.

CC-AA-309-1001-F2 Revision 0 Page 1 of 1

1

Design	Analysis	Minor	Revision	Cover	Sheet
-					

Analysis No.: ¹		
	6S0-1882	Revision: ² 1A
l'itle: ³	Qualification of Safety-Related Bur	ried Commodities for Tornado Missile and Seismic Evaluation
DCP No(s)./ Revision: ⁴	80101381 1	AD No(s) / S02 Revision: ⁵ 0
Station(s); 7	Salem	
Unit No.: ⁸	Units 1 & 2	
Safety/QA Class:	9 Safety Related / Q-List	ted
System Code(s):	10 N/A	
s this Design An	alysis Safeguards Information? ¹¹	Yes 🗋 No 🔯 If yes, see SY-AA-101-106
Does this Design	Analysis contain Unverified Assun	mptions? ¹² Yes 🗌 No 🔯 If yes, ATI/AR#:
This Design Anal	ysis SUPERCEDES: ¹³ N/A	in its entirety.
Pages Added: 90 Di sposition of C Replacing the ex is denser than th	DA Changes: ¹⁵ (cavated soil with CLSM would inc	crease the pipe stress due to soil overburden since the CLSM
above ground, th used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: ¹⁹	Ne soil. However, since DCP 8010 the maximum buried depth of the U ulation). This decreases the pipe so of this calculation that the pipe stree of the 5D bends with mitered pipe ification factor is not considered but Kyle Spence (Sargent & Lundy)	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Jnit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on My Multiple Sign Name Date
above ground, th used in this calco The conclusion of the replacement the stress intens page 93. Preparer: ¹⁰	the soil. However, since DCP 8010 the maximum buried depth of the U ulation). This decreases the pipe so of this calculation that the pipe stree of the 5D bends with mitered pipe ification factor is not considered but Kyle Spence (Sargent & Lundy) Print Name ew: ¹⁷ Detailed Review X	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Jnit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on Multi Market Calculations I Alternate Calculations I Testing I Multi Market Sametary
above ground, th used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: ¹⁶ Method of Revie Reviewer: ¹⁹	e soil. However, since DCP 8010 te maximum buried depth of the U ulation). This decreases the pipe s of this calculation that the pipe stree of the 5D bends with mitered pipe ification factor is not considered but Kyle Spence (Sargent & Lundy) Print Name ew: 17 Detailed Review X	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Jnit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on $\frac{4/25/10}{Date}$ Alternate Calculations Testing Lundy) $\frac{4/25/10}{per}$
above ground, th used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: ¹⁹ Method of Revie Reviewer: ¹⁹ Review Notes: ¹⁹	e soil. However, since DCP 8010 the maximum buried depth of the U ulation). This decreases the pipe s of this calculation that the pipe stree of the 5D bends with mitered pipe ification factor is not considered but Kyle Spence (Sargent & Lundy) Print Name ew: ¹⁷ Detailed Review A Justin Kriczky (Sargent & L Print Name Independent review A	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Unit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on Multiple 4/25/10 Date Alternate Calculations I Testing I Lundy) Justin Kriczky Peer review I
above ground, the used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: 19 Method of Revie Reviewer: 19 Review Notes: 19 (For External Analyses Only External Approv	were: 20 Print Name wer: 20 Sandy Jannetty (Sargent & Lundy)	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Unit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on
above ground, th used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: ¹⁶ Method of Revie Reviewer: ¹⁹ Review Notes: ¹⁹ (For External Analyses Only External Approv	v) Sandy Jannetty (Sargent & Lundy) v) Sandy Jannetty (Sargent & Lundy) v) Sandy Jannetty (Sargent & Lundy)	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Unit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on Myh 4/25/10 Date Alternate Calculations I Testing I Lundy) yer + telecon Yer + telecon 4/25/10 Date Peer review I
above ground, th used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: ¹⁶ Method of Revie Reviewer: ¹⁹ Review Notes: ¹⁹ For External Analyses Only External Approve	Note: Print Name	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Unit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on
above ground, th used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: ¹⁰ Method of Revie Reviewer: ¹⁹ Review Notes: ¹⁹ (For External Analyses Only External Approven	viere Sandy Jannetty (Sargent & Lundy)	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Unit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on
above ground, the used in this calcu The conclusion of the replacement the stress intens page 93. Preparer: 19 Method of Revie Reviewer: 19 Review Notes: 19 (For External Analyses Only External Approve	weever, since DCP 8010 ine maximum buried depth of the U ulation). This decreases the pipe store of this calculation that the pipe stree of the 5D bends with mitered pipe ification factor is not considered be Kyle Spence (Sargent & Lundy) Print Name ew: " Detailed Review I Justin Kriczky (Sargent & L Print Name Independent review I ver: " Sandy Jannetty (Sargent & L Print Name Independent review I Print Name Print Name Independent review I Print Name Print Name	D1382 reroutes the AF piping in the Fuel Transfer Tube Area Unit 1 AF piping is reduced to 5'-2 1/4" (6' is conservatively stress on the Unit 1 buried AF piping due to soil overburden. ess due to soil overburden is negligible remains valid. Also, e joints and cut elbows does not impact this calculation since because the pipe is constrained by the CLSM, as stated on

CC-AA-309

s, ··

\$

Revision 8 Page 16 of 16 Level 3 – Information Use

ATTACHMENT 2

Owners Acceptance Review Checklist for External Design Analysis

SAP Standard Text Key "NDAEXT" Page 1 of 1

DESIG	N ANALYSIS NO. <u>6S0-1882</u> REV: <u>1A</u>			
		Yes	No	N/A
1.	Do assumptions have sufficient rationale?	đ		
2.	Are assumptions compatible with the way the plant is operated and with the licensing basis?	Ø		
3.	Do the design inputs have sufficient rationale?	d,		
4.	Are design inputs correct and reasonable?	Ø		
5.	Are design inputs compatible with the way the plant is operated and with the licensing basis?	g		
6.	Are Engineering Judgments clearly documented and justified?			Y
7.	Are Engineering Judgments compatible with the way the plant is operated and with the licensing basis?			
8.	Do the results and conclusions satisfy the purpose and objective of the Design Analysis?	Y		
9.	Are the results and conclusions compatible with the way the plant is operated and with the licensing basis?	Ø		
10.	Does the Design Analysis include the applicable design basis documentation?	Ø		
11.	Have any limitations on the use of the results been identified and transmitted to the appropriate organizations?			Y
12.	Are there any unverified assumptions?			Ľ
13.	Do all unverified assumptions have a tracking and closure mechanism in place?			Ľ
14.	Have all affected design analyses been documented on the Affected Documents List (ADL) for the associated Configuration Change?			
15.	Do the sources of inputs and analysis methodology used meet current technical requirements and regulatory commitments? (If the input sources or analysis methodology are based on an out-of-date methodology or code, additional reconciliation may be required if the site has since committed to a more recent code)	V		
16.	Have vendor supporting technical documents and references (including GE DRFs) been reviewed when necessary?			Y
17.	Has the Vendor supplied the native electronic file(s)?			P
PSEG	REVIEWER: GARY Last - Etath	DATE:	4-2	<u>5-1</u> 0
	Print / Sign	801013 S02R0 Page 2	381R1) 2	

FORM NC.DE-AP.ZZ-0002-2

CALCULATION CONTINUATION/REVISION HISTORY SHEET SHEET : 88 O PSEG CALCULATION CONTINUATION/ CONT'D ON SHEET: 89 REVISION HISTORY SHEET CALC. NO.: 650-1882 REFERENCE: 5.51rgh 8/28/96 ORIGINATOR, DATE REV: 1 REVIEWER/VERIFIER, DATE AMA 8/29/96 6. BURIED PORTION OF 4"Aux. FEEDWATER PIPING (#142#14) and DEF# DES-90-00168 Seore Per DEF # DES-90-00084V, the stress calculation did not consider the soil buried effect. This calculation is made to address the buried effect. 80101381R1 S02R0 Page 3 Kefermees used 1, Salem Nuclear Generating Station Mo 1 Auxiliary Feed Water Plan & Section - ELEN 78'- " E100'-0" Drawing No 207483 A8923-1 2. Salem Nuclear Generating Station No 2 Auxiliary Feedwater Plane Section E1.78'-0" & 100-0" Donwing No 218233 A 8902 - 11 3. Auxiliang Feedwater Piping Ful Handling Building to Containment Wall (Piping Underground) From Anchor 14-AFWA -21@ EL 90'0" to Anchor 14 AFWA-11@ EL 96'D' Drawing No. 267274 F sheets 1 to sheet 6. Note: Calculation 267274F was Voided and Superseded by Calculation 6S0-1882 Rev.

Nuclear Common

INSTALLED CHANGE DOCUMENT PRINTED 20100506 ۰ ۲۰۰ FORM NC.DE-AP.ZZ-0002-2 CALCULATION CONTINUATION/REVISION HISTORY SHEET SHEET : 89 PSEG CALCULATION CONTINUATION/ CONT'D ON SHEET: 90 REVISION HISTORY SHEET REFERENCE: CALC. NO.: 650-1882 ORIGINATOR, DATE REV: 5.5ind 8/28/91 REVIEWER/VERIFIER, DATE AMA 8/2/96 4. Drawing No 226129 showing /1A Support details and drawing. 5. DEF # DES-90-00084 \$ # DES-90-00168. PIPE, SUPPORT & SOIL PARAMETERS Pipes 4" seh 80 A-106 Grade B OD = 4.5" wall thickness = 0.337" Moment of Inertia I = 9.61 m 4 ~ Section Modulus = 4.27 m 3 -Total wt. per Unit length = 1.664 10/inch ~ Internal Pressure = 1950 psi v Temp Cold = 70° F ~ Temp Hot = 140°F Ecold = 27.9 × 10 6 psi } Use 27.9 × 10 psi E hot = 27.7 9 × 10 6 psi } ter both Sa = 22,500 /05 80101381R1 S02R0 Page 4

Nuclear Common

FORM NC.DE-AP.ZZ-0002-2

3

/1A

CALCULATION CONTINUATION/REVISION HISTORY SHEET SHEET : 90 PSEG CALCULATION CONTINUATION/ CONT'D ON SHEET: 90A REVISION HISTORY SHEET CALC. NO. 150 -1882 REFERENCE : ORIGINATOR, DATE REV: S.Singh 8/28/96 REVIEWER/VERIFIER, DATE 8/29 191 HA Unit 1 Maximum buried depth = 99'-6" - 94'-3 3/4" = 5'-2 1/4", Use 6' for conservatism Flowable Backfill, Controllable Low-Strength Material (CLSM) Density = 120-135 lb/ft3 (see Material Master 1026607), Use 135 lb/ft3 for conservatism Unit 2 /1A Maximum buried depth= 99.5-83=16.5 feet (at the Fuel Handling wall anchor , vertical pipe). "Buried depth, for horizontal postion of pipe 2 5.5', Cuse conservative 6' Compacted back fill Sol unit wt. = 110 ett assumed. PIPE LOCATION These pipe lines run between the Outer Penetration will anchor @ 96'-0" and the Inner Penetratin/ Fuel Handling building wall arichor along outside and very close to the conterinment walk (at a distance of about 1 feet to 2 feet from the wall), The horizontal run of the pipes are vestically 80101381R1 supported at about 6' intervals by S02R0 steel forming anchored to the containment Page 5 Wall

Note: The Unit 1 #12 & #14 Aux Feed headers have been rerouted above ground in the Fuel Transfer Tube Area. See DCP 80101382R1 SUP05 & SUP06.

)		CALCUL	ATION CONTINUATION SHEET	SHEET:	90A
CALC NO .:	6S0-1882	REV:	<u>1A</u>	CONTINUED ON SHEET:	91
Unit	1 Pipe Stresses du	e to Soil	Overburden		

Maximum overburden pressure, $p = k_0 \times w \times h$ $k_0 = \text{coefficient of pressure at rest (lower than k_p, passive pressure)} w = backfill density = 135 lb/ft^3$

h = buried depth = 6 ft

Conservatively assume $k_o = k_p = \frac{1 + \sin \phi}{1 - \sin \phi}$

Assume $\phi = 40^{\circ}$ for 90-95% relative density compaction

 $k_p = \frac{1 + \sin 40^\circ}{1 - \sin 40^\circ} = 4.6$ $p = 4.6 \times 135 \text{ lb/ft}^3 \times 6 \text{ ft} = 3726 \text{ psf} = 25.9 \text{ psi}$

Hoop stress = $\frac{\text{pd}}{2\text{t}} = \frac{25.9 \,\text{psi} \times 4.5 \,\text{in}}{2 \times .337 \,\text{in}} = 173 \,\text{psi}$

The pipe design internal pressure is 1950 psi. The soil overburden pressure is negligible compared to this pressure.

80101381R1 S02R0 Page 6

FORM NC.DE-AP.ZZ-0002-2

CALCULATION CONTINUATION/REVISION HISTORY SHEET

		PSEG	CALCULATION CONT REVISION HISTO			NINUA RY SI	TION/ HEET	SHEET : 91 CONT'D ON SHEET: 92		
[CALC. NO.: 650-1880					REFE	ERENCE :			
ľ	ORIGI	NATOR, DATE	REV:	s. Sirgh	8/18/96	1.				
	REVIE	WER/VERIFIER,	DATE	AMA	8/28/9	i6				
ļ		Jnit 2 Pipe	stas	ses due	<u>t</u> 5	nT	overlan	den		
		Maxin	2)4M	overbur	den f	arssi	1 xe /D =	ko wi	e n	
				$k_0 = c_0$	eff. 8	þn	ssun at	rest a	lower than kys	ر
				w = 503 • - 503	l weig	<i>GHF</i>	density	=110 16/0		, , ,
		Con	1serva	tivel a	scume.	k.	$= \frac{1}{1}$	feer: (a) It Sind	the hand smi	6.5
1			assi	me d	b = 40	° F.	~ 90-	1-5int 95% 40	lative deris, h	
					4.5		Compa	etin		ъ.,
			kp.	$= \frac{1+51}{1-5}$	$\frac{n40}{in\phi}$ =	<u>ト</u> ー	<u>.642</u> 641 =	4.6		
		s	þ -	= 4.6 ×	clio ×	16.5	= 834	9 þsf=	58.0 psi	
			h.0)	stris	s po Zt		58.0 × 4	<u>4.5</u> _ 3	87 psi	
								Very. negl	spille L	_
		(The	des	ign in	ternew	(p>	assin 7.	5 1950	pess . The sort	
		OV	ir bu	rden p	71554)M	īς	h-eglizi	lile as	Con Yogard	
		£ '	this	p71551131) .			ſ	80101381R1 S02R0 Page 7	
,		Ther	mal	Starss	3 .==	1		L		
		Du	e k	SUT	overh	we	en, th	e pipe	s are	

Nuclear Common

Revision 2

-,

FORM NC.DE-AP.ZZ-UUUZ-Z

CALCULATION CONTINUATION/REVISION HISTORY SHEET

۰.

. ~

۰.

	ULATION CONTINUATION	I/REVISION III	STOKE SHEET	
PSEG	CALCULATION CONT REVISION HISTO	TINUATION/ RY SHEET	SHEET : 93 CONT'D ON S	SHEET: 94
CALC. NO.: 65	0-1882	REFERENCE :		
ORIGINATOR, DATE	REV: 5.51, 9 4/ 8/76	I.		
REVIEWER/VERIFIER,	DATE AMA 8/29	196		
Effect	of Seismic Ane	hor Moveme	int	
The d close	horizontal inn of to the contain.	the pipelis ment wal	us run Vi Cabout 1- liand the	eny 2 Feet)
Vertie	al 6' drop at	the Fuel	Handlig er	nd .
of the	pipe is very	close to the	. Fuel has	ndhip
wall	Labout 1 foot,	1. The pi	he segne	nts
an	so close to r	the respec	etive bu	idigs
that	the soil sur	sounding 7	the pipes	will
in g	eneral more at	part the S	ame as ;	the
Corn	rsponding build	ling dur	ing the se	Bric
-ever	rt. Hence th	ere wo	uld not	be
a s	iznificant diffe	omtial me	ovement he	twen
the	building and	har point	and the	SUIC
wit	the perficular	pipe sign	rent and	the
eff	ect y scismic o	mehr me	overnend i	rill
he	insignificant.		801013 S02R0 Race 8	081R1
Sum	mary of stass stars due	iss to sat or	verburden :	= neghzika
* 56	es intensification A	factor is no	of conside	red because
th	e pipe is constrained	d by the CLSM at	Unit 1 and con	strained by $1 \frac{1}{1}$
the	soil at Unit 2.			