapor
 - Liquid/Vapor
- Gas absorption and release

Thermal And Mass Diffusion - Examples

Liquid Component Diffusion

Interphase Heat and Mass Transfer Free Convection for Pool

- PNL Grout Mold Evaporation Tests
 - Varied ventilation rate

Wall Effects

- Single phase and two phase friction pressure drop
- Heat transfer and condensation
- Drop deposition and Entrainment

Single Friction Pressure Loss

- Okoy Data for Geothermal Well
- Differences may be due to neglected friction heating

Two-phase Friction Pressure Loss

- GE Test data
 - Horizontal
 - Vertical Up
 - Vertical Down

Diffusion Layer Model (DLM) Wall Heat Transfer with Condensation

Test range

- Pressure, 1 4.5 atm
- Steam Temperature, 47 139 C
- Steam concentration, 0.1 − 1.0
- Wall Temperature, 28 109 C
- Wall Height, 0.3 18.3 m
- Vapor Velocity, 0 7 m/s
- Film roughening effect
- Mist formation effect

Data Sets

- Uchida
- U of W Vessel
- U of W Plate Plate
- MIT
- Nusselt Theory
- CVTR
- Park Film Test

DLM for Heat and Mass Transfer

DLM for Heat and Mass Transfer

Buoyancy Driven Flow

- Mixing Analysis
- Room/Building Heatup
- Test
 - Analytic
 - Separate effects experiment
 - Large scale single and multicompartment tests
 - HDR
 - Battelle Frankfurt Model Containment
 - MISTRA
 - TOSQAN
 - THal
 - Others

Buoyancy Driven Flow

- Analytic Test Checks
 - Gas properties
 - Local in-cell pressure variation
 - Flow path pressure drop for given loss factor
 - Heater/Cooler performance

Buoyancy Driven Flow Thermally Driven Cavity

Natural Convection Heat Transfer

Raleigh No	Nu (Exp.)	Nu (GOTHIC)
1,300	2.35	2.52
2,400	2.79	3.06
3,400	3.06	3.38

Scaling Velocity (m/s) = 0.025

Valve Closure on Bubbly Flow

Experiment by Akagawa and Fujii Pipe - 19.4m x 20.4mm ID, $U_0=2m/s$, 2.6% void 20 ms valve closure time

Pressure rise in single phase water would be ~2.8 MPa

Pipe Blowdown - Edwards

Pipe Blowdown – Short Term Response

Pipe Blowdown – Long Term Response

Combined Effects Tests

- CVTR
 - Steam Blowdown
 - Sprays
- HDR
 - Steam/Water Blowdown
 - Hydrogen Mixing
- BFMC
 - Steam Blowdown
 - Steam/Water Blowdown
 - Hydrogen Mixing
- NUPEC
 - Steam/Water Blowdown
 - Sprays
 - Hydrogen Mixing
- Marviken
 - Steam/Water Blowdown
 - Pressure Suppression Pool
- TOSQAN/MISTRA/THall
 - Natural Convection
 - Jets and Plumes
 - Wall Condensation
 - Stratification

CVTR – Pressure Transient

Lumped

HDR

HDR

- Support for
 - Containment P/T
 - Subcompartment Delta-P
 - EQ

V21.1 Break Room Pressure

T31.1 Differential Pressure

HDR

- Support for
 - EQ

T31.1 Break Room
Temperature

T31.1 Lower Compartment
Temperature

MISTRA

- Axisymmetric
- Steam/Helium Injection

MISTRA

Pressure Transient

	Condensate Distribution (g/s)			
	Steady State 1		Steady State 2	
Location	GOTHIC	Measured	GOTHIC	Measured
Bottom Condenser	36.6	35.3-39.1	35.3	31.6-32.6
Middle Condenser	36.2	30.1-34.2	34.2	20.5-26.2
Top Condenser	39.4	40.4-43.3	38.5	48.1-53.0
Spurious Condensation	17.8	16.7-18.0	22.0	17.0-19.6

MISTRA Temperatures

Multiphase Flow Tests

- Suppression Pool Swell
- Subcooled and Saturated Boiling
- PWR Loop Flows
- Piping Components and Systems
 - Horizontal and Vertical Pipe Fill
 - Liquid Holdup in Vertical Flows
 - Millstone 3 System Tests
 - Purdue Gas Transport Tests

Suppression Pool Swell – Marviken Test 18

PWR FLECHT SEASET

- 4 Loop PWR
- Forced Circulation
- Single Phase Natural Circulation
- Two Phase Natural Circulation
- Reflux Condensation
- NUREG/CR-3654 "PWR FLECHT SEASET System Effects Natural Circulation and Reflux Condensation"

PWR FLECHT SEASET

Data Comparisons

- Loop Flows
- Steam Generator Performance

Single Phase Natural Circulation – Steady State

ľ

2-Phase Natural Circulation

System Mass Inventory

Actual drawdown procedure is not specified.

2-Phase Natural Circulation System Pressure

2-Phase Natural Circulation Intact Loop Flow

Transition to Reflux Cooling

System Mass Inventory

Transition to Reflux Cooling System Pressure

Transition to Reflux Cooling Intact Loop SG Inlet/Outlet Temp.

Christensen Heated Channel

Gas Transport Horizontal Pipe Fill Experiments by Wallis, Crowley and Hagi

Horizontal Pipe Fill

- Experiments by Wallis, Crowley and Hagi
 - Measured water depth at end of the pipe at various Froude numbers, pipe diameters and gap width.
 - Behavior is controlled by Froude number

$$Fr = \frac{U}{\sqrt{gD}}$$

Horizontal Pipe Fill (Wallis)

4" Pipe with 3/4" Gap

Horizontal Flow Discharging into a Gap

Gas Entrainment

- Experiments by Krishnakumar and Fields
 - Measured flow rate at which vertical pipe fills with water.

- Experiments by Kelly
 - Measured flow rate required to maintain a siphon

Interface Drag

Filling a Vertical Pipe (Krishnakumar and Kelly)

Interface Drag - Validation

Liquid Hold up in Vertical 2 Phase Flows (Oshinowo & Charles)

- Simultaneously close all valves
- Measure liquid levels
- Covered
 - Bubble Flow
 - Slug Churn Flow
 - Film Flow

Interface Drag – Liquid Holdup

- High Liquid Flow (3.1 ft/s)
- Air velocity 3 to 30 ft/s

Interface Drag - Validation

- Liquid Holdup Low Liquid Flow (0.15 ft/s)
 - Air velocity 6 to 63 ft/s

Gas Transport in Pipes

Throttle Valves

Millstone 3 Tests

45° Downward

2" Pipe

6" x 2" Tee (Vertically

Downward)

20090107-IREH

6" x 4"

Millstone 3 Tests GOTHIC Model

Air

Millstone 3 Tests Reducer Modeling

Millstone 3 Tests Case 1

- Initial void 8%
- Steady Pump Flows
 - RHR 315 gpm
 - SIH 23 gpm
 - CHRG 22 gpm
- Pump start speed transient adjusted to match measured pump performance

Millstone 3 Tests Case 1

Millstone 3 Tests Case 1 – Integrated Gas Volume

Millstone 3 Tests

	Initial Void (%)	Pump Flows (gpm)			Gas Transport (in ³) measured/calculated		
Case		RHR	SIH	CHRG	RHR	SIH	CHRG
1	8	315	23	22	na/620	0/0	8.6/16.8
9	8	170	24	21	na/460	0/0	30.1/40.3
10	8	97	24	21	na/420	0/0	98.9/83.1
11	5	0	27	22	0/0	0/0	0/5.3
12	8	0	27	22	0/0	0/0.2	30.1/35.7
21	8	0	25	55	0/0	0/0	393/320- 470*

^{*}Pump run time unknown

Purdue Gas Transport Tests

- Used to support plant specific evaluations for plants with access to data.
- Gas Transport through vertical elbows, horizontal and vertical pipe runs.
- 6" and 8" pipe
- Varied Froude number and initial void size.
- Validation Results (proprietary) completed in June 2009.

Purdue Gas Transport Tests

- Tests for 6" and 8" systems were simulated.
- Noted Data Inconsistencies
 - The pressure and flow test data is not consistent with the specified start time for opening the initiating valve.
 - Flow measurements appear inconsistent with the pressure response
 - For simulations, the flow start time was adjusted to be consistent with the time that the pressure begins to fall.

Purdue Gas Transport Tests

- Cases considered
 - D = 6", 8"
 - Void = 10%, Fr = 0.8
 - Void = 20%, Fr = 1.65
- Predicted void inlet is generally higher than measured.
 - For one 8" case the predicted pump inlet void is substantially lower than measured. The measured value is not supported by other measurements or the test specification.
- Data for 4" and 12" cases will be provided by a PWROG utility to support plant analysis.

Other Tests

- Passive Spray Dousing System for CANDU Vacuum Building
- AECL Whiteshell Large Scale Gas Mixing Facility Tests
- AECL Large Scale Containment Facility Test
 - Gas Mixing and Condensation
- Intermittent Buoyancy Induced Flow (IBIF) cooling for CANDU fuel bundles in a stagnant channel
 - Metastable boiling and venting in a heated horizontal bundle
- UPTF in progress

Comments on Validation

- Modeling to give best estimate analysis
 - Neither GOTHIC nor input is biased to give conservative results
- Input is generally consistent with modeling guidelines
- Deviations from measurements
 - GOTHIC shortcomings and uncertainty in models and correlations
 - Difficult to quantify especially for multiphase flow
 - Using single code to model a very wide range of conditions
 - Experimental Uncertainty
 - Measurement uncertainty is usually known
 - Specification uncertainty
 - Repeatability of the experiment from the information available to modelers
 - Important factors may be overlooked
 - Probably larger than measurement uncertainty in many cases

Summary

- Validation covers a wide range of single and two-phase flow situations
- Wide range applicability hinges on capability to simulate fundamental phenomena
 - Interphase heat and mass transfer
 - Interphase drag
 - Momentum dominated flow
 - Gravity dominated flow
- Code results are generally in good agreement with data
- Controlled code versions under NAI QA Program
 - Validation repeated for each code version

