Resource and Geological Modeling Overview
Strata Energy has developed an integrated geologic modeling solution that provides:

- **Data Accuracy**: robust model and reliable results
- **Efficiency**: rapid updates to the model
Ross Permit Area – JORC Resource August 2010

<table>
<thead>
<tr>
<th>Ross Permit Area*</th>
<th>Tonnes</th>
<th>Grade (ppm U₃O₈)</th>
<th>U₃O₈ (lbs)</th>
<th>Thickness (ft)</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>1,980,618</td>
<td>503</td>
<td>2,195,283</td>
<td>9.0</td>
<td>0.45</td>
</tr>
<tr>
<td>Indicated</td>
<td>2,403,208</td>
<td>476</td>
<td>2,523,628</td>
<td>8.8</td>
<td>0.42</td>
</tr>
<tr>
<td>Inferred</td>
<td>688,141</td>
<td>477</td>
<td>724,107</td>
<td>8.9</td>
<td>0.42</td>
</tr>
<tr>
<td>Total</td>
<td>5,071,967</td>
<td>487</td>
<td>5,443,018</td>
<td>8.9</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Calculation method:

GT – constrained polygonal
Resource Estimates for In Situ Leach Uranium Projects and Reporting Under the JORC Code (Australasian Joint Ore Reserves Committee)

Estimating and reporting Uranium mineral resources for ISR Projects

Additional factors, which are required for the Competent Person to be confident that there are “reasonable prospects for eventual economic extraction”, include:

• permeability of the mineralized horizon;
• hydrological confinement of the mineralized horizon and
• amenability of the uranium minerals to dissolution by alkaline solutions.
Cross-Sectional view of Regional Geology

Ross Area

Black Hills Monocline

Lance Formation

Fox Hills Formation

Little Missouri River

Cretaceous

Jurassic

Pre-Cambrian
Modeling Method and Procedure
Starting reference for 3D model

Plan view 3D, Permit boundary area illustrated by green line
Analog Method of Interpretation
Acquisition / Digitizing of NuBeth Database

Analog Hard Copy

Text / CSV File

Digital

STRATA ENERGY
Example of detailed baseline well installation surfaces.
Individual monitor well cluster shown with 3x vertical exaggeration.

The surfaces are defined by the digitized polylines that are visible on each surface.

Each polyline is a geologist interpretation of the subsurface drill hole data.
View of surfaces generated over a broad area. The gamma curve in red is very distinguishable and lies within the sandstones just above the thick basal shale and the upper confining shales.
3D view of vertical cross section projected 100 meters deep. The ability to portray data in 3D enables the geologists to readily examine subsurface data and make informed decisions concerning project drilling and development.
Utilizing GEMCOM software to produce a 3D subsurface Geologic model

- Central database incorporates historic and current drilling data
- Collaborative geologic and resource data guides development program
- 3 Dimensional control of key geologic surfaces validated against known drill hole data points
Oblique View of Project Area

Shown with 3x vertical exaggeration, this block model illustrates the key confining surfaces within the area.
Construction of Basal Shale Surface

E-W, N-S Sectional Interpretation
Construction of Basal Shale Surface

Surface generation
Construction of Basal Shale Surface

Surface Structure Contour