GE Hitachi Nuclear Energy BWR Operating Units: Discussion of 1-Sided Statistics for Setpoint Margin Calculations

With USNRC and GEH

GEH: Yogi Dayal, Ron Engel, Andrew Poulos, Rich Miller, Wayne Marquino

September 28, 2010

Copyright© 2010, GE-Hitachi Nuclear Energy Americas LLC All Rights Reserved

Agenda

- Objective
- Simple Example
- Problem Statement
- Instrument Error
- Setpoint Margin
- Probability Requirements
- 2-sided vs. 1-sided Conclusions
- Confidence Level Considerations

Objective

- Calculate Setpoint Margin for Setpoints Approached from One Direction for Normal Error Distribution
 - Instrument Loop and Setpoint Function definition
 - Instrument Error
 - Impact of Error on Setpoint Location
 - Setpoint Margin Calculation for 95% probability

Establish Statistical Factor for Setpoint Margin Calculation that Meets Probability Requirements for Setpoints Approached from One Direction

Instrument Loop

Simple Loop (One Instrument) Chosen to Facilitate Statistics Discussion

Statement of Technical Objective

- Safety Analyses for Over Pressure Protection Assumes that a Scram is Initiated at 1050 psig. Analysis Results Demonstrate Margin to Event Limits.
- Define Analytic Limit (AL) = 1050 psig
- Determine Setpoint location relative to the AL so that there is at least 95% probability (per RG 1.105) that the trip will occur before the AL is reached.

Overall Technical Objective Important when Dealing with Setpoint Statistics

Instrument Errors

- Simplified Problem One Error Source
- Error Std Dev = ± 0.4% of Span
- Span = 1250 psig, Error = ± 5 psig (1 Std Dev or 1 sigma)

Std Dev = Standard Deviation

HITACHI

Normal Error Distribution, 2-sided Errors Positive and Negative Errors Equally Likely

Impact of Instrument Error on Setpoint

- Analytic Limit (AL) = 1050 psig; AL fixed based on safety analysis
- If Instrument Error = 0, Setpoint (SP) Located at AL = 1050 psig
- Instrument Error Anchored to SP, Independent of SP and AL
- SP Location depends on AL and Trip Probability Requirement

Probability of Exceeding AL Depends on SP Location Relative to AL

Setpoint Margin for 95% Probability

- SP Approached from One Direction (low pressure side)
- Requirement: 95% Probability Trip will occur before AL exceeded
 - > 95% of the errors result in Trip \leq AL
 - > 5% of errors result in Trip > AL
- Means SP Location Relative to AL is such that
 Probability in Error Distribution Tail above AL is 5%
 Probability in Error Distribution below AL is 95%
- For Probability calculation, Errors in both Positive and Negative direction must be considered

95% Probability that SP will not Exceed AL. If Event Occurs 95% Probability that Trip will Occur before AL is Reached.

Setpoint Margin to AL

Based on Characteristics of Normal Distribution

SP Margin to AL for 95% Probability is 1.645 Std Dev (1.645 Sigma)

Statistics Summary - Pictorial

• 2-Sided Statistics for <u>Error Distribution</u> • 1-Sided Statistics for <u>SP to AL Margin</u>

- 2-sided Error Distribution (± 2 Sigma contains 95% of data)
- 1-sided Statistics for <u>SP/AL Margin</u> (- ∞ to 1.645 Sigma contains 95% of data)

Statistics Summary - Data

• 2-Sided Statistics for Error Distribution

2-sided Statistics for Instrument Errors						
SP = X (ar	% Data					
(± Sigma)	Low (psig)	High (psig)	70 Data			
1	X - 5	X + 5	68.3			
2	X - 10	X + 10	95.4			
3	X - 15	X + 15	99.7			

(95.4% of Error Data is within ± 2 Sigma around the setpoint, independent of SP and AL)

• 1-Sided Statistics for <u>SP to AL Margin</u>

1-sided Statistics for Instrument Margin							
Error Sigma = 5 psig		SP/AL Margin	Prob Trip < AL	Prob Trip > AL			
SP(psig)	AL(psig)	(# Sigmas)	(% Data < AL)	(% Data > AL)			
1000	1050	10	100.0	0.0			
1030	1050	4	100.0	0.0			
1035	1050	3	99.9	0.1			
1040	1050	2	97.7	2.3			
1041.775	1050	1.645	95.0	5.0			
1045	1050	1	84.1	15.9			
1050	1050	0	50.0	50.0			

(95% of Error Data is \leq AL when SP/AL Margin is 1.645 Sigma, 95% Prob Trip \leq AL)

Use of 1-sided Statistics is Technically Correct for Calculating SP Margin to meet Probability Requirement to Trip \leq AL

Margin Requirements - Summary

- Requirement: 95% Probability Trip ≤ AL (95% data ≤ AL)
- Required SP/AL Margin (Per RG 1.105)

> 1.645 sigma Margin -- 95% data \leq AL

- Other SP/AL Margins
 - > 2 sigma Margin -- 97.7% data \leq AL
 - \succ 3 sigma Margin -- 99.9 % data \leq AL
- SP/AL Margin = 1.645 Sigma meets 95% Probability Requirements
- Larger Margins Increase Probability but are <u>Not</u> Required

Statistics for Setpoint Margin - Summary

- SP/AL Margin is based on 1-sided statistics for Trip Setpoints approached in 1 direction
- Magnitude of Margin depends on Requirement for not exceeding AL, or Required Probability of Tripping before AL is exceeded
- For 95% Probability Requirement, the Required SP/AL Margin is 1.645 Sigma
- Larger Margins result in probability greater than 95%
 - •Example: 2 Sigma margin would result in 97.7% probability.
- Statistically incorrect to use 2-sided statistics and say that a 2 Sigma margin would give 95% probability.

Applicability of 95% Requirement for GEH BWRs

- 95% Probability has historically been used in Safety Analyses that have been licensed
- Significant conservatism in BWR Safety Analyses
- Most Safety Functions use Redundant Trip Channels. Using 95% probability for each channel results in significantly higher probability of tripping before AL for multiple channels.
- GEH Setpoint Methodology is Conservative and provides a final setpoint which is more conservative than required, so margin to AL for each channel provides > 95% probability.
- Licensed BWR Safety Analyses consistent with use of setpoints developed using 95% Probability Requirement.
- Final Setpoint Conservatively provides > 95% Probability.

GEH Setpoint Methodology (NRC Approved)

Final NTSP/AL Margin Provides > 95% Probability of Not Exceeding AL

2-Sided vs. 1-Sided Conclusions

- For Normal Error Distribution, the following conclusions, based on statistical principles, are applicable:
 - Margin of the Setpoint to the AL based on single-sided statistical factor
 - Margin of 1.645 Standard Deviations provides 95% probability that the trip will occur before the AL is exceeded.
 - ± 2 Sigma band around the setpoint contains 95% of the error data <u>does not mean</u> that a setpoint margin of 2 Sigma would give 95% probability of not exceeding the AL.

1-sided statistics applicable to setpoint margin calculations for setpoints approached from 1 direction

Confidence Level Considerations

- Confidence level is based only on sample size used to obtain the error standard deviation
- One-sided statistics is applicable for setpoint margin calculations regardless of the confidence level

Use of 1-sided statistics for setpoint margin calculations is applicable regardless of confidence level

17 Copyright© 2010, GE-Hitachi Nuclear Energy Americas LLC All Rights Reserved

Confidence Level Considerations - GEH Setpoint Calculations

- Vendor data used by GEH assures high confidence in setpoint margin calculations
- NRC SER concludes that Approved GEH Methodology (NEDC 31336P-A) using single-sided statistics produces acceptable setpoint margin with high degree of confidence (95%)

Setpoints Calculated with GEH Methodology using the single-sided statistical factor for Setpoint Margin Calculations meet NRC RG 1.105 Requirements

Summary

- Normal <u>Error distribution</u> is 2-sided, positive and negative errors are equally distributed around the setpoint
- <u>Setpoint margin</u> is based on 1-sided statistics for setpoints approached from 1 direction
- Margin based on probability requirement for not exceeding AL. For 95% probability the margin is 1.645 standard deviations. (ISA 67.04 Section 7.3, GEH Methodology NEDC-31336P-A)
- 95% Probability is consistent with licensed GEH Safety Analyses.
- Conservative GEH Setpoint Methodology provides final setpoint margin typically > 95% Probability with high confidence (95%)
- * Use of 1-sided Statistics is Technically Correct for SP Margin Calculations when Setpoints Approached from 1 Direction
- Conservative GEH BWR Methodology Provides Final Setpoint with > 95% Probability of Not Exceeding AL

