FM 6.5 Exhibit 5

PARSONS POWER GROUP INC. a combination of Gilbert Commonwealth and Parsons Main

2475 Morgantown Road • Reading, PA 19607 • (610) 855-2000 • Fax: (610) 855-2001

February 11, 1997

FCS-14771 Contract N00821AD, WA048

Mr. W. W. Nisula Contract Manager Florida Power Corporation (NA1B) 15760 West Power Line Street Crystal River, FL 34428-6708

Attention: Mr. J. Lese

Re: Crystal River Unit 3 6th Tendon Surveillance Force Curve Calculation

Dear Mr. Nisula:

Please find attached calculation S-95-0082 Revision 1, which documents the generation of the tendon force curves to accommodate the proposed inspection date of early March 1997.

Included are disks with related electronic files used in the preparation of the data and force curves.

Should there be any questions please feel free to contact Dr. Samir Serhan at (610) 855-3209.

Very truly yours,

anter DE

Samir J. Serhan, Ph.D., P.E. Supervising Engineer

Roy W. Adler Project Manager

RWA/SJS/bmb

Attachment

Ĵ

cc: W. W. Nisula (NA1B)
D. L. Jopling (NA1E)
J. A. Lese (NA1E)
R. E. Vaughn
FPC Records Management (CL Only)
R. W. Adler(2)
P. J. Hamilton
S. J. Serhan

5-16-0082 fexision #1 Other Watter 6L 110

0-22

PARSONS

EM 6 5 Exhibit 5

Florida

Power corporation

page 2 of 191

Page 1C

REVISION

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

DOCUMENT IDENTIFICATION NO.

		Calculation S-95-0082	3	┤╽
		**** TABLE OF CONTENTS ****		
SECTION	<u>۲</u>	TITLE	PAGE	
·		CALCULATION COVER SHEET		
_		REVISION #3 DESCRIPTION SHEET	1	
		REVISION #2 DESCRIPTION SHEET	1 A	
_		REVISION #1 DESCRIPTION SHEET	1 B	
_		TABLE OF CONTENTS	1C	
1.0		PURPOSE	3	
2.0		DESIGN INPUT	3	
3.0		COMPUTER CODES	4	
4.0		ASSUMPTIONS	4	
5.0	SCOP	E AND TENDON SELECTION	4	
6.0	CALC	CULATIONS	9	
	6. 1	GENERAL BACKGROUND & SCHEDULE	9	
	6.2	FORCE CURVE GENERATION PROCEDURE	11	
	6.2.1	PREPARATION OF INPUT DATA	11	
	6.2.2	PROCEDURE FOR DETERMINATION OF TENDON LOSSES	11	
	6.3	DOME TENDONS	19	
		TENDONS LISTING & DATA INPUT TABULATION	20	
		INDIVIDUAL TENDON LOSSES WORKSHEET & CURVES	21	
	6.4	HOOP TENDONS	62	
		TENDONS LISTING & DATA INPUT TABULATION	63	
	`	INDIVIDUAL TENDON LOSSES WORKSHEETS & CURVES	64	
	6.5	VERTICAL TENDONS	125	
		TENDONS LISTING & DATA INPUT TABULATION	126	
		INDIVIDUAL TENDON LOSSES WORKSHEETS & CURVES	127	
	6.6	CALCULATIONS SUPPORTING SP-182	157	

. 1

Ì

page 3 of 191

DESIGN ANALYSIS/CALCULATION

1

5

6/95

6.5 Exhibit 5

Florida

Crystal River Unit 3

		Power	Crystal River Unit 3	
		CORPORATION	4 	Page 2
DOCUME	NT IDENTIFICA	TION NO.	Calculation S-95-0082	REVISION 0
	<u>SECT</u>	<u>ION</u>	TITLE	PAGE
	7.0).	CONCLUSIONS	162
	8.0)	REFERENCES	162 to 163
:	9.0)	ATTACHMENTS	
		А.	DESIGN INPUT FOR 6TH SURVEILLANCE	A1 TO A18
		В.	TENDON DATA HISTORY SHEETS	
			FOR 6TH SURVEILLANCE	B1 TO B92
		С.	TENDON STRESSING SEQUENCES	C1 TO C24
		D.	EFFECTIVE WIRE SUMMARIES	
			AND TENDON WIRE DATA	D1 TO D10
		E.	ELASTIC SHORTENING REFERENCES DATA	E1 TO E9
		F.	WIRE STRESS RELAXATION REFERENCE DATA	F1 TO F8
		G.	CONCRETE CREEP REFERENCE DATA	G1 TO G14
		Н.	CONCRETE SHRINKAGE REFERENCE DATA	H1 TO H8
		I.	NORMALIZING FACTOR REFERENCE DATA	I1 TO 123
		J.	HOOP GROUP PLOT OF TENDONS	J1 TO J8
		к.	ELECTRONIC FILES INFORMATION & DISKETTES	K1 TO K2

1.0

6/05

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 3

REVISION

IR2

2

page 4 of 191

DOCUMENT IDENTIFICATION NO. Calculation S-95-0082

Power

PURPOSE AND OBJECTIVE

File CR3C6TSP.DOC (Word 6.0)

The purpose of this calculation is to provide tendon force curves for Florida Power Corporation for the Crystal River Unit 3 facility in support of the upcoming 6th tendon surveillance period scheduled for the Fall of 1997. Specific tasks to be performed as part of this scope include the following:

- A.) Determine the predicted tendon losses and develop force/time curves for each of the selected tendons for the upcoming sixth surveillance period. Generate the tendon force curves for the selected tendons, the tendons adjacent to the selected tendons, and alternate tendons. Alternate tendons are tendons not specifically scheduled for this surveillance but force curves are prepared to be available in case a substitute tendon should be required during the surveillance. In addition, force curves for a group of tendons deferred/exempted from the previous surveillance will also be prepared. These are discussed in detail in Section 5.0.
- B.) In addition to the force curve development, other calculations which are required to support Enclosures included within Surveillance Procedure SP-182 will also be prepared within this same calculation.

DESIGN INPUT 2.0

Design input information has been reviewed and is included as Attachment A to this calculation. Note that there are no significant changes to the basic criteria and related documentation which address the licensing of the CR3 plant with respect to the tendon surveillance program. The previous surveillance efforts completed various studies and addressed the CR3 tendon program and its' compliance with U.S. Regulatory Guide 1.35, Revision 3, since it was formally issued in July 1990. Based on FPC licensing efforts and Technical Specification revisions performed at the time of the last surveillance period, as well as recent discussions with the NRC, FPC has now committed the CR3 tendon surveillance program to be performed in accordance with U.S. NRC Regulatory Guide 1.35, Revision 3 (Reference 3).

U.S. Regulatory Guide 1.35.1, Revision 0 (Reference 4) is a daughter document referred to by the above Reg. Guide and deals specifically with the calculation of individual tendon losses and the generation of tendon force curves. While calculation efforts for the CR3 tendon force curves have followed closely with both of these Regulatory Guides as they evolved through the 1970's and 1980's, the format and current procedure for the preparation of the force curves is not in exact compliance with Regulatory Guide 1.35.1 Revision 0 as issued in 1990. The method and approach used in the generation of the CR3 force curves is superior to that of the Reg. Guide in that a specific curve is generated for each individual tendon. Based on the discussions held with the NRC and the results of their review, the method and approach used for these calculations shall be the same as used for previous surveillances. See the Attachment A information for further discussion and references to recent correspondence and documentation with the NRC on various issues related to the tendon surveillance program.

Applicable Technical Specification sections, as well as FSAR sections were also reviewed for this effort. They support the position noted above on the FPC commitment to R.G. 1.35, Rev. 3 and are discussed and referenced within the Attachment A information.

Power CORPORATION

DOCUMENT IDENTIFICATION NO

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 4

page 5 of 191

Calculation S-95-0082

REVISION

3.0 COMPUTER CODES

This calculation package is being prepared using Microsoft Word, Version 6.0 and Microsoft Excel, Version 5.0. Spreadsheets from earlier surveillance efforts were prepared using Lotus 123, Release 2.01 and 3.0 and were converted to Excel format for this calculation. All input and calculations are manually checked and verified, therefore, verification of computer programs is not applicable or necessary.

4.0 ASSUMPTIONS

Any assumptions made are noted and contained within the calculation package. None require future confirmation.

5.0 SCOPE AND TENDON SELECTION

Tendons were selected for the sixth surveillance period in accordance with the requirements of Reg. Guide 1.35, Revision 3 and using the same methodology as was used in the past surveillance. Basically, a random but representative sample was selected and checked at the site for accessibility. Specific criteria used for this selection process is summarized as follows:

Tendon Selection Process

The tendon selection process has remained the same as that completed for the last several surveillances where a random but representative sample is selected for inspection and testing. The intent is to get as many new and never tested tendons in the sample population, but still keeping one control tendon from each major tendon group to be investigated in each surveillance. Note that this current method differs from methods used during the early life of the plant where some tendons were repeated for inspection every third surveillance. Basically, the selection criteria and process used considers the following:

1.) Select tendons based on Reg. Guide 1.35 Revision 3

Based on the good results of prior surveillances, the Reg. Guide requires a minimum of 11 tendons to be inspected, including 5 hoop, 3 vertical and 3 dome. Tendons should be selected which were never previously inspected or tested. Previously detensioned and retensioned tendons should not be included (unless there is a specific need to investigate the tendon per item 3 below). In addition to being selected at random, tendon selection should be representative of various areas and conditions. For example, the hoop tendons selection was based on random selection but also considered what tendons were inspected in the past and in what hoop area. A plot of previously inspected hoop tendons was prepared to track tendons inspected by grouping (i.e. 13's, 42's, 35's, 46's, 51's, and 62's). Therefore, the selection process considered those sections not equally represented by as many tendons as completed within other sections from prior surveillances. See Attachment J for various plots and information of the hoop group. The same procedure was applied to the dome group (i.e. 100's, 200's & 300's groups) and to the vertical group (i.e. 12's, 23's, 34's, 45's, 56's & 61's & quadrants). See Attachment D for groups information.

W 6.5 Exhibit 5

Florida

Power

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 5

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

2.) Maintain Control Tendons to be completed each surveillance.

The Reg. Guide also requires a control tendon from each group to be inspected every surveillance for comparative purposes. CR3 has not had control tendons since the first surveillance. The concept was introduced probably in the fourth surveillance. Tendons D212, 12V1 and 51H26 were probably the original control tendons since about the time of the fourth surveillance. They were intended to be inspected during the fifth surveillance but the group of tendons selected was based on the surveillance being performed during an outage. FPC decided to complete the 5th surveillance during normal plant operation and the original tendons selected were affected because many tendons were located within the area of the plant steam vent zone. This included the above three control tendons, and three new control tendons, D215, 34V6 and 46H29 were selected for completion of that surveillance. A problem with 46H29 during the 5th surveillance forced the selection of another control tendon, 46H21, for the hoop group. New control tendons may need to be selected periodically if the tendon has a problem and is ever detensioned and/or retensioned. As earlier surveillances on CR3 did repeat some tendons, the selection of these other control tendons was easily done from several good candidates. New control tendons should be selected from those previously inspected as far back as possible and cannot be one previously detensioned and/or retensioned. A tendon inspected in more than one prior surveillance is preferred. Based on the above, it is recommended that both of the above two sets of control tendons be used by FPC as control tendons, with one set of three to be utilized in the 6th surveillance during a plant outage, and for the other three to be used in any future inspections scheduled to be performed on-line.

- 3.) Consider any tendons with problems or abnormal conditions as reported by plant personnel. Any leaking tendons or tendons with any reported problems should be considered within the scope of the surveillance. Also, past inspection reports and records should be checked for open items, recommendations, or noted problem tendons.
- 4.) In the selection of tendons for detensioning, (one per group is required per R.G.) consider the number of effective wires as recorded in the tendon history sheets and summarized in the effective wire summary in Attachment D to this calculation. As any tendon is to be considered ineffective if it has less than 155 effective wires per the FSAR, it is therefore not desirable to select a tendon with many missing, cut or ineffective wires. Unless there was a specific need to detension that particular tendon, doing so could therefore render the entire tendon as out of service. Only a maximum of 3 tendons are allowed out of service at one time per criteria in the FSAR.
- 5.) The reduced force dome tendons are not normal candidates for normal liftoff testing per SP-182, Enclosure 8.
- 6.) Tendons adjacent to the selected tendon may require testing and should also be feasible to inspect and test. Adjacent tendons in the dome should not include any reduced force dome tendons. Jump to the next regular dome tendon for the required adjacent tendon. Also, adjacent tendons of the lowest hoop tendons (#1) shall be considered as the two directly above the selected tendon. Adjacent tendons of the highest hoop tendons (#47) shall be considered as the two directly below the selected tendon.
- 7.) One alternate tendon should be selected from each group, and the two adjacent tendons of these alternates at least considered for possible inclusion.

6/95

Power

6/95

DOCUMENT IDENTIFICATION NO.

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 6 REVISION

page / 01

Calculation S-95-0082

In addition to the above selection criteria, there are several other factors which have influenced the scheduling of actual field inspection and testing. These include:

A.) Steam Vent Zone -

Plant steam venting can impose a safety hazard to personnel during plant operation and early modes of shutdown. Tendon work in the range between 0 and 120 degrees is affected during plant operation by the potential steam venting of the plant. Tendon work in this area must be held off until the potential hazard is eliminated or other approval is obtained from plant operations. Note that for the fifth surveillance per FPC operations, this even includes the outside tendon caps of the affected butresses at 0 and at 120 degrees.

B.) Fuel Pool Area -

Work over the fuel pool can only be performed while missile shields are in place. (Nureg 0612 reqmt.)

C.) Plant Interior Work -

Work inside some plant areas is difficult due to access problems, high radiation areas, interferences, ram accessibility, etc.

Deferred/Exempted Tendons

After the tendons were selected for the fifth surveillance for an outage surveillance, it was decided that the 5th surveillance would be completed during normal plant operation. A group of tendons originally selected for inspection during that surveillance had to be exempted from that surveillance due to their proximity to the main steam vent zone and the associated hazards with working in that area. FPC discussed this issue with the NRC and has documented the following 8 tendons as deferred tendons:

6/95

Florida Power

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 7 REVISION

٥

page 8 of 191

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

i iv	EXEMPTED T	COMMENTS
	D115	Never inspected in any surveillance.
	D212	Inspected in Surveillance 3 and 4.
		Considered as Control Tendon for outage condition.
	D311	Never inspected in any surveillance.
	12V1	Previously included for liftoff testing in the 3rd and 4th surveillances. Considered as Control Tendon for outage condition.
	42H44	Never inspected in any surveillance.
	51H26	Previously included for liftoff testing in the 3rd and 4th surveillances. Considered as Control Tendon for outage condition.
	53H46	Never inspected in any surveillance.
	62H46	Never inspected in any surveillance.

As FPC has committed to the NRC to address the above tendons within the upcoming 6th surveillance, these tendons were considered in the scope of this calculation. The 6th surveillance is scheduled to be completed during an outage. Since three of the above exempted tendons were also previous control tendons, it was considered that these tendons can again be used as control tendons for this surveillance instead of the 3 control tendons used in last surveillance (when the surveillance was done on-line). Therefore, the three exempted control tendons can be considered as three of the 11 tendons required per Reg. Guide. A total of 16 tendons should be inspected during the surveillance with three additional alternates selected. Note however that the scope of this calculation will include force curves to be regenerated for the other control tendons, D215, 34V6 and 46H21.

A complete historical record of all tendons included in all prior surveillances, along with the list of selected adjacent, exempted and alternate tendons which are planned for in the 6th surveillance is provided on the following Table.

•••••• CR3 TENDON S	SURVEILLANCE HISTORIC/	AL RECORD *******					8-Sep-97 FILE-CR3R6TSP-XLS		
TENDONS INSPECTED THI SURVEILLANCE PERIOD YEARS AFTER SIT SIT 11/76	ROUGH THE 5TH SURVEIL 1ST SURVEILLANCE 11/27/77 TO 2/9/78 1 YEAR	LANCE & PLANNED FOR IN 2ND SURVEILLANCE 3/5/80 TO 5/9/80 3.5 YEARS	1 6TH SURVEILLANCE 3RD SURVEILLANCE 9/28/81 TO 12/7/81 5 YEARS	4TH SURVEILLANCE 9/15/87 TO 11/17/87 11 YEARS	5711 SURVEILLANCE 11/93 TO 1/94 17 YEARS	, FLANNED , 6TH SURVEBLANCE , 6TL 1997 , 21 YEARS	, PRIOR , TENDON INSPECTION , SUMMARY DATA	Powe corporation	
REQUIRED TO INSPECT ACTUALLY INSPECTED SP BASIS G/C REPORT DATE	21 TOT-1011,6V,5D 23 TOT-1014,7V,6D SP-5583, SP-5909 SP-395, SP-6456 3/27/80 & 4/80	21 TOT-101,6V,5D 22 TOT-101,7V,5D SP-182 REV - 5/80	21 TOT-10H,6V,5D 21 TOT-10H,6V,5D SP-182 REV 4 5/19/82	11 TOT-51L3V,3D 11 TOT-51L3V,3D SP-182 REV 7 3/10/28	11 TOT-51(3V,3D 14 TOT-84(3V,3D SP-182 REV 10 & 11 594	, 11 TOT-51,37,3D , INCL 8 DEFERRED , TOTAL = 16	, 85 TOT-40H,24V,21D , 91 TOT-43H,26V,22D	Calculatic	<u>ב</u>
DOME TENDONS 123 TOTAL 3 GROUPS OF 41 D100'S, D200'S, D300'S	D139 D215 D221 D D222 D D228 D234 D340	D122 D140 ' D208 D D323 D331	D123 D215 R D212 D322 D D329	D105 D D212 R.C D328	D215 R.C D231 D D724 A	, D212 R,C,E , D304 D , D113 E , D115 E , D311 E , D131 A	, 22 DOME TENDONS , INSPECTED , TO DATE	m S-95-0082	
VERTICAL TENDONS 144 TOTAL 6 GROUPS OF 24 12, 34, 56, 23, 45, 61	12V19 12V20 12V21 23V15 34V6 45V3 D 56V1	12V12 12V20 R 23V5 34V1 45V6 56V20 56V1 D,R	12V1 34V6 R 34V19 D 45V16 56V11 61V5	12V1 R,C 34V4 56V2 D	34V6 R.C 56V15 D 61V14	, 12VI R,C,E , 61V21 D , 23V2 , 61V10 A	26 VERT. TENDONS INSPECTED TO DATE	Crystal	
HORIZONTAL TENDONS 282 TOTAL 6 GROUPS @ 47 HIGH 13, 24, 35, 46, 51, 62 3 TENDONS PER HOOP	131410 131419 131417 131447 511111 62119 461121 461129 461137 D	13H22 13H32 D 13H43 51H10 51H23 5H37 53H24 53H28 53H44	131119 R 13H46 42H20 42H40 511126 51H45 53H45 53H45 53H40 62H34	131120 131140 D 511126 R 511341 461119	35111 42H1 46H28 ADJ.,T 46H28 ADJ.,T 46H29 R,C(Old),D 46H30 ADJ. 46H30 ADJ. 62H8	51H26 R.C.E 42H18 42H182 42H32 42H44 E 62H22 62H41 D 62H44 E 53H46 E 53H46 E 53H46 E 53H2 A	, 43 HOOP TENDONS , INSPECTED . TO DATE	River Unit 3	いっう ハー
TOTAL TENDONS = 549	461146	461142	46110 D	er tettentatta otoropo	Re efterstates stateste				
TOTAL INSPECTED	23 A, Alternate E, Exempted/deferre	22 AIDI.,ADJACENT D FROM 5TH SURV.	21 [,] C, CONTROL R, REPEATED	11 D, detensioned & ret T, retensioned	14 IENSIONED	16 + 3 ALT.	. 91 TOTAL INSPECTED	AIION	efed
					. ·	R2		Page 8 REVISION	8 of 181

-

RET: Life of Plant RESP: Nuclear Engineering

885

Power

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

Page 9

REVISION 2

6.0 CALCULATIONS

6.1 General Background and Schedule Information

General Background

Tendon forces curves are to be prepared for the upcoming 6th tendon surveillance period at CR3. From the basic criteria as presented in the Design Input Section, as well as from several discussions with Mr. Joe Lese of Florida Power & Light, it was determined that the criteria for this surveillance period has not changed since the last surveillance efforts. A review of Tech Spec and FSAR criteria confirms the FPC positions with respect to the tendon program. Supporting work for this surveillance period will be based on the same criteria that was used and accepted in the previous surveillance periods.

Tendon losses have been calculated in the past per the Reference 8, 9, 10 and 11 documentation. Individual tendon losses include the following:

- Force loss due to elastic shortening of the containment as a result of the prestressing process and the
 particular sequence of tendon stressing.
- Force loss due to the stress relaxation of the tendon wires.
- Loss of prestress force due to the creep characteristics of the concrete structure.
- Loss of prestress force due to the shrinkage of the concrete structure.

Based on some earlier calculations made for tendon losses per the Reference 11 document, Lotus spread sheet templates were prepared for tendon losses calculations for the 4th tendon surveillance calculations. See References 9 & 10. These templates were reran and tested for their accuracy and validity for the fifth surveillance. In addition, the procedure for the gathering of all input data was automated in the fifth surveillance to the format presented herein. Numerous test cases were ran to duplicate force curves prepared in the past. There were four master templates prepared for the fourth surveillance; one for the hoop tendons, one for the vertical tendons, and two for the dome tendons. The dome tendons are divided into two groups; one for tendons with an original stressing sequence below 27, and the other for tendons with stressing sequences above 27.

Based on the work previously accomplished in the prior surveillances, new spreadsheets were prepared this surveillance using Microsoft Excel for the collection of input data and for the calculation of tendon losses needed for generation of force curves. The generation of the force curves was also automated this surveillance by using Excel to plot the graphs. The organization of most data used for this calculation was setup into Excel workbooks with subfiles built and included in each workbook. There is a separate workbook for each of the three tendon groups and each one contains the following:

- Tabulated input data
- Original tendon stressing sequences.
- Effective wire summaries.
- "Original Stressing Data" calculations for SP-182.
- Separate files including each tendon loss spreadsheet, plot data and an individual force curve.

Additional information on electronic file names etc. used in this calculation is provided in Attachment K.

R2

Power

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 10

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

REVISION

R2

R2

page 11 of 191

Schedule Information

The expected timing for the sixth surveillance is Fall 1997. A date of November 1, 1997 will be used as a bases for determining the predicted values of base, 95% base and 90% base and labeling this information on the force curves. This allows for field use and decisions to be made based on the requirements of Surveillance Procedure, SP-182.

The scales of the force curves are based upon previous surveillance efforts. The x axis is a log scale in time representing the time after average date of dome or wall concrete placement, in years. This scale is labeled at the top of each curve. Force curves are plotted using the actual log scale points for the x axis (not the scheduled surveillance years after SIT) versus the calculated tendon forces in kips on the y axis. The scale at the bottom of the curve for scheduled surveillance periods after SIT are for ease and readability relative to regular scheduled surveillances per Reg. Guide 1.35, Revision 3.

Most of the CR3 surveillances were performed on the regularly scheduled years, however, the 5th surveillance was actually performed in the 17th year after SIT. Note that the containment Structural Integrity Test (SIT) was performed in November 1976.

For the dome tendons force curves, the point on the bottom scale at SIT corresponds to the log scale at the top of 2.5 years. Therefore, a corresponding log scale data point must be determined for curve plotting for the period of the 6th surveillance.

Based on a date of November 1, 1997 for the Fall 1997 surveillance, the length of time between November 1976 (@ SIT) and November 1, 1997 is 21 years. Since the dome group at SIT is at year 2.5 on the log scale, the 6th surveillance will correspond to (21.0 + 2.5) or 23.5 years on the log scale.

The same procedure must be performed for the hoop and vertical groups as they have different reference points on the log scale for time after concrete wall placement. Both hoop and vertical groups are the same with SIT corresponding to year 4.4 on the log scale. Therefore, the 6th surveillance period will correspond to (21.0 + 4.4) or 25.4 years on the log scale.

A vertical line will be shown on the force curves at the point of the next surveillance and the calculated values of base, 95% base and 90% base representing points on the curves at that time will be included on each of the curves.

Power

DOCUMENT IDENTIFICATION NO.

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 11

12 of 191

REVISION 3

Calculation S-95-0082

6.2 General Procedure for Force Curve Generation

The same procedure within the calculation for the preparation of the force curves for the fourth and fifth surveillance periods will be followed.

6.2.1 Preparation of Data Input Spreadsheets

In each of the Excel workbooks is a data input file where data from source calculations and current tendon history sheets has been tabulated. See DOMER3.XLW (DOMEINP), HOOPR3.XLW (HOOPINP) & VERTR2.XLW (VERTINP).

The compiled books of tendon surveillance historical information, as updated to include the results of the fifth surveillance, provide key input data for the development of force curves. See References 12, 13 & 14. The selected tendon history sheets related to this surveillance have been included herein as Attachment B of this calculation. The Reference 11 calculation is essentially a source calculation for this procedure with the Reference 8 & 10 calculations also providing information.

Notes and references related to the tabulation of the data on these spreadsheets are shown on the individual sheets. The data input tabulations are presented as the first sheet within the following Sections 6.3, 6.4 & 6.5.

6.2.2 Procedure for Determination of Individual Tendon Losses

The procedure for the tendon loss calculations, as derived from the reference documentation, is as follows:

1.) Calculate original force in the tendons

The original force in the tendons is determined as follows:

$$ORIG.FORCE = 0.7 * F_{ULT} * \left[\frac{ActualLiftoff \ Pr \ essure}{Pr \ edictedLiftoff \ Pr \ essure} \right] \times WireFactor$$

Where:

 $f_{uh} = 240$ Ksi, typical for all CR3 wires.

Wire area = 0.07685 in 2 per Appendix F of the Reference 11 calculation.

 F_{ult} (Kip Force)= Tendon Area (in2) x f_{ult} (Ksi) = 0.05985 * 240

Tendon Area $(in2) = Area/Wire (in2) \times No.$ of Wires. (Considered by wire factor.)

Actual and predicted original liftoff pressures are obtained from Tendon History Sheets References 12, 13, 14, with those within the scope of this calculation attached in Attachment B.

Refer to the Appendix F part of the Reference 11 calculation, for source data of above formula. The above expression was used as the basis for the calculations for all the shop and field end forces calculated on the Data Input Spreadsheets. This procedure does not apply to retensioned tendons.

6/95

R3

page 13 of 191

W 8.5 Exhibit 5

Florida

Power

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 12 REVISION

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

Note that the wire factor as shown in the various spreadsheets is a value representing the tabulated number of effective wires over a total of 163. The number of wires is usually 163 unless cut, loose or considered ineffective. The number of effective wires as recorded from the original installation is documented on the tendon history sheets. The number of effective wires for each tendon has been updated, tabulated and presented in the Effective Wires Summary for each individual group within Attachment D. This tabulation was updated to include the results of all previous surveillances. It does not imply each of the tendons was specifically checked for the numbers of effective wires as presented in the table. It represents only data from the original records and as made available from surveillance records and subsequent inspections.

Note that the wire factor used is based on current information and is not based on the number of wires at the time of original installation, therefore the original Force calculated may not be the "original force" in the tendon back at that time. The effect of less effective wires lowers the curve vertically. This is insignificant at the current time as the curve of interest will be correct for use at this time. Another method would have been to plot the original value using the wire factor then and then to show a step down on the curve should a lower wire factor occur at some point later on the graph.

2.) Calculate Elastic Shortening Losses

The elastic shortening losses are a function of the stressing sequence number for the individual tendon. In addition, the tendon wire factors are also considered and used. The base expression used to calculate these forces is the same as used in previous calculations and is already built into the basic spreadsheet templates. All the equations for elastic shortening were confirmed as being the same as established in prior calculations. Based on the review of the procedure for calculating these losses, it is concluded that the existing templates are still appropriate and correct with the additional input of stressing sequence data and wire factors to be input for the current group of tendons for this surveillance.

Reference 10 & Reference 11 data and information on elastic shortening was included in Attachment E to these calculations. See Attachment C for original stressing sequences for all tendons and see the Data Input Worksheets & Attachment D information for tendon wire factors and source data.

Elastic Shortening Losses for Dome Tendons

Note there are two expressions used for elastic shortening for the dome tendons depending on the stress sequence numbers. For dome tendons in sequences 1 through 27, the Domelow template is used. For dome tendons in sequences 28 through 32, the Domehigh template is to be used. This is because of the two separate expressions used for the calculation.

Elastic Shortening Losses-For Dome Tendons in Sequences 1 through 27-

N = 27 Total Sequences n = Sequence of particular tendon. FM 6.5 Exhibit 5

Florida

Power CORPORATION

DOCUMENT IDENTIFICATION NO

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 13 REVISION

page 14 of 191

Calculation S-95-0082

Force Loss due to elastic shortening = F_{les}

$$F_{les} = \left[\frac{N-n}{N} \times 82.7 + 75\right] \times WireFactor$$

Elastic Shortening Losses-For Dome Tendons in Sequences 28 through 32-

N = 5 (Sequences 28 through 32) n = Sequence number less 27

i.e. for sequence 28, n = 1for sequence 29, n = 2for sequence 30, n = 3for sequence 31, n = 4for sequence 32, n = 5

$$Fles = \left[\frac{N-n}{N} \times 47.4 - 13.7\right] \times WireFactor$$

The value for elastic shortening in kips declines as the stressing sequence increases. A review of the data for the dome group shows that values for the dome group go from 154.6 kips for sequence 1 tendons down to 75 kips for sequence 27 tendons, and further going down to -13.7 kips for the last sequence, sequence 32. Note that wire factor differences between individual tendons will cause the calculated result to vary slightly for two tendons within the same stressing sequence.

Elastic Shortening Losses for Hoop Tendons -

N = 60 Total Sequences n = Sequence of particular tendon.

Force Loss due to elastic shortening =

$$Fles = \left[\frac{(N-n)}{N} \times 134.0\right] \times WireFactor$$

A review of the data for the hoop tendon group shows that the range of values for the calculated elastic shortening go from 127.3 kips for sequence 3 tendons down to 0 kips for the last tendon sequence, sequence 60.

page 15 of 191

FM 8:5 Exhibit 5

Florida

Power

DOCUMENT IDENTIFICATION NO

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 14 REVISION

Calculation S-95-0082

Elastic Shortening Losses for Vertical Tendons -

N = 31 Total Sequences n = Sequence of particular tendon.

Force Loss due to elastic shortening =

 $Fles = \left[\frac{(N-n)}{N} \times 73.5\right] \times WireFactor$

A review of the data for the vertical tendon group shows that the range of values calculated for elastic shortening go from 71.1 kips for sequence 1 tendons down to 4.7 kips for sequence 29 tendons. There are a total of 31 stressing sequences for the vertical tendons.

3.) Calculate Wire Stress Relaxation Losses

Wire stress relaxation losses and the procedure for the determination of these losses for the 4th and 5th surveillances are addressed in the Reference 10 and 11 calculations. The original wire relaxation curve, as provided by test data from the wire vendor forms the bases for wire relaxation loss values (See also FSAR Figure 5-23). It was determined that the same procedures and figures as calculated in those prior calculations are still applicable for this surveillance. Applicable data from the reference sources was attached and included within this calculation as Attachment F.

Note that there were adjustments made to the original stress relaxation values from the vendor relaxation curve to allow for some conservatism and for temperature consideration of 100 degrees vs. 68 degrees F. Also, per the original design the wire factor or actual number of effective wires was considered as negligible for these losses and was not included. Note that values for stress relaxation range between 40 and 50 kips for the surveillance period for all three tendon groups.

4.) Calculate Creep Losses

Concrete creep calculations in the Reference 11 document are attached in Attachment G. The losses are based on the curve contained in the reference calculation. Creep values are different for each of the three groups of tendons. For the dome tendons in the coming surveillance period, creep values are the same and are about 152 to 158 kips, hoop values are between 79 and 83 kips, verticals are 36 to 38 kips.

5.) Calculate Shrinkage Losses

8/95

Attachment H contains source information for concrete shrinkage from Reference 10, pg. 11 and Reference 11, cover page & Pages 13 & 14. The straight line shrinkage losses in micro inches per inch as calculated in the above two references are still applicable for this surveillance period. Tabulated values from these references were input into the dome, hoop and vertical spreadsheets. There are no additional variables or considerations and the same values are to be used for this calculation. From a review of the output information, the dome values are constant at 8 to 9 kips, hoop values are above 5 kips, verticals are also slightly above 5 kips.

page 16 of 191

1 6.5 Exhibit 5

Florida

Power CORPORATION

DOCUMENT IDENTIFICATION NO

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 15

REVISION

Calculation S-95-0082

6.) Total Losses

Calculated force losses for elastic shortening, wire stress relaxation, creep and shrinkage are added for a total of all losses. Also, a percent of this total of all losses is calculated based on the original average force in the tendon.

7.) Determine Predicted Forces for Base, 95% Base and 90% Base values

The original force less the total of losses calculated yields the base predicted value for the subject period of surveillance inspection. The 95% and 90% values are then calculated based on the calculated predicted base value.

8.) Normalization Factors

Normalization factors are calculated based on the expressions and the source article contained in Attachment I of this calculation. This factor usually does not change much over the forty year time span of the calculation. The base expression for the dome normalization factor value is presented as follows:

$$(A-B) \times (1-C) + (D-97.7)$$

Where:

NO.

A = Average of all Domes group

B = Original average tendon force

C = Wire Stress Relaxation Percentage

D = Elastic Shortening

As an example, Dome tendon D112 calculates as follows:

NormalizationFactor = $(1639 - 1676) \times (1 - 0.0257) + (D - 97.7)$ or

 $NF = (-37) \times (0.9743) + (-101.9)$ or

NF = -138 which matches the spreadsheet calculation.

Similar expressions are shown for the hoop and vertical tendons in the information in Attachment I.

page 17 of 191

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 16 REVISION

O.

Calculation S-95-0082

9.) Plotting of Data

OCUMENT IDENTIFICATION NO.

6/95

6.5 Exhibit 5

Florida

Power CORPORATION

Only the data from Column B, L, M, & N are tabulated on a separate area on the side of the spreadsheet. See Columns R, S, T & U; Rows 40 through 50. Only these values are selected for plotting on the force curves. This is for ease of plotting and has no affect on the quality or accuracy of the plots. An example copy of this data immediately follows the first dome tendon.

The plots of all dome curves with all the data points showed the force curve plot line as slightly crooked from a true linear plot. The large scale used showed some inflection points slightly off of linear. After investigation, the condition was avoided by omitting data points at year 10 and 15 after SIT for the final plotted figures. This was done only for presentation purposes and there is no affect on the accuracy of the plot or the base values calculated and presented on each curve.

A column by column explanation of the losses calculation worksheet follows:

Power CORPORATION

DOCUMENT IDENTIFICATION NO.

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 17

۵

Calculation S-95-0082

REVISION

INDIVIDUAL TENDON LOSSES LOSSES CALCULATION WORKSHEET NOTES AND LEGEND

Individual tendon losses are calculated based on the procedure presented in the preceding section. The following notes explain the spreadsheet process, input and calculations performed for each of the columns presented. The shaded values on the losses worksheet are extracted from the data input worksheet.

Column Description

A. Inspection Period after SIT

Scale based on years after SIT which is shown on the bottom scale of each individual plot. Note that this information is provided for easier readability with respect to SIT but is not the actual log scale used to construct the x axis of the plots.

B. Years after Concrete Placement

Scale of years after concrete placement as used for the x axis for plotting of the force curves and shown as the upper log scale at the top of each plot. Note that one year after SIT for the dome tendons is 3.5 years on the log scale and for the hoop and vertical tendons is 5.4 years. See Section 6.1 of this calculation for further information.

- C. Elastic Shortening Calculated based on formulas presented in Section 6.2.2 and Attachment E information.
- D. Stress Relaxation Percent

Calculated based on original wire loss curve percentages modified per the information presented in Attachment F of this calculation.

- E. Stress Relaxation Forces Data input from the Reference 11 calculation page 12. See Attachment F.
- F. Creep Strain Strain value (x 0.0001Data input from the Reference 11 calculation. See Attachment G of this calculation for data.
- G. Creep Strain Force Data input from the Reference 11 calculation. See Attachment G of this calculation for data.
- H. Shrinkage Values Data input from the Reference 11 calculation based on the shrinkage curve. See Attachment H of this calculation for data.
- I. Shrinkage Force Data input from the Reference 11 calculation. See Attachment H of this calculation for data.

EM 6 5 Exhibit 5

Florida

Power

6/95

DOCUMENT IDENTIFICATION NO.

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 18 REVISION

2

Calculation S-95-0082

- J. Total Force Loss Calculated value, Sum of columns C, E, G,& I.
- K. Total Percent Loss

Total loss in percentage, Column J / Average of original forces for shop & field ends calculated and shown above on the spreadsheet.

L. Base

The average original force for the tendon noted above on the spreadsheet, less the total losses calculated in Column J. Note that total losses were not calculated on the row for the 17 year period, the 21 year 3 month period, as well as the 21 year period after SIT. These rows represent the fifth, the originally planned sixth and the current sixth surveillance periods and the values of Base were derived through linear interpolation of above and below data presented on the spreadsheet. The quality and accuracy is not affected by this procedure.

- M. 95% Base 0.95 x Column L for the same row.
- N. 90% Base 0.90 x Column L for the same row.
- O. Normalization Factor -

Calculated based on formula presented in this calculation and in the information presented in Attachment I.

FM 6.5 Exhibit 5

page 20 of 191

DOC 1D:S-95-0082

CRYSTAL RIVER UNIT 3 - 6th TENDON SURVEILLANCE DOME TENDONS DATA INPUT

DOME LEN	IDONS DA	AINPUT			_			· -	REVISION 3		
Initial Con	crata Strac		1732 n	(kei)	Ref.				PAGE 20		
Average	Force =	55 —	1639.0	(kips)	(2) Page 15	18, 70					
For Tendor	ns in Seque	nces 1 thre	ough 27 :			For Tendons	s in Sequence	as 28 thru 32	2 :		
Total Stre	ss Sequen	ce (N) =		27		Total Stres	5	Ref			
Total Elas	tic Shorten	ing Losse	s =	82.7		Total Elastic Shortening Losses = 47.4					
							•			& Attchmt F	
		Lift-off Pre	essure (ksi)	(1)	Stress	No. of	Wire	Original For	ces (kips)		
Tendon	Shop End Field End				Sequence	Effective	Factor	Shop	Remarks		
No.	Predicted	Actual	Predicted	Actual	(n) (2)	Wires (1)	#/163 (4)	End (5)	End (5)	(3)	
(A)	<u>(B)</u>	(C)	(D)	(E)	(F)	(G)	(H)		(J)	(K)	
D111	6810	7000	6810	6900	5	163	1.000	1685	1661		
D112	6800	6950	6840	7000	31	163	1.000	1675	1677		
D113	6800	7100	6840	6850	19	163	1.000	1711	1641	S	
D114	6800	7000	6840	6900	32	162	0.994	1677	1643		
0115	6840	7050	6800	/100	4	163	1.000	1689	1711	E	
D116	6760	6950	6800	6750	29	162	0.994	16/5	1617		
D120	6970	6050	6910	6900	╋──┯──	160	1.000	L-1000	1007	<u> </u>	
D130	6870	0850	0810	6800		163	1.000	1634	1637	a antantantantanta	
0131	6760	6700	6900	6700	29	162	0.900	1616	1505	A	
0132	0760	0/00	0800	0/00	<u> </u>	102	0.334	1014	1003	·	
0211	6810	7100	6870	7000		162	0.994	1698	1660		
D212	6770	6600	6770	6700	27	162	0.994	1588	1612	RCES	
D213	6840	6900	6800	6800	14	163	1.000	1653	1639		
					<u> </u>						
D214	6670	6800	6740	6800	30	161	0.988	1650	1633		
D215	6800	6900	6870	7000	2	163	1.000	1663	1670	C (on line)	
D216	6800	6700	6810	6700	27	163	1.000	1615	1612		
			l								
D302	6530	6550	6510	6600	22	156	0.957	1573	1590		
D303	6760	6700	6770	7030	8	161	0.988	1604	1681		
D304	6840	6800	6800	6600	30	163	1.000	1629	1591	D,S	
D305	6700	6900	6680	6650	20	160	0.982	165/	1602	L	
D306	6810	6/50	6810	6900	<u> </u>	161	0.988	1605	1640	├ ────	
0010	6770	6900	6770	-6900		160	0.004	1636	1626	l	
0310	6200	2000	6770	2000	<u> </u>	102	0.554	1697	1030	E	
0312	6840	6950	6800	6700	30	163	1 000	1665	1615		
0312					<u></u>	L				l	

File: DOMER3.XLW (DOMEINP)

Notes:

(1) Ref. 12, 13, 14 Crystal River 3 R/B Tendon History Sheets - Dome Tendons for Original Stressing. See Attachments B&D.

(2) Ref. 11 Crystal River 3 Tendon Surveillance Loss Calculations. See Attachment C for stress sequences.

- (3) S= Selected Tendons, C = Control tendon, D = Detensioned tendon, A = Alternate tendon
- E = Exempted Tendons (5th Surveillance), All Other Tendons are Adjacents
- (4) Wire factors are calculated based on the number of effective wires divided by 163.

(5) Original forces calculated based on the expression in Section 6.2.2

This page followed by Page 20A

|₈₃

21-Jan-98

5:01 PM

R3

'R3

 $|_{R3}$

82

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27 FILE: DOMER3.XLW (D111)

TENDON: D111 INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1685	FIELD: 1661	AVERAGE:	1673	AVERAGE ALL DOME TENDONS:		1639	9
STRESS SEQUENCE:	5 ••• OF	27	TOTAL ELASTIC SHORT. LOSS:	82.7	WIRE FACTOR	: '	1.00	ю

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIV	IDUAL I	. O \$ \$ E S	LOSSES	PREDICTED FORCES]			
PERIOD	AFTER		STR	ESS	CRE	EP	SHRI	NKAGE	TOTAL	TOTAL		r		NORMALIZING	3
AFTER	CONCRETE	ELASTIC	RELAX	ATION			ļ		FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	ł
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS					1
(YR:MO)	(LOG)	L		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	}	(KIPS)	(KIPS)	(KIPS)	(KIPS)	1
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)	7
															7
1	3.5	142.4	2.57%	42.3	3.28	92.5	15	4.0	281.2	16.81%	1391	1322	1252	12	
3	5.5	142.4	2.60%	42.7	3.86	108.8	18	5.0	298.9	17.87%	1374	1305	1236	12	7
5	7.5	142.4	2.68%	44.1	4.21	118.7	21	6.0	311.2	18.60%	1361	1293	1225	12	
10	12.5	142.4	2.76%	45.4	4.62	130.3	25	7.0	325.1	19.44%	1348	1280	1213	12	
15	17.5	142.4	2.81%	46.2	5.21	146.9	27.5	8.0	343.5	20.54%	1329	1263	1196	12	7
17	19.5	142.4									1327	1260	1194	12	٦
20	22.5	142.4	2.87%	47.2	5.39	152.0	29	8.0	349.6	20.90%	1323	1257	1191	12	7
21:3	23.75	142.4									1321	1255	1189	12	7
25	27.5	142.4	2.89%	47.3	5.59	157.6	30.8	9.0	356.3	21.30%	1316	1251	1185	12	
30	32.5	142.4	2.91%	47.8	5.78	163.0	32	9.0	362.2	21.65%	1310	1245	1179	12	7
35	37.5	142.4	2.93%	48.2	5.98	168.6	33	9.0	368.2	22.01%	1304	1239	1174	12	1
40	42.5	142.4	2.95%	48.5	6,18	174.3	34	10.0	375.2	22.43%	1297	1233	1168	12	7
21 ·	23.5										1322	1256	1190	ס גר די ס	-
21-Jan-98			j.										C	OC ID:S-95-0082 EVISION 3 AGE 20A his page followed	·

1.

page 21 of 191

. •

FM 6.5 Exhibit 5

er's

FM 6.5 Exhibit 5

page 22 of 191

1R3

FM 6.5 Exhibit 5

IRZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES- 6th TENDON SURVEILLANCE DDME TENDON LOSSES WORK SHEET (DOMEHI GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27 FILE: DOMER2.XLW (D112)

TENDON: D112 🗧 INITIAL CONCRETE STRESS (PSI): NA

ORIGINAL FORCES (KIPS):	SHOP: 1675	FIELD: 1677	AVERAGE	1676	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	31 OF	5.00	TOTAL ELASTIC SHORT. LOSS:	47.4	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS				DUAL LO	SSES	LOSSES	PRE	DICTED FORC	ES				
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL		· · · · · ·		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(* .0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
									[T		1		
1	3.5	-4.2	2.57%	42.3	3.28	92.5	15	4.0	134.6	8.03%	1542	1465	1387	·138
3	5.5	-4.2	2.60%	42.7	3.86	108.8	18	5.0	152.3	9.08%	1524	1448	1372	-138
5	7.5	4.2	2.68%	44.1	4.21	118.7	21	6.0	164.6	9.82%	1512	1436	1360	-138
10	12.5	-4,2	2.76%	45.4	4.62	130.3	25	7.0	178.5	10.65%	1498	1423	1348	-138
15	17,5	-4.2	2.81%	46.2	5.21	146. 9	27.5	8.0	195.9	11.75%	1479	1405	1331	-138
17	19. 5	-4.2									. 1477	1403	1329	·138
20	22.5	-4.2	2.87%	47.2	5.39	152.0	29	8.0	203.0	12.11%	1473	1400	1326	138
21:3	23.75	-4.2		_							1472	1398	1324	-138
25	27.5	-4.2	2.89%	47.3	5.59	157.6	30.8	9.0	209.7	12.51%	1466	1393	1320	-138
30	32.5	-4.2	2.91%	47.8	5.78	163.0	32	9.0	215.6	12.86%	1461	1388	1315	·138
35	37.5	-4.2	2.93%	48.2	5.98	168.6	33	9.0	221.6	13.22%	1455	1382	1309	-138
40	42.5	-4.2	2.95%	48.5	6.18	174.3	34	10.0	228.6	13.64%	1448	1375	1303	-138
21	23.5						r				1472	1398	1325	DOC 10:S-95-008 Revision 2 Page 21

page 23 of 191

1 RZ

Row/Col	R	S	Т	U	٦
40	2.5	1350			(
41	3.5	1542	1465	1387	
42	5.5	1524	1448	1372	
43	7.5	1512	1436	1380	
44	19.5	1477	1403	1329	
45	22.5	1473	1400	1328	
46	23.75	1472	1398	1324	
47	27.5	1466	1393	1320	
48	32.5	1461	1388	1315	
49	37.5	1455	1382	1309	
50	42.5	1448	1375	1303	
	From Col B	Col	Con M.	Co	

N.

Typical data used for plotting of Force Curves Copied from cells on losses worksheet

FM 6.5 Exhibit 5

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS) 100 6 7 8 9¹⁰ 1 2 3 5 20 30 40 50 60 70 80 90 1600 **TENDON FORCE CURVE** BASE **TENDON D112** NORMALIZING FACTOR: 138 1500 95% BASE 90% BASE TENDON FORCE (KIPS) 1400 1300 **Predicted Values For** Surveillance 6 (November 1, 1997) BASE 1472 Kips 95% BASE 1398 Kips 1997 1200 90% BASE 1325 Kips NOVEMBER 1, SIT NOV. 1976 : : 182 . 1100 DOC ID:S-95-0082 Revision 2 Page 23 1000 1 3 20 25 30 35 40 0 1 5 10 15 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 182 March 1997 to November 1997.

FM 6.5 Exhibit 5

page 25 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D113)

TENDON: c= D113 INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1711 FIELD: 1641	AVERAGE: 1676	AVERAGE ALL DOME TENDONS:
STRESS SEQUENCE:	19 OF 27	TOTAL ELASTIC SHORT. LOSS:	WIRE FACTOR: 1000

6th TENDON SURVEILLANCE

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIDD	AFTER		STR	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		1		NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAX	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS]				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)		(M)	(N)	(0)	
								1				1			
1	3.5	99.5	2.57%	42.3	3.28	92.5	15	4.0	238.3	14.22%	1438	1366	1294	•35	
3	5.5	99.5	2.60%	42.7	3.86	108.8	18	5.0	256.0	15.27%	1420	1349	1278	-35	
5	7.5	99.5	2.68%	44.1	4.21	118.7	21	6.0	268.3	16.01%	1408	1338	1267	·35	
10	12.5	99.5	2.76%	45.4	4.62	130.3	25	7.0	282.2	16.84%	1394	1324	1255	•35	
15	17.5	99.5	2.81%	46.2	5.21	146.9	27.5	8.0	300.6	17.93%	1376	1307	1238	-35	
17	19.5	99.5					[·····				1373	1305	1236	-35	
20	22.5	99.5	2.87%	47.2	5.39	152.0	29	8.0	306.7	18.30%	1370	1301	1233	-35	
21:3	23.75	99.5									1368	1300	1231	-35	
25	27.5	99.5	2.89%	47.3	5.59	157.6	30.8	9.0	313.4	18.70%	1363	1295	1227	·35	
30	32.5	99.5	2.91%	47.8	5.78	163.0	32	9.0	319.3	19.05%	1357	1289	1221	-35	
35	37.5	99.5	2.93%	48.2	5.98	168.6	33	9.0	325.3	19.41%	1351	1283	1216	-35	
40	42.5	99.5	2.95%	48.5	6.18	174.3	34	10.0	332.3	19.82%	1344	1277	1210	•35	
21 08-Sep-97	23.5						<u> </u>				1368	1300	1231	DOC (D:S-95-0082 REVISION 2 PAGE 24	

IRZ

FM 6.5 Exhibit 5

page 26 of 191

R2.

.

FM 6.5 Exhibit 5

page 27 of 191

FM 6.5 Exhibit 5

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES- 6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMEHI GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27 FILE: DOMER2.XLW (D114)

D114 TENDON:

INITIAL CONCRETE STRESS (PSI): NA

ORIGINAL FORCES (KIPS):	SHOP: 1677. FIELD: 1643	AVERAGE: 1660	AVERAGE ALL DOME TENDONS:
STRESS SEQUENCE:	0F 55	TOTAL ELASTIC SHORT. LOSS: 47.4	WIRE FACTOR: 0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LOS	LOSSES	PREI							
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	FION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(* .0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(8)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
								ĺ		1		<u></u>		
1	3.5	-13.7	2.57%	42.3	3.2B	92.5	15	4.0	125.1	7.54%	1535	1458	1381	-132
· 3	5.5	·13.7	2.60%	42.7	3.86	108.8	18	5.0	142.8	8.60%	1517	1441	1365	-132
5	7.5	-13.7	2.68%	44.1	4.21	118.7	21	6.0	155.1	9.34%	1505	1430	1354	·132
10	12.5	-13.7	2.76%	45.4	4.62	130.3	25	7.0	169.0	10.18%	1491	1416	1342	·132
15	17.5	-13.7	2.81%	46.2	5.21	146.9	27.5	8.0	187.4	11.29%	1473	1399	1325	-132
17	19.5	-13.7									1470	1397	1323	-132
20	22.5	-13.7	2.87%	47.2	5.39	152.0	29	8.0	193.5	11.66%	1466	1393	1320	·132
21:3	23.75	-13.7									1465	1392	1318	-132
25	27.5	+13.7	2.89%	47.3	5.59	157.6	30.8	9.0	200.2	12.06%	1460	1387	1314	-132
30	32.5	-13.7	2.91%	47.8	5.78	163.0	32	9.0	206.1	12.42%	1454	1381	1308	-132
35	37.5	-13.7	2.93%	48.2	5.98	168.6	33	9.0	212.1	12.78%	1448	1375	1303	-132
40	42.5	-13.7	2.95%	48.5	6.18	174.3	34	10.0	219.1	13.20%	1441	1369	1297	-132
21 08-Sen-97	23.5					· · · · · · · · · · · · · · · · · · ·					1465	1392	1319	DOC 10:5:95-0082 REVISION 2 PAGE 26

page 28 of 191 192

FM 6.5 Exhibit 5

page 29 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27 FILE: DOMER2.XLW (D115)

D115 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1689 FIELD. 171	AVERAGE: 1700	AVERAGE ALL DOME TENDONS:
STRESS SEQUENCE:	4 OF 27	TOTAL ELASTIC SHORT. LOSS: 82.7	WIRE FACTOR: 1.000

6th TENDON SURVEILLANCE

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIV	IDUAL LI	OSSES		TOTAL LOSSES		PREI				
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		1	·	NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX#	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				ł
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	· (B)	{C}	{D}	(E)	(F)	(G)	(H)	(1)	{J}	(K)		(M)	(N)	(0)
							1							
1	3.5	145.4	2.57%	42.3	3.28	92.5	15	4.0	284.2	16.72%	1416	1345	1274	-12
3	5.5	145.4	2.60%	42.7	3.86	108.8	18	5.0	301.9	17.76%	1398	1328	1258	-12
5	7.5	145.4	2.68%	44.1	4.21	118.7	21	6.0	314.2	18.48%	1386	1317	1247	•12
10	12.5	145.4	2.76%	45.4	4.62	130.3	25	7.0	328.1	19.30%	1372	1303	1235	-12
15	17.5	145.4	2.81%	46.2	5.21	146.9	27.5	8.0	346.5	20.38%	1354	1286	1218	-12
17	19.5	145.4		•							1351	1284	1216	-12
20	22.5	145.4	2.87%	47.2	5.39	152.0	29	8.0	352.6	20.74%	1348	1280	1213	-12
21:3	23.75	145.4									1346	1279	1211	-12
25	27.5	145.4	2.89%	47.3	5.59	157.6	30.8	9.0	359.3	21.14%	1341	1274	1207	•12
30	32.5	145.4	2.91%	47.8	5.78	163.0	32	9.0	365.2	21.48%	1335	1268	1201	-12
35	37.5	145.4	2.93%	48.2	5.98	168.6	33	9.0	371.2	21.83%	1329	1263	1196	·12
40	42.5	145.4	2.95%	48.5	6.18	174.3	34	10.0	378.2	22.25%	1322	1256	1190	-12
21 08-Sep-97	23.5										1346	1279	1212	00C ID:S:95-0082 REVISION 2 PAGE 28

page 30 of 191

RZ

RZ

page 31 of 191

FM 6.5 Exhibit 5

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES- 6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMEHI GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27 FILE: DOMER2.XLW (D116)

TENDON: 0116 INITIAL CONCRETE STRESS (PSI): NA

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

SHOP: 1675 29 OF FIELD: 1617

AVERAGE: 1646 TOTAL ELASTIC SHORT. LOSS: 47.4 AVERAGE ALL DOME TENDONS:

ME TENDONS: 1639 Wire Factor: 0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRESS CREEP SHRINKAGE TOTAL TOTAL												
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	. m in/in	FORCE	LOSS	LOSS					
(YR:MO)	(LDG)			(KIPS)	(* .0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(R)	(1)	(J)	(K)	(L)	(M)	(N)	(0)	
1	3.5	14.7	2.57%	42.3	3.28	92.5	15	4.0	153.5	9.33%	1492	1418	1343	90	
3	5.5	14.7	2.60%	42.7	3.86	108.8	18	5.0	171.2	10.40%	1475	1401	1327	-90	
5	7.5	14.7	2.68%	44.1	4.21	118.7	21	6.0	183.5	11.15%	1462	1389	1316	-90	
10	12.5	14.7	2.76%	45.4	4.62	130.3	25	7.0	197.4	12.00%	1448	1376	1304	-90	
15	17.5	14.7	2.81%	46.2	5.21	146.9	27.5	8.0	215.8	13.11%	1430	1358	1287	· 9 0	
17	19.5	14.7									1428	1356	1285	-90	
20	22.5	14.7	2.87%	47.2	5.39	152.0	29	8.0	221.9	13.49%	1424	1353	1281	- 9 0	
21:3	23.75	14.7									1422	1351	1280	·90	
25	27.5	14.7	2.89%	47.3	5.59	157.6	30.8	9.0	228.6	13.89%	1417	1346	1275	-90	
30	32.5	14.7	2.91%	47.8	5.78	163.0	32	9.0	234.5	14.25%	1411	1341	1270	·90	
35	37.5	14.7	2.93%	48.2	5.98	168.6	33	9.0	240.5	14.62%	1405	1335	1265	-90	
40	42.5	14.7	2.95%	48.5	6.18	174.3	34	10.0	247.5	15.04%	1398	1328	1258	·90	
21 08-Sep-97	23.5								<u></u>		1423	1351	1280	DOC ID:S-95-0082 REVISION 2 PAGE 30	

182

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS) 100 9¹⁰ 1 8 2 6 7 3 5 20 30 50 60 70 80 90 40 4 1600 **TENDON FORCE CURVE TENDON D116 NORMALIZING FACTOR: -90** BASE 1500 95% BASE **TENDON FORCE (KIPS)** 1400 90% BASE 1300 **Predicted Values For** Surveillance 6 (November 1, 1997) 1200 NOVEMBER 1, 1997 BASE 1423 Kips 95% BASE 1351 Kips SIT NOV. 1976 90% BASE 1280 Kips 1100 DOC ID:S-95-0082 Revision 2 Page 31 1000 3 5 25 30 35 40 0 1 10 15 20 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997.

FM 6.5 Exhibit 5

page 33 of 191

RZ_

182

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

6th TENDON SURVEILLANCE

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D130)

D130 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1634	FIELD: 1637	AVERAGE:	1635	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	1 OF	27	TOTAL ELASTIC SHORT, LOSS:	82.7	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT	YEARS.		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STR	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL	· ·			NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS					
{YR:MO}	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(0)	{E}	(1)	(G)	(H)	(1)	(J)	(K)		(M)	(N)	(0)	
			I									I			
1	3.5	154.6	2.57%	42.3	3.28	92.5	15	4.0	293.4	17.94%	1342	1275	1208	60	
3	5.5	154.6	2.60%	42.7	3.86	108.8	18	5.0	311.1	19.03%	1324	1258	1192	60	
5	7.5	154.6	2.68%	44.1	4.21	118.7	21	6.0	323.4	19.78%	1312	1246	1181	60	
10	12.5	154.6	2.76%	45.4	4.62 ·	130.3	25	7.0	337.3	20.63%	1298	1233	1168	60	
15	17.5	154.6	2.81%	46.2	5.21	146.9	27.5	8.0	355.7	21.75%	1280	1216	1152	60	
17	19.5	154.6									1277	1213	1149	60	
20	22.5	154.6	2.87%	47.2	5.39	152.0	29	8.0	361.8	22.13%	1274	1210	1146	60	
21:3	23.75	154.6									1272	1208	1145	60	
25	27.5	154.6	2.89%	47.3	5.59	157.6	30.8	9.0	368.5	22.54%	1267	1203	1140	60	
30	32.5	154.6	2.91%	47.8	5.78	163.0	32	9.0	374.4	22.90%	1261	1198	1135	60	
35	37.5	154.6	2.93%	48.2	5.98	168.6	33	9.0	380.4	23.26%	1255	1192	1129	60	
40	42.5	154.6	2.95%	48.5	6.18	174.3	34	10.0	387.4	23.69%	1248	1186	1123	60	
21 08 Sec 97	23.5				-						1272	1209	1145	DOC ID:S-95-0082 REVISION 2 PAGE 32	

RZ

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS) 100 10 20 2 3 5 789 30 60 70 80 90 6 40 50 1600 **TENDON FORCE CURVE TENDON D130** NORMALIZING FACTOR: 60 1500 NOVEMBER 1, 1997 1400 TENDON FORCE (KIPS) BASE **Predicted Values For** Surveillance 6 (November 1, 1997) BASE 1272 Kips 95% BASE 1209 Kips 1300 95 % BASE RZ 90% BASE 1145 Kips 90 % BASE 1200 1976 SIT NOV 1100 DOC 1D:S:95-0082 Revision 2 Page 33 1000 5 3 0 1 10 15 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. 1R2

FM 6.5 Exhibit 5

page 35 of 191

FM 6.5 Exhibit 5

IR2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES 6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMEHI GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27 FILE: DOMER2.XLW (D131)

TENDON: __D131 🔗 INITIAL CONCRETE STRESS (PSI): NA

ORIGINAL FORCES (KIPS):	SHOP: 31616	FIELD: 1585	AVERAGE:	1601	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	29 OF		TOTAL ELASTIC SHORT. LOSS:	47.4	WIRE FACTOR:	0.988

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIVI	DVAL LOS	LOSSES	PRE							
PERIOD	AFTER		STRESS CREEP SHRINKAGE											NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(* .0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
{A}	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0) ·
												T		
1	3.5	14.7	2.57%	42.3	3.28	92.5	15	4.0	153.5	9.59%	1447	1375	1303	-46
3	5.5	14.7	2.60%	42.7	3.86	108.8	18	5.0	171.2	10.70%	1430	1358	1287	-46
5	7.5	14.7	2.68%	44.1	4.21	118.7	21	6.0	183.5	11.47%	1417	1346	1276	-46
10	12.5	14.7	2.76%	45.4	4.62	130.3	25	7.0	197:4	12.33%	1403	1333	1263	-46
15	17.5	14.7	2.81%	46.2	5.21	146.9	27.5	8.0	215.8	13.48%	1385	1316	1246	-46
17	19.5	14.7								· · · · ·	1383	1313	1244	-46
20	22.5	14.7	2.87%	47.2	5.39	152.0	29	8.0 ·	221.9	13.86%	1379	1310	1241	-46
21:3	23.75	14.7			· ·						1377	1308	1239	-46
25	27.5	14.7	2.89%	47.3	5.59	157.6	30.8	9.0	228.6	14.28%	1372	1304	1235	-46
30	32.5	14.7	2.91%	47.8	5.78	163.0	32	9.0	234.5	14.65%	1366	1298	1230	-46
35	37.5	14.7	2.93%	48.2	5.98	168.6	33	9.0	240.5	15.03%	1360	1292	1224	-46
40	42.5	14.7	2.95%	48.5	6.18	174.3	34	10.0	247.5	15.46%	1353	1286	1218	-46
21 08-Sen-97	23.5										1378	1309	1240	DOC ID:S:95-0082 Revision 2 Page 34

page 36 of 191

IRZ

page 37 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27 FILE: DOMER2.XLW (D132)

TENDON: >~0132 ³ INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1614	FIELD: 1605	AVERAGE:	1610	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	> 27 OF	27	TOTAL ELASTIC SHORT. LOSS:	82.7	WIRE FACTOR:	0.994

6th TENDON SURVEILLANCE

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIV	DICTED FORCES									
PERIOD	AFTER		STRI	SS	CRE	EP	SHRIA	IKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(0)	(D)	(E)	{F}	(G)	(R)	(1)	(J)	(K)		(M)	(N)	(0)
									<u> </u>					
1	3.5	75.0	2.57%	42.3	3.28	92.5	15	4.0	213.8	13.28%	1396	1326	1256	6
3	5.5	75.0	2.60%	42.7	3.86	108.8	18	5.0	231.5	14.38%	1378	1309	1240	6
5	7.5	75.0	2.68%	44.1	4.21	118.7	21	6.0	243.8	15.15%	1366	1298	1229	6
10	12.5	75.0	2.76%	45.4	4.62	130.3	25	7.0	257.7	16.01%	1352	1284	1217	6
15	17.5	75.0	2.81%	46.2	5.21	146.9	27.5	8.0	276.1	17,15%	1334	1267	1200	6
17	19.5	75.0									1331	1265	1198	6
20	22.5	75.0	2.87%	47.2	5.39	152.0	29	8.0	282.2	17.53%	1327	1261	1195	6
21:3	23.75	75.0									1326	1260	1193	6
25	27.5	75.0	2.89%	47.3	5.59	157.6	30.8	9.0	288.9	17.95%	1321	1255	1189	6
30	32.5	75.0	2.91%	47.8	5.78	163.0	32	9.0	294.8	18.31%	1315	1249	1183	6
35	37.5	75.0	2.93%	48.2	5.98	168.6	33	9.0	300.8	18.69%	1309	1243	1178	6
40	42.5	75.0	2.95%	48.5	6.18	174.3	34	10.0	307.8	19.12%	1302	1237	1172	6
21 08-Sep-97	23.5										1326	1260	1194	OOC ID:S-95-0082 Revision 2 Page 36

08-Sep-97

FM 6.5 Exhibit 5 RZ

page 38 of 191

IR2

page 39 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

6th TENDON SURVEILLANCE

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27 FILE: DOMER2.XLW (D211)

D211 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1698	FIELD: 1660	AVERAGE: 1679	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	1 OF	27	TOTAL ELASTIC SHORT. LOSS: 82.7	WIRE FACTOR:	0.994

NDTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIV	EDICTED FORCES									
PERIOD	AFTER		STR	ESS	CRE	EP	SHRIM	KAGE	TOTAL	TOTAL		1		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	ATION	· ·				FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(0)	(0)	(E)	(F)	(G)	(H)	(1)	[]	(K)	<u> </u>	(M)	(N)	(0)
					T T		<u> </u>							
1	3.5	154.6	2.57%	42.3	3.28	92.5	15	4.0	293.4	17.48%	1386	1316	1247	18
3	5.5	154.6	2.60%	42.7	3.86	108.8	18	5.0	311.1	18.53%	1368	1299	1231	18
5	7.5	154.6	2.68%	44.1	4.21	118.7	21	6.0	323.4	19.26%	1356	1288	1220	18
10	12.5	154.6	2.76%	45.4	4.62	130.3	25	7.0	337.3	20.09%	1342	1275	1207	18
15	17.5	154.6	2.81%	46.2	5.21	146.9	27.5	8.0	355.7	21.19%	1323	1257	1191	18
17	19.5	154.6									1321	1255	1189	18
20	22.5	154.6	2.87%	47.2	5.39	152.0	29	8.0	361.8	21.55%	1317	1251	1185	18
21:3	23.75	154.6									1315	1250	1184	18
25	27.5	154.6	2.89%	47.3	5.59	157.6	30.8	9.0	368.5	21.95%	1310	1245	1179	18
30	32.5	154.6	2.91%	47.8	5.78	163.0	32	9.0	374.4	22.30%	1305	1239	1174	18
35	37.5	154.6	2.93%	48.2	5.98	168.6	33	9.0	380.4	22.66%	1299	1234	1169	18
40	42.5	154.6	2.95%	48.5	6.18	174.3	34	10.0	387.4	23.08%	1292	1227	1162	18
21 08-Sep-97	23.5										1316	1250	1184	DOC 10:S-95-0082 REVISION 2 PAGE 38

page 40 of 191

'Ŕz

FM 6.5 Exhibit 5

κz

08-Sep-97

page 41 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

6th TENDON SURVEILLANCE

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D212)

TENDON: D212 **INITIAL CONCRETE STRESS (PSI) :** NA

ORIGINAL FORCES (KIPS):	SHOP: 1588	FIELD: 1612	AVERAGE: 1600	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	27 OF	27	TOTAL ELASTIC SHORT. LOSS: 82.7	WIRE FACTOR:	0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIV	DICTED FORCES									
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		· · · · ·		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX/	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS			1	
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	- (J)	(K)		(M)	(N)	{0}
		[[[
1	3.5	75.0	2.57%	42.3	3.28	92.5	15	4.0	213.8	13.36%	1386	1317	1248	15
3	5.5	75.0	2.60%	42.7	3.86	108.8	18	5.0	231.5	14.47%	1369	1300	1232	15
5	7.5	75.0	2.68%	44.1	4.21	118.7	21	6.0	243.8	15.24%	1356	1288	1221	15
10	12.5	75.0	2.76%	45.4	4.62	130.3	25	7.0	257.7	16.11%	1342	1275	1208	15
15	17.5	75.0	2.81%	46.2	5.21	146.9	27.5	8.0	276.1	17.26%	1324	1258	1192	15
17	19.5	75.0									1321	1255	1189	15
20	22.5	75.0	2.87%	47.2	5.39	152.0	29	8.0	282.2	17.64%	1318	1252	1186	15
21:3	23.75	75.Q									1316	1250	1185	15
25	27.5	75.0	2.89%	47.3	5.59	157.6	30.8	9.0	288.9	18.06%	1311	1246	1180	15
30	32.5	75.0	2.91%	47.8	5.78	163.0	, 32	9.0	294.8	18.42%	1305	1240	1175	15
35	37.5	75.0	2.93%	48.2	5.98	168.6	33	9.0	300.8	18.80%	1299	1234	1169	15
40	42.5	75.0	2.95%	48.5	6.18	174.3	34	10.0	307.8	19.24%	1292	1228	1163	15
21 08.Sep.97	23.5		· 2								1316	1251	1185	PAGE 40

FM 6.5 Exhibit 5 Rz

page 42 of 191

RZ

page 43 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D213)

D213 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1653	FIELD: 1639	AVERAGE: 1646	AVERAGE ALL DOME TENDONS: 1639
STRESS SEQUENCE:	14 OF	7. 27	TOTAL ELASTIC SHORT. LOSS: 82.7	WIRE FACTOR:

6th TENDON SURVEILLANCE

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEAHS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAX/	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in∤in	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(8)	(C)	(0)	(E)	(F)	(G)	{H}	(1)	(J)	(K)	(L)	(M)	(N)	(0)	
							[
1	3.5	114.8	2.57%	42.3	3.28	92.5	15	4.0	253.6	15.41%	1393	1323	1253	10	
3	5.5	114.8	2.60%	42.7	3.88	108.8	18	5.0	271.3	16.48%	1375	1306	1237	10	
5	7.5	114.8	2.68%	44,1	4.21	118.7	21	6.0	283.6	17.23%	-1363	1294	1226	10	
10	12.5	114.8	2.76%	45.4	4.62	130.3	25	7.0	297.5	18.07%	1349	1281	1214	10	
15	17.5	114.8	2.81%	46.2	5.21	146.9	27.5	8.0	315.9	19.19%	1330	1264	1197	10	
17	19.5	114.8									1328	1261	1195	10	
20	22.5	114.8	2.87%	47.2	5.39	152.0	29	8.0	322.0	19.56%	1324	1258	1192	10	
21:3	23.75	114.8					[1322	1256	1190	10	
25	. 27.5	114.8	2.89%	47.3	5.59	157.6	30.8	9.0	328.7	19.97%	1317	1252	1186	10	
30	32.5	114.8	2.91%	47.8	5.78	163.0	32	9.0	334.6	20.33%	1312	1246	1180	10	
35	37.5	114.8	2.93%	48.2	5.98	168.6	33	9.0	340.6	20.69%	1306	1240	1175	10	
40	42.5	114.8	2.95%	48.5	6.18	174.3	34	10.0	347.6	21.12%	1299	1234	1169	10	
21 08.Sep.97	23.5				· · · · · · · · · · · · · · · · · · ·				,		1323	1257	1190	DOC ID:S:95-0082 REVISION 2 PAGE 42	

page 45 of 191

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES. 6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMEHI GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27 FILE: DOMER2.XLW (D214)

TENDON: E D214

INITIAL CONCRETE STRESS (PSI): NA

ORIGINAL FORCES (KIPS):	SHOP: 1650 FIELD: 1633	AVERAGE: 1642	AVERAGE ALL DOME TENDONS: 1639
STRESS SEQUENCE:	30 OF 5	TOTAL ELASTIC SHORT. LOSS: 47.4	WIRE FACTOR: 0.988

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS		IN DIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES													
PERIOD	AFTER		STRE	SS ·	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL		1		NORMALIZING		
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR		
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS		••				
(YR:MO)	(LOG)			(KIPS)	(* .0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(K1PS)	(KIPS)		
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(i)	(J)	(K)	(L)	(M)	(N)	(0)		
			ł							Ţ						
1	3.5	5.3	2.57%	42.3	3.28	92.5	- 15	4.0	144.1	8.77%	1498	1423	1348	·95		
3	5.5 ·	5.3	2.60%	42.7	3.86	108.8	18	5.0	161.8	9.85%	148D	1406	1332	-95		
5	7.5	5.3	2.68%	44.1	4.21	118.7	21	6.0	174.1	10.60%	1468	1394	1321 -	·95		
10	12.5	5.3	2.76%	45.4	4.62	130.3	25	7.0	188.0	11.45%	1454	1381	1308	95		
15	17.5	5.3	2.81%	46.2	5.21	146.9	27.5	8.0	206.4	12.57%	1435	1364	1292	·95		
17	19.5	5.3									1433	1361	1290	-95		
20	22.5	5.3	2.87%	47.2	5.39	152.0	29	8.0	212.5	12.94%	1429	1358	1286	·95		
21:3	23.75	5.3									1428	1356	1285	-95		
25	27.5	5.3	2.89%	47.3	5.59	157.6	30.8	9.0	219.2	13.35%	1423	1352	1280	·95		
30	32.5	5.3	2.91%	47.8	5.78	163.0	32	9.0	225.1	13.71%	1417	1346	1275	-95		
35	37.5	5.3	2.93%	48.2	5.98	168.6	33	9.0	231.1	14.07%	1411	1340	1270	-95		
40	42.5	5.3	2.95%	48.5	6.18	174.3	34	10.0	238.1	14.50%	1404	1334	1263	-95		
21	23.5								••••••••••		1428	1357	1285	DO PA PA		
08-Sep-97														C 10:S-95-0082 Vision 2 Ge 44		

RZ

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS) 100 8 9¹⁰ 1 6 7 2 3 5 20 60 70 80 90 30 40 50 1600 **TENDON FORCE CURVE TENDON D214** NORMALIZING FACTOR: -95 BASE 1500 95% BASE **TENDON FORCE (KIPS)** 1400 90% BASE 1300 **Predicted Values For** Surveillance 6 (November 1, 1997) BASE 1428 Kips 1200 VOVEMBER 1, 199 95% BASE 1357 Kips SIT NOV. 1976 90% BASE 1285 Kips **I**RZ 1100 DOC ID:S:95-0082 Revision Z PAGE 45 1000 25 30 35 40 3 5 10 15 20 0 1 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. RZ FM 6.5 Exhibit 5

page 47 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

6th TENDON SURVEILLANCE

FM 6.5 Exhibit 5

RZ

RZ

page 48 of 191

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D215)

D215 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1663 FIELD 1670	AVERAGE: 1666	AVERAGE ALL DOME TENDONS:
STRESS SEQUENCE:	2 OF 27	TOTAL ELASTIC SHORT. LOSS: 82.7	WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			ES										
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		T	r	NORMALIZING
AFTER	CONCRETE	FLASTIC	RELAX	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT	PERCENT	20802	CR STR	FORCE	m in/in	FORCE	1055	1055				
(YB·MO)	(1 OG)			(KIPS)	(* 0001)	(KIPS)	•11 (23)(11)	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
	(200) (B)		1 (1)		(10001)		<u>н</u>	10	<u>(J)</u>					
100		l										1	I	
1	3.5	151.6	2.57%	42.3	3.28	92.5	15	4.0	290.4	17.42%	1376	1307	1239	27
3	5.5	151.6	2.60%	42.7	3.86	108.8	18	5.0	308.1	18.49%	1358	1290	1223	27
5	7.5	151.6	2.68%	44.1	4.21	118.7	21	6.0	320.4	19.22%	1346	1279	1212	27
10	12.5	151.6	2.76%	45.4	4.62	130.3	25	7.0	334.3	20.06%	1332	1266	1199	27
15	17.5	151.6	2.81%	46.2	5.21	146.9	27.5	8.0	352.7	21.16%	1314	1248	1182	27
17	19.5	151.6									1311	1246	1180	27
20	22.5	151.6	2.87%	47.2	5.39	152.0	29	8.0	358.8	21.53%	1308	1242	1177	27
21:3	23.75	151.6					i				1306	1241	1175	27
25	27.5	151.6	2.89%	47.3	5.59	157.6	30.8	9.0	365.5	21.93%	1301	1236	1171	27
30	32.5	151.6	2.91%	47.8	5.78	163.0	32	9.0	371.4	22.28%	1295	1230	1166	27
35	37.5	151.6	2.93%	48.2	5.98	168.6	33	9.0	377.4	22.64%	1289	1225	1160	27
40	42.5	151.6	2.95%	48.5	6.18	174.3	34	10.0	384.4	23.06%	1282	1218	1154	27
21	23.5										1306	1241	1176	DOC ID:S-95-0082 REVISION 2 PAGE 46

08-Sep-97

÷

; ::

FM 6.5 Exhibit 5

page 49 of 191

'kz

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

6th TENDON SURVEILLANCE

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D216)

0216 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

DRIGINAL FORCES (KIPS): STRESS SEQUENCE:

SHOP: 51615 FIELD: 1612 27 OF 27

AVERAGE: TOTAL ELASTIC SHORT. LOSS: -90

1614 82.7

AVERAGE ALL DOME TENDONS: WIRE FACTOR:

1639 1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS			INDIV	PRE	DICTED FORC								
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIM	IKAGE	TOTAL	TOTAL		}		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION	}		Į		FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m inlin	FORCE	LOSS	LOSS			}	
(YR:MD)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	[[1]]	· (K)	(I)	(M)	(N)	(0)
					1		}		1	1				
1	3.5	75.0	2.57%	42.3	3.28	92.5	15	4.0	213.8	13.25%	1400	1330	1260	2
3	5.5	75.0	2.60%	42.7	3.86	108.8	18	5.0	231.5	14.35%	1382	1313	1244	2
5	7.5	75.0	2.68%	44.1	4.21	118.7	21	6.0	243.8	15.11%	1370	1301	1233	2
10	12.5	75.0	2.76%	45.4	4.62	130.3	25	7.0	257,7	15.97%	1356	1288	1220	2
15	17.5	75.0	2.81%	46.2	5.21	146.9	27.5	8.0	276.1	17.11%	1338	1271	1204	2
17	19.5	75.0									1335	1268	1202	2
20	22.5	75.0	2.87%	47.2	5.39	152.0	29	8.0	282.2	17.49%	1331	1265	1198	2
21:3	23.75	75.0									1330	1263	1197	2
25	27.5	75.0	2.89%	47.3	5.59	157.6	30.8	9.0	288.9	17.90%	1325	1259	1192	2
30	32.5	75.0	2.91%	47.8	5.78	163.0	32	9.0	294.8	18.27%	1319	1253	1187	2
35	37.5	75.0	2.93%	48.2	5.98	168.6	33	9.0	300.8	18.64%	1313	1247	1182	2
40	42.5	75.0	2.95%	48.5	6.18	174.3	34	10.0	307.8	19.07%	1306	1241	1175	2
21 08-Sep-97	23.5										1330	1264	1197	DOC ID:S-95-0082 REVISION 2 PAGE 48

08-Sep-97

Nage 50 of 191

S

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-	6th TENDON SURVEILLANCE	
DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)		
USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27		
FILE: DOMER3.XLW (D302)		

D302 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1573	FIELD: 1590	AVERAGE:	1582	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	22 OF	27	TOTAL ELASTIC SHORT, LOSS:	82.7	WIRE FACTOR:	0.957

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

					IDUAL	LOSSES			TOTAL LOSSES PREDICTED FORCES				CES	
INSPECT.	YEARS													
PERIOD	AFTER		STR	ESS	CRI	EEP	SHRII	NKAGE	TOTAL	TOTAL			`	NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(<u>(C)</u>	(D)	(E)	(F)	(G)	(н)	<u>()</u>	(J)	(K)	(L)	(M)	(N)	(0)
1	3.5	90.3	2.57%	42.3	3.28	92.5	15	4.0	229.1	14.48%	1353	1285	1217	48
3	5.5	90.3	2.60%	42.7	3.86	108.8	18	5.0	246.8	15.60%	1335	1268	1201	48
5	7.5	90.3	2.68%	44.1	4.21	118.7	21	6.0	259.1	16.38%	1323	1257	1190	48
10	12.5	90.3	2,76%	45.4	4.62	130.3	25	7.0	273.0	17.26%	1309	1243	1178	48
15	17.5	90.3	2.81%	46.2	5.21	146.9	27.5	8.0	291.4	18.42%	1290	1226	1161	48
17	19.5	90.3									1288	1224	1159	48
20	22.5	90.3	2.87%	47.2	5.39	152.0	29	8.0	297.5	18.81%	1284	1220	1156	48
21:3	23.75	90.3									1283	1218	1154	48
25	27.5	90.3	2.89%	47.3	5.59	157.6	30.8	9.0	304.2	19.23%	1278	1214	1150	48
30	32.5	90.3	2.91%	47.8	5.78	163.0	32	9.0	310.1	19.61%	1272	1208	1145	48
35	37.5	90.3	2.93%	48.2	5.98	168.6	33	9.0	316.1	19.98%	1266	1202	1139	48
40	42.5	90.3	2.95%	48.5	6.18	174.3	34	10.0	323.1	20.43%	1259	1196	1133	48
21	23.5										1283	1219	1155 5	
21-Jan-98			J	,									- 440. - 440.	OC ID:S-95-0082 EVISION 3 AGE 49A his page followed

r.

page 52 o<mark>©</mark>191

FM 6.5 Exhibit 5

di.

FM 6.5 Exhibit-6

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

6th TENDON SURVEILLANCE

NA

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27 FILE: DOMER2.XLW (D303)

TENDON: D303 INITIAL CONCRETE STRESS (PSI) :

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

FIELD: 1681 SHOP: 1604 OF 27

AVERAGE: 1643 82.7 TOTAL ELASTIC SHORT, LOSS:

AVERAGE ALL DOME TENDONS:

WIRE FACTOR:

1639 0.988

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

8

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STR	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		-		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m inhin	FORCE	LOSS	LOSS			{	
(YR:MD)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	L	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	[(J)	T (K)		(M)	{N}	(0)
					I				I					
1	3.5	133.2	2.57%	42.3	3.28	92.5	15	4.0	272.0	16.56%	1371	1302	1234	32
3	5.5	133.2	2.60%	42.7	3.86	108.8	18	5.0	289.7	17.64%	1353	1285	1218	32
5	7.5	133.2	2.68%	44.1	4.21	118.7	21	6.0	302.0	18.38%	1341	1274	1207	32
10	12.5	133.2	2.76%	45.4	4.62	130,3	25	7.0	315.9	19.23%	1327	1260	1194	32
15	17.5	133.2	2.81%	46.2	5.21	146.9	27.5	8.0	334.3	20.35%	1308	1243	1178	32 ·
17	19.5	133.2			· · · · ·					1	1306	1241	1175	32
20	22.5	133.2	2.87%	47.2	5.39	152.0	29	8.0	340.4	20.72%	1302	1237	1172	32
21:3	23.75	133.2									1301	1236	1171	32
25	27.5	133.2	2.89%	47.3	5.59	157.6	30.8	9.0	347.1	21.13%	1296	1231	1166	32
30	32.5	133.2	2.91%	47.8	5.78	163.0	32	9.0	353.0	21.49%	1290	1225	1161	32
35	37.5	133.2	2.93%	48.2	5.98	168.6	33	9.0	359.0	21.85%	1284	1220	1155	32
40	42.5	133.2	2.95%	48.5	6.18	174.3	34	10.0	366.0	22.28%	1277	1213	1149	32
21	23.5		<u></u>		······································		<u> </u>	·	•	<u> </u>	1301	1236	1171	DOC 10:5:95-0082 HEVISION 2 PAGE 50

--, ¹

RZ

100 50 60 70 80 90 6 7 8 9 3 5 20 30 2 40 1600 **TENDON FORCE CURVE TENDON D303 NORMALIZING FACTOR: 32** 1500 1400 TENDON FORCE (KIPS) BASE 95 % BASE 1300 90 % BASE 1200 BER 1, 1997 SIT NOV 1976 **Predicted Values For** Surveillance 6 (November 1, 1997) 1100 NOVEM BASE 1301 Kips DOC ID:S-95-0082 REVISION 2 PAGE 51 95% BASE 1236 Kips 90% BASE 1171 Kips 1000 15 3 5 10 20 25 30 35 40 0 1 Note: Revision 2 is generated to change start date

page 55 of 191

IRL

182

SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76)

for the 6th surveillance inspection from March 1997 to November 1997.

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS)

10

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES- 6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMEHI GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27

FILE: DOMER2.XLW (D304)

TENDON: D304

INITIAL CONCRETE STRESS (PSI): NA

.....

ORIGINAL FORCES (KIPS):	SHOP: 1629 FIELD: 1591	AVERAGE: 1610	AVERAGE ALL DOME TENDONS:
STRESS SEQUENCE:	30 OF 5	TOTAL ELASTIC SHORT. LOSS: 47.4	WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS				OUAL LO	SSES	-		TOTAL	LOSSES	PRE	DICTED FOR	ES	
PERIOD	AFTER		STRE	SS	CRE	EP	SHRI	VKAGE	TOTAL	TOTAL		1		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m infin	FORCE	LOSS	LOSS	[l	t i	
(YR:MO)	(LOG)			(KIPS)	(* .0001)	(KIPS)	[(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	()	(J)	(K)	(L)	(M)	(N)	(0)
]	-					<u> </u>			
1	3.5	5.3	2.57%	42.3	3.28	92.5	15	4.0	144.1	8.95%	1466	1393	1319	-64
3	5.5	5.3	2.60%	42.7	3.86	108.8	18	5.0	161.8	10.05%	1448	1376	1303	-64
5	7.5	5.3	2.68%	44.1	4.21	118.7	21	6.0	174.1	10.81%	1436	1364	1292	-64
10	. 12.5	5.3	2.76%	45.4	4.62	130.3	25	7.0	188.0	11.67%	1422	1351	1280	-64
15	17.5	5.3	2.81%	46.2	5.21	146.9	27.5	8.0	206.4	12.82%	1404	1333	1263	-64
17	19.5	5.3									1401	1331	1261	∙64
20	22.5	5.3	2.87%	47.2	5.39	152,0	29	8.0	212.5	13.20%	1398	1328	1258	-64
21:3	23.75	5.3									1396	1326	1256	·64
25	27.5	5.3	2.89%	47.3	5.59	157.6	30.8	9.0	219.2	13.61%	1391	1321	1252	-64
30	32.5	5.3	2.91%	47.8	5.78	163.0	32	9.0	225.1	13.98%	1385	1316	1246	-64
35	37.5	5.3	2.93%	48.2	5.98	168.6	33	9.0	231.1	14.35%	1379	1310	1241	-64
40	42.5	5.3	2.95%	48.5	6,18	174.3	34	10.0	238.1	14.79%	1372	1303	1235	-64
21 11-Sep-97	23.5										1396	1326	1257	DOC ID:S-95-0082 REVISION 2 PAGE 52

page 56 of 191

IRZ

1639 1.000

page 57 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES

6th TENDON SURVEILLANCE

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D305)

Ī

0305 TENDON: INITIAL CONCRETE STRESS (PSI) : NA j.

ORIGINAL FORCES (KIPS):	SHOP: 1657	FIELD: 1602	AVERAGE: 16	29 AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	20 OF	27	TOTAL ELASTIC SHORT. LOSS: 82	.7 WIRE FACTOR:	0.982

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS		x	INDIV	IDUAL L	OSSES			TOTAL	LOSSES	PRE	DICTED FOR(SES .	
PERIOD	AFTER		STR	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	· ·	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	_(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(U)
	·													
1	3.5	96.4	2.57%	42.3	3.28	92.5	15	4.0	235.2	14.44%	1394	1324	1255	8
3	5.5	96.4	2.60%	42.7	3.86	108.8	18	5.0	252.9	15.53%	1376	1307	1239	8
5	7.5	96.4	2.68%	44.1	4.21	118.7	21	6.0	265.2	16.28%	1364	1296	1228	8
10	12.5	96.4	2.76%	45.4	4.62	130.3	25	7.0	279.1	17.13%	1350	1283	1215	8
. 15	17.5	96.4	2.81%	46.2	5.21	146.9	27.5	8.0	297.5	18.26%	1332	1265	1198	8
17	19.5	96.4									1329	1263	1196	8
20	22.5	96.4	2.87%	47.2	5.39	152.0	29	8.0	303.6	18.64%	1326	1259	1193	8
21:3	23.75	96.4									1324	1258	1191	8
25	27.5	96.4	2.89%	47.3	5.59	157.6	30.8	9.0	310.3	19.05%	1319	1253	1187	8
30	32.5	96.4	2.91%	47.8	5.78	163.0	32	9.0	316.2	19.41%	1313	1247	1182	8
35	37.5	96.4	2.93%	48.2	5.98	168.6	33	9.0	322.2	19.78%	1307	1242	1176	8
40	42.5	96.4	2.95%	48.5	6.18	174.3	34	10.0	329.2	20.21%	1300	1235	1170	8
21	23.5	•			•						1324	1258	1192	PA
														C ID
														4 JN 2
								• ,						5-00
08-Sep-97														82

08-Sep-97

FM 6.5 Exhibit 5

1pz

page 58 of 191

RZ

page 59 of 191

3

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER3.XLW (D306)

TENDON:	D306	INITIAL CONCRETE STRESS (PSI) :
	alor fagigion facility of an optimized from	

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

 $e^{i^{\dagger}}$

1605 FIELD: 1640 OF 27

AVERAGE: 1622 TOTAL ELASTIC SHORT. LOSS: 82.7

6th TENDON SURVEILLANCE

AVERAGE ALL DOME TENDONS: WIRE FACTOR: 1639 0.988 FM 6.5-Exhibit

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

SHOP:

23

INSPECT.	YEARS			INDIV	IDUAL I	LOSSES			TOTAL	LOSSES	PRI	DICTED FOR	CES	
PERIOD	AFTER		STR	ESS	CRI	EP	SHRI	NKAGE	TOTAL	TOTAL		T		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)		4	(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	()	(J)	(K)	(L)	(M)	· (N)	(0)
												Γ		
1	3.5	87.3	2.57%	42.3 ·	3.28	92.5	15	4.0	226.1	13.93%	1396	1327	1257	6
3	5.5	87.3	2.60%	42.7	3.86	108.8	18	5.0	243.8	15.02%	1379	1310	1241	6
5	7.5	87.3	2.68%	44.1	4.21	118.7	21	6.0	256.1	15.78%	1366	1298	1230	6
10	12.5	87.3	2.76%	45.4	4.62	130.3	25	7.0	270.0	16.64%	1352	1285	1217	6
15	17.5	87.3	2.81%	46.2	5.21	146.9	27.5	8.0	288.4	17.77%	1334	1267	1201	6
17	19.5	87.3									1332	1265	1198	6
20	22.5	87.3	2.87%	47.2	5.39	152.0	29	8.0	294.5	18.15%	1328	1262	1195	6
21:3	23.75	87.3							;		1326	1260	1194	6
25	27.5	87.3	2.89%	47.3	5.59	157.6	30.8	9.0	301.2	18.56%	1321	1255	1189	6
30	32.5	87.3	2.91%	47.8	5.78	163.0	32	9.0	307.1	18.93%	1315	1250	1184	·6
35	37.5	87.3	2.93%	48.2	5.98	168.6	33	9.0	313.1	19.30%	1309	1244	1178	6
40	42.5	87.3	2.95%	48.5	6.18	174.3	34	10.0	320.1	19.73%	1302	1237	1172	6
21	23.5			a.						•	1327	1260	1194	282 12
							•							
												•		55A 155A
22-Jan-98												2 ^{- 1}	c	
														ed 82

NA

page 60 😪 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-

DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP)

USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D310)

D8-Sep-97

0310 TENDON: INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1636	FIELD: 1636	AVERAGE:	1636	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	24 OF	27	TOTAL ELASTIC SHORT. LOSS:	82:7	WIRE FACTOR:	0.994

6th TENDON SURVEILLANCE

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX/	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
{A}	(B)	(0)	(U)	(E)	(1)	(G)	(H)	{()	(J) ·	IKI	(1)	(M)	(N)	(0)
		1												
1	3.5	84.2	2.57%	42.3	3.28	92.5	15	4.0	223.0	13.63%	1413	1342	1272	-11
3	5.5	84.2	2.60%	42.7	3.86	108.8	18	5.0	240.7	14.71%	1395	1326	1256	-11
5	7.5	84.2	2.68%	44.1	4.21	118.7	21	6.0	253.0	15.46%	1383	1314	1245	-11
10	12.5	84.2	2.76%	45.4	4.62	130.3	25	7.0	266.9	16.31%	1369	1301	1232	•11
15	17.5	84.2	2.81%	46.2	5.21	146.9	27.5	8.0	285.3	17.44%	1351	1283	1216	-11
17	19.5	. 84.2									1348	1281	1214	-11
20	22.5	84.2	2.87%	47.2	5.39	152.0	29	8.0	291.4	17.81%	1345	1277	1210	-11
21:3	23.75	84.2									1343	1276	1209	. 11
25	27.5	84.2	2.89%	47.3	5.59	157.6	30.8	9.0	298.1	18.22%	1338	1271	1204	-11
30	32.5	84.2	2.91%	47.8	5.78	163.0	32	9.0	304.0	18.58%	1332	1266	1199	-11
35	37.5	84.2	2.93%	48.2	5.98	168.6	33	9.0	310.0	18.95%	1326	1260	1193	-11
40	42.5	84.2	2.95%	48.5	6.18	174.3	34	10.0	317.0	19.37%	1319	1253	1187	-11
21 D8-Sen-97	23.5										1343	1276	1209	DOC ID:S:95-0082 Revision 2 Page 56

IRZ

page 62 of 191

FM 6.5 Exhibit 5

IRZ.

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS) 100 10 7 8 9 2 3 5 6 20 30 50 60 70 80 90 4 40 1600 **TENDON FORCE CURVE TENDON D310** NORMALIZING FACTOR: 11 1500 BASE 1400 **TENDON FORCE (KIPS)** 95 % BASE 1300 - 90 % BASE · 1200 1,1997 **Predicted Values For** Surveillance 6 (November 1, 1997) SIT NOV 1976 VOVEMBER BASE 1343 Kips 95% BASE 1276 Kips 1100 RZ 90% BASE 1209 Kips doc 10:5:95:0082 Revision 2 Page 57 1000 Note: Revision 2 is generated to change start date O 10 3 5 15 20 25 30 35 40 1 for the 6th surveillance inspection from March 182 SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997.

FM 6.5 Exhibit 5

page 63 of 191

CRYSTAL RIVER UNIT 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES-**6th TENDON SURVEILLANCE** DOME TENDON LOSSES WORK SHEET (DOMELOW GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES LESS THAN 27

FILE: DOMER2.XLW (D311)

TENDON: D311 INITIAL CONCRETE STRESS (PSI) : NA

ORIGINAL FORCES (KIPS):	SHOP: 1687	FIELD: 1677	· AVERAGE:	1682	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	6 OF	27	TOTAL ELASTIC SHORT. LOSS:	82.7	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAX	TION				<u>.</u>	FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m inlin	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)	<u>_</u>	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	{G}	(8)	(1)	(J)	(K)		(M)	(N)	{0}
1	3.5	139.3	2.57%	42.3	3.28	92.5	15	4.0	278.1	16.53%	1404	1334	1264	0
3	5.5	139.3	2.60%	42.7	3.86	108.8	18	5.0	295.8	. 17.59%	1386	1317	1248	0
5	7.5	139.3	2.68%	44.1	4.21	118.7	21	6.0	308.1	18.32%	1374	1305	1237	0
10	12.5	139.3	2.76%	45.4	4.62	130.3	25	7.0	322.0	19.14%	1360	1292	1224	0
15	17.5	139.3	2.81%	46.2	5.21	146.9	27.5	8.0	340.4	20.24%	1342	1275	1208	0
17	19.5	139.3									1339	1272	1205	0
20	22.5	139.3	2.87%	47.2	5.39	152.0	29	8.0	346.5	20.60%	1336	1269	1202	0
21:3	23.75	139.3									1334	1267	1201	a
25	27.5	139.3	2.89%	47.3	5.59	157.6	30.8	9.0	353.2	21.00%	1329	1263	1196	0
30	32.5	139.3	2.91%	47.8	5.78	163.0	32	9.0	359.1	21.35%	1323	1257	1191	0
35	37.5	139.3	2.93%	48.2	5.98	168.6	33	9.0	365.1	21.71%	1317	1251	1185	0
40	42.5	139.3	2.95%	48.5	6.18	174.3	34	10.0	372.1	22.12%	1310	1245	1179	0
21	23.5	•									1334	1268	1201	
)C ID:S-95-008 :VISION 2 :GE 58

08-Sep-97

FM 6.5 Exhibit 5

page 64 of 191

IRZ

182

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS)

FM 6.5 Exhibit 5

page 65 of 191

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES- 6th TENDON SURVEILLANCE DOME TENDON LOSSES WORK SHEET (DOMEHI GROUP) USE FOR DOME TENDONS WITH STRESSING SEQUENCES GREATER THAN 27 FILE: DOMER2.XLW (D312)

TENDON: D312 INITIAL CONCRETE STRESS (PSI): NA

ORIGINAL FORCES (KIPS):	SHOP: 👙 1665 🖏	FIELD: 1615	AVERAGE:	1640	AVERAGE ALL DOME TENDONS:	1639
STRESS SEQUENCE:	30 OF	5.	TOTAL ELASTIC SHORT. LOSS:	47.4	WIRE FACTOR:	1.00D

NOTE: SHADED VALUES ARE EXTRACTED FROM DOMEINP WORK SHEET

YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
AFTER		STRE	SS	CRE	EP	SHRINKAGE		TOTAL	TOTAL		[NORMALIZING
CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
PLACEMENT	SHORT.	PERCENT	FORCE	CR. STR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(LOG)	L		(KIPS)	(* .0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
· (B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
3.5	5.3	2.57%	42.3	3.28	92.5	- 15	4.0	144.1	8.78%	1496	1421	1346	-93
5.5	5.3	2.60%	42.7	3.86	108.8	18	5.0	161.8	9.86%	1478	1404	1330	-93
7.5	5.3	2.68%	44.1	4.21 ·	118.7	21	6.0	174.1	10.61%	1466	1393	1319	-93
12.5	5.3	2.76%	45.4	4.62	130.3	25	7.0	188.0	11.46%	1452	1379	1307	-93
17.5	5.3	2.81%	46.2	5.21	146.9	27.5	8.0	206.4	12.58%	1434	1362	1290	-93
19.5	5.3									1431	1360	1288	-93
22.5	5.3	2.87%	47.2	5.39	152.0	29	8.0	212.5	12.95%	1428	1356	1285	-93
23.75	5.3									1426	1355	1283	-93
27.5	5.3	2.89%	47.3	5.59	157.6	30.8	9.0	219.2	13.36%	1421	1350	1279	-93
32.5	5.3	2.91%	47.8	5.78	163.0	32	9.0	225.1	13.72%	1415	1344	1273	-93
37.5	5.3	2.93%	48.2	5.98	168.6	33	9.0	231.1	14.09%	1409	1339	1268	-93
42.5	5.3	2.95%	48.5	6.18	174.3	34	10.0	238.1	14.52%	1402	1332	1262	·93
23.5										1426	1355	1284	PA
													id id:s
	•							-	· .				1954 11 2
													0082
	YEARS AFTER CONCRETE PLACEMENT (LOG) (B) 3.5 5.5 7.5 12.5 17.5 19.5 22.5 23.75 22.5 23.75 32.5 37.5 42.5 23.5	YEARS AFTER CONCRETE PLACEMENT (LOG) (B) (C) 3.5 5.5 5.3 7.5 5.3 12.5 5.3 17.5 5.3 12.5 5.3 22.5 5.3 22.5 5.3 22.5 5.3 27.5 5.3 32.5 5.3 37.5 5.3 23.5	YEARS AFTER CONCRETE PLACEMENT (LOG) STRE ELASTIC SHORT. STRE RELAXA PERCENT (LOG) (C) (D) (B) (C) (D) 3.5 5.3 2.57% 5.5 5.3 2.60% 7.5 5.3 2.68% 12.5 5.3 2.88% 12.5 5.3 2.81% 19.5 5.3 2.87% 23.75 5.3 2.89% 32.5 5.3 2.93% 42.5 5.3 2.95% 23.5 5.3 2.95%	YEARS STRESS AFTER ELASTIC STRESS CONCRETE ELASTIC RELAXATION PLACEMENT SHORT. PERCENT FORCE (LOG) (C) (D) (E) 3.5 5.3 2.57% 42.3 5.5 5.3 2.60% 42.7 7.5 5.3 2.60% 42.7 7.5 5.3 2.60% 42.7 7.5 5.3 2.60% 42.7 7.5 5.3 2.60% 42.7 7.5 5.3 2.81% 46.2 19.5 5.3 2.81% 46.2 19.5 5.3 2.81% 47.2 23.75 5.3 2.91% 47.3 32.5 5.3 2.91% 47.3 37.5 5.3 2.93% 48.2 42.5 5.3 2.95% 48.5 23.5 5.3 2.95% 48.5	YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS ELASTIC SHORT. STRESS RELAXATION CRE CR. STR. FORCE (KIPS) CRE (* 0001) (B) (C) (D) (E) (F) 3.5 5.3 2.57% 42.3 3.28 5.5 5.3 2.60% 42.7 3.86 7.5 5.3 2.68% 44.1 4.21 12.5 5.3 2.76% 45.4 4.62 17.5 5.3 2.81% 46.2 5.21 19.5 5.3 2.87% 47.2 5.39 22.5 5.3 2.89% 47.3 5.59 37.5 5.3 2.93% 48.2 5.98 42.5 5.3 2.95% 48.5 6.18 23.5 5.3 2.95% 48.5 6.18	YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS STRESS RELAXATION CREEP 000000000000000000000000000000000000	INDIVIDUAL LOSSES YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS RELAXATION CREEP SHRIN FORCE (KIPS) PERCENT FORCE (KIPS) CR. STR. (* 0001) FORCE (KIPS) m in/in (B) (C) (D) (E) (F) (G) (H) 3.5 5.3 2.57% 42.3 3.28 92.5 15 5.5 5.3 2.60% 42.7 3.86 108.8 18 7.5 5.3 2.60% 42.7 3.86 108.8 18 7.5 5.3 2.60% 42.7 3.86 108.8 18 7.5 5.3 2.60% 42.7 3.86 108.8 18 7.5 5.3 2.88% 44.1 4.21 118.7 21 12.5 5.3 2.87% 47.2 5.39 152.0 29 23.75 5.3 2.89% 47.3 5.59 157.6 30.8 32.5 5.3 2.93% 48.5	INDIVIDUAL LOSSES YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS RELAXATION CREEP SHRINKAGE PLACEMENT (LOG) ELASTIC SHORT. RELAXATION (KIPS) CREEP SHRINKAGE (B) (C) (D) (E) (R. STR. (* .001) FORCE (KIPS) m in/in FORCE (KIPS) (B) (C) (D) (E) (F) (G) (H) (I) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 5.5 5.3 2.60% 42.7 3.86 108.8 18 5.0 7.5 5.3 2.68% 44.1 4.21 118.7 21 6.0 12.5 5.3 2.87% 45.4 4.62 130.3 25 7.0 17.5 5.3 2.87% 47.2 5.39 152.0 29 8.0 23.75 5.3 2.89% 47.3 5.59 157.6 30.8 9.0 32.5 5.3 </td <td>INDIVIDUAL LOSSES TOTAL YEARS AFTER CONCRETE PLACEMENT STRESS RELAXATION CREEP SHRINKAGE TOTAL PLACEMENT (LOG) SHORT. PERCENT (KIPS) FORCE (KIPS) CR. STR. (* 0001) FORCE (KIPS) m infin FORCE (KIPS) TOTAL (LOG) (C) (D) (E) (F) (G) (H) (I) (J) (B) (C) (D) (E) (F) (G) (H) (I) (J) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 144.1 5.5 5.3 2.60% 42.7 3.86 108.8 18 5.0 161.8 7.5 5.3 2.68% 44.1 4.21 118.7 21 6.0 174.1 12.5 5.3 2.81% 46.2 5.21 146.9 27.5 8.0 212.5 23.75 5.3 2.87% 47.2 5.39 152.0 29<!--</td--><td>INDIVIDUAL LOSSES TOTAL LOSSES YEARS TOTAL LOSSES AFTER STRESS CREEP SHRINKAGE TOTAL LOSSES CONCRETE ELASTIC RELAXATION FORCE CREEP SHRINKAGE TOTAL PERCENT PLACEMENT FORCE CREEP SHRINKAGE TOTAL PERCENT LOSS CREEP SHRINKAGE TOTAL PERCENT PLACEMENT FORCE CREEP SHRINKAGE TOTAL PERCENT LOSS (KIPS) CREEP SHRINKAGE TOTAL PERCENT LOSS CREEP SHRINKAGE TOTAL 100S (LOG) (KIPS) CREEP SHRINKAGE TOTAL 707AL CREEP SHRINKAGE TOTAL 10.5S (LOS)<td>YEARS AFTER CONCRETE PLACEMENT STRESS HRINKAGE CREEP SHRINKAGE TOTAL TOTAL DSSES RELAXATION PLACEMENT SHORT. RELAXATION CREEP SHRINKAGE TOTAL TOTAL TOTAL BASE (LOG) PERCENT FORCE (KIPS) (KIPS) (KIPS)</td><td>YEARS AFTER CONCRETE LOGI STRESS FRECENT CREEP SHRINKAGE TOTAL FORCE COTAL PERCENT (KIPS) BASE 95% BASE 0.000 FORCE FORCE (KIPS) CR. STR. (KIPS) FORCE (KIPS) TOTAL FORCE TOTAL PERCENT BASE 95% BASE 0.000 CO (0) (E) (F) (G) (H) (I) (J) (K) (U) (M) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 144.1 8.78% 1496 1421 5.5 5.3 2.00% 42.7 3.86 108.8 18 5.0 161.8 9.86% 1478 1404 7.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1466 1393 12.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1462 1379 17.5 5.3 2.06% 44.1 4.21<td>YEARS AFTER CONCRETE (LOG) STRESS RELAXATION CREEP SHRINKAGE (KIPS) TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) DTAL FORCE (KIPS) DTAL FORCE (KIPS) TOTAL FORCE (KIPS) PREDICTED FORCES 0.00 (LOG) FORCE (CI) RELAXATION CREEP STRESS (KIPS) CREEP TOTAL FORCE TOTAL FORCE</td></td></td></td>	INDIVIDUAL LOSSES TOTAL YEARS AFTER CONCRETE PLACEMENT STRESS RELAXATION CREEP SHRINKAGE TOTAL PLACEMENT (LOG) SHORT. PERCENT (KIPS) FORCE (KIPS) CR. STR. (* 0001) FORCE (KIPS) m infin FORCE (KIPS) TOTAL (LOG) (C) (D) (E) (F) (G) (H) (I) (J) (B) (C) (D) (E) (F) (G) (H) (I) (J) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 144.1 5.5 5.3 2.60% 42.7 3.86 108.8 18 5.0 161.8 7.5 5.3 2.68% 44.1 4.21 118.7 21 6.0 174.1 12.5 5.3 2.81% 46.2 5.21 146.9 27.5 8.0 212.5 23.75 5.3 2.87% 47.2 5.39 152.0 29 </td <td>INDIVIDUAL LOSSES TOTAL LOSSES YEARS TOTAL LOSSES AFTER STRESS CREEP SHRINKAGE TOTAL LOSSES CONCRETE ELASTIC RELAXATION FORCE CREEP SHRINKAGE TOTAL PERCENT PLACEMENT FORCE CREEP SHRINKAGE TOTAL PERCENT LOSS CREEP SHRINKAGE TOTAL PERCENT PLACEMENT FORCE CREEP SHRINKAGE TOTAL PERCENT LOSS (KIPS) CREEP SHRINKAGE TOTAL PERCENT LOSS CREEP SHRINKAGE TOTAL 100S (LOG) (KIPS) CREEP SHRINKAGE TOTAL 707AL CREEP SHRINKAGE TOTAL 10.5S (LOS)<td>YEARS AFTER CONCRETE PLACEMENT STRESS HRINKAGE CREEP SHRINKAGE TOTAL TOTAL DSSES RELAXATION PLACEMENT SHORT. RELAXATION CREEP SHRINKAGE TOTAL TOTAL TOTAL BASE (LOG) PERCENT FORCE (KIPS) (KIPS) (KIPS)</td><td>YEARS AFTER CONCRETE LOGI STRESS FRECENT CREEP SHRINKAGE TOTAL FORCE COTAL PERCENT (KIPS) BASE 95% BASE 0.000 FORCE FORCE (KIPS) CR. STR. (KIPS) FORCE (KIPS) TOTAL FORCE TOTAL PERCENT BASE 95% BASE 0.000 CO (0) (E) (F) (G) (H) (I) (J) (K) (U) (M) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 144.1 8.78% 1496 1421 5.5 5.3 2.00% 42.7 3.86 108.8 18 5.0 161.8 9.86% 1478 1404 7.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1466 1393 12.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1462 1379 17.5 5.3 2.06% 44.1 4.21<td>YEARS AFTER CONCRETE (LOG) STRESS RELAXATION CREEP SHRINKAGE (KIPS) TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) DTAL FORCE (KIPS) DTAL FORCE (KIPS) TOTAL FORCE (KIPS) PREDICTED FORCES 0.00 (LOG) FORCE (CI) RELAXATION CREEP STRESS (KIPS) CREEP TOTAL FORCE TOTAL FORCE</td></td></td>	INDIVIDUAL LOSSES TOTAL LOSSES YEARS TOTAL LOSSES AFTER STRESS CREEP SHRINKAGE TOTAL LOSSES CONCRETE ELASTIC RELAXATION FORCE CREEP SHRINKAGE TOTAL PERCENT PLACEMENT FORCE CREEP SHRINKAGE TOTAL PERCENT LOSS CREEP SHRINKAGE TOTAL PERCENT PLACEMENT FORCE CREEP SHRINKAGE TOTAL PERCENT LOSS (KIPS) CREEP SHRINKAGE TOTAL PERCENT LOSS CREEP SHRINKAGE TOTAL 100S (LOG) (KIPS) CREEP SHRINKAGE TOTAL 707AL CREEP SHRINKAGE TOTAL 10.5S (LOS) <td>YEARS AFTER CONCRETE PLACEMENT STRESS HRINKAGE CREEP SHRINKAGE TOTAL TOTAL DSSES RELAXATION PLACEMENT SHORT. RELAXATION CREEP SHRINKAGE TOTAL TOTAL TOTAL BASE (LOG) PERCENT FORCE (KIPS) (KIPS) (KIPS)</td> <td>YEARS AFTER CONCRETE LOGI STRESS FRECENT CREEP SHRINKAGE TOTAL FORCE COTAL PERCENT (KIPS) BASE 95% BASE 0.000 FORCE FORCE (KIPS) CR. STR. (KIPS) FORCE (KIPS) TOTAL FORCE TOTAL PERCENT BASE 95% BASE 0.000 CO (0) (E) (F) (G) (H) (I) (J) (K) (U) (M) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 144.1 8.78% 1496 1421 5.5 5.3 2.00% 42.7 3.86 108.8 18 5.0 161.8 9.86% 1478 1404 7.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1466 1393 12.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1462 1379 17.5 5.3 2.06% 44.1 4.21<td>YEARS AFTER CONCRETE (LOG) STRESS RELAXATION CREEP SHRINKAGE (KIPS) TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) DTAL FORCE (KIPS) DTAL FORCE (KIPS) TOTAL FORCE (KIPS) PREDICTED FORCES 0.00 (LOG) FORCE (CI) RELAXATION CREEP STRESS (KIPS) CREEP TOTAL FORCE TOTAL FORCE</td></td>	YEARS AFTER CONCRETE PLACEMENT STRESS HRINKAGE CREEP SHRINKAGE TOTAL TOTAL DSSES RELAXATION PLACEMENT SHORT. RELAXATION CREEP SHRINKAGE TOTAL TOTAL TOTAL BASE (LOG) PERCENT FORCE (KIPS) (KIPS) (KIPS)	YEARS AFTER CONCRETE LOGI STRESS FRECENT CREEP SHRINKAGE TOTAL FORCE COTAL PERCENT (KIPS) BASE 95% BASE 0.000 FORCE FORCE (KIPS) CR. STR. (KIPS) FORCE (KIPS) TOTAL FORCE TOTAL PERCENT BASE 95% BASE 0.000 CO (0) (E) (F) (G) (H) (I) (J) (K) (U) (M) 3.5 5.3 2.57% 42.3 3.28 92.5 15 4.0 144.1 8.78% 1496 1421 5.5 5.3 2.00% 42.7 3.86 108.8 18 5.0 161.8 9.86% 1478 1404 7.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1466 1393 12.5 5.3 2.06% 44.1 4.21 118.7 21 6.0 174.1 10.61% 1462 1379 17.5 5.3 2.06% 44.1 4.21 <td>YEARS AFTER CONCRETE (LOG) STRESS RELAXATION CREEP SHRINKAGE (KIPS) TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) DTAL FORCE (KIPS) DTAL FORCE (KIPS) TOTAL FORCE (KIPS) PREDICTED FORCES 0.00 (LOG) FORCE (CI) RELAXATION CREEP STRESS (KIPS) CREEP TOTAL FORCE TOTAL FORCE</td>	YEARS AFTER CONCRETE (LOG) STRESS RELAXATION CREEP SHRINKAGE (KIPS) TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) DTAL FORCE (KIPS) DTAL FORCE (KIPS) TOTAL FORCE (KIPS) PREDICTED FORCES 0.00 (LOG) FORCE (CI) RELAXATION CREEP STRESS (KIPS) CREEP TOTAL FORCE TOTAL FORCE

1RZ

page 66 of 191

TIME AFTER AVERAGE DATE OF CONCRETE DOME PLACEMENT (YEARS)

page 67 of 191

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 62 REVISION

O

DOCUMENT IDENTIFICATION NO

Florida

Power CORPORATION

Calculation S-95-0082

6.4 Hoop Tendons

6/95

HOOP TENDONS

Tendons Listing & Input Data Sheet

Individual Tendons Losses Worksheets

Individual Tendons Force Curves

CRYSTAL RIVER UNIT 3 - 6th TENDON SURVEILLANCE HOOP TENDONS DATA INPUT

Initial Concrete Stress = Average Force = Total Stress Sequence (N) = Total Elastic Shortening Losses =

Ref. (2) Page 7A, 7B, 7C (2) Page 15 60 134 See (2) & Attachment E

1732.0 (ksi) 1635.0 (kips)

2

page 69 of 191

DOC ID:S-95-0082 **REVISION 3** PAGE 63

		1									
		Lift-off Pre	ssure (ksi)	(1)	Stress	No. of	Wire	Original Fo	rces (kips)		
Tendon	Shop	End	Field	End	Sequence	Effective	Factor	Shop	Field	Remarks	
No.	Predicted	Actual	Predicted	Actual	(n) (2)	Wires (1)	#/163 (4)	End (5)	End (5)	(3)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	Ì
42H17	6870	7060	6810	6800	27	163	1.000	1684	1637		1
42H18	6840	7100	6799	6750	43	163	1.000	1701	1627	S	
42H19	6870	6900	6810	6850	27	163	1.000	1646	1649		
				·							
42H29	6870	6850	6810	6850	31	163	1.000	1634	1649		
42H30	6870	6950	6790	6750	41	163	1.000	1658	1629		0-
42H31	6870	7000	6810	6800	32	163	1.000	1670	1637	j	163
42H32	6870	6750	6790	6800	41	163	1.000	1610	1641	S	
42H33	6870	7000	6810	6900	33	163	1.000	1670	1661		
42H34	6750	6800	6660	6750	41	160	0.982	1621	1631		
42H35	6830	7000	6770	6750	33	162	0.994	1669	1624	·	
42H36	6870	7150	6790	6850	40	163	1.000	1706	1653		
42H37	6870	6800	6810	6900	34	163	1.000	1622	1661		
											RE
42H43	6870	6750	6810	6700	36	163	1.000	1610	1612		1
42H44	6790	6600	6840	6750	39	163	1.000	1593	1617	E	
42H45	6870	7000	6810	6900	37	163	1.000	1670	1661		
											ł
46H20	6640	6930	6600	6600	44	160	0.982	1679	1609		
46H21	6720	6700	6730	6950	28	162	0 994	1624	1682	Con-line	
46H22	6720	6750	6730	7000	43	162	0.994	1636	1694		
TOTILL		0,00									
51H25	6770	6650	6800	7000	12	162	0.994	1600	1677	ļ	1
51H26	6760	7000	6760	6700	53	163	1.000	1697	1624	R.C.E.S	· ·
51H27	6740	6700	6670	6650	9	161	0.988	1609	1614		
51H28	6760	6950	6750	6800	52	163	1.000	1685	1651		
51H29	6810	6775	6750	6700	9	163	1.000	1631	1627		
											1 R E
53H1	6700	6850	6760	6700	20	161	0.988	1655	1604		
53H2	6800	6900	7770	6950	60	162	0.994	1653	1457	Δ	l.
5343	6670	6660	6710	6660	20	161	0.988	1616	1607		ł
										·	l ·
53H45	6840	6700	6800	6900	3	163	1.000	1605	1663		
53H46	6760	6650	6730	6750	49	163	1 000	1612	1644	E	1
53H47	6840	7000	6800	7050	3	163	1.000	1677	1699		
					<u> </u>		t		}	l	1
62H21	6760	6800	6700	6750	27	162	0.994	1639	1641		1
62H22	6800	6900	6750	6850	42	163	1 000	1663	1663	S	
62422	6800	6800	6750	6750	28	163	1 000	1639	1620		1
02023		0000			20		1 1.000	1	1039	H	J

CRYSTAL RIVER UNIT 3 - 6th TENDON SURVEILLANCE HOOP TENDONS DATA INPUT

Initial Concrete Stress = Average Force = Total Stress Sequence (N) = **Total Elastic Shortening Losses** =

Ref. 1732.0 (ksi) (2) Page 7A, 7B, 7C 1635.0 (kips) (2) Page 15 60 134 See (2) & Attachment E

		LITC-OTT PTE	essure (KSI)	414	Stress	NO. OT	vvire	Uriginal ⊦o	rces (kips)	1
Tendon	Shop I	End	Field	End	Sequence	Effective	Factor	Shop	Field	Remarks
No.	Predicted	Actual	Predicted	Actual	(n) (2)	Wires (1)	#/163 (4)	End (5)	End (5)	(3)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)
62H39	6800	6900	6750	6800	35	162	0.994	1653	1641	
62H40	6800	6800	6750	6750	39	163	1.000	1639	1639	
62H41	6800	6700	6750	6600	35	163	1.000	1615	1603	D,S
62H42	6800	6700	6750	6600	39	163	1.000	1615	1603	
62H43	6710	6550	6670	6600	36	161	0.988	1580	1602	
62H44	6800	6750	6750	6900	38	163	1.000	1627	1675	∦
62H45	6760	6800	6700	6600	37	162	0.994	1639	1605	
62H46	6800	6600	6750	7000	38	163	1.000	1591	1700	E

38

160

0.982

1590

File: HOOPR3.XLW (HOOPINP)

1575

R2

182

IR:

Note:

62H47

6680

6600

(1) Ref. Crystal River 3 R/B Tendon History Sheets - Hoop Tendons for Original Stressing

(2) Ref. Crystal River 3 Tendon Surveillance Loss Calculations, Tendon Stress Sequence, Pages 29, 29a and 29b.

(3) S = Selected tensons, C = Control tendon, D = Detensioned tendon, A = Alternate tendon

6500

E = Exempted Tendons (5th Surveillance), All Other Tendons are Adjacents

(4) Wire factors are calculated based on the number of effective wires divided by 163.

(5) Original forces calculated based on the expression in Section 6.2.2

6640

DOC ID:S-95-0082

REVISION 3

PAGE 64

WWW.

22-Jan-98 1:24 PM

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H17)

TENDON: 42H17 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHDP: 1684	FIELD: 1637	AVERAGE:	1660	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	27 OF	60	TOTAL ELASTIC SHORT, LOSS:	134.0	WIRE FACTOR:	1.000

1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS	_		INDIVI	DUAL LO	OSSES	PRE							
PERIOD	AFTER		STRE	SS	CRE	EP .	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KJPS)	(KIPS)
{A}	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
1	5.4	73.7	2.57%	42.0	0.090	39.5	6.0	1.7	156.9	9.45%	1504	1428	1353	.17
3	7.4	73.7	2.60%	42.5	0.110	48.5	8.5	2.4	167.1	10.06%	1493	1419	1344	-17
5	9.4	73.7	2.68%	43.8	0.123	54.1	10.0	2.8	174.4	10.50%	1486	1412	1337	-17
10	14.4	73.7	2.76%	45.1	0.150	66.0	13.5	3.8	188.6	11.36%	1472	1398	1325	-17
15	19.4	73.7	2.81%	45.9	0.167	73.6	15.5	4.4	197.6	11.90%	1463	1390	1317	-17
17	21.4	73.7			·						1460	1387	1314	
20	24.4	73.7	2.87%	46.9	0.181	79.0	17.5	4.9	204.5	12.32%	1456	1383	1310	-17
21:3	25.65	73.7									1455	1382	1309	
25	29.4	73.7	2.88%	47.1	0.190	83.2	19.5	5.5	209.5	12.62%	1451	1378	1306	-17
30	34.4	73.7	2.91%	47.6	0.200	88.0	20.4	5.8	215.1	12.95%	1445	1373	1301	-17
35	39.4	73.7	2.93%	47.9	0.209	91.9	21.5	6.1	219.6	13.22%	1441	1369	1297	·17
40	44.4	73.7	2.95%	48.2	0.215	94.7	22.5	6.4	223.0	13.43%	1437	1366	1294	-17
21 11-Sen-97	25.4										1455	1382	1309	DOC ID:S-95-0082 REVISION 2 PAGE 65

11-Sep-97

page 71 of 191 R2

FM 6.5 Exhibit 5 RZ

page 72 of 191
CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H18)

TENDON: 42H18 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 👷 🔅 1701	FIELD: 1627	AVERAGE: 1664	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	43 OF	60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR:	1.000

1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS	,	INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m intin	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(0)	(D)	(Ë)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)	(0)
									<u> </u>					
• 1	5.4	38.0	2.57%	42.0	0.090	39.5	6.0	1.7	121.2	7.28%	1543	1466	1389	-56
3	7.4	38.0	2.60%	42.5	0.110	48.5	8.5	2.4	131.4	7.89%	1533	1456	1380	-56
5	9.4	38.0	2.68%	43.8	0.123	54.1	10.0	2.8	138.7	8.33%	1526	1449	1373	-56
10	14.4	38.0	2.76%	45.1	0.150	66.0	13.5	3.8	152.9	9.19%	1511	1436	1360	-56
15	19.4	38.0	2.81%	45.9	0.167	73.6	15.5	. 4.4	161.8	9.72%	1502	1427	1352	-56
17	21.4	38.0									1500	1425	1350	
20	24.4	38.0	2.87%	46.9	0.181	79.0	17.5	4.9	168.8	10.14%	1495	1421	1346	-56
21:3	25.65	38.0									1494	1419	1345	
25	29.4	38.0	2.88%	47.1	0.190	83.2	19.5	5.5	173.8	10.44%	1490	1416	1341	-56
30	34.4	38.0	2.91%	47.6	0.200	88.0	20.4	5.8	179.3	10.78%	1485	1411	1336	-56
35	39.4	38.0	2.93%	47.9	0.209	91.9	21.5	6.1	183.8	11.05%	1480	1406	1332	-56
40	44.4	38.0	2.95%	48.2	0.215	94.7	22.5	6.4	187.2	11.25%	1477	1403	1329	·56
21	25.4						<u> </u>				1494	1420	1345	DOC ID:S:95-0082 Revision 2 Page 67

1 g2

FM 6.5 Exhibit 5

R2

. . .

FM 6.5 Exhibit 5

page 74 of 191

FM 6.5 Exhibit 5 lez

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H19)

TENDON: 42H19

INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1646	FIELD: 1649	AVERAGE:	1647	AVERAGE ALL HOOP TENDONS:	i 1635 🛀 🗍
STRESS SEQUENCE:	27 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS		1		
(YR:MO)	(LOG)	L		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)	(0)
								ſ						
1	5.4	73.7	2.57%	42.0	0.090	39.5	6.0	1.7	156.9	9.52%	1490	1416	1341	-4
3	7.4	73.7	2.60%	42.5	0.110	48.5	8.5	2.4	167.1	10.14%	148D	1406	1332	-4
5	9.4	73.7	2.68%	43.8	0.123	54.1	10.0	2.8	174.4	10.59%	1473	1399	1326	-4
10	14.4	73.7	2.76%	45.1	0.150	66.0	13.5	3.8	188.6	11.45%	1459	1386	1313	-4
15	19.4	73.7	2.81%	45.9	0.167	73.6	15.5	4.4	197.6	11.99%	1450	1377	1305	-4
17.	21.4	73.7									1447	1375	1302	
20	24.4	73.7	2.87%	46.9	0.181	79.0	17.5	4.9	204.5	12.42%	1443	1371	1299	-4
21:3	25.65	73.7									1442	1369	1297	
25	29.4	73.7	2.88%	47.1	0.190	83.2	19.5	5.5	209.5	12.72%	1438	1366	1294	-4
30	34.4	73.7	2.91%	47.6	0.200	88.0	20.4	5.8	215.1	13.05%	1432	1361	1289	-4
35	39.4	73.7	2.93%	47.9	0.209	91.9	21.5	6.1	219.6	13.33%	1428	1356	1285	-4
40	44.4	73.7	2.95%	48.2	0.215	94.7	22.5	6.4	223.0	13.53%	1424	1353	1282	-4
21	25.4								······	***********	1442	1370	1298	DOC ID:S:95-00 REVISION 2 PAGE 69
11-Sep-97-														82

page 75 of 191 IR2

page 76 of 191

RS

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (42H29)

TENDON: 42H29 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1634	FIELD: 1649	AVERAGE:	1641	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	31 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRESS CREEP SHRINKAGE TOTAL TOTAL											NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS		1			
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	- (1)	(J)	(K)	(L)	(M)	(N)	(0)	
		[1			
1	5.4	64.8	2.57%	42.0	0.090	39.5	6.0	1.7	148.0	9.01%	1493	1419	1344	-7	
3	7.4	64.8	2.60%	42.5	0.110	48.5	8.5	2.4	158.2	9.64%	1483	1409	1335	-7	
5	9.4	64.8	2.68%	43.8	0.123	54.1	10.0	2.8	165.5	10.08%	1476	1402	1328	-7	
10	14.4	64.8	2.76%	45.1	0.150	66.0	13.5	3.8	179.7	10.95%	1462	1389	1316	•7	
15	19.4	64.8	2.81%	45.9	0.167	73.6	15.5	4.4	188.6	11.49%	1453	1380	1307	-7	
17	21.4	64.8									1450	1377	1305		
20	24.4	64.8	2.87%	46.9	0.181	79.0	17.5	4.9	195.6	11.92%	1446	1373	1301	-7	
21:3	25.65	64.8									1445	1372	1300		
25	29.4	64.8	2.88%	47.1	0.190	83.2	19.5	5.5	200.6	12.22%	1441	1369	1297	-7	
30	34.4	64.8	2.91%	47.6	0.200	88.0	20.4	5.8	206.1	12.56%	1435	1363	1292	-7	
35	39.4	64.8	2.93%	47.9	0.209	91. 9	21.5	6.1	210.6	12.83%	1431	1359	1288	•7	
40	44.4	64.8	2.95%	48.2	0.215	94.7	22.5	6.4	214.0	13.04%	1427	1356	1285	7	
21	25.4										1445	1373	1300	25 288	

26-Jan-98

15

page 77 of 191

i^j

FM 6.5 Exhibit 5

page 78 of 191

r3

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET

FILE: HOOPR3.XLW (42H30)

1

42H30 INITIAL CONCRETE STRESS (PSI): 1732 TENDON:

ORIGINAL FORCES (KIPS):	SHOP: 1658	FIELD: 1629	AVERAGE:	1644	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	41 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STR	SS	CRI	EEP	SHRIN	IKAGE	TOTAL	TOTAL		1		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TIÓN					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(Ē)	(F)	(G)	(H)	{ }	{J}	(K)	(L)	(M)	(N)	(0)
										· .		1		
1	5.4	42.4	2.57%	42.0	0.090	39.5	6.0	1.7	125.6	7.64%	1518	1442	1366	-32
3	7.4	42.4	2.60%	42.5	0.110	48.5	8.5	2.4	135.8	8.26%	1508	1432	1357	-32
5	9.4	42.4	2.68%	43.8	0.123	54.1	10.0	2.8	143.1	8.71%	1501	1425	1350	-32 1
10	14.4	42.4	2.76%	45.1	0.150	66.0	13.5	3.8	157.3	9.57%	1486	1412	1338	-32
15	19.4	42.4	2.81%	45.9	0.167	73.6	15.5	4.4	166.3	10.12%	1477	1403	1330	-32
17	21.4	42.4									1475	1401	1327	
20	24.4	42.4	2.87%	46.9	0.181	79.0	17.5	4.9	173.3	10.54%	1470	1397	1323	-32
21:3	25.65	42,4									1469	1396	1322	
25	29.4	42.4	2.88%	47.1	0.190	83.2	19.5	5.5	178.2	10.84%	1465	1392	1319	-32
30	.34.4	42.4	2.91%	47.6	0.200	88.0	20.4	5.8	183.8	11.18%	1460	1387	1314	-32
35	39.4	42.4	2.93%	47.9	0.209	91.9	21.5	6.1	188.3	11.46%	1455	1383	1310	-32
40	44.4	42.4	2.95%	48.2	0.215	94.7	22.5	6.4	191.7	11.66%	1452	1379	1307	-32
21	25.4				· · · · · · · · · · · · · · · · · · ·			·			1469	1396	1322	77 FR
27. lan.98													·	xC ID:S-85-0082 VISION 3 GE 70C % page followed p 70D

27-Jan-98

in a star

.

page 80 of 191

FM 6.5 Exhibit 5

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H31)

42H31 INITIAL CONCRETE STRESS (PSI): TENDON:

ORIGINAL FORCES (KIPS):	SHOP: 1670 FIELD: 1637	AVERAGE: 1653	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	32 OF 60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

										1				
			INDIVIDUAL LOSSES TOTAL LOSSES PREDIC											
INSPECT.	YEARS													
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL	•			NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION				i	FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	{D}	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(1)	(M)	(N)	(0)
1	5.4	62.5	2.57%	42.0	0.090	39.5	6.0	1.7	145.7	8.81%	1508	1432	1357	-21
3	7.4	62.5	2.60%	42.5	0.110	48.5	. 8.5	2.4	155.9	9.43%	1497	1422	1348	·21
5	9.4	62.5	2.68%	43.8	0.123	54.1	10.0	2.8	163.2	9.87%	1490	1416	1341	-21
. 10	14.4	62.5	2.76%	45.1	0.150	66.0	13.5	3.8	177.4	10.73%	1476	1402	1328	-21
15	19.4	62.5	2.81%	45.9	0.167	73.6	15.5	4.4	186.4	11.28%	1467	1393	1320	·21
17	21.4	62.5									1464	1391	1318	
20	24.4	62.5	2.87%	46.9	0.181	79.0	17.5	4.9	193.4	11.70%	1460	1387	1314	-21
21:3	25.65	62.5									1459	1386	1313	
25	29.4	62.5	2.88%	47.1	0.190	83.2	19.5	5.5	198.3	12.00%	1455	1382	1309	-21
30	34.4	62.5	2.91%	47.6	0.200	88.0	20.4	5.8	203.9	12.33%	1449	1377	1304	-21
35	39.4	62.5	2.93%	47.9	0.209	91.9	21.5	6.1	208.4	12.61%	1445	1373	1300	-21
40	44.4	62.5	2.95%	48.2	0.215	94.7	22.5	6.4	211.8	12.81%	1441	1369	1297	·21
21 11-Sep-97	25.4						<u></u>			•	1459	1386	1313	DOC ID:S-95-0082 Revision 2 Page 71

page 81 of 191

RZ

FM 6.5 Exhibit 5

R2

page 82 of 191

82

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H32)

TENDON: 42H32

INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS): STRESS SEQUENCE: 3 41 S

SHOP: 1610 FIELD: 1641 60 🔊

AVERAGE: 1626 TOTAL ELASTIC SHORT. LOSS: 134.0 AVERAGE ALL HOOP TENDONS: WIRE FACTOR:

635 1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		IN DIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIM	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
1	5.4	42.4	2.57%	42.0	0.090	39.5	6.0	1.7	125.6	7.73%	1500	1425	1350	-15
3	7.4	42.4	2.60%	42.5	0.110	48.5	8.5	2.4	135.8	8.35%	1490	1415	1341	-15
5	9.4	42.4	2.68%	43.8	0.123	54.1	10.0	2.8	143.1	8.80%	1483	1409	1334	-15
10	14.4	42.4	2.76%	45.1	0.150	66.0	13.5	3.8	157.3	9.68%	1468	1395	1322	-15
15	19.4	42.4	2.81%	45.9	0.167	73.6	15.5	4.4	166.3	10.23%	1460	1387	1314	-15
17	21.4	42.4									1457	1384 -	1311	
20	24.4	42.4	2.87%	46.9	0.181	79.0	17.5	4.9	173.3	10.66%	1453	1380	1307	-15
21:3	25.65	42.4									1451	1379	1306	
25	29.4	42.4	2.88%	47.1	0.190	83.2	19.5	5.5	178.2	10.96%	1448	1375	1303	-15
30	34.4	42.4	2.91%	47.6	0.200	88.0	20.4	5.8	183.8	11.30%	1442	1370	1298	-15
35	39.4	42.4	2.93%	47.9	0.209	91.9	21.5	6.1	188.3	11.58%	1438	1366	1294	·15
40	44.4	42.4	2.95%	48.2	0.215	94.7	22.5	6.4	191.7	11.79%	1434	1362	1291	-15
21	25.4									<u> </u>	1452	1379	1306	DOC ID:S-95-0 REVISION 2 PAGE 73
11-Sep-97														082

page 83 of 191 IR2

page 84 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H33)

42H33 TENDON:

INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 1670	FIELD: \$1661	AVERAGE:	1665	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	33 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

A 1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS	,	INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		<u> </u>		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION	ļ				FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m inlin	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	{0}	(E)	(F)	(G)	(H)	(1)	{J}	(K)	(L)	(M)	(N)	(0)
								·						
1	5.4	60.3	2.57%	42.0	0.090	39.5	6.0	1.7	143.5	8.62%	. 1522	1446	1370	•35
3	7.4	60.3	2.60%	42.5	0.110	48.5	8.5	2.4	153.7	9.23%	1512	1436	1360	-35
5.	9.4	60.3	2.68%	43.8	0.123	54.1	10.0	2.8	161.0	9.67%	1504	1429	1354	-35
10	14.4	60.3	2.76%	45.1	0.150	66.0	13.5	3.8	175.2	10.52%	1490	1416	1341	-35
15	19.4	60.3	2.81%	45.9	0.167	73.6	15.5	4.4	184.2	11.06%	1481	1407	1333	-35
17	21.4	60.3									1478	1404	1330	
20 .	24.4	60.3	2.87%	46. 9	0.181	79.0	17.5	4.9	191.1	11.48%	1474	1400	1327	-35
21:3	25.65	60.3									1473	1399	1326	
25	29.4	60.3	2.88%	47.1	0,190	83.2	19.5	5.5	196.1	11.78%	1469	1396	1322	.35
30	34.4	60.3	2.91%	47.6	0.200	88.0	20.4	5.8	201.7	12.11%	1464	1390	1317	-35
35	39.4	60.3	2.93%	47.9	0.209	91.9	21.5	6.1	206.2	12.38%	1459	1386	1313	-35
40	44.4	60.3	2.95%	48.2	0.215	94.7	22.5	6.4	209.6	12.58%	1456	1383	1310	•35
21 11-Sep-97	25.4					<u>_</u>					1473	1399	1326	DOC ID:S-95-0082 REVISION 2 PAGE 75

RZ

page 85 of 191

FM 6.5 Exhibit 5 RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (42H34)

42H34 TENDON:

dⁱ

INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1621	FIELD: 1631	AVERAGE: 1626	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	41 OF	60	TOTAL ELASTIC SHORT. LOSS:	WIRE FACTOR:	0.982

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTALLOSSES										PREDICTED FORCES		
PERIOD	AFTER		STRE	SS	CRE	EEP	SHRI	IKAGE	TOTAL	TOTAL	· · · · ·	1		NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				}	
(YR:MO)	(LOG)			 (KIPS) 	(*.0001)	(KIPS)		(KIPS)	(KIPS)	·	(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	{L}	(M)	(N)	(0)	
			ī									T			
1	5.4	41.7	2.57%	42.0	0.090	39.5	6.0	1.7	124.8	7.68%	1501	1426	1351	-14	
3	7.4	41.7	2.60%	42.5	0.110	48.5	8.5	2.4	135.1	8.31%	1491	1416	1341	-14	
5	9.4	41.7	2.68%	43.8	0.123	54.1	10.0	2.8	142.4	8.76%	1483	1409	1335	-14	
10	14.4	41.7	2.76%	45.1	0.150	66.0	13.5	3.8	156.6	9.63%	1469	1396	1322	-14	
15	19.4	41.7	2.81%	45.9	0.167	73.6	15.5	4.4	165.5	10.18%	1460	1387	1314	-14	
17	21.4	41.7									1457	1384	1312		
20	24.4	41.7	2.87%	46.9	0.181	79.0	17.5	4.9	172.5	10.61%	1453	1380	1308	-14	
21:3	25.65	41.7									1452	1379	1307		
25	29.4	41.7	2.88%	47.1	0.190	83.2	19.5	5.5	177.5	10.92%	1448	1376	1303	-14	
30	34.4	41.7	2.91%	47.6	0.200	88.0	20.4	5.8	183.0	11.26%	1443	1370	1298	-14	
35	39,4	41.7	2.93%	47.9	0.209	91.9	21.5	6.1	187.5	11.53%	1438	1366	1294	-14	
40	44.4	41.7	2.95%	48.2	0.215	94.7	22.5	6.4	190.9	11.74%	1435	1363	1291	-14	
21	25.4										1452	1380	1307	DOC ID:S-95-0 REVISION 1 PAGE 78A This page follor Page 768	
27-Jan-98														~ed by	

IR3 page 87 of 191

10

FM 6.5 Exhibit 5

page 88 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (42H35)

INITIAL CONCRETE STRESS (PSI): 1732 42H35 TENDON: ORIGINAL FORCES (KIPS): SHOP: 0F FIELD: 1624 AVERAGE: AVERAGE ALL HOOP TENDONS: 1647 60 STRESS SEQUENCE: TOTAL ELASTIC SHORT. LOSS: 134:0 WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

YEARS		•	INDIV	IDUAL L	0 \$ \$ E \$			TOTAL	LOSSES	PRI	EDICTED FOR	CES	
AFTER	**	STR	ESS	CR	EEP	SHRI	NKAGE	TOTAL	TOTAL		1		NORMALIZING
CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR -
PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				-
(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	1	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(B)	(C)	(D)	(É)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
								<u> </u>					
5.4	59.9	2.57%	42.0	0.090	39.5	6.0	1.7	143.1	8.69%	1504	1428	1353	-17
7.4	59.9	2.60%	42.5	0.110	48.5	8.5	2.4	153.3	9.31%	1493	1419	1344	-17
9.4	59.9	2.68%	43.8	0.123	54.1	10.0	2.8	160.6	9.75%	1486	1412	1338	-17
14.4	59.9	2.76%	45.1	0.150	66.0	13.5	3.8	174.8	10.62%	1472	1398	1325	-17
19.4	59.9	2.81%	45. 9	0.167	73.6	15.5	4.4	183.8	11.16%	1463	1390	1317	-17
21.4	59.9									1460	1387	1314	
24.4	59.9	2.87%	46.9	0.181	79.0	17.5	4.9	190.8	11.58%	1456	1383	1310	-17
25.65	59.9									1455	1382	1309	
29.4	59.9	2.88%	47.1	0.190	83.2	19.5	5.5	195.7	11.89%	1451	1378	1306	-17
34.4	59.9	2.91%	47.6	0.200	88.0	20.4	5.8	201.3	12.22%	1445	1373	1301	-17
39.4	59.9	2.93%	47.9	0.209	91.9	21.5	6.1	205.8	12.50%	1441	1369	1297	-17
44.4	59.9	2.95%	48.2	0.215	94.7	22.5	6.4	209.2	12.70%	1438	1366	1294	-17
25.4									-	1455	1382	1309	Page 1
													C (D:S-95-008; VISION 3 GE 76C 3 Page followed
	YEARS AFTER CONCRETE PLACEMENT (LOG) (B) 5.4 7.4 9.4 14.4 19.4 21.4 24.4 25.65 29.4 34.4 39.4 44.4 25.4	YEARS AFTER CONCRETE PLACEMENT (LOG) (B) (C) 5.4 5.9.9 7.4 59.9 9.4 59.9 14.4 59.9 12.4 59.9 24.4 59.9 24.4 59.9 24.4 59.9 24.4 59.9 24.4 59.9 29.4 59.9 24.4 59.9 25.65 59.9 29.4 59.9 25.4	YEARS AFTER STR CONCRETE ELASTIC RELAXA PLACEMENT SHORT. PERCENT (LOG) (B) (C) (D) 5.4 59.9 2.57% 7.4 59.9 2.60% 9.4 59.9 2.68% 14.4 59.9 2.68% 14.4 59.9 2.81% 21.4 59.9 2.81% 25.65 59.9 2.87% 25.65 59.9 2.88% 34.4 59.9 2.91% 39.4 59.9 2.93% 44.4 59.9 2.95% 25.4 59.9 2.95%	YEARS AFTER CONCRETE PLACEMENT (LOG) ELASTIC SHORT. STRESS RELAXATION (B) (C) (D) (E) 5.4 59.9 2.57% 42.0 7.4 59.9 2.60% 42.5 9.4 59.9 2.68% 43.8 14.4 59.9 2.81% 45.9 21.4 59.9 2.81% 45.9 25.65 59.9 2.87% 46.9 25.65 59.9 2.88% 47.1 34.4 59.9 2.93% 47.9 44.4 59.9 2.93% 47.9 25.4 59.9 2.93% 47.9 25.4 59.9 2.93% 47.9 34.4 59.9 2.93% 47.9 25.4 59.9 2.95% 48.2	YEARS AFTER CONCRETE PLACEMENT (LOG) ELASTIC SHORT. STRESS RELAXATION CR FORCE (KIPS) CR (*.0001) (B) (C) (D) (E) (F) 5.4 59.9 2.57% 42.0 0.090 7.4 59.9 2.60% 42.5 0.110 9.4 59.9 2.66% 43.8 0.123 14.4 59.9 2.86% 45.1 0.150 19.4 59.9 2.81% 45.9 0.167 21.4 59.9 2.87% 46.9 0.181 25.65 59.9	YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS ELASTIC SHORT. STRESS RELAXATION CREEP 9ERCENT (LOG) SHORT. PERCENT (KIPS) FORCE (KIPS) SP. CR. (*.0001) FORCE (KIPS) (B) (C) (D) (E) (F) (G) 5.4 59.9 2.57% 42.0 0.090 39.5 7.4 59.9 2.60% 42.5 0.110 48.5 9.4 59.9 2.68% 43.8 0.123 54.1 14.4 59.9 2.81% 45.9 0.167 73.6 21.4 59.9 2.87% 46.9 0.181 79.0 25.65 59.9	YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS STRESS CREEP SHRII PERCENT (LOG) FORCE SHORT. RELAXATION FORCE (*.0001) FORCE (KIPS) SP. CR. FORCE (KIPS) m in/in (B) (C) (D) (E) (F) (G) (H) 5.4 59.9 2.57% 42.0 0.090 39.5 6.0 7.4 59.9 2.60% 42.5 0.110 48.5 8.5 9.4 59.9 2.68% 43.8 0.123 54.1 10.0 14.4 59.9 2.81% 45.9 0.167 73.6 15.5 21.4 59.9 2.87% 46.9 0.181 79.0 17.5 25.65 59.9 - - - - - 29.4 59.9 2.81% 47.1 0.190 83.2 19.5 34.4 59.9 2.91% 47.6 0.200 88.0 20.4 39.4 59.9 2.93% 47.9	YEARS AFTER CONCRETE STRESS CREEP SHRINKAGE PLACEMENT (LOG) SHORT. PERCENT FORCE (KIPS) SP. CR. (*.0001) FORCE (KIPS) m in/in FORCE (KIPS) (B) (C) (D) (E) (F) (G) (H) (I) 5.4 59.9 2.57% 42.0 0.090 39.5 6.0 1.7 7.4 59.9 2.60% 42.5 0.110 48.5 8.5 2.4 9.4 59.9 2.68% 43.8 0.123 54.1 10.0 2.8 14.4 59.9 2.88% 45.9 0.167 73.6 15.5 4.4 21.4 59.9 2.87% 46.9 0.181 79.0 17.5 4.9 25.65 59.9	YEARS AFTER STRESS CREEP SHRINKAGE TOTAL FORCE PLACEMENT (LOG) ELASTIC PERCENT FORCE (KIPS) SP. CR. FORCE (KIPS) m in/in FORCE (KIPS) TOTAL FORCE 1 B) (C) (D) (E) (F) (G) (H) (I) (J) 5.4 59.9 2.57% 42.0 0.090 39.5 6.0 1.7 143.1 7.4 59.9 2.60% 42.5 0.110 48.5 8.5 2.4 153.3 9.4 59.9 2.60% 43.8 0.123 54.1 10.0 2.8 160.6 14.4 59.9 2.81% 45.9 0.167 73.6 15.5 4.4 183.8 21.4 59.9 2.87% 46.9 0.181 79.0 17.5 4.9 190.8 25.65 59.9 - - - - - - 29.4 59.9 2.88% 47.1 0.190	YEARS AFTER STRESS CREEP SHRINKAGE TOTAL FORCE TOTAL PERCENT PLACEMENT (LOG) SHORT. PERCENT FORCE (KIPS) SP. CR. (KIPS) FORCE (KIPS) m in/in FORCE (KIPS) LOSS (KIPS) LOSS LOSS IB) (C) (D) (E) (F) (G) (H) (J) (K) 5.4 59.9 2.57% 42.0 0.090 39.5 6.0 1.7 143.1 8.69% 7.4 59.9 2.60% 42.5 0.110 48.5 8.5 2.4 153.3 9.31% 9.4 59.9 2.68% 43.8 0.123 54.1 10.0 2.8 160.6 9.75% 14.4 59.9 2.81% 45.9 0.167 73.6 15.5 4.4 183.8 11.16% 21.4 59.9 2.87% 46.9 0.181 79.0 17.5 4.9 190.8 11.58% 25.65 59.9	YEARS AFTER STRESS CREEP SHRINKAGE TOTAL FORCE FORL FORLE FORL FORL FORLE FORL FORL FORLE LOSS LOSS LOSS (KIPS) (KIPS)	YEARS AFTER CONCRETE [LOG] STRESS SHORT. STRESS (KIPS) CREEP SHRINKAGE TOTAL FORCE TOTAL FORCE TOTAL FORCE BASE 95% BASE PLACEMENT (LOG) SHORT. PERCENT FORCE (KIPS) FORCE (KIPS) FORCE (KIPS) IOSS (KIPS) LOSS (KIPS) LOSS (KIPS) LOSS (KIPS) SKIPS) KIPS) KIPS) (KIPS) (KIPS)	YEARS STRESS CREEP SHRINKAGE TOTAL TOTAL FORCE PLACEMENT SHORT. PERCENT FORCE SP. CR. FORCE min/in FORCE LOSS LOSS (KIPS) (KIPS)

12

ਹਰੁਵ 8ਉੱ of 191

FM 6.5 Exhibit 5

1635

0,994

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (42H36)

ORIGINAL FORCES (KIPS): SHOP: 1706 FIELD: 1653 1635 AVERAGE: 1680 AVERAGE ALL HOOP TENDONS: 1.000 40 60 STRESS SEQUENCE: ÔF TOTAL ELASTIC SHORT. LOSS: 134.0 WIRE FACTOR: NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES INSPECT. YEARS PERIOD AFTER STRESS CREEP SHRINKAGE TOTAL TOTAL NORMALIZING AFTER CONCRETE ELASTIC RELAXATION FORCE PERCENT BASE 95% BASE 90% BASE FACTOR SIT PLACEMENT SHORT. PERCENT FORCE SP. CR. FORCE m in/in FORCE LOSS LOSS (YR:MO) (LOG) (KIPS) (*.0001) (KIPS) (KIPS) (KIPS) (KIPS) (KIPS) (KIPS) (KIPS) (A) (8) (C) (D) (E) (F) (G) (H) (J) (K) (M) (0)()(L) (N)1 5.4 44.7 2.57% 42.0 0.090 39.5 6.0 1.7 127.9 7.61% 1552 1474 1397 -65 3 7.4 44.7 2.60% 42.5 0.110 48.5 8.5 2.4 138.1 8.22% 1542 1464 1387 -65 5 9.4 44.7 2.68% 43.8 0.123 54.1 10.0 2.8 145.4 8.65% 1534 1457 1381 -65 10 14.4 44.7 2.76% 45.1 0.150 3.8 159.6 9.50% 1520 1368 66.0 13.5 1444 -65 15 19.4 44.7 2.81% 45.9 0.167 73.6 15.5 4.4 168.5 10.03% 1511 1435 1360 -65 17 21.4 44.7 1508 1433 1357 20 24.4 44.7 2.87% 46.9 0.181 79.0 17.5 4.9 175.5 10.45% 1504 1429 1354 -65 21:3 25.65 44.7 1503 1428 1353 25 29.4 44.7 2.88% 47.1 0.190 83.2 19.5 5.5 180.5 10.74% 1499 1424 1349 -65 30 34.4 44.7 2.91% 47.6 20.4 186.0 11.08% 1494 1419 1344 0.200 88.0 5.8 -64 35 39.4 44.7 2.93% 47.9 0.209 91.9 21.5 190.5 11.34% 1489 1415 1340 -64 6.1 -64 40 44.4 44.7 2.95% 48.2 0.215 94.7 22.5 6.4 193.9 11.55% 1486 1411 1337 21 25.4 1503 1428 1353 DOC ID:S-95-0082 REVISION 3 PAGE 78E This pega followed Page 76F

INITIAL CONCRETE STRESS (PSI): 1732

27-Jan-98

TENDON:

42H36

page³1 오

10

N

6.5 Exhibit 5

i

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILL	ANCE
HOOP TENDON LOSSES WORK SHEET	
FILE: HOOPR3.XLW (42H37)	

j,

TENDON: 1732 42H37 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 564	1622	FIELD: 1661	AVERAGE:	1641	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	34	OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000
	terre de contradición participat						

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIV	IDUAL L	OSSES			TOTAL	LOSSES	PRE	DICTED FOR	CES	
PERIOD	AFTER		STR	ESS	CR	EEP	SHRI	NKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	1	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
			· · · · · · · · · · · · · · · · · · ·		I							1		
1	5.4	58.1	2.57%	42.0	0.090	· 39.5	6.0	1.7	141.3	8.61%	1500	1425	1350	-14
3	7.4	58.1	2.60%	42.5	0.110	48.5	8.5	2.4	151.5	9.23%	1490	1415	1341	-14
5	9.4	58.1	2.68%	43.8	0.123	54.1	10.0	2.8	158.8	9.67%	1483	1409	1334	-14
10	14.4	-58.1	2.76%	45.1	0.150	66.0	13.5	3.8	173.0	10.54%	1468	1395	1322	-14
15	19.4	58.1	2.81%	45.9	0.167	73.6	15.5	4.4	181.9	11.08%	1459	1387	1314	-14
17	21.4	58.1									1457	1384	1311	
20	24.4	58.1	2.87%	46.9	0.181	79.0	17.5	4.9	188.9	11.51%	1453	1380	1307	-14
21:3	25.65	58.1									1451	1379	1306	
25	29.4	58.1	2.88%	47.1	0.190	83.2	19.5	5.5	193.9	11.81%	1448	1375	1303	-14
30	34.4	58.1	2.91%	47.6	0.200	88.0	20.4	5.8	199.4	12.15%	1442	1370	1298	-14
35	39.4	58.1	2.93%	47.9	0.209	91.9	21.5	6.1	203.9	12.42%	1437	1366	1294	-14
40	44.4	58.1	2.95%	48.2	0.215	94.7	22.5	6.4	207.3	12.63%	1434	1362	1291	-14
21	25.4										1452	1379	1306	
														CID:: GE 7 GE 7 Je 76
		-												He 60 3 5 0
27 1 08														
∡7-Jan-98														

page 93 of 191

FM 6.5 Exhibit 5

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H43)

TENDON: 42H43 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 51610	FIELD: 1612	AVERAGE: 1611	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	36 OF	602	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

NORFOT				INDIVI	DUAL LO	LOSSES	PRE							
INSPECT. PERIOD	YEARS AFTER		STRE	SS	CRE	EP	SHRIN	TOTAL	1 TOTAL		r	·	NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)]	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(0)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	{N}	(0)
							1		[
1	5.4	53.6	2.57%	42.0	0.090	39.5	6.0	1.7	136.8	8.49%	1475	1401	1327	11
3	7.4	53.6	2.60%	42.5	0.110	48.5	8.5	2.4	147.0	9.12%	1464	1391	1318	11
5	9.4	53.6	2.68%	43.8	0.123	54.1	10.0	2.8	154.3	9.58%	1457	1384	1311	11
10	14.4	53.6	2.76%	45.1	0.150	66.0	13.5	3.8	168.5	10.46%	1443	1371	1299	11
15	19.4	53.6	2.81%	45.9	0.167	73.6	15.5	4.4	177.5	11.01%	1434	1362	1291	11
17	21.4	53.6									1431	1360	1288	
20	24.4	53.6	2.87%	46.9	0.181	79.0	17.5	4.9	184.4	11.45%	1427	1356	1284	11
21:3	25.65	53.6							<u> </u>		1426	1354	1283	
25	29.4	53.6	2.88%	47.1	0.190	83.2	19.5	5.5	189.4	11.75%	1422	1351	1280	11
30	34.4	53.6	2.91%	47.6	0.200	88.0	20.4	5.8	195.0	12.10%	1416	1346	1275	11
35	39.4	53.6	2.93%	47.9	0.209	91.9	21.5	6.1	199.5	12.38%	1412	1341	1271	11
40	44.4	53.6	2.95%	48.2	0.215	94.7	22.5	6.4	202.9	12.59%	1409	1338	1268	11
21	25.4										1426	1355	1283	סגי

11-Sep-97

doc 10:S-95-0082 Revision 2 Page 77

FM 6.5 Exhibit 5

page 95 of 191

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 1 10 100 5 6 7 8 9 2 3 4 20 30 50 70 80 90 40 60 1600 TENDON FORCE CURVE TENDON 42H43 NORMALIZING FACTOR: 11 . - BASE 1500 95% BASE TENDON FORCE (KIPS) 1400 . : 90% BASE : 1300 **Predicted Values For** 1997 Surveillance 6 (November 1, 1997) 1200 BASE 1426 Kips SIT NOV. 1976 NOVEMBER 95% BASE 1355 Kips 90% BASE - 1283 Kips R2 .1100 doc id:5-95-0082 Revision 2 Page 78 1000 0 1 3 5 10 15 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March 102 SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997.

FM 6.5 Exhibit 5

page 96 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H44)

TENDON: 42H44

INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 🎊 (1693)	FIELD: 1617	AVERAGE:	1605	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	39 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HDOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	S S E S		TOTAL I	OSSES	PRE	DICTED FORC	ES		
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		Γ		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIP\$)	(KIPS)
(A)	(8)	(C)	(D)	(E)	{F}	(G)	(H)	(1)	(L)	(K)	{L)	(M)	{N}	(0)
1	5.4	46.9	2.57%	42.0	0.090	39.5	6.0	1.7	130.1	8.10%	1475	1401	1328	10
3	7.4	46.9	2.60%	42.5	0.110	48.5	8.5	2.4	140.3	8.74%	1465	1392	1318	10
- 5	9.4	46.9	2.68%	43.8	0.123	54.1	10.0	2.8	147.6	9.20%	1458	1385	1312	10
10	14.4	46.9	2.76%	45.1	0.150	66.0	13.5	3.8	161.8	10.08%	1443	1371	1299	10
15	19.4	46.9	2.81%	45.9	0.167	73.6	15.5	4.4	170.8	10.64%	1434	1363	1291	10
17	21.4	46.9									1432	1360	1288	
20	24.4	46.9	2.87%	46.9	0.181	79.0	17.5	4.9	177.7	11.07%	1427	1356	1285	10
21:3	25.65	46.9									1426	1355	1284	
25	29.4	46.9	2.88%	47,1	0.190	· 83.2	19.5	5.5	182.7	11.38%	1423	1351	1280	10
30	34.4	46.9	2.91%	47.6	0.200	88.0	20.4	5.8	188.3	11.73%	1417	1346	1275	10
35	39.4	46.9	2.93%	47.9	0.209	91.9	21.5	6.1	192.8	12.01%	1412	1342	1271	10
40	44.4	46.9	2.95%	48.2	0.215	94.7	22.5	6.4	196.2	12.22%	1409	1339	1268	10
21	25.4	· · · · · ·					-				1426	1355	1284	00C ID:S-95-0082 REVISION 2 PAGE 79

page 97 of 191 IRZ

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 10 100 1 789 2 60 70 80 90 3 5 6 20 30 40 50 4 1600 **TENDON FORCE CURVE TENDON 42H44** : NORMALIZING FACTOR: 10 1500 ÷ BASE 95% BASE . **TENDON FORCE (KIPS)** 1400 90% BASE 1300 . Predicted Values For 1, 1997 Surveillance 6 (November 1, 1997) 1200 BASE 1426 Kips SIT NOV. 1976 NOVEMBER 1 95% BASE 1355 Kips 90% BASE 1284 Kips RZ 1100 doc id:s:95-0082 Revision 2 Page 80 1000 0 3 5 10 15 20 25 30 35 40 1 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. 122 FM 6.5 Exhibit 5

page 98 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (42H45)

INITIAL CONCRETE STRESS (PSI): 1732 TENDON: 42H45

ORIGINAL FORCES (KIPS):	SHOP: 1670	FIELD: 1661	AVERAGE:	1665	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	37 OF 6	0	TOTAL ELASTIC SHORT. LOSS:	<u>134.0</u>	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	PREDICTED FORCES									
PERIDD	AFTER		STRE	SS	CRE	CREEP SHRINKAGE			TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	{N}	(0)
1	5.4	51.4	2.57%	42.0	0.090	39.5	6.0	1.7	134.6	8.08%	1531	1454	1378	-44
3	7.4	51.4	2.60%	42.5	0.110	48.5	8.5	2.4	144.8	8.69%	1521	1444	1368	•44 .
5	9.4	51.4	2.68%	43.8	0.123	54.1	10.0	2.8	152.1	9.13%	1513	1438	1362	-44
10	14.4	51.4	2.76%	45.1	0.150	66.0	13.5	3.8	166.3	9.98%	1499	1424	1349	-44
15	19.4	51.4	2.81%	45.9	0.167	73.6	15.5	4.4	175.2	10.52%	1490	1416	1341	-44
17	21.4	51.4								1	1487	1413	1339	
20	24.4	51.4	2.87%	46.9	0.181	79.0	17.5	4.9	182.2	10.94%	1483	1409	1335	-44
21:3	25.65	51.4					[1482	1408	1334	
25	29.4	51.4	2.88%	47.1	0.190	83.2	19.5	5.5	187.2	11.24%	1478	1404	1330	-44
30	34.4	51.4	2.91%	47.6	0.200	88.0	20.4	5.8	192.7	11.57%	1473	1399	1325	-44
35	39.4	51.4	2.93%	47.9	0.209	91.9	21.5	6.1	197.2	11.84%	1468	1395	1321	-44
40	44.4	51.4	2.95%	48.2	0.215	94.7	22.5	6.4	200.6	12.05%	1465	1391	1318	-44
21 11-Sep-97	25.4				<u> </u>		······			<u> </u>	1482	1408	1334	DOC ID:S-95-0082 REVISION 2 PAGE 81

page 99 of 191

FM 6.5 Exhibit 5 1 RZ

IRZ

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 1 10 100 7 89 6 2 3 4 5 20 30 40 50 60 70 80 90 1600 **TENDON FORCE CURVE** ! BASE **TENDON 42H45 NORMALIZING FACTOR: -44** 1500 95% BASE TENDON FORCE (KIPS) 1400 - 90% BASE . . . 1300 Predicted Values For Surveillance 6 (November 1, 1997) 1482 Kips BASE 95% BASE 1408 Kips NOVEMBER 1, 1997 . _ 90% BASE 1334 Kips 1200 SIT NOV. 1976 182 1100 OOC ID:S:95-0082 Revision 2 Page 82 : 1000 0 . 3 5 1 10 15 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March RZ SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997.

FM 6.5 Exhibit 5

page 100 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (46H2O)

INITIAL CONCRETE STRESS (PSI): 01732 TENDON: 46H20

(1679) DF ORIGINAL FORCES (KIPS): SHOP: FIELD: 1609 AVERAGE: AVERAGE ALL HOOP TENDONS: 1635 1644 STRESS SEQUENCE: 44 TOTAL ELASTIC SHORT. LOSS: 31340 WIRE FACTOR: 0.982 60

.

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	OSSES	PRE								
PERIOD	AFTER		STRE	SS	CREEP SHRINKAGE			TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	1	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(Ĉ)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	{K}	(L) ·	(M)	(N)	(0)
										· · · · ·		1		
1	5.4	35.1	2.57%	42.0	0.090	39.5	6.0	1.7	118.3	7.19%	1526	1449	1373	-39
3	7.4	35.1	2.60%	42.5	0.110	48.5	8.5	2.4	128.5	7.82%	1515	1440	1364	-39
5	9.4	35.1	2.68%	43.8	0.123	54.1	10.0	2.8	135.8	8.26%	1508	1433	1357	-39
10	14.4	35.1	2.76%	45.1	0.150	66.0	13.5	3.8	150.0	9.12%	1494	1419	1345	-39
15	19.4	35.1	2.81%	45.9	0.167	73.6	15.5	4.4	158.9	9.67%	1485	1411	1336	.39
17	21.4	35.1									1482	1408	1334	
20	24.4	35.1	2.87%	46.9	0.181	79.0	17.5	4.9	165.9	10.09%	1478	1404	1330	.39
21:3	25.65	35.1									1477	1403	1329	
25	29.4	35.1	2.88%	47.1	0.190	83.2	19.5	5.5	170.9	10.39%	1473	1399	1326	•39
30	34.4	35.1	2.91%	47.6	0.200	88.0	20.4	5.8	176.4	10.73%	1467	1394	1321	·39
35	39.4	35.1	2.93%	47.9	0.209	91.9	21.5	6.1	180.9	11.01%	1463	1390	1317	-39
40	44.4	35.1	2.95%	48.2	0.215	94.7	22.5	6.4	184.3	11.21%	1460	1387	1314	-39
21 11-Sen-97	25.4										1477	1403	1329	DOC ID:S-95-0082 Revision 2 Page 83

page 101 of 191

FM 6.5 Exhibit 5 lez

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 6 7 8 9 ¹⁰ 60 70 80 90 100 1 5 3 2 Δ 20 30 40 50 1600 TENDON FORCE CURVE TENDON 46H20 BASE NORMALIZING FACTOR: -39 1500 95% BASE **TENDON FORCE (KIPS)** 90% BASE 1400 1300 Predicted Values For 997 Surveillance 6 (November 1, 1997) BASE 1477 Kips 1200 NOVEMBER 1 SIT NOV. 1976 95% BASE 1403 Kips 90% BASE 1329 Kips 1RZ 1100 doc id:s:95:0082 Revision 2 Page 84 1000 ۵ 1 3 5 10 15 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. IR2

FM 6.5 Exhibit 5

page 102 of 191

1R2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE

HOOP TENDON LOSSES WORK SHEET

FILE: HOOPR2.XLW (46H21)

TENDON:

INITIAL CONCRETE STRESS (PSI): 1732 46H21

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

FIELD: 1682 SHOP: 1624 28 OF 28

AVERAGE: 1653 TOTAL ELASTIC SHORT. LOSS: 134.0 AVERAGE ALL HOOP TENDONS: WIRE FACTOR:

1635 0.994

NDTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INCOLOT	VEADO			INDIVI	DUAL LO	LOSSES	PREI							
PERIOD	AFTER											1		NORMALIZING
AFTER	CONCRETE	FLASTIC	RELAXA	TION				OTHERRADE		PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	in/in	FORCE	LOSS	LOSS				
(YR:MD)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)	(0)
1	5.4	71.0	2.57%	42.0	0.090	39.5	6.0	1.7	154.2	9.33%	1499	1424	1349	-12
3	7.4	71.0	2.60%	42.5	0.110	48.5	8.5	2.4	164.4	9.95%	1489	1414	1340	12
5	9.4	71.0	2.68%	43.8	0.123	54.1	10.0	2.8	171.7	10.39%	1481	1407	1333	-12
10	14.4	71.0	2.76%	45.1	0.150	66.0	13.5	3.8	185.9	11.25%	1467	1394	1320	-12
15	19.4	71.0	2.81%	45.9	0.167	73.6	15.5	4.4	194.9	11.79%	· 1458	1385	1312	-12
17	21.4	71.0									1455	1383	1310	
20	24.4	71.0	2.87%	46.9	0.181	79.0	17.5	4.9	201.9	12.21%	1451	1379	1306	-12
21:3	25.65	71.0									1450	1377	1305	
25	29.4	71.0	2.88%	47.1	0.190	83.2	19.5	5.5	206.8	12.51%	1446	1374	1302	·12
30	34.4	71.0	2.91%	47.6	0.200	88.0	20.4	5.8	212.4	12.85%	1441	1369	1297	-12
35	39.4	71.0	2.93%	47.9	0.209	91.9	21.5	6.1	216.9	13.12%	1436	1364	1293	-12
40	44.4	71.0	2.95%	48.2	0.215	94.7	22.5	6.4	220.3	13.33%	1433	1361	1290	-12
21	25.4										1450	1378	1305	P R D

ioc id:s.95-0082 Ievision 2 Iage 85

11-Sep-97

page 103 of 191

R2

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 1 10 100 56 789 2 3 4 20 70 80 90 30 40 50 60 1600 **TENDON FORCE CURVE** TENDON 46H21 : NORMALIZING FACTOR: -12 BASE 1500 95% BASE **TENDON FORCE (KIPS)** 1400 90% BASE . 1300 Predicted Values For 1997 Surveillance 6 (November 1, 1997) BASE 1450 Kips _ 1200 NOVEMBER SIT NOV. 1976 95% BASE 1378 Kips 90% BASE 1305 Kips 1 RZ 1100 doc id:s:95-0082 Revision 2 Page 86 1000 Q 1 3 5 10 15 20 25 30 35 40 Note: Revision 2 is generated to change start date . for the 6th surveillance inspection from March 1RZ SCKEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997.

FM 6.5 Exhibit 5

page 104 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (46H22)

TENDON: 46H22

1732 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 1636	FIELD: 1694	AVERAGE: 16	665 /	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	43 OF	60	TOTAL ELASTIC SHORT. LOSS:	34.0	WIRE FACTOR:	0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	LOSSES	PRE								
PERIOD	AFTER	·	STRE	SS	CREEP SHRINKAGE			TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS			1	
(YR:MO)	(LOG)	L		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)	(0)
	-				· ·								T. T	
1	5.4	37.7	2.57%	42.0	0.090	39.5	6.0	1.7	120.9	7.26%	1544	1467	1390	·57
3	7.4	37.7	2.60%	42.5	0.110	· 48.5	8.5	2.4	131.1	7.88%	1534	1457	1381	-57
5	9.4	37.7	2.68%	43.8	0.123	54.1	10.0	2.8	138.4	8.31%	1527	1450	1374	·57
10	14.4	37.7	2.76%	45.1	0.150	66.0	13.5	3.8	152.6	9.17%	1513 ·	1437	1361	-57
15	19.4	3 7.7	2.81%	45.9	0.167	73.6	15.5	4.4	161.6	9.70%	1504	1428	1353	-57
17	21.4	37.7	,								1501	1426	1351	
20	24.4	37.7	2.87%	46.9	0.181	79.0	17.5	4.9	168.6	10.12%	1497	1422	1347	-57
21:3	25.65	37.7								11	1495	1421	1346	
25	29.4	37,7	2.88%	47.1	0.190	83.2	19.5	5.5	173.5	10.42%	1492	1417	1342	•57
30	34.4	37.7	2.91%	47.6	0.200	88.0	20.4	5.8	179.1	10.75%	1486	1412	1337	-57
35	39.4	37.7	2.93%	47.9	0.209	91.9	21.5	6.1	183.6	11.03%	1482	1408	1333	·57
40	44.4	37.7	2.95%	48.2	0.215	94.7	22.5	6.4	187.0	11.23%	1478	1404	1330	-57
21	25.4										1496	1421	1346	doc 10:5 Revision Page 87
11:Sep-97														.95-0082 2

FM 6.5 Exhibit 5 R2

1 R2

page 106 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HODP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (51H25)

TENDON: 51H25 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1600 FIELD: 1677	AVERAGE: 1638	AVERAGE ALL HOOP TENDONS:
STRESS SEQUENCE:	12 OF 60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR: 0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	DSSES	PREI	ES						
PERIOD	AFTER		STRESS			CREEP SHRINKAGE		TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	FION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m infin	FORCE	LOSS	LOSS				·
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)	(0)
													<u> </u>	
1	5.4	106.5	2.57%	42.0	0.090	39.5	6.0	1.7	189.7	11.58%	1449	1376	1304	38
3	7.4	106.5	2.60%	42.5	0.110	48.5	8.5	2.4	199.9	12.20%	1438	1367	1295	38
5	9.4	106.5	2.68%	43.8	0.123	54.1	10.0	2.8	207.2	12.65%	1431	1360	1288	38
10	14.4	106.5	2.76%	45.1	0.150	66.0	13.5	3.8	221.5	13.52%	1417	1346	1275	38
15	19.4	106.5	2.81%	45.9	0.167	73.6	15.5	4.4	230.4	14.06%	1408	1338	1267	38
17	21.4	106.5									1405	1335	1265	
20	24.4	106.5	2.87%	46.9	0.181	79.0	17.5	4.9	237.4	14.49%	1401	1331	1261	38
21:3	25.65	106.5									1400	1330	1260	
25	29.4	106.5	2.88%	47.1	0.190	83.2	19.5	5.5	242.3	14.79%	1396	1326	1256	38
30	34.4	106.5	2.91%	47.6	0.200	88.0	20.4	5.8	247.9	15.13%	1391	1321	1251	38
35	39.4	106.5	2.93%	47.9	0.209	91.9	21.5	6.1	252.4	15.41%	1386	1317	1247	38
40	44.4	106.5	2.95%	48.2	0.215	94.7	22.5	6.4	255.8	15.61%	1383	1313	1244	38
21	25.4									·	1400	1330	1260	PA
11-Sep-97													•)C ID:S-95-0082 ;VISION 2 ;GE 89

page 107 of 191 R2

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 1 10 100 89 6 60 70 80 90 2 3 4 5 7 20 30 40 50 1600 **TENDON FORCE CURVE TENDON 51H25** NORMALIZING FACTOR: 38 1500 BASE i. **TENDON FORCE (KIPS)** 1400 95% BASE : 90% BASE 1300 : 1997 Predicted Values For 1200 Surveillance 6 (November 1, 1997) SIT NOV. 1976 VOVEMBER 1, BASE 1400 Kips 95% BASE 1330 Kips 90% BASE 1260 Kips R2 1100 . DDC ID:S-95-0082 Revision 2 Page '90 . ; 1000 0 10 15 1 3 5 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. R2 FM 6.5 Exhibit 5

page 108 of 191

2
82

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (51H26)

TENDON: 51H26

INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 1697	FIELD: 1624	AVERAGE:	1661	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	53] OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER	-	STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(Ĉ)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)	
												·			
1	5.4	15.6	2.57%	42.0	0.090	39.5	6.0	1.7	98.8	5.95%	1562	1484	1406	-75	
3	7.4 、	15.6	2.60%	42.5	0.110	48.5	8.5	2.4	109.0	6.57%	1552	1474	1397	.75	
5	9.4	15.6	2.68%	43.8	0.123	54.1	10.0.	2.8	116.3	7.00%	1544	1467	1390	-75	
10	14.4	. 15.6	2.76%	45.1	0.150	66.0	13.5	3.8	130.5	7.86%	1530	1454	1377	-75	
15	19.4	15.6	2.81%	45. 9	0.167	73.6	15.5	4.4	139.5	8.40%	1521	1445	1369	-75	
17	21.4	15.6		•							1518	1443	1367		
20	24.4	15.6	2.87%	46.9	0.181	79.0	17.5	4.9	146.5	8.82%	1514	1439	1363	.75	
21:3	25.65	15.6									1513	1437	1362		
25	29.4	15.6	2.88%	47.1	0.190	83.2	19.5	5.5	151.4	9.12%	1509	1434	1358	-75	
30	34.4	15.6	2.91%	47.6	0.200	88.0	20.4	5.8	157.0	9.45%	1504	1429	1353	.75	
35	39.4	15.6	2.93%	47.9	0.209	91.9	21.5	6.1	161.5	9.72%	1499	1424	1349	-75	
40	44.4	15.6	2.95%	48.2	0.215	94.7	22.5	6.4	164.9	9.93%	1496	1421	1346	-75	
21	25.4										1513	1438	1362	DOC ID:S-95-0 Revision 2 Page 91	
11-Sep-97														1082	

page 109 of 191

page 110 of 191

FM 6.5 Exhibit 5 IRZ.

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HODPR2.XLW (51H27)

51H27 TENDON:

INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

FIELD: 1614 SHOP: 1609 9 OF ંટ્રિટ્સિટ્સિ

AVERAGE: 1612 TOTAL ELASTIC SHORT. LOSS: 134.0 AVERAGE ALL HOOP TENDONS: WIRE FACTOR:

1635 0.988

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)	(0)	
1	5.4	112.5	2.57%	42.0	0.090	39.5	6.0	1.7	195.7	12.14%	1416	1345	1274	71	
3	7.4	112.5	2.60%	42.5	0.110	48.5	8.5	2.4	205.9	12.78%	1406	1335	1265	71	
. 5	9.4	112.5	2.68%	43.8	0.123	54.1	10.0	2.8	213.2	13.23%	1398	1328	1259	71	
10	14.4	112.5	2.76%	45.1	0.150	66.0	13.5	3.8	227.4	14.11%	1384	1315	1246	71	
15	19.4	112.5	2.81%	45.9	0.167	73.6	15.5	4.4	236.4	14.67%	1375	1306	1238	71 ·	
17	21.4	112.5									1372	1304	1235		
20	24.4	112.5	2.87%	46.9	0.181	79.0	17.5	4.9	243.3	15.10%	1368	1300	1231	71	
21:3	25.65	112.5									1367	1299	1230		
25	29.4	112.5	2.88%	47.1	0.190	83.2	19.5	5.5	248.3	15.41%	1363	1295	1227	71	
30	34.4	112.5	2.91%	47.6	0.200	88.0	20.4	5.8	253.9	15.75%	1358	1290	1222	71	
35	39.4	112.5	2.93%	47.9	0.209	91.9	21.5	6.1	258.4	16.03%	1353	1286	1218	71	
40	44.4	112.5	2.95%	48.2	0.215	94.7	22.5	6.4	261.8	16.24%	1350	1282	1215	71	
21	25.4								•		1367	1299	1231	DOC ID:S-95-008/ REVISION 2 PAGE 93	

page 111 of 191

ß

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (51H28)

51H28 INITIAL CONCRETE STRESS (PSI): TENDON:

ORIGINAL FORCES (KIPS):	SHOP: 1685	FIELD: 1651	AVERAGE:	1668	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	5 2 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIV	IDUAL L	OSSES			TOTAL	LOSSES	PR	EDICTED FOR	CES	
PERIOD	AFTER		STR	ESS	CR	EEP	SHRI	VKAGE	TOTAL	TOTAL			•	NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA						FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)	·		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	<u> </u>	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
												T		
1	5.4	17.9	2.57%	42.0	0.090	39.5	6.0	1.7	101.1	6.06%	1567	1489	1410	-80
3	7.4	17.9	2.60%	42.5 .	0.110	48.5	8.5	2.4	111.3	6.67%	1557	1479	1401	-80
5	9.4	17.9	2.68%	43.8	0.123	54.1	10.0	2.8	118.6	7.11%	1549	1472	1395	-80
10	14.4	17.9	2.76%	45.1	0.150	66.0	13.5	3.8	132.8	7.96%	1535	1458	1382	-80
15	19.4	17.9	2.81%	45.9	0.167	73.6	15.5	4.4	141.7	8.50%	1526	1450	1374	-80
17	21.4	17.9				· · ·					1524	1447	1371	
20	24.4	17.9	2.87%	46.9	0.181	79.0	17.5	4.9	148.7	8.92%	1519	1443	1367	-80
21:3	25.65	17.9								1	1518	1442	1366	-
25	29.4	17.9	2.88%	47.1	0.190	83.2	19.5	5.5	153.7	9.21%	1514	1439	1363	-80
30	34.4	17.9	2.91%	47.6	0.200	88.0	20.4	5.8	159.2	9.55%	1509	1433	1358	-80
35	39.4	17.9	2.93%	47.9	0.209	91.9	21.5	6.1	163.7	9.82%	1504	1429	1354	-80
40	44.4	17.9	2.95%	48.2	0.215	94.7	22.5	6.4	167.1	10.02%	1501	1426	1351	-80
21	25.4										1518	1442	1367	고
27-Jan-98														DC ID:S-95-0082 IMSIDN 3 IGE 94A ge 94B

10

5

FM 6.5 Exhibit Ŀл

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS)

page 14 of 191

FM 6.5 Exhibit 5

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (51H29)

TENDON: 51H29 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1631	FIELD: 1627	AVERAGE: 162	9 AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	9 OF	60	TOTAL ELASTIC SHORT. LOSS: 134.	0 WIRE FACTOR	1.000

FM 6.5

Exhibit 5

15 of 191

ě, př

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIV	IDUAL L	0 S S E S			TOTAL	LOSSES	PRE		CES	
PERIOD	AFTER		STR	ESS	CR	EEP	SHRI	NKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
														
1	5.4	113.9	2.57%	42.0	0.090	39.5	6.0	1.7	197.1	12.10%	1432	1360	1288	54
3	7.4	113.9	2.60%	42.5	0.110	48.5	8.5	2.4	207.3	12.73%	1421	1350	1279	54
5	9.4	113.9	2.68%	43.8	0.123	54.1	10.0	2.8	214.6	13.18%	1414	1343	1273	54
10	14.4	113.9	2.76%	45.1	0.150	66.0	13.5	3.8	228.8	14.05%	1400	1330	1260	54
15	19.4	113.9	2.81%	45.9	0.167	73.6	15.5	4.4	237.8	14.60%	1391	1321	1252	54
17	21.4	113.9									1388	1319	1249	
20	24.4	113.9	2.87%	46.9	0.181	79.0	17.5	4.9	244.7	15.03%	1384	1315	1246	54
21:3	25.65	113.9									1383	1314	1244	
25	29.4	113.9	2.88%	47.1	0.190	83.2	19.5	5.5	249.7	15.33%	1379	1310	1241	54
30	34.4	113.9	2.91%	47.6	0.200	88.0	20.4	5.8	255.3	15.67%	1373	1305	1236	54
35	39.4	113.9	2.93%	47.9	0.209	91.9	21.5	6.1	259.8	15.95%	1369	1300	1232	54
40	44.4	113.9	2.95%	48.2	0.215	94.7	22.5	6.4	263.2	16.16%	1366	1297	1229	54 -
21	25.4										1383	1314	1245	
27-Jan-98			ï											Je T D Of 00 ID:S-95-00082 2VISION 3 AGE 94C 바 ¹⁵ D 9 56 fullowed 1 196 94D

FM 6.5 Exhibit 5 RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (53H1)

INITIAL CONCRETE STRESS (PSI): 1732 **53H**1 TENDON: .

ORIGINAL FORCES (KIPS):	SHOP: 1655	FIELD: 1604	AVERAGE	1630	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	20 OF	6 D	TOTAL ELASTIC SHORT, LOSS:	134.0	WIRE FACTOR:	0.988

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	. YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS					
(YR:MD)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J) ·	· (K)	(1)	(M)	(N)	(0)	
1	5.4	88.2	2.57%	42.0	0.090	39.5	6.0	1.7	171.4	10.52%	1458	1385	1312		
3	7.4	88.2	2.60%	42.5	0.110	48.5	8.5	2.4	181.6	11.15%	1448	1376	1303	29	
5	9.4	88.2	2.68%	43.8	0.123	54.1	10.0	2.8	188.9	11.59%	1441	1369	1297	29	
10	14.4	88.2	2,76%	45.1	0.150	66.0	13.5	3.8	203.1	12.46%	1427	1355	1284	29	
15	19.4	88.2	2.81%	45.9	0.167	73.6	15.5	4.4	212.1	13.01%	1418	1347	1276	29	
17	21.4	88.2							·		1415	1344	1273		
20	24.4	88.2	2.87%	46.9	0.181	79.0	17.5	4.9	219.1	13.44%	1411	1340	1270	29	
21:3	25.65	88.2									1409	1339	1268		
25	29.4	88.2	2.88%	47.1	0.190	83.2	19.5	5.5	224.0	13.75%	1406	1335	1265	29	
30	34,4	88.2	2.91%	47.6	0.200	88.0	20.4	5.8	229.6	14.09%	1400	1330	1260	29	
35	39.4	88.2	2.93%	47.9	0.209	91.9	21.5	6.1	234.1	14.36%	1396	1326	1256	29	
40	44.4	88.2	2.95%	48.2	0.215	94.7	22.5	6.4	237.5	14.57%	1392	1323	1253	29	
21 11-Sep-97	25.4				<u></u>						1410	1339	1269	DOC ID:S:95-0082 REVISION 2 PAGE 95	

page 117 of 191

IRZ.

page 118 of 191

FM 6.5 Exhibit 5 RZ

.

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (53H2)

INITIAL CONCRETE STRESS (PSI):

TENDON: 53H2

SHOP 1653 FIELD: 1457. **ORIGINAL FORCES (KIPS):** AVERAGE: 1555 **AVERAGE ALL HOOP TENDONS:** 1635 STRESS SEQUENCE: 60 TOTAL ELASTIC SHORT. LOSS: 134.0 WIRE FACTOR: 0.994

.

1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		-	ÍNDIVI	DUAL LO	SSES			TOTAL	.OSSES	PRE	DICTED FORC	ES	
PERIOD	AFTER		STRE	SS	CRE	EP	SHAIN	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/în	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	-{KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	{0}
1	5.4	0.0	2.57%	42.0	0.090	39.5	6.D ⁻	1.7	83.2	5.35%	1472	1398	1325	12
3	7.4	0.0	2.60%	42.5	0.110	48.5	8.5	2.4	93.4	6.01%	1462	1388	1315	12
5	9.4	0.0	2.68%	43.8	0.123	54.1	10.0	2.8	100.7	6.48%	1454	1381	1309	12
10	14.4	0.0	2.76%	45.1	0.150	66.0	13.5	3.8	114.9	7.39%	1440	1368	1296	12
15	19.4	0.0	2.81%	45.9	0.167	73.6	15.5	4.4	123.9	7.97%	1431	1359	1288	12
17	21.4	0.0								t	1428	1357	1285	
20	24.4	0.0	2.87%	46.9	0.181	79.0	17.5	4.9	130.8	8.41%	1424	1353	1282	12
21:3	25.65	0.0									1423	1352	1281	
25	29.4	0.0	2.88%	47.1	0.190	83.2	19.5	5.5	135.8	8.73%	1419	1348	1277	12
30	34.4	0.0	2.91%	47.6	0.200	88.0	20.4	5.8	141.4	9.09%	1414	1343	1272	12
35	39.4	0.0	2.93%	47.9	0.209	91.9	21.5	6.1	145.9	9.38%	1409	1339	.1268	12
40	44.4	0.0	2.95%	48.2	0.215	94.7	22.5	6.4	149.3	9.60%	1406	1335	1265	12
21	25.4										1423	1352	1281	DOC ID:S-95-0082 REVISION 2 PAGE 97

page 119 of 191 RZ.

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 1 10 100 6789 5 2 3 60 70 80 90 4 20 30 40 50 1600 **TENDON FORCE CURVE** TENDON 53H2 NORMALIZING FACTOR: 12 1500 BASE . 95% BASE TENDON FORCE (KIPS) 1400 90% BASE 1300 Predicted Values For 1997 Surveillance 6 (November 1, 1997) 1200 BASE 1423 Kips Ľ, NOVEMBER 1 SIT NOV. 1976 95% BASE 1352 Kips 90% BASE 1281 Kips 1RZ 1100 doc id:s:95-0082 Revision 2 PAGE 98 1000 0 3 5 10 15 20 25 30 35 40 1 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March 1997 to November 1997. SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 122 FM 6.5 Exhibit 5

page 120 of 191

FM 6.5 Exhibit 5 IRZ.

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (53H3)

TENDON: 53H3 INITIAL CONCRETE STRESS (PSI):

DRIGINAL FORCES (KIPS):	SHDP: 1616	FIELD: 1607	AVERAGE:	1612	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	20 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	0.988

1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUALLOSSES TOTALLOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	9D% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)			(KIPS)	{*.0001}	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(Ĉ)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)	
1	5.4	88.2	2.57%	42.0	0.090	39.5	6.0	1.7	171.4	10.64%	1440	1368	1296	46	
3	7.4	88.2	2.60%	42.5	0.110	48.5	8.5	2.4	181.6	11.27%	1430	1358	1287	46	
5	9.4	88.2	2.68%	43.8	0.123	54.1	10.0	2.8	188.9	11.72%	1423	1352	1280	46	
10	14.4	88.2	2.76%	45.1	0.150	66.0	13.5	3.8	203.1	12.61%	1408	1338	1268	46	
15	19.4	88.2	2.81%	45.9	0.167	73.6	15.5	4.4	212.1	13.16%	1399	1329	1260	46	
17	21.4	88.2									1397	1327	1257		
20	24.4	88.2	2.87%	46.9	0.181	79.0	17.5	4.9	219.1	13.59%	1393	1323	1253	46	
21:3	25.65	88.2									1391	1322	1252		
25	29.4	88.2	2.88%	47.1	0.190	83.2	19.5	5.5	224.0	13.90%	1388	1318	1249	46	
30	34.4	88.2	2.91%	47.6	0.200	88.0	20.4	5.8	229.6	14.25%	1382	1313	1244	46	
35	39.4	88.2	2.93%	47.9	0.209	91.9	21.5	6.1	234.1	14.53%	1377	1309	1240	46	
40	44.4	88.2	2.95%	48.2	0.215	94.7	22.5	8.4	237.5	14.74%	1374	1305	1237	46	
21	25.4										1392	1322	1252	DOC 10:S-95-0082 REVISION 2 PAGE 99	

page 121 of 191 IR2

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 5 6 7 8 9 1 100 2 3 70 80 90 4 20 30 50 40 60 1600 TENDON FORCE CURVE **TENDON 53H3 NORMALIZING FACTOR: 46** 1500 : BASE . : TENDON FORCE (KIPS) 1400 • 95% BASE 90% BASE 1300 1997 , Predicted Values For 1200 SIT NOV. 1976_ NOVEMBER 1, Surveillance 6 (November 1, 1997) BASE 1392 Kips 95% BASE 1322 Kips 90% BASE 1252 Kips 182 1100 . DOC ID:S-95-0082 Revision 2 Page 100 : 1000 0 3 5 10 1 15 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March 122 SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997.

FM.6.5 Exhibit 5

page 122 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (53H45)

TENDON: 53H45 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 1605 FIELD: 1663	AVERAGE: 1634	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	3 OF 60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR:	1.000

1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS	INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER	ELASTIC	STRE		CRE	EP	SHRIN	KAGE	TOTAL	TOTAL	BASE	OF W BACE		
SIT	DIACEMENT	CUORT	DEDCENT	FURCE	50 00	EABLE	minlin	EUBUE	1000	Ince	DAGE	3370 0436	JUN DAJE	TACTON
(YR:MO)	(LOG)	anuni.	FERGENT	(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	1035	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	{M}	(N)	(0)
1	5.4	127.3	2.57%	42.0	0.090	39.5	6.0	1.7	210.5	12.88%	1424	1353	1281	62
3	7.4	127.3	2.60%	42.5	0.110	48.5	8.5	2.4	220.7	13.50%	1414	1343	1272	62
5	9.4	127.3	2.68%	43.8	0.123	54.1	10.0	2.8	228.0	13.95%	1406	1336	1266	62
10	14.4	127.3	2.76%	45.1	0.150	6 6.0	13.5	3.8	242.2	14.82%	1392	1322	1253	62
15	19.4	127.3	2.81%	45.9	0.167	73.6	15.5	4.4	251.2	15.37%	1383	1314	1245	62
17	21.4	127.3									1380	1311	1242	
20	24.4	127.3	2.87%	46.9	0.181	79.0	17.5	4.9	258.1	15.80%	1376	1307	1238	62
21:3	25.65	127.3									1375	1306	1237	
25	29.4	127.3	2.88%	47.1	0.190	83.2	19.5	5.5	263.1	16.10%	1371	1303	1234	62
30 '	34.4	127.3	2.91%	47.6	0.200	88.0	20.4	5.8	268.7	16.44%	1366	1297	1229	62
35	39.4	127.3	2.93%	47.9	0.209	91.9	21.5	6.1	273.2	16.72%	1361	1293	1225	62
40	44.4	127.3	2.95%	48.2	0.215	94.7	22.5	6.4	276.6	16.92%	1358	1290	1222	62
21	25.4										1375	1306	1238	78 C
11·Sep·97										,)G 10:5-95-0082 ;Vision 2 ;Ge 101

page 123 of 191 RZ

FM 6.5 Exhibit 5 1 RZ

page 124 of 191

FM 6.5 Exhibit 5 RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET

FILE: HOOPR2.XLW (53H46)

53H46 TENDON: INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1612 FIELD: 1644	AVERAGE: 1628	AVERAGE ALL HOOP TENDONS:
STRESS SEQUENCE:	49 DF 60	TOTAL ELASTIC SHORT. LOSS:	WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS	· .	INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(8)	(C)	{0}	(E)	(F)	(G)	(H)	0)	(J)	(K)	(L)	(M)	(N)	(0)	
						_									
1	5.4	24.6	2.57%	42.0	0.090	39.5	6.0	1.7	107.8	6.62%	1520	1444	1368	-35	
3	7.4	24.6	2.60%	42.5	0.110	48.5	8.5	2.4	118.0	7.25%	1510	1435	1359	-35	
5	9.4	24.6	2.68%	43.8	0.123	54.1	10.0	2.8	125.3	7.69%	1503	1428	1352	-35	
10	14.4	24.6	2.76%	45.1	0.150	66.0	13.5	3.8	139.5	8.57%	1489	1414	1340	-35	
15	19.4	24.6	2.81%	45.9	0.167	73.6	15.5	4.4	148.4	9.12%	1480	1406	1332	-35	
17	21.4	24.6							[1477	1403	1329		
20	24.4	24.6	2.87%	46.9	D.181	79.0	17.5	4.9	155.4	9.55%	1473	1399	1325	-35	
21:3	25.65	24.6									1471	1398	1324		
25	29.4	24.6	2.88%	47.1	0.190	83.2	19.5	5.5	160.4	9.85%	1468	1394	1321	-35	
30	34.4	24.6	2.91%	47.6	0.200	88.0	20.4	5.8	165.9	10.19%	1462	1389	1316	-35	
35	39.4	24.6	.2.93%	47.9	0.209	· 91.9	21.5	6.1	170.4	10.47%	1458	1385	1312	-35	
40	44.4	24.6	2.95%	48.2	0.215	94.7	22.5	6.4	173.8	10.68%	1454	1382	1309	-35	
21 11-Sep-97	25.4		<u></u>								1472	1398	1324	DOC ID:S-95-0082 REVISION 2 PAGE 103	

page 125 of 191 RZ

page 126 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (53H47)

53H47 TENDON: INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1677	FIELD: 1699	AVERAGE:	1688	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	OF	60	TOTAL ELASTIC SHORT, LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIDD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL	•			NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m infin	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	{()}	(J)	(K)	(1.)	(M)	(N)	(0)	
1	5.4	127.3	2.57%	42.0	0.090	39.5	6.0	1.7	210.5	12.47%	1478	1404	1330	10	
3	7.4	127.3	2.60%	42.5	0.110	48.5	8.5	2.4	220.7	13.07%	1468	1394	1321 .	10	
5	9.4	127.3	2.68%	43.8	0.123	54.1	10.0	2.8	228.0	13.51%	1460	1387	1314	10	
10	14.4	127.3	2.76%	45.1	0.150	66.0	13.5	3.8	242.2	14.35%	1446	1374	1301	10	
15	19.4	127.3	2.81%	45.9	0.167	73.6	15.5	4.4	251.2	14.88%	1437	1365	1293	10	
17	21.4	127.3									1434	1363	1291		
20	24.4	127.3	2.87%	46.9	0.181	79.0	17.5	4.9	258.1	15.29%	1430	1359	1287	10	
21:3	25.65	127.3									1429	1357	1286		
25	29.4	127.3	2.88%	47.1	0.190	83.2	19.5	5.5	263.1	15.58%	1425	1354	1283	10	
30	34.4	127.3	2.91%	47.6	0.200	88.0	20.4	5.8	268.7	15.91%	1420	1349	1278	10	
_ 35	39.4	127.3	2.93%	47.9	0.209	91.9	21.5	6.1	273.2	16.18%	1415	1344	1274	10	
40	44.4	127.3	2.95%	48.2	0.215	94.7	22.5	6.4	276.6	16.38%	1412	1341	1271	10	
21	25.4										1429	1358	1286	DOC ID:S:95-008 REVISION 2 PAGE 105	

page 127 of 191 R2

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 7 8 9 10 100 1 6 5 20 2 3 4 70 80 90 30 50 60 40 1600 **TENDON FORCE CURVE** 1 **TENDON 53H47** • **NORMALIZING FACTOR: 10** 1500 🕂 BASE . 95% BASE **TENDON FORCE (KIPS)** 1400 : 90% BASE 1300 Predicted Values For 1997 Surveillance 6 (November 1, 1997) BASE 1429 Kips 1200 Sit NOV. 1976 NOVEMBER 1 95% BASE 1358 Kips 90% BASE 1286 Kips R2 1100 DOC 10:S:95-0082 Revision 2 Page 106 1000 5 0 10 15 1 3 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. 1 IRZ

FM 6.5 Exhibit 5

page 128 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H21)

INITIAL CONCRETE STRESS (PSI): TENDON: 62H21

ORIGINAL FORCES (KIPS):	SHOP: 639	FIELD: 1641	AVERAGE	: 1640	AVERAGE ALL	HOOP TENDONS:	1635
STRESS SEQUENCE:	27 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	•	WIRE FACTOR:	0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TIDN		·			FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	n inlin	FORCE	LOSS	LOSS					
(YR:MO)	(LOG)	L	<u> </u>	(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(8)	{C}	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)	(0)	
										<u> </u>			·		
1	5.4	73.2	2.57%	42.0	0.090	39.5	6.0	1.7	156.4	9.54%	1483	1409	1335	3	
3	7.4	73.2	2.60%	42.5	0.110	48.5	8.5	2.4	166.6	10.16%	1473	1399	1326	3	
5	9.4	73.2	2.68%	43.8	0.123	54.1	10.0	2.8	173.9	10.61%	1466	1393	1319	· 3	
10	14.4	73.2	2.76%	45.1	0.150	66.0	13.5	3.8	188.2	11.47%	1452	1379	1306	3	
15	19.4	73.2	2.81%	45.9	0.167	73.6	15.5	4.4	197.1	12.02%	1443	1371	1298	3	
17	21.4	73.2									1440	1368	1296		
20	24.4	73.2	2.87%	46.9	0.181	79.0	17.5	4.9	204.1	12.45%	1436	1364	1292	3	
21:3	25.65	73.2									1434	1363	1291		
25	29.4	73.2	2.88%	47,1	0.190	83.2	19.5	5.5	209.0	12.75%	1431	1359	1288	3	
30	34.4	73.2	2.91%	47.6	0.200	88.0	20.4	5.8	214.6	13.09%	1425	1354	1283	3	
35	39.4	73.2	2.93%	47.9	0.209	91.9	21.5	6.1	219.1	13.36%	1421	1350	1279	3	
40	44.4	73.2	2.95%	48.2	0.215	94.7	22.5	6.4	222.5	13.57%	1417	1346	1276	3	
21	25.4										1435	1363	1291	PARE	
11-Sep-97													·)C 1D:S-95-0082 :Vision 2 :Ge 107	

page 129 of 191

FM 6.5 Exhibit 5

PRZ.

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 7 8 9 10 100 1 6 2 3 4 5 20 30 70 80 90 40 50 60 1600 **TENDON FORCE CURVE TENDON 62H21 NORMALIZING FACTOR: 3** : BASE 1500 95% BASE . TENDON FORCE (KIPS) 1400 ; 90% BASE 1300 . . **Predicted Values For** Surveillance 6 (November 1, 1997) ; 1997 BASE 1435 Kips 1200 SIT NOV. 1976 95% BASE 1363 Kips NOVEMBER 1, 90% BASE 1291 Kips Q2 1100 doc id:s-95-0082 Revision 2 Page 108 1000 0 1 3 5 10 15 20 25 30 35 40 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. R2 FM 6.5 Exhibit 5

page 130 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H22)

TENDON: 62H22

FIELD: 1663 **ORIGINAL FORCES (KIPS):** 1663 AVERAGE ALL HOOP TENDONS: SHOP: AVERAGE: 1663 1635 STRESS SEQUENCE: 42 OF <**60** TOTAL ELASTIC SHORT. LOSS: 134.0 1.000 WIRE FACTOR: 22

INITIAL CONCRETE STRESS (PSI): 1732

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL			· ···	NORMALIZING	
CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m inlin	FORCE	LOSS	LOSS					
(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	{L)	(M)	(N)	(0)	
											<u> </u>			
5.4	40.2	2.57%	42.0	0.090	39.5	6.0	1.7	123.4	7.42%	1540	1463	1386	-53	
7.4	40.2	2.60%	42.5	0.110	48.5	8.5	2.4	133.6	8.03%	1530	1453	1377	-53	
9.4	40.2	2.68%	43.8	0.123	54.1	10.0	2.8	140.9	8.47%	1522	1446	1370	-53	
14.4	40.2	2.76%	45.1	0.150	66.0	13.5	3.8	155.1	9.33%	1508	1433	1357	-53	
19.4	40.2	2.81%	45.9	0.167	73.6	15.5	4.4	164.1	9.87%	1499	1424	1349	-53	
21.4	40.2									1496	1421	1347		
24.4	40.2	2.87%	46.9	0.181	79.0	17.5	4.9	171.0	10.28%	1492	1417	1343	•53	
25.65	40.2									1491	1416	1342		
29.4	40.2	2.88%	47.1	0.190	83.2	19.5	5.5	176.0	10.58%	1487	1413	1338	·53	
34.4	40.2	2.91%	47.6	0.200	88.0	20.4	5.8	181.6	10.92%	1482	1407	1333	-53	
39.4	40.2	2.93%	47.9	0.209	91.9	21.5	6.1	186.1	11.19%	1477	1403	1329	-53	
44.4	40.2	2.95%	48.2	0.215	94.7	22.5	6.4	189.5	11.39%	1474	1400	1326	-53	
25.4					· .					1491	1417	1342	DOC ID:S-95-00 Revision 2 Page 109	
	29.4 25.65 29.4 34.4 39.4 44.4 25.4	21.4 40.2 25.65 40.2 29.4 40.2 34.4 40.2 39.4 40.2 44.4 40.2 25.4	24.4 40.2 2.87% 25.65 40.2 2.88% 34.4 40.2 2.91% 39.4 40.2 2.93% 44.4 40.2 2.95% 25.4 25.4 25.4	24.4 40.2 2.87% 40.3 25.65 40.2 2.88% 47.1 34.4 40.2 2.91% 47.6 39.4 40.2 2.93% 47.9 44.4 40.2 2.95% 48.2 25.4 25.4	24.4 40.2 2.87% 40.3 0.181 25.65 40.2 2.88% 47.1 0.190 34.4 40.2 2.91% 47.6 0.200 39.4 40.2 2.93% 47.9 0.209 44.4 40.2 2.95% 48.2 0.215 25.4	24.4 40.2 2.87% 40.3 0.181 79.0 25.65 40.2 2.88% 47.1 0.190 83.2 34.4 40.2 2.91% 47.6 0.200 88.0 39.4 40.2 2.93% 47.9 0.209 91.9 44.4 40.2 2.95% 48.2 0.215 94.7 25.4	24.4 40.2 2.07% 40.5 0.181 79.0 17.5 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 25.4	24.4 40.2 2.87% 40.3 0.181 75.0 17.5 4.3 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.8 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 25.4 25.4 39.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4	24.4 40.2 2.07% 40.3 0.181 79.0 17.5 4.9 177.0 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 176.0 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.8 181.6 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 186.1 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5 25.4 25.4 39.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5	24.4 40.2 2.87% 40.3 0.181 75.0 17.5 4.3 171.0 10.28% 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 176.0 10.58% 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.8 181.6 10.92% 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 186.1 11.19% 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5 11.39% 25.4 <td< td=""><td>24.4 40.2 2.87% 40.3 0.181 75.0 17.5 4.3 171.0 10.28% 1492 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 176.0 10.58% 1487 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.8 181.6 10.92% 1482 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 186.1 11.19% 1477 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5 11.39% 1474 25.4 1491 1491 1491 1491 1491 1491 1491</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>24.4 40.2 2.57% 46.5 0.181 73.0 17.5 4.3 171.0 10.28% 1492 1417 1343 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 176.0 10.58% 1487 1413 1338 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.6 181.6 10.92% 1482 1407 1333 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 186.1 11.19% 1477 1403 1329 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5 11.39% 1474 1400 1326 25.4 1491 1417 1342 1417 1342 1417 1343</td></td<>	24.4 40.2 2.87% 40.3 0.181 75.0 17.5 4.3 171.0 10.28% 1492 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 176.0 10.58% 1487 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.8 181.6 10.92% 1482 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 186.1 11.19% 1477 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5 11.39% 1474 25.4 1491 1491 1491 1491 1491 1491 1491	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.4 40.2 2.57% 46.5 0.181 73.0 17.5 4.3 171.0 10.28% 1492 1417 1343 25.65 40.2 2.88% 47.1 0.190 83.2 19.5 5.5 176.0 10.58% 1487 1413 1338 34.4 40.2 2.91% 47.6 0.200 88.0 20.4 5.6 181.6 10.92% 1482 1407 1333 39.4 40.2 2.93% 47.9 0.209 91.9 21.5 6.1 186.1 11.19% 1477 1403 1329 44.4 40.2 2.95% 48.2 0.215 94.7 22.5 6.4 189.5 11.39% 1474 1400 1326 25.4 1491 1417 1342 1417 1342 1417 1343	

page 131 of 191

RZ

page 132 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H23)

62H23 INITIAL CONCRETE STRESS (PSI): 1732 TENDON:

ORIGINAL FORCES (KIPS):	SHOP: 1639 FIELD:	1639 AVERAGE: 1639	AVERAGE ALL HOOP TENDONS:
STRESS SEQUENCE:	28 OF 60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR: 1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPE c t.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL		· ·		NORMALIZING	
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR	
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS					
{YR:MO}	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	{K}	(L)	(M)	(N)	(0)	
			,					<u> </u>							
1	5.4	71.5	2.57%	42.0	0.090	39.5	6.0	1.7	154.7	9.44%	1484	1410	1336	2	
3	7.4	-71.5	2.60%	42.5	0.110	48.5	8.5	2.4	164.9	10.06%	1474	1400	1327	2	
5	9.4	71.5	2.68%	43.8	0.123	54.1	10.0	2.8	172.2	10.50%	1467	1393	1320	2 .	
10	14.4	71.5	2.76%	45.1	0.150	66.0	13.5	3.8	186.4	11.37%	1453	1380	1307	2	
15	19.4	71.5	2.81%	45.9	0.167	73.6	15.5	4.4	195.3	11.92%	1444	1371	1299.	2	
17	21.4	71.5									1441	1369	1297		
20	24.4	71.5	2.87%	46.9	0.181	79.0	17.5	4.9	202.3	12.34%	1437	1365	1293	2	
21:3	25.65	71.5						[1435	1364	1292		
25	29.4	71.5	2.88%	47.1	0.190	83.2	19.5	5.5	207.3	12.65%	1432	1360	1288	· 2	
30	34.4	71.5	2.91%	47.6	0.200	88.0	20.4	5.8	212.8	12.99%	1426	1355	1284	2	
35	39.4	71.5	2.93%	47.9	0.209	91.9	21.5	6.1	217.3	13.26%	1422	1351	1279	2	
40	44,4	71.5	2,95%	48.2	0.215	94.7	22.5	6.4	220.7	13.47%	1418	1347	1276	2	
21	25.4										1436	1364	1292	PARO	
1 1 · Sep · 97						·								ic id:5:95-0082 Vision 2 Ge 111	

FM 6.5

ሯ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (62H39)

FILE: HOUFH3.XLW (02H33)

10.

TENDON: 62H39 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP:	1653	FIELD: 1641	AVERAGE:	1647	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	35	OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

à

	1													
				INDIV	IDUAL L	0 5 5 E 5			TOTAL	LOSSES	PR	CES		
INSPECT.	YEARS													
PERIOD	AFTER		STR	ESS	CR	EEP	SHRI	NKAGE	TOTAL	TOTAL		· ·		NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)	[(KIPS)	(KIPS)	1 1	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
1	5.4	55. 5	2.57%	42.0	0.090	39.5	6.0	1.7	138.7	8.42%	1508	1433	1357	·22
3	7.4	55.5	2.60%	42.5	0.110	48.5	8.5	2.4	148.9	9.04%	1498	1423	1348	-22
5	9.4	55.5	2.68%	43.8	0.123	54.1	10.0	2.8	156.2	9,48%	1491	1416	1342	-22
10	14.4	55.5	2.76%	45.1	0.150	66.0	13.5	3.8	170.4	10.35%	1476	1403	1329	-22
15	19.4	55.5	2.81%	45.9	0.167	73.6	15.5	4.4	179.4	10.89%	1468	1394	1321	-22
17	21.4	55.5									1465	1392	1318	
20	24.4	55.5	2.87%	46.9	0.181	79.0	17.5	4.9	186.3	11.31%	1461	1388	1315	-22
21:3	25.65	55.5							· · · · · · · · · · · · · · · · · · ·		1459	1386	1313	
25	29.4	55.5	2.88%	47.1	0.190	83.2	19.5	5.5	191.3	11.62%	1456	1383	1310	-22
30	34.4	55.5	2.91%	47.6	0.200	88.0	20.4	5.8	196.8	11.95%	1450	1378	1305	-22
35	39.4	55.5	2.93%	47.9	0.209	91.9	21.5	6.1	201.4	12.23%	1446	1373	1301	-22
40	44.4	55.5	2.95%	48.2	0.215	94.7	22.5	6.4	204.7	12.43%	1442	1370	1298	-22
21	25.4										1460	1387	1314	סכר ו-יי

27-Jan-98

C 1D:S-95-0082 1/SION 3 3E 112A

9 1128

5

1

FM 6.5 Exhibit 5

page 136 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H40)

TENDON: 62840 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1639 FIELD: 1639	AVERAGE: 1639	AVERAGE ALL HOOP TENDONS: 1635
STRESS SEQUENCE:	39 OF 60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES													
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING								
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR								
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS												
(YR:MO)	(LOG)	i		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)								
(A)	(B)	(C)	(D)	{E}	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)								
												<u> </u>										
1	5.4	46.9	2.57%	42.0	0.090	39.5	6.0	1.7 .	130.1	7.94%	1509	1433	1358	·23								
3	7.4	46.9	2.60%	42.5	0.110	48.5	8.5	2.4	140.3	8.56%	1499	1424	1349	-23								
5	9.4	46.9	2.68%	43.8	0.123	54.1	10.0	2.8	147.6	9.01%	1491	1417	1342	-23								
10	14.4	46.9	2.76%	45.1	0.150	66.0	13.5	3.8	161.8	9.87%	1477	1403	1329	-23								
15	19.4	46.9	2.81%	45.9	0.167	73.6	15.5	4.4	170.8	10.42%	1468	1395	1321	-23								
17	21.4	46.9									1465	1392	1319									
20	24.4	46.9	2.87%	46.9	0.181	79.0	17.5	4.9	177.7	10.84%	1461	1388	1315	-23								
21:3	25.65	46.9									1460	1387	1314									
25	29.4	46.9	2.88%	. 47.1	0.190	83.2	19.5	5.5	182.7	11.15%	1456	1383	1311	·23								
30	34.4	46.9	2.91%	47.6	0.200	88.0	20.4	5.8	188.3	11.49%	1451	1378	1306	·23								
35	39.4	46.9	2.93%	47.9	0.209	91,9	21.5	6.1	192.8	11.76%	1446	1374	1302	·23								
40	44.4	46.9	2.95%	48.2	0.215	94.7	22.5	6.4	196.2	11.97%	1443	1371	1299	-23								
21 11-Sen-97	25.4										1460	1387	1314	00C ID:S-95-0082 REVISION 2 PAGE 113								

page 137 of 191

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 10 100 8 9 70 80 90 2 3 5 6 20 4 7 30 40 50 60 1600 **TENDON FORCE CURVE TENDON 62H40** BASE NORMALIZING FACTOR: -23 1500 95% BASE **TENDON FORCE (KIPS)** 1400 90% BASE 1300 **Predicted Values For** Surveillance 6 (November 1, 1997) BASE 1460 Kips NOVEMBER 1, 1997 95% BASE 1387 Kips 1200 SIT NOV. 1976 90% BASE 1314 Kips 1RZ 1100 doc ID:S-95-0082 Revision 2 Page 114 1000 30 35 40 0 10 1 3 5 15 20 25 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. IR2 FM 6.5 Exhibit 5

page 138 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET

FILE: HOOPR2.XLW (62H41)

62H41 · INITIAL CONCRETE STRESS (PSI): 1732 TENDON:

ORIGINAL FORCES (KIPS):	SHOP: 1615	FIELD: 1603	AVERAGE	: 1609	AVERAGE ALL HOOP TENDONS:	1635
Stress sequence:	35 OF		TOTAL ELASTIC SHORT. LOSS:	134.0	Wire Factor:	1.000
NOTE: SHADED VALUES AR	E EXTRACTED FROM HOOPINP W	ORK SHEET				

INSPECT.	YEARS			INDIVI	DUAL LO	SSES	-		TOTAL I	OSSES	PRE	DICTED FORC	ES	· ·
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
{YR:M0}	(LOG)			(KIPS)	(*.0801)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	{C}	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
					<u> </u>	· ·				1		Γ		
1	5.4	55.8	2.57%	42.0	0.090	39.5	6.0	1.7	139.0	8.64%	1470	1396	1323	16
3	7.4	55.8	2.60%	42.5	0.110	48.5	8.5	2.4	149.2	9.28%	1459	1386	1313	16
5	9.4	55.8	2.68%	43.8	0.123	54.1	10.0	2.8	156.5	9.73%	1452	1380	1307	16
10	14.4	55.8	2.76%	45.1	0.150	66.0	13.5	3.8	170.7	10.61%	1438	1366	1294	16
15	19.4	55.8	2.81%	45.9	0.167	73.6	15.5	4.4	179.7	11.17%	1429	1358	1286	16
17	21.4	55.8									1426	1355	1284	
20	24.4	55.8	2.87%	46.9	0.181	79.0	17.5	4.9	186.7	11.60%	1422	1351	1280	16
21:3	25.65	55.8									1421	1350	1279	
25	29.4	55.8	2.88%	47.1	0.190	83.2	19.5	5.5	191.6	11.91%	· 1417	1346	1275	16
30	34.4	55.8	2.91%	47.6	0.200	88.0	20.4	5.8	197.2	12.26%	1411	1341	1270	16
35	39.4	55.8	2.93%	47.9	0.209	9 1.9	21.5	6.1	201.7	12.54%	1407	1337	1266	16
40	44.4	55.8	2.95%	48.2	0.215	94.7	22.5	6.4	205.1	12.75%	1404	1333	1263	16
21 11-Sep-97	25.4										1421	1350	1279	DOC ID:S:95:0082 REVISION 2 PAGE 115

page 139 of 191 RZ

FM 6.5 Exhibit 5

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 7 8 9 **10** 100 2 3 4 5 6 20 70 80 90 30 40 50 60 1600 **TENDON FORCE CURVE TENDON 62H41 NORMALIZING FACTOR: 16** 1500 BASE 95% BASE **TENDON FORCE (KIPS)** 1400 ; 90% BASE 1300 . Predicted Values For NOVEMBER 1, 1997 Surveillance 6 (November 1, 1997) 1200 SIT NDV. 1976 BASE 1421 Kips 95% BASE 1350 Kips 90% BASE 1279 Kips IRZ 1100 doc id:s:95-0082 Revision 2 Page 116 1000 0 5 10 3 15 20 25 30 35 40 1 Note: Revision 2 is generated to change start date for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. RZ FM 6.5 Exhibit 5

page 140 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H42)

TENDON: 62H42 INITIAL CONCRETE STRESS (PSI): 1732

ORIGINAL FORCES (KIPS):	SHOP: 1615	FIELD:	AVERAGE	: 1609	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	39 OF	560	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000
NOTE: SHADED VALUES AI	RE EXTRACTED FROM HOOPINP V	WORK SHEET				•

INSPECT.	YEARS		IN DIVIDUAL LOSSES PREDICTED FORCES													
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	IKAGE	TOTAL	TOTAL				NORMALIZING		
AFTER	CONCRETE	ELASTIC	RELAXA	TION	ļ				FORCE	PERCENT	BAŞE	95% BASE	90% BASE	FACTOR		
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS						
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)		
(A)	(B)	(0)	(0)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)	(0)		
1	5.4	46.9	2.57%	42.0	0.090	39.5	6.0	1.7	130.1	8.09%	1479	1405	1331	7		
3	7.4	46.9	2.60%	42.5	0.110	48.5	8.5	2.4	140.3	8.72%	1468	1395	1322	7		
5	9.4	46.9	2.68%	43.8	0.123	54.1	10.0	2.8	147.6	9.18%	1461	1388	1315	7		
10	14.4	46.9	2.76%	45.1	0.150	66.0	13.5	3.8	161.8	10.06%	1447	1375	1302	7		
15	19.4	46.9	2.81%	45.9	0.167	73.6	15.5	4.4	170.8	10.62%	1438	1366	1294	7		
17	21.4	46.9									1435	1363	1292			
20	24.4	46.9	2.87%	46.9	0.181	79.0	17.5	4.9	177.7	11.05%	1431	1359	1288	7		
21:3	25.65	46.9									1430	1358	1287			
25	29.4	46.9	2.88%	47.1	0.190	83.2	19.5	5.5	182.7	11.36%	1426	1355	1283	7		
30	34.4	46.9	2.91%	47.6	0.200	88.0	20.4	5.8	188.3	11.70%	1420	1349	1278	7		
35	39.4	46.9	2.93%	47.9	0.209	91.9	21.5	6.1	192.8	11.98%	1416	1345	1274	7		
40	44.4	46.9	2.95%	48.2	0.215	94.7	22.5	6.4	196.2	12.19%	1413	1342	1271	7		
21	25.4										1430	1358	1287	DOC ID:S-95-0082 Revision 2 Page 117		

page 141 of 191 R2.

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE **HOOP TENDON LOSSES WORK SHEET** FILE: HOOPR2.XLW (62H45)

INITIAL CONCRETE STRESS (PSI): 1732 62H45 TENDON:

ORIGINAL FORCES (KIPS):	SHOP: 1639 FIELD: 1605	AVERAGE: 1622	AVERAGE ALL HOOP TENDONS:
STRESS SEQUENCE:	37 OF 60	TOTAL ELASTIC SHORT. LOSS: 134.0	WIRE FACTOR: 0.994

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS	INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES												
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
. SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				•
(YR:MD)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	. (J)	(K)	(L)	(M)	(N)	{0}
										Π		T		
1	5.4	51.1	2.57%	42.0	0.090	39.5	6.0	1.7	134.2	8.28%	1487	1413	1339	-1
3	7.4 .	51.1	2.60%	42.5	0.110	48.5	8.5	2.4	144.5	8.91%	1477	1403	1329	-1
5	9.4	51.1	2.68%	43.8	0.123	54.1	10.0	2.8	151.8	9.36%	1470	1396	1323	-1
10	14.4	51.1	2.76%	45.1	0.150	66.0	.13.5	3.8	166.0	10.23%	1456	1383	1310	. 1
15	19.4	51.1	2.81%	45.9	0.167	73.6	15.5	4.4	174.9	10.79%	1447	1374	1302	•1
17	21.4	51.1									1444	1372	1299	
20	24.4	51.1	2.87%	46.9	0.181	79.0	17.5	4.9	181.9	11.22%	1440	1368	1296	-1
21:3	25.65	51.1									1438	1366	1295	
25	29.4	51.1	2.88%	47.1	0.190	83.2	19.5	5.5	186.9	11.52%	1435	1363	1291	-1
30	34.4	51.1	2.91%	47.6	0.200	88.0	20.4	5.8	192.4	11.87%	1429	1358	1286	-1
35	39.4	51.1	2.93%	47.9	0.209	91.9	21.5	6.1	196.9	12.14%	1425	1353	1282	-1
40	44.4	51.1	2.95%	48.2	0.215	94.7	22.5	6.4	200.3	12.35%	1421	1350	1279	-1
21	25.4						*****	·		· · · · · · · · ·	1439	1367	1295	PAREDO
11-Sep-97	·													ic (d:5-95-0082 Vision 2 Ge 119

page 142 of 191 IR2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE . HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (62H43)

TENDON:	62H43	INITIAL CONCRETE STRES	SS (PSI):		·~.
ORIGINAL FO	DRCES (KIPS): IVENCE:	SHOP: 1580 FIELD: 1602	AVERAGE: 1591 TOTAL ELASTIC SHORT. LOSS:	AVERAGE ALL HOOP TENDONS: WIRE FACTOR:	1635 0.988
NOTE: SHA	DED VALUES A	RE EXTRACTED FROM HOOPINP WORK SHEET			
				N	

}			INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES											
INSPECT. PERIOD AFTER	YEARS AFTER CONCRETE	ELASTIC	STR RELAXA	ESS	CA	EEP	SHRII	NKAGE	TOTAL	TOTAL	BASE	95% BASE	90% BASE	NORMALIZING FACTOR
SIT (YR:MO)	PLACEMENT (LOG)	SHORT.	PERCENT	FORCE (KIPS)	SP. CR. (*.0001)	FORCE (KIPS)	m in/in	FORCE (KIPS)	LOSS (KIPS)	LOSS	(KIPS)	(KIPS)	(KIPS)	(KIPS)
{A}	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(i)	(L)	(K)	(L)	(M)	(N)	(0)
												1		
1	5.4	52.9	2.57%	42.0	0.090	39.5	6.0	1.7	136.1	8.56%	1455	1382	1309	31
3	7.4	52.9	2.60%	42.5	0.110	48.5	8.5	2.4	146.3	9.20%	1445	1372	1300	31
5	9.4	52.9	2.68%	43.8	0.123	54.1	10.0	2.8	153.6	9.66%	1437	1366	1294	31
10	14.4	52.9	2.76%	45.1	0.150	66.0	13.5	3.8	167.9	10.55%	1423	1352	1281	30
15	19.4	52.9	2.81%	45.9	0.167	73.6	15.5	4,4	176.8	11.11%	1414	1344	1273	30
17	21.4	52.9									1411	1341	1270	
20	24.4	52.9	2.87%	46.9	0.181	79.0	17.5	4.9	183.8	11.55%	1407	1337	1267	30
21:3	25.65	52.9							1		1406	1336	1265	
25	29.4	52.9	2.88%	47.1	0.190	83.2	19.5	5.5	188.7	11.86%	1402	1332	1262	. 30
30	34.4	52.9	2.91%	47.6	0.200	88.0	20.4	5.8	194.3	12.21%	1397	1327	1257	30
35	39.4	52.9	2.93%	47.9	0.209	<u>91.9</u>	21.5	6.1	198.8	12.50%	1392	1323	1253	30
40	44.4	52.9	2.95%	48.2	0.215	94.7	22.5	6.4	202.2	12.71%	1389	1319	1250	30
21	25.4										1406	1336	1266	DOC 10:S-95-0082 REVISION 3 PAGE 118A This page followed Page 118B

02-Feb-98

1º

They are sur

1 6.5 Exhibit 5

FM

page 145 of 191

:

R3 ;

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR3.XLW (62H44)

j,

TENDON: 62H44 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS): SHOP: 1627 FIELD: 1675	AVERAGE: 1651	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE: OF 60	TOTAL ELASTIC SHORT. LOSS:	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIV	PRI	EDICTED FOR	ICES							
PERIOD	AFTER		STR	ESS	CR	TOTAL		1		NORMALIZING				
AFTER	CONCRETE	ELASTIC	RELAX	ATION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)	[(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
										· "		T]	
1	5.4	49.1	2.57%	42.0	0.090	39.5	6.0	1.7	132.3	8.01%	1519	1443	1367	-32
3	7.4	49.1	2.60%	42.5	0.110	48.5	8.5	2.4	142.5	8.63%	1509	1433	1358	-32
5	9.4	49.1	2.68%	43.8	0.123	54.1	10.0	2.8	149.8	9.07%	1501	1426	1351	-32
10	14.4	49.1	2.76%	45.1	0.150	66.0	13.5	3.8	164.0	9.94%	1487	1413	1338	-32
15	19.4	49.1	2.81%	45.9	0.167	73.6	15.5	4.4	173.0	10.48%	1478	1404	1330	-32
17	21.4	49.1									1475	1402	1328	
20	24.4	49.1	2.87%	46.9	0.181	79.0	17.5	4.9	180.0	10.90%	1471	1398	1324	-32
21:3	25.65	49.1									1470	1396	1323	
25	29.4	49.1	2.88%	47.1	0.190	83.2	19,5	5.5	184.9	11.20%	1466	1393	1320	-32
30	34.4	49.1	2.91%	47.6	0.200	88.0	20.4	5.8	190.5	11.54%	1461	1388	1315	-32
35	39.4	49.1	2.93%	47.9	0.209	91.9	21.5	6.1	195.0	11.81%	1456	1383	1311	-32
40	44.4	49.1	2.95%	48.2	0.215	94.7	22.5	6.4	198.4	12.02%	1453	1380	1307	-32
21	25.4										1470	1397	1323	PAC PAC Pag
														• 118 • 118
02-Feb-98														V94 PV

FM 6.5 Exhibit 5

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR1.XLW (62H45)

TENDON: 62H45

INITIAL CONCRETE STRESS (PSI): 1732

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR1.XLW (62H45)	FM 6.5 EX
IENDON: INITIAL CONCRETE STRESS (PSI): 1732	chibit
DRIGINAL FORCES (KIPS); SHOP: 1639 FIELD: 1605 AVERAGE: 1622 AVERAGE ALL HOOP TENDONS: STRESS SEQUENCE: 37 OF 60 TOTAL ELASTIC SHORT. LOSS: 134.0 WIRE FACTOR: WIRE FACTOR:	් 1635 10.994

.....

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LC	OSSES	PREDICTED FORCES							
PERIOD	AFTER		STRE	SS	CR	TOTAL				NORMAĻIZING				
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(O)
. 1	5.4	51.1	2.57%	42.0	0.090	39.5	6.0	1.7	134.2	8.28%	1487	1413	1339	-1
3	7.4	51.1	2.60%	42.5	0.110	48.5	8.5	2.4	144.5	8.91%	1477	1403	1329	-1
5	9.4	51.1	2.68%	43.8	0.123	54.1	10.0	2.8	151.8	9.36%	1470	1396	1323	-1
10	14.4	51.1	2.76%	45.1	0.150	66.0	13.5	3.8	166.0	10.23%	1456	1383	1310	-1
15	19.4	51.1	2.81%	45.9	0.167	73.6	15.5	4.4	174.9	10.79%	1447	1374	1302	-1
17	21.4	51.1									1444	1372	1299	
20	24.4	51.1	2.87%	46.9	0.181	79.0	17.5	4.9	181.9	11.22%	1440	1368	1296	-1
21:3	25.65	51.1								``	1438	1366	1295	
25	29.4	51.1	2.88%	47.1	0.190	83.2	19.5	5.5	186.9	11.52%	1435	1363	1291	-1
30	34.4	51.1	2.91%	47.6	0.200	88.0	20.4	5.8	192.4	11.87%	1429	1358	1286	-1
35	39.4	51.1	2.93%	47.9	0.209	91.9	21.5	6.1	196.9	12.14%	1425	1353	1282	-1
40	44.4	51.1	2.95%	48.2	0.215	94.7	22.5	6.4	200.3	12.35%	1421	1350	1279	-1
20:3 20-Jan-97	24.65										1439	1367	1295	DOC ID:S-95-0082 REVISION 1 PAGE 119

page 148 of 191

FM 6.5 Exhibit 5

page 149 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H46)

1732 TENDON: 62H46 INITIAL CONCRETE STRESS (PSI):

ORIGINAL FORCES (KIPS):	SHOP: 1591	FIELD: 1700	AVERAGE:	1645	AVERAGE ALL HOOP TENDONS:	1635
STRESS SEQUENCE:	38 OF	60	TOTAL ELASTIC SHORT. LOSS:	134.0	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM HOOPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES													
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIM	KAGE	TOTAL	TOTAL				NORMALIZING		
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR		
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS						
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)		
(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(i)	(J)	(K)	(L)	(M)	(N)	(0)		
					· ·							T				
1	5.4	49.1	2.57%	42.0	0.090	39.5	6.0	1.7	132.3	8.04%	1513	1437	1362	·27		
3	7.4	49.1	2.60%	42.5	0.110	48.5	8.5	2.4	142.5	8.66%	1503	1428	1352	·27		
5	9.4	49.1	2.68%	43.8	0.123	54.1	10.0	2.8	149.8	9.11%	1495	1421	1346	·27		
10	14.4	49.1	2.76%	45.1	0.150	66.0	13.5	3.8	164.0	9.97%	1481	1407	1333	•27		
15	19.4	49.1	2.81%	45.9	0.167	73.6	15.5	4.4	173.0	10.52%	1472	1399	1325	·27		
17	21.4	49.1									1469	1396	1322			
20	24.4	49.1	2.87%	46.9	0.181	79.0	17.5	4.9	180.0	10.94%	1465	1392	1319	-27		
21:3	25.65	49.1									1464	1391	1318			
25	29.4	49.1	2.88%	47.1	0.190	83.2	19.5	5.5	184.9	11.24%	1460	1387	1314	·27		
30	34.4	49.1	2.91%	47.6	0.200	88.0	20.4	5.8	190.5	11.58%	1455	1382	1309	-27		
35	39.4	49.1	2.93%	47.9	0.209	91.9	21.5	6.1	195.0	11.85%	1450	1378	1305	-27		
40	44.4	49.1	2.95%	48.2	0.215	94.7	22.5	6.4	198.4	12.06%	1447	1374	1302	-27		
21	25.4						·········				1464	1391	1318	DOC ID:S-95-1 Revision 2 Page 121		
11-Sep-97							•							0082		

FM 6.5 Exhibit 5

page 150 of 191 RZ

page 151 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE HOOP TENDON LOSSES WORK SHEET FILE: HOOPR2.XLW (62H47)

INITIAL CONCRETE STRESS (PSI): 1732 TENDON: 62H47

ORIGINAL FORCES (KIPS):	SHOP: 1590	FIELD: 1575	AVERAGE:	1582	AVERAGE ALL HOOP TENDONS:	1635.
STRESS SEQUENCE:	38 4 5 OF	60	TOTAL ELASTIC SHORT, LOSS:	134.0	WIRE FACTOR:	0.982

NOTE: SHADED VALUES ARE EXTRACTED FROM HODPINP WORK SHEET

INSPECT.	YEARS		INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FO													
PERIOD	AFTER		STRE	SS	CRE	EP	SHRIN	KAGE	TOTAL	TOTAL		1		NORMALIZING		
AFTER	CONCRETE	ELASTIC	RELAXA	TION]		Ĭ		FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR		
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m infin	FORCE	LOSS	LOSS						
(YR:MO)	(LOG)			(KIPS)	{".0001}	(KIPS)	l	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)		
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)		
1	5.4	48.2	2.57%	42.0	0.090	39.5	6.0	1.7	131.4	8.31%	1451	1378	1306	35		
3	7.4	48.2	2.60%	42.5	0.110	48.5	8.5	2.4	141.6	8.95%	1441	1369 -	1296	35		
5	9.4	48.2	2.68%	43.8	0.123	54.1	10.0	2.8	148.9	9.41%	1433	1362	1290	35		
10	14.4	48.2	2.76%	45.1	0.150	6 6.0	13.5	3.8	163.1	10.31%	1419	1348	1277	35		
15	19.4	48.2	2.81%	45.9	0.167	73.6	15.5	4.4	172.1	10.88%	1410	1340	1269	35		
17	21.4	48.2									1407	1337	1267			
20	24.4	48.2	2.87%	46.9	0.181	79.0	17.5	4.9	179.1	11.32%	1403	1333	1263	35		
21:3	25.65	48.2									1402	1332	1262			
25	29.4	48.2	2.88%	47.1	0.190	83.2	19.5	5.5	184.0	11.63%	1398	1328	1258	35		
30	34.4	48.2	2.91%	47.6	0.200	88.0	20.4	5.8	189.6	11.98%	1393	1323	1253	35		
35	39.4	48.2	2.93%	47.9	0.209	91.9	21.5	6.1	194.1	12.27%	1388	1319	1249	35		
40	44.4	48.2	2.95%	48.2	0.215	94.7	22.5	6.4	197.5	12.48%	1385	1315	1246	35		
21 11-Sep-97	25.4										1402	1332	1262	DOC ID:S-95-0082 REVISION 2 PAGE 123		

page 152 of 191

RZ

FM 6.5 Exhibit 5 1pz

page 153 of 191

Florida

Power CORPORATION

6/95

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 125 REVISION

0

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

6.5 Vertical Tendons

VERTICAL TENDONS

Tendons Listing & Input Data Sheet

Individual Tendons Losses Worksheets

Individual Tendons Force Curves

page 155 of 191

DDC ID:S-95-0082

REVISION 2

Field

End (5)

(J)

N/A

N/A

NIA

N/A

N/A

NIA

N/A

N/A

NIA

NIA

NA.

NIA

NIA

N/A

N/A

Remarks

(3)

(K)

R,C;E,S

S

C(on-line)

Asses

D.S ····

CRYSTAL RIVER UNIT 3 - 6th TENDON SURVEILLANCE VERTICAL TENDONS DATA INPUT

967.0 (ksi)

1644.0 (kips)

31

Initial Concrete Stress = Average Force -Total Stress Sequence (N) = Rei. (2) Page 74, 76, 7C (2) Page 15

PAGE 126

73.5 Total Elastic Shortening = See (2) & Attachment E No. of Litt-off Pressure (ksi) (1) Stress Wire Original Forces (kips) Shop End **Field End** Effective Tendon Sequence Shop Factor Actual Predicted Actual (n) (2) Wires (1) #/163 (4) End (5) No. Predicted (G) (8) (1) (H) (A) (U) (E) (F) (II) 23V24 NIA 6870 6850 N/A 24 163 1.000 1634 N/A 7.00 1:000 6800 6950 NIA 163 1675 12V1 7050 N/A N/A 163 1.000 6800 27 1699 12V2 2311 6800 7100 N/A N/A 1 163 1.000 1711 6870 6700 N/A N/A 19 163 1.000 1598 23V2 N/A 10 1.000 23V3 6760 6850 N/A 163 1661 N/A N/A 5 163 1.000 1633 34V5 6800 6775 N/A 26 163 1.000 34V6 6700 N/A 1612 6810 163 34V7 6870 6900 N/A N/A 14 1.000 1646 6119 6860 6800 NIA NIA 163 1.000 1625 5

File: VERTR2.XLW (VERTINP)

Notes:

61110

61111

61V20

61V21

61V22

6870

6710

6870

6870

6870

6700

6850

6850

6800

6800

(1) Ref. Crystal River 3 R/B Tendon History Sheets - Vertical Tendons for Original Stressing

N/A

NIA

N/A

NIA

N/A

26

15

29

9

26

163

160

163

163

163

1.000

0.982

0.982

1.000

0.982

1598

1642

1634

1622

1622

(2) Ref. Crystal River 3 Tendon Surveillance Loss Calculations, Tendon Stress Sequence, Pages 28 and 28a

(3) S = Selected Tendons, C = Control tendon, D = Detensioned tendon, A = Alternate tendon

E = Exempted Tendons (5th Surveillance), All Other Tendons are Adjacents

N/A

NIA

NIA

N/A

N/A

(4) Wire factors are calculated based on the number of effective wires divided by 163. (5) Original forces calculated based on the expression in Section 6.2.2.

> 12-Sep-97 9:44 AM

laz.

R2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (23V24)

TENDON: 23V24 INITIAL CONCRETE STRESS (PSI) : 967

DRIGINAL FORCES (KIPS):	SHOP: 😁 1634	FIELD: 24,1634	AVERAGE	: 1634	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	24 OF	31. 	TOTAL ELASTIC SHORT, LOSS:	73.5	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

·

INSPECT.	YEARS				DUAL LO	S S E S			TOTAL LOSSES PREDICTED FORCES				5	
PERIOD	AFTER	<u> </u>	STRES	S	CREE	, ,	SHRINK	AGE	TOTAL	TOTAL		F		NORMALIZING
AFTER	CONCRETE	FLASTIC	BELAXA	TIAN					FORCE	PERCENT	RASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHUBT	PERCENT	FUBLE	80 CB	FORCE	mintin	FUBUE	10002	1055	BABE			. No lan
(YR:MO)	(LOG)	Show.		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	1035	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(2)	(D)	(E)	(F)	(6)	(H)	(0)	(J)	(K)	(L)	(M)	(N)	(0)
									1					
1	5.4	16.6	2.57%	42.3	0.096	18.6	6.0	1.7	79.2	4.85%	1555	1477	1399	.g
3	7.4	16.6	2.60%	42.7	0.117	22.6	8.5	2.4	84.3	5.16%	1550	1472	1395	.g
5	9.4	16.6	2.68%	44.1	0.130	25.4	10.0	2.8	88.9	5.44%	1545	1468	1391	-9
10	14.4	16.6	2.76%	45.4	0.157	30.5	13.5	3.8	96.3	5.89%	1538	1461	1384	-9
15	19.4	16.6	2.81%	46.2	0.173	33.3	15.5	4.4	100.5	6.15%	1534	1457	1380	-9
17	21.4	16.6									1532	1455	1379	
20	24.4	16.6	2.87%	47.2	0.188	36.1	17.5	4.9	104.8	6.41%	1529	1453	1376	·9
21:3	25.65	16.6									1529	1452	1376	
25	29.4	16.6	2.89%	47.3	0.197	37.8	19.5	5.5	107.2	6.56%	1527	1451	1374	.9
30	34.4	16.6	2.91%	47.8	0.207	39.8	20.4	5.8	110.0	6.73%	1524	1448	1372	-9
35	39.4	16.6	2.93%	48.2	0.216	41.5	21.5	6.1	112.4	6.88%	1522	1446	1370	. <u>9</u>
40	44.4	16.6	2.95%	48.5	0.221	42.6	22.5	6.4	114.1	6.98%	1520	1444	1368	۰g
21 12-Sep-97	25.4										1529	1452	1376	doc id:5-95-0082 Revision 2 Page 127

page 156 of 191

RZ

page 157 of 191

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (12V1)

1211

TENDON:

INITIAL CONCRETE STRESS (PSI) : 967

ORIGINAL FORCES (KIPS):	:
STRESS SEQUENCE:	<u>ि</u> डि7

FIELD: 1675 SHOP: 1675 7 OF

AVERAGE: 1675 TOTAL ELASTIC SHORT. LOSS: 73.5 AVERAGE ALL VERT TENDONS: WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			TOTAL LOSSES			ICTED FORCES	5	
PERIOD	AFTER		STRES	S	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	FION .				•	FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS	l.			
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIP\$}	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
							1		T					
1	5.4	56.9	2.57%	42.3	0.096	18.6	6.0	1.7	1 19.5	7.13%	1556	1478	1400	-9
3	7.4	56.9	2.60%	42.7	0.117	22.6	8.5	2.4	124.6	7.44%	1550	1473	1395	-9
5	9.4	56.9	2.68%	44.1	0.130	25.4	10.0	2.8	129.2	7.71%	1546	1469	1391	-9
10	14.4	56.9	2.76%	45.4	0.157	30.5	13.5	3.8	136.6	8.16%	1538	1462	1385	.9
15	19.4	56.9	2.81%	46.2	0.173	33.3	15.5	4.4	140.8	8.41%	1534	1458	1381	.9
17	21.4	56.9							_		1533	1456	1379	
20	24.4	56.9	2.87%	47.2	0.188	36.1	17.5	4.9	145.1	8.66%	1530	1453	1377	.9
21:3	25.65	56.9									1529	1453	1376	
25	29.4	56.9	2.89%	47.3	0.197	37.8	19.5	5.5	147.5	8.81%	1528	1451	1375	-9
30	34.4	56.9	2.91%	47.8	0.207	39.8	20.4	5.8	150.3	8.97%	1525	1449	1372	-9
35	39.4	56.9	2.93%	48.2	0.216	41.5	21.5	6.1	152.7	9.12%	1522	1446	1370	.9
40	44.4	56.9	2.95%	48.5	0.221	42.6	22.5	6.4	154.4	9.22%	1521	1445	1369	9
21	25.4					•					1530	1453	1377	282

1R2

doc 10:S-95-0082 Revision 2 Page 129

page 159 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (12V2)

TENDON: 12V2 INITIAL CONCRETE STRESS (PSI) : 967

ORIGINAL FORCES (KIPS):	SHOP: 1699	FIELD: 1699	AVERAGE:	1699	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	27 OF	S231345	TOTAL ELASTIC SHORT, LOSS:	73.5	WIRE FACTOR:	1.0DD

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIV	IDUAL LO	SSES			TOTALI	OSSES	PRED	ICTED FORCE	S	
PERIOD	AFTER		STRE	SS	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION	i				FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	{KIPS}	(KIPS)
(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(0)	(L)	(K)	(L)	(M)	(N)	(0)
1	5.4	9.5	2.57%	42.3	0.096	18.6	6.0	1.7	72.1	4.24%	1627	1546	1464	-80
3	7.4	9.5	2.60%	42.7	0.117	22.6	8.5	2.4	77.2	4.54%	1622	1541	1460	-80
5	9.4	9.5	2.68%	44.1	0.130	25.4	10.0	2.8	81.8	4.81%	1617	1537	1456	-80
10	14.4	9.5	2.76%	45.4	0.157	30.5	13.5	3.8	89.2	5.25%	1610	1530	1449	-80
· 15	19.4	9.5	2.81%	46.2	0.173	33.3	15.5	4.4	93.4	5.50%	1606	1526	1445	-80
17	21.4	9.5									1604	1524	1444	
20	24.4	9.5	2.87%	47.2	0.188	36.1	17.5	4.9	97.7	5.75%	1602	1521	1441	-80
21:3	25.65	9.5									1601	1521	1441	
25	29.4	9.5	2.89%	47.3	0.197	37.8	19.5	5.5	100.1	5.89%	1599	1519	1439	-80
30	34.4	9.5	2.91%	47.8	0.207	39.8	20.4	5.8	102.9	6.05%	1596	1518	1437	-80
35	39.4	9.5	2.93%	48.2	0.216	41.5	21.5	6.1	105.3	6.20%	1594	1514	1435	-80
40	44.4	9.5	2.95%	48.5	0.221	42.6	22.5	6.4	107.0	6.30%	1592	1513	1433	-80
21	25.4										1601	1521	1441	PARE
12:Sep:97														(2 id:s:95-0082 Vision 2 Ge 131

12-Sep-97

page 161 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (23V1)

TENDON: 967 INITIAL CONCRETE STRESS (PSI) :

ORIGINAL FORCES (KIPS):	SHOP: 1711	FIELD:	AVERAG	E: 1711	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	1 OF	31	TOTAL ELASTIC SHORT. LOSS:	73.5	WIRE FACTOR:	-1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS		•	, INDIVI	IDUAL LO	SSES			TOTAL 1.	OSSES	PRED	ICTED FORCES	5	
PERIOD	AFTER		STRES	SS	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	{KIPS}	(KIPS)	(KIPS)
(A)	(8)	(C)	(D)	{E}	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
									<u> </u>					
1	5.4	71.1	2.57%	42.3	0.096	18.6	6.0	1.7	133.7	7.81%	1578	1499	1420	·30
. 3	7.4	71.1	2.60%	42.7	0.117	22.6	8.5	2.4	138.8	8.11%	1572	1494	1415	-30
5	9.4	71.1	· 2.68%	44.1	0.130	25.4	10.0	2.8	143.4	8.38%	1568	1489	1411	-30
10	14.4	71.1	2.76%	45.4	0.157	30.5	13.5	3.8	150.8	8.81%	1560	1482	1404	-30
15	19.4.	71.1	2.81%	46.2	0.173	33.3	15.5	4.4	155.0	9.06%	1556	1478	1401	-30
17	21.4	71.1									1554	1477	1399	
20	24.4	71.1	2.87%	47.2	0.188	35.1	17.5	4.9	159.3	9.31%	1552	1474	1397	-30
21:3	25.65	71.1									1551	1474	1396	
25	29.4	71.1	2.89%	47.3	0.197	37.8	19.5	5.5	161.7	9.45%	1550	1472	1395	-30
30	34.4	71.1	2.91%	47.8	0.207	39.8	20.4	5.8	164.5	9.61%	1547	1469	1392	·30
35	39.4	71.1	2.93%	48.2	0.216	41.5	21.5	6.1	166.9	9.75%	1544	1467	1390	-30
40	44.4	71.1	2.95%	48.5	0.221	42.6	22.5	6.4	168.6	9.85%	1543	1465	1388	-30
21	25.4				•				•		1551	1474	1396	DOC 1 REVIS PAGE
														D:S-95-0 10N 2 133
12·Sep-97														082

1pz

FM 6.5 Exhibit 5

R2

page 162 of 191

page 163 of 191

IR2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (23V2)

TENDON:	23V2	INITIAL CONCRETE	STRESS (PSI) :

ORIGINAL FORCES (KIPS):	SHOP: 1598	FIELD: 1598	AVERAGE:	1598	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	0F 3		TOTAL ELASTIC SHORT. LOSS:	73.5	WIRE FACTOR:	1.000

967

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			TOTAL L	OSSES	PRED	ICTED FORCES	S	
PERIOD	AFTER		STRES	SS	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION				•	FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	· (LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	{H}	(1)	{J}	(K)	(L)	(M)	(N)	(0)
												T .		
1	5.4	28.5	2.57%	42.3	0.096	18.6	6.0	1.7	91.1	5.70%	1507	1432	1357	37 :
3	7.4	28.5	2.60%	42.7	0.117	22.6	8.5	2.4	96.2	6.02%	1502	1427	1352	37
5	9.4	28.5	2.68%	44.1	0.130	25.4	10.0	2.8	100.8	6.30%	1498	1423	1348	37
10	14.4	28.5	2.76%	45.4	0.157	30.5 ·	13.5	3.8	108.2	6.77%	1490	1416	1341	37
15	19.4	28.5	2.81%	46.2	0.173	33.3	15.5	4.4	112.4	7.03%	1486	1412	1337	37
17	21.4	28.5									1484	1410	.1336	
20	24.4	28.5	2.87%	47.2	0.188	36.1	17.5	4.9	116.7	7.30%	1482	1408	1334	37
21:3	25.65	28.5									1481	1407	1333	
25	29.4	28.5	2.89%	47.3	0.197	37.8	19.5	5.5	119.1	7.45%	1479	1405	1331	37
30	34.4	28.5	2.91%	47.8	0.207	39.8	20.4	5.8	121.9	7.62%	1477	1403	1329	37
35	39.4	28.5	2.93%	48.2	0.216	41.5	21.5	6.1	124.3	7.77%	1474	1400	1327	37
40	44.4	28.5	2.95%	48.5	0.221	42.6	22.5	6.4	128.0	7.88%	1472	. 1399	1325	37
21	25.4										1481	1407	1333	PAC
12·Sep-97														2 ID:S:95-0082 IISION 2 3E 135

RZ

page 165 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (23V3)

INITIAL CONCRETE STRESS (PSI) : 967 TENDON: 23V3

ORIGINAL FORCES (KIPS):	SHOP: 1661	FIELD: 1661	AVERAGE:	1661	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	10 OF	31247	TOTAL ELASTIC SHORT. LOSS:	73.5	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORX SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES		TOTAL L	OSSES	PREDICTED FORCES			i	
PERIOD	AFTER		STRES	SS	CREE	Р	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)	-	(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	{E}	(F)	(6)	(H)	(1)	(J)	{K}	(L)	{M)	{N}	(0)
								·			[1		[
1	5.4	49.8	2.57%	42.3	0.096	18.6	6.0	1.7	112.4	6.77%	1548	1471	1394	-2
3	7.4	49.8	2.60%	42.7	0.117	22.6	8.5	2.4	117.5	7.07%	1543	1466	1389	-2
5	9.4	49.8	2.68%	44.1	0.130	25.4	10.0	2.8	122.1	7.35%	1539	1462	1385	-2
10	14.4	49.8	2.76%	45.4	0.157	30.5	13.5	3.8	129.5	7.80%	1531	1455	1378	-2
15	19.4	49.8	2.81%	46.2	0.173	33.3	15.5	4.4	133.7	8.05%	1527	1451	1374	-2
17	21.4	49.8									1525	1449	1373	
20	24.4	49.8	2.87%	47.2	0.188	36.1	17.5	4.9	138.0	8.31%	1523	1447	1370	-2
21:3	25.65	49.8							•		1522	1446	1370	
25	29.4	49.8	2.89%	47.3	0.197	37.8	19.5	5.5	140.4	8.45%	1520	1444	1368	-2
30	34.4	49.8	2.91%	47.8	0.207	39.8	20.4	5.8	143.2	8.62%	1518	1442	1366	-2
35	39.4	49.8	2.93%	48.2	0.216	41.5	21.5	6.1	145.6	8.77%	1515	1439	1364	-2
40	44.4	49.8	2.95%	48.5	0.221	42.6	22.5	6.4	147.3	8.87%	1513	1438	1362	-2
21 12·Sep-97	25.4										1522	1446	1370	DOC 10:S-95-0082 Revision 2 Page 137

page 166 of 191

IR2

FM 6.5 Exhibit 5

IRZ

page 167 of 191

1 R2

page 168 of 191

IR2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (34V5)

•

TENDON: 34V5 INITIAL CONCRETE STRESS (PSI) : 967

ORIGINAL FORCES (KIPS):	SHOP: 1633	FIELD: 1633	AVERAGE:	1633	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	5 OF	C-[3]	TOTAL ELASTIC SHORT. LOSS:	73.5	WIRE FACTOR:	1.00D

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

				INDIV	IDUAL LO	SSES			TOTAL L	OSSES	PRED	ICTED FORCE	s.	
INSPECT. PERIOD	AFTER CONCRETE	EL ASTIC	STRES	SS	CREE	P	SHRINK	AGE	TOTAL	TOTAL	0.05			NORMALIZING
SIT (YR:MO)	PLACEMENT (LOG)	SHORT.	PERCENT	FORCE (KIPS)	SP. CR. (*.0001)	FORCE (KIPS)	m in/in	FORCE (KIPS)	LOSS (KIPS)	LOSS	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	{C}	{D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
				[ſ						
1	5.4	51.6	2.57%	42.3	0.096	18.6	6.0	1.7	124.2	7.61%	1509	1433	1358	37
3	7.4	61.6	2.60%	42.7	0.117	22.6	8.5	2.4	129.3	7.92%	1504	1428	1353	37
5	9.4	61.6	2.68%	44.1	0.130	25.4	10.0	2.8	133.9	8.20%	1499	1424	1349	37
10	14.4	61.6	2.76%	45.4	0.157	30.5	13.5	3.8	141.3	8.66%	1492	1417	1342	37
15	19.4	61.6	2.81%	46.2	0.173	33.3	15.5	4.4	145.5	8.91%	1487	1413	1339	37
17	21.4	61.6									1486	1411	1337	
20	24.4	61.6	2.87%	47.2	0.188	36.1	17.5	4.9	149.8	9.18%	1483	1409	1335	37
21:3	25.65	61.6									1482	1408	1334	
25	29.4	61.6	2.89%	47.3	0.197	37.8	19.5	5.5	152.2	9.32%	1481	1407	1333	37
30	34.4	61.6	2.91%	47.8	0.207	39.8	20.4	5.8	155.D	9.50%	1478	1404	1330	37
35	39.4	61.6	2.93%	48.2	0.216	41.5	21.5	6.1	157.4	9.64%	1475	1402	1328	37
40	44.4	61.6	2.95%	48.5	0.221	42.6	22.5	6.4	159.1	9.75%	1474	1400	1326	37
21	25.4										1483	1408	1334	730

PAGE 139

page 169 of 191

.

R2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - Bth TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (34V6)

34V6 TENDON:

INITIAL CONCRETE STRESS (PSI) :

967

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

SHOP: 1612 FIELD: 1612

AVERAGE: 1612 TOTAL ELASTIC SHORT. LOSS: 73.5 AVERAGE ALL VERT TENDONS: WIRE FACTOR:

644 1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LOSS	ES			TOTAL L	OSSES	PRED	ICTED FORCES	3	
PERIOD	AFTER		STRES	S	CREEP		SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXAT	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	1055	LOSS				
(YR:MD)	(LOG)	_		(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	· (0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	{0}
1	5.4	11.9	2.57%	42.3	0.096	18.6	6.0	1.7	74.5	4.62%	1538	1461	1384	7
3	7.4	11.9	2.60%	42.7	0.117	22.6	8.5	2.4	79.6	4.93%	1533	1456	1380	7
5	9.4	11.9	2.68%	44.1	0.130	25.4	10.0	2.8	84.2	5.22%	1528	1452	1375	7
10	14,4	11.9	2.76%	45.4	0.157	30.5	13.5	3.8	91.6	5.68%	1521	1445	1369	7
15	19.4	11.9	2.81%	46.2	0.173	33.3	15.5	4.4	95.8	5.94%	1517	1441	1365	7
17	21.4	11.9							1		1515	1439	1363	
20	24.4	11.9	2.87%	47.2	0.188	36.1	17.5	4.9	100.1	6.21%	1512	1437	1361	7
21:3	25.65	11.9									1512	1436	1361	
25	29.4	11.9	2.89%	47.3	0.197	37.8	19.5	5.5	102.5	6.35%	1510	1435	1359	7
30	34.4	11.9	2.91%	47.8	0.207	39.8	20,4	5.8	105.3	6.53%	1507	1432	1356	7
35	39.4	11.9	2.93%	48.2	0.216	41.5	21.5	6.1	107.7	6.68%	1505	1430	1354	7
40	44.4	11.9	2.95%	48.5	0.221	42.6	22.5	6.4	109.4	6.78%	1503	1428	1353	· 7
21 12 Sep. 07	25.4										1512	1436	1361	DOC ID:S-95-0082 Revision 2 Page 141

RZ

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 100 б 7 8 9 ¹⁰ 1 5 2 20 30 50 60 70 80 90 3 Δ 40 1700 **TENDON FORCE CURVE TENDON 34V6 NORMALIZING FACTOR: 7** 1600 BASE TENDON FORCE (KIPS) 1500 95% BASE 90% BASE ; 1400 . NOVEMBER 1, 1997 1300 **Predicted Values For** Surveillance 6 (November 1, 1997) SIT NOV. 1976 1512 Kips BASE 1436 Kips 95% BASE 1361 Kips 90% BASE IR2 1200 DOC ID:S:95-0082 Revision 2 Page 142 1100 3 5 10 Note: Revision 2 is generated to change start date 0 15 20 25 30 35 40 1 for the 6th surveillance inspection from March SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 1997 to November 1997. 1RZ FM 6.5 Exhibit 5

page 171 of 191

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (34V7)

TENDON: 3477 INITIAL CONCRETE STRESS (PSI) :

ORIGINAL FORCES (KIPS):	SHOP: 1646,	FIELD: 1646	AVERAG	E: 1646	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	14 OF	31	TOTAL ELASTIC SHORT, LOSS:	73.5	WIRE FACTOR:	1.000

967

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			TOTAL LOSSES PREDICTED FORCES					:
PERIOD	AFTER		STRES	SS	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	៣ តែរំពែ	FORCE	LOSS	LOSS				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
								<u> </u>						
1	5.4	40.3	2.57%	42.3	0.096	18.6	6.0	1.7	102.9	6.25%	1543	1466	1389	3
3	7.4	40.3	2.60%	42.7	0.117	22.6	8.5	2.4	108.0	6.56%	1538	1461	1384	3
5	9.4	40.3	2.68%	44.1	0.130	25.4	10.0	2.8	112.6	6.84%	1533	1457	1380	3
10	14.4	40.3	2.76%	45.4	0.157	30.5	13.5	3.8	120.0	7.29%	1526	1450	1373	3
15	19.4	40.3	2.81%	46.2	0.173	33.3	15.5	4.4	124.2	7.55%	1522	1446	1370	3
17	21.4	40.3									1520	1444	1368	
20	24.4	40.3	2.87%	47.2	D.188	36.1	17.5	4.9	128.5	7.81%	1518	1442	1366	3
21:3	25.65	40.3							[1517	1441	1365	
25	29.4	40.3	2.89%	47.3	0.197	37.8	19.5	5.5	130.9	7.95%	1515	1439	1364	3
30	34.4	40.3	2.91%	47.8	0.207	39.8	20.4	5.8	133.7	8.12%	1512	1437	1361	3
35	39.4	40.3 -	2.93%	48.2	0.216	41.5	21.5	6.1	136.1	8.27%	1510	1434	1359	3
40	44.4	40.3	2.95%	48.5	0.221	42.6	22.5	6.4	137.8	8.37%	1508	1433	1357	3
21 12-Sep-97	25.4										1517	1441	1365	DOC 10:S-95-0082 Revision 2 Page 143

page 172 of 191

· 1 R2

FM 6.5 Exhibit 5

page 173 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET

FILE: VERTR2.XLW (61V9)

61V9 TENDON:

967 INITIAL CONCRETE STRESS (PSI) :

ORIGINAL FORCES (KIPS):	SHOP: 1625	FIELD:	AVERAGE	: 1625	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	5 OF	31	TOTAL ELASTIC SHORT. LOSS:	73.5	WIRE FACTOR:	1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			TOTALL	OSSES	PRED	ICTED FORCES	5	
PERIOD	AFTER		STRES	S	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXAT	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	en infin	FURCE	1055	1055				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	{K}	(L)	(M)	(N)	(0)
	· ·										[
1	5.4	61.6	2.57%	42.3	0.096	18.6	6.0	1.7	124.2	7.65%	1500	1425	1350	45
3	7.4	61.6	2.60%	42.7	0.117	22.6	8.5	2.4	129.3	7.96%	1495	1420	1346	45
5	9.4	61.6	2.68%	44.1	0.130	25.4	10.0	2.8	133.9	8.24%	1491	1416	1342	45
10	14.4	61.6	2.76%	45.4	0.157	30.5	13.5	3.8	141.3	8.70%	1483	1409	1335	45
15	19.4	61.6	2.81%	46.2	0.173	33.3	15.5	4.4	145.5	8.96%	1479	1405	1331	45
17	21.4	61.6									1477	1403	1330	
20	24.4	61.6	2.87%	47.2	0.188	36.1	17.5	4.9	149.8	9.22%	1475	1401	1327	45
21:3	25.65	61.6									1474	1400	1327	
25	29.4	61.6	2.89%	47.3	0.197	37.8	19.5	5.5	152.2	9.37%	1472	1399	1325	45
30	34.4	61.6	2.91%	47.8	0.207	39.8	20.4	5.8	155.0	9.54%	1470	1396	1323	45
35	39.4	61.6	2.93%	48.2	0.216	41.5	21.5	6.1	157.4	9.69%	1467	1394	1320	45
40	44.4	61.6	2.95%	48.5	0.221	42.6	22.5	6.4	159.1	9.80%	1465	1392	1319	45
21	25.4										1474	1401	1327	DOC ID:S-95-01 REVISION 2 PAGE 145
12·Sep-97														282

1R2

FM 6.5 Exhibit 5

IRZ

. .

page 174 of 191

page 175 of 191

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (61V10)

61V10 TENDON:

INITIAL CONCRETE STRESS (PSI) : t 967

ORIGINAL FORCES (KIPS): STRESS SEQUENCE:

SHOP: 1598 28 OF FIELD: 1598 28

AVERAGE: 1598 TOTAL ELASTIC SHORT, LOSS: 73.5

AVERAGE ALL VERT TENDONS: WIRE FACTOR:

1644 1.000

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			TOTAL L	OSSES	PRED	ICTED FORCES	5	
PERIOD	AFTER		STRES	SS	CREE	P	SHRINKAGE		TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	RASE	95% BASE	ON BASE	CACTOD
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE		FORCE	1055	2201	CAOL	US /S BADE	JUNEDAUC	TRUIUN
(YR:MD)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)	1000	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(0)	{E}	(F)	(G)	(H)	(1)	(J)	(K)	. (L)	(M)	(N)	(0)
														·
1	- 5.4	11.9	2.57%	42.3	0.096	18.6	6.0	1.7	74.5	4.66%	1524	1448	1372	- 21
3	7.4	11.9	2.60%	42.7	0.117	22.6	8.5	2.4	79.6	4.98%	1519	1443	1367	21
5	9.4	11.9	2.68%	44.1	0.130	25.4	10.0	2.8	· 84.2	5.27%	1514	1439	1363	21
10	14.4	11.9	2.76%	45.4	0.157	30.5	13.5	3.8	91.6	5.73%	1507	1431	1356	21
15	19.4	11.9	2.81%	46.2	0.173	33.3	15.5	4.4	95.8	5.99%	1503	1427	1352	21
17	21.4	11.9									1501	1426	1351	
20	24.4	11.9	2.87%	47.2	0.188	36.1	17.5	4.9	100.1	6.26%	1498	1473	1348	21
21:3	25.65	11.9				· · · · · · · · · · · · · · · · · · ·					1498	1423	1348	
25	29.4	11.9	2.89%	47.3	0.197	37.8	19.5	5.5	102.5	6.41%	1496	1421	1346	
30	34.4	11.9	2.91%	47.8	0.207	39.8	20.4	5.8	105.3	8.59%	1493	1418	1344	
35	39.4	11.9	2.93%	48.2	0.216	41.5	21.5	6.1	107.7	6.74%	1491	1416	1342	
40	44.4	11.9	2.95%	48.5	0.221	42.6	22.5	6.4	109.4	6.84%	1489	1415	1340	21
21	25.4		·····								1498	1423	1348	
12-Sep-97											טנדו		1340	00C ID:S:95-0082 Xevision 2 'Age 147

page 176 of 191

R2

FM 6.5 Exhibit 5

RZ

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 100 1 5 6 7 8 9 10 2 3 4 20 30 40 70 80 90 50 60 1700 **TENDON FORCE CURVE** TENDON 61V10 NORMALIZING FACTOR: 21 1600 BASE 1500 TENDON FORCE (KIPS) 95% BASE 1400 - 90% BASE 1997 **Predicted Values For** 1300 Surveillance 6 (November 1, 1997) NOVEMBER 1, BASE 1498 Kips SIT NOV. 1976_ 95% BASE 1423 Kips 90% BASE 1348 Kips R2 1200 doc id:s:95-q082 Revision 2 PAGE 148 1100 Note: Revision 2 is generated to change start date 1 25 0 3 5 10 20 30 35 40 15 for the 6th surveillance inspection from March 1997 to November 1997, SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) RZ FM 6.5 Exhibit 5

page 177 of 191

RZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (61V11)

TENDON:

INITIAL CONCRETE STRESS (PSI) :

ORIGINAL FORCES (KIPS):	SHOP: 1642	FIELD: 1642	AVERAG	E: 1642	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	15 OF	31	TOTAL ELASTIC SHORT, LOSS:	73.5	WIRE FACTOR:	0.982

967

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

.

61V11

INSPECT.	YEARS			INDIVI	DUALLO	SSES			TOTAL L	OSSES	PRED	ICTED FORCE	5.	
PERIOD	AFTER		STRE	SS	CREE	P	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXA	TION					FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in/in	FORCE	LOSS	LOSS	1			
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	())	(J)	(K)	(L)	(M)	(N)	{0}
1	5.4	37.2	2.57%	42.3	0.096	18.6	6.0	1.7	99.8	6.08%	1542	1465	1388	4
3	7.4	37.2	2.60%	42.7	0.117	22.6	8.5	2.4	104.9	6.39%	1537	1461	1384	4
5	9.4	37.2	2.68%	44.1	0.130	25.4	10.0	2.8	109.5	6.67%	1533	1456	1380	4
10	14.4	37.2	2.76%	45.4	0.157	30.5	13.5	3.8	116.9	7.12%	1525	1449	1373	4
15	19.4	37.2	2.81%	46.2	0.173	33.3	15.5	4.4	121.1	7.38%	1521	1445	1369	4
17	21.4	37.2									1519	1444	1368	
20	24.4	37.2	2.87%	47.2	D.188	36.1	17.5	4.9	125.4	7.64%	1517	1441	1365	4
21:3	25.65	37.2									1516	1440	1365	
25	29.4	37.2	2.89%	47.3	0.197	37.8	19.5	5.5	127.8	7.78%	1514	1439	1363	4
30	34.4	37.2	2.91%	47.8	0.207	39.8	20.4	5.8	130.6	7.95%	1512	1436	1361	4
35	39.4	37.2	2.93%	48.2	0.216	41.5	21.5	6.1	133.0	8.10%	1509	1434	1358	4
40	44.4	37.2	2.95%	48.5	0.221	42.6	22.5	6.4	134.7	8.20%	1508	1432	1357	4
21 12-Sep-97	. 25.4			•							1516	1441	1365	doc 10:5:95:0082 Revision 2 Page 149

page 178 of 191

RZ

TIME AFTER AVERAGE DATE OF CONCRETE WALL PLACEMENT (YEARS) 100 - 1 6 7 8 9 10 2 3 5 4 20 30 40 50 60 70 80 90 1700 TENDON FORCE CURVE TENDON 61V11 NORMALIZING FACTOR: 4 1600 BASE 1500 TENDON FORCE (KIPS) 95% BASE 90% BASE 1400 **Predicted Values For** Surveillance 6 (November 1, 1997) 202 1300 BASE 1516 Kips Ļ, 95% BASE 1441 Kips - 9261 .VON NOVEMBER 1365 Kips 90% BASE 1RZ 1200 SIT : doc |d:S:95-0082 Revision 2 PAGE 150 1100 Note: Revision 2 is generated to change start date 0 3 5 1 10 15 20 25 30 35 40 for the 6th surveillance inspection from March 1997 to November 1997. SCHEDULED SURVEILLANCE PERIOD (YEARS AFTER SIT, 11/76) 182 .

...

FM 6.5 Exhibit 5

page 179 of 191

IRZ

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (61V20)

61V20 TENDON: INITIAL CONCRETE STRESS (PSI) : **967**

ORIGINAL FORCES (KIPS):	SHOP: 1634	FIELD: 1634	AVERAGE:	1634	AVERAGE ALL VERT TENDONS:	1644
STRESS SEQUENCE:	29 OF	31	TOTAL ELASTIC SHORT, LOSS:	73.5	WIRE FACTOR:	0.982

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT	VEARS			INDIVI	IDUAL LO	SSES			TOTAL LOSSES PREDICTED FORCES				s	
PERIOD AFTER	AFTER	ELASTIC	STRESS CREEP RELAXATION				SHRINK	AGE	TOTAL Force	TOTAL PERCENT	BASE	95% BASE	90% BASE	NORMALIZING Factor
SIT (YR:MD)	PLACEMENT (LOG)	SHORT.	PERCENT	FORCE (KIPS)	SP. CR. (*.0001)	FORCE (KIPS)	m in∤in	FORCE (KIPS)	LOSS (KIPS)	LOSS	(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(B)	(C)	(D)	. (E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
										<u> </u>	[
1	5.4	4.7	2.57%	42.3	0.096	18.6	6.0	1.7	67.3	4.12%	1567	1489	1410	-21
3	7.4	4.7	2.60%	42.7	0.117	22.6	8.5	2.4	72.4	4.43%	1562	1484	1406	- 21
5	9.4	4.7	2.6B%	44.1	D.130	25.4	10.0	2.8	77.0	4.71%	1557	1479	1401	-21
10	14.4	4.7	2.76%	45.4	0.157	30.5	13.5	3.8	84.4	5.16%	1550	1472	1395	-21
15	19.4	4.7	2.81%	46.2	0.173	33.3	15.5	4.4	88.6	5.42%	1546	1468	1391	-21
17	21.4	4.7									1544	1467	1389	
20	24.4	4.7	2.87%	47.2	0.188	36.1	17.5	4.9	92.9	5.68%	1541	1464	1387	-21
21:3	25.65	4.7									1541	1464	1387	
25	29.4	4.7	2.89%	47.3	0.197	37.8	19.5	5.5	95.3	5.83%	1539	1462	1385	-21
30	34.4	4.7	2.91%	47.8	0.207	39.8	20.4	5.8	98.1	6.00%	1536	1459	1382	-21
35	39.4	4.7	2.93%	48.2	0.216	41.5	21.5	6.1	100.5	6.15%	1534	1457	1380	-21
.40	44,4	4.7	2.95%	48.5	0.221	42.6	22.5	6.4	102.2	6.25%	1532	1455	1379	-21
21 12-Sep-97	25.4										1541	1454	1387	DOC ID:S:95-0082 Revision 2 Page 151

page 180 of 191

IR2

page 181 of 191

1 R2

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (61V21) 8

INITIAL CONCRETE STRESS (PSI) : 967 TENDON:

SHOP: 1622 9 OF FIELD: 1622 ORIGINAL FORCES (KIPS): AVERAGE ALL VERT TENDONS: 1644 1.000 AVERAGE: 1622 **9** TOTAL ELASTIC SHORT, LOSS: 73.5 STRESS SEQUENCE: WIRE FACTOR:

NOTE: SHADED VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

INSPECT.	YEARS			INDIVI	DUAL LO	SSES			TOTAL LOSSES PREDICTED FORCES				5	
PERIOD	AFTER		STRES	S	CREE	>	SHRINK	AGE	TOTAL	TOTAL				NORMALIZING
AFTER	CONCRETE	ELASTIC	RELAXAT	TION			_		FORCE	PERCENT	BASE	95% BASE	90% BASE	FACTOR
SIT	PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	m in <i>l</i> in	FORCE	1055	1055				
(YR:MO)	(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(KIPS)
(A)	(8)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(0)
1	5.4	52.2	2.57%	42.3	0.096	18.6	6.0	1.7	114.8	7.07%	1507 .	1432	1357	38
3	7.4	52.2	2.60%	42.7	0.117	22.6	8.5	2.4	119.9	7.39%	1502	1427	1352	38
5	9.4	52.2	2.68%	44.1	0.130	25.4	10.0	2.8	124.5	7.67%	1498	1423	1348	38
10	14.4	52.2	2.76%	45.4	D.157	30.5	13.5	3.8	131.9	8.13%	1490	1416	1341	38
15	19.4	52.2	2.81%	46.2	0.173	33.3	15.5	4.4	136.1	8.39%	1486	1412	1338	38
17	21.4	52.2									1484	1410	1336	
20	24.4	52.2	2.87%	47.2	0.188	36.1	17.5	4.9	140.4	8.65%	1482	1408	1334	38
21:3	25.65	52.2		-							1481	1407	1333	
25	29.4	52.2	2.89%	47.3	0.197	37.8	19.5	5.5	142.8	8.80%	1479	1405	1332	38
30	34.4	52.2	2.91%	47.8	0.207	39.8	20.4	5.8	145.6	8.97%	1477	1403	1329	38
35	39.4	52.2	2.93%	48.2	0.216	41.5	21.5	6.1	148.0	9.12%	1474	1401	1327	38
40	44.4	52.2	2.95%	48.5	0.221	42.6	22.5	6.4	149.7	9.23%	1473	1399	1325	38
21 12-Sep-97	25.4										1481	1407	1333	doc id:s.95-0082 Revision 2 Page 153

1KZ

12-Sep-97

page 183 of 191

R

CRYSTAL RIVER 3 TENDON FORCE PREDICTION / NON INTERACTION LOSSES - 6th TENDON SURVEILLANCE VERTICAL TENDON LOSSES WORK SHEET FILE: VERTR2.XLW (61V22)

TENDON: 61V22 INITIAL CONCRETE STRESS (PSI) : 967

ORIGINAL FORCES (KIPS):-	SHOP: 1622	FIELD: 1622
STRESS SEQUENCE:	26 OF	31

AVERAGE: 1622 73.5 TOTAL ELASTIC SHORT, LOSS:

AVERAGE ALL VERT TENDONS: WIRE FACTOR:

1644 638 0.982

NOTE: SHADEO VALUES ARE EXTRACTED FROM VERTINP WORK SHEET

YEARS		. •	INDIVI	DUAL LO	SSES			TOTAL L	TOTAL LOSSES PREDICTED FORCES			;		
AFTER		STRES	TRESS CREEP			SHRINK	AGE	TOTAL	TOTAL				NORMALIZING	
CONCRETE	ELASTIC	RELAXA	TION						PERCENT	BASE	95% BASE	90% BASE	FACTOR	
PLACEMENT	SHORT.	PERCENT	FORCE	SP. CR.	FORCE	៣ ហៃរ៍ព	FORCE	LOSS	LOSS					
(LOG)			(KIPS)	(*.0001)	(KIPS)		(KIPS)	(KIPS)		(KIPS)	(KIPS)	(KIPS)	(K1PS)	
(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)	(Ö)	
									<u> </u>					
5.4	⁺ 11.6	2.57%	42.3	0.096	18.6	6.0	1.7	74.2	4.58%	1548	1471	1393	-3	
7.4	11.6	2.60%	42.7	0.117	22.6	8.5	2.4	79.3	4.89%	1543	1465	1389	-3	
9.4	11.6	2.68%	44.1	0.130	25.4	10.0	2.8	83.9	5.17%	1538	1461	1384	-3	
14.4	11.6	2.76%	45.4	0.157	30.5	13.5	3.8	91.3	5.63%	1531	1454	1378	-3	
19.4	11.6	2.81%	46.2	0.173	33.3	15.5	4.4	95.5	5.89%	1527	1450	1374	.3	
21.4	11.6							_		1525	1449	1372		
24.4	· 11.6	2.87%	47.2	0.188	36.1	17.5	4.9	99.8	6.15%	1522	1446	1370	-3	
25.65	11.6									1522	1446	1370		
29.4	11.6	2.89%	47.3	0.197	37.8	19.5	5.5	102.2	6.30%	1520	1444	1368	-3	
34.4	11.6	2.91%	47.8	0.207	39.8	20.4	5.8	105.0	6.47%	1517	1441	1365	3	
39.4	11.6	2.93%	48.2	0.216	41.5	21.5	6.1	107.4	6.62%	1515	1439	1363	-3	
44.4	11.6	2.95%	48.5	0.221	42.6	22.5	6.4	109.1	6.73%	1513	1437	1362	-3	
25.4						-				1522	1446	1370	DOC ID:S-95-008 REVISION 2 PAGE 155	
	YEARS AFTER CONCRETE PLACEMENT (LOG) (B) 5.4 7.4 9.4 14.4 19.4 21.4 24.4 25.65 29.4 34.4 39.4 39.4 44.4 25.4	YEARS AFTER CDNCRETE ELASTIC PLACEMENT SHORT. (LOG) (C) (B) (C) 5.4 11.6 7.4 11.6 19.4 11.6 19.4 11.6 21.4 11.6 29.4 11.6 39.4 11.6 39.4 11.6 39.4 11.6 39.4 11.6 39.4 11.6 25.4 11.6 25.4 11.6	YEARS STRES AFTER ELASTIC RELAXA PLACEMENT SHORT. PERCENT (IDG) (C) (D) (B) (C) (D) 5.4 11.6 2.57% 7.4 11.6 2.60% 9.4 11.6 2.68% 14.4 11.6 2.81% 21.4 11.6 2.81% 25.65 11.6 2.89% 34.4 11.6 2.91% 39.4 11.6 2.93% 44.4 11.6 2.93% 25.4 11.6 2.95%	YEARS STRESS AFTER ELASTIC RELAXATION PLACEMENT SHORT. PERCENT FORCE (I) GG) (C) (D) (E) (B) (C) (D) (E) 5.4 11.6 2.57% 42.3 7.4 11.6 2.60% 42.7 9.4 11.6 2.68% 44.1 14.4 11.6 2.81% 46.2 21.4 11.6 2.81% 46.2 21.4 11.6 2.89% 47.3 34.4 11.6 2.91% 47.8 39.4 11.6 2.93% 48.2 44.4 11.6 2.95% 48.5 25.4 11.6 2.95% 48.5	INDIVIDUAL LOI YEARS STRESS CREEF CDNCRETE ELASTIC RELAXATION PLACEMENT SHORT. PERCENT FORCE SP. CR. (LOG) (C) (D) (E) (F) (LOG) (LO) (E) (F) (F) (LOG) (LO) (E) (F) (D) (LOG) (LO) (LO) (D)	YEARS STRESS CREEP AFTER ELASTIC RELAXATION FORCE PLACEMENT SHORT. PERCENT FORCE SP. CR. FORCE (LOG) (C) (D) (E) (F) (G) (B) (C) (D) (E) (F) (G) 5.4 11.6 2.57% 42.3 0.096 18.6 7.4 11.6 2.60% 42.7 0.117 22.6 9.4 11.6 2.60% 42.7 0.117 22.6 9.4 11.6 2.88% 44.1 0.130 25.4 14.4 11.6 2.81% 46.2 0.173 33.3 21.4 11.6 2.81% 47.2 0.188 36.1 25.65 11.6 2.91% 47.8 0.207 39.8 39.4 11.6 2.93% 48.2 0.216 41.5 44.4 11.6 2.95% 48.5 0.221 42.6 <	INDIVIDUAL LOSSES YEARS AFTER STRESS CREEP SHRINK CDNCRETE ELASTIC RELAXATION FORCE SP. CR. FORCE minfm [LOG) (C) (D) (E) (F) (G) (H) [LOG) (D) (E) (F) (G) (H) (G) [LOG) (D) (E) (F) (G) (H) (G) (H) [L0] (D) (D) (D)	INDIVIDUAL LOSSES YEARS AFTER STRESS CREEP SHRINKAGE CONCRETE ELASTIC RELAXATION PLACEMENT SHORT. FORCE SP. CR. FORCE min,in FORCE PLACEMENT SHORT. FORCE (KIPS) ('.0001) (KIPS) (B) (C) (D) (E) (F) (G) (H) (I) 5.4 11.6 2.57% 42.3 0.096 18.6 6.0 1.7 7.4 11.6 2.56% 42.7 0.117 22.6 8.5 2.4 9.4 11.6 2.66% 44.1 0.130 25.4 10.0 2.8 14.4 11.6 2.81% 46.2 0.173 33.3 15.5 4.4 21.4 11.6 2.87% 47.2 0.188 36.1 17.5 4.9 <	INDIVIDUAL LOSSES TOTAL L YEARS AFTER STRESS CREEP SHRINKAGE TOTAL CONCRETE ELASTIC RELAXATION FORCE SP. CR. FORCE minfin FORCE LOSS PLACEMENT SHORT. PERCENT FORCE SP. CR. FORCE minfin FORCE LOSS (B) (C) (D) (E) (F) (G) (H) (I) (J) 5.4 11.6 2.57% 42.3 0.096 18.6 6.0 1.7 74.2 7.4 11.6 2.60% 42.7 0.117 22.6 8.5 2.4 79.3 9.4 11.6 2.68% 44.1 0.130 25.4 10.0 2.8 83.9 14.4 11.6 2.81% 46.2 0.173 33.3 15.5 4.4 95.5 21.4 11.6 2.87% 47.2 0.186 36.1 17.5 4.9 98.8	INDIVIDUALLOSSES TOTAL LOSSES YEARS AFTER TOTAL LOSSES CONCRETE PLACEMENT ELASTIC HORDE STRESS RELAXATION CREEP SHRINKAGE TOTAL FORCE (KIPS) TOTAL PERCENT 16B (C) (D) (E) (F) (G) (H) (I) (J) (KI) 5.4 11.6 2.57% 42.3 0.096 18.6 6.0 1.7 74.2 4.58% 7.4 11.6 2.66% 44.1 0.130 25.4 10.0 2.8 83.9 5.17% 9.4 11.6 2.68% 44.1 0.130 25.4 10.0 2.8 83.9 5.17% 19.4 11.6 2.68% 44.1 0.130 25.4 10.0 2.8 83.9 5.63% 19.4 11.6 2.81% 46.2 0.173 33.3 15.5 4.4 95.5 5.89% 25.65 11.6	INDIVIDUAL LOSSES TOTAL LOSSES PREDI YEARS STRESS CREEP SHRINKAGE TOTAL LOSSES PREDI CONCRETE PLACEMENT ELASTIC RELAXATION FORCE SP. CR. FORCE minjin FORCE PERCENT BASE (IIO) HOT (KIPS) (K	YEARS AFTER CONCRETE PLACEMENT (LOG) STRESS MELAXATION CREEP SHRINKAGE TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) TOTAL FORCE (KIPS) PREDICTED FORCES 10G) WIT FERCENT FERCENT FORCE (KIPS) STRESS (KIPS) CREEP SHRINKAGE TOTAL FORCE (KIPS) TOTAL LOSS BASE LOSS 95% BASE 10G) WIT FORCE (KIPS) FORCE (KIPS) STRESS (KIPS) (INDIVIDUAL LOSSES TOTAL LOSSES PREDICTED FORCES YEARS AFTER STRESS CREEP SHRINKAGE TOTAL TOTAL CONCRET ELASTIC PERCENT FORCE SP: CR. FORCE FORCE PERCINT BASE 95% BASE g0% BASE PLACEMENT FORCE SP: CR. FORCE IDIAL CONCRET FORCE FORCE FORCE FORCE FORCE IDIAL CONCRET BASE 95% BASE g0% BASE IDIAL CONCRET FORCE FORCE FORCE IDIAL CONCE IDIAL CONCE IDIAL CONCE IDIAL ONE IDIAL CONCE IDIAL IDIAL <th c<="" colspa="6" td=""></th>	

RL

page 185 of 191

Florida

Power CORPORATION

6/96

DOCUMENT IDENTIFICATION NO.

page 186 of 191 DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 158

۵

Calculation S-95-0082

Column H & I Calculated force values in Kips which represent ram pressure @ 1500 psi. These forces represent a zero slack starting point for both shop and field ends of each tendon and provide a basis for the start of any retensioning effort. The following expression is used to calculate these values:

0.7 * Tendon Ultimate Strength * 1500 / Predicted Lift-Off Pressure at 0.7 Tendon Ultimate Strength. See Reference 10 Calculation, page 34.

Column J & K Calculated force values in Kips which represent forces at 80% ultimate based on the following expression:

(Actual pressure @ 80% ultimate strength (Columns F or G) * 0.7 Tendon Ultimate Strength) / Predicted pressure @ 70% Ultimate Strength.

Column L & M Actual elongation data, repeated from columns B and C.

In addition, the following calculations support the ultimate strength values provided on these spreadsheets:

Tendon wire ultimate strength = f_{ult} for wire = 240 ksi Tendon Ultimate Strength = F_{ult} = [f_{ult} for wire * Tendon wire area] = = 240 ksi * (0.05985 * 163 wires) = 2341.3 Kips

 $0.7 * F_{ult} = 0.7 *2341.3 = 1638.9$ Kips $0.8 * F_{ult} = 0.8 *2341.3 = 1873$ Kips

FLORIDA POWER CORPORATION - CRYSTAL RIVER UNIT 3 REACTOR BUILDING PRESTRESSING SYSTEM 6th TENDON SURVEILLANCE

CALCULATIONS SUPPORTING SP-182 "ORIGINAL STRESSING DATA" FOR THE DOME TENDONS GROUP

0.7 T	endon U	Iltimate	Strength	=
0.8 T	endon U	Iltimate	Strength	=

DOC ID:S-95-0082 REVISION 3 PAGE 159

> 1639 Kips 1873 Kips

File: DOME												
	Actual Predicted Lift-Off 80% Ultimate			For SP-182 "Original Stressing Data"								
Tendon	Elongation (In.) Pressure (psi)		Pressure (psi)	Row 1	(Kips)	Row 2	(Kips)	Row 3 (lo.)		
ID	Shop	Field	Shop	Field	Shop	Field	Shop	Field	Shop	Field	Shop	Field
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)
D111	5	5	6810	6810	7780	7780	361	361	1872	1872	5	5
D112	4-3/4	5	6800	6840	7770	7790	362	359	1873	1867	4-3/4	5
D113	4-7/8	4-3/4	6800	6840	7770	7790	362	359	1873	1867	4-7/8	4-3/4
D114	5-1/8	4-5/8	6800	6840	7770	7790	362	359	1873	1867	5-1/8	4-5/8
D115	5	5	6840	6800	7790	7770	359	362	1867	1873	5	5
D116	4-3/4	5-1/8	6760	6800	7720	7750	364	362	1872	1868	4-3/4	5-1/8
D130	5	5	6870	6810	7810	7780	358	361	1863	1872	5	5
D131	4-1/2	4-7/8	6710	6740	7660	7700	366	365	1871	1872	4-1/2	4-7/8
D132	4-1/2	4-7/8	6760	6800	7720	7750	364	362	1872	1868	4-1/2	4-7/8
D211	5-1/4	5-1/2	6810	6870	7780	7810	361	358	1872	1863	5-1/4	5-1/2
D212	4-5/8	4-7/8	6770	6770	7730	7720	363	363	1871	1869	4-5/8	4-7/8
D213	4-3/4	4-3/4	6840	6800	7790	7770	359	362	1867	1873	4-3/4	4-3/4
D214	4-3/4	4-7/8	6670	6740	7600	7680	369	365	1868	1868	4-3/4	4-7/8
D215	4-1/2	5-1/8	6800	6870	7800	7810	362	358	1880	1863	4-1/2	5-1/8
D216	5	5	6800	6810	7770	7780	362	361	1873	1872	5_	5
D302	3-5/8	3-7/8	6530	6510	7450	7430	376	378	1870	1871	3-5/8	3-7/8
D303	4-1/4	3-3/4	6760	6770	7720	7730	364	363	1872	1871	4-1/4	3-3/4
D304	4-1/8	4	6840	6800	7790	7770	359	362	1867	1873	4-1/8	4
D305	4-1/8	4-3/16	6700	6680	7630	7620	367	368	1867	1870	4-1/8	4-3/16
D306	4-3/4	4-3/4	6810	6810	7780	7780	361	361	1872	1872	4-3/4	4-3/4
D310	5	4-1/2	6770	6770	7720	7730	363	363	1869	1871	5	4-1/2
D311	4-11/16	4-5/8	6800	6840	7770	7790	362	359	1873	1867	4-11/16	4-5/8
D312	4-7/8	4-7/8	6840	6800	7790	7770	359	362	1867	1873	4-7/8	4-7/8
								L				

Notes -

See the same calculations completed for the vertical group for notes and explanation of data & expressions used in Columns A through M.

٠.

28-Jan-98 3:54 PM 183

183

183

R3

DOC ID:S-95-0082 REVISION 3 PAGE 160

1639 Kips

CALCULATIONS SUPPORTING SP-182 "ORIGINAL STRESSING DATA" FOR THE HOOP TENDONS GROUP

ile: HOOPF	R3.XLW				<u> </u>						r -		
	Actu	lai	Predicted I	.ift-Off	80% Ult	imate	For SP-182 "Original Stressing Data"						
Tendon	Elongati	on (In.)	Pressure	(psi)	Pressur	e (psi)	Row 1	(Kips)	Row 2	(Kips)	Row 3	(ln.)	
D	Shop	Field	Shop	Field	Shop	Field	Shop	Field	Shop	Field	Shop	Field	
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(İ)	(L)	(K)	(L)	(M)	
42H17	5-5/8	4-5/8	6870	6810	7810	7780	358	361	1863	1872	5-5/8	4-5/8	
42H18	5	5-3/8	6840	6799	7810	7750	359	362	1871	1868	5	5-3/8	
42H19	5-1/4	5	6870	6810	7810	7780	358	361	1863	1872	5-1/4	5	
42H29	5-1/2	5-1/8	6870	6810	7810	7780	358	361	1863	1872	5-1/2	5-1/8	
42H30	4-7/8	5-3/4	6870	6790	7810	7750	358	362	1863	1871	4-7/8	5-3/4	
42H31	5-1/4	4-7/8	6870	6810	7810	7780	358	361	1863	1872	5-1/4	4-7/8	
42H32	5-1/4	5-1/8	6870	6790	7810	7750	358	362	1863	1871	5-1/4	5-1/8	
42H33	5-3/8	5-1/4	6870	6810	7810	7780	358	361	1863	1872	5-3/8	5-1/4	
42H34	5-1/2	5-3/8	6750	6660	7680	7600	364	369	1865	1870	5-1/2	5-3/8	
42H35	5	5-1/4	6830	6770	7760	7720	360	363	1862	1869	5	5-1/4	
42H36	5-1/8	5-1/8	6870	6790	7810	7750	358	362	1863	1871	5-1/8	5-1/8	
42H37	5-5/16	4-7/8	6870	6810	7810	7780	358	361	1863	1872	5-5/16	4-7/8	
42H43	5-1/2	5-1/8	6870	6810	7810	7780	358	361	1863	1872	5-1/2	5-1/8	
42H44	5-1/8	5	6790	6840	7750	7790	362	359	1871	1867	5-1/8	5	
42H45	5-7/16	5	6870	6810	7810	7780	358	361	1863	1872	5-7/16	5	
46H20	5-1/4	5-1/8	6640	6600	7700	7610	370	373	1901	1890	5-1/4	5-1/8	
46H21	5-1/8	5-1/4	6720	6730	7700	7640	366	365	1878	1861	5-1/8	5-1/4	
46H22	5-5/8	5-1/4	6720	6730	7700	7640	366	365	1878	1861	5-5/8	5-1/4	
51H25	5	5-1/8	6770	6800	7720	7750	363	362	1869	1868	5	5-1/8	
51H26	5-1/2	5-1/4	6760	6760	7750	7700	364	364	1879	1867	5-1/2	5-1/4	
51H27	5-1/8	4-7/8	6740	6670	7680	7600	365	369	1868	1868	5-1/8	4-7/8	
51H28	5-1/8	5	6760	6750	7750	7700	364	364	1879	1870	5-1/8	5	
51H29	5-1/2	4-3/4	6810	6750	7780	7700	361	364	1872	1870	5-1/2	4-3/4	
53H1	5-3/4	5-1/8	6700	6760	7650	7720	367	364	1871	1872	5-3/4	5-1/8	
53H2	5-3/4	4-5/8	6800	7770	7760	7720	362	316	1870	1628	5-3/4	4-5/8	
53H3	5-3/8	4-1/8	6670	6710	7600	7660	369	366	1868	1871	5-3/8	4-1/8	
53H45	5-1/4	5-1/4	6840	6800	7790	7770	359	362	1867	1873	5-1/4	5-1/4	
53H46	4-7/8	5-3/8	6760	6730	7750	7660	364	365	1879	1865	4-7/8	5-3/8	
53H47	4-3/4	5-1/2	6840	6800	7790	7770	359	362	1867	1873	4-3/4	5-1/2	
62H21	5-1/8	4-3/4	6760	6700	7720	7650	364	367	1872	1871	5-1/8	4-3/4	
62H22	5-5/16	5	6800	6750	7770	7700	362	364	1873	1870	5-5/16	5	
62H23	5-1/8	5-1/4	6800	6750	7770	7700	362	364	1873	1870	5-1/8	5-1/4	
62H39	5-7/16	5-1/4	6800	<u>,</u> 6750	7770	7700	362	364	1873	1870	5-7/16	5-1/4	
62H40	5-3/8	4-7/8	6800	6750	7770	7700	362	364	1873	1870	5-3/8	4-7/8	
62H41	5-1/4	5	6800	6750	7770	7700	362	364	1873	1870	5-1/4	5	
62H42	5-3/8	5-1/16	6800	6750	7770	7700	362	364	1873	1870	5-3/8	5-1/16	
62H43	5-3/8	4-7/8	6710	6670	7660	7600	366	369	1871	1868	5-3/8	4-7/8	
62H44	5-1/2	4-7/8	6800	6750	7770	7700	362	364	1873	1870	5-1/2	4-7/8	
62H45	5-3/16	5-1/8	6760	6700	. 7770	7700	364	367	1884	1884	5-3/16	5-1/8	
62H46	5-1/8	5-3/8	6800	6750	7770	7700	362	364	1873	1870	5-1/8	5-3/8	
62H47	5-5/8	4-1/2	6680	6640	7620	7550	368	370	1870	1864	5-5/8	4-1/2	

0.7 Tendon Ultimate Strength =

Notes -

See the same calculations completed for the vertical group for notes and explanation of data & expressions used in Columns A through M.

28-Jan-98 3:24 PM 122 :

R

R3

R

R3

R:

-

FLORIDA POWER CORPORATION - CRYSTAL RIVER UNIT 3 REACTOR BUILDING PRESTRESSING SYSTEM 6th TENDON SURVEILLANCE

DOC ID:S-95-0082 REVISION 2 PAGE 161

CALCULATIONS SUPPORTING SP-182 "ORIGINAL STRESSING DATA" FOR THE VERTICAL TENDONS GROUP

0.7 Tendon Ultimate Strength	1639 Kips
0.8 Tendon Ultimate Strength	1873 Kips

File: VERTR2.XLW

	A	ctual	Predicte	d Lift-Of	f 80% Ultimate		For SP-182 "Original Stressing Data"					
Tendon	Elonga	tion (In.)	Pressu	ure (psi)	Press	ure (psi)	Row	1 (Kips	Row	2 (Kips)	Row	3 (in.)
ID	Shop	Field	Shop	Field	Shop	Field	Shop	Field	Shop	Field	Shop	Field
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(1)	(K)	(L)	(M)
23V24	12-7/8	N/A	6870	N/A	7810	N/A	358	N/A	1863	N/A	12-7/8	N/A
12V1	12-1/2	N/A	6800	N/A	7770	N/A	362	N/A	1873	N/A	12-1/2	N/A
12V2	12-1/2	N/A	6800	N/A	7770	N/A	362	N/A	1\$73	N/A	12-1/2	N/A
23V1	12-1/4	N/A	6800	N/A	7770	N/A	362	N/A	1\$73	N/A	12-1/4	N/A
23V2	13-1/8	N/A	6870	N/A	7810	N/A	358	N/A	1863	N/A	13-1/8	N/A
23V3	13	N/A	6760	N/A	7750	N/A	364	N/A	1879	N/A	13	N/A
34V5	12-5/8	N/A	6800	N/A	7770	N/A	362	N/A	1873	N/A	12-5/8	N/A
34V6	13	N/A	6810	N/A	7780	N/A	361	N/A	1872	N/A	13	N/A
34\7	12-3/4	N/A	6870	N/A	7810	N/A	358	N/A	1863	N/A	12-3/4	N/A
61V9	12-5/16	N/A	6860	N/A	7840	N/A	358	N/A	1873	N/A	12-5/16	N/A
61710	12-3/4	N/A	6870	N/A	7810	N/A	358	N/A	1863	N/A	12-3/4	N/A
61V11	12-5/8	N/A	6710	N/A	7660	N/A	366	N/A	1871	N/A	12-5/8	N/A
61V20	12-1/2	N/A	6870	N/A	7810	N/A	358	N/A	1863	N/A	12-1/2	N/A
61V21	12-1/8	N/A	6\$70	N/A	7810	N/A	358	N/A	1863	N/A	12-1/8	N/A
61V22	12-7/8	N/A	6870	N/A	7810	N/A	358	N/A	1863	N/A	12-7/8	N/A

Notes +

Columns A through G are data input extracted from the tendon history books (applicable sheets contained in Attachment B). Columns H through M are calculated using the expressions noted below.

Column Tendons within the scope of this surveillance.

Col.B&C Actual elongation data taken from tendon history sheets for shop and field ends respectively.

For the vertical tendons, only the shop end applies.

Col.D&E Predicted Liftoff Pressures taken from tendon history sheets for shop and field ends respectively.

Col.F&G 80% Ultimate pressures taken from tendon history sheets for shop and field ends respectively.

Col.H&I Columns H & I - Calculated force values in Kips for "Original Stressing Data" Row 1 which represent ram pressure @ 1500 psi. These forces represent a zero slack starting point for both shop and field ends of each tendon and provide a basis for retensioning efforts. The following expression is used to calculate the values for Row 1 data:

0.7 * Tendon Ultimate Strength * 1500 / Predicted Lift off Pressure at 0.7 tendon Ultimate Strength.

ie. for $23\sqrt{24}$: 1639 * 1500 / 6870 = 358

Col.J&K Calculated force values in Kips for Original Stress Data" Row 2 data which represent forces at 80% Ultimate based on the following expression: Actual pressure @ 80% Ultimate Strength (Cols. F or G) * 0.7 Ultimate Strength / Predicted pressure @ 70% Ult. from Cols. D or E. ic. for 23V24: 7810 * 1639 / 6870 = 1863

Col.L& Actual elongation values repeated from Columns B & C for Row 3 of "Original Stressing Data".

12-Sep-97 9:49 AM R2

DOCUMENT IDENTIFICATION NO

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

Page 162 REVISION

2

RZ

page 190 of 191

Calculation S-95-0082

7.0 CONCLUSIONS

Florida

Power CORPORATION

Tendon Force/Time Curves have been generated from the results of this calculation. Final force curves are presented and attached in Section 6.0 of this calculation.

Force curves for the three control tendons were also generated by this calculation and were used for comparison and verification of data and spread sheets with the same curves generated previously for the same tendons. The comparison was completed and the data sheets and force curves were found to be the same as that previously generated.

Other calculations supporting the "Original Stressing Data" and "Data Sheets" in SP-182 were completed and are presented in Section 6.6 of this calculation.

8.0 REFERENCES

The following references are used in the preparation of this calculation:

- 1. G/C Letter to FPC, FCS-14594, Scope Document, November 24, 1995, for Preparation of Tendon Force Curves for the 6th Surveillance and site trip to CR3.
- 2. G/C Letter to FPC, FCS-12439, August 13, 1991, Tendon Selection and Recommendations for the Fifth Surveillance.
- 3. Reg. Guide 1.35, Revision 3
- 4. Reg. Guide 1.35.1, Revision 0
- 5. CR3 FSAR, Section 5.2
- 6. Technical Specification, Section 3.6.1.6 & Section 4.6.1.6.
- 7. Design Input for the 5th Surveillance, DI-55220-152.0 SE, Revision 2.
- 8. G/C Calculation of Force curves for the 5th Surveillance for SP-182, Revision 11.
- 9. Design Input 5500-528-1, Revision to SP-182 Procedure for Tendons and Calculations for Force-Time Curves for Surveillance 4, Revisions 0 and 1, Jan.87 and Sept.87.
- 10. G/C Calculation 5500-528-1, Tendon Loss Calculations for Surveillance 4, Revisions 0 and 1, Jan.87 and Sept.87.
- 11. G/C Calculation 04-4762-099, Tendon Loss Calculations and Appendices for CR3 Tendons, J.Fulton and G.T.DeMoss, 3/6/87 and 1980 calculations.
- 12. Dome Tendon History Sheets updated to the 5th surveillance.

13. Hoop Tendon History Sheets updated to the 5th surveillance.

6/95

DESIGN ANALYSIS/CALCULATION

Crystal River Unit 3

0

DOCUMENT IDENTIFICATION NO.

Calculation S-95-0082

14. Vertical Tendon History Sheets updated to the 5th surveillance.

15. Effective Wire Summary information, letter to FPC

16. Prescon Vendor Drawings

17. SP-182, Rev 11.

18. Surveillance Report for the Fifth Inspection Period, VSL.

19. Engineering Report for the Fifth Tendon Surveillance, G/C Letter to FPC, FCS 14401, 6/20/94.

Crystal River Unit 3 Docket No. 50-302

> January 29, 1992 3F0192-16

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

Subject: Reactor Containment Building Integrated Leak Rate Test Report

Dear Sir:

Attached please find the Reactor Containment Building Integrated Leak Rate Test Report for Crystal River Unit 3. This report is submitted in accordance with 10 CFR 50, Appendix J. The Integrated Leak Rate Test (ILRT) was successfully completed on November 7, 1991. Conforming to the Appendix J requirements, this report contains types A, B and C data summaries including results from the type A test performed in November 1991 and the results of type B and C tests which were performed since the ILRT conducted in November 1987. Also included is the analysis and interpretation of the November 1991 ILRT and the results and analysis of the supplemental verification test which demonstrated the validity of the leakage rate test measurements obtained. Other details are provided for clarity and completeness.

Sincerely,

P. M.(Beard, Jr. Senior Vice President Nuclear Operations

PMB:LVC Attachment

xc: Regional Administrator, Region II NRR Project Manager Senior Resident Inspector

R. ADLER	GAI
J. ALBERDI	NA2
P.M. BEARD, JR.	A7E
G.L. BOLDT	SAZC
W.L. CONKLIN	SA2C
DOCKET FILE	C2M
E.E. FROATS	NA2D
B.J. HICKLE	NA2G
L.C. KELLEY	NU47
D.W. KURTZ	SA2D
L.M. LESNIAK	B&W
G.C. MOORE	AGA
RECORDS MGMT	NR2A
P.R. TANGUAY	C2I
J.K. TURNBULL	C2M
R.C. WIDELL (3F ONLY)	NA2I
K B. WILSON	NA21

A Florida Progress Company

FLORIDA POWER CORPORATION

Crystal River Unit 3 Nuclear Power Plant

REACTOR CONTAINMENT BUILDING INTEGRATED

LEAKAGE RATE TEST REPORT

November 7, 1991

TABLE OF CONTENTS

- I. INTRODUCTION
- II. TEST SYNOPSIS

III. TEST DATA SUMMARY

- A. Plant Information
- B. Technical Data
- C. Type A Test Results
- D. Type B and C Test Results
- E. Integrated Leakage Rate Measurement System
- F. Information Retained at Plant

IV. ANALYSIS AND INTERPRETATION

V. REFERENCES

VI. APPENDICES

- A. Stabilization Phase Data
- B. ILRT Test Data and Plots
- C. Verification Phase Data and Plots
- D: Instrument Selection Guide Calculations
- E. Description of General Physics ILRT Computer Program
- F. Local Leakage Rate Test Summaries
- G. Sensor Locations and Volume Fractions

INTRODUCTION

The Reactor Building Integrated Leakage Rate "Type A" Test is performed to demonstrate that leakage through the primary reactor containment systems and components penetrating primary reactor containment do not exceed the allowable leakage rates specified in the Plant Technical Specifications.

The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Crystal River Unit 3 Nuclear Power Plant Integrated Leakage Rate Test (ILRT).

Highlights of activities and events which occurred prior to and during the ILRT are presented in Section II, Test Synopsis.

Section III, Test Data Summary, contains data and results necessary to demonstrate containment atmosphere stabilization, acceptable leakage rate, and successful verification test. In addition, plots provided in Appendices B and C supply a visual history of containment atmospheric conditions beginning with the 24 hour ILRT test period and ending with the verification test.

Information in Section IV, Analysis and Interpretation, supplies the technical details associated with the ILRT computer program and its associated hardware as well as the instrumentation used during the ILRT.

Section V, References, lists the documents used for the conduct of the ILRT.

The successful periodic Type A and verification test were performed according to the requirements of the Crystal River Unit 3 Technical Specifications and 10CFR50, Appendix J. The test method used was the Absolute Method, as described in ANSI/ANS 56.8-1987, "Containment System Leakage Testing Requirements".

I.

Leakage rates were calculated using the mass point analysis technique described in ANSI/ANS 56.8-1987. Total Time Analysis equations from ANSI N45.4-1972, "Leakage-Rate Testing of Containment Structures for Nuclear Reactors" were run concurrently for informational purposes. The test results are reported in accordance with the requirements of 10CFR50, Appendix J, Section V.B.3.

II. <u>TEST SYNOPSIS</u>

Prior to containment pressurization on November 4, 1991, site personnel were engaged in prerequisite activities for the conduct of the ILRT. The ILRT was conducted at the end of the 8M midcycle outage. The following discussion highlights some of the activities that were essential to the successful and timely completion of the ILRT. These items are presented in chronological order.

A. Pre-pressurization Activities

These activities included: local leakage rate testing of penetrations which were to be isolated during the ILRT, "as found" and "as left" local leakage rate testing of penetrations which were scheduled for maintenance prior to the ILRT, ILRT procedure review and finalization, ILRT computer program check out and linkup to the Fluke 2285B Data Acquisition System, ILRT instrumentation installation and operability checks, and containment subvolume weighting factor and sensor failure analysis calculation.

The ILRT test procedure was reviewed against the requirements of the Plant Technical Specifications; 10CFR50, Appendix J; and ANSI/ANS 56.8-1987.

The ILRT instrumentation was calibrated prior to the ILRT as recommended by ANSI N45.4-1972, Sections 6.2 and 6.3. Final ILRT instrumentation operability checks and in-situ checks, as specified in ANSI/ANS 56.8-1987, Section 4.2.3.1, were performed to ensure that all instrumentation was operating correctly. Calibration records for the ILRT instrumentation system components are retained at the plant.

. Test Summary Time-Line

Phase	Time Frame	Duration
Pressurization	From: 22:50 on 11/04/91 To: 23:40 on 11/05/91	24.83 hours
Stabilization	From: 23:45 on 11/05/91 To: 05:30 on 11/06/91	5.75 hours
ILRT Test	From: 05:30 on 11/06/91 To: 05:30 on 11/07/91	24.00 hours
Verification Test	From: 05:30 on 11/07/91 To: 09:45 on 11/07/91	4.25 hours

С.

Containment Pressurization

Containment pressurization started at 22:50 on November 4, 1991 using six 1500 cfm diesel-driven 100% oil-free air compressors. The pressurization rate was maintained at approximately 3.6 psi per hour until containment pressure reached 48 psig. At this time, the pressurization rate was gradually reduced by reducing the number of operating compressors and increasing backpressure with LRV-24. All compressors were stopped when the containment pressure reached 54.5 psig. at 23:40 on November 5, 1991. This was within the procedural limits of 53.9 + 1, -0 psig.

During pressurization an external containment walkdown was performed to identify potential leakage. During the walkdown a pressure buildup approximating building pressure was noted on the personnel airlock seals. Pressurization was stopped at 7 psig and the seals were inspected. The door seals were found to be in good condition and pressurization was resumed. No measurable leakage was observed from any other penetration in the test lineup. Pressurization was conducted with the use of the reactor building recirculation fans in slow speed. The fans were stopped at a pressure of 48.7 psig and were not used during the ILRT or verification test. Very little temperature stratification was observed.

B.

. Containment Atmospheric Stabilization

The stabilization phase was started at 23:45 on November 5, 1991. By 03:45 on November 6, 1991, the temperature stabilization criteria of ANSI/ANS 56.8-1987 had been met. The containment was declared stable at 05:30 of November 6, 1991 and the ILRT test period was begun.

E. ILRT Test Period

The ILRT was officially started after the 05:15 data point with the next data point at 05:30 on November 6, 1991 and was successfully completed at 05:30on November 7, 1991. The maximum allowable leakage rate (L_s) for the containment is 0.25 % wt. per day with a test acceptance limit of 0.1875 % wt. per day (0.75 L_s). The Total Time and Mass Point Analyses were run concurrently on the General Physics ILRT Computer Program. The leakage rate results are as follows:

Total Time	Mass Point
Analysis	Analysis
% wt./day	<u>% wt./day</u>
0.0871 *	0.0962 *
0.0958 *	0.0968 *

Calculated Leakage Rate 95 % Upper Confidence Leakage rate

Does not include penalties for nonstandard alignments and water level changes

F. Verification Test

A successful verification test was conducted following the ILRT. At 05:30 on November 7, 1991, a leakage rate of 15.15 scfm leakage imposed on the primary containment. The 15.15 scfm leakage imposed (L_o) on the existing containment leakage was slightly less than L_o (.25 % wt./day) at 0.2383 % wt. per day. The verification phase was completed at 09:45 of the same day.

5

D.

As a twenty four hour test was performed, the mass point verification test results are presented below:

	Mass Point Analysis <u>% wt./day</u>
Leakage Rate (L_{am})	0.0962
Imposed Leak (L _o)	0.2383
Lower Limit: $L_0 + L_{am} -0.25 L_a$	0.2720
Composite Leakage (L _c)	0.2810
Upper Limit: $L_0 + L_{am} + 0.25 L_a$	0.3970

G. Local Leakage Rate Testing

Prior to the start of the ILRT, "as found" local leakage rate testing (LLRT) was performed as required by 10CFR50, Appendix J. Results from this testing were required for those penetrations not exposed to the ILRT pressure to complete the analysis of the "as found" ILRT results. The "as found" local leakage rate testing was completed on October 26, 1991.

III. <u>TEST DATA SUMMARY</u>

A. Plant Information

Owner

Plant

Location

Docket No.

Containment Type.

Florida Power Corporation

Crystal River Unit 3 Nuclear Power Plant

Approx. 5 miles north of Crystal River, FL

50-302

Reinforced concrete structure composed of cylindrical walls (prestressed with a post-testing tendon system in the vertical and horizontal directions), with a flat foundation mat (conventional reinforcing) and a shallow dome roof (prestressed utilizing a three-way post tensioning tendon system). The inside surface is lined with a carbon steel liner.

Babcock & Wilcox PWR

November 7, 1991.

2,000,000 cubic feet.

55 psig

281° F

53.9 psig

278° F

B. Technical Data

Containment Net Free Volume

Design Pressure

Design Temperature

NSSS Supplier, Type

Date Test Completed

Calculated Peak Accident Pressure

Calculated Peak Accident Temperature

C. Test Results - Type A

Test MethodAbsoluteTest Pressure54.5 psig

Integrated Leakage Rate Total Time Analysis Test Results (Presented for information only):

	U .	- all		
95 % Upper Co	onfidence	e Limit		
Leakage Rate			· .	0.0958 % wt./day
				· · ·

Integrated Leakage Rate Mass Point Analysis Test Results:

Calculated Leakage Rate, L_{am}

Calculated Leakage Rate, L.,

95 % Upper Confidence Limit Leakage Rate

Maximum Allowable Leakage Rate, L

ILRT Acceptance Criteria, 0.75 L_a

Verification Test Imposed Leakage Rate, L_o

15.15 scfm or 0.2383 % wt./day

Verification Test Mass Point Analysis Results and Limits:

Upper Limit ($L_o + L_{am} + 0.25 L_a$)

Calculated Composite Leakage Rate, L_c

Lower Limit ($L_0 + L_{am} - 0.25 L_a$) 0.3970 % wt./day

0.0871 % wt./day

0.0962 % wt./day

0.0986 % wt./day

0.25 % wt./day

0.1875 % wt./day

0.2810 % wt./day

0.2720 % wt./day

Report Printouts

The report printouts of the ILRT and verification test calculations for the Total Time and Mass Point Analyses are provided in Appendices B and C. Stabilization data is provided in Appendix A.

D. Test Results - Type B and C Tests

A summary of local leakage rate test results since the ILRT in November 1987 are included in Appendix F.

E. Integrated Leakage Rate Measurement System

Absolute Pressure

Quantity

Manufacturer

Туре

1.

Range

Accuracy

Sensitivity

Repeatability

Resolution

2. Drybulb Temperature Quantity

Manufacturer

Туре

Range, calibrated Accuracy Sensitivity

3. Water Vapor Pressure

Quantity

Manufacturer

Туре

0 - 100 psia ± 0.01 % F.S.

DigiQuartz Model 740

Paroscientific

2

± 0.005 psia

± 0.005 psia

± 0.0001 psia

24

Rosemount

78N01N00N120 100 ohm platinum resistance temperature detectors (RTD)

75 - 125 ° F ± 0.5 ° F ± 0.01 ° F

10

Phys-Chem Scientific

Humitemp-5 Precision Relative Humidity-Temperature Monitor, Model 2150 with PCRC-11 HPB probes

	Range	0 - 100% RH
	Accuracy	± 1.8° F (Dewpoint Temperature)
	Sensitivity	± 0.1° F (Dewpoint Temperature)
4.	Verification Flow	
	Quantity	2
	Manufacturer	Brooks
	Туре	Model 1110-08 Rotometer
	Range	.76-7.6 scfm @ 14.7 psig and 70 ° F
	Accuracy	± 2% F.S.
5.	Readout Device	
	Quantity	1
	Manufacturer	Fluke
	Туре	Model 2285B
. ·	Repeatability	
	Drybulb Temp	± 0.054° F
	Dewpoint Temp	± 0.04° F
•	Resolution	± 0.01° F
		· · · · · · · · · · · · · · · · · · ·

The instrumentation Selection Guide (ISG) value from ANSI/ANS 56.8-1987 based on a 24 hour test and the above ILRT instrumentation configuration is 0.0108 % wt./day (Refer to Appendix D for calculations). The sensor locations and volume fractions as installed for the ILRT are shown in Appendix G.

G. Information Retained at Plant

8.

The following information is available for review at Crystal River Unit 3 Nuclear Power Plant site:

- 1. A listing of all containment penetrations including the total number, size, and function.
- 2. A listing of normal operating instrumentation used for the leakage test.

3. A system lineup (at time of test) showing required valve positions and status of piping systems.

4. A continuous, sequential log of events from the initial survey of containment to restoration of tested systems.

5. Documentation of instrumentation calibrations and standards, including a sensor failure analysis.

6. Data to verify temperature stabilization criteria as established by test procedure (Appendix A).

7. The working copy of the test procedure that includes signature sign-offs of procedural steps.

The procedure and data that verifies completion of penetration and valve testing including as-found leak rates, corrective action, and final leak rates.

- 9. Computer printouts of ILRT data and automated data acquisition printouts along with a summary description of the computer program.
- 10. A review of confidence limits of test results with accompanying computer printouts.

11. Description of the method of leakage rate verification.

- 12. ILRT data plots obtained during the test.
- 13. The P&IDs of pertinent systems.

IV. ANALYSIS AND INTERPRETATION

The upper 95% confidence limit (UCL) Total Time and Mass Point leakage rates calculated during the ILRT were less than the test acceptance criteria of $0.75 L_{*}$ (0.1875% wt/day). Additions to the calculated leakage rates must be made to account for penetration paths not exposed to the ILRT pressure and for changes in the net free containment volume due to changes to containment water levels. These additions are discussed below.

Type C Penalties

Α.

Penetration paths not exposed to the ILRT pressure and the corresponding minimum pathway leakage rates are as follows:

Pen. No.	System	Leakage Rate (sccm)
116	RB Leak Rate	41
122	RB Leak Rate	15
202	RB Leak Rate	69.6
314	Main Steam	420
316	Main Steam	1030
318	Main Steam	20
320	Main Steam	20
427	Main Steam	605
428	Main Steam	1255

The total applicable local leakage rate Type C penalty addition is 3,475.6sccm which is equivalent to 0.0019% wt. per day.

B. Volume Change Corrections

The following volumes were monitored for liquid level changes which would affect the containment net free volume:

Volume Monitored	Level Change	Volume Change
Pressurizer	-10 inches	+30.8 cu. ft.
Reactor Building Sump	+ 3 inches	-9.48 cu. ft.

Conservatively, level decreases can be disregarded since their effect is already included in the measured leakage rate. The increase in reactor building sump resulted in a decrease of 9.48 cubic feet in the containment net free volume. This is equivalent to a leakage rate of 0.0005 % wt. per day.

As Left ILRT Results

С.

The as left ILRT leakage rate including the required additions is as follows:

	Total Time Analysis (% wt./day)	Mass Point Analysis <u>(% wt./day)</u>
95 % UCL Leakage Rate	0.0958	· 0.0986
Type C Penalties	0.0019	0.0019
Volume Change	0.0005	0.0005
As Left 95 % UCL Leakage Rate	0.0982	.0.1010

The as left Total Time and Mass Point 95 % UCL leakage rates are less than the maximum allowable leakage rate value stated in the technical specifications of 0.75 L_a (0.1875 % wt./day).

D. As Found ILRT Results

Repairs or adjustments were made to the following penetrations which would require correction to the as left ILRT result.

Penetration	Leakage Savings(sccm)
113	595
439	105.7

The total leakage savings is 700.7 sccm based on minimum pathway analysis. This is equivalent to 0.0004 % wt. per day. The as found ILRT leakage is determined as follows:

	Total Time Analysis <u>(% wt./day)</u>	Mass Point Analysis <u>(% wt./day)</u>
As Left 95 % UCL Leakage Rate	0.0982	0.1010
Leakage Savings	0.0004	0.0004
As Found 95 % UCL Leakage Rate	0.0986	0.1014

<u>REFERENCES</u>

V.

- A. Crystal River Unit 3 Nuclear Power Plant Surveillance Procedure SP-178 Rev.
 17, Reactor Containment Building Integrated Leakage Rate Test.
- B. Crystal River Unit 3 Nuclear Power Plant Technical Specifications.
- C. Crystal River Unit 3 Nuclear Power Plant Updated Final Safety Analysis Report.
- D. Code of Federal Regulations, Title 10, Part 50, Appendix J, Primary Reactor Containment Leakage Testing for Water Cooled Power Reactors.
- E. ANSI N45.4-1972, Leakage-Rate Testing of Containment Structures for Nuclear Reactors.
- F. ANSI/ANS 56.8-1987, Containment System Leakage Testing Requirements.

VI APPENDICES

APPENDIX A

STABILIZATION PHASE DATA

STABLIZATION MODE OFTIONS

TIME : UDID MODE SUMMARY

1 - MANUAL DATA ENTRY

- 2 PARAMATER GRAPHS
- 3 SENSOR PLOTS
- 4 SENSOR DIFFERENTIALS
- 5 ANSI STABILIZATION CRITERIA
- 6 BN-TOP-1 STAB. CRITERIA
- 7 ANSI CRITERIA PRINTOUT
- 8 BN-TOP-1 CRITERIA PRINTOUT
- 9 REPRINT CURRENT DATA POINT
- P PASS WORD MENU
- 0 FLASH OFF

ANSI TEMPERATURE STABLIZATION CRITERIA MET BN-TOP TEMPERATURE STABLIZATION CRITERIA MET

POINT SUMMARY: CURRENT VALUE/DIFFERENCE FROM PREVIOUS POINT

AVG TEMP:	78.610/ -0.029	AVG PRESS:	68.618/ -0.005
PIAGO:	000100.00/ -10.000	AVG DEW PRESS:	0.42087 - 0.0013
· · ·		TOTAL PRESS:	69.039/ -0.006

OF DATA POINTS = 23 MODE DURATION (IN HRS) = 5.5 TOT TIME MEASURED LEAK = 0.2696 TOT TIME CALCULATED LEAK = 0.1632 TOT TIME 95% UCL = 0.5072 MASS PT LEAK = 0.2415MASS PT 95% UCL = 0.2551

LEAK RATE ANALYSIS UNIT # 3

TOTAL TIME

MASS POINT

DATE	TIME	MEASURED	CALCULATED	UCL	CALC.	L95
		LEAK	ka ak		HEAE	
309	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
310	0.25	1.2029	0.0000	0.0000	0.0000	0.0000
310	0.50	0.7145	0.7145	0.0000	0.7157	3.1300
310	0.75	0.5437	0.4908	1.7472	0.5124	1.0186
310	1.00	0.4529	0.3654	1.0963	0.4060	0.6812
310	1.25	0.4143	0.2979	0.9158	0.3532	0.5281
310	1.50	0.4468	0.2884	0.8933	0.3625	0.4799
310	1.75	0.3699	0.2532	0.7948	0.3286	0.4213
310	2.00	0.3604	0.2319	0.7374	0.3098	0.3826
310	2.25	0.3403	0.2140	0.6911	0.2937	0.3533
310	2.50	0.3785	0.2177	0.6873	0.3046	0.3538
310	2.75	0.3194	0.2039	0.6508	0.2886	0.3325
310	3.00	0.3181	0.1953	0.6256	0.2798	0.3178
310	3.25	0.3186	0.1905	0.6082	0.2751	0.3077
310	3.50	0.2990	0.1831	0.5876	0.2664	0.2959
310	3.75	0.2963	0.1778	0.5715	0.2608	0.2871
310	4.00	0.2941	0.1741	0.5586	0.2563	0.2797
310	4.25	0.3017	0.1737	0.5513	0.2564	0.2772
310	4.50	0.2895	0.1715	0.5416	0.2534	0.2721
310	4.75	0.2837	0.1693	0.5322	0.2507	0.2677
310	5.00	0.2789	0.1671	0.5234	0.2475	0.2631
310	5.25	0.2758	0.1653	0.5153	0.2446	0.2591
310	5.50	0.2696	0.1632	0.5072	0.2415	0.2551
				and the second	and the second	

.

.....

AVG. DATA VALUES

- <u>-</u>	DATE	TIME	T(I)	P(I)	DT(I)	VP(I)	MASS(1)
_	309	0.00	80.498	68.901	0:000	0.425	688582.00
	310	0.25	80.245	68.860	0.000	0.424	688495.69
	310	0.50	80.030	68.831	0.000	0.423	688479.50
	310	0.75	79.858	68.808	0.000	0.423	688465.00
	310	1.00	79.719	68.789	0.000	0.423	688452.00
	310	1.25	79.601	68.772	0.000	0.423	688433.38
	310	1.50	79.502	68,755	0.000	0.425	688389.69
	310	1.75	79.401	68.743	0.000	0.424	688396.31
· .	310	2.00	79.320	68.730	0.000	0.424	688375.19
	310	2.25	79.241	68.719	0.000	0.423	688362.31
	310	2.50	79.174	68.705	0.000	0.426	688310.50
	310	2.75	79,102	68.698	0,000	0.423	688329.88
	310	3.00	79.046	68.689	0.000	0.423	688308.13
	310	3.25	78.997	68.680	0.000	0.423	688284.88
	310	3.50	78.937	68.672	0.000	0.422	688281.69
	310	3.75	78.889	68,664	0.000	0.422	688263.13
	310	4.00	78.847	68,657	0.000	0.421	688244.38
•	310	4.25	78.801	68.648	0.000	0.423	688214.00
	310	4.50	78.758	68.642	0.000	0.422	688208.19
	310	4.75	78.716	68.635	0.000	0.422	688195.38
	310	5.00	78.680	68.629	0.000	0.422	688181.88
	310	5.25	78.640	68,623	0.000	0.422	688166.50
	310	5.50	78.610	68.618	0.000	0,421	688156.50
			+ · •				

80.4987 UNIT 3

EMPERATURE

F

78.610 2345/ 309 TIME 0515/ 310
- TIME	TEMP	BN dT	BN dT2	
5.50 5.25 5.00 4.75 4.50 4.25 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00	78.6103 78.6396 78.6803 78.7162 78.7579 78.8005 78.8474 78.8893 78.9370 78.9966 79.0465 79.1023 79.1741 79.2413 79.3203 79.4013 79.5021 79.6012 79.7187 79.8582 80.0297 80.2447 80.4983	$\begin{array}{r} -0.1634\\ -0.1785\\ -0.1831\\ -0.1931\\ -0.2081\\ -0.2204\\ -0.2365\\ -0.2560\\ -0.2825\\ -0.3023\\ -0.3023\\ -0.3361\\ -0.3779\\ -0.4278\\ -0.5017\\ -0.5890\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.000$	0.0606 0.0183 0.0399 0.0600 0.0492 0.0643 0.0781 0.1061 0.0791 0.1353 0.1672 0.1995 0.2957 0.3490 0.0000	

STABILIZATION ANSI56.8

	TIME	TEMP	56.8 1 HR F/HR	56.8 4 HR F/HR	4-1 HR
- -	5.50 5.25 5.00 4.75 4.50 4.25 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50	78.610 78.640 78.680 78.716 78.758 78.801 78.847 78.889 78.937 78.997 79.046 79.102 79.174 79.241 79.241 79.320 79.401 79.502 79.601 79.719 79.858 80.030	$\begin{array}{c} 0.148\\ 0.161\\ 0.167\\ 0.173\\ 0.179\\ 0.196\\ 0.199\\ 0.213\\ 0.237\\ 0.245\\ 0.274\\ 0.299\\ 0.328\\ 0.328\\ 0.360\\ 0.398\\ 0.457\\ 0.528\\ 0.644\\ 0.780\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ \end{array}$	0.223 0.240 0.260 0.285 0.318 0.361 0.413 0.000	0.075 0.079 0.093 0.112 0.139 0.165 0.214 -0.213 -0.237 -0.245 -0.274 -0.299 -0.328 -0.360 -0.398 -0.528 -0.528 -0.644 -0.780 0.000 0.000
	0.25	80.245	0.000	0.000	0.000

APPENDIX B

ILRT TEST DATA AND PLOTS

YOU WISH TO USE:	TEST DATA	0530
1 - MANUAL DATA ENTRY 2 - PARAMETER GRAPHS 3 - SENSOR PLOTS 4 - TREND ANALYSIS 5 - REPRINT CURRENT DATA PT 5 - SENSOR DIFFERENTIALS	# OF DATA POINTS MODE DURATION (IN HOURS) TOT TIME MEASURED LEAK TOT TIME CALCULATED LEAK TOT TIME 95% UCL MASS POINT 25% UCL	= 97 = 24 = 0.0968 = 0.0871 = 0.0958 = 0.0962 = 0.0986
P - PASS WORD MENU	75% La MASS =	= .1875 687461.19
SELECTED OPTION=		~
POINT CUMMARY - CURPENT UN US ATEEER		

AVG PRESS: 687461.19 / -0.0014 AVG PRESS: 68.753 / -0.0003 -0.0003 68.753 / -0.0003

	DATE	TIME	TTLM	LMCALC	SL	LAM	L95
<u>,</u>	310	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
	310	0.25	0.3932	0.0000	0.0000	0.0000	0.0000
	310	0.50	0.2223	0.2223	0.0000	0.2209	1.0630
	310	0.75	0.2380	0.2069	0.9452	0.2190	0.3486
	310	1.00	0.1867	0.1695	0.4623	0.1808	0.2597
	310	1.25	0.1725	0.1471	0.3523	0.1610	0.2140
	310	1.50	0.1707	0.1367	0.3120	0.1537	0.1901
	310	1.75	0.1713	0.1327	0.2935	0.1528	0.1790
	310	2.00	0.1631	0.1280	0.2762	0.1496	0.1698
	310	2.58	0.1498	0.1086	0.2581	0.1408	0.1570
	310	2.75	0.1505	0.1161	0.2536	0.1383	0.1514
	310	3.00	0.1417	0.1134	0.2421	0.1329	0.1447
$\overline{}$	310	3.05	0.1393	0.1178	0.2365	0.1295	0.1403
	310	3.25	0.1404	0.1148	0.2279	0.1277	0.1373
	310	3.53	0.1549	0.1132	0.2253	0.1314	0.1408
	310	3.75	0.1467	0.1129	0.2221	0.1321	0.1403
•	310	4.00	0.1399	0.1104	0.2167	0.1307	0.1381
	310	4.27	0.1419	0.1088	0.2130	0.1305	0.1371
	310	4.50	0.1492	0.1100	0.2131	0.1326	0.1389
•	310	4.75	0.1483	0.1107	0.2126	0.1341 •••	··· 0.1399
	310	5.00	0.1408	0.1102	0.2102	0.1336	0.1389
•	310	5.25	0.1409	0.1099	0.2082	0.1330	0.1379
	310	5.50	0.1384	0.1094	0.2060	0.1324	0.1369
	310	5.75	0.1336	0.1084	0.2030	0.1308	0.1353
· .	310	6.00	0.1328	0.1075	0.2004	0.1293	0.1336
<u>``</u>	310	6.25	0.1362	0.1073	0.1989	0.1291	0.1331
		-					

. .

•

	DATE	TIME	TTLM	LMCALC	SL	LAM	L95
\frown	310	6.50	0.1429	0.1082	0.1991	0.1302	0.1341
	310	6.75	0.1416	0.1090	0.1989	0.1311	0.1347
	3 10	7.00	0.1366	0.1090	0.1978	0.1308	0.1342
	310	7.25	0.1366	0.1091	0.1968	0.1305	0.1337
	310	7.50	0.1403	0.1097	0.1966	0.1312	0.1342
. *	310	7.75	0.1367	0.1099	0.1957	0.1312	0.1340
	310	8.00	0.1362	0.1100	0.1949	0.1309	0.1336
• • .	310	8.25	0.1362	0.1102	0.1941	0.1308	0.1333
	310	8.50	0.1368	0.1105	0.1935	0.1308	0.1332
	310	8.75	0.1336	0.1104	0.1925	0.1302	0.1325
	310	9.00	0.1357	0.1106	0.1919	0.1303	0.1324
	310	9.25	0.1331	0.1105	0.1909	0.1298	0.1319
\frown	310	9.50	0.1288	0.1101	0.1895	0.1290	0.1312
•	310	9.75	0.1310	0.1099	0.1885	0.1284	0.1305
·	310	10.00	0.1331	0.1100	0.1878	0.1282	0.1302
	310	10.25	0.1347	0.1103	0.1874	0.1283	0.1302
	310	10.50	0.1257	0.1097	0.1860	0.1272	0.1293
• • •	310	10.75	0.1307	0.1096	0.1852	0.1268	0.1289
	310	11.00	0.1274	0.1093	0.1841	0.1262	0.1283
	310	11.25	0.1273	0.1090	0.1831	0.1256	0.1277
	310	11.50	0.1250	0.1086	0.1819	0.1249	0.1270
	310	11.75	0.1262	0.1083	0.1809	0.1244	0.1265
	310	12.00	0.1242	0.1079	0.1798	0.1236	0.1257
	310	12.25	0.1228	0.1074	0.1786	0.1228	0.1250
	310	12.50	0.1240	0.1071	0.1777	0.1224	0.1245
\sim	310	12.75	0.1218	0.1066	0.1766	0.1214	0.1236

•

.

	DATE	TIME	TTLM	LMCALC	SL	LAM	L95
\frown	310	13.00	0.1241	0.1064	0.1757	0.1209	0.1231
	310	13.25	0.1238	0.1062	0.1750	0.1206	0.1227
	310	13.50	0.1208	0.1057	0.1739	0.1199	0.1220
	310	13.75	0.1228	0.1055	0.1732	0.1195	0.1216
	310	14.00	0.1209	0.1052	0.1723	0.1191	0.1211
	310	14.25	0.1211	0.1049	0.1715	0.1187	0.1207
	310	14.50	0.1205	0.1045	0.1707	0.1181	0.1201
*	310	14.75	0.1187	0.1041	0.1697	0.1176	0.1196
	310	15.00	0.1187	0.1038	0.1689	0.1170	0.1191
	310	15.25	0.1166	0.1033	0.1679	0.1164	0.1184
	310	15.50	0.1159	0.1028	0.1670	0.1156	0.1177
	310	15.75	0.1162	0.1024	0.1661	0.1151	0.1173
	310	16.00	0.1118	0.1018	0.1649	0.1142	0.1165
)	310	16.25	0.1158	0.1014	0.1641	0.1137	0.1159
	310	16.50	0.1153	0.1010	0.1633	0.1131	0.1154
	310	16.75	0.1096	0.1003	0.1622	0.1122	0.1146
· ·	310	17.00	0.1137	0.0999	0.1613	0.1117	0.1140
•••	310	17.25	0.1107	0.0994	0.1604	0.1110	0.1134
	310	17.50	0.1100	0.0988	0.1594	0.1103	0.1127
	310	17.75	0.1111	0.0984	0.1586	0.1096	0.1120
	310	18.00	0.1118	0.0980	0.1578	0.1092	0.1116
	310	18.25	0.1097	0.0975	0.1570	0.1086	0.1109
	311	18.50	0.1101	0.0971	0.1562	0.1081	0.1105
	311	18.75	0.1103	0.0967	0.1554	0.1077	0.1100
	311	19.00	0.1084	0.0963	0.1546	0.1070	0.1094
\bigcirc	311	19.25	0.1069	0.0958	0.1538	0.1064	0.1088

`.	DATE	TIME	TTLM	LMCALC	SL	LAM	L95
	311	19.50	0.1057	0.0952	0.1529	0.1057	0.1081
	311	19.75	0.1068	0.0948	0.1521	0.1052	0.1076
	311	20.00	0.1061	0.0943	0.1513	0.1046	0.1070
÷	311	20.25	0.1045	0.0938	0.1505	0.1040	0.1064
	311	20.50	0.1035	0.0933	0.1496	0.1033	0.1058
•	311	20.75	0.1050	0.0928	0.1489	0.1029	0.1053
	311	21.00	0.1040	0.0924	0.1481	0.1024	0.1048
	311	21.25	0.1026	0.0919	0.1473	0.1018	0.1042
	311	21.50	0.1031	0.0914	0.1466	0.1012	0.1037
	311	21.75	0.1043	0.0911	0.1459	0.1008	0.1032
	311	22.00	0.1026	0.0906	0.1452	0.1003	0.1027
	311	22.25	0.1005	0.0901	0.1444	0.0998	0.1022
	311	22.50	0.1016	0.0897	0.1437	0.0993	0.1017
	311	22.75	0.1008	0.0893	0.1430	0.0988	0.1012
	311	23.00	0.1004	0.0888	0.1423	0.0983	0.1007
· ·	311	23.25	0.1009	0.0885	0.1417	0.0979	0.1002
	311	23.50	0.0994	0.0880	0.1410	0.0973	0.0997
· · · ·	311	23.75	0.0985	0.0876	0.1403	0.0968	0.0992
• •	311	24.00	0.0968	0.0871	0.0958	0.0962	0.0986
		·. ·					

. .

3100 0.925 78 572 68 6114 0.0000 0.4222 688.079 3110 0.550 78 534 68 6000 0.4221 688.074 3110 0.550 78 549 68 6000 0.4221 688.076 3110 1.050 78 454 68 5900 0.0000 0.4221 688.076 3110 1.050 78 454 68 5900 0.0000 0.4221 688.074 3110 1.250 78 454 688.597 0.0000 0.4210 688.0241 3110 1.250 78 4500 688.597 0.0000 0.4177 688.0046 3110 1.250 78 4500 688.557 0.0000 0.4177 688.0046 3110 1.250 78 788.746 688.5577 0.0000 0.4117 688.0046 3110 1.250 788.7264 688.5577 0.0000 0.4116 687.7767 3110 1.257 788.7264 688.5577 0.0000 0.4

DATE	TIME	<u>T(I)</u>	P(I)	DT(I)	VP(I)	MASS(I)	
00000000000000000000000000000000000000	50005050505050505050505050505050505050	77777777777777777777777777777777777777	66666666666666666666666666666666666666		8887787877877666655664555544455554445555544455555444555554445555	66657 755557 755557 755557 755557 755557 755557 755557 75555 75555 777 75555 777 75555 777 75555 777 75555 777 755557 777 755577 777 7555777 777 777 777 7777 7777 7777 77777 7777	

68.6117 UNIT 31

PSIA

P

RESSURE

68.352 0530/310 TIME 0530/311

78.575] UNIT 3

TEMPERATURE

F

77.069 0530/ 311 0530/ 310 TIME

6.8813 UNIT 3 MASS LBM X10^5

6.8745

0530/310 TI

TIME

0530/ 311

APPENDIX C

VERIFICATION TEST DATA AND PLOTS

VERIFICATION MODE OPTIONS:

TIME= 0945 TEST SUMMARY

1		MANUAL DATA ENTRY	# OF DATA POINTS = 19
2	-	PARAMETER GRAPHS	MODE DURATION (IN HOURS) = 4.25
· .3	-	SENSOR PLOTS	TOT TIME MEASURED LEAK = 0.2937
4	-	TREND ANALYSIS	TOT TIME CALCULATED LEAK = 0.2620
. 5	.	REPRINT CURRENT DATA PT	MASS PT LEAK = 0.2810
Ξ.	-	SENSCR DIFFERENTIALS	IMPOSED LEAK = 0.2383
			TOT TIME UPPER LIMIT = 0.3879
P .	-	PASS WORD MENU	TOT TIME LOWER LIMIT = 0.2629
	. •		MASS PT UPPER LIMIT = 0.3970
SEL	ECT	ED OPTION =	MASS PT LOWER LIMIT = 0.2720

TOT TIME VERIFICATION CRITERIA HAS NOT BEEN MET

MASS PT VERIFICATION CRITERIA HAS BEEN MET

POINT SUMMARY: CURRENT VALUE/DIFFERENCE FROM PREVIOUS POINT

AVG TEMF:	76.913/ -0.007	AVG PRESS:	68.297 / -0.003
MASS:	637103. 63/ -21.750	AVG DEW PRESS:	0.4000/ -0.0002
•		TOTAL PRESS:	68.697 / -0.003

68.753] UNIT 3 PRESSURE PSIA 68.697 0530/ 311 0945/ 311 TIME

· .

6.8746 UNIT 3 MASS

LBM X10^5

6.8710<u>†</u> 0530/ 311

TIME

0945/ 311

. .

AVU, Unim vecues unit a s

DATE	TIME	Τ(Ι)	P(I)	DT(I)	VP (]	I) MASS(I)
	0:00	77.069	68.352	0.000	0.401	687461.19
311	0.25	77.066	68.349	0.000	0.401	687432.38
311	0.32	77.067	68.348	0.000	0.401	687420.19
311	0.50	77.056	68.346	0.000	0.401	687410.06
311	0.75	77.038	68.342	0.000	0.401	687392.56
311	1.00	77.031	68.339	0.000	0.401	687372.06
311	1.25	77.023	68.334	0.000	0.402	687340.75
311	1.50	77.014	68.331	0.000	0.401	687321.38
311	1.75	77.003	68.329	0.000	0.401	687306.63
311	2.00	76.986	68.325	0.000	0.401	687296.94
311	2.25	76.982	68.323	0.000	0.400	687273.81
311	2.50	76 .96 9	68.320	0.000	0.400	687260.56
311	2.75	76.962	68.316	0.000	0.401	687228.25
311	3.00	76.956	68.313	0.000	0.400	687213.06
311	3.25	76,945	68.310	0.000	0.40 0	687195,94
311	3.50	76.931	68.306	0.000	0.400	687174.75
311	3.75	76.929	68.304	0.000	0.400	687149.81
311	4.00	76.920	68.300	0.000	0.400	687125.38
311	4.25	76.913	68.297	0.000	0.400	687103.63

.

MASS POINT UNIT # 3

					•
	DATE	TIME	LAM	L95	
	311	0.00	0.0000	0.0000	
	311	0.25	0.0000	0.0000	
· .	311	0.32	0.4384	0.7872	
	311	0.50	0.3672	0.5085	
· ·	311	0.75	0.3145	0,3987	
	311	1.00	0.2967	0.3458	
	311	1.25	0.3115	0.3460	
	311	1.50	0.3132	0.3370	
	311	1.75	0.3048	0.3240	
	311	2.00	0.2903	0.3111	
	311	2.25	0.2844	0.3018	
	311	2.50	0.2772	0.2932	
\frown	311	2.75	0.2788	0.2922	
·	311	3.00	0.2779	0.2892	
	311	3.25	0.2764	0.2862	
· · ·	311	3.50	0.2760	0.2845	
	311	3.75	0.2770	0.2845	
	311	4.00	0.2789	0.2857	
×.	311	4.25	0.2810	0.2873	

APPENDIX D

INSTRUMENT SELECTION GUIDE CALCULATION

INSTRUMENT SELECTION GUIDE CALCULATION

0.005 psia

0.0001 psia

0.005 psia

0.1° F

Page 1 of 2

TEST PARAMETERS Α. La = 0.25%/dayP = 68.6 psia $T = 538^{\circ} R$ $T_{dp} = 74.4^{\circ} F$ t = 24 hours **INSTRUMENT PARAMETERS** 1. Total Absolute Pressure No. of Sensors = 2Range: 0 - 100 psia Sensor sensitivity error (E): Measurement system error (e): **Resolution: Repeatability:** $e = +/-((0.0001)^2 + (0.005)^2)^{1/2}$ e = +/-0.005001 psia $e_{p} = +/-((0.005)^{2} + (0.005001)^{2})^{1/2}/(2)^{1/2}$ $e_p = +/-0.005001$ psia 2. Water Vapor Pressure No. of Sensors = 10Sensor sensitivity error (E): Measurement system error (e):

> **Resolution:** 0.01° F **Repeatability:** 0.04° F $e = +/-((0.01)^2 + (0.04)^2)^{1/2}$ $e = +/-0.041^{\circ}$ F

At a dewpoint of 74.4° F, the equivalent water vapor pressure change (as determined from steam tables) is 0.0142 psia/° F.

B.

 $E = +/- 0.1^{\circ} F (0.0142 \text{ psia}/^{\circ} F)$ E = +/- 0.00142 psia $e = +/- 0.041^{\circ} F (0.0142 \text{ psia}/^{\circ} F)$ e = +/- 0.00058 psia $e_{pv} = +/- ((0.00142)^{2} + (0.00058)^{2})^{1/2} / (10)^{1/2}$ $e_{pv} = +/- 0.00048 \text{ psia}$

3. Temperature

No. of Sensors = 24

0.01° F

Measurement system error (e):

Sensor sensitivity error (E):

Resolution: Repeatability: 0.01° F 0.054° F

$$e = +/- ((0.01)^2 + (0.054)^2)^{1/2}$$

 $e = /- 0.055^\circ F = +/- 0.055^\circ R$
 $e_T = +/- ((0.01)^2 + (0.055)^2)^{1/2} / (24)^{1/2}$
 $e_T = +/- 0.011^\circ R$

4. Instrumentation Selection Guide Formula

 $ISG = +/- 2400/t (2(e_p/P)^2 + 2(e_{py}/P)^2 + 2(e_T/T)^2)^{1/2}$ $ISG = +/- (2400/24) (2(0.005001/68.6)^2 + 2(0.00048/68.6)^2 + 2(0.011/538)^2)^{1/2}$ ISG = +/- 0.0108 %/day

APPENDIX E

GENERAL PHYSICS ILRT COMPUTER PROGRAM DESCRIPTION

DESCRIPTION OF GENERAL PHYSICS ILRT COMPUTER PROGRAM

The following paragraphs describe the various features and attributes of the General Physics ILRT Computer Program and the process used to certify it for each application.

REDUNDANCY

The General Physics ILRT team was equipped with two fully operational IBM compatible microcomputers during the ILRT and for on site data reduction and analysis. The computer software and hardware interfaced directly with the ILRT Measurement System Data Acquisition System (Fluke 2285B).

Two computers were brought on site for 100% redundancy, as each computer and its software is capable of independently performing the ILRT. The General Physics ILRT Computer Software is also capable of accepting manual input of raw sensor data and performing all required sensor data conversions if the data logger should cease to function. Each computer was equipped with back-up disks in the unlikely event of a disk "crash."

SECURITY

The General Physics ILRT Computer Program is written in QUICK BASIC. QUICK BASIC is a high level programming language which combines programming ease with user oriented command functions to create an easy to use and understand program. In order to increase speed of operation the program was then compiled into an executable command file. Compiling was accomplished using the Quick Basic Compiler. In addition to execution speed, this had the added benefit of making the program more secure as compiled programs cannot be edited or changed. The program requires a password to change modes of operation, start times, or enter the data editing routine to safeguard the integrity of the raw data files.

FEATURES

The program itself is designed to be a menu driven program consisting of five separate, menu driven operating modes. These are the:

1. Pressurization Mode

Verification Mode
 Depressurization Mode

- 2. Stabilization Mode
- 3. Test Mode

These modes also correspond to the phases of the ILRT. Menu driven means that the user is presented with a list of options that the program can perform and from which the user can choose. It allows for interactive information exchange between the user and the computer and prevents invalid information or user mistakes from crashing the program. Program organization consists of a master menu which controls access to the seven operating modes chained to the individual menus which control these modes. The data processing, information display capabilities and function of each mode is as follows:

<u>Pressurization Mode</u>: All data reduction, graphic displays of average temperature, dewpoint, and corrected pressure.

2. <u>Stabilization Mode</u>: All data reduction, automatic comparison of data against ANSI 56.8 and BN-TOP-1 temperature stabilization criteria, notification when criteria is met, graphic displays of average temperature, dewpoint, and corrected pressure.

<u>Test Mode</u>: All data reduction, calculation of leakage rates using mass point, total time and point-to-point analysis techniques, display of trend report information required by BN-TOP-1, graphic display of average temperature, dewpoint, pressure and mass, as well as graphic display of mass point measured leakage, 95% UCL; total time measured and calculated leakage and the total time leakage rate at the 95% UCL (as calculated by BN-TOP-1), including a superimposed acceptance criteria line).

<u>Verification Test Mode</u>: With input of imposed leakage in SCFM automatically calculates and displays on graph and trend report the acceptance criteria band, plus all graphics displays available in test mode.

Depressurization Mode: All data and graphics capabilities of Pressurization Mode.

1.

3.

4.

5.

Other reduction and analysis capabilities of the General Physics ILRT computer program include:

- 1. Containment total pressure conversion from counts to psia (if required), and averaging.
- 2. Containment drybulb temperature weighted averaging and conversion to absolute units.
- 3. Containment dewpoint temperature weighted averaging (conversion from Foxboro dewcell element temperature to dewpoint temperature if required) and conversion to partial pressure of water vapor (psia).
- 4. Data storage of ILRT measurement system inputs for each data point.
- 5. Weight (mass) point calculations using the ideal gas law.
- 6. Automated Data Acquisition and/or Manual Data Entry.

8.

- 7. Sensor performance and deviation information for sensor failure criteria, graphic display of individual sensor performance for selected operating mode.
 - Calculation of ISG formula at beginning of test; acceptance criteria based on number of sensors remaining and actual test duration.
- 9. Computer System Error Functions automatically checks for error in incoming data, printer or disk drive faults.

The computer program used by General Physics has been previously certified for six tests at the San Onofre Nuclear Generating Station and over a dozen other ILRTs. The initial certification required verification of the program through hand calculations and an independent review by Bechtel Power Corporation.

After modification for the Crystal River Unit 3 ILRT was completed, a calibration set of raw data was used to verify the program calculations prior to usage. Additionally, once the computer was linked to the data acquisition system and a complete data stream was available, the input function of each mode of the program was verified by comparing the data acquisition system output to the computer printout data point summary. A data set of known values were manually entered to verify proper calculation of average temperatures and relative humidities using the installed volume weighting fractions.

APPENDIX F

LOCAL LEAKAGE RATE TEST SUMMARIES

	LEAK RATE TESTI	NG SUMMARY	
DATE	DESCRIPTION	AS FOUND TOTAL OF TYPE B & C (sccm)	AS LEFT TOTAL OF TYPE B & C (sccm)
10/30/87	RF 6 "As Left"		26,930.1
5/26/89	RCP Outage	58,290.8	40,076.7
6/13/89	Purge Valve Testing	40,076.7	37,583.7
6/30/89	As Found Purge Valve Testing	36,962.6	
7/10/89	As Left Purge Valve Testing		37,417.7
8/28/89	As Found Purge Valve Testing	37,628.7	
10/2/89	As Left Purge Valve Testing		37,672.7
11/16/89	Personnel Air Lock Testing	35,112.7	35,112.7
2/21/90	As Found & As Left Purge Valve Testing	36,176.7	35,348.7
6/14/90	RF 7 Testing	50,839.94	38,998.46
10/19/90	As Found & As Left Purge Valve Testing	38,920.46	39,204.46
12/17/90	As Found & As Left Purge Valve and Personnel Air Lock Testing	27,681.46	28,071.46
1/28/91	Update Total for Addition of Electrical Penetrations	28,464.43	28,464.43
6/10/91	Personnel Air Lock Testing	28,822.43	28,822.43
11/15/91	8M Outage Testing	45,699.57	46,958.27
11/19/91	Post Maintenance Testing of Personnel Air Lock	46,958.27	46,348.27

Note: 0.60 $L_a = 265,286$ sccm
TYPE C LLF	T (valves, flanges)	INBOA	RD ISOLATI	ON VALVES	(Leakage in	ecóm)	OUTBC	ARD ISOLA	TION VALVE	S (Leakage i	n sccm)	PENET PATH L (90	RATION EAKAGE cm)	
PENETRATION	System	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
0305	RB LEAK RATE	LRV-73	30.0	30.0	9576	PASS	LRV-72	35.0	35.0	9576	PASS	35	35	3/27/90
03061.	RB LEAK RATE	LRV-70	57.7	57.7	9576	PASS	LRV-71	59.8	59.8	9576	PASS	60	80	3/26/90
110 110	STATION AIR STATION AIR	SAV-24	98.9	98.9	4788	PASS	SAV-122 SAV-23	1701.1	1701.1	4788	PASS	1701	1701	3/17/90
110 110	STATION AIR STATION AIR	SAV-24	1442.0	1442.0	4788	PASS	SAV-122 SAV-23	6300.0	471.0	4788	FAIL	6300	1442	5/5/89
- 111 -	INSTRUMENT AIR						IAV-28	20.0	20.0	3192	PASS	20	20	3/17/90
111	INSTRUMENT AIR						IAV-28	20.0	20.0	3192	PASS	20	20	2/28/89
112	INSTRUMENT AIR						IAV-29	49.2	49.2	3192	PASS	49	49	3/17/90
112	INSTRUMENT AIR		•				IAV-29	43.8	43.8	3192	PASS	44	. 44	2/28/89
113	AIR HANDLING	AHV-1C	590.0	1002.0	2500	PASS	AHV-1D					590	1002	11/12/91
113	AIR HANDLING	AHV-1C	1185.0	590.0	2500	PASS	AHV-1D			· .		1185	590	11/02/91
113	AIR HANDLING	AHV-1C		912.	2500	PASS	AHV-1D						912	12/16/90
113	AIR HANDLING	AHV-1C	925.0		2500	PASS	AHV-1D				·	925		12/12/90
113	AIR HANDLING	AHV-1C	657.0	913.0	2500	PASS	AHV-1D					657	913	10/12/90
113	AIR HANDLING	AHV-1C	891.0	888.0	2500	PASS	AHV-1D					891	888	6/11/90
113	AIR HANDLING	AHV-1C	988.0	1059.0	2500	PASS	AHV-1D					998	1059	9/29/89
113	AIR HANDLING	AHV-1C		988.0	2500	PASS	AHV-1D						968	9/2/89
113	AIR HANDLING	AHV-1C	993.0		2500	PASS	AHV-1D					9 93		8/27/89
113	AIR HANDLING	AHV-1C		1008.0	2500	PASS	AHV-1D						1008	7/3/89
113	AIR HANDLING	AHV-1C	972.0		2500	PASS	AHV-1D					972		6/29/89
113	AIR HANDLING	AHV-1C	2250.0	829.0	2500	PASS	AHV-1D					2250	829	6/12/89

Page 1

ì

TYPE C LLF	T (valves, flanges)	INBOA	rd Isolath	ON VALVES	(Leakage in	scom)	OUTBO	ard Isola'	TION VALVE	S (Leakage	n scom)	PENET PATH L (ec	RATION EAKAGE cm)	
PENETRATION	SYSTEM	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEAI AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
113	AIR HANDLING	AHV-1C		2250.0	2500	PASS	AHV-1D						2250	5/25/89
113	AIR HANDLING	AHV-1C	1460.0		2500	PASS	AHV-1D			L		1460		2/27/89
116	RB LEAK RATE	LRV-45	41.0	41.0	3192	PASS	LRV-46	221.0	221.0	1596	PASS	221	221	10/26/91
116	RB LEAK RATE	LRV-45	2.0	2.0	3192	PASS	LRV-46	69.4	69.4	1596	PASS	69	69	3/27/90
116	RB LEAK RATE	LRV-45	20.0	20.0	3192	PASS	LRV-46	295.0	295.0	1596	PASS	295	295	3/15/89
117	DEMIN WATER	DWV-162			4788	PASS	DWV-160	258.0	700.0	4788	PASS	258	700	11/1/91
117	DEMIN WATER	DWV-162	2.0	2.0	4788	PASS	DWV-160	188.2	188.2	4788	PASS	188	188	4/3/90
117	DEMIN WATER	DWV-162	6570.0	2190.0	4788	FAIL	DWV-160	537.0	281.0	4788	PASS	6570	2190	3/30/89
121 121 121 121 121	RB LEAK RATE RB LEAK RATE RB LEAK RATE RB LEAK RATE						LRV-50 LRV-36 LRV-90 LRV-89	331.0 324.0 128.7 124.1	331.0 324.0 128.7 124.1	12768 12768 4788 4788	PASS PASS PASS PASS	460	460	3/27/90
121 121 121 121	RB LEAK RATE RB LEAK RATE RB LEAK RATE RB LEAK RATE						LRV-50 LRV-36 LRV-90 LRV-89	116.0 134.9 117.6 118.6	116.0 134.9 117.6 118.6	12768 12768 4788 4788	PASS PASS PASS PASS	254	254	3/15/89
122 122	RB LEAK RATE RB LEAK RATE						LRV-88 LRV-87	15.0	117.6	4788 4788	PASS PASS	15	118	11/11/91
122 122	RB LEAK RATE RB LEAK RATE						LRV-88 LRV-87	20.0 20.0	20.0 20.0	4788 4788	PASS PASS	20	20	3/26/90
122 122	RB LEAK RATE RB LEAK RATE						LRV-88 LRV-87	42.6 51.6	42.6 51.6	4788 4788	PASS PASS	52	52	3/15/89
123	CORE FLOOD	CFV-20	3820.0	374.0	1596	FAIL	CFV-28	13.0	13.0	1596	PASS	3820	374	3/21/90
123	CORE FLOOD	CFV-20	1587.0	1587.0	1596	PASS	CFV-28	41.4	41.4	1596	PASS	1587	1587	3/14/89
124	CORE FLOOD	CFV-17	336.0	189.0	1596	PASS	CFV-27	20.0	20.0	1596	PASS	336	189	3/21/90

TYPE C LLF	री (valves, flanges)	INBOA	RD ISOLATIK	ON VALVES	(Leakage in	ecom)	OUTBO	iard Isola'	TION VALVE	9 (Leakage i	n scom)	PENET PATH L (sc	RATION EAKAGE cm)	
PENETRATION	SYSTEM	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
124	CORE FLOOD	CFV-17	202.0	202.0	1596	PASS	CFV-27	20.0	20.0	1596	PASS	202	202	3/14/89
125 125 125 125 125	RB LEAK RATE RB LEAK RATE RB LEAK RATE RB LEAK RATE						LRV-94 LRV-93 LRV-92 LRV-91	665.0 655.0 87.0 65.0	665.0 655.0 87.0 65.0	4788 4788 4788 4788 4788	PASS PASS PASS PASS	752	752	3/28/90
125 125 125 125 125	RB LEAK RATE RB LEAK RATE RB LEAK RATE RB LEAK RATE						LRV-94 LRV-93 LRV-92 LRV-91	1536.0 1575.0 286.0 285.0	1536.0 1575.0 286.0 285.0	4788 4788 4788 4788	PASS PASS PASS PASS	1861	1861	3/15/89
202	RB LEAK RATE				1.		LRV-44	69.6	1089.0	3192	PASS	70	1089	11/11/91
202	RB LEAK RATE						LRV-44	20.2	20.2	3192	PASS	20	20	3/24/90
202	RB LEAK RATE						LRV-44	20.0	20.0	3192	PASS	20	20	3/15/89
206	INDUST. COOLING						CIV-41	82.0	82.0	3990	PASS	82	82	3/23/90
206	INDUST. COOLING						CIV-41	300.0	300.0	3990	PASS	300	300	3/1/89
207	INDUST. COOLING						CIV-40	15.0	15.0	-3990	PASS	15	15	3/27/90
207	INDUST. COOLING						CIV-40	20.0	20.0	3990	PASS	20	20	3/1/89
305		LRV-70	20.6	20.6	9576	PASS	LRV-72	27.7	27.7	9576	PASS	28	28	3/29/89
306L	RB LEAK RATE	LRV-73	47.5	47.5	9576	PASS	LRV-71	52.5	52.5	9576	PASS	52	52	3/30/89
306W 306W 306W	CONT MONITORING CONT MONITORING CONT MONITORING	WSV-32 WSV-28 WSV-26	21.0 18.3 14.9	21.0 18.3 14.9	798 798 798	PASS PASS PASS	WSV-33 WSV-29 WSV-27	19.4 14.5 14.8	19.4 14.5 14.8	798 798 798	PASS PASS PASS	. 54	54	3/28/90
306W 306W 306W	CONT MONITORING CONT MONITORING CONT MONITORING	WSV-32 WSV-28 WSV-26	20.0 20.0 20.0	20.0 20.0 20.0	798 798 798	PASS PASS PASS	WSV-33 WSV-29 WSV-27	20.0 20.0 20.0	20.0 20.0 <u>2</u> 0.0	798 798 798	PASS PASS PASS	60	60	3/17/89

TYPE C LLR	IT (valves, flanges)	INBOA	NRD ISOLATIK	ON VALVES	(Leekage in	ecom)	OUTEC	DARD ISOLA	TION VALVE	S (Leakage I	n scom)	PENETI PATH LL (sci	RATION EAKAGE :m)	
PENETRATION	SYSTEM	VALVE #	LEAI AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEAI AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAI DATE
314	MAIN STEAM						MSV-146	420.0	420.0	6384	PASS	420	420	10/19/91
314	MAIN STEAM						MSV-146	12050.0	2100.0	6384	FAIL	12050	2100	3/21/90
314	MAIN STEAM						MSV-146	1606.0	1606.0	6384	PASS	1606	1606	3/10/89
315	CONT MONITORING	WSV-3	91.3	91.3	1596	PASS	WSV-4	73.3	73.3	1596	PASS	91	91	4/5/90
315	CONT MONITORING	WSV-3	20.0	20.0	1596	PASS	WSV-4	20.0	20.0	1596	PASS	20	20	3/17/89
316	MAIN STEAM	· · ·			•		MSV-114	1030.0	1030.0	2394	PASS	1030	1030	10/18/9
316	MAIN STEAM		•				MSV-114	5.0	5.0	2394	PASS	5	5	3/22/90
316	MAIN STEAM						MSV-114	20.0	20.0	2394	PASS	20	20	3/9/89
317	NITROGEN						NGV-81	750.0	750.0	2394	PASS	750	750	3/20/90
317	NITROGEN	· ·					NGV-81	362.0	362.0	2394	PASS	362	362	3/17/8
318	MAIN STEAM		_				MSV-128	20.0	20.0	6384	PASS	20	20	10/19/9
318	MAIN STEAM						MSV-128	20.0	20.0	6384	PASS	20	20	3/20/9
318	MIAN STEAM						MSV-128	20.0	20.0	6384	PASS	20	20	3/10/8
320	MAIN STEAM						MSV-132	20.0	20.0	2394	PASS	20	20	10/18/9
320	MAIN STEAM						MSV-132	1015.0	1015.0	2394	PASS	1015	1015	3/23/90
320	MAIN STEAM						MSV-132	312.0	312.0	2394	PASS	312	312	3/9/89
329	DECAY HEAT	DHV-93			3192	PASS	DHV-91	649.0	790.0	3192	PASS	649	790	11/1/91
329	DECAY HEAT	DHV-93	20.0	20.0	3192	PASS	DHV-91	20.0	20.0	3192	PASS	20	20	3/22/90
329	DECAY HEAT	DHV-93	20.0	20.0	3192	PASS	DHV-91	2.0	20.0	3192	PASS	20	20	4/3/89
332	CONT MONITORING	WSV-5	7.8	7.8	1596	PASS	WSV-6	23.9	23.9	1596	PASS	24	24	4/5/90
332	CONT MONITORING	WSV-5	20.0	20.0	1596	PASS	WSV-6	20.0	20.0	1596	PASS	20	20	3/17/89

TYPE C LLRT (valves, flanges) INBOARD ISOLATION VALVES (Leakage in scom) OUTBOARD ISOLATION VALVES (Leakage in scom) PENETRATION PATH LEAKAGE (acom) LEAKAGE ACTION STATUS VALVE # LEAKAGE ACTION STATUS AS AS VALVE # ACTUAL PENETRATION SYSTEM FOUND VALUE LEFT AS. AS VALUE AS AS DATE FOUND / LEFT VALUE VALUE FOUND / LEFT PASS PASS **MUV-49** 1976.0 1976.0 3990 333 MAKE UP MUV-40 220.0 20.0 3900 3990 PASS 333 MAKE UP MUV-41 2340.0 1860.0 PASS 2913 1976 5/24/90 MAKE UP MUV-505 353.0 23.8 4788 333 PASS MUV-40 3900 PASS **MUV-49** 274.0 90.2 3990 333 MAKE UP 160.0 175.3 MUV-41 3990 PASS MAKE UP 100.0 256.0 333 5/10/89 333 MAKE UP MUV-505 1857.0 1857.0 4788 PASS 2117 2288 339 WASTE DISPOSAL WDV-3 1825.0 1178.0 6384 PASS WDV-4 152.4 152.4 6384 PASS 1825 1178 6/7/90 PASS WDV-4 PASS 2190 2190 3/21/89 WASTE DISPOSAL WDV-3 2190.0 2190.0 6384 680.0 680.0 6384 339 PASS PASS 14 3/28/90 347 SPENT FUEL **SFV-18** 15960 **SFV-19** 13.6 13.6 15960 14 PASS 3/11/89 347 SPENT FUEL SFV-18 62.7 62.7 15960 SFV-19 83.7 83.7 15960 PASS 84 84 5/9/90 349 WASTE DISPOSAL WDV-60 227.0 1083.0 3192 PASS **WDV-61** 234.0 234.0 3192 PASS 234 1083 WDV-60 PASS **WDV-61** PASS 20 3/21/89 WASTE DISPOSAL 20.0 20.0 3192 20.0 20.0 3192 20 349 350 CORE FLOOD **CFV-18** 275.0 325.0 1596 PASS **CFV-26** 172.0 172.0 1596 PASS 275 325 3/21/90 350 CORE FLOOD **CFV-18** 649.0 649.0 1596 PASS CFV-26 176.2 176.2 1596 PASS 649 649 3/14/89 CFV-15 PASS **CFV-29** CORE FLOOD 413.0 548.0 1596 431.0 431.0 2394 PASS 351 351 CORE FLOOD **CFV-16** 145.3 70.6 1596 PASS 558 619 3/21/90 CORE FLOOD **CFV-15** 20.0 20.0 1596 PASS **CFV-29** 20.0 2394 PASS 351 20.0 CORE FLOOD 351 **CFV-16** 20.0 20.0 1596 PASS 40 40 3/11/89 352 CORE FLOOD CFV-11 435.0 20.0 1596 PASS CFV-42 640.0 20.0 1596 PASS CORE FLOOD CFV-12 352 740.0 1596 PASS 1175 3/20/90 20.0 40 CORE FLOOD CFV-11 PASS 352 20.0 20.0 1596 CFV-42 20.0 20.0 1598 PASS 352 CORE FLOOD CFV-12 20.0 20.0 1596 PASS 40 40 3/11/89 354 WASTE DISPOSAL WDV-406 1130.0 237.0 2394 PASS WDV-405 1172.0 227.0 2394 PASS 1172 237 5/25/90 354 WASTE DISPOSAL WDV-406 1574.0 PASS WDV-405 1574.0 2394 749.0 749.0 2394 PASS 1574 1574 3/20/89

	IT (valves, flanges)	INBOA	RD ISOLATI	ON VALVES	(Leakage in	socm)	OUTBO	ard Isola	TION VALVE	3 (Leakage	n scom)	PENETI PATH LI (90	PATION EAKAGE cm)	
PENETRATION	SYSTEM	VALVE #	LEAI AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEA AS FOUND	KAGE AS / LEFT		STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
355	NITROGEN						NGV-62	1670.0	1670.0	2394	PASS	1670	1670	3/20/90
355	NITROGEN						NGV-62	877.0	877.0	2394	PASS	877	877	3/17/89
356 356 356 356	CONT MONITORING CONT MONITORING CONT MONITORING CONT MONITORING	WSV-1 WSV-34 WSV-30 WSV-38	16.0 16.1 16.0 15.7	16.0 16.1 16.0 15.7	1596 798 798 798	PASS PASS PASS PASS	WSV-2 WSV-35 WSV-31 WSV-39	15.4 15.7 15.8 15.8	15.4 15.7 15.6 15.8	1596 798 798 798	PASS PASS PASS PASS	64	84	3/28/90
356 358 356 356	CONT MONITORING CONT MONITORING CONT MONITORING CONT MONITORING	WSV-1 WSV-34 WSV-30 WSV-38	20.0 20.0 20.0 20.0	20.0 20.0 20.0 20.0	1596 798 798 798	PASS PASS PASS PASS	WSV-2 WSV-35 WSV-31 WSV-39	20.0 20.0 20.0 20.0	20.0 20.0 20.0 20.0	1596 798 798 798	PASS PASS PASS PASS	80	80	3/16/89
357		AHV-1B	978.0	710.0	2550	PASS	AHV-1A					978	710	11/13/91
357	AIR HANDLING	AHV-1B	866.0	978.0	2550	PASS	AHV-1A				-	866	978	11/04/91
357	AIR HANDLING	AHV-1B		1317.0	2550	PASS	AHV-1A					•	1317	12/16/90
357	AIR HANDLING	AHV-1B	914.0		2550	PASS	AHV-1A					914		12/12/90
357	AIR HANDLING	AHV-18	1003.0	1031.0	2550	PASS	AHV-1A					1003	1031	10/12/90
357	AIR HANDLING	AHV-1B	775.0	850.0	2550	PASS	AHV-1A					775	850	6/10/90
357	AIR HANDLING	AHV-1B	819.0	797.0	2500	PASS	AHV-1A					819	797	9/29/89
357	AIR HANDLING	AHV-1B		1143.0	2500	PASS	AHV-1A						1143	9/2/89
357	AIR HANDLING	AHV-1B	819.0		2500	PASS	AHV-1A			-		819		8/27/89
357	AIR HANDLING	AHV-1B		593.0	2500	PASS	AHV-1A						593	7/3/89
357	AIR HANDLING	AHV-1B	173.9		2500	PASS	AHV-1A					174		6/29/89
357	AIR HANDLING	AHV-1B	2010.0	938.0	2500	PASS	AHV-1A			·		2010	938	6/12/89
357	AIR HANDLING	AHV-1B		2010.0	2500	PASS	AHV-1A						2010	5/25/89
357	AIR HANDLING	AHV-1B	1017.0		2500	PASS	AHV-1A					1017		2/27/89

	सा (valves, flanges)	INBOA	RD ISOLATI	ON VALVES	(Leakage in	scom)	OUTBO	IARD ISOLA	TION VALVE	S (Leakage i	n sccm)	PENETI PATH LI (604	RATION EAKAGE cm)	
PENETRATION	SYSTEM	VALVE #	· LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
366	INDUST. COOLING						CIV-34	15.0	15.0	3990	PASS	15	- 15	3/23/90
.366	INDUST. COOLING						CIV-34	100.0	100.0	3990	PASS	100	100	3/2/89
367	INDUST. COOLING		•				CIV-35	650.0	650.0	3990	PASS	650	650	3/23/90
367	INDUST. COOLING	·			· .		CIV-35	326.0	326.0	3990	PASS	326	326	3/2/89
372	NITROGEN						NGV-82	37.0	37.0	1596	PASS	37	37	3/20/90
372	NITROGEN						NGV-82	167.4	167.4	2394	PASS	167	167	3/17/89
373	CORE FLOOD	CFV-19	1472.0	236.0	1596	PASS	CFV-25	190.4	190.4	1596	PASS	1472	236	3/21/90
373	CORE FLOOD	CFV-19	312.0	312.0	1596	PASS	CFV-25	470.0	470.0	1596	PASS	470	470	3/14/89
374	WASTE DISPOSAL	WDV-94	20.0	885.0	4788	PASS	WDV-62	20.0	20.0	4788	PASS	20	885	3/26/90
374	WASTE DISPOSAL	WDV-94	20.0	20.0	4788	PASS	WDV-62	255.0	255.0	4788	PASS	255	255	3/18/89
376 376	CONT MONITORING	WSV-41 WSV-42	7.3 5.2	7.3 5.2	798 798	PASS PASS	WSV-40 WSV-43	8.1 7.0	8.1 7.0	798 798	PASS PASS	15	15	3/28/90
376 376	CONT MONITORING CONT MONITORING	WSV-41 WSV-42	20.0 20.0	20.0 20.0	798 798	PASS PASS	WSV-40 WSV-43	20.0 20.0	20.0 20.0	798 798	PASS PASS	40	40	3/17/89
377 377 377 377 377	MAKE UP MAKE UP MAKE UP MAKE UP	MUV-260 MUV-261 MUV-259 MUV-258			1596 1596 1596 1596	PASS PASS PASS PASS	MUV-253	20.0	20.0	1596	PASS	1451	1451	10/14/91
377 377 377 377 377	MAKE UP MAKE UP MAKE UP MAKE UP	MUV-260 MUV-261 MUV-259 MUV-258	146.7 20.0 2.0 122.4	1088.0 194.7 20.0 147.8	1596 1596 1596 1596	PASS PASS PASS PASS	MUV-253	564.0	564,0	1596	PASS	564	1451	5/4/90
377 377 377 377 377	MAKE UP MAKE UP MAKE UP MAKE UP	MUV-260 MUV-261 MUV-259 MUV-258	65.2 20.0 22.4 411.0	20.0 20.0 22.4 411.0	1596 1596 1596 1596	PASS PASS PASS PASS	MUV-253	126.0	126.0	1596	PASS	519	473	3/30/89

TYPE C LLF	IT (valves, flanges)	INBOA	IAD ISOLATI	ON VALVES	(Leakage in	ecom)	OUTBC	DARD ISOLA	TION VALVE	S (Leakage	n sccm)	PENETI PATH LI (ex	TATION EAKAGE 3m)	
PENETRATION	SYSTEM	VALVE #	LEAI AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
425 425	CHEM. ADDITION CHEM. ADDITION	CAV-433 CAV-434	32.0 250.0	32.0 250.0	598 598	PASS PASS	CAV-435 CAV-438	30.0 250.0	30.0 250.0	598 598	PASS PASS	282	282	3/22/90
425 425	CHEM. ADDITION CHEM. ADDITION	CAV-433 CAV-434	108.6 109.9	108.6 109.9	598 598	PASS PASS	CAV-435 CAV-436	106.8 109.2	106.8 109.2	598 598	PASS PASS	219	219	3/8/89
427	MAIN STEAM					•	MSV-130	605.0	605.0	4788	PASS	605	605	10/17/91
427	MAIN STEAM						MSV-130	200.0	200.0	4788	PASS	200	200	3/19/90
427	MAIN STEAM		<u> </u>				MSV-130	106.2	106.2	4788	PASS	106	106	3/6/89
428	MAIN STEAM						MSV-148	1255.0	1255.0	4788	PASS	1255	1255	10/17/91
428	MAIN STEAM						MSV-148	345.0	345.0	4788	PASS	345	345	3/19/90
428	MAIN STEAM						MSV-148	882.0	882.0	4788	PASS	882	882	3/6/89
430	FIRE SERVICE	FSV-262	1400.0	1400.0	6384	PASS	FSV-261	1850.0	1850.0	6384	PASS	1850	1850	3/19/90
430	FIRE SERVICE	FSV-262	25.4	25.4	6384	PASS	FSV-261	40.5	40.5	6384	PASS	40	40	3/25/89
439 439 439 439 439 439	CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION	CAV-126 CAV-1 CAV-3 CAV-429 CAV-430	129.0 14.0	129.0 14.0	598 598 598 598 598	PASS PASS PASS PASS PASS	CAV-2 CAV-431 CAV-432	760.0 20.0 20.0	210.0 20.0 20.0	1596 598 598	PASS PASS PASS	800	356	10/17/91
439 439 439 439 439	CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION	CAV-126 CAV-1 CAV-3 CAV-429 CAV-430	20.0 20.0 20.0 48.0 260.0	47.4 96.4 68.9 48.0 260.0	598 598 598 598 598	PASS PASS PASS PASS PASS	CAV-2 CAV-431 CAV-432	20.0 20.0 20.0	20.0 20.0 20.0	1596 598 598	PASS PASS PASS	368	521	4/4/90
439 439 439 439 439 439	CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION CHEM. ADDITION	CAV-126 CAV-1 CAV-3 CAV-429 CAV-430	100.0 1878.0 2670.0 100.0 100.0	20.0 20.0 190.0 100.0 100.0	598 598 598 598 598 598	PASS FAIL FAIL PASS PASS	CAV-2 CAV-431 CAV-432	412.0 1194.0 10200.0	412.0 580.0 136.0	1596 598 598	PASS FAIL FAIL	11806	1128	4/23/89

. •

TYPE C LLF	IT (valves, flanges)	INBOA	RD ISOLATI	ON VALVES	(Leakage in	scom)	ОЛТВО	ARD ISOLA	TION VALVE	9 (Leskage i	n sccm)	PENETI PATH LI (sou	RATION EAKAGE Sm)	· · · ·
PENETRATION	SYSTEM	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	VALVE #	LEA AS FOUND	KAGE AS / LEFT	ACTION VALUE	STATUS	AS FOUND VALUE	AS LEFT VALUE	ACTUAL DATE
440	CHEM. ADDITION	CAV-4	225.0	313.0	598	PASS	CAV-6	950.0	950.0	1596	PASS	950	950	3/24/90
440	CHEM. ADDITION	CAV-4	20.0	20.0	598	PASS	CAV-6	20.0	20.0	1596	PASS	20	20	3/8/89
441	CHEM. ADDITION	CAV-5	1037.0	360.0	598	FAIL	CAV-7	976.0	976.0	1596	PASS	1037	976	3/23/90
441	CHEM. ADDITION	CAV-5	227.0	227.0	598	PASS	CAV-7	649.0	649.0	1596	PASS	649	649	3/8/89
					• .									
				· · ·				-						
								•			•			
· · · · · · · · · · · · · · · · · · ·	· · · · ·													
·														
			•						•					
1								_						·
			•											
			:											

TYPE B LURT (R	ssilient seals, gaskets, sealant compunds, expandable bellows and flexible seal assemblies)		MEASURED V	ALUES		_	·	
PENETRATION	DESCRIPTION	AS FOUND	STATUS	AS- LEFT	STATUS	TEST TYPE	ACCEPTANCE CRITERIA ACTION VALUE (soom)	ACTUAL DATE
348	FUEL TRANSFER TUBE GASKET - 3B	20	PASS	20	PASS	INLK	100	3/1/89
436	FUEL TRANSFER TUBE GASKET - 3A	20	PASS	20	PASS	INLK	100	3/1/89
120	SG CHEMICAL CLEANING GASKETS	48	PASS	48	PASS	INLK	100	3/1/89
119	SG CHEMICAL CLEANING GASKETS	20	PASS	20	PASS	INLK	100	3/28/89
EHRS	EQUIPMENT HATCH RESILIENT SEALS	212	PASS	5	PASS	INLK	500	5/23/89
RAX-2	EQUIPMENT HATCH	10240	PASS	10240	PASS	INLK	20721	5/24/89
RAX-1	PERSONNEL HATCH	1940	PASS	1940	PASS	INLK	20721	5/26/89
RAX-1	PERSONNEL HATCH	8500	PASS	8500	PASS	INLK	20721	11/15/89
RAX-2	EQUIPMENT HATCH	1120	PASS	1120	PASS	INLK	20721	11/16/89
134	LOW VOLTAGE DC INSTRUMENT CONTROL RODS	2	PASS	2	PASS	INLK	100	4/18/90
135	RB LIGHTS SMALL AC-DC MOTORS	2	PASS	2	PASS	INLK	100	4/18/90
301	CRD POWER SUPPLY	20	PASS	20	PASS	INLK	100	4/18/90
302	CRD POWER SUPPLY	20	PASS	20	PASS	INLK	100	4/18/90
303	CRD POWER SUPPLY	20	PASS	20	PASS	INLK	100	4/18/90
309	VENT FAN 3C	20	PASS	20	PASS	INLK	100	4/18/90
127	CRANE/ELEVATOR POWER SUPPLY	6	PASS	6	PASS	INLK	100	4/19/90
130	MISC. INSTRUMENTATION	6	PASS	6	PASS	INLK	100	4/19/90
133	MISC. INSTRUMENTATION	5	PASS	5	PASS	INLK	100	4/19/90
208	RCP-3B1 POWER SUPPLY	2	PASS	2	PASS	INLK	100	4/19/90
209	RCP-3B1 POWER SUPPLY	4	PASS	4	PASS	INLK	100	4/19/90
210	RCP-3B2 POWER SUPPLY	4	PASS	4	PASS	INLK	100	4/19/90
211	RCP-3B2 POWER SUPPLY	4	PASS	4	PASS	INLK	100	4/19/90

TYPE B LLRT (R	esilient seals, gaskets, sealant compunds, expandable bellows and flexible seal assemblies)		MEASURED V	ALUES			· · · · · · · · · · · · · · · · · · ·	
PENETRATION	DESCRIPTION	AS FOUND	STATUS	AS- LEFT	STATUS	TEST TYPE	ACCEPTANCE CRITERIA ACTION VALUE (secm)	ACTUAL DATE
212	LOW VOLTAGE DC INSTRUMENT CONTOL RODS	4	PASS	4	PASS	INLK	100	4/19/90
213	LOW VOLTAGE DC INSTRUMENT CONTOL RODS	4	PASS	4	PASS	INLK	100	4/19/90
214	LOW VOLTAGE DC INSTRUMENT CONTOL RODS	2	PASS	2	PASS	INLK	100	4/19/90
215	LOW VOLTAGE DC INSTRUMENT CONTOL RODS	2	PASS	2	PASS	INLK	100	4/19/90
307	CRD POWER SUPPLY	20	PASS	20	PASS	INLK	100	4/19/90
308	ES A-B CONTROL CIRCUIT	20	PASS	20	PASS	INLK	100	4/19/90
101	PZR. HEATER POWER SUPPLY	6	PASS	6	PASS	INLK	100	4/20/90
102	PZR. HEATER POWER SUPPLY	5	PASS	5	PASS	INLK	100	4/20/90
103	PZR. HEATER POWER SUPPLY	2	PASS	2	PASS	INLK	100	4/20/90
104	E.S. "B" CONTROL CIRCUITS	4	PASS	4	PASS	INLK	100	4/20/90
126	VENT FAN 3B	3	PASS	3	PASS	INLK	100	4/20/90
128	THERMOCOUPLES	2	PASS	2	PASS	INLK	100	4/20/90
129	MISC. INSTRUMENTATION	2	PASS	2	PASS	INLK	100	4/20/90
132		5	PASS	5	PASS	INLK	100	4/20/90
401	RCP-3A2 POWER SUPPLY	2	PASS	2	PASS	INLK	100	4/20/90
402	RCP-3A2 POWER SUPPLY	4	PASS	4	PASS	INLK	100	4/20/90
403	RCP-3A1 POWER SUPPLY	6	PASS	6	PASS	INLK	100	4/20/90
404	RCP-3A1 POWER SUPPLY	2	PASS	2	PASS	Í INLK	100 -	4/20/90
405	INCORE INSTRUMENTATION	20	PASS	20	PASS	INLK	100	4/20/90
407	INCORE & OUT OR CORE INSTRUMENTATION	20	PASS	20	PASS	INLK.	100	4/20/90
408	IN-CON COAX CABLES	20	PASS	20	PASS	INLK	100	4/20/90
409	THERMOCOUPLES	20	PASS	20	PASS	INLK	100	4/20/90

Page 2

TYPE B LLRT (R	esilient seals, gaskets, sealant compunds, expandable bellows and flexible seal assemblies)		MEASURED V	ALUES			. ·	
PENETRATION	DESCRIPTION	AS FOUND	STATUS	AS- LEFT	STATUS	TEST TYPE	ACCEPTANCE CRITERIA ACTION VALUE (secon)	ACTUAL DATE
410	ES "A" CONTROL CIRCUITS	20	PASS	20	PASS	INLK	100	4/20/90
411	ES 'A' CONTROL CIRCUITS	20	PASS	20	PASS	INLK	100	4/20/90
412	VENT FAN 3A	20	PASS	20	PASS	INLK	100	4/20/90
406	ELECTRICAL PENETRATION	40	PASS	40	PASS	INLK	100	4/25/90
413	THERMOCOUPLES	2	PASS	2	PASS	INLK	100	4/25/90
RAX-1	PERSONNEL HATCH	8500	PASS	1042	PASS	INLK	20721	6/12/90
RAX-2	EQIPMENT HATCH	1120	PASS	12380	PASS	INLK	20721	6/13/90
119	SG CHEMICAL CLEANING GASKETS	62	PASS	20	PASS	INLK	100	6/1/90
120	SG CHEMICAL CLEANING GASKETS	87	PASS	27	PASS	INLK	100	. 6/4/90
348	FUEL TRANSFER TUBE GASKET - 38	15	PASS	20	PASS	INLK	100	6/8/90
436	FUEL TRANSFER TUBE GASKET - 3A	7	PASS	20	PASS	INLK	100	6/8/90
EHRS	EQUIPMENT HATCH RESILIENT SEALS	20	PASS	20	PASS	INLK	500	6/12/90
RAX-2	EQUIPMENT HATCH	982	PASS	982	PASS	INLK	20721	12/10/90
RAX-1	PERSONNEL HATCH	1022	PASS	1022	PASS	INLK	20721	12/11/90
PAX-1	PERSONNEL HATCH	1404	PASS	1404	PASS	INLK	20721	6/5/91
FAX-2	EQUIPMENT HATCH	958	PASS	958	PASS	INLK	20721	6/6/91
EHRS	EQUIPMENT HATCH RESILIENT SEALS	20	PASS	170	PASS	INLK	500	11/4/91
348	FUEL TRANSFER TUBE GASKET - 38	20	PASS	20	PASS	INLK	100	10/13/91
436	FUEL TRANSFER TUBE GASKET - 3A	20	PASS	20	PASS	INLK	100	10/13/91
119	SG CHEMICAL CLEANING GASKETS	20	PASS	20	PASS	INLK	100	10/13/91
120	SG CHEMICAL CLEANING GASKETS	20	PASS	20	PASS	INLK	100	10/13/91
EHRS	EQUIPMENT HATCH RESILIENT SEALS	170	PASS	362	PASS	INLK	500	11/13/91

122

TYPE B LLRT (R	ssilient seals, gaskets, sealant compunds, expandable bellows and flexible seal assemblies)		MEASURED V	ALUES				
PENETRATION	DESCRIPTION	AS FOUND	STATUS	AS- LEFT	STATUS	TEST TYPE	ACCEPTANCE CRITERIA ACTION VALUE (soom)	ACTUAL DATE
RAX-1	PERSONNEL HATCH	3780	PASS	3170	PASS	INLK	20721	11/16/91
RAX-2	EQUIPMENT HATCH	14800	PASS	14800	PASS	INLK	20751	11/13/91
		.*						
						-		
						· · · ·		
						•		
							· .	
						•		
		-				· · · ·		
· ·								
	· · · · · · · · · · · · · · · · · · ·	на. По страница По страни По страница По страница По страница По страница По						
			•					

Page 4

÷

•

APPENDIX G

SENSOR LOCATIONS AND VOLUME FRACTIONS

APPENDIX A

INSTALLED CONSTANTS

RTD WEIGHT FACTORS

RTD	1	WEIGHT	FACTOR		=	0.036800
RTD	2	WEIGHT	FACTOR			0.036800
RTD	3	WEIGHT	FACTOR	-	Ŧ	0.036700
RTD	4	WEIGHT	FACTOR		2	0.013500
RTP	5	WEIGHT	FACTOR			0.058800
RTD	6	WEIGHT	FACTOR			0.058800
RTD	7	WEIGHT	FACTOR	. =	Ξ	0.058800
RTD	8	WEIGHT	FACTOR		Ę	0.016500
RTD	- 7	WEIGHT	FACTOR		Ŧ	0.054700
RTD	10	WEIGHT	FACTOR		=	0.054700
RTD	11	WEIGHT	FACTOR		=	0.063800
RTD	12	WEIGHT	FACTOR	1997 - 1992 -	E	0.054700
RTD	13	WEIGHT	FACTOR	. · · · · · · · •	=	0.063700
RTD	14	WEIGHT	FACTOR	· •		0.036100
RTD	15	WEIGHT	FACTOR	-	2	0.036100
RTD	16	WEIGHT	FACTOR		=	0.036100
RTD	17	WEIGHT	FACTOR		2	0.036100
RTD	18	WEIGHT	FACTOR			0.036100
RTD	19	WEIGHT	FACTOR	2	-	0.036000
RTD	20	WEIGHT	FACTOR	1	=	0.036000
RTD	21	WEIGHT	FACTOR		F	0.016500
RTD	22	WEIGHT	FACTOR	=	=	0.013500
RTD	23	WEIGHT	FACTOR		=	0.054600
RTD	24	WEIGHT	FACTOR	•		0.054600
מדם	ME 1		FACTOR			1 000000

PRESSURE GAUGE WEIGHT FACTORS

PRESS.	GAUGE GAUGE	# #	1 2	WEIGHT	FACTOR FACTOR	= 0.5000 = 0.5000
PRESS.	GAUGE	WEI	GH	TING FA	CTOR SUM	= 1.0000

DEW CELL WEIGHT FACTORS

DEW	CELL	. 1	WEIGHT	FACTOR	= 0.027000
DEW	CELL	2	WEIGHT	FACTOR	= 0.110300
DEW	CELL	3	WEIGHT	FACTOR	= 0.176400
DEW	CELL	4	WEIGHT	FACTOR	= 0.033000
DEW	CELL	5	WEIGHT	FACTOR	= 0.126700
DEW	CELL	6	WEIGHT	FACTOR	= 0.126700
DEW	CELL	. 7	WEIGHT	FACTOR	= 0.126600
DEW	CELL	8	WEIGHT	FACTOR	= 0.091100
DEW	CELL	. 9	WEIGHT	FACTOR	= 0.091100
DEW	CELL	10	WEIGHT	FACTOR	= 0.091100
DEW	CELL	WEIG	HTING F	ACTOR SUM	= 1.000000

CONTAINMENT VOLUME

= 2000000 = 0.25

LA

Calculation S-95-0082 Attachment I Page 118

Nuclear Engineering and Design 72 (1982) 303-308 North-Holland Publishing Company 303

TENDON SURVEILLANCE REQUIREMENTS—AVERAGE TENDON FORCE *

J.F. FULTON

Gilbert / Commonwealth, P.O. Box 1498, Reading, PA 19603, USA

Received June 1982

Several documents currently provide requirements for containment tendon surveillance programs in the U.S. These are: (1) USNRC Regulatory Guide 1.35, Proposed Revision 3; (2) USNRC Proposed Regulatory Guide 1.35.1: (3) ASME Code Section XI, proposed Subsection IWX: and (4) the USNRC Standard Technical Specification for Tendon Surveillance. This paper addresses the aspect of these documents which deals with acceptance criteria for the tendon lift-off forces.

. . .

Proposed Rev. 3 to Reg. Guide 1.35 discusses the need for comparing, for individual tendons, the measured and predicted lift-off forces. Such a comparison is intended to detect any abnormal tendon force loss which might occur. Recognizing that there are uncertainties in the prediction of tendon losses, proposed Guide 1.35.1 has allowed specific tolerances on the fundamental losses. Thus, the lift-off force acceptance criteria for individual tendons appearing in Reg. Guide 1.35. Proposed Rev. 3, is stated relative to a lower bound predicted tendon force, which is obtained using the "plus" tolerances on the fundamental losses.

There is an additional acceptance criterion for the lift-off forces which is not specifically addressed in these two Reg. Guides; however, it is included in a proposed Subsection IWX to ASME Code Section XI. This criterion is based on the overriding requirement that the magnitude of prestress in the containment structure be sufficient to meet the minimum prestress design requirements. This design requirement can be expressed as an average tendon force for each group of vertical, hoop, or dome tendons. For the purpose of comparing the actual tendon forces with the required average tendon force, the lift-off forces measured for a sample of tendons within each group can be averaged to construct the average force for the entire group. However, the individual lift-off forces must be "corrected" (normalized) prior to obtaining the sample average. This paper derives the correction factor to be used for this purpose.

1. Introduction

The content of this paper addresses nuclear power plant concrete containments which use large post tensioned tendons to stress the concrete to specified compressive stress levels. These specified stresses are a result of the design requirements for the containment, such as those specified in Article CC-3000 of the ASME Code for Concrete Containments [1]. In practice, two or three different groups of tendons are used to achieve this condition. Independent groups of vertical, hoop and dome tendons have been used in the past. More recent post tensioned containments employ two basic tendon groups, consisting of inverted U-shaped tendons for the dome and wall in conjunction with hoop tendons in the wall.

 Presented at Session J of the 6th International Conference on Structural Mechanics in Reactor Technology, August 20, 1981.

The stressing force in each tendon after seating or anchoring is referred to as its "lock-off" force. This force is usually between 0.70 F_{pu} and 0.75 F_{pu} , F_{pu} being the specified minimum ultimate tensile strength of the tendon times the tendon area. After each tendon is stressed, predictable losses of force occur, which are different for each tendon. There is a corresponding decrease in the compressive stresses in the containment wall and dome. Tendon surveillances are scheduled and implemented periodically to measure the lift-off forces in sample tendons selected from each group. The measured force is compared with that predicted for each sample tendon to determine if an abnormal force loss has occurred. Such an occurrence might signal a general degrading condition affecting other tendons, or it may be unique to the particular tendon. The extent to which the situation should be evaluated depends on how much less the measured force is from that predicted. The U.S. regulatory requirements for tendon surveillances and recommended procedures for calculating tendon losses

0029-5493/82/0000-0000/\$02.75 © 1982 North-Holland

soop, or dome lift-off forces entire group. e. This paper er seating or force. This pu, F_{pu} being ength of the h tendon is r, which are porresponding containment theduled and ift-off forces up. The meated for each tal force loss nal a general ns, or it may tent to which ted. The U.S. eillances and endon losses

FM 6.5 Exhibit 6

304

Calculation S-95-0082 Attachment I Page 119

J.F. Fulton / Tendon surveillance requirements

are given, respectively, in USNRC Regulatory Guide 1.35, Proposed Revision 3 [2] and in USNRC Proposed Regulatory Guide 1.35.1 [3].

The compressive stresses in the containment wall, and dome are a function of the *average* tendon force for each group of wall and dome tendons rather than being a function of the individual tendon forces which comprise the group. The individual forces represent a variation about the average force. This variation is assumed to be random. This implies that there would be only a local distribution of consecutive tendons with an average force below the group average.

The overriding requirement for the tendons is that they always produce compressive stresses in the containment which do not fall below their minimum required values. Recognizing this, it is important to use the forces measured from the sample of tendons within each group to determine what the average force of all the tendons within the group is expected to be. However, the average force of the sample tendons within a group is not expected to be indicative of the group average unless two conditions are met: (1) the sample tendons had an average lock-off force at original stressing equal to the group average lock-off force, and (2) the stressing sequences for the sample tendons are symmetrically distributed about the mid sequence. Purposely selecting tendons which meet these two criteria for each surveillance removes the randomness in their selection. Hence, it is desirable to provide a calculational procedure which would allow the forces measured for a random sample of tendons within a group to be used to obtain the average force for the entire group. The development of this procedure is the primary purpose of this paper. Prior to this, however, it is necessary to review the theory for predicting the tendon losses.

2. Concrete strains and stress relaxation

Predictable decreases in the tendon forces result from contractional strains in the concrete, which cause the tendons to shorten after they are stressed; and relaxation of the stresses in the tendon, with no accompanying tendon shortening. The concrete strains result from (1) the elastic shortening of the concrete due to stressing of the tendons; (2) shrinkage of the concrete occurring after tendon stressing; and (3) creep of the concrete resulting from the concrete compressive stress produced by the stressed tendons.

As a material property, creep is a function of (1) the age of the concrete at loading; (2) the magnitude of the compressive stresses resulting from loading; (3) the time after loading; and (4) the temperature of the concrete. In general, concrete shrinkage can result from both drying and autogeneous volume changes. Stress relaxation of the tendon material is a function of (1) the initial stress level; (2) the temperature, and (3) the time after stressing. Elastic shortening of the concrete during stressing causes the greatest elastic shortening of the first tendons stressed within a group and the least for the last tendons stressed. The determination of these properties is discussed in Proposed Reg. Guide 1.35.1 [3].

For the purpose of calculating tendon losses in containments, the creep (ϵ_{cr}) and shrinkage (ϵ_{sh}) strains of the concrete are assumed to affect all tendons within a group equally. Functionally, they are

$$\epsilon_{\alpha} = \epsilon_{\alpha} (f_{c}, \tau - \bar{\tau}_{s}) \tag{1}$$

and

$$\epsilon_{\rm sh} = \epsilon_{\rm sh}(\tau) - \epsilon_{\rm sh}(\bar{\tau}_{\rm s}), \qquad (2)$$

where

- $f_{\rm c}$ is the compressive stress which causes the creep,
- f_s denotes the duration from the average concrete placement date (of the wall or dome) to the average stressing date (of the vertical and hoop tendons in the wall, or the dome tendons),
- τ is the time of interest, measured from the average concrete placement date; $\tau \geq \bar{\tau}_{a}$.

Thus, $\tau - \hat{\tau}_s$ represents the time of interest after the average stressing date of the tendon group.

Returning to eq. (1), the creep strain property is usually taken to be linearly proportional to the stress f_{c} . Consequently, the creep strain, ϵ_{cr} , can be expressed in terms of a so-called specific creep strain, ϵ_{cr}^{sp} , which has units of inches per inch per psi:

$$\epsilon_{cr} = f_c \left[\epsilon_{cr}^{\rm sp} (\tau - \bar{\tau}_s) \right]. \tag{3}$$

For an arbitrary tendon i which is stressed as part of stressing sequence n of a total of N sequences for the tendon group, the elastic shortening strain is

$$\epsilon_{cs}^{i} = \epsilon_{cs}^{\mathsf{T}} \left[\frac{N - n}{N} \right]. \tag{4}$$

where ϵ_{es}^{T} is the total elastic concrete strain after all tendons within the group are stressed.

The stress relaxation, SR, is usually expressed as a percent of its initial stress. For tendon i, SR is functionally,

$$SR_{i} = SR_{i} \left(f_{s0}^{i}, T_{i}, \tau - \tau_{si} \right).$$
(5)

This relationship indicates that the stress relaxation

305

J.F. Fulton / Tendon surveillance requirements

is a function of (1) the initial stress in the tendon, f'_{00} , (2) its temperature T_i , and (3) the time of interest after stressing the tendon, $\tau - \tau_{u}$. Unlike the creep property of concrete, the stress loss due to relaxation of the steel is not linearly proportional to its initial stress. The effect of the initial stress and temperature is illustrated in fig. 1.

From any curve in fig. 1, it is evident that for times greater than 1 year (8760 h), a ± 2 month variation results in small differences in stress relaxation. In practice, the first tendon surveillance is scheduled one year after the Structural Integrity Test (SIT) of the containment, and the SIT usually does not take place for several months or more after the post tensioning is complete. Considering this in conjunction with the fact that the post tensioning of a group of tendons is completed within 2 to 4 months, allows $\bar{\tau}_a$ to be used for all tendons within a group rather than the τ_{a} , for each tendon. In other words, for the purpose of calculating stress relaxation, it is sufficiently accurace to assume that all tendons within a group are stressed on the average stressing date for the group. Thus.

$$SR_{i} = SR_{i} \left(f_{s0}^{\prime}, \tilde{T}_{i}, \tau - \tilde{\tau}_{s} \right).$$
(6)

From fig. 1. the effect of initial stress and temperature is rather dramatic. The initial stress levels of 0.70 F_{pu} and 0.75 F_{pu} could represent the range of lock-off forces for actual tendons. Regarding the applicability of data at temperatures of 68°F and 104°F, the containment is subjected to thermal conditions which probably produce tendon temperatures ranging much lower than 68°F (after stressing, but prior to plant start-up) to 90°F or 100°F (in adjacent building penetration areas). The usual practice is to use stress relaxation data de-

Fig. 1. Effect of initial stress and temperature on relaxation.

veloped at standard conditions of 0.70 F_{pw} and 70 \pm 2°F. Sometimes these data are scaled up to represent historical variations in the property of the material or to account for the higher levels of initial stress and temperatures discussed above. Nevertheless, one stress relaxation curve is applied for all the tendons; that is, SR_i = SR. Now the stress relaxation involves only time:

$$SR = SR(\tau - \bar{\tau}).$$
⁽⁷⁾

- It is within the framework of this current practice that the expression for the correction to the individual tendon forces is derived.

3. Correction factor

It is possible to rewrite the time-dependent functional relationships of the previous secton by defining a time, t, as the time of interest after the average stressing date of the tendon group. That is, $t = \tau - \bar{\tau}_{e}$. Hence,

$$\epsilon_{cr} = f_c \, \epsilon_{cr}^{sp}(t).$$

$$\epsilon_{sh} = \epsilon_{sh}(t + \tilde{\tau}_s) - \epsilon_{sh}(\tilde{\tau}_s).$$
(8)
$$SR = SR(t).$$

Consider the *i* th tendon, which was originally stressed as part of the *n*th stressing sequence out of a total of *N* stressing sequences for the tendon group. The force at any time *i* after the average stressing date is denoted as $F_i(t)$. This force is equal to the original stressing force for tendon *i*, $F_i(0)$, minus the sum of its individual force losses, ΔF . These are:

$$\Delta F_{es}^{i} = \epsilon_{es}^{T} \left[\frac{N-n}{N} \right] E_{T} A_{T} = \epsilon_{es}^{T} E_{T} A_{T} \left[\frac{N-n}{N} \right]$$

$$\equiv \Delta F_{es}^{T} \left[\frac{N-n}{N} \right],$$

$$\Delta F_{es}^{i} = f_{c} \left[\epsilon_{es}^{ep}(t) \right] E_{T} A_{T} \equiv \Delta F_{es}(t),$$

$$\Delta F_{sh}^{i} = \left[\epsilon_{sh}(t+\bar{\tau}_{s}) - \epsilon_{sh}(\bar{\tau}_{s}) \right] E_{T} A_{T} \equiv \Delta F_{sh}(t), \qquad (9)$$

$$\Delta F_{sy}^{i} = F_{i}(0) \left[\frac{SR(t)}{100} \right].$$

where E_T is Young's modulus for the tendon, and A_T is the tendon area.

Thus, the force in tendon i at time r after the average stressing date is

$$F_{i}(t) = F_{i}(0) - F_{i}(0) \left[\frac{\mathrm{SR}(t)}{100} \right] - \Delta F_{\mathrm{es}}^{\mathrm{T}} \left[\frac{N-n}{N} \right] - \Delta F_{\mathrm{es}}(t) - \Delta F_{\mathrm{th}}(t).$$
(10)

FM 6.5 Exhibit 6

306

page 4 of 6 Calculation S-95-0082 Attachment I Page 121

J.F. Fulton / Tendon surveillance requirements

From eq. (10), the factors which can make the force in tendon *i* unique from other tendons within the group are its force at original stressing and its stressing sequence. It is possible to add or subtract forces to tendon *i* which will correct its force. $F_i(t)$, for known differences between tendon *i* and the average tendon. The average tendon is a hypothetical tendon which would have an original stressing force equal to the average of the original stressing force for all the tendons within the group, and it would have been stressed in the middle of the N sequences. The force in this average tendon at any time *t* is denoted as $F_{ave}(t)$. Actually, $F_{ave}(t)$ represents the expected average of the lift-off forces measured for all the tendons within the group at time *t*. Thus, $F_{ave}(t)$ is

$$F_{\text{ave}}(t) = F_{\text{ave}}(0) - F_{\text{ave}}(0) \left[\frac{SR(t)}{100} \right] - \Delta F_{\text{cs}}^{\mathsf{T}} \left[\frac{N-1}{2N} \right] - \Delta F_{\text{cr}}(t) - \Delta F_{\text{sh}}(t).$$
(11)

In eq. (11), the average elastic shortening loss term is obtained by averaging the elastic shortening losses for all N stressing sequences within the group, i.e.,

$$\left(\sum_{n=1}^{N} \Delta F_{es}^{\mathsf{T}} \left[\frac{N-n}{N}\right]\right) / N = \Delta F_{es}^{\mathsf{T}} \left[\frac{N-1}{2N}\right]. \tag{12}$$

Now, determine the force correction. C_i , which when added to $F_i(t)$ will make the tendon force equal to $-F_{min}(t)$:

$$F_i(t) + C_i = F_{ave}(t). \tag{13}$$

Substituting the expressions for $F_i(t)$ and $F_{ave}(t)$ given by eq. (10) and eq. (11), respectively, and solving for C_i , results in

$$C_{i}(1) = \left[F_{sve}(0) - F_{i}(0)\right] \left[1 - \frac{SR(1)}{100}\right] + \Delta F_{es}^{T} \left[\frac{N - 2\pi + 1}{2N}\right].$$
 (14)

Reviewing the terms in $C_i(t)$:

 $[F_{ave}(0) - F_i(0)]$ is the group average lock-off force at original stressing minus the lock-off force for the specific tendon.

Table I

Symmetrical distribution of n and $F_i(0)$

Tendon surveillance at $t = t^*$ years after initial stressing At initial stressing: $F_{exe}(0) = 1438$ kips. $\Delta F_{ex}^T = 30$ kips. N = 21.

At $t = t^{\circ}$: SR(t°) = 6%; therefore, $[1 - SR(t^{\circ})/100] = 0.94$,

 $C_{i}(t^{\bullet}) = [F_{ave}(0) - F_{i}(0)][1 - SR(t^{\bullet})/100] + \Delta F_{ave}^{T}[(N-2n+1)/2N].$

Tendon	A	F;(0) (kips)	F _{eve} (0) — F _c (0) (kips)	$\frac{N-2n+1}{2N}$	C,(t*) (kips)	Measured LOF (kins)	Normalized LOF= (3)+(4)
			(1)	(2)	(3)	(4)	(kips)
1	1	1438	0	0.476	14.3	1263	1277.3
2	21	1403	35	-0.476	18.6	1259	1277.6
3	3	1473	-35	0.381	-21.5	1299	1277.5
4	19	1410	28	-0.381	14.9	1263	1277.9
5	5	1466	- 28	0.286	- 17.7	1295	1277.3
6	17	1420	18	-0.286	8,3	1269	1277.3
7	7	1456	- 18	0.190	-11.2	1288	1276.8
8	15	1430	8	-0.190	1.8	1276	1277.8
9	9	1446	-8	0.095	-4.6	1282	1277.4
10	13	1438	0	-0.095	-2.9	1280	1277.1
AVE	11	1438	0	0	0	1277	1277

Assume: Measured LOF = Predicted LOF - eq. (10),

 $\Delta F_{\rm er}(t^*) + \Delta F_{\rm sh}(t^*) = 60 \text{ kips.}$

Eq. (10): $F_i(t^*) = F_i(0) [0.94] - 30[(N - n)/N] - 60$ kips.

Eq. (11): $F_{ave}(t^*) = 1277$ kips.

assumption results in a condition in which the average

measured LOF for the 10 sample tendons, before nor-

malizing, is equal to the average force for all the tendons

in the group (1277 kips), as would be expected. In

addition from table 1, since the measured LOF for each

tendon happens to equal that predicted, then the nor-

malized force for each tendon is equal to the average

... Table 2 is a case where the original stressing sequences and forces for the 10 sample tendons are not

symmetrical about the group average values. Conse-

quently, the sample tendons and their surveillance LOFs would not be expected to be representative of the entire

group of tendons. Here the average measured LOF

(1263 kips) is not equal to the value for $F_{aux}(t^*)$ of 1277

kips. However, since the measured LOF happens to

equal that predicted for each tendon, each normalized

force is equal to the group average value of 1277 kips.

more likely to be encountered in an actual surveillance.

The sample tendons are not representative of the entire

group in regards to their original stressing sequences

and forces; and the measured LOF's do not happen to

Table 3 is similar to table 2 but is for a condition

value of force for the entire group.

J.F. Fulton / Tendon surveillance requirements

5.00

SR(t) is stress relaxation (percent) which occurs at time t after initial stressing and is determined from the property data.

. ΔF_{ee}^{T} is the total elastic shortening tendon force loss and is a constant.

n is the stressing sequence comprising the specific tendon,

N is the total number of stressing sequences for the group of tendons which comprise the specific tendon.

4. Examples

Three examples demonstrate the application of the correction factor given by eq. (14) to a sample of 10 surveillance tendons with hypothetical lift-off forces (LOF) measured at time t^* after initial stressing. The example in table 1 assumes that for the 10 sample tendons their original stressing sequences and stressing forces are symmetrically distributed about the average values of n = 11 and $F_{swe}(0) = 1438$ kips. The example further assumes that each LOF measured at the surveillance is equal to its predicted value. The symmetry

Table 2 Unsymmetrical distribution

Tendon su	rveillance at	$i = i^*$ years after	initial stressi	ng	
At initial :	stressing: F.	(0)=1438 kips,	$\Delta F_{m}^{T} = 30$ ki	ps. N = 21.	
AL / = /*:	SR(1*)=69	; therefore, [1-S	$R(t^{*})/100] =$	0.94	
	$C(t^*) = \{E$	(0) - F(0) = 1 - S	R(1+)/1001+	$\Delta F_{1}^{\dagger}(N-2)$	(n+1)/2N1

Tendon	n	F;(0) (kips)	F _{sve} (0) — F ₁ (0) (kips)	$\frac{N-2n+1}{2N}$	C,(1*) (kips)	Measured LOF (kins)	Normalized LOF $=$ (3) + (4)
			(1)	(2)	(3)	(4)	(kips)
1	· 5	1403	35	0.286	41.5	1236	1277.5
2	3	1415	23	0.381	33.0	1244	1277
3	10	1418	20	0.048	20.2	1257	1277.2
4	19	1430	8	-0.381	- 3.9	1281	1277.1
5	7	1425	13	0.190	17.9	1260	·· 1277.9
6	11	1417	21	0	19,7	1258	1277.7
7	15	1403	35	-0.190	27.2	1250	1277.2
8	4	1450	-12	0.333	-1.3	1279	1277.7
9	5	1414	24	0.285	31.2	1246	1277.2
10	20	1470	-32	-0.429	-43.0	1320	1277
AVE	9. 9	1425	13.5	0.052	14.3	1263	1277

Assume: Measured LOF = Predicted LOF - eq. (10),

 $\Delta F_{\rm er}(t^{\bullet}) + \Delta F_{\rm sh}(t^{\bullet}) = 60$ kips.

Eq. (10): $F_i(i^*) = F_i(0) [0.94] - 30[(N-n)/N] - 60$ kips, Eq. (11): $F_{ave}(i^*) = 1277$ kips. FM 6.5 Exhibit 6

page 6 of 6 Calculation 8-95-0912 Attachment 1 Page 123

J.F. Fulton / Tendon surveillance requirements

Table 3

308

Measured LOF

Tendon surveillance at $t = t^*$ years after initial stressing
At initial stressing: $F_{ave}(0) = 1438$ kips, $\Delta F_{ex}^T = 30$ kips, $N = 21$.
At $t = t^{\circ}$: SR(t°)=6%; therefore, $[1 - SR(t^{\circ})/100] = 0.94$,
$C(t^*) = \{F_{-}(0) + F(0)\} = SR(t^*)/100\} + \Delta F^T(N - 2n + 1)/2N\}$

Tendon	л	F,(0)~ (kips)	F. (0) + F.(0)	$\frac{N-2n+1}{2N}$	C,(1*)	Measured	Normalized LOF $=$ (3) + (4)
			(kips)		(kips)	LOF (kips)	
			(1)	(2)	(3)	(4)	(kips)
1	5	1403	35	0.286	41.5	1245	1286.5
2	3	1415	23	0.381	33.0	1240	1273.0
3	10	1418	20	0.048	20.2	1320	1340.2
4	19	1430	. 8	-0.381	- 3.9	1250	1246.1
5	7	1425	N 13	0.190	17,9	1285	1302.9
6	11	1417	21	0	19.7	1230	1249.7
7	15	1403	35	~0.190	27.2	1295	1322.2
8	4	1450	-12	0.333	-1.3	1287	1285.7
9	5	1414	24	0.286	31.2	1310	1341.2
10	20	1470	- 32	- 0.429	- 43.0	1300	1257.0
AVE	9.9	1425	13.5	0.052	14.3	1276	1290

agree with their predicted values. The average normalized force of 1290 kips is greater than the predicted group average of 1277 kips, which means that on the average the sample tendons did not lose as much force as predicted. Nevertheless, the surveillance tendons are intended to represent a statistical sample of all the tendons in the group, and on this basis 1290 kips would be the average force expected to exist for the entire tendon group at time t^* .

5. Summary and conclusions

During each tendon surveillance, it is necessary to compare to average tendon lift-off force for each tendon group (vertical, hoop, and dome tendons each constitute a tendon group) with the minimum average tendon force required by the design. The lift-off forces measured for a sample of tendons within each group can be used to construct the average force for the entire group if the individual lift-off forces are corrected prior to obtaining the sample average. This correction is necessary in order to remove known force differences among tendons resulting from differences in original stressing lock-off force and stressing sequence. If these differences were to remain uncorrected, the sample average force would not be indicative of the group average force.

The correction factor, $C_i(t)$, given by eq. (14) is added to each tendon life-off force within the sample prior to obtaining the average tendon force for the sample. From eq. (14), it is seen that $C_i(t)$ could be different for each tendon; it is different for each surveillance; and it may be positive or negative.

References

- Code for Concrete Reactor Vessels and Containments, American Concrete Institute Standard 359 and American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 2 (1980 Edition).
- [2] Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containments. Proposed Revision 3 to Regulatory Guide 1.35, U.S. Nuclear Regulatory Commission (April 1979).
- [3] Determining Prestressing Forces For Inspection of Prestressed Concrete Containments. Proposed Regulatory Guide 1.35.1, U.S. Nuclear Regulatory Commission (April 1979).

FM 6.5 Exhibit 7

page 1 of 19

.

. :

- - -

DATA SHEET 6 . PRESTRESS FORCE CONFIRMATION TEST THE TENDONS

±tr INSPECTION PERIOD

		TENDON	•			L1FT-0FP	CONDITIO	H		_	LOCK-0P	P _	BLING	TEMP	THSP.	INSP. SY	
. <u>1,</u> D,	LOCATION	PREVIOUS FORCE (kipe)	EXPECTED LIFT-OFF FORCE (119+)	CACE PRESS. (K+1)	FORCE (kips)	FORCE AVG. OF 2 ENDS (kips)	WIRE	. SHIM THICKNES PREVIOUS	I (In.) ORIGINAL	GACE PRESS, (Fel)	FORCE (kips)	FIRAL SHIDH THICKNESS (1n,)				INITIALS	
	2		4	5	6			9	10		12		16	15			
1,D <u>35</u>	5	_		6.8	N 54 N 67	1440.5	<u>9.0</u> 7	6 14	6	LIFT	OFF Y	6 6.75	71_	76	4-24-8	DCS	161
2.D <u>32</u> 3	1	=			1547	1525,5	9.47	57/4		LIPT	OFF	675	74.	78	4-28-	DCS	16'
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	. 3	Ξ		7.4	爲	1073.5	7.07	4.5/2	6 5/3	74	1623 1544	6.475 6.425	[2_	<u>8</u>	4-276	• <u>165</u>	161
1.D <u>140</u>	বিশ			22	1551	15 <u>81</u>	2.12	6.48				2:125	74	27	4-30-0	D DCS	11.2
5.DIZZ.	5.3.			7.6 7.8.	諁	10-10-2	10,1	<u>1</u> -1-4 -1-	····		0.8.7. 124	<u>1.25</u>	11	24	2.6.6	2722	دەי
۰.	_									_	Ţ						

NOTE A:

FORCE CALCULATION: (1) Force @ Life-off = Jack Pressure & Jack Flaton Area OR: (2) Determine force from calibration curve

HOTE B:

Reactor Building Internal temperature will be read using CI-274-TE or CI-275-TE (temperature read at Johnson Panel 11-8) NOTE CI .

Wire Force (Column 8) is defined as follows:

W.T. = Column T 163 - Column 4 of Data Sheet 1

NOTE D:

Expected lift-off force (column 4) is defined as follows: No, of effective wires at installation (or previous inspection) X Ave, predicted wire force shown on Fig. 1 st time of inspection.

LECEND

t to 6 Number of buttress nearest to end of tendom. LOCATION

SHIN TRICOLESS:	Clear distance	betvern	bearing	plate an	d streasing	weater.
34114 141204-024						

SHIN THICKNESSE	Clear distance between bearing place and screesing wanter.	
PREVIOUS	At time of installation or previous surveillance.	Contractor Review by De hor because ster: 7-25-80
CHIGINALI	At time of starting current surveillance.	7.P.C. Approval by: Data:

SP-182 . Date 11/14/77 Page 35

FHCLOSURE 13

FM 6.5 Exh	ibit 7		(page 2	of 19
INSPECTION PERIODZ	·	on walt off	IMTA SHE PRESTRESS PORCE CO VERTICAL T	EET 7 CHIPJRHATION TEST TENCONS			•
TENDO TENDO TREVIL PREVIL PORCI 1. 0. LOCATION (kip 1. 34VI T 2. 23V5 T 3. 12VI2 T 4. 54VI T	e	CACE I PRESS, PORCE 2 (K-1) (K-1)p.) (K 5 6 15 7.4 1569 15 7.5 1580 15 7.8 1718 17 7.7 1707 1	117-077 CONDITION ORCE G. 07 ENDS WIRE 101) FORCE 109 9.625 109 9.633 118 10.607 107 40.472	SHIM THICKNESS (In.) PREVIOUS ORIGINAL TO Y TISYS 3 4 7 1378 3 4 7 14 7 15 3 4 7 15 3 4 7 15 3 4 7 15 3 4 7 15 4 7 1	LOCK-OFF CACE FORCE FINAL SHIM PRESS, FORCE THICKNESS (Kal) (Kipe) (In.) II IZ IJ LIFT-OFF ONLY B I LIFT-OFF ONLY B I LI	REACTOR DATE BLDC TEMP INSP. '' I' 14 13 16 13 71 80 71 80 71 80 72 81 72 81 72 81 74 13/3	INSP. BY INITIALS DCS /63 DCS /62 DCS /63 DCS /63
5. 56120 T	• •r bottom (verticel	7.6 1630 1 WOTE A; FORCE CALC MOTE B; Reactor Bu WOTE C; Uire Force Uire Force U,F, HOTE D; Expected 1 I Ave. pre-	ULATION: (1) Force OR: (2) Determ Ilding Internal term (Column B) is defl - <u>Column 7</u> 163 - Column 4 of Ift-off force (colu diceted wire force	T 16 T 15 13.4 B.4 mine force from callou sperature will be tead ined as follows: T Data Sheet 2 sen 4) is defined as follows an Fig. 2 et t	DECORFONIUM T	72 BL 4/118	De (nopect (on)

At time of installation or provious surveillance. At time of starting current surveillance. PREVIOUS:

.

ORIGINALI •

.

.

Contractor Roview by: BRaffing dig Date: 7-25-80 Dates ____ F.P.C. Approval by:

.

SF-102 Date 11/14/77 Page 36

.

.

.

.

THELOSURE 14

•

	FM 6.5	Exhibit 7					(-						pa	age 3 of	[*] 19	
							UATA_	500EET 7			•						
						PREST	ESS PORCE	CONFIRMAT	ION TEST								
1HS PECT	TON PERIOD	#Z	; <u></u> _				VERTICAL	L TENDONS								· -	
		TENDON			·	LIFT-OF	CONDITION	N	<u> </u>		LOCK-OT	<u>r</u>	REAC BLDG	tor Temp	DATE INSP.	1857. BT	
T.D.	LOCATION	PREV10US PORCE (kina)	EXPECTED LIPT-OFF FORCE	CACE PRESS,	PORCE	FORCE AVG. OF 2 ENDS (bine)	VIRE	SNI THICKN	H 255 (in,)	CACE PRESS.	FORCE	FINAL SHIM TRICKNESS	-	'r			
	2)	4		6		8	9	10		12	13	<u>16</u>	IS	16	17	
1.4576	<u> </u>			7.5	1485	1685	1 <u>0.4</u> 0	6.4	8.4	4 <u>Pr</u> o	FF ONLY	B.L.	72	81	4/1/80	Des	162
2.12.12.0	・エ			<u> 8,0</u>	1740	740	1 <u>0.6</u> 7	R - 4	5 34	LEFE	VF only	7 15 A H	7 <u>/_</u>	78_	N/11/80	Des	163
).	·										'		-				•
۹	<u> </u>					وتتكانب											
s						<u> </u>											
LEGEND LOCATION SHDA THICKO PREVIOUS : Chicking	T or MESS: Clear At ti	B - top or distance be me of instal	bottos (vertica) tures bearing pla lation or previou	tendon), te snd str s survell	MOTE A: FORCE (NOTE B: Reactor Wire F, Vire F, Vire J, NOTE D Expects I Ave.	CALCULATION CALCULATION T Building T Building	: (1) Ford : (2) Det Internal to n 8) is de n 7 Column 4 force (co wire force	te (Lift- ermine for rmperaturn fined as f of Data Sh OWN 6) is e shown on	off - Jack Pro co from callb uill be rood oilows: eet 2 defined as f Fig. 2 at t	essure x J ration cur using Ci- olious; M ime of ine	ack floton / vo 274-TE or C lo, of offec pection,	1-275-TE (tem tive w(res et	Perëturo Installe	read at	Jahnson Pe T previous	ntl 11-D) (mepactio	n)
;	•		,			c	ontractor	Review by:	tophy	they		7-25-2	80	-			

.

T.P.C. Approval by: _____ Dates _____ Dates

•

Page 36 SP-182 Date 11/14/77

-

.

•

ENCLOSURE 14

•

•

- -

•••

FM 6.5 Exhibit 7

page 4.0119

DATA SHEET & PRESTRESS FORCE CONFIRMATION TEST

HOOP TENTIONS

-	INSPECT:	ION PERIOD _	#2						15								
Wish			TENDON				LIFT-OFF	CONDITION				LOCK-OVP		BIDO	CTOR	DATE <u>Insp.</u>	INSP. BY
1	Its-	LOCATION	FREVIOUS FORCE (ktps)	EXPECTED LIFT-OFF FORCE (kips)	GACE PRESS. (F+1)	PORCE	FORCE AVC. OF 2 ENDS (1 pt)	KIPS VIER FORCE	SII THICKNES	[H 5 (1m.) 	GAGE PRESS.	FORCE	FIRAL SHIM THICKNESS	<u></u>	יי <u>נוד</u>	14	<u>. Livîtini</u>
160 F.83	1./3 <u>H2</u> 2 2./3 <u>H3</u> 2 3./3 <u>H</u> 32 3./3 <u>H</u> 73 4. 5LHAO 5. 57 <u>H23</u> 6. 51 <u>H37</u> 7. 5 <u>3 H20</u> 9. 5 <u>3H26</u> 9. 5 <u>3H46</u> 10.6 <u>4</u> H47					- 5555655555555555555555555555555555555	1572 16 <u>10.6</u> 1583 1572 1572 1528 1528 1528 1528 1528 1528 1528 152	9.644 9.94 9.77 9.76 9.37 9.73 9.41 9.73 9.41 9.75 9.45 9.49		10- 7.7.7.2.8 6.7.7.4.7.88 6.7.7.4.7.7.88 7.7.4.8 7.7.7.4.7.7.88 7.7.7.4.7.7.88 7.7.7.4.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7		TTONLY ISTONUT	177778787478747888 4777778787474777777777	1 22 3 1 2 1 1 0 73 2	68 77 80 55 80 81 82 79 77 77 77	14/10/90 4/17/80 4/17/80 5/5/50 5/5/50 5/5/50 4/22/80 4/22/80 4/22/80 4/22/80 4/22/80 4/22/80 4/22/80 4/22/80	2005 2005 2005 2005 2005 2005 2005 2005
						NOTE /	A: CALCULATION OR	1: (1) Por 1: (2) Det	ce @ Lift-of eculae force	f = Jack Pr from calib	essure x J tation cur	ock Píston A va	iree		•		
						* NOTE 1		•		•							

HOTE IS

Beactor Building Internal Comparature will be read using CI-274-TE or CI-275-TE (temperature read at Juhnson Panel 11-8)

NOTE C:

Wire Force (Column 8) 1s defined as follows:

W.F. = Column 7 163 - Column 4 of Data Sheet 3

NOTE D:

Expected lift-off force (column 4) is defined as follows: No. of effective wires at installation (or provious inspectio I Ave, predicted wire force shown on Fig. 3 at time of Inspection.

I TCHND

LOCATION: 1 to 6 - Number of buttress meares to end of tundon.

SHIM THICKNESS: Clear distance between bearing place and stressing washer.

PIEVIOUS: At time of installation or previous surveillance.

ORIGINALI At time of starting current surveillance.

Afference 7-25-80 Contractor Levier by: F.P.C. Approval by:

Date 11/14/77 Page 37 SP-182

SUMMARY OF LIFT-OFF FORCES

TABLE 1

CRYSTAL RIVER UNIT 3

TENDON	END	ALLOWABI FORCE (1	LE LIFT-OFF (IPS)	10TH YEAR SURVEILLANCE LIFT-OFF	AVERAGE
NUMBER	DESIGNATION	MAXIMUM	MINIMUM	FORCE (KIPS)	(KIPS)
64H19 64H19	Field Shop	1721	1249	1446 1493	1470
13H20 13H20	Field Shop	1721	1249	1460 1451	1456
51H26 51H26	Field Shop	1721	1249	1334 1487	1411
13H40 13H40	Field Shop	1721	1249	1558 1383	1471
51H41 51H41	Field Shop	1721	1249	1346 1377	1362
D105 D105	Field Shop	1721	1249	1413 1492	1453
D212 D212	Field Shop	1721	1249	1260 1292	1276
D328 D328	Field Shop	1721	1249	1602 1635	1619
12V1 12V1*	Field Shop	1721	1249	1535	1535
34V4 34V4*	Field Shop	1721	1249	1623	1623
56V2 56V2*	Field Shop	1721	1249	1648	1648

*Lift-off occurring at Shop end only

11

;

. 1

• ;

Ì

:

20TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

V. TENDON LIFTOFFS AND DETENSIONING

A liftoff is performed on each surveillance tendon to monitor the force exerted by the tendon onto the structure. PSC Procedure SQ 9.0 (Volume 2, Section 9, Appendix F) details the steps to be taken to perform a liftoff. The results are documented on Data Sheet SQ 9.0 and are summarized in Table VIII.

It should be noted that performing a liftoff has only a localized effect on a tendon; therefore, it is acceptable to use the same jacks for both ends of a tendon by executing the liftoff on separate occasions.

Vertical tendon liftoffs were found to be above the base value except for 12V1 which was above 95% of base, and all dome liftoff averages were above the base value.

Horizontal liftoffs revealed two isolated areas 42H30 to 42H36 inclusive and 51H26, 51H27 where average tendon liftoffs were between 90% and 95% of base value. One tendon 42H35 was found to be below 90% and detensioned for continuity test per FPC requirement. This continuity test revealed that all of the wires were continuous, one wire was removed for testing and the tendon restored to base value -0% + 6%. All other tendons found between 90 and 95% of base value were subsequently restored per procedure to base value -0% + 6%.

These low liftoff results were documented on NCR's -010, 011, 012, 013, and 014 for 42H30 - 36 and NCR 005 for 51H26.

All other tendon liftoffs were either above base value or 95% of base value and therefore acceptable.

The average normalized liftoff for each group, vertical, dome and horizontal, exceeded the minimum required and is acceptable.

After completion of liftoffs, protruding wires were found to tendons 51H26(1), 51H27(2) and 62H46(2). These wires, once removed, were found to have broken behind the anchorhead. No corrosion was found to indicate wire failure due to deterioration and it is suspected that slight tendon head rotation while setting back down sheared the wires against the shims. In all cases the broken wires were on the outer corner edge of the tendon bundle and no gauge movement was noted to indicate failures during liftoff. These wires were probable "pinched" during original installation and additional work on these tendons has broken the wires. NCR's FN604-003,007 and 015 recorded these occurrences.

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	АССЕРТ
12V1	SHOP/TOP	162	8833	4390	1471	1471	1530	1453	1377	-9	YES
23V2	SHOP/TOP	163	8778	4820	1609	1609	1482	1408	1333	37	YES
61V21	SHOP/TOP	163	8833	4550	1525	.1525	1482	1408	1334	38	YES
D113	SHOP/ 2	163	8778	4267.5	1424.7	1427	1369	1301	1232	-35	YES
	FIELD/6	163	8833	4265	1429						YES
D115	SHOP/ 2	163	8778	4062.5	1356	1380	1347	1280	1213	-12	YES
	FIELD/ 6	163	8833	4190	1404						YES
D212	SHOP/ 1	162	8833	3820	1280	1335	1317	1252	1186	15	YES
	FIELD/ 3	162	8778	4160	1389			1			YES
D304	SHOP/4	163	8778	4810	1605	1598	1397	1327	1258	-64	YES
	FIELD/ 2	162	8833	4748	1591						YES
D311	SHOP/4	163	8778	4220	1409.5	1408	1335	1269	1202	0	YES
	FIELD/ 2	163	8833	4200	1407						YES

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	ACCEPT
42H18	SHOP/4	163	8778	4690	1565	1476	1495	1420	1346	-56	YES
	FIELD/2	163	8833	4137	1386.5						YES
42H29	SHOP/4	163	8778	4500	1502	1448	1445	1373	1300	-7	YES
	FIELD/2	163	8833	4160	1394						YES
42H30	SHOP/4	163	8778	4355	1454	1389	1469	1396	1322	-32	NO
	FIELD/2	163	8833	3950	1324						NO
42H31	SHOP/4	163	8778	4100	1369	1338	1460	1387	1314	-21	NO
	FIELD/2	163	8833	3900	1307						NO
421132	SHOP/4	163	8778	4320	1442	1355.5	1452	1380	1307	-15	NO
	FIELD/2	163	8833	3785	1269						NO
421133	SHOP/4	163	8778	4490	1499	1361	1474	1400	1326	-35	NO
	FIELD/2	163	8833	3650	1223						NO
42H34	SHOP/4	163	8778	4240	1415	1377.5	1452	1380	1307		NO
	FIELD/2	163	8833	4000	1340						NO

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	ACCEPT
421135	SHOP/4	163	8778	4110	1372	1296.5	1455	1382	1309	-17	NO
	FIELD/2	163	8833	3693	1221						NO
421136	SHOP/4	163	8778	4490	1499	1408	1503	1428	1353	-65	NO
	FIELD/2	163	8833	3930	1317						NO
42H37	SHOP/4	163	8778	4310	1439	1401.5	1452	1379	1306	-14	YES
	FIELD/2	163	8833	4070	1364						YES
421144	SHOP/4	163	8778	4510	1505	1471.5	1427	1356	1285	10	YES
	FIELD/2	163	8833	4291	1438						YES
511125	SHOP/ 1	163	8833	4090	1370.5	1363	1401	1331	1261	38	YES
	FIELD/5	163	8778	4060	1355.5						YES
511126	SHOP/ 1	163	8833	4190	1403.5	1320	1514	1438	1363	-75	NO
	FIELD/ 5	163	8778	3705	1237						NO
511127	SHOP/ 1	163	8833	3787	1269	1265.5	1368	1300	1231	71	NO
	FIELD/5	163	8778	3780	1262						NO

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	ACCEPT
511128	SHOP/ 1	163	8833	4445	1489.5	1450.5	1518	1442	1367	80	YES
	FIELD/5	163	8778	4230	1412						YES
53H2	SHOP/ 5	163	9501	4400	1624	1611	1424	1353	1281	12	YES
	FIELD/3	163	9501	4330	1598						YES
53H46	SHOP/ 5	163	8833	4340	1454	1459.5	1472	1399	1325	-35	YES
	FIELD/3	163	8778	4390	1465						YES
62H41	SHOP/2	163	8778	4230	1412	1426	1422	1351	1280	16	YES
	FIELD/6	163	8833	4297.5	1440						YES
621146	SHOP/2	163	8778	4280	1429	1485	1465	1392	1318	-27	YES
	FIELD/6	163	8833	4600	1541						YES

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

V. TENDON LIFTOFFS AND DETENSIONING

A liftoff is performed on each surveillance tendon to monitor the force exerted by the tendon onto the structure. PSC Procedure SQ 9.0 (Volume 2, Section 9, Appendix F) details the steps to be taken to perform a liftoff. The results are documented on Data Sheet SQ 9.0 and are summarized in Table VIII.

It should be noted that performing a liftoff has only a localized effect on a tendon; therefore, it is acceptable to use the same jacks for both ends of a tendon by executing the liftoff on separate occasions.

All dome tendon liftoffs were found to be above base value and acceptable. Vertical tendon liftoffs were found to be above the base value except for 12V01 which was between 90% and 95% of base requiring adjacent tendons to be tested. The adjacent tendons were both between base value and 95% and therefore acceptable. Tendon 12V01 was retensioned to base value -0%,+6% per procedure and left as acceptable. Vertical tendon average (allowing for removal of tendons exhibiting anchorhead rotation) was above the required minimum and acceptable. The low liftoff result for 12V01 was documented on NCR FN750-016.

Horizontal liftoffs revealed one isolated area 46H30 to 46H38 inclusive where tendon liftoffs were between 90% and 95% of base value, one tendon, 46H36, was found to be below 90% of base value. After testing, all the tendons in this area were subsequently restored per procedure to base value -0% +6%. Of the other horizontal tendons tested (6 total) two were found above base value and four were found to be between base value and 95%. After removal of horizontal tendons that exhibited anchorhead rotation, average normalized horizontal liftoffs were above the required minimum and deemed acceptable.

During liftoff, rotation of the anchorhead was noted to tendon D339. During subsequent detensioning (as scheduled) a broken wire was discovered at the field end. This wire, once removed, was found to have broken behind the anchorhead. No corrosion was found to indicate wire failure due to deterioration and it is suspected that the tendon head rotation sheared the wires against the shims. The broken wire was on the outer corner edge of the tendon bundle and no gauge movement was noted to indicate failure during liftoff. This wire was probable "pinched" during original installation and additional work on this tendon resulted in the wire finally breaking. NCR FN750-004 recorded this occurrence.

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

TABLE VIII: SUMMARY OF DATA SHEETS SQ 9.0 TENDON LIFTOFFS

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	ACCEPT
12V01	SHOP/TOP	161	8783	4360	1446	1446	1528	1451	1375	-9	NO
12V02	SHOP/TOP	163	8783	4660	1546	1546	1599	1519	1439	-80	YES
23V24	SHOP/TOP	163	8783	4587	1521.8	· 1521.8	1527	1451	1374	-9	YES
45V14	SHOP/TOP	163	8833	4650	1552	1552	1580	1501	1422	-61	YES
61V08	SHOP/TOP	163	8783	4450	1476	1476	1494	1419	1344	23	YES
461121	SHOP/ 6	163	8783	4166.6	1381.4	1388	1446	1374	1302	-12	YES
	FIELD/4	162	8833	4180	1394.7						
461129	SHOP/ 6	159	8783	4060	1345.9	1407.1	1427	1356	1284	8	YES
	FIELD/4	159	8833	4400	1468.3						
461130	SHOP/6	162	8783	4200	1392.6	1355.6	1442	1370	1298	-8	NO
	FIELD/4	161	8833	3953	1318.7			•			
46H31	SHOP/ 6	163	8783	4073	1350.2	1343.3	1456	1383	1311	-22	NO
	FIELD/4	. 161	8833	4006	1336.5						
461132	SHOP/ 6	162	8783	4180	1385.9	1366.8	1455	1382	1308	-22	NO
	FIELD/4	163	8833	4040	1347.8		İ	-			

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	ACCEPT
461133	SHOP/ 6	163	8783	4200	1392.6	1357.8	1450	1378	1305	-17	NO
	FIELD/4	163	8833	3966	1323.1			:			
461134	SHOP/ 6	162	8783	4200	1392.6	1424.7	1521	1445	1369	-86	NO
	FIELD/4	163	8833	4366	1456.9						
461135	SHOP/ 6	163	8783	4240	1405.9	1376.8	1459	1386	1313	-25	NO
	FIELD/ 4	163	8833	4040	1347.8						
461136	SHOP/ 6	163	8783	4080	. 1352.5	1343.5	1497	1422	1348	-63	NO
	FIELD/4	163	8833	4000	1334.5			-			
461137	SHOP/ 6	162	8783	3700	1225.7	1293.45	1414	1343	1272	20	NO
	FIELD/4	161	8833	4080	1361.2						
461138	SHOP/ 6	163	8783	4093	1356.9	1353.4	1459	1380	1307	-19	NO
	FIELD/4	162	8833	4046	1349.9						
461139	SHOP/ 6	163	8783	4146	1374.6	1356.2	1410	1339	1269	23	YES
]	FIELD/4	163	8833	4010	1337.8						

29

a bene tine

TENDON	END	EFFECT. WIRES	JACK No.	PRESS.	LIFTOFF	AVE. LIFTOFF	BASE VALUE	95% BASE	90% BASE	NORMALIZING FACTOR	ACCEPT
531116	SHOP/ 5	163	8752	4560	1498.2	1475.4	1496	1422	1347	-63	YES
	FIELD/ 3	163	8783	4380	1452.7			,			
621102	SHOP/ 6	163	8752	4473	1469.4	1551.6	1466	1393	1319	-33	YES
	FIELD/2	163	8833	4970	1633.9						
621109	SHOP/2	163	8752	4346	1427.3	1431.8	1420	1349	1278	13	YES
	FIELD/6	163	8752	4373	1436.3						
D126	SHOP/ NEAR 3	163	8833	4180	1394.7	1376.9	1345	1278	1211	-18	YES
	FIELD/ NEAR 5	163	8783	4100	1359.2		:				
D212	SHOP/ NEAR I	162	8783	3813	1263.4	1292.2	1311	1246	1180	15	YES
	FIELD/ NEAR 3	162	8833	3960	1321.1		× .				
D339	SHOP/ NEAR 5	163	8783	4560	1512.8	1507.3	1439	1367	1295	-111	YES
	FIELD/ NEAR I	163	8833	4500	1501.8						

30
page 15 of 19

 DOCUMENT NUMBER:
 CR-N1002-504
 REVISION:
 0
 PAGE:
 36

 DOCUMENT TITLE:
 FINAL REPORT FOR THE 30TH YEAR CONTAINMENT IWL INSPECTION
 PAGE:
 01/24/08

 PROJECT TITLE:
 30TH YEAR TENDON SURVEILLANCE AT CRYSTAL RIVER
 DATE:
 01/24/08

8.0 TENDON LIFTOFFS

8.1 MONITOR TENDON FORCES

- 8.1.1 A liftoff is defined as the force required to lift the anchor head off the shim stack and is representative of the force held by that tendon. A liftoff is performed on each physical surveillance tendon to monitor the force exerted by the tendon onto the structure. PSC Procedure SQ 9.0 in Appendix F details the steps taken to perform a liftoff. The results were documented on Data Sheet SQ 9.0 and are summarized in Tables 40 thru 45.
- 8.1.1.1 It should be noted that performing a liftoff has only a localized effect on a tendon; therefore, it is acceptable to use the same jack for both ends of a tendon by executing the liftoff on separate occasions.
- 8.1.2 All of the vertical and dome tendon liftoffs were found to be above the minimum design and above 95% Predicted Force as required by IWL-3221.1. Three of the five horizontal surveillance tendons were found to be below 95% Predicted Force but above 90% Predicted Force. The liftoff requirement stated in IWL is:

Tendon forces are acceptable if:

- (a) The average of all measured tendon forces, including those measured in IWL-3221.1(b)(2), for each type of tendon is equal to or greater than the minimum required prestress specified at the anchorage for that type of tendon;
- (b) The measured force in each individual tendon is not less than 95% of the predicted force unless the following conditions are satisfied:
 - (1) the measured force in not more than one tendon is between 90% and 95% of the predicted force;
 - (2) The measured forces in two tendons located adjacent to the tendon in IWL-3221.1(b)(1) are not less than 95% of the predicted forces; and
 - (3) The measured forces in all the remaining sample tendons are not less than 95% of the predicted force.
- 8.1.3 Based upon the unacceptable horizontal tendon liftoffs, adjacent tendons were monitored for force until an acceptable liftoff reading was obtained on both sides of the selected tendon. 13H36 required testing of 5 adjacent tendons, 46H21 and 62H30 also required testing of five adjacent tendons. Of these tendons, six were above 95%, five were between 95% and 90% and four fell just below 90%. All tendons below 95% were restored to Predicted Force 0%, + 6% and locked off. The restoration of these tendons is summarized in Table 46.
- 8.1.4 The average of the As-Found normalized liftoff values was above the minimum requirement, despite the low liftoffs, and deemed acceptable per PSC Procedure SQ9.0 Section 10.4.
- 8.1.4.1 The average normalized tendon force in Unit 3 for each group and their respective minimum design are:

Vertical Tendon	: Group Average = 1535.2 Kips	Minimum Design = 1149 Kips
Hoop Tendon:	Group Average = 1347.4 Kips	Minimum Design = 1252 Kips
Dome Tendon:	Group Average = 1367.3 Kips	Minimum Design = 1215 Kips

- 8.1.4.1.1 As depicted above, all group averages are above the required group minimum and are therefore acceptable. The actual values for each tendon and its corresponding group are summarized in Table 47.
- 8.1.5 Upon completion of the liftoff, a visual verification is performed to identify any changes in the condition of the tendon end. No additional or broken wires were noted during or after liftoffs.

page 16 of 19

DATE: 01/24/08

DOCUMENT NUMBER: CR-N1002-504 DOCUMENT TITLE: PROJECT TITLE:

REVISION: 0 PAGE: 37 FINAL REPORT FOR THE 30[™] YEAR CONTAINMENT IWL INSPECTION 30TH YEAR TENDON SURVEILLANCE AT CRYSTAL RIVER

:| # OF ADJACENTS MONITORED AS-FOUND ACCEPTANCE SHIM STACK HEIGHT (in) 90% B.V.P.F. (KIPS) ADJACENTS REQUIRED 95% B.V.P.F. (KIPS) EFFECTIVE WRES AALV (kips) LIFT-OFF (kips) JACK I.D. B.V.P.F. (KIPS) TENDON TOP 14.75 161 8784 1559.95 12V01 1559.95 1525 1449 1372 NO 0 YES BOT 4.00 158 N/A N/A TOP 12.50 163 8780 1458.80 45V20 1456.80 1507 1432 1357 NO 0 YES BOT 163 N/A 4.00 N/A TOP 13.00 163 8784 1505.98 1505 98 61V08 1491 1416 1342 NO 0 YES BOT 4.00 163 N/A N/A TOP 12.00 161 8784 1580.18 61V17 1580.18 1498 1423 1348 NO 0 YES BOT 4.00 163 N/A N/A

		s - a	ABLE 41		s – sq9.	.0 – MON	ITORING	NIFÓRC				
NDON	QNJ	SHIM STACK HEIGHT (In)	EFFECTIVE WRES	JACK I.D.	LIFT-OFF (Hipe)	VALV (Hipe)	(S a da) Sana	95% B.V.P.F. (10PS)	90% B.V.P.F. (KIPS)	ADJACENTS REQUIRED	# OF ADJACENTS MONITORED	AS-FOUND ACCEPTANCE
13H36	BT 1 BT 3	6.50 7.25	163 163	8784 8780	1344.08 1426.63	1385.23	1484	1410	1336	YES	5	NO
42H46	8T 2 8T 4	5.75 6.00	163 163	8784 8780	1546.46 1570.80	1558.63	1456	1383	1310	NO	0	YES
46H21	BT 4 BT 6	5.75 6.00	163 · 163	8780 8784	1319.34 1340.71	1330.02	1441	1369	1297	YES	5	NO
51H34	8T 1 8T 5	8.00 7.00	163 163	8784 8780	1532.96 1396.45	1464.70	1487	1413	1339	NO	0	YES
62H30	BT 2 BT 6	6.75 6.75	163 163	8784 9501	1249.64 1332.05	1290.84	1413	1342	1272	YES	5	NO

page 17 of 19

DATE: 01/24/08

DOCUMENT NUMBER: CR-N1002-504 DOCUMENT TITLE: PROJECT TITLE:

REVISION: 0 PAGE: 38 FINAL REPORT FOR THE 30TH YEAR CONTAINMENT IML INSPECTION 301H YEAR TENDON SURVEILLANCE AT CRYSTAL RIVER

after i das	1	- जिल्ला	ABLE 42		S =1SQ9	:0 <i>≕</i> 1MOŇ	ITORING	TENDO	ŅIFORÇ	È the R B	He s and	200
TENDON	END	SHIM STACK HEIGHT (In)	EFFECTIVE WIRES	JACK I.D.	LIFT-OFF (kips)	AALV (kips)	B.V.P.F. (KIPS)	95% B.V.P.F. (KIPS)	90% B.V.P.F. (KIPS)	ADJACENTS REQUIRED	# OF ADJACENTS MONITORED	AS-FOUND ACCEPTANCE
D129	BT 3 BT 5	6.25 6.00	162 161	8780 8784	1289.16 1290.12	1289.64	1287	1223	1159	NO	0	YES
D212	BT 1 BT 3	6.38 6.50	162 162	8784 8780	1259.76 1295.87	1277.81	1305	1240	1175	NO	0	YES
D238	BT 4 BT 6	7.00 6.00	163 163	8780 8784	1527.21 1495.86	1511.53	1348	1281	1213	NO	0	YES

	TABLE 43: 13H36 ADJACENTS - SQ9.0 - MONITORING TENDON FORCE													
TENDON	END	SHIM STACK HEIGHT (In)	EFFECTIVE WRES	JACK I.D.	(selv) 490-1311	AALV (Kbs)	B.V.P.F. (KIPS)	96% B.V.P.F. (KIPS)	90% B.V.P.F. (KIPS)	ADJACENTS REQUIRED	AS-FOUND ACCEPTANCE			
13H33	BT 1 BT 3	7.00 6.75	163 163	8784 8780	1310.35 1302.57	1306.46	1366	1298	1229	NO	YES			
13H34	BT 1 BT 3	7.00 7.00	163 163	8784 8780	1350.83 1386.39	1368.61	1475	1402	1328	YES	NO			
13H35	BT 1 BT 3	6.56 6.38	163 162	8784 8780	1249.64 1238.87	1244.25	1373	1304	1235	YES	NO			
13H37	BT 1 BT3	6.88 5.75	163 163	8784 8780	1367.69 1212.05	1289.87	1368	1299	1231	YES	NO			
13H38	BT 1 BT 3	6.50 7.00	163 163	8784 8780	1411.54 1378.57	1395.05	1444	1372	1300	NO	YES			

ł

page 18 of 19

DOCUMENT NUMBER: CR-N1002-504 DOCUMENT TITLE: PROJECT TITLE

REVISION: 0 PAGE: 39 FINAL REPORT FOR THE 30¹⁴ YEAR CONTAINMENT IML INSPECTION 30TH YEAR TENDON SURVEILLANCE AT CRYSTAL RIVER

DATE: 01/24/08

street and	r ik	TABLE 4	4:	ADJÁĆE	NTS - SC	9.0 - M O	NITORIN	Ŝ MĒNDO	NFORCE	Con Esc	
TENDON	END	SHIM STACK HEIGHT (in)	EFFECTIVE WRES	JACK I.D.	LIFT-OFF (Kips)	AALV (kips)	B.V.P.F. (KIPS)	96% B.V.P.F. (KIPS)	90% B.V.P.F. (KIPS)	ADJACENTS ~	AS-FOUND ACCEPTANCE
46H19	BT 4 BT 6	7.00 7.50	163 163	8780 8784	1352.87 1364.35	1358.61	1402	1332	1262	NO	YES
46H20	BT 4 BT 6	6 75 7.25	160 163	8780 8784	1269.04 1327.22	1298.13	1467	1394	1321	YES	NO
46H22	BT 4 BT 6	5.75 6.38	163 163	8780 8784	1315.98 1306.98	1311.48	1488	1412	1337	YES	NO
46H23	BT 4 8T 6	6.00 5.75	161 163	8780 8784	1336.10 1323.85	1329 97	1425	1354	1283	YES	NO
46H24	BT 4 BT 6	6.75 7.50	163 163	8780 8784	1419.92 1431.78	1425.85	1472	1398	1325	NO	YES

		TABLE 4	5: 62H30	ADJACE	NTIS – SO	9.0 – MO	NITORING	G ȚENDO	NFORCE		
TENDON	ENO	SHIM STACK HEIGHT (in)	EFFECTIVE WIRES	JACK I.D.	Litry-Off	AALV (Kipe)	B.V.P.F. (KOPS)	96% B.V.P.F. (KIPS)	90% B.V.P.F. (KIPS)	ADJACENTS REQUIRED	AS-BOUND ACCEPTANCE
62H29	BT 2 BT 6	6.50 6.38	163 163	8780 9501	1366.28 1372.98	1369.63	1421	1350	1279	NO	YES
62H31	BT 2 BT 6 *	6.25 6.00	163 163	8780 N/A	1269.04 N/A	1269.04	1475	1401	1328	YES	NO
62H32	8T 2 8T 6 •	7.00 6 50	163 163	8780 N/A	1332.75 N/A	1332.75	1455	1382	1310	YES	NO
62H33	BT 2 BT 6	6.19 6.50	163 162	8780 8784	1242.22 1384.56	1313.39	1461	1388	1315	YES	NO
62H34	BT 2 BT 6	7.00 6.75	163 162	8780 8784	1393.10 1364.32	1378.71	1432	1360	1289	NO	YES

* TENDON NOT ACCESSABLE AT BUTTRESS 6.

.

page 19 of 19

DOCUMENT NUMBER:	CR-N1002-504	REVISION:	0	PAGE:	40
DOCUMENT TITLE:	FINAL REPORT FOR THE 30TH YEAR CONTAINMEN	T IWL INSPEC	CTION		
PROJECT TITLE:	30TH YEAR TENDON SURVEILLANCE AT CRYSTAL I	RIVER	DATE	: 01/2	1/08

		* \$ \$TA	BLE 46	ADJAÇEÑ	ÌŤŜ - ΠĒΝ	ÍDÓŇ FŐF	CE RESI	ORATION		
		AS-F	OUND LIF	TOFF	RE	STORATI	ON		NO 4	E 2
TENDON	GNB	JACK	LIFT-OFF (kips)	AALV (kips)	JACK	LIFT-OFF (kips)	AALV (kips)	8.V.P.F. (KIPS)	% VARIATI ABOVE B.V	ACCPETABI
13H34	BT 1	8784	1350.83	1368.61	8784	1479.00	1508-13	. 1475	+2 2%	YES
	BT 3	8780	1386.39	1000.01	8780	1537.27				
121135	BT 1	8784	1249.64	1244 25	8784	1411.54	1417.40	1373	+3.2%	YES
131133	BT 3	8780	1238.87	1244.25	8780	1423.27	1417.40	1515		120
13436	BT 1	8784	1344.08	1385 23	8784	1546.46	1555 27	1484	+4 8%	YES
13/130	BT 3	8780	1426.63	1000.20	8780	1564.09	1000.27			
121127	B T 1	8784	1387.69	1280 87	8784	1394.68	1415 68	1369	13 KM	VES
13137	BT 3	8780	1212.05	1209.07	8780	1436.69	1413.00	1300	+3.376	163
461120	BT 4	8780	1269.04	1209 12	8780	1486.98	1404 70	1467	+1 0%	VEQ
401120	BT 6	8784	1327.22	1490.13	8784	1502.61	1494.79	1407	±1,10 €	163
461124	BT 4	8780	1319.34	1320.03	8780	1503.74	1601.40	1441	44.284	VEC
40/121	BT 6	8784	1340.71	1330.02	8784	1499.24	1301.49	1441	*9.270	163
46422	BT 4	8780	1315.98	1211 48	8780	1567.45	1629.40		12 694	VEC
401122	BT 6	8784	1306.98	1311.40	8784	1509.35	1556.40	1400	*3.376	163
461100	BT 4	8780	1336.10	4220.07	8780	1486.98	1481 30	1475	.4.09	VER
401123	BT 6	8784	1323.85	1328.81	8784	1475.62	1401.30	1420	74.076	TES
62420	BT 2	8784	1249.64	1200 84	8780	1443.39	4467 71	1412	+2.0%	VEC
021130	BT 6	9501	1332.05	1290.04	9501	1492.04	1907.71		*3.57	TEO
621124	BT 2	8780	1269.04	1780.04	8780	1486.98	4486.00	4.476	10.68	VEC
021131	BT 6 *	N/A	N/A	1209.04	N/A	N/A	1400.90	1475	₹ 0.076	162
62422	BT 2	8780	1332.75	1000 75	8780	1497.04	1407.04	1455	.2.0%	VEQ
021132	BT 6 *	N/A	N/A	1332.73	N/A	N/A	1937.09	1=33	*2.578	163
67422	BT 2	8780	1242.22	1313 30	8780	1488.98	1404 70	1461	40 DM	VEC
021133		8784	1384.56	1313.39	8784	1502.61	1424.13	1401	₹2.J7¢	163

* TENDON NOT ACCESSABLE AT BUTTRESS 6 - RESTORATION ONE END ONLY.

1	2	3	4 5	6	7	8	9 10 KEY NO.:
5 Exhibit 8	240		300'		360'		Page 2 of 7
	A BULIKESS NO	5	BUTTRESS NO 6		¢ BL	ITTRESS NO 1	REFERENCE VENDOR DWGS. (PRESCON CORPORATION)
IN-51H47 FL 248'-9 3/4"	al		+				/4" 5EX7-003-P-12 HOOP TENDON PLACEMENT
TH SILLAR EL 245' 7 1/2"	a					• RBTN-51H46 EL 245'-7 1	240° TO 300° EL 94'-5 3/4" TO 143'-9 3/4"
N-51H46 EL 245-7 1/2							5EX7-003-P-13 HOOP TENDON PLACEMENT
IN-51H45 EL 242-5 1/4						RBIN-SIHAS EL 242-5 1	74 300° 10 360° EL 94 -5 3/4 10 143 -9 3/4
TN-51H44 EL 239'-3"	<u> </u>					RBTN-51H44 EL 239-3	5EX7-003-P-24 HOOP TENDON PLACEMENT 240° TO 300° EL. 143'-9 3/4" TO 198'-10 1/2
IN-51H43 EL 236'-0 3/4"	이		++-+-+			RBIN-51H43 EL 236'-0 3	/4" 5EX7-003-P-25 HOOP TENDON PLACEMENT
TN-51H42 EL 232'-10 1/2"	● — – – – – – – ●	ميمار مينيا رقيق منها لميك بيني رضين فينه المنه ميتم بمنها يسه المنه المن	++-+	مواجعه فيتراهيه البلير ملك عنها البير عليه البلد البيرا			1/2" 300° TO 360° EL 143'-9 3/4" TO 198'-10 1/2
IN-51H41 EL 229'-8 1/4"	\$						5EX7-003-P-30 HOOP TENDON PLACEMENT
N-51H40 EL 226'-6"	Q						5EX7-003-P-31 HOOP TENDON PLACEMENT
TH 511170 CL 220-0	╗			وربية أيتابية موايير يوايير يترابع الترا		-O RETN-51H39 FL 223-3 3	/4" 300' TO 360' EL. 198'-10 1/2" TO 248'-9 1/4
11-51H39 EL 223-5 5/4	╗						(3 [*]
IN-51H38 EL 220-1 1/2					i i	ABIN-SIN38 EL 220-1 1,	
IN-SINX7 EL 216-11-174						REIN-5:H37 EL 215-14	
N-51H36 EL 213-9	थ──────					RBIN-51H36 EL 213-9	
TN-51H35 EL 210'-6 3/4"	Ŷ <u></u>		++++			RBIN-51H35 EL 210'-6 3	/4
IN-51H34 EL 207 -4 1,12	0						/2
IN-51H33 EL 204'-2 1/4"	하~ ~ ~ ~ ~ ~ ~ ~		++-++			- C RBTN-51H33 EL 204'-2 1	/4-
TN-51H32 EL 201'-0"	動— _¦ _		++	والمتعارضين للمتراجعين تشتر تشتر تعير المتراجع			
IN-51H31 EL 197'-9 3/4"	φ <u> </u>	معراصية فللارمية متراغلك ملتار متراجلية ملك متكر بليوانية		يوركبو بيوريين تندابكم كتواليت يبورينا جياره	·		/4" TESTED SAT
N-51H30 FL 194'-7 1/2"						- Q RBTN-51H30 EL 194'-7 1	/2" TESTED UNSAT
DI 511/20 EL 101 5 1/1"	<u></u>					- BRIN-51H29 EL 101-5 1	/4*
114-31H29 EL 191-5 1/4	¥			alaa maanii ahaa dhiinta ahaa ahaa ahaa ahaa ahaa ahaa ahaa a		H 1010-31124 EL 131-3 I	
N-014/8 EL 168-2 3/4							THEOLAN THE STH SURVEILLANCE
IN-51H27 EL 184'-11 3/4'	<u>0</u>						3/41
IN-51H26 EL 181'-8 3/4"							4752
N-51H25 FL 178'-5 174"	0					RBTN-51H25 EL 178'-5 3	4 a A
TN-51H24 EL 175-2 3/4"	히					BBTN-51H24 EL 175'-2 3/	4" I NI
11-31124 EL 113-2 3/4	₩						50' 300'
IN-51H20 10 171-10 074			1				se X See
TN-51H22 EL 168'-8 3/4"						RBIN-51H22 EL 168'-8 3/	90°-)(- * -)(- 270°
TN-51H21 EL 165'-5 3/4"	थ−− −−−		++-+-++			RBTN-51H21 EL 165'-5 3	/4" { / / }
IN-51H20 EL 162'-2 3/4"	፼ <u>──!──</u> ─			يسر يسبع المتعار بعبت المتحا للمتعا المتعار المتعار المتعار المتعار		RBTN-51H20 EL 162'-2 3	/4" 120 240
IN-51H19 EL 158'-11 3/4"	ᅙᅳᅳᅳᅳᅳ	ومربع المربع ومحار ومندر مشتر ومندر ومند المترد المربع المربع المتحا المتحا	++++	يعار يحتم بعبيا البلية إلينته المتدر بعبل البلية البلية البلية المتد		-Q RBTN-51H19 EL 158'-11 3	6/4 [*]
N-51H18 EL 155'-8 3/4"	ġ!					-0 RBTN-51H18 EL 155'-8 3	/4" 180"
N-51H17 EL 152'-5 3/4"	ᡖ่			والمواصر بترجي بترجي فتراجع		BBTN-51H17 FL 152'-5 3	
DI 511115 EL 140' 2 3/4"	m	فيدخله فبدعيد فبدخية فيدعيا أنبدا فبداقت التدابي	د تعديد له له خو له له حد ت	عرجم بقاربت بيبا ليرجيه فلرجير بيراجي			A"
14-51110 EE 149-2 574							- 7.e%
IN-51H15 EL 145-11 3/4	¥					RBIN-SIHIS EC 143-11 .	ana ana ana amin'ny fisiana amin'ny fisiana amin'ny fisiana. N
IN-51H14 EL 142'-8 3/4"	Ŷ <u>Ĕ</u> ĔĔĔ			-487 PEN-486 PEN-485 PEN-484 PEN-482 PEN-481		RBTN-51H14 EL 142'-8 3	NUCLEAR SAFETY RELATED
N-51H13 EL 139'-5 3/4"				-418 PDI-411 REM-483	- -	RBTN-51H13 EL 139'-5 3	/4"
N-51H12 EL 136'-2 3/4"	<u>o</u>	هيو هيد بنيه البير بينه البير بينه اليد ريبة اليد بيب س	· + + - + - + + + + + + + + + + +			RBTN-51H12 EL 136'-2 3	/4"
N-51H11 EL 132'-11 3/4"	ð						/* <mark>* </mark>
N-51818 Ft 100'-5 3/4'				PEN-428 PEN	-423		At
N-51H9 EL 126'-5 3/4"	ō	\sim	++-+			- RBTN-51H9 EL 126'-5 3	4
N GIUR EL 107' 0 7/4"	╗	PDN-348 () PEN-436				-O RBTN-51H8 EL 123'-2 34	4" 1 ISSUED PER DCN 99-016 MAD LSm - 24
14-31H0 EL 123-2 3/4	Ж!_	<u> </u>					
IN-51H/ EL 119-11 3/4				\bigcirc		KUIN-DIH/ EL 119-11 3,	REVISIONS
N-51H6 EL 116'-8 3/4"						RBTN-51H6 EL 116'-8 3/	4 0°0°°°°°
N-51H5 EL 113'-5 3/4"	៙ーー¦ー ー - ·		++-+		<u>a</u>		4" SOOOS NUCLEAR ENGINEERING
N-51H4 EL 110'-2 3/4"	▣⊢ ┥╸ ┥┥╸ ー	PEN-333 PEN-434	+ + - + - +			-0 RBTN-51H4 EL 110'-2 3/	4" 0000000 CRYSTAL RIVER
N-51H3 EL 106'-11 3/4"	ġ <u> </u>			<u> </u>		-O RBTN-51H3 EL 106'-11 3	/4" UNIT 3
N-51H2 EL 103'-8 3/4"	하느 _i			2-2-2-2-2-4-	× 101-12		4" FLORIDA INSPECTION
	Π		POR.441		434	T	POWER HOOP TENDON "51" LAYOUT
TN-51H1 EL 98'- 9 3/4"	፼ <u></u>		·++=			-0 RBTN-51H1 EL 98'- 9 3/	4" 0 048 048 as /31 /09 1/"-1' a"
	ΤÌÌ			112 YO 112 YO MARKAGAN			U.C. CAC CAC 08/31/98 %=1-0 DRAMM CHKD APRVD DATE SCALE
l							s 1 S-425-000 1

	180		240'		300		
	R BOLIKE	SS NO 4	BUTTRESS NO S	٤	⊈ BL	JTTRESS NO 6	REFERENCE VENDOR DWGS.
TN-64H47 EL 246'-8 1/4"	ō		++-+-+	-		-10 RATH-64H47 EL 245-8 1/4	5EX7-003-P-11 HOOP TENDON PLACEMENT
N-64H46 EL 243'-6"	高	-	<u>_</u>				180° TO 240° EL 94'-5 3/4" TO 143'-9 3/4
N-64H45 EL 240'-3 3/4"	6		++-+-++	-			5EX7-003-P-12 HOOP TENDON PLACEMENT * 240° TO 300° EL 94'-5 3/4" TO 143'-9 3/
N 64444 EL 237' 1 1/2"	а <u>–</u> –––			-			5EX7-003-P-23 HOOP TENDON PLACEMENT
N-04044 EL 237-1 1/2					·	RBIN-64H44 EL 237-1 1/2	180° 10 240° EL 143-9 3/4 10 198-10
N-64H43 EL 233-11 1/4						RBIN-64H43 EL 233-11 1/4	240° TO 300° EL. 143'-9 3/4" TO 198'-10
N-641192 EL 200-9						REIN-64H42 EL 2 95 - 9	5EX7-003-P-29 HOOP TENDON PLACEMENT 180' TO 240' EL. 198'-10 1/2" TO 248'-9
N-64H41 EL 227'-6 3/4"			TT-T-T			RBTN-64H41 EL 227'-6 3/4"	5EX7-003-P-30 HOOP TENDON PLACEMENT
N-64H40 EL 224'-4 1/2"			<u> </u>			RBTN-64H40 EL 224'-4 1/2"	240° 10 300° EL 198-10 1/2 10 248-9
N-64H39 EL 221-2 1/4"			++-++			RBTN-64H39 EL 221'-2 1/4"	
N-64H38 EL 218'-@"			++-++			RBTN-64H38 EL 218'-0"	
N-64H37 EL 214-9 3/4"	9		++-++	and the second second second second second second second second second second second second second second second			8
N-64H36 EL 211'-7 1/2"	0		++-+-++				
N-64H35 EL 208-5 1/4	@ <u></u>		++++				
N-64H34 EL 205'-3"	D		++-+-+				
N-64H33 EL 202'-0-3/4"			++++				TECTED CAT
N-64H32 EL 198'-10 1/2"							TEATED SM
N-64H31 EL 195'-8 1/4"	0		++-+			-0 RETN-64H31 FL 195'-8 1/4"	TESTED UNSAT
N-64H30 EL 192'-6"	6		++-+-++				TENDON'S REMOVED
N-64H29 EL 189'-3 3/4"	6						THROUGH THE 8TH SURVEILLANCE
N-64H28 EL 186'-0 3/4"	·						
N-64H27 EL 182'-9 3/4"					ب بدينا لل عزب بريد ب		÷
N-64H26 FL 179'-6 3/4"	K					BBIN-64H26 EL 179'-6 3/4"	ø. 🛧
N_64H25 EL 176'-3 3/4"				and and a start of the second s		RBTN_64H25 EL 176'-3 3/4"	
N 24424 EL 177 0 3/4"							60. 300.
			TTTTT				20:
N-64423 EL 109-9-374							
N-64H22 EL 166-6 3/4							120. 240.
N64H21 EL 163'-3-3/4"		The second s				RBIN-64H21 EL 163-3 3/4	\sim
IN-64H20 EL 160'-0 3/4"	0		++-+				180*
IN-64H19 EL 156'-9 3/4"	b						KEY PLAN
N-64H18 EL 153'-6 3/4"			++			RBTN-64H18 EL 153'-6 3/4"	
N-64H17 EL 150'-3 3/4"	@		++-+-+-			Q RBTN-64H17 EL 150'-3 3/4"	£
TN-64H16 EL 147'-0 3/4"	ģ		++-+-++	بالمتحاصية للبدائية يبتا تبيا بتباعية ليتا بيدايد			
TN-64H15 EL 143'-9 3/4"	6	PCN-387 PDN-388 PDN-389	++-+				NUCLEAR SAFETY RELATE
TN-64H14 EL 140'-6 3/4"	₲					RBTN-64H14 EL 140'-6 3/4"	
TN-64H13 EL 137'-3 3/4"							e.
TN-64H12 FL 134'-0 3/4"		OPEN-331 OPEN-315 OPEN-316 OPEN-331 OPEN-3377 OPEN-328				BBTN-64H12 FL 134'-0 3/4'	£
TN-64H11 FL 130'-9 3/4"		PEN-364O PEN-362O PEN-323O PEN-329 PEN-372				BRTN-64H11 FL 130'-9 3/4"	
The CALLAR CL. 100 - 5 5/4	¥	PDN-345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TTTTTT				
	H I	PEN-356 PEN-375 PEN-352 PEN-352 PEN-356 PEN-356		○ PEN-348	N-436		
IN-64H9 EL 124-3 3/4			++=+=++	~~		RBIN-64H9 EL 124 -3 3/4	1 ISSUED PER DCN 99-016 MAD LSm E
N-64H8 EL 121'-0 3/4"			++-+				NO DESCRIPTION DRAWN CHKD APP
IN-64H7 EL 117'-9 3/4"	@ <u> </u>		++-+-++				REVISIONS
N-64H6 EL 114'-6 3/4"	♀ ー – – – –	PDH-348 PDH-371 PEN-361 PDH-153 PEN-339	++-+-+				NUCLEAR ENGINEERING
TN-64H5 EL 111'-3 3/4"	©−−−−		*+-+-+	 And A. S. C. C. Martine and A. S. Sandari, and A. S. Sandari, "And the second se			CRYSTAL RIVER
TN-64H4 EL 108'-0 3/4"	回-----	PDH-358 PDH-342 PDH-341 PEN-343 PDH-346		- PEN-337 PEN-333 PDN-435 O PEN-336 O PEN-434			\$000000 UNIT 3
TN-64H3 EL 104'-9 3/4"	┢— — — — —	PEN-366 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*+-+				FLORIDA INSPECTION
N 6442 EL 100' E 3/4"	H						POWER HOOP TENDON "64" LAYOUT
N-04H2 EL 100- 5 5/4			<u>++-+-+</u>			- 0 RBIN-BAHZ EL 100 - 5 3/4	
N-64H1 FI 04'-5 3/4"						RBTN-54H1 51 04'-5 7 /4"	DRAWN CHKO, APRVO, DATE SCALE
	щ - -						s 1 S-425-008
• • • • • • • • • • • • • • • • • • •	1	the second second second second second second second second second second second second second second second s		Children and a protocol of the state of the			DISCP. SHEET DWG.

	1	2	3	4 5	6 7	/	8	9 10 KEY NO.:	
M	6.5 Exhibit 8	120°	RESS NO 3	180° ¢ BUTTRESS NO 4		240°	TRESS NO 5	Page 4 of	7
		F DO L				FB01		(PRESCON CORPORATION)	
A	RBTN-53H47 EL 247-9"			++++			-O RBIN-53H4/ EL 24/-9	120° TO 180° EL 94'-5 3/4" TO 143'-9 3/4	47
	REIN-S3846 EL 244-6 3/4				Annale incluse install salate salate source source there there there and the source there are a source there is a source the source			5EX7-003-P-11 HOOP TENDON PLACEMENT 180' TO 240' FL 94'-5 3/4" TO 143'-9 3/4	4"
	RBIN-53H45 EL 241-4 1/2						REIN-53H45 EL 241 -4 1/2	5EX7-003-P-22 HOOP TENDON PLACEMENT	1224
	RBIN-DOR44 EL 208 -2 1/4	4						120' TO 180' EL 143'-9 3/4' TO 198'-10 1/ 5EX7-003-P-23 HOOP TENDON PLACEMENT	/2"
	RUIN-53H43 EL 235-0							180° TO 240° EL. 143'-9 3/4" TO 198'-10 1	1/2"
	RBIN-53H42 EL 231-9 3/4	0					BRTN 53H41 EL 228'-7 1/2"	5EX7-003-P-28 HOOP TENDON PLACEMENT 120" TO 180" EL. 198'-10 1/2" TO 248'-9 1	1/4"
_	RBIN-53H41 EL 228 -7 1/2							SEX7-003-P-29 HOOP TENDON PLACEMENT	
в	REIN-00040 EL 220 40 174						BBIN-53H39 FL 222'-3"	180 10 240 EL 198-10 1/2 10 248-9 1	/4
	DDTN 53439 CL 222 -5	φ					BBTN-53H38 EL 219'-0 3/4"		
	PRTN_53H37 EL 215'-10 1/2"			i i i i i i i i i i i i i i i i i i i			RBTN-53H37 EL 215'-10 1/2'	ē.	
	DDTN 53036 EL 212'-8 1/4"						BBTN-53H36 EL 212'-8 1/4"		
	RBIN-33836 EL 212 -6 1/4								
		H i					C		
с		¥							
	POTRE EXCEL 21 100' 11 1/4"	¥ .		i i i i i i i i i i i i i i i i i i i				TESTED SAT	
	RETN-53431 FL 196'-9"						RBTN - 53H31 - FL 196 - 9"		
-	14701-57430 EL 193'-A 3/a"						BBIN-53H30 Et 193'-6 3/4"	TEATED WEAT	
	26TN-53429 E 198-4 1/2						A RETN-53H29 EL 190'-4 1/2"	TENDOW'S REMOVED	
		¥					PRINGS 1478 51 187-1 5/4	THROUGH THE BTH SURVEILLANCE	
	2011 53433 EL 1931 19 7 (4)	H .		the second second second second second second second second second second second second second second second se			CAL SETNESTORY OF 1814-10 3/4	*	
	POTNI 61426 EL 190' 7 1/4"						BBTN-53H26 FL 180'-7 3/4"		
	RBIN-35H26 EL 180-7 5/4			++-+-+					
	RBIN-33H23 EL 177-4 374			A REAL PROPERTY OF THE RE					
		4	And a series stated and a series where we series where states and a series where series a				PRTN 53H23 EL 178-18 3/4"	0° 4	
	RBIN-53H23 EL 1/0-10 3/4	P						50° IN 300°	
	RBIN-53H22 EL 167-7 3/4						RBIN-33H22 EL 107 - 7 3/4	00	
	RBIN-53H21 EL 164-4 3/4			++-+-+			BIN-33521 EL 164-4 3/4	90°((*	
	RBIN-53H20 EL 161-1 3/4								
	RBIN-53H19 EL 15/-10 3/4	@		++-+-+	~~~~		BIN-33H19 EL 137-10 374	120. 240.	
-	RBIN-53H18 EL 154-7 3/4	면			PEN-357 () PEN-307 PEN-307 PEN-303	1	REIN-33616 EL 134-7 374	180'	
	RBIN-53H17 EL 151-4 3/4					17-7-	- C REIN-33H17 EL 131 -+ 374		
	48 (N-2040) - EL 148 - 274		1		PON-367 PEN-366 PEN-389			<u>KEY PLAN</u>	
	RBTN-53H15 EL 144-10 3/4								
	RBTN-53H14 EL 141'-7 3/4"		1-11/ \\	<u>\</u>	PDN-331		- 0 RBIN-53H14 EL 141 -/ 3/4	NUCLEAR SAFETY RELATED)
	RBIN-53H13 EL 138-4 3/4	@ <u> </u>			900-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	320	-0 HBIN-33H13 EL 138-4 3/4		×.
	RBTN-53H12 EL 135'-1 3/4"			` <u>_</u>	PDI-364 000 00 0 0 0 0 0 001-329 0		-0 RUIN-53H12 EL 135-1 3/4		
	RBTN-53H11 EL 131'-10 3/4"		PEN-222			*	RBIN-53H11 EL 131-10 3/4		Г
	RBTN-53H10 EL 128-7 3/4"		17-~ /		PEN-363 0 0 0 0 0 0 0 0 0 PEN-	* + - + -	-0 RBIN-53HI0 EL 128 -7 3/4		t
	RBTN-53H9 EL 125'-4 3/4"			/	PDN-325	1	- C RBIN-53H9 EL 125-4 3/4	1 ISSUED PER DCN 99-016 MAD LSm	3/2
	RBTN-53H8 EL 122'-1 3/4"	P		/		1-1	- CO RBTN-53H8 EL 122-1 3/4	NO DESCRIPTION DRAWN CHKD APPR	0
	RBTN-53H7 EL 118'-10 3/4"	Q	H	PD	PEN-368 PEN-361 PEN-355	1-1	-O REIN-53H7 EL 118-10 3/4	REVISIONS	1.7
	RBTN-53H6 EL 115'-7 3/4"				PEN-333 PEN-376	-539	RBIN-53H6 EL 115-7 3/4	NUCLEAR ENGINEERING	C
	RBTN-53H5 EL 112'-4 3/4"				0000 0000 da	T4	RBIN-53H5 EL 112'-4 3/4"		-
	RBTN-53H4 EL 109'-1 3/4"			PEN-358-	× • • • •	348		CRISIAL RIVER	
	RBTN-53H3 EL 105'-10 3/4"	<u>ष</u> −−−	++	N-265 0 0 PDH-287	· · · · · · · · · · · · · · · · · · ·		-O RBTN-53H3 EL 105'-10 3/4"	FLORIDA INSPECTION	391.1 1
	RBIN-53H2 EL 1027-7 374	P		++-++	PEN-339 PEN-322 PEN-314	·		POWER HOOP TENDON "53" LAYOUT	
					PEN-321 PEN-318		4		a"
	RBTN-53H1 EL 96'-1 3/4							URXWN OHO APRIO 08/31/98 /8 =1-0 DRXWN OHO APRIO DATE SCALE	2
			L			Julian dara	- ital de ante a secondaria de la composición de la composicinde la composición de la composición de l	S 1 1 S 125 007	1

Exhibit o	EBUTTRESS NO 1	¥	BUTTRESS NO 2			ESS NO 3	REFERENCE VENDOR DWGS.
De la Martin d'anna an Antonio					1		(PRESCON CORPORATION)
Thuit3846 EV 243'L6"	X				Ľ,	BOTH 13046 EL 043" S"	0' TO 60' EL 94'- 5 3/4" TO 143'-9 3/4"
N-13445 EL 240'-3 3/4"						0 001N 11H46 CL 240-0	5EX7-003-P-9 HOOP TENDON PLACEMENT 60" TO 120" EL. 94'-5 3/4" TO 143'-9 3/4"
N-13H44 EL 240-3 3/4						RBIN-13H45 EL 240-3 3/4	5EX7-003-P-20 HOOP TENDON PLACEMENT
N-13H44 EL 237-1 1/2				+ -		RBIN-13H44 EL 237-1 1/2	5EX7-003-P-21 HOOP TENDON PLACEMENT
N-13H47 EL 230'-0"					4	PRTN 13442 EL 2334LI 174	60' TO 120' EL 143'-9 3/4" TO 198'-10 1/
N 13H41 E 202' 6 1/4"						DDTN (714) 5 207' 6 7/("	0' TO 60' EL 198'-10 1/2" TO 248'-9 1/4"
N-13H40 EL 227-6 374						RBIN-13H41 EL 227-6 3/4	5EX7-003-P-27 HOOP TENDON PLACEMENT 60" TO 120" EL 198'-10 1/2" TO 248'-9 1/
TN-13H39 FL 221'-2 1/4"						BRTN-13430 EL 221'-2 1/4"	
N_13H38 \$1 218'-0"							
N-13H37 EL 214'+0 3/4"					1 4	RRIN-13417 51 214 -0 376	
N-15436 FL 211'-7-1/2	出				벽		
N=13H35 EL 208'-5 1/4"				1	- Li	RR70-13435 FL 208-5 1/4"	
N-13H34 EL 205'-3"				1		RETU-13434 EL 205'-4"	
N-13H33 EL 202'-0 574"						REIN-13413 FL 202-0 374"	
N-13H32 Et 198'-17 1/2"					4	RBIN-13432 Ft 198-10 172	
N-13H31 EL 195'-8 1/4"	₿					RBTN-13H31 EL 195'-8 1/4"	
N-13H30 EL 192'-6"				ب لل د د د د د د د د		BBTN-13H30 FL 192'-6"	TESTED SAT
IN-13H29 EL 189'-3 3/4"						RBTN-13H29 FL 189'-3 3/4"	TESTED UNSAT
N-13H28 EL 186'-0 3/4"						RBTN-13H28 EL 186'-0 3/4"	TENDON'S REMOVED
N-13H27 EL 182'-9 3/4"						RBTN-13H27 EL 182'-9 3/4"	THROUGH THE BTH SURVEILLANCE
N-13H26 EL 179'-6 3/4"				1		RBTN-13H26 FL 179'-6 3/4"	
N-13H25 EL 176'-3 3/4"						RBTN-13H25 EL 176'-3 3/4"	
N-13H24 FL 173'-0 3/4"						RETN-13424 CL 173'-0 3/4"	o. 🛧
N-13H23 FL 169'-9 3/4"						RBTN-13H23 EL 169'-9 3/4"	N
N-13H2D EE 166' - 6 Oya						PRIV-13425 CC 109 -9 5/4	60. 300.
N=13021 EL 163'=3 3/4"					L L		90 (- * -)- 270.
N=13622 1/160 -0 3/1						RBIN-13H21 EL 163-3-3/4	
DI-13450 St 155'-0 314"						BETWILLING CLAREL O 3/4	120. 240.
IN-13H18 EL 153'-6 3/4"						D PRTN_13418 EL 153'_6 3/4"	1984
N_13H17 EL 150'_3 3/4"						DETN 13417 EL 153'-6 3/4	180
DI 13416 EL 147' 0 3/4"						0 00Th 13005 51 147 0 3/4	KEY PLAN
N-13H15 EL 143'-0 3/4"						BETN 13145 EL 147 -0 3/4"	
N-13H14 EL 140'-6 3/4"				N-2000 0 0 PEN-211		REIN-10415 EL 145-9 3/4	
N 13413 EL 137 3 3/4"		PEN-118 PEN-1610 PEN-182 O PEN-183	PDN-113 ()			RBIN-ISHI4 EL 140-6 5/4	NUCLEAR SAFETY RELATED
N-13H13 EL 137-3 3/4		PEN-111 O PEN-112 O PON-184 PEN-125 OPEN-127		PEN-212 PEN-213 O O co PEN-202		REIN-13H13 EL 13/-3 3/4	
N-13H11 EL 130'-0 3/4"		PDN-121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PDN-135 Q	PDN-214 PDN-215 O O PDN-284		RBIN-13H12 EL 134-0 3/4	
te 13H10 EL 127'-n 1/4"	<u>Ц</u>	PEN-131 O PDN-132 O PTN-133	PEN-136 O	PEN-216 PDN-217 O PEN-285		PPTN_13410 CL 130 -9 3/4	
N-13H0 EL 124'-3 3/4"	K I I I					RE N=10410 CL 12/ -0 3/4	
N-13H9 EL 124-5 3/4		PEN-185 PDN-186	PEN-125 O OPEN-168	OPEN-107 OPEN-201		RBIN-13H9 EL 124-3 3/4	1 ISSUED PER DCN 99-016 MAD L5/1 EEE- 7
N_13H7 EL 117'-0 3/4"						POTN 1347 EL 121 -0 3/4	NO. DESCRIPTION DRAWN CHKD APPR
N-13H6 EL 114'-6 3/4"						POTN 1146 51 117 -9 3/4	REVISIONS
N_1395 EL 111'-3 3/4"		PDH-123 PDH-117 Q				0070 1346 EL 114 -6 3/4	NUCLEAR ENGINEERING
	8	POI-124 POI-118				1 REIN-13H5 EL 111-3 3/4"	CRYSTAL RIVER
N-13H4 EL 108-0 3/4						RBTN-13H4 EL 108'-0 3/4"	UNIT 3
N-13H3 EL 104'-9 3/4"		PDN-129 PDN-115				RBTN-13H3 EL 104'-9 3/4"	FLORIDA IWE/IWL INSPECTION
N-13H2 EL 100'- 5 3/4"	B	++-+	·-++	4 -		RBTN-13H2 EL 100'- 5 3/4"	CORPORATION HOOP TENDON "13" LAYOUT
	[1] [1]			and the second se	i	j t	Q.c. CAS CAS 08/31/98 1/=1'-0"
N-13H1 EL 94'-5 3/4"	₽	<u>++-+</u>	· - + +			RBTN-13H1 EL 94'-5 3/4"	DRAWN CHKD. APRVD DATE SCALE
							s 1 S-425-005

EXHIBITO	300	360		00			ragerori
	& BUTTRESS NO 6	& BUTTRESS NO 1		& BUTT	RESS NO 2	REFERENCE VENDOR	DWGS.
N-62H47 EL 247'-9"			-		RBTN-62H47 EL 247'-9"	(PRESCON CORPOR	ATION.)
N SOLIAS EL DAN S 3/4					RETN-82H46 FL 244'-6 3/4"	0' TO 60' EL 94'-5 3	(4" TO 143'-9 3/4"
N 62H45 EL 241'-4 1/2"			والمتعارضين ومراجب المترجب المترجب المراجب والمرجب والمرجب		BTN-62H45 EL 241'-4 1/2"	5EX7-003-P-13 HOOP TE	NDON PLACEMENT
N-62H45 EL 241-4 1/2			وأحمد بمعافيته بتبد بنية تبية تتبد تتبد تتب بنيا مينا بينا يتبارينيا مياري		D POTNI 62444 EL 238'-2 1/4"	300' 10 360' EL. 94-	5 3/4 10 143 -9 3/4
N−62H44 EL 238 −2 1/4					PETREIN-62H44 EL 236-2 1/4	5EX7-003-P-20 HOOP T 0' TO 60' EL. 143'-9	NDON PLACEMENT 3/4" TO 198'-10 1/2"
V-62H43 EL 235-0					REIN-02H45 EL 235-0	5EX7-003P-25 HOOP TEN	DON PLACEMENT
N-62H42 EL 231'-9 3/4"					RBIN-62H42 EL 231-9 3/4	300° TO 360° EL 143'-	9 3/4" TO 198'-10 1/2
v-62H41 EL 228'-7 1/2" €					BIN-62841 EL 226-7 172	5EX7-003-P-26 HOOP T 0' TO 60' FL 198'-10	NDON PLACEMENT
V-62H40 EL 225'-5 1/4"					RBTN-62H40 EL 225-5 1/4	5FX7-003-P-31 HOOP T	NDON PLACEMENT
4-62H39 EL 222'-3"					RBTN-62H39 EL 222'-3"	300' TO 360' EL 198'-	10 1/2" TO 248'-9 1/4
N-62H38 EL 219'-0 3/4"		++-+-++			RBTN-62H38 EL 219'-0 3/4"		
-62H37 EL 215'-10 1/2"	┣──────────	++++			RBTN-62H37 EL 215'-10 1/2"		
I-62H36 EL 212'-8 1/4"	┣╾╼┝╾╼┝╸┝╸┝╸╸╸╸╸╸╸╸╸╸╸╸╸╸	++-+-++	· · · · · · · · · · · · · · · · · · ·		BTN-62H36 EL 212'-8 1/4"		
N-62H35 EL 209'-6"	┣!	++-+-+			RBTN-62H35 EL 209'-6"		
1-62H34 EL 2061-3 3/4"					8819-62H34 EL 206-3 3/4"	TESTED	SAT
-62H33 EL 203'-1 1/2"		+++			RBIN-62H33 EL 203'-1 1/2"		NGAT
-62432 FL 199'-11 1/4"					RBTN-62H32 EL 199'-11 1/4"	rested u	
1-62H31 EL 196"-9"					BIN-52H31 EL 196'-9"	FENDON'S R	EMOVED
H-62H30 EL 193'-6 3/4"	<u> </u>				RBTN-62H30 EL 193-6 3/4"	THROUGH THE BT	SURVEILLANCE
					Q RETN-62H29 EL 102-4 1/20		
4 62H28 EL 187'-1 3/4"	1		والمحاذفة العدرمية محارفين معراضة فكرافي فيرافيه وكالتكرية		RBTN-62H28 FL 187'-1 3/4"		
-62H26 EL 107 -1 574					RETN_62H27 EL 183'-10 3/4"		
1-62H2/ EL 183-10 3/4					BETN 62H26 EL 190' 7 3/4"		
I-62H26 EL 180 -7 3/4					RB IN-02H20 EL 180-7 3/4	0	4
√-62H25 EL 177'-4 3/4"					W RBIN-62H25 EL 1/7 -4 3/4	1	N
-62H24 EL 174'-1 3/4"					RBTN-62H24 EL 174'-1 3/4"	60.	300.
N-62H23 EL 170'-10 3/4"		++		┥╾╶╎╴╶┩	RBTN-62H23 EL 170'-10 3/4"	$\leq \langle \rangle > 1$	- }}
N-62H22 EL 167'-7 3/4") — _ — — — — — — — — — — — — — — — —	++-+-++			RBTN-62H22 EL 167'-7 3/4"	90.—	270.
N-62H21 EL 164'-4 3/4"	┣╴╾┝╴╾┝╸┝╸╸╸╸╸╸╸╸╸╸╸╸				RBTN-62H21 EL 164'-4 3/4"	120	12 240.
N-62H20 EL 161'-1 3/4"	┣╴╾╎╾╼┝┥╾╴╾╴╴╴╸╸╸╴╴	++-+-++			RBTN-62H20 EL 161'-1 3/4"	120	/
N-62H19 EL 157'-10 3/4"	┣╴┈┝╸╼┝┥╾╺╴╴╴╴╸╸╸╸╸╸╸				RBTN-62H19 EL 157'-10 3/4"	18	ð.
N-62H18 EL 154'-7 3/4")	++		- 0	RBTN-62H18 EL 154'-7 3/4"	Liev. r	
N-62H17 EL 151'-4 3/4"	┣	+			RBTN-62H17 EL 151'-4 3/4"	KET	LAN
N-62H16 EL 148'-1 3/4"	┢ ⊢	+	وأحتفر فقد التدريبية السرائيس السرائيس السرائيس السرائيس للمراقبين ال		RBTN-62H16 EL 148'-1 3/4"		
N-62415 EL 144'-10 3/4"	L_'		وأعفوه مسرا بسير بستا مسارعتني بشتر بشد مشر بشد بشدر شدرانسارك		RBTN-62H15 EL 144'-10 3/4"		
	PDN	143PEN_481		4-4-4	BETN-62H14 FL 141'-7 3/4"	NUCLEAR SAFE	TY RELATED
N-62H14 EL 141-7 3/4	PEN-488 O O O O O O O O O O O O O O O O O O	O O PEN-482	PEN-118 0 0 0				
V-62813 EL 136-4 3/4	PEN-4890 0 0 0 PEN-410 PDH-411 PDH-412		PEN-111 PEN-144 PCI-120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iii	DOTU COMO EL 116' 1 1/4"		
4-62H12 EL 135'-1 3/4"		P(N-423	PEN-127 PEN-121 O PEN-128 PEN-129 O PON-130		KBIN-62HI2 EL 135 -1 3/4		- T T T T
I-62H11 EL 131'-10 3/4"					RBIN-62H11 EL 131-10 3/4		
I-62H10 EL 128'-7 3/4"					RBIN-62H10 EL 128'-7 3/4"		
-62H9 EL 125 -4 3/45	PDI-433		PEN-185 PEN-186		♥1 RBIN-62H9 EL 125'-+ 3/4"	1 ISSUED PER DCN 99-016	MAD LSM EE
-62H8 EL 122'+1 3/4"					REIN-6248 EL 122-1 3/4"	NO. DESCRIPTION	DRAWN CHKD APPR
-62H7 EL 118'-10 3/4" [- [RBTN-62H7 EL 118'-10 3/4"	REVISIO	NS
I-62H6 EL 115'-7 3/4"	┣−⊢−┼┝−╲╲───┤	+		+-+	RBTN-62H6 EL 115'-7 3/4"	NUCLE	AR ENGINEERING
N-62H5 EL 112'-4 3/4"	┣━━╎━━┝- ━━━━━━━	+		- [BTN-62H5 EL 112'-4 3/4"	1000001 (P	(STAL RIVER
N-62H4 EL 109'-1 3/4"		<u>PEN-424</u> + + - + - +			RBTN-62H4 EL 109'-1 3/4"	**************************************	UNIT 3
N-62H3 EL 105'-10 3/4"				4-4-4	RBTN-62H3 EL 105'-10 3/4"	FLORIDA IWE/IW	L INSPECTION
-H7H7 11 100'-7 3/4"	PEN-441 U PDN-440 PEN-415 PDN-	416 PDN-426 PDN-420	PDN-128 PEN-189		PBDN-62H2 Ec 102 -7 3/4"	POWER HOOP TEN	ION "62" LAYOUT
						Da DAD DAD	/08 1/"-1' *
	┪└└────────		الشرنف بدرج حريم مريم م		BBTN-62H1 FL 96'-1 3/4"	DRAWN CHKD. APRVD. DA	/ 30 /8 = 1 - 0 E SCALE
1-02HI EL 96-1 3/4						s 1 S-42	5-010
1.						DISCP. SHEET DWG.	

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

VIII. COMPARISON WITH ORIGINAL INSTALLATION DATA

A comparison of the liftoff forces from this surveillance to the original installation lock-off forces is made in an effort to detect any evidence of system degradation. The lock-off forces are compared in order to detect any abnormal force loss which would possibly indicate an underestimation of the creep, shrinkage and/or elastic shortening effects in the Containment Building.

The losses for the tendon groups were found to be 9.14% for the vertical tendons, 15.81% for the horizontal tendons and 14.34% for the dome tendons. Based upon the results from other facilities these losses are as expected for a containment of this age and do not indicate any degradation of the system.

A regression analysis was conducted on each of the tendon groups and the graphs are shown on the following pages along with the input data for force, test dates and age (time stressed). All three analysis show each group remaining above the minimum requirements well beyond the next surveillance period. Projections to 40 years after installation (38 years of plant life) show a vertical value of 1516 kips against a minimum requirement of 1149 kips. A horizontal projection of 1374 kips against a minimum of 1252 kips and a dome projection of 1373 kips with a minimum requirement of 1215 kips. Due to large scatter in the as found one and three year horizontal liftoff values they were removed from the computation. This is acceptable due to the large number of data points available and the weighting in the analysis for latter data points

A review of previous surveillance data indicated that the current common dome tendon was in fact retensioned during the tenth year and a new common tendon should be selected. In addition, the vertical tendon was retensioned during this surveillance and this group should also have a new common tendon selected. With only two points to plot (sixteenth year and twenty-fifth) the horizontal common tendon projection does not have enough points to provide extensive indications of trend. However, current value remains slightly (less than 1%) below the regression curve.

Analysis of the regression curves, required minimum design forces and Crystal River base value calculations brought into question the "low" values found on several horizontal tendons, both during this surveillance, and the previous one. Acceptable normalized group averages, and ultimately the regression curve, was obtained despite nine of the horizontal tendons and one of the vertical tendons being below the expected base value at liftoff (subsequently retensioned to base -0% + 6%). This base value is calculated by Florida Power to determine expected liftoff forces based upon a theoretical series of losses evaluated in 1980, which, based upon the collected data from this surveillance, appear to be underestimated. Liftoffs falling below 95% of the expected value require additional adjacent liftoffs to determine the extent of the lower than expected forces.

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

VIII. COMPARISON WITH ORIGINAL INSTALLATION DATA

An evaluation of the base values being used to determine acceptable liftoffs seemed to reveal large differences for each group. A plot was made of each group to show forecasted regression projection, base value, 95% of base value (which determines an increase in scope) and the design minimum.

The vertical graph shows the 40 year regression analysis forecast tendon force (shown in dark blue) of 1510 kips at about the same value as the calculated base line (1516 kips) with a minimum design value of 1149 kips. A base value at this level would cause an increase in scope for tendons falling 5% beyond projected, however, these tendons could still be almost 350 kips above minimum requirements. The base line value should be an indication of significant deterioration and at this time appears to be too high for vertical tendons.

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

VIII. COMPARISON WITH ORIGINAL INSTALLATION DATA

Similarly with horizontal tendons. The base line at 40 years (1420 kips) is already above the regression line for the horizontal group which has projected below this point from year 10. This regression line at 40 years of 1374 kips is still 120 kips above the required minimum of 1252 kips. The inflated base line could result in additional scope for tendons falling as little as 2 % below the regression curve.

A Progress Energy Company

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

Dome projections appear to be far more realistic with a regression forecast of 1373 kips, a base value of 1308 kips and a design minimum of 1215 kips. This allows the base to be at a limit to signal tendons with potential deficiencies in sufficient time for corrective action without causing a continual increase in scope, or the possibility of falling below the design minimum.

Initial review of the Crystal River calculations used in both the 6th and 7th surveillance projections would appear to indicate relaxation values based on an operating temperature of 68°F. It is quite conceivable that actual containment temperatures, particularly above roof level in summer may reach twice that level with a subsequent increase in relaxation.

Having reviewed the as found liftoffs, the regression analysis, and the current method of calculating expected tendon forces it is our recommendation that base values for future vertical and horizontal surveillances be adjusted to a more realistic relaxation value. In addition, the regression curve should be considered with the base value set to signal abnormal results allowing investigation or remedial action to tendons performing well below the norm. The regression curve produced during the next surveillance will be used to confirm that the group averages are performing as expected and will still provide acceptable values beyond the current life of the plant.

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

TABLE XII: COMPARISON OF ORIGINAL LOCKOFF FORCES TO AS FOUND FORCES

TENDON	LIFTOF	FFORCE	LOSS	PERCENTAGE	AVERAGE
	ORIGINAL	@ 25 YEARS	(kips)	%	PERCENTAGE
12V01	1675	1446	229	13.67	
12V02	1699	1546	153	9.01	
23V24	1634	1522	112	6.85	9.14
45V14	1697	1552	145	8.54	
61V08	1598	1476	122	7.63]
46H21	1653	1388	265	16.03	
46H30	1641.5	1356	285.5	17.39	
46H31	1654.5	1343	311.5	18.83	
46H32	1635.5	1367	268.5	16.42	ļ
46H33	1648.5	1358	290.5	17.62	1
46H34	1702	1425	277	16.27	
46H35	1654.5	1377	277.5	16.77	15.81
46H36	1677.5	1344	333.5	19.88	•
46H37	1657	1293	364	21.97	
46H38	1635	1353	282	17.25	
46H39	1601	1356	. 245	15.30	
53H16	1638.5	1475	163.5	9.98	
62H02	1633	1552	81	4.96	
62H09	1639	1432	207	12.63	
D126	1634	*1377 *•	257	15.73	
D212	1600	*1292 -***	308	19.25	14.34
D339	1639	41507	132	8.05	

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
12V02	1546	11/26/01	10/14/74	27.118
23V24	1521.8	11/27/01	10/7/74	27.14
45V14	1552	9/10/01	10/3/74	26.936
61V08	- 1476	9/7/01	10/10/74	26.909
			•	
23V02	1609	11/27/97	10/2/74	23.153
61V21	1525	12/20/97	9/19/74	23.251
		•		
34V06	1590	11/8/93	10/11/74	19.076
56V15	1541	11/24/93	9/20/74	19.178
61V14	1587	11/9/93	10/11/74	19.079
34V04	1623	11/2/87	10/8/74	13.067
56V02	1648 -	10/29/87	10/14/74	13.04
12V01	. 1315	10/9/81	9/13/74	7.071
34V06	1600	10/6/81	10/11/74	6.987
34V19	1640	10/07/81	10/01/74	7.016
45V16	1575	10/06/81	10/03/74	7.008
56V11	1565	10/06/81	9/20/74	7.004
61V05	1519	10/09/81	9/13/74	7.071

page 7 of 15

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
34V01	1569	3/27/80	9/11/74	5.542
23V05	1580	3/28/80	9/4/74	5.564
12V12	1718	4/3/80	10/15/74	5.468
56V01	1707	4/3/80	8/30/74	5.594
56V20	1630	4/1/80	10/9/74	5.479
45V06	1685	4/11/80	10/2/74	5.525
12V20	1740	4/11/80	1/28/75	5.205
		·		
12V20	1785	12/12/77	1/28/75	2.874
23V15	1589.5	12/12/77	9/23/74	3.218
34V06	1590	12/8/77	10/11/74	3.159
45V03	1678	12/9/77	9/30/74	3.191
56V01	1718.5	12/9/77	8/30/74	3.277
12V19	1589.5	12/13/77	9/9/74	3.26
12V21 .	1632.5	12/13/77	9/10/74	3.257

47

ļ

REGRESSION CURVE

	FORCAST	95%
YEARS	(kips)	CONFIDENCE.
1	1714	1642
3	1655	1615
5	1628	1599
10	1591	1565
15	1569	1537
20	1553	1515
25	1541	1498
30	1532	1483
35	1523	1470
40	1516	1459

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
46H21	1388	10/3/01	2/7/75	26.654
46H30	1355.6	10/22/01	2/12/75	26.69
46H31	1343.3	10/13/01	2/13/75	26.663
46H32	1366.8	10/13/01	2/27/75	26.621
46H33	1357.8	10/12/01	2/13/75	26.66
46H34	1424.7	10/10/01 ′	2/27/75	26.613
46H35	1376.8	10/9/01	2/14/75	26.649
461136	1343.5	10/6/01	2/27/75	26.602
46H37	1293.5	10/9/01	2/17/75	26.64
46H38	1353.4	10/11/01	2/26/75	26.619
46H39	1356.2	10/11/01	2/18/75.	26.643
53H16	1475.4	11/11/01	3/25/75	26.63
62H02	1551.6	11/9/01	3/7/75	26.673
62H09	1431.8	11/23/01	1/31/75	26.814
				-
42H18	1476	11/13/97	3/4/75	22.692
42H29	1448	11/25/97	2/12/75	22.784
42H30	1389	11/24/97	2/28/75	22.733
42H31	1338	11/22/97	2/13/75	· 22.772
42H32	1355.5	11/13/97	2/28/75	22.703
42H33	1361	11/22/97	2/14/75	22.769
42H34	1377.5	11/24/97	2/28/75	22.733
421135	1296.5	11/25/97	2/14/75	22.778
42H36	1408	11/25/97	2/27/75	22.739
42H37	1401.5	11/26/97	2/17/75	22.772

1

25TII YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
42H44	1471.5	11/12/97	2/26/75	22.706
51H25	1363	11/10/97	1/14/75	22.823
51H26	1320	11/5/97	3/19/75	22.657
51H27	1265.5	11/9/97	1/8/75	22.837
51H28	1450.5	11/11/97	3/18/75	22.649
53H02	1611	1/14/98	3/27/75	22.798
53H46	1459.5	11/12/97	3/12/75	22.668
62H41	1426	12/5/97	2/18/75	22.793
62H46	1485	11/20/97	2/25/75	22.731
		•		
35H01	1572	1/3/94	1/24/75	18.944
42H01	1560	1/3/94	1/29/75	18.93
46H21	1425	12/7/93	2/7/75	18.831
46H28	1375	11/22/93	2/28/75	18.728
46H29	1300	11/19/93	2/12/75	18.767
46H30	1382	11/23/93	2/12/75	18.778
46H47	1468	12/14/93	2/20/75	18.811
62H08	1435	12/29/93	3/6/75	18.812
64H19	1470	10/28/87	2/6/75	12.724
13H20	1456	10/16/87	3/19/75	12.575
51H26	1411	10/28/87	3/19/75	12.608
13H40	1471	10/19/87	3/11/75	12.605
51H41	1362	10/27/87	1/3/75	12.815

page 11 of 15

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
62H34	1546	10/12/81	2/28/75	6.589
13H46	1546	10/13/81	3/10/75	6.591
13H19	1424	10/13/81	1/17/75	6.739
51H26	1424	10/14/81	3/19/75	6.57
42H20	1544	10/14/81	3/3/75	6.613
51H45 ·	1492	10/15/81	12/30/74	6.793
42H40	1466	10/15/81	2/26/75	6.63
35H35	1328	10/20/81	1/7/75	6.602
35H40	1458	10/21/81	3/12/75	6.605
46H10	1478	11/11/81	3/7/75	6.678

la Power

A Progress Energy Company

Flori

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

	FORCAST	95%
YEARS	(kips)	CONFIDENCE.
1	1580	1484
3	1519	1458
5	1490	1445
10	1451	1427
15	1429	1412
20	1413	1396
25	1400	1380
30	1390	1366
35	1381	1353
40	1374	1342

52

.

page 13 of 15

FM 6.5 Exhibit 9

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
D126 .	1376.9	9/26/01	12/3/74	26.814
D339	1507.3	9/18/01	3/31/75	26.467
D113	. 1427	12/6/97	12/9/74	22.992
· D115	1380	12/7/97	3/25/75	22.702
D304	1598	12/7/97	12/6/74	23.003
D311	1408	11/23/97	11/11/74	23.033
		•		
D215	1518	11/9/93	11/4/74	19.014
D224	1425	11/17/93	12/3/74	18.956
D231	1335	12/3/93	11/12/74	19.058
D105	1453 ·	10/23/87	11/22/74	12.917
D212	1276	10/26/87	12/3/74	12.895
D328	1276	10/27/87	12/5/74	12.892
D123	1304	11/4/81	11/8/74	6.989
D212	1338	10/26/81	12/3/74	6.895
D215	1594	10/27/81	11/4/74	6.978
D322	1494	10/29/81	12/2/74	6.906
D329	1506	10/20/81	11/19/74	6.918

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

REGRESSION ANALYSIS DATA

TENDON NUMBER	TENDON FORCE	TEST DATE	ORIGINAL STRESS	AGE (TIME STRESSED)
D331	1460.5	4/24/80	10/25/74	5.499
D323	1525.5	4/28/80	11/8/74	5.473
D208	1593.5	4/29/80	12/4/74	5.403
D140	1587	5/2/80	12/4/74	5.411
D122	1546.5	4/30/80	12/2/74	5.411
D139	1590	2/3/78 .	11/15/74	3.217
D215	1644	2/3/78	11/4/74	3.248
- D221	1511	1/12/78	11/20/74	3.143
D228	1524	1/11/78	12/2/74	3.108
D234	1513	1/11/78	12/5/74	3.099
D340	1562	1/13/78	12/4/74	3.108

.

REGRESSION CURVE

	FORCAST	95%
YEARS	(kips)	CONFIDENCE.
1	1617	1526
3	1545	1493
5	1511	1473
10	1465	1434
15	1438	1401
20	1419	1375
25	1404	1353
30	1392	1335
35	1382	1319
40	1373	1306

Loss of tendon force 42

Lift-off forces on hoop tendons, here is a chart for tendons 42H35, 42H36, and 42H37.

All three are Hoop tendons (Horizontal tendons) and run between buttresses 4 and 2. They are at approximate elevation 210' (42H35), 213' (42H36), and 216' (42H37) (hoop tendons are labeled from 1 to 47 from bottom to top).

Tendon 42H35 lift-off value at 20 years was not acceptable and the tendon was re-tensioned. Tendon 42H36 lift-off value at 20 years was not acceptable and the tendon was re-tensioned. Tendon 42H37 lift-off value at 20 years was not acceptable and the tendon was re-tensioned.

Loss of tendon force

As a follow-up to the data sent earlier on the lift-off forces on hoop tendons, here is a chart for tendons 46H19, 46H21, and 46H29.

All three are Hoop tendons (Horizontal tendons) (hence the name xxHxx) and run between buttresses 4 and 6 (hence the name 46xxx). They are at approximate elevation 156' (46H19), 163' (46H21), and 189' (46H29) (hoop tendons are labeled from 1 to 47 from bottom to top).

Tendon 46H29 lift-off value at 15 years was not acceptable and the tendon was re-tensioned. Tendon 46H21 lift-off value at 30 years was not acceptable and the tendon was re-tensioned. Tendon 46H19 lift-off values were always acceptable.

Loads and stresses from Hoop tendons

A. Tendon force at 1,635 kips

The loads and stresses generated by the hoop tendon forces are calculated based on the following:

0	Hoop Tendon Force	$F_{tendon} = 1,635,000 \text{ lbf}$
•	Hoop Tendon Centerline Radius	<i>r</i> = 812.375 in
0	Wall Inside Radius	<i>r</i> _i = 780 in
•	Wall Outside Radius	<i>r</i> _o = 822 in
0	Height of Containment Cylinder	<i>h</i> = 157 ft = 1,884 in
0	Number of Hoop Tendons Though Wall Section	$n_H = 94$ tendons

A.1 Average hoop stress

The simplest way to determine the average hoop stress in the concrete containment is to divide the average force from hoop tendons by the area of concrete the force is applied to.

The average vertical distance between hoop tendons is (13'' + 26'') / 2 = 19.5''.

The width of the concrete wall is 42".

$$\sigma_h = \frac{F_{tendon}}{42 * 19.5} = 1,996 \ psi$$

A.2 Radial force per unit height

There are two approaches to calculate the radial force per unit height

A.2.1 Using the containment height and number of tendons

The radial force per unit height is equal to

$$F_h = \frac{F_{tendon}}{H} * \#_{tendon} = 978 \frac{\text{kips}}{\text{ft}}$$

A.2.2 Using the number of tendons per unit height in that part of the containment wall

On one bay, the "close" tendons are separated by 12.75 in and the "far" tendons are separated by 25.5 in. This is equivalent to 2 tendons per 38.25 in, or 94 tendons per 1,797.75 in, or 94 tendons per 149.8 ft. The difference with 157 ft (and case A.1.1) is that there are fewer tendons at the bottom of the wall.

For our purpose, it is therefore better to calculate the radial force per unit height as

$$F_h = \frac{F_{tendon}}{38.25 \text{ in}} * 2 \text{ tendons} * 12 \frac{\text{in}}{\text{ft}} = 1,025 \frac{\text{kips}}{\text{ft}}$$

A.3 Radial force per unit circumferential length

The radial force per unit circumferential length is equal to

$$F_r = \frac{F_{tendon}}{r} = 2,012 \frac{\text{lbf}}{\text{in}}$$

A.4 Average radial pressure

.

A.4.1 Using full height and number of tendons

The average radial pressure due to the hoop tendon forces is

$$P_r = \frac{F_r}{\frac{h}{n_H}} = \frac{2012}{\frac{1884}{94}} = 100.4 \text{ psi}$$

A.4.2 Using the number of tendons per unit height in that part of the containment wall

Alternately, the average radial pressure can be calculated using

$$P_r = \frac{F_h}{12 * 780 \ in} = 109.5 \ \text{psi}$$

A.5 Average hoop stress

This is a check on the calculation done in A.1 above.

A.5.1 Using full height and number of tendons

The average hoop stress is then

$$\sigma = \frac{P_r \frac{r_i + r_o}{2}}{r_o - r_i} = \frac{100.4 \frac{780 + 822}{2}}{822 - 780} = 1,915 \text{ psi}$$

A.5.2 Using the number of tendons per unit height in that part of the containment wall The average hoop stress is then

$$\sigma = \frac{P_r \frac{r_i + r_o}{2}}{r_o - r_i} = \frac{109.5 \frac{780 + 822}{2}}{822 - 780} = 2,089 \text{ psi}$$

B. End of life tendon force of 1,325 kips

When using the end-of-life tendon force of 1,325 kips, we get the following results

B.1 Radial force per unit height

B.1.1 Using the containment height and number of tendons

The radial force per unit height is equal to

$$F_h = \frac{F_{tendon}}{H} * \#_{tendon} = 793 \frac{\text{kips}}{\text{ft}}$$

B.1.2 Using the number of tendons per unit height in that part of the containment wall

$$F_h = \frac{F_{tendon}}{38.25 \text{ in}} * 2 \text{ tendons} * 12 \frac{\text{in}}{\text{ft}} = 831 \frac{\text{kips}}{\text{ft}}$$

Note the FSAR specified prestress level of 829 kips / ft.

B.2 Radial force per unit circumferential length

The radial force per unit circumferential length is equal to

$$F_r = \frac{F_{tendon}}{r} = 1,632 \ \frac{\text{lbf}}{\text{in}}$$

B.3 Average radial pressure

B.3.1 Using full height and number of tendons

The average radial pressure due to the hoop tendon forces is

$$P_r = \frac{F_r}{\frac{h}{n_H}} = \frac{1632}{\frac{1884}{94}} = 81.4 \text{ psi}$$

B.3.2 Using the number of tendons per unit height in that part of the containment wall

Alternately, the average radial pressure can be calculated using

$$P_r = \frac{F_h}{12 * 780 in} = 88.8 \text{ psi}$$

The accident pressure is 55 psi.

The ratio of P_r over 55 psi is $\frac{88.8}{55} = 1.61$.

B.4 Average hoop stress

B.4.1 Using full height and number of tendons

The average hoop stress is

$$\sigma = \frac{P_r \frac{r_i + r_o}{2}}{r_o - r_i} = \frac{81.4 \frac{780 + 822}{2}}{822 - 780} = 1,552 \text{ psi}$$

B.4.2 Using the number of tendons per unit height in that part of the containment wall

The average hoop stress is

$$\sigma = \frac{P_r \frac{r_i + r_o}{2}}{r_o - r_i} = \frac{88.8 \frac{780 + 822}{2}}{822 - 780} = 1,694 \text{ psi}$$

C. Conclusion

With the accident pressure at 55 psi, the ratio of P_r over 55 psi is approximately 1.61. This is a large value when compared to other Nuclear Power Plants that are using post-tensioned concrete containments.

page 1 of 47

page 2 of 47

🔀 Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT	Page i of ii	Rev. 6
SYSTEM NAME:		SYSTEM CODE:	
CONTAINMENT		N/A	

REVISION LOG

Revision/Date	Description
0 / 11-8-85	Initial Issue
1 / 07-25-94	Complete re-issue and incorporation of Temporary Change #296 as shown by revision bars.
2 / 11-18-99	Incorporated Temporary change #539 and #954. Text from T.C. # 539 was not incorporated due to being superseded by T.C. # 954.
3 / 01-02-00	Incorporated Temporary change #1180 as shown by revision bars.
4 / 09-18-01	Incorporated Temporary change #1115 as shown by revision bars.
5 / 04-26-07	Incorporated Engineering Change 66751R0 as indicated by the change bars on pages 14 and 25.
6 / 09-29-08	Incorporated Engineering Change 71342 as indicated by the change bars on page 12.

X Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT	Page ii of ii	Rev. 6
SYSTEM NAME:		SYSTEM CODE:	
CONTAINMENT		N/A	

DESIGN BASES INDEX FOR CONTAINMENT

Section Title	Page
DEFINITION	1
GENERAL Materials Design Conditions	2 2 8
FOUNDATION MAT	22
PROTECTIVE RETAINING WALL AND CANTILEVER SLAB	24
TENDON GALLERY	25
CYLINDRICAL WALLS, HAUNCH, AND BUTTRESS	26
RING GIRDER	
DOME	
LINER	35
PENETRATIONS	
EQUIPMENT ACCESS SHIELD STRUCTURE	43

.
page 4 of 47

🐼 Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT	Page 1 of 44	Rev. 6
SYSTEM NAME:		SYSTEM	CODE:
CONTAINMENT		N/A	

DEFINITION

The Containment Structure is classified as a Class I structure because:

- 1. Its failure might cause or increase the severity of a loss-of-coolant accident (LOCA).
- 2. Its failure might result in an uncontrolled release of radioactivity.
- 3. It is vital to safe shutdown and isolation of the reactor.

In addition, the Containment Structure provides shielding from the fission products which could be airborne in the building under accident conditions.

The containment is composed of those elements listed in the Table of Contents for this Design Basis Document.

The Reactor Building is a concrete structure with a cylindrical wall, a flat foundation mat, and a shallow dome roof. The foundation slab is reinforced with conventional mild-steel reinforcing. The cylindrical wall is prestressed with a post-tensioning system in the vertical and horizontal (hoop) directions. The dome roof is prestressed utilizing a three-way post-tensioning system. The inside surface of the reactor building is lined with a carbon steel liner to ensure a high degree of leak tightness during operating and accident conditions. Nominal liner plate thickness is 3/8 inch for the cylinder and dome and 1/4 inch for the base.

The foundation mat is bearing on competent bearing material and is 12-1/2 feet thick with a 2 feet thick concrete slab above the bottom liner plate. The cylindrical portion has an inside diameter of 130 feet, wall thickness of 3 feet 6 inches, and a height of 157 feet from the top of the foundation mat to the spring line. The shallow dome roof has a large radius of 110 feet, a transition radius of 20 feet 6 inches, and a thickness of 3 feet.

page 5 of 47

Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT	Page 2 of 44	Rev. 6
SYSTEM NAME:		SYSTEM	CODE:

313

N/A

CONTAINMENT - GENERAL

MATERIALS

Materials are generally chosen on the basis of their ability to satisfy the following criteria:

- a. Load carrying capacity.
- b. Resistance to deterioration or corrosion.
- c. Economy.
- d. Availability.
- e. Tolerance of radioactivity.
- f. Sufficient stiffness to remain within allowable limits of deflection.
- g. Aesthetics.

In specific circumstances a variety of other factors could require consideration.

PARAMETER

SOURCE

Concrete

The following G/C, Inc. specifications define the requirements for the properties of the structural and fill concrete and, as such, are relevant to all data entries under "Concrete."

- 1. SP-5569
- 2. SP-5618

These specifications are listed for reference only.

Strength

Structural concrete for the base mat, containment vessel shell, and equipment access shield structure

 $f_{c} = 5000 \text{ psi}$

Structural concrete for application other than the Containment shell – $f_c^1 = 3000 \text{ psi}$

Fill concrete for use in the foundation subgrade $f_c = 1500 \text{ psi}$

See Page 2, "Concrete," for the Source of the requirements cited on this page.

REASON

The following generally recognized codes and standards are relevant to and the basis for selection of the properties of concrete cited in this section:

- 1. ACI 318-63, "Building Code Requirements for Reinforced Concrete."
- 2. ACI 301-66, "Specification for Structural Concrete."
- 3. ACI Manual of Concrete Practice - Recommended Practices.

Concrete is an economical, easily obtainable material capable of satisfying design requirements. A strength level of 5000 psi is required to withstand the large forces associated with reinforced concrete prestressed concrete containment structures.

A strength level of 3000 psi is the most commonly specified value for conventionally reinforced concrete structures.

Fill concrete is unreinforced and is required to serve only as a bearing medium equivalent to bedrock.

FM 6.5 Exhibit 12

page 6 of 47

Progress Energy	C	RYSTAL RIVER UNIT 3 SIGN BASIS DOCUMENT	Page 3 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT	- GENERAL	SYSTEM N/A	CODE:
PARA	METER	SOURCE	REAS	<u>00</u>
<u>Unit Weight</u> - 15	0 pcf		Typical density of an average value design purposes a reasonable allowa weight of reinforci	concrete. It i used for and includes a nce for the ng steel.
			It does not necess actual density of th produced for the p resulting error is s anything, conserva	arily reflect the concrete project. The mall and, if ative.
Poisson's Ratio	- 0.2		Average value trac utilized in the desi structures.	ditionally gn of shell
Maximum Slump	2		Limits on slump a	re imposed to
3" for 5000 p	osi concrete		ensure that the co properties assume design are actuall	ncrete ed by the v realized an
4" for all oth	er concrete		that the concrete r durable and functi lifetime of the plar	remains onal for the it.
Maximum Placir	g Temperatures		Limitations on terr imposed for the sa	perature are
70°F for 500 90°F for all o	0 psi concrete other concrete		slump limitations a	are specified
Portland Cemen	<u>t</u>	See Page 2, "Concrete," for the Source of the requirements	ASTM C150 ceme for conformance to	ent is require o ACI 301.
ASTM C Type II	:150	identified for Concrete Aggregates.	Type II cement is primarily to minim development, and subsequent volum cracking during hy cement.	chosen ize heat the ne changes a vdration of th
Concrete Aggre	<u>gates</u>		Conformance to A required by ACI 3	STM C33 is
ASTM C modifica	33 with minor ations		the cited G/C, Inc. for the exceptions requirements to A	specification to the STM C33.
Maximum si Ty <u>p</u> ically: 1 1/2" Where spec 3/4"	ze: ified:		Greatest economy using 1 1/2" aggre size is occasional drawings to ensur void-free placeme in areas of rebar of	y is achieved gate; but 3/4 ly called for t e adequate, nt, especially congestion.

page 7 of 47

🐼 Progress Energy	CRY	STAL RIVER UNIT 3	Page 4 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT - G	ENERAL	SYSTEM N/A	CODE:
PARA	METER	SOURCE	REAS	<u>on</u>
Reinforcing Stee	<u>əl</u>			
Bars				
Original Construction ASTM A615 Grade 40 Repair of Delaminated Dome ASTM A615 Grade 60		The following G/C, Inc. specifications define the requirements for steel reinforcement for structural concrete: 1. SP-5646 2. SP-5648	 Intermediate grade billet steel reinforcement chosen because: a. Conforms to ACI 318, adherence to which is required by 10CFR50.55a. b. Economical, available material capable of satisfying design requirements. 	
		reference only.		
<u>Cadweld Re</u> <u>Steel Splice</u> For splices bars larger t	inforcingG/C, Inc. Struc. Specs.Regulatory Guide 1.SP-5646"Mechanical (Cadwe SP-5648of reinforcing(for reference only).han #11.Safety Guide 1.10)		1.10, weld) Splices s of Category I es." (formerly)	
Prestressing Ma	aterial		/	
<u>Conduit (Ge</u> - 10 psig pressure - galvaniz - capable 200 pou	eneral) hydrostatic e capacity zed steel of supporting	The following G/C, Inc. specifications pertain to the following entries for conduit and are listed here for reference only: 1. RO-3040 2. SP-5844	All conduit must b withstanding inter due to injection of inhibiting grease. All conduit galvan corrosion and furt containment of gre	e capable of nal pressures corrosion ized to prevent her assure ease.
- sufficier accomm tendon	nt size to nodate a 163 wire		All conduit must b withstanding unar during installation construction.	e capable of ticipated loads and
Rigid Conduit - and hoop tendo walls. - Round, me tubing - ASTM A5 - 0.065" mir thickness - 5 1/4" O.D - 5" I.D.	Used in vertical ns in cylindrical echanical welded 13-69 nimum wall	See "Conduit (General)" for the Source of requirements cited on this page.	Most economical available to withst to concrete placer due to the interna exerted by the inje corrosion inhibitin	material and loads due nent and also l pressure ection of g grease.
		Tab 1/1, Revision 6		

,

	·				
Progress Energy	CR) DESI	(STAL RIVER UNIT 3 GN BASIS DOCUMENT	Page 5 of 44 Re		
SYSTEM NAME:	CONTAINMENT - G	GENERAL	SYSTEM N/A	CODE:	
PARA	METER	SOURCE	REASON		
Flexible Conduit Used around wall of conta - Minimum 2 - 5 1/4" O.D - 5" I.D.	d penetrations in ninment. 2 gauge		Flexible conduit sp order to permit eco efficient field fabric fitting.	becified in conomical and cation and	
Schedule 40 Co Used in foundati	nduit on mat and	See "Conduit (General)" on Page 5 for the Source of requirements cited on this page.	Structural design r ensure that dome system is capable the dome liner und	naterial to conduit of supporting ter concrete	
- ASTM A53 Steel pipe Grade A for	-70, Type E or S mat		the dome liner under concrete placement loads. This conduit is, therefore, load carrying such that Grade B material (fy = 60 ksi) is specified.		
Grade B for	dome		In the base mat th conduit (pipe) is th material between the base mat and conduit in the cylir This pipe is not re- structural load, su A material (fy = 48 considered adequ	e schedule 40 the transition the trumpet in the rigid ndrical wall. quired to carry ch that Grade ksi) is ate.	
<u>Tendon Wire</u> ASTM A421 Type BA	-65 A	Tendon wire is specified in G/C, Inc. Specification SP-5583 and is listed here for reference only.	Steel conforming t is the standard ma throughout the ind as a buttonheaded The steel used for the Japanese equ material.	to ASTM A421 aterial specified lustry for use d tendon wire. this project is ivalent of that	
f _y = 240 ksi			Exceptionally high required in order t required level of p	strength is o develop the restress.	
- Relaxation	= 4%	See "Tendon Wire" on Page 6 for the Source of the requirement cited on this page.	Relaxation is a los when a wire is pre maintained at a co for an extended tin degree to which th varies with the ste therefore, specifie supplier. That val known in order to effective prestress the plant.	as of stress estressed and onstant strain me. The his happens el and is, d by the steel ue must be evaluate the s over the life of	
		Tab 1/1, Revision 6			

FM 6.5 Exhibit 12

page 9 of 47

🐼 Progress Energy	rgy CRYSTAL RIVER UNIT 3 Page 6 of 44 Rev. DESIGN BASIS DOCUMENT				
SYSTEM NAME:	CONTAINMENT - G	ENERAL	SYSTEM N//	CODE:	
PARA	METER	SOURCE	REAS	ON	
<u>Tendons</u> - 163 wire Area - 9.7	23 in ²	G/C, Inc. Specification SP-5583 (for reference only).	The tendon comp 7mm wires is app equivalent to the wire tendons typic utilized in the indu of plant design.	rised of 163 - roximately 170-0.25 in. cally being istry at the time	
			See page 19 for a prestress forces in three tendon grou	summary of each of the ps.	
Anchorage Com Bearing plat - ASTM A53 - Grade B - Class 2	iponents ie 33	Prescon Shop Drawings.	Utilized on the bar recommendations Corp., the supplie prestressing syste	sis of From Prescon r of the em.	
Shims - Modified A material	rmco VNT or like	PEERE # 0987			
- Alloy steel	nd Washer forging				
<u>Tendon Grease</u> Shop applic Viscono Field applica Viscono Viscono	ation: orust 3001A ation: orust 2090P orust 2090P-2	G/C, Inc. Specification SP-5583 (for reference only).	Visconorust 3001, state-of-the-art ter the prevention of prestressing wires material was used shop-applied coat and 2090P-2 werd coat the inside of well as to serve a after tendon insta	A was the ndon grease for corrosion of 5. The 3001A J as a ting. The 2090P e used to field the conduit as s a bulk filler llation.	
			Other Visconorus compatible with th used during outag tendon surveilland out.	t formulations lose noted are les when ce is carried	
Foundation Bea	ring Material	The basic source for all criteria relating to foundation design parameters is: Woodward-Clyde & Assoc., "Summary of Foundation Investigation Evaluation and Construction for Crystal River Unit 3."			

FM 6.5 Exhibit 12 page 10 of 47 **CRYSTAL RIVER UNIT 3** Page 7 of 44 S Progress Energy Rev. 6 **DESIGN BASIS DOCUMENT** SYSTEM NAME: SYSTEM CODE: **CONTAINMENT - GENERAL** N/A PARAMETER SOURCE REASON Primarily 1500 psi fill concrete 1. Letter FPC-438, dated Fill concrete strength and placed over competent existing deformation properties equal or 12/2/68 from D. A. Skilton limerock. A 1.5' to 3' layer of (G/C) to R. B. McKnight exceeding those of the existing (FPC), "Comparative Analysis sound bedrock. crushed limerock was used sparingly to permit dewatering of 12'-6" & 22'-0" Thick during placement of fill concrete. Reactor Building Mats and Foundation Treatment." 2. Letter dated 12/12/68 from R. B. McKnight to D. A. Skilton, "Reactor Building Foundation." G/C, Inc. Struc. Calc. Parameters required for dynamic Coefficient of Subgrade analysis of the foundation mat. Reaction/Modulus of FC 1.01.3/1118. Values vary with contact area Deformation between underside of foundation Variable - See Reason mat and the subgrade. Poisson's Ratio -1. G/C, Inc. Struc. Calc. Foundation parameter required 0.33 FC 1.01.1/0B. for finite element analysis. 2. Woodward-Clyde Report, Section 4.2.0, Table II. Bearing Capacity -Woodward-Clyde Report, Section Applicable to static loading 4.2.0, page 29. conditions. 8 ksf G/C, Inc. Struc. Calc. Parameter required for finite Density of Rock element analysis of foundation 129.8 pc FC 1.01.1/OD. mat.

page 11 of 47

🗴 Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT	Page 8 of 44	Rev. 6
SYSTEM NAME: CONTAINMENT - GENERAL		SYSTEM N//	CODE:
DESIGN COND	ITIONS		

Loads - This listing includes all loads applied to any portion of the containment shell including the protective retaining wall and the base mat. Not all of these loads, however, are applied to any particular portion of it. For instance, wind and tornado loads are not experienced directly by the base mat nor hydrostatic pressure by the dome. The effects of forces not applied directly are, however, felt as boundary condition moments and forces applied at the jointure of adjacent elements. Indirectly applied loads, therefore, are included in appropriate load combinations.

- General Design Criterion No. 2, Federal Register dated 7/11/67, Part 50, Appendix A, "Performance Standards," requires consideration of forces resulting from natural phenomena such as earthquakes, tornadoes, flooding, wind, hurricane and other local site affects. These forces are considered in this section.
- The loads listed represent input to design calculations. They do not necessarily represent working level or ultimate capacities.

PARAMETER

Dead Load (D)

Reinforced concrete - 150 pcf

Weight of equipment and interior structures

- 35446 kips, not including refueling water
- 38566 kips, including refueling water

Weight of shell - 58631 kips

Weight of base mat - 35600 kips

Live Load (L)

Base mat floor, 200 psf

Hydrostatic Load (G)

Normal groundwater level, El. 90'-0"

G/C, Inc. Struc. Calcs. FC 1.01.3/1101 through FC 1.01.3/1109.

SOURCE

FSAR Section 5.2.1.2.2 and

Figure 5.2. (for reference only).

Major equipment data source: B&W Dwg. 112798E/4

G/C, Inc. Struc. Calc. FC 1.01.3/1114.

G/C, Inc. Struc. Calc. FC 1.01.3/1116.

G/C, Inc. Struc. Calc. FC 1.01.3/1106.

- G/C, Inc. Struc. Calcs. FC 1.01.1/OC and FC 1.01.2/1.
 FSAR Section 2.5.3.5 (for
- 2. FSAR Section 2.5.3.5 (for reference only).

Tab 1/1, Revision 6

REASON

The weight of the completed structure and of the facilities supported by it.

Weights shown do not include the weight of the base mat nor the 2'-0" thick base mat floor slab.

Weights of interior structures determined using dimension from preliminary layout drawings.

Weight of shell based on available data on preliminary layout drawings.

Weight of 147'-0" diameter, 12'-6" thick mat.

Allows for existence of miscellaneous, undefined equipment on mat (inside the Reactor Building).

Water pressure acting on the protective retaining wall which is attached to the perimeter of the foundation mat and on the underside of the mat.

page 12 of 47

🐼 Progress Energy	CRY DESIG	STAL RIVER UNIT 3 ON BASIS DOCUMENT	Page 9 of 44	Rev. 6	
SYSTEM NAME:	CONTAINMENT - G	ENERAL	SYSTEM N//	SYSTEM CODE: N/A	
PARA	METER	SOURCE	REAS	ON	
Maximum gro El. 118'-6"	oundwater level,	 G/C, Inc. Struc. Calc. FC 1.01.2/1. FSAR Section 2.4.2.2 (for reference only). 	This is also plant grade. Th protective retaining wall (top 119'-0") is, therefore, desigu for near full hydrostatic hea		
<u>Lateral Soil</u> <u>Pressure (H)</u> Equivalent flu pcf	uid pressure, 40	 Woodward-Clyde and Assoc. Report, Page 31. G/C, Inc. Struc. Calc. FC 1.01.2/2. Letter FPC-190, dated 4/1/68, R. L. Gerhart (G/C) to R. B. McKnight (FPC), "Reactor Building Retaining Wall." 	Active earth pressure acting or protective retaining wall.		
Surcharge load - 376 psf		Same sources as for equivalent fluid pressure.	Uniform load due t of backfill adjacen retaining wall. Ba to weigh 112.8 pc	to 10'-0" height t to protective ckfill assumed f.	
Internal Pressure	<u>e (P)</u>				
Hydrogen De Original: 14. Initial, H ₂ add 17.48 ps Von-Neumar 366 psia Impulse: 16 C-J plane: 19 Equilibrium: 96.6 psia	etonation 7 psia ded: ia n Shock: 35 psia 91 psia	GAI Memorandum from R. A. Putman to R. E. Vaughn, Subject - CR3 Hydrogen Detonation, Final Report, June 11, 1982. G/C, Inc. Struc. Calcs. for W.O. 04-4762-124.	Hydrogen detonat was performed in check the ability o Building to perforn containment funct hydrogen detonati Such loads were r in the original desi	ion evaluation 1982 in order to f the Reactor n its ion for a on loading. not considered ign of the plant.	
Accidental S - 2.5 psig (Si of containr	pray Actuation uction on interior nent).	FSAR Section 5.2.1.2.7 (for reference only). Undocumented input from Babcock and Wilcox.	The 2.5 psig pressure drop is associated with the sudden cooling effect in the interior of th airtight containment following accidental actuation of the Reactor Building Spray System		
Additionally - (Suction on i containment	–6.0 psig nterior of).	Calculation S-00-0006	Total suction pres operating pressure cooling effects.	sure including e range and BS	

page 13 of 47

Y Progress Energy	CF Des	RYSTAL RIVER UNIT 3 IGN BASIS DOCUMENT	Page 10 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT -	SYSTEM N//	CODE: A	
PARA	METER	REAS	ON	
<u>Tornado Differen</u> - 3 psi	<u>itial Pressure</u>	FSAR Section 5.2.1.2.6 (for reference only).	A suction experier outside of the Con Structure correspond drop in atmospher characteristic of the of a tornado. The because the Conta Structure is airtigh no opportunity for escape and reach with the outside.	nced by the itainment onding to the ric pressure ne center vortex pressure occurs ainment it and there is contained air to equilibrium
<u>Test Pressure</u> - 63.3 psig		FSAR Sections 5.2.1.2.1 and 5.6.1 (for reference only).	USAES Safety Gu "Structural Accept Concrete Primary Containments" red 1.15 times accider Confirmation of co integrity to assure response of princi elements was con design. Test press loads similar to the would be experien event of a LOCA of	ide 18, ance Test for Reactor quires testing at nt pressure. Intainment structural pal strength sistent with sure imposed ose which need in the or SSE.

r

page 14 of 47

Progress Energy	CRYS DESIG	STAL RIVER UNIT 3 N BASIS DOCUMENT	Page 11 of 44	Rev. 6			
SYSTEM NAME: CONTAINMENT - GENERAL			YSTEM NAME: CONTAINMENT - GENERAL			SYSTEM C	ODE:
<u>PARAMETER</u>		PARAMETER SOURCE		<u>/N</u>			
<u>Accident</u> - 55 psig		 B&W Internal Memoranda, I. T. Putney to H. E. Flora, Metropolitan Edison Company, Reactor Building Dome and Wall, Temperature Profile Following a 36 inch I.D. Pipe Double Ended Rupture, 4/13/67. Reactor Building Analysis - Effect of Core Flooding Tanks on Reactor Building Pressure, 7/20/67. B&W Internal Memoranda T. Putney to R. E. Wascher, "Reactor Building Analysis - Effect of Emergency Core Cooling on Post Accident Pressure," 2/13/68. C. E. Barksdale to B.B. Cardwell, Florida Power Corp "Reactor Building Pressure Test," 4/19/69. G. F. Glei to Distribution, Florida Power Corp "Final Safety Analysis Report," 2/26/70. Letter from C. E. Barksdale of B&W to E. R. Hottenstein of GAI, "CR-3 Reactor Building Analysis," 4/22/70. (GAI-409). Letter from L. Sack of GAI to F. Norman of B&W, "CR-3 FSAR," 5/5/70. (B&W-343). 	Pressure inside con resulting from a wor analysis by B&W.	tainment st-case LOC			
wind Load (W)							
Basic wind vo - 110 mph at	elocity 30' above grade	 G/C, Inc. Struc. Calc. FC 1.01.3/162. FSAR Section 5.2.1.2 (for reference only). 	ASCE Paper No. 32 Forces on Structure 1961, Figure 1(b) fo a. 30' above grade b. Crystal River site	:69, "Wind s," Vol. 126 r: 9			
Wind velocity at grade (top of cor building) - 179 m	166'-10" above Itainment ph	G/C, Inc. Struc. Calc. FC 1.01.3/162.	ASCE Paper No. 32 1139.	:69, page			

page 15 of 47

Progress Energy DESI		YSTAL RIVER UNIT 3 GN BASIS DOCUMENT	Page 12 of 44	Rev. 6		
YSTEM NAME:	CONTAINMENT - (GENERAL	SYSTEN N	M CODE: I/A		
PARA	METER	SOURCE	REA	REASON		
Wind pressure - 0.568 psi applied uniformly over the entire height of the structure		G/C, Inc. Struc. Calc. FC 1.01.3/162.	ASCE Paper No. 1164, Table 4(f). (q = 0.002558 V2	. 3269, page 2).		
Note: Des 1. Sou 2. ANS Stru	ign wind pressure e: thern Standard Build SI A58.1 – 1955, "Bu ctures."	xceeds the requirements of: ding Code, 1965 Edition, Section 1205. ilding Code Requirements for Minimun	n Design Loads in Build	ings and Other		
Tornado Wind L	oad (Ww)	FSAR Section 5.2.1.2.6 (for reference only).	ASCE Paper No. 1129.	. 3269, Page		
Tangential mph Equivalent wi - 230.22 psf	velocity - 300 ind pressure	G/C, Inc. Struc. Calc. FC 1.01.3/160.				
			,			
Tornado Missile NOTE: Conside combina been de The con inspectie	eration of the tornado ations. Rather, capa monstrated by comp tainments for the two on to be significantly	o missile load did not include the postul ability to withstand the local effects of su parison with the analysis carried out for to plants were almost identical, and the to more severe than that associated with	lation of such loads in d uch impact was conside r Three Mile Island for a aircraft impingement lo n the postulated tornado	lesign load ered to have hircraft impact. oad was found o missiles.		
Tornado Missile NOTE: Conside combina been de The con inspection The missiles cor	eration of the tornado ations. Rather, capa monstrated by comp tainments for the tw on to be significantly nsidered were:	o missile load did not include the postul ability to withstand the local effects of su- parison with the analysis carried out for to plants were almost identical, and the more severe than that associated with FSAR Section 5.2.1.2.6 pertains to the entire entry on tornado missiles (for reference only).	lation of such loads in d uch impact was conside r Three Mile Island for a e aircraft impingement lo n the postulated tornado Origin of tornado postulation is not However, the spe tornado missiles Unit 3 are similar specified in:	lesign load ered to have hircraft impact. bad was found o missiles. missile t known. ectrum of for Crystal Riv r to that current		
Tornado Missile NOTE: Conside combina been de The com inspectie The missiles cor Utility pole length - 35'-diameter - 14 density- 50 p velocity - 150 max. static le	2" Pration of the tornado ations. Rather, capa pronstrated by comp tainments for the two on to be significantly hsidered were: 0" 4" ocf 0 mph oad - 148 kips	o missile load did not include the postul ability to withstand the local effects of su- parison with the analysis carried out for to plants were almost identical, and the more severe than that associated with FSAR Section 5.2.1.2.6 pertains to the entire entry on tornado missiles (for reference only). Three Mile Island FSAR, Sec. 5.2.1.2.6.	lation of such loads in d uch impact was conside r Three Mile Island for a e aircraft impingement lo n the postulated tornado Origin of tornado postulation is not However, the spe tornado missiles Unit 3 are similar specified in: a. Standard Re "Barrier Desi b. Standard Re 3.5.1.4, "Mis by Natural Pi	lesign load ered to have hircraft impact. oad was found to missiles. missile t known. ectrum of for Crystal Riv for Crystal Riv for Crystal Riv to that current eview Plan 3.5.3 ign Procedures eview Plan siles Generate henomena."		
Tornado Missile NOTE: Conside combina been de The con inspectie The missiles con Utility pole length - 35'-(diameter - 1 density- 50 p velocity - 15 max. static le Automobile weight - 1 to velocity - 15	2" pration of the tornado ations. Rather, capa monstrated by comp itainments for the tw on to be significantly nsidered were: 0" 4" ocf 0 mph oad - 148 kips n 0 mph	o missile load did not include the postul ability to withstand the local effects of su- parison with the analysis carried out for to plants were almost identical, and the more severe than that associated with FSAR Section 5.2.1.2.6 pertains to the entire entry on tornado missiles (for reference only). Three Mile Island FSAR, Sec. 5.2.1.2.6.	lation of such loads in d uch impact was conside r Three Mile Island for a e aircraft impingement lo n the postulated tornado Origin of tornado postulation is not However, the spat tornado missiles Unit 3 are similar specified in: a. Standard Re "Barrier Desi b. Standard Re 3.5.1.4, "Mis by Natural Pi	lesign load ered to have hircraft impact. oad was found o missiles. missile t known. ectrum of for Crystal Riv for Crystal Riv for Crystal Riv to that current eview Plan 3.5.3 ign Procedures eview Plan siles Generate henomena."		

X Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT			Page 13 of 44 F			
SYSTEM NAME: CONTAINMENT - GENERAL					SYSTEM CODE: N/A		
PARA	METER		SOURCE		REAS	<u>ON</u>	
Safe Shutdown I (SSE) - 0.10 g, maximu ground motion - 0.067 g, maxin ground motion	Earthquake Im horizontal acceleration. num vertical acceleration.	2. 3.	FSAR Section 2.5.4.1 (for reference only). G/C, Inc. Struc. Calcs. FC 1.01.3/1000 through FC 1.01.3/1100.	2.	Relationship b earthquake int ground accele in "Nuclear Re Earthquake," 1 USAEC.	etween tensity and ration as giv eactors and TID-7024,	
Seismic Criteria a. SSE = 2 x OE b. Vertical acce horizontal ac	3E I 2/3 of ccel.			3.	0.10g is the m acceptable SS motion accele according to c	inimum SE ground ration urrent criteri	
<u>Thermal (T)</u> Temperatures de operation and as LOCA are show	uring normal s the result of a n on the following	1.	FSAR for Three Mile Island Unit 1, Section 5.2.1.2.9 and Section 5.2.1.1.10.	Th ter cor de	e operating and nperature profile ntainment wall v rived and utilize	l accident es through th which were d for Three	
table.	5	2.	FSAR Section 5.2.1.2.8 (for reference only).	Mil for of	le Island Unit 1 [·] Crystal River U the similarity in	were utilized Init 3 becaus containment	
		3.	See page 14 of 55 under Accident Pressure.	an be	d in NSSS syste cause use of ter	ems and mperature	

Temperatures resulting from hydrogen detonation are shown on the following table.

GAI Memorandum from R.A. Putnam to R. E. Vaughn, Subject - CR3 Hydrogen Detonation, Final Report, June 11, 1982.

page 16 of 47

6

/en

ia.

he d se ts profiles for an area with more severe winter temperatures would be conservative.

This analysis was not performed for the original design of the containment.

FM 6.5 Exhibit 12

page 17 of 47

🔀 Progress Energy

CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT

Page 14 of 44

Rev. 6

SYSTEM NAME:

EVETEM CODE:

CONTAINMENT - GENERAL

S	Y	S	T	E	М	C	;C	ונ	C	E
				١	١//	4				

DESIGN TEMPERATURES		
	INSIDE	OUTSIDE
Winter Normal Operation - Buttress - Wall	102°F 99°F	30°F 37°F
Winter Start-up - Buttress - Wall	102°F 99°F	26°F 28°F
Winter Shutdown - Buttress - Wall	102°F 99°F	32°F 37°F
Winter Accident - Buttress - Wall	158°F 158°F	32°F 37°F
Hydrogen Detonation - Shell	2965°F	

Prestress Force

See next page

page 18 of 47

🔀 Progress Energy

CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT

Page 15 of 44

Rev. 6

SYSTEM NAME:

Г

SYSTEM CODE:

CONTAINMENT - GENERAL

N/A	

PRESTRESS FORCE								
	VERTICAL	HOOP	DOME		SOURCE			
					Vert	Ноор	Dome	
Pattern	144 tendons	94 hoops 3 tendons per hoop	3 sets of 35 tendons	2 sets of 6 tendons	3	8	6, 10	
Radius	807.375'	812.375'	720.375'	720.375'	3	7	6	
Spacing	35.23"	13"	30"	30"	3	5	4	
Prestress Level Specified	457 K/ft	829 K/ft**	820 K/ft		1	1	1	
Immediate (80% GUTS)*	1868 K/ tendon	1868 K/ tendon	1868 K/ tendon		9	9	9	
Lockoff	1635 K/ tendon	1635 K/ tendon	1635 K/ tendon	646 K/ tendon	9	9	9, 10	
Min. Req'd at 40 years	1149 K/ tendon	1252 K/ tendon	1215 K/ tendon		2	2	2, 10	

** 415K/ft for lower 10 feet of wall

GUTS = Guaranteed Ultimate Tensile Strength = 2335K/tendon (A = 9.723 in2, fu = 240 ksi)

Sources:

- 1. SP-5583
- Memo: J.F. Fulton to J.C. Herr, "CR3 Tendon Surveillance FSAR Technical Specification 4.6.1.6 -Required Minimum Average Tendon Force for the Repaired Dome", 2/15/80, plus attached calculations for W.O. 04-4762-099.
- 3. G/C, Inc. Structural Calculation FC 1.01.7/2
- 4. G/C, Inc. Structural Calculation FC 1.01.7/50
- 5. Prescon Shop Drawings
- 6. G/C, Inc. Structural Calculation FC 1.01.17/0
- 7. G/C, Inc. Structural Calculation FC 1.01.8/30
- 8. G/C, Inc. Structural Calculation FC 1.01.8/4
- 9. ACI 318-63, Sec. 2606.
- 10. G/C, Inc. Report, "Reactor Building Dome Delamination, Final Report," December 10, 1976.

Reason:

The prestress forces provided in the vertical, dome, and hoop directions are sufficient to eliminate tensile stresses in the shell due to membrane forces resulting from design loads. Prestress losses due to such factors as shrinkage, concrete creep, steel relaxation, elastic shortening of the concrete, and friction were considered in the determination of prestress levels.

page 19 of 47

🐼 Progra	Progress Energy DES		<mark>(STAI</mark> GN BA	ASIS DOCUMENT	Page 16 of 44	Rev. 6
SYSTEM NAME: CONTAINMENT -		CONTAINMENT - C	SENER	AL	SYSTEM CODE: N/A	
Analys	PARA sis	METER		SOURCE	REAS	<u>ion</u>
 Static Analysis of the overall structure insofar as it can be considered a thin, elastic shell of revolution. Kalnins Program for the exact numerical solution of the general bending theory of shells. 		 tic Analysis of the overall structure insofar as it can be considered a thin, elastic shell of revolution. Kalnins Program for the exact numerical solution of the general bending theory of shells. FSAR Section 5.2.4.1.1 (for reference only). Journal of Applied Mechanics, Vol.31, 1964, pages 467 to 476. 		FSAR Section 5.2.4.1.1 (for reference only). Journal of Applied Mechanics, Vol.31, 1964, pages 467 to 476.	Permits realistic analysis of containment when exposed large variety of loading conditions, all relatively quic and at reasonable cost.	
b.	Analysis discontir opening - Finit com usin prog Insti	of nuities at large s. e element puter analysis g FELAP, a gram of Franklin tute Research s.	1. 2.	FSAR for Three Mile Island, Unit 1, Appendix 5C, Docket No.50-289. FSAR Section 5.2.4.1.1 (for reference only).	Localized effects of openings in the sh independent analy solution as for a s revolution is not p	of large hell require ysis. An exact hell of ossible.
C.	Thermal shell in I - A.K. E.C. Dist Cylin a Ci Inge Aug - G.N Con Arou	loading of the ocalized areas. Maghdi and Eringen, "Stress ribution in a ndrical Shell with rcular Cut Out," eniev - Archiv, ust, 1964. Savin, "Stress centration und Holes"	1. 2.	FSAR Section 5.2.4.1.1 (for reference only). FSAR for Three Mile Island, Unit 1, Section 5.2.4.1.1.	This analysis was to localized applic significant temper Thermal loads on a whole were con Kalnins analysis.	applicable only ations of ature variations. the structure as sidered with the
d.	Hydroge - A pr ana if pr was app	en Detonation eliminary lysis to determine essure capacity at least twice the lied load.	G/0	C, Inc. Struc. Calcs. FC 4762-124-1/3 through FC 4762-124-1/6.	A simplified static excessively conse be done relatively an analysis could demonstrated suff no further analysis been needed. Th load" criteria allow of dynamic load a Dynamic analysis necessary. See for material.	analysis is ervative but can quickly. If such have ficient capacity, s would have e "twice the vs for the affect pplication. found to be ollowing

page 20 of 47

Progress Energy CR		STAL RIVER UNIT 3	Page 17 of 44	Rev. 6
YSTEM NAME:	CONTAINMENT - G	SYSTEM CODE: N/A		
PARA	METER	REASO	N	
 Dynamic (seismic) Superposition of normal modes of free vibration, as determined by Kalnin's program in order to determine response of shell to an earthquake. Damping factor for shell		 (seismic) FSAR Sections 5.4.5.1 and 5.2.4.1.2 (for reference only). A. Kalnins, "On Free and Forced Vibration of Rotationally Symmetric Layered Shells," Journal of Applied Mechanics," December 1965. 		
b. Elasto p hydroge loads to capabilit withstan	lastic analysis of n detonation determine y of structure to d imposed loads.	G/C, Inc. Struc. Calcs. FC 4762-124-1/6 through FC 4762-124-1/55.	Assumptions 1. Tendon capaciful ultimate strengt 2. Consider contriand reinforcem 3. 1/2 of tendon lo by plant startup 4. Concrete crack stress of $3\sqrt{f'c}$	ty = 90% of th, 216 ksi. bution of line ent. osses occur o. s at tensile
		GAI Memorandum from T. D. Biss to G. Sayer, Subject - CR3 High Point Vent System - Hydrogen Detonation Evaluation, and attached final report on "Structural Evaluation of Hydrogen Detonation," 7/19/82.	Conclusion Building capab withstanding de conditions with compromising t capacity.	le of etonation out the liner
Design of Mild S Reinforcement	teel			
1. Allowable cc a. Membra psi for fa when te excluded tempera included	oncrete stress ne tension - 212 actored loads mperature effects d; 424 psi when ture effects	FSAR Section 5.2.3.3.1 (for reference only) ACI 318-63, Section 2605, "Building Code Requirements for Reinforced Concrete". ACI 505-54, "Specification for the Design and Construction of Reinforced Concrete Chimneys."	Allowable stresses defined in order to a Stress Design meth	need to be apply Workir ods.
b. Membra allowed loads.	ne tension not for unfactored	FSAR Sec. 5.2.3.3.1 (for reference only).	Tension at unfactor could result in unde cracking. Such tens application of suffici	ed load leve sirable ion limited b ent prestres

page 21 of 47

Progress Energy		(STAL RIVER UNIT 3 GN BASIS DOCUMENT	Page 18 of 44	Rev. 6
SYSTEM NAME: CONTAINMENT -		GENERAL	SYSTEM CODE: N/A	
PARAMETER c. Shear - If membrane stress is tensile or low level compressive (less than 100 psi) design for shear provisions of ACI 318-63. Ch. 17.		AMETERSOURCE- If membrane1.G/C, Inc. Struc. Calcs. FCis tensile or low1.01.4/52 throughcompressive (lessFC 1.01.4/65.00 psi) design for2.FSAR Sec. 5.2.3.3.1provisions of ACI(for reference only).3, Ch. 17.T		<u>DN</u> in 1701, formula shear in o axial tension.
If mem compre 100 psi provisio Chapte stresse	brane ession exceeds , design for shear ons of ACI 318-63, r 26 for pre- d concrete.	FSAR Sec. 5.2.3.3.1 (for reference only).	ACI 318-63, Sectic defines allowable s concrete under axi compression.	n 2610, shear stress in al
2. Capacity re for tensile stresses - factors in a ACI 318-6	eduction factor (0) membrane 0.95: Other 0 accordance with 3.	ACI 318-63, Section 1504.	Use of capacity reducti introduces necessary conservatism by preve consideration of 100% capacity to carry loads	
 Provide mild steel reinforcement to: Carry localized moments and shears at openings, discontinuities, and changes of section. 		 FSAR Section 5.2.5.2.1 (for reference only). G/C, Inc. Struc. Calc. FC 1.01.4/40-106. 	The prestress load membrane forces a considered to neut membrane forces o loads. Where local and moments exist reinforcement mus	s are and are ralize tensile due to design ized shears t, conventional t be provided.
		G/C, Inc. Struc. Calc. FC 1.01.4/14A.	Much of the conve reinforcement was the basis of the de Mile Island, Unit 1, known to be subjec severe loads (aircr steeper thermal gr action was taken ir FPC schedule requ	ntional specified on sign for Three which was ct to more aft impact, adients). This order to meet uirements.
b. Reinfor temper and sh concre Provide reinford 0.15% section concre face.	rce for effects of ature variations rinkage of te: e area of cement equal to of the gross cross al area of the te on the exposed	G/C, Inc. Struc. Calcs. FC 1.01.4/68 and FC 1.01.3/75.	Required to contro	l cracking.
c. Limit te	ensile stresses	FSAR Section 5.2.3.3.1 (for reference only).	Control cracking	,

page 22 of 47

Progress Energy DES		YSTAL RIVER UNIT 3 IGN BASIS DOCUMENT	Page 19 of 44	Rev. 6
SYSTEM NA	ME: CONTAINMENT -	GENERAL	SYSTEM N//	CODE:
<u>P</u>	ARAMETER	SOURCE	REAS	ON
d. Lim wh exc ten	nit compressive strain en concrete stress ceeds 0.45 f [°] c under nporary conditions.	ACI 318-63, Section 2605.	Prevent short term the concrete.	n overstress of
e. Pro car ope hav the bee	ovide the tensile load rying capacity at enings which would ve been provided by concrete had there en no openings.	G/C, Inc. Struc. Calc. FC 1.01.4/18.	This occurs only u application of 1.5 pressure. Without reinforcement, suf would not be prov	inder times accident the extra ficient capacity ided.
f. Pro car	ovide reinforcement to ry polar crane loads.	G/C, Inc. Struc. Calc. FC 1.01.4/30.	Crane girder loads considered in the shell. Reinforceme must be added to	s are not analysis of the ent required the design.
4. Assum design	e cracked sections in of steel reinforcement.	FSAR Sec. 5.2.3.3.1 (for reference only).	Concrete must be have no tensile ca	considered to pacity.
5. Load c elastic l a. Ste mir b. Co 318 c. Lim ma les	apacity – upper limit of behavior: eel – guaranteed himum yield strength. ncrete - per ACI 3-63. hited by need to intain liner strains to s than 0.005"/inch.	FSAR Section 5.2.5.2.1 (for reference only).	Such limitations a assure structural i strain compatibilit	re necessary to ntegrity and y.
ACCEPTA	NCE CRITERIA			
$\frac{\text{Load Comt}}{\text{Containme}}$	<u>pinations For</u> n <u>t Shell</u>) + W	 ACI 318-63, Part IV-B, "Structural Analysis and Proportioning of Members - Ultimate Strength Design" 	Loads which could experienced durin	d be g construction.

 $C = 0.95D \pm E$ $C = 0.95D + F_i$

iyin Desiyi

page 23 of 47

🐼 Progress Energy	CR) DESI	/STA GN B/	L RIVER UNIT 3 ASIS DOCUMENT	Page 20 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT - G	SYSTEM N//	CODE:		
PARA	METER		SOURCE	REAS	<u>ION</u>
$\begin{array}{c} \textbf{PARAMETER} \\ C = 0.95D + F_o \\ C = 0.95D + F_o + T_o \\ C = 0.95D + F_o - P_s \\ + T_o \\ C = 0.95D + F_o \pm W \\ C = 0.95D + F_o \pm E \\ C = 0.95D + F_o \pm W \\ + T_o \\ C = 0.95D + F_o \pm E \\ + T_o \\ C = 0.95D + F_o - P_s \\ \pm W + T_o \\ C = 0.95D + F_o - P_s \\ \pm E + T_o \\ C = 0.95D + F_o \pm W_w \\ + W_p + T_o \\ C = 0.95D + F_o \pm W_w \\ + W_p + T_o \\ C = 0.95D + F_o \pm W_w \\ + T_o \\ \end{array}$		 FSAR Table 5.3 (for reference only). Three Mile Island FSAR, Table 5.2, Docket No. 50-289. 		REASON Loads which could be experienced during normal operating conditions.	
$C = 0.95D + F_{a} + 1.15P$ * C = 0.95D + F_{a} + 1.5P + T_{a} * C = 0.95D + F_{a} - 1.25W + 1.25F * C = 0.95D + F_{a} - 1.25E + 1.25P * C = 0.95D + F_{a} - 1.25E + 1.25P * C = 0.95D + F_{a} - 1.25E + 1.25P * C = 0.95D + F_{a} - 1.25E + 1.25P + T_{a} - 1.25E + 1.25P * C = 0.95D + F_{a} - 1.25E + 1.25P + T_{a} - 1.25E + 1.25P	a^{+} b^{+} + T _a b^{\pm} b^{\pm} + T _a b^{\pm} E' b^{\pm} 2W	G/	C, Inc. Structural Calcs. FC 1.01.3 and FC 1.01.4.	Loads which could experienced durin conditions.	l be g accident

page 24 of 47

Progress Energy CI		CRY	STAL RIVER UNIT 3	Page 21 of 44	Rev. 6						
SYSTEM	SYSTEM NAME: CONTAINMENT - GENERAL			SYSTEM CODE: N/A							
	PARA	METER	SOURCE	REAS	ON						
Where:											
C =	Required section.	d load capacity of	(See page 22, Load Combination for Containment Shell.)	The loads listed, w reflected in the pre	vhich are eceding load						
D =	Dead loa	ad of structure.		combinations, wer	e considered in						
P =	Design a load.	accident pressure		the design of the s contributors to the	shell as membrane						
P _s =	P _s = Pressure due to accidental spray			loads. Application loads listed in the Condition Section	of the other Design of this Design						
$W_p =$	Internal	pressure due to		Basis Document r	esulted in al and shear						
W =	Wind loa design v	ad based on vind.		stresses which we	ere considered discontinuity						
W _w =	Wind loa tornado.	ad based on		loads rather than a combination. The	as part of a load required						
E =	E = Seismic load based on 0.05g ground motion.		E = Seismic load based on 0.05g ground motion.		E = Seismic load based on 0.05g ground motion.		E = Seismic load based on 0.05g ground motion.			reinforcement was design as necessa	added to the ary. Therefore,
E' =	E' = Seismic load based on 0.10g ground motion			the effects of disco	ontinuity loads						
F: =	$F_{\rm r} = 1$ nitial prestress			most severe mem	brane forces in						
F _o =	$F_0 = Prestress during$		·	a given location.							
	operatio	n.									
F _a =	Prestres accident	ss during t.									
T _o =	Operatir	ng temperature.									
Т _а =	Acciden	t temperature.									

۰.

page 25 of 47

Progress Energy		IGN BASIS DOCUMENT	Page 22 of 44	Rev. 6	
SYSTEM NAME: CONTAINMENT -		FOUNDATION MAT	SYSTEM N/A	CODE:	
PARAM	IETER	SOURCE	REASC	<u>N</u>	
MATERIALS					
See Containmer	nt - General				
<u>GEOMETRY</u>					
GEOMETRY Radius, 73'- 6 3/8" Thickness, 12'- 6" Bearing Elev., 80'- 6"		 G/C, Inc. Struc. Calcs. to evaluate 12'-6" and 22'-0" thick base mats: FC 1.01.1/0A through FC 1.01.1/OH and FC 1.01.1/1 through FC 1.01.1/1 through FC 1.01.1/124. G/C, Inc. Concrete Outline Drawings (for reference only). Report by H. Yang on "Comparison of Results Between Kalnin's and Finite Element Computer Programs." (Filed at end of FC 1.01.1 Structural calculations.) 	 Dimensions est the basis of B& requirements a recommendati the results of a study investiga mat thickness. concluded that excavation wa anticipated and amounts of fill required, it was to increase ma beyond 12'-6". Letter FPC-433 12/2/68 from D (G/C) to R. B. (FPC), "Compa Analysis of 12" Thick Reactor and Foundatio 	stablished on &W and ons and on an extensive ating, optimum It was t even though s greater than d large concrete were s not desirable at thickness 8, dated 0. A. Skilton McKnight arative '-6" and 22'-0" Building Mats on Treatment."	
DESIGN CONDI	TION				
Loads					
See Containme	nt - General				
Analysis					
Kalnin's compu as described u Containment - "Analysis" for b dynamic loads.	iter programs nder General, ooth static and				
Shear stress determined using both Kalnin's analysis and hand calculations.		G/C, Inc. Struc. Calcs. FC 1.01.3/600 through FC 1.01.3/615.	Concrete not capable of carrying imposed shear stresses without benefit of large quantities of reinforcing steel.		
Design					
Ultimate streng factored loads; design for serv	th design for working stress ice loads.	G/C, Inc. Struc. Calc. FC 1.01.3.	ACI 318-63, Part IV	В	
		Tab 1/1, Revision 6			

General

page 26 of 47

Progress Energy	CR DESI	YSTAL RIVER UNIT 3 GN BASIS DOCUMENT	Page 23 of 44 Rev. 6		
SYSTEM NAME:	CONTAINMENT - I	SYSTEM CODE: N/A			
PARAM	IETER	SOURCE	REASON		
ACCEPTANCE (CRITERIA				
Load Combination	ons	G/C, Inc. Struc. Calcs.			
Refer to Co	ntainment -	FC 1.01.3/01100gf			

page 27 of 47

Progress Energy	DESIGN BASIS DOCUMENT	Page 24 of 44 Rev	v. 6	
SYSTEM NAME: CONTAINME WALL AND	ENT - PROTECTIVE RETAINING CANTILEVER SLAB	SYSTEM CODE: N/A		
PARAMETER	SOURCE	REASON		
MATERIALS				
See Containment –Genera	l			
GEOMETRY				
Top of slab, El. 119.0' Wall thickness, 2'-0" Slab thickness, 0'-9" Height of wall, 25'-6"	G/C, Inc. Structural Dwgs: Wall Drawing SC-421-002, Slab Drawings SC-421-011 and SC-421-014 (for reference only).	Dimensions established by structural design and by the postulated maximum water at Elev. 118.5'.		
DESIGN CONDITION	,			
<u>Loads</u>				
See also Containment - General				
<u>Design</u>				
Working Stress Design usi	ng:			
 ACI 318-63, "Building Code Requirements f Reinforced Concrete. 	or G/C, Inc. Struc. Calc. " FC 1.01.2/1-52.	The retaining wall is a conventional reinforced con- structure and subject to star industry design procedures.	crete 1darc	
2. "Moments and Reaction for Rectangular Plates U.S. Dept. of the Inter Bureau of Reclamatio P. 10 and P. 36.	ns G/C, Inc. Struc. Calc. s," FC 1.01.2/2. ior, n,	Analysis of two-way load can capacity of wall using shear moment coefficients.	rrying and	
ACCEPTANCE CRITERIA				
Load Combinations				
C = D + G + H Where: D = Dead Load of Structure G = Hydrostatic Load H = Soil Load NOTE: Lateral pressure due	G/C, Inc. Struc. Calc. FC 1.01.2/1 and 2.	 Two loading conditions considered: 1. Groundwater level at E 70'-0" and 10'-0" of surcharge. 2. Maximum water level a Elev. 118'-6" and no surcharge. 	Elev. at	

page 28 of 47

. .

Progress Energy	C DE	Page 25 of 44	Rev. 6	
SYSTEM NAME:	CONTAINMENT	SYSTEM CODE: N/A		
PARAM MATERIALS	METER	SOURCE	REASO	<u>N</u>
See Containm	ent – General			
GEOMETRY		G/C, Inc. Structural Drawing SC-421-001 (for reference only).	Provide physical access to ba anchorage plate of vertical tendons.	
DESIGN COND	ITIONS			
See Containm	ent – General			
ACCEPTANCE	CRITERIA			
See Containm	ent – General			

page 29 of 47

Progress Energy	CR DESI	YSTAL GN BA	RIVER UNIT 3 SIS DOCUMENT	Page 26 of 44	Rev. 6
SYSTEM NAME: CONTAINMENT - C HAUNCH AND BU			RICAL WALLS, SES	SYSTEM CODE: N/A	
			SOURCE	REAS	<u>ON</u>
MATERIALS					
See Containme	ent – General				
<u>GEOMETRY</u>		1.	Concrete Outline Dwg. SC-421-031.	Geometry is establ equipment space r	ished by equirements,
Wall Thickness, Inside Diameter, Height to Spring	3'-6" , 130'-0" line, 157'-0"	2.	Stretch Outline Dwgs. SC-421-032 SC-421-033.	including that requi maintenance and a the magnitude of d	ired for access and by esign loads.
Height to Springline, 157'-0" Prestressing Vertical tendons, 144 @ 2.94'		3.	Sections & Details Dwgs. SC-421-036 SC-421-043 SC-421-047	which dictate mem arrangement.	ber size and
radius		4.	Prestressing Dwgs. SC-421-048		
Hoop tendons, 282 @ 1.08' sp of 67'-8-3/8"	bacing on radius	5.	SC-421-049. Prescon Drawings.		
Buttress		1.	G/C, Inc. Struc. Calcs. FC 1.01.4/1 through FC 1.01.4/10.	Geometry is establ accommodate the requirements of the	ished to space e prestressing
		2 .	G/C, Inc. Struc. Calcs. FC 1.01.8/1 through FC 1.01.8/55.	system.	
DESIGN COND	ITIONS				
Prestressing					
1. Account fo - interrela between creep ar concrete strain: 0.0001 i strain: (i	r: tionship n: nd shrinkage of e. Shrinkage nch/inch Creep nch/inch/osi)	G/C	, Inc. Struc. Calcs. FC 1.01.7/25 through FC 1.01.7/56.	"Report on Recom Concrete Creep ar Values for Comput Prestressing Value Schupack & Assoc 1968 (Prepared for Central Power & Li	mended nd Shrinkage ing es," Morris iates, June r Jersey ight).
Vert., .0 Hoop, (Dome, (- prestress I - modulus o concrete	00162 0.000401 0.000416 evel f elasticity of			The parameters lis magnitude with the of pressure and ter which they are exp instance, when the vessel is forced to internal pressure, t stretched and pres	ted vary in e existing level mperature to oosed. For containment expand due to the tendons ar tress levels

are increased.

page 30 of 47

🐼 Pro	gress Energy	DESIC	(STAL RIVER UNIT 3 GN BASIS DOCUMENT	- Page 27 of 44	Rev. 6
SYST	SYSTEM NAME: CONTAINMENT - CY HAUNCH AND BUTT		NAME: CONTAINMENT - CYLINDRICAL WALLS, HAUNCH AND BUTTRESSES		ODE:
	PARAMETER		SOURCE	REASC	<u>)N</u>
2.	Capacity o additional µ to 1.2 x f _y =	f liner to resist prestress limited - 36 ksi.	G/C, Inc. Struc. Calc. FC 1.01.7/8 and 9.	The liner undergoes deformation as the o shell. Its resistance deformation is limite strength which is as 20% greater than th minimum liner yield	s the same concrete to such ed by its yield sumed to be le guaranteed strength.
3.	Limit concr due to mer 200 psi.	rete tensile stress nbrane loads to	G/C, Inc. Struc. Calc. FC 1.01.7/9.	ACI 318-63, Sec. 26 tensile stress in unr concrete to	605 limits einforced
				$3\sqrt{f'_{O}}$	2
				Reinforcement prov discontinuity stresse prestressing system membrane stresses	ided to carry es; n carries s.
4.	Design and for: a. bearing b. spalling c. tensile s d. transfer tendon f	chorage zones plitting of unbalanced forces	 Analysis and design of tendon anchorage zones, GAI Report 1730, 1970. G/C, Inc. Struc. Calcs. FC 1.01.7/56a through FC 1.01/7/57 and FC 1.01.8/52 through FC 1.01.8/55. G/C, Inc. Struc. Calc. FC 1.01.7/16. G/C, Inc. Struc. Calcs. FC 1.01.3/303-315. 	Extremely high strea anchorage zone rec consideration.	sses in the quire special
5.	Design par a. coefficie friction, b. wobble 0.0003	rameters ent of tendon 0.16 coefficient,	FSAR Sec. 5.2.5.2.1.1.c (for reference only). G/C, Inc. Struc. Calc. FC 1.01.7/16.	Friction and wobble were specified by P BBRV multi-wire ter Tests have shown t coefficient to be clo use of 0.16 is conse 0.0003 wobble coef representative of ine practice.	coefficients rescon for the ndon system. he friction ser to 0.08 but ervative. The ficient is still dustry
	c. max. all tendon - minimur ultimate	owable stress in less than 70% of n guaranteed strength.	G/C, Inc. Struc. Calc. FC 1.01.7/16.	As required by Sect ACI 318-63.	tion 2606 of
6.	Draping ar openings - radial to op	round major establish forces pening.	G/C, Inc. Struc. Calcs. FC 1.01.15/1 through FC 1.01.15/46 and FC 1.01.16/1.	A draping pattern w which allowed tende around openings, b the radial pressure direction toward the minimal.	as required ons to pass ut such that exerted in a opening was
			Tab 1/1, Revision 6		

i

page 31 of 47

Progress Ene	DESIGN BASIS DOCUMENT		Page 28 of 44	Rev. 6
SYSTEM NAM	IE: CONTAINMENT - C HAUNCH AND BUT	YLINDRICAL WALLS, TRESSES	SYSTEM (N/A	CODE:
PARAMETER		SOURCE	REASC	<u>אכ</u>
Loads				
See also Co	ntainment – General			
Crane Loads Bridge Wt., Trolley Wt., Live Load, 3	5 284.45K 147.00K 860.00K	G/C, Inc. Struc. Calc. FC 1.01.9/1.	Reflects 5% increa "approximate" load Whiting.	se in s provided by
Crane Brack Vertical, 280 Radial, 65. Circum., 14	et Loads DK 6K 5.5K	 G/C, Inc. Struc. Calcs. FC 1.01.9/1 through FC 1.01.9/5. AISC Specification for Design, Fabrication, and Erection of Structural Ste for Buildings, 1969, Sec. 1.3.3 and 1.3.4. 	Includes application impact and develop horizontal runway f eel	n of factors for oment of orces.
<u>Objectives</u> Provide reint	forcement for local		Refer to Containme in this DBD under " Condition - Design	ent - General Design of Mild Steel
loads:			Reinforcement."	
1. Provide reinforce opening tensile capacite which wo opening that pro-	e sufficient cement around gs to replace the load carrying ty of the concrete was removed by the gs, but not less than povided for TMI Unit 1.	G/C, Inc. Struc. Calcs. FC 1.01.4/14 through FC 1.01.4/24.		
2. Design momer penetra wall.	n for full plastic nt capacity of pipes ating the containment	G/C, Inc. Struc. Calc. FC 1.01.12/25.	The plastic momen an upper limit on th capable of being tra the pipe to the cont	t capacity is le load ansferred by tainment shell.
3. At crar a. Desi for to one	ne girder brackets: ign for lateral force wo wheels acting at point.	G/C, Inc. Struc. Calcs. FC 1.01.4/30 through FC 1.01.4/39.	Vertical force assur carried by liner.	med to be
b. Con force whe	sider longitudinal e to act on one el.		Bracket load distrib length of wall. Loads applied with eccentricity to acco erection tolerances location and wall th	outed over 5'-0 sufficient ount for in liner plate nickness.

				F3	
Progress Energy	Progress Energy DESIGN BASIS		RIVER UNIT 3 SIS DOCUMENT	Page 29 of 44	Rev. 6
SYSTEM NAME: CONTAINMENT HAUNCH AND B		YLINDI	RICAL WALLS, SES	SYSTEM (N/A	CODE:
PARA	METER	SOURCE		REASC	<u>NC</u>
 4. Haunch a. Critical loading combinations (1) 0.95D + F_o + 1.5P + T_a (2) 0.95D + F_o 		1. 2. 3.	G/C, Inc. Struc. Calcs. FC 1.01.3/200-216. G/C, Inc. Struc. Calcs. FC 1.01.4/40 through FC 1.01.4/116. TMI Calculations (Computer Analysis, dated 6/27/69).	Haunch is thickene reinforced in order sufficient capacity t membrane and disc loads from the cylir into the base mat.	d and heavily to provide o transfer both continuity ndrical walls
b. Provide sufficient reinforcement to carry the moment resulting from yielding the liner under accident temperature. Consider liner yield stress of 36 ksi.		G/C	, Inc. Struc. Calc. FC 1.01.4/47.	Capability of the liner to indu moments in the wall as the r of its elongation under high temperature exposure are lir by its elastic properties.	
c. Invoke u provisior Chapter	ltimate shear ns of ACI 318-63, 17.	1. 2.	G/C, Inc. Struc. Calc. FC 1.01.4/65. G/C, Inc. Struc. Calc. FC 1.01.7/8.	Design for shear is the axial force exist member. In this ca compressive stress less than 100 psi si Chapter 17 provisio	dependent on ting in the se s was always uch that ons apply.
d. Shear tra wall to m shear ke	ansferred from nat through large ₂ y.	G/C	, Inc. Struc. Calc. FC 1.01.4/40-44.	Shear key provides means of shear tra	s positive nsfer.
ACCEPTANCE	CRITERIA				
Load Combinati	ons				
See also Conta	ainment General				

Controlling load combination for maximum crane bracket load.

C = D + L + E'

G/C, Inc. Struc. Calcs. FC 1.01.9/3-5.

Tab 1/1, Revision 6

The loads imposed by the crane bracket are not membrane loads such that the critical load combinations for the shell are not necessarily the same as those for an attachment to the shell.

FM 6.5 Exhibit 12

page 33 of 47

Tab 1/1, Revision 6

.

page 34 of 47

S Progress Energy	CR DESI	Y STAL RIVER UNIT 3 GN BASIS DOCUMENT	Page 31 of 44 Re		Rev. 6	
SYSTEM NAME:	CONTAINMENT - R		SYSTEM CODE: N/A			
PARA	METER	SOURCE		REASC	<u>DN</u>	
b. Provid as to r effecti	le reinforcing so not prevent ve placement and	Good engineering practice.	1.	Guyon, "Prest Concrete."	ressed	
conso	lidation of ete.		2.	Leonhardt, "P Concrete - De Construction."	restressed sign and	
			3.	Zielinski & Ro Report.	we, Research	
			4.	S.J. Taylor, "A Bearing Stress No. 49, ICE C London 1967.	nchorage ses," Paper onference,	
			5.	Burns & Rowe Unit 2	e, TMI PSAR	
			6.	lyengar, ASCI March 1971.	E Journal,	
			7.	P. Gergely, M C.P. Siess, "C Engineering S Structural Ser Chapter 4.	.A. Sozen, tivil itudies - ies", No. 271	

ι

page 35 of 47

ŧ

🐼 Progress Energy	CRY	STAL RIVER UNIT 3	Page 32 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT - D	OME	SYSTEM N/A	CODE:
PARA	METER	SOURCE	REAS	ON
ACCEPTANCE	CRITERIA			
Load Combinat	ions			
See Containmer	nt – General			
MATERIALS				
See Containmer	nt - General			
<u>GEOMETRY</u>				
Ellipsoidal Dom Short Radiu Long Radius Thickness, 3	e s, 20'-6" s, 110'-0" 3'-0"	 G/C, Inc. Struc. Calcs. FC 1.01.17/1-63 Outline & Embedded Steel Dwg SC-421-046. Reinforcement Dwgs SC-421-045 SC-421-341 SC-421-342 SC-421-343 SC-421-343 SC-421-344 SC-421-345. Repair Drawing - SC-421-050. Pouring Sequence Drawing - SC-421-337. 	The dome for CR-3 is similar to the des TMI Unit 1 project.	3 containment sign for the
Tendons, 3 @ 30" plan	layers of 41 each spacing.	Prescon Drawing Sheet D-12, Detail # P10A.		
DESIGN COND	ITION			
Loads				
See Contair	nment - General			
Design				
Design of concr identical to that	ete dome is for TMI Unit 1:	,		
1. Derivations tendons for tendons.	of equation for ces, stress in the	TMI-DT-1 to 75.	Develop geometry	
2. Dome reinfo	prcement.	TMI-DR-1 to 6.		
 Utilization o to carry con 	f liner and conduit struction loads.	G/C, Inc. Struc. Calcs. FC 1.01.20/1-42.	Facilitate construct eliminating falsewo concrete placemer	tion by ork to support nt.
		Tab 1/1, Revision 6		

FM 6.5 Exhibit 12

page 36 of 47

🐼 Progress Energy	CR DESI	Y STAL RIVER UNIT 3 GN BASIS DOCUMENT	Page 33 of 44	Rev. 6	
SYSTEM NAME: CONTAINMENT -		DOME	SYSTEM CODE: N/A		
PARAMETER		SOURCE	REAS	<u>NC</u>	
Delamination Re	pair				
Design bases dif original as follow 1. Concrete con strengths: old, 5000 psi new, 6000 p	fer from the s: mpressive i si	Final Report, "Reactor Building Dome Delamination, December 10, 1976. This report is the source document for all material presented here under "Delamination Repair."	Existing strength le than minimum spea were used in the ev dome following del	evels rather cified strengths valuation of the amination.	
2. Allowable me compression concrete: old, 2250 ps new, 2700 p	embrane i stress in i si				
 Allowable me stress in con factored load old, 212 psi new, 0 	embrane tensile crete under ds:		The evaluation of the delaminated dome the concrete had n capacity.	he presumed that o tensile	
4. Allowable ex tension stres loads: old, 424 psi new, 0	treme fiber s under factored				
5. Allowable co in liner: old, not spec new, ASME	mpressive strain ified Sec. III, Div. 2	(See page 42, Delamination Repair.)	Allowable liner stra according to the AS with the loading co allowable strain is g 0.002"/inch for non conditions and 0.00 accident conditions	ins vary, SME Code, mbination. The generally -accident D5"/inch for S.	
 Allowable ter liner: old, fy new, ASME - stress to allor 	nsion stress in Sec. III, Div. 2 corresponding wable strain.				

page 37 of 47

page 38 of 47

Progress Energy DESI	(STAL RIVER U GN BASIS DOCI	I NIT 3 UMENT	Page 35 of 44	Rev. 6	
YSTEM NAME: CONTAINMENT	LINER		SYSTEM N/A	CODE:	
PARAMETER	<u>S</u>	OURCE	REAS	ON	
MATERIALS	FSAR Sec. 5. (for reference	FSAR Sec. 5.2.2.4.1 (for reference only).		or Design, aintenance of t Structures fo Power 6.2, 1965	
<u>Plate</u> ASTM A283	1. G/C, Inc SP-5566 only).	. Specification 6 (for reference	ASTM A283 is a c plate material inter general application	arbon steel nded for n where	
Grade C f _y = 30 ksi in most areas	2. FSAR So (for refer	ec. 5.2.2.4 rence only).	availability and eco than material prop greatest significan	nd economy rather al properties are of nificance.	
ASTM A516 Grade 60 or 70 for: 1. Thickened plate around crane girder brackets 2. Liner reinforcement around penetrations.			ASTM A516 is a h material produced toughness and go These properties a where this materia	igher strength for improved od weldability are important I is used.	
Rolled sections					
ASTM A36 for: 1. Liner attachments 2. Anchors for polar crane	1. G/C, Inc SP-5566 only).	. Specification 6 (for reference	Rolled sections an available in ASTM the standard struc	e most readily A36 material tural steel	
3. Test channels 4. Stiffeners	2. FSAR S (for refe	ec. 5.2.2.4 rence only).	matenal.		
Welding E70XX electrodes	1. G/C, Inc SP-5566 only).	. Specification 6 (for reference	Required by ASMI Pressure Vessel C AISC Specificatior	E Boiler and Code and by N.	
	2. FSAR S (for refe	ec. 5.2.2.4 rence only).			
GEOMETRY	G/C, Inc. Stru	ctural Drawings			
Thickness Base liner and sump, 1/4"	S-521-0 S-521-0 S-521-0	17 18 30.	Liner thickness de loads experienced operating or accid	termined by during ent conditions	
Main liner, 3/8"	FSAR Sec. 5. (for reference	2.2.4 only).			
Knuckle plate, 3/4"	G/C, Inc. Stru FC 1 01	c. Calc.			

•

page 39 of 47

Progress Energy	CRYS DESIGN	FAL BAS	Page 36 of 44	Rev. 6		
SYSTEM NAME:	CONTAINMENT - LIN	IER		SYSTEM N//	CODE:	
PARA	METER		SOURCE	REASON		
Inside diameter, Cylinder height, Ellipsoidal dome Short radius, 2 Long radius, 1	, 130'-0" 157'-0" ? 20.5' 10.0'	FSA (for	AR Sec. 5.2.5.2.2 reference only).	Liner geometry is overall containme	a function of nt geometry.	
Haunch dimensions Height, I0'-0" Base thickness, 2'-0" Radius at top, 20'-0" Knuckle plate radius, 10"		1. 2.	G/C, Inc. Struc. Calcs. FC 1.01.4/11 through FC 1.01.4/13. G/C, Inc. Struc. Drawing SC-421-031 (for reference only).	Based on Three Mile Island dimensions.		
DESIGN CONDI	TIONS					
Loads						
Dead Load Erection Lo Wind Load 100 ps (prior t dome	of Liner bads s if load on liner o placement of concrete).	G/C (for	c, Inc. Specification SP-5566 reference only).	Liner required to to self-supporting du construction perio placement of cont concrete.	be Iring Id prior to rainment shell	
Design pre 55 psig Design tem	ssure, g ıp., 281°F	FSA (for	AR Sec. 5.2.5.2.2 reference only).	Parameters speci a result of their LC	fied by B&W as DCA analyses.	
Operating (+1 to -1 ps Operating t Inside +90 Outside +2 Design vac	pressure, sig temp., 1° to 110°F 25° to 100°F cuum,	FSA (for FSA (for FSA (for	AR Sec. 5.2.5.2.2 reference only). AR Sec. 5.2.5.2.2 reference only). AR Sec. 5.2.5.2.2 reference only).			
2.5 psig		FS/ (for	AR Sec. 5.2.5.2.2 reference only).	Occurring as the r accidental actuati Reactor Building S	result of an on of the Spray System.	
DESIGN COND	TIONS					
1. Anchor to s composite prevent bu	shell to ensure action and ckling of liner.	ТМ	I Calculation 18.00.	Details of liner an CR-3 are identica TMI 1.	chorage for I to those for	
2. Analyze as against rota angles.	flat plate fixed ation at stiffener	· 1. 2.	FSAR Section 5.2.4.2 (for reference only). TMI Calculations.	Conservative, rela analysis.	atively simple	
Pro	Progress Energy DESIGN		STAL I N BAS	RIVER UNIT 3 IS DOCUMENT	Page 37 of 44	Rev. 6
----------------------------	---	--	------------------------	---	--	---
SYST	EM NAME:	CONTAINMENT - L	INER		SYSTEM N/A	CODE:
	PARA	METER		SOURCE	REAS	<u>ON</u>
3.	Space stiffe that critical exceeds yie	ener angles so buckling stress eld strength.	1. 2.	FSAR Section 5.2.5.2.2 (for reference only). G/C, Inc. Struc. Calcs. FC 1.01.13/0-37.	Buckling cannot o	ccur.
4.	Evaluate st concentrati and reinford Replace lo required by Pressure V	ress on at openings ce as necessary. st metal area as ASME Unfired essels Code.	1. 2.	ASME Unfired Pressure Vessel Code. FSAR Sec. 5.2.5.2.2 (for reference only).	In accordance with McPherson, & Sm "Reinforcement of Circular Hole in a Under Tension," Ju Applied Mechanics	n Levy, ith, a Small Plate Sheet ournal of s, June 1948.
5.	Provide cor material at	npressible knuckle plate.	FSA (for	NR Sec. 5.2.4.2.1 reference only).	Absorbs strains fro conditions.	om DBA
6.	Design line to fail befor breached.	r/ anchor welds e liner is	FSA (for	R Sec. 5.2.5.2.2 reference only).	This is a fail-safe of assure no loss of of the second sec	condition to containment.
7.	Support de loads durin period.	ad and wind g erection	G/C	, Inc. Struc. Calcs. FC 1.01.14/65-86.	Analysis carried of Bridge and Iron.	ut by Chicago
ACC		CRITERIA				
Stra 0.0 cor stra	ain not excee 05 in/in, nor responding t ain.	ding that o minimum yield	FSA (for	NR Sec. 5.2.5.2.1 reference only).	Ensures ductility a tightness. This nu corresponds to the requirement under conditions specifie Boiler and Pressur Code.	nd leak mber e current accident ed by the ASME re Vessel
Line pres	r leak rate at sure: 0.25%/24 h	: 55 psig iours	1. 2.	G/C, Inc. Specification SP-5566 (for reference only). FSAR Sec. 5.2.5.2.2 (for reference only).		

FM 6.5 Exhibit 12

page 41 of 47

🐼 Progress Energy	CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT	Page 38 of 44	Rev. 6
SYSTEM NAME:	AINMENT - PENETRATIONS	SYSTEM N/A	CODE:
PARAMETER	SOURCE	REAS	ON
MATERIALS		500	
Attachment Plates	(for reference only).	000	
Pipes f 4" O.D.			
SA-240, Type 304 S _u , 75 ksi S _y , 30 ksi S _m , 20 ksi S _v , 52.5 ksi	G/C, Inc. Struc. Calc. FC 1.01.12/4.	Stainless steel pla application to unfir vessels.	te for ed pressure
<u> Pipes F 4" O.D.</u>			
SA-516, Grade 60 or 70 S _u , 60 ksi S _y , 32 ksi S _m , 20 ksi S _v , 42 ksi	G/C, Inc. Struc. Calc. FC 1.01.12/3, 4.	Weldable, carbon an austenitic weld heat treatment. R stresses are tolera	steel. Provides requiring no esidual able.
Sleeves			
 (Including personnel an equipment hatches) 1. SA-516, Grade 60 or 70 2. SA-333, Grade I S_u, 55 ksi S_y, 30 ksi S_m, 18.3 ksi S_v, 38.5 ksi 	d FSAR Sec. 5.2.2.4 (for reference only). G/C, Inc. Struc. Calc. FC 1.01.12/4.	 SA-516 used sleeves. Both SA-333 are medium with desirabl properties. 	l for fabricated and SA-516 strength steels e toughness
Sleeve material conform SA-300 for notch tough	ns to 1. FSAR Section 5.2.2.4 ness. (for reference only). 2. G/C, Inc. Specification SP-5566 (for reference only).	Provides notch tou requirements for p steel, potentially s temperatures.	ughness pressure vessel ubject to low
Process Pipe	,		
SA 106, Grade B S _u , 60 ksi S _y , 35 ksi S _m , 20 ksi S _v , 42 ksi	G/C, Inc. Struc. Calc. FC 1.01.12/5.	Typical process pi is the process pipe imposes the load of penetrations.	pe materials. It e which on the
SA 312, Type 316 S _u , 75 ksi S _y , 30 ksi S _m , 20 ksi S _v , 52.5 ksi	G/C, Inc. Struc. Calc. FC 1.01.12/5.		

Tab 1/1, Revision 6

page 42 of 47

.

Progress Energy DESI	Page 39 of 44	Rev. 6		
SYSTEM NAME: CONTAINMENT -	PENETRATIONS	SYSTEM CODE: N/A		
PARAMETER Electrical Penetration Assemblies	SOURCE	REASON		
Canister: SA 333, Grade I Header Plate: SA 240, Grade 304 Weld Ring: SA 516, Grade 70	 FSAR Sec. 5.2.2.4 (for reference only). G/C, Inc. Struc. Calc. FC 1.01.12/3. 	All tough, weldable	e materials.	
Insulation Unibestos	G/C, Inc. Specification SP-5566 (for reference only).	Used on hot penet insulate concrete a localized high streat thermal affects.	rations to and to prevent sses due to	
GEOMETRY				
Equipment Hatch I.D., 22'-4"	FSAR Sec. 5.2.5.2.3.3 (for reference only).	Equipment hatch sized to permit removal of steam generator and reactor vessel head.		
Sleeves, Schedule 80 (with exceptions) O.D., 12" to 18"	G/C, Inc. Specification SP-5566 (for reference only).			
Personnel Air Locks (2) I.D., 10'-0"		Personnel access standard size typic plant containment.	hatches are a cal for nuclear	
DESIGN CONDITION General	FSAR Sec. 5.2.2.4.1 (for reference only).	 According to Standard for Fabrication, a Maintenance Containment Stationary Ne Reactors," A ASME Nucle Code for Cla 	"Safety Design, and of Steel, Structures for uclear Power SA N6.2, 1965 ar Vessels ss B Vessels	
Loads from Piping Penetrations for Designing Liner and Shell				
Full plastic moment capacity of the process pipe to ensure that piping penetrations and attachments to liner are stronger than the pipe itself.	 FSAR Sec. 5.2.5.2.3 (for reference only). G/C, Inc. Struc. Calc. FC 1.01.12/1. 	The plastic moment the process pipe is load it is capable of to the liner and sho	nt capacity of s the largest of transferring ell.	

FM 6.5 Exhibit 12

•

page 43 of 47

Progress Energy CR DESI		STAL RIVER UNIT 3 N BASIS DOCUMENT	Page 40 of 44	Rev. 6		
SYSTEM NAME: CONTAINMENT -		ENETRATIONS	SYSTEM (N/A	ODE:		
PAR	AMETER	SOURCE	REAS	REASON		
$M = ZS_u$ $V = PA$ $T = RAF$ where: $M = Desi$ $V = Desi$ Mod $Pipe$ $P = Desi$ $Pres$ $Pipe$ $A = Flow$ $Pipe$ $S_u = Ultin$ $Stref$ $R = Mea$ $Proof$ $F = Ultin$	gn Moment gn Shear gn Torsional nent tic Section ulus of Process gn Internal sure for Process Area of Process nate Tensile ngth n Radius of ness Pipe nate Shear ngth = 0.7S ₁		<u>, 1997 - 2</u>	••••		
Test Pressure						
63.3 psi (containm pressure mechanic penetrati except 69 between	1.15 x ent design) on air lock, and cal and electrical on annulus areas) psi on air locks doors.	 G/C, Inc. Specification SP-5566 (for reference only). Safety Guide 1.18 (currently Regulatory Guide 1.18, USNRC). 	All pressure bound demonstrated to be	aries must be ∍ air tight.		
<u>Other Criteria</u>		G/C, Inc. Struc. Calcs. FC 1.01.14/0 through FC 1.01.14/44.				
Closed piping penetrate cont relief devices t possibility of ex the fluid is hea during acciden LOCA/MSLB.	systems that ainment shall have o minimize the ccess pressure if ted and expands t scenarios, i.e.,	 MAR 96-10-04-01, RB Containment Expansion Chambers MAR 98-08-02-01, Replace Rupture Disc with Relief Valves. 	Generic Letter 96-(Assurance of Equip Operability and Co Integrity During De Accident Condition)6: oment ntainment sign-Basis s.		
Reinforce penetrati cut out a plate.	e around ons by replacing rea of 3/8" liner	 ASME Boiler and Pressure Vessel Code. G/C, Inc. Specification SP-5566 (for reference only). 	e As required for Thr Unit 1.	ee Mile Island		
		Tab 1/1, Revision 6				

discontinuities.

page 44 of 47

Progress Energy	Progress Energy CRYSTAL RIVER UNIT 3 DESIGN BASIS DOCUMENT		Page 41 of 44	Rev. 6		
SYSTEM NAME: CONTAINMENT - PENETRATIONS			ATIONS	SYSTEM CODE: N/A		
PARA	METER		SOURCE	REAS	ON	
Lowest sei temperatur a. inside 120°F b. outsid +25°F	rvice metal res containment, c e containment,	G/C (for	, Inc. Specification SP-5566 reference only).			
Design of Perso	onnel Air Locks					
and Equipment.	<u>Access Hatch</u>	1. 2.	G/C, Inc. Struc. Calc. FC 1.01.14. FSAR Sec. 5.2.5.2.3.1 for reference only).	In accordance with and Pressure Ves Section III for Clas	n ASME Boile sel Code, s B Vessels.	
Design of Outag	ge					
Equipment	Hatch	1. 2.	Calc S-99-0351 FSAR Sec. 5.2.5.2.3.1 (for reference only).	In accordance with and Pressure Ves Section VIII. (no stamp require)	n ASME Boile sel Code, d)	
<u>Analysis</u>				(no stamp require)	u).	
Use Kalnir program fo shells of re	n's computer or axisymmetric evolution.	G/C	, Inc. Struc. Calc. FC 1.01.12/6.	Simple, familiar ar providing reliable	nalysis results.	
ACCEPTANCE	CRITERIA					
Average m and gener	nembrane (local al)	1. 2.	G/C, Inc. Struc. Calc. FC 1.01.12/5. FSAR Section 5.2.2.4.1	As required by the and Pressure Ves Section III, Class I	e ASME Boilei sel Code, 3.	
stress S _m , wi greate at disc	s <u><</u> 1.5 S _y or 1.8 hichever is er - to be checked continuities.		for reference only).			
Bending stres ≤1.5 S _y or whichever checked a	s ⁻ 1.8 S _m , is greater - to be away from					

page 45 of 47

🐼 Progress Energy	CRYS DESIGN	TAL RIVER UNIT 3 BASIS DOCUMENT	Page 42 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT - PE	NETRATIONS	SYSTEM N//	CODE:
PARA Shear stress	REAS	<u>SON</u>		
where: S _u = Ulti Ter	mate Isile			
Strength $S_y = Yie$ $S_m = Des Inte S_v = UltiStrentCode.$	d Strength sign Stress nsity mate Shear ength d by the ASME			

FM 6.5 Exhibit 12

page 46 of 47

🐼 Progress Energy	CRYS DESIGN	TAL I BA	RIVER UNIT 3 SIS DOCUMENT	Page 43 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT - EQU SHIELD STRUCTURE	ENT ACCESS	SYSTEM N/A	CODE:	
<u>PARAI</u> MATERIALS	METER		SOURCE	REAS	<u>ON</u>
See Containme	nt - General	G/C,	Inc. Struc. Calc. FC 1.01.24/1.		
GEOMETRY					
3'-0" roof slab a	ind walls	G/C,	Inc. Structural Drawings SC-421-043 and SC-421-047.		
DESIGN CONDI	TION				
<u>Loads</u> See Containme	nt - General	G/C,	Inc. Struc. Calcs. FC 1.01.24/1 through FC 1.01.24/19.	Primary purpose of protect personnel a tornado missile imp	f structure is to access from pact.
Missile load					
Equivalent stati kips.	c forçe of 270	1.	G/C, Inc. Struc. Calc. FC 4.01.1/1-18.	Simplified, conserv considering impact	ative means of load.
		2.	DBD for Major Class I Structures, "Loads- Tornado Missile."		
ACCEPTANCE (CRITERIA				
U = W _m U = D + ' Where: D = Dea W _w = Torn W _m = Torn	W _w d Load nado Wind nado	G/C,	Inc. Struc. Calcs. FC 1.01.24/1 through FC 1.01.24/19.	See "Containment this DBD.	- General" in

Missile

Ş

Load

FM 6.5 Exhibit 12

page 47 of 47

Progress Energy DESIGN BAS			. RIVER UNIT 3 SIS DOCUMENT	Page 44 of 44	Rev. 6
SYSTEM NAME:	CONTAINMENT - F		/ENT	SYSTEM (N/A	CODE:
MATERIAL	METER		SOURCE	REASC	<u>)N</u>
Concrete Ancho Nelson Stud	<u>rs</u> ds	G/C	, Inc. Struc. Calc. FC 1.01.6/1A.	Economical method plates to concrete n	for anchoring nembers prior ant.
<u>Skin</u> ASTM A36		G/C (for	, Inc. Struc. Dwg. S-521-051 reference only).	Economical, readily material.	available
<u>Stiffeners</u> ASTM A36		G/C (for	, Inc. Struc. Dwg. S-521-051 reference only).	Standard material fo shapes.	or structural
<u>GEOMETRY</u> 1/4" plate Rectangular tube stiffeners		1. 2.	G/C, Inc. Struc. Calcs. FC 1.01.6/1A and FC 1.01.6/5. G/C, Inc. Struc. Dwg. S-521-051 (for reference only).	Conventional plate applications to duct	thickness for s of this size.
DESIGN CONDI	TION				
Loads					
Wind					
0 - 50' 50 - 150' 150 - 400'	50 psf 75 psf 110 psf	G/C	, Inc. Struc. Calc. FC 1.01.6/1.	Loads derived from No. 3269, "Wind Fo Structures," Vol. 12	ASCE Paper rces on 6, 1961.
<u>Seismic</u>		G/C	, Inc. Struc. Calc.	Seismic loads found	d to be
See Contai	nment - General		FC 1.01.0/0.	negligible.	
Internal Pre	essure	G/C	, Inc. Struc. Calc.	HVAC requirement.	
45 psf (8" H	l₂0)				
ACCEPTANCE (CRITERIA				
Max. Allow. Allowable s as defined Specificatio	. Deflection, 1/4" tresses on steel by AISC n.	G/C	, Inc. Struc. Calcs. FC 1.01.6/1 through FC 1.01.6/9.	Specification of a m allowable deflection based on reasonab judgment based on experience with sim structures.	aximum of 1/4" is le engineering past nilar

FM 6.2 Exhibit 4

.

TENDON WIKE TEST RESULTS

•

Page 1 of 10

34		TENDON WIRE (1) SAMPLE NO.	LOCATION (2) FROM END OF WIRE		YIELD (3) STRESS (ksi)	ULTIMATE STRESS (ksi)	PERCENT ELONGATION	COMIENT.
•		DONE		•		•		
	1.							
	2.	<u> </u>						
	3.	•					*** *********************************	~ <u>~</u>
. •		VERTICAL		•	•	 	· · · · · · · · · · · · · · · · · · ·	
	1.	45V3	6-12 Ft.	•	228.2	251.7	Over 47	Accept
n	2.	45V3	<u>30-37 Fr</u>	-	227.8	252.1	Over	. Accept
3 • 0	3.	4573	<u>175-181 रू</u>	•	220 7	255.0	Over 4%	Accept
• •		1:00P			•		•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
•	1.			-	• .	•	•	
	2.						· · · · · · · · · · · · · · · · · · ·	
	3.	· · · · · · · · · · · · · · · · · · ·				·····	;	
	•		• •	-				
•	NOTES	S: (1) Sec Steps (2) The end s (3) The wight	6.2.5.1 and 6.2.5.3 Larts from the end of	E zero	length as indica	ted on Data Sheet	4.	and the second se
		192,000 p.	stress is defined as si minimum.		tress at 1% eion	galion, 1.c.,	-	
· · ·	•			•	repared by:	······································	Date:	
مەرىد		•		Contr	actor Review by:		Date:	
				1 1 •	.C. Approval by:		Date:	
P 0 1								

1.1

DATÀ SUEET 5

TENDON WIRE TEST RESULTS

	INSPECTION PER	RTOD <u>#2</u>				
	TENDON WIRE (1) . SAMPLE NO.	LOCATION (2) FROM END OF WIRE	YIELD (3) STRESS (ksi)	ULTIHATE STRESS (ksi)	PERCENT ELONGATION	COMMENTS
	DONE DZ08					
1.	SHOP	0	215	263	6.25	NIA
2.	MIDDLE	60	_225	264	_8.13	_N/A
3.	FIELD		2.11	252	_6.88_	NIA
	VERTICAL 56VI					
۱.	SHOP	0	_213	2.51	_8.75_	_~/A
2.	MIDDLE	75	216		<u> 8.13 </u>	_NIA
3.	EIELD		_217	_253	9.38	NO HANDLING
	1100P 13H32					GAGE LENGTH
1.	SHOP_	0	_223	_253	<u>8.75</u>	_NIA
2.	MOOLE	150	_219	249	6.25	NIA
з.	FIELD	300	226	257	6.25	N/A

NOTES: (1)

See Steps 6.2.5.1 and 6.2.5.3.

(2) The end starts from the end of zero length as indicated on Data Sheet 4.

(3) The yield stress is defined as the stress at 1% elongation, i.e.,

192,000 psi minimum.

Prepared by: W.A. Jemian Date: 28 JUNE 80 OSURE Rafferyseige Date: 7-25-80 Contractor Review by: Date: F.P.C. Approval by: 1

SP-182

Page

<u>م</u>

3. Laboratory analysis on twenty-two samples of the filler grease disclosed that the grease was free of unacceptable nitrate, chloride, sulfide or water contamination.

3.4 <u>Tendon Lift-Off Force</u>

1. Lift-off force measurements were made on ten horizontal, plus six dome, plus three upper vertical tendon ends. All lift-off measurements were within the procedure specified acceptance criteria. Refer to Table 1.

One end lift-off measurement was used for the vertical tendons.

3.5 <u>Tendon Detensioning/Retensioning and Wire Tests</u>

- Broken, damaged or slipped wires were not noted during wire inspection operations on surveillance tendons 13H40, 56V2 and D105. None of the surveillance tendons exhibited lift-off forces above or below the procedure specified maximum or minimum. The ±3% (of initial) lift-off criteria was met and was deemed acceptable.
- 2. The visual inspection of the three removed tendon wires showed no significant signs of corrosion or damage. There were minor handling marks from the extraction tool.
- 3. Three wire samples were removed. The samples were measured, tagged and wrapped. They were then sent to Professional Service Industries, (PSI), Pittsburgh, Pennsylvania for testing. The samples were cut into three coupons (one at each end and at mid-length) and subjected to breaking tests per ASTM 421. The wire coupons showed tensile strengths in excess of 240 ksi minimum required.
- 4. The "as found" elongation for the three surveillance tendons differed from the "proportioned" original elongation. Horizontal tendon 13H40 "shop-end" was 7.2% above; dome tendon D105 "field-end" was 17.8% above; and vertical tendon 56V2 was 9.5% below the respective proportioned original elongations. The procedure specified acceptable criteria is <u>+</u> 5%. See Table 2.

-5-

TP415ds

FM 6.2 Exhibit 4

Crystal River Unit 3 Post-Tensioning System: 5th In-Service Tendon Surveillance Test Report: Revision 0

TABLE 7: SUMMARY OF TENDON WIRE TENSILE TEST RESULTS

TENDON NUMBER	WIRE SAMPLE LOCATION	YIELD STRENGTH (ksi @ 1% Ext)	ULTIMATE TENSILE STRENGTH (ksi)	PERCENT ELONGATION	LOCATION OF WIRE FAILURE (in)
D231 RANDOM WIRE	SHOP CENTER FIELD	219.0 219.0 221.0	243.0 239.0 244.0	6.3 6.4 6.2	1.0 * 5.3 * 0.5 *
46H47 RANDOM WIRE	SHOP CENTER FIELD	226.0 225.0 227.0	251.0 252.0 253.0	8.5 7.8 8.1	0.3 * 0.3 * 4.5 *
56V15 RANDOM WIRE	SHOP CENTER FIELD	212.0 216.0 212.0	244.0 243.0 243.0	7.8 6.5 8.7	8.5 * 2.0 * 8.5 *
56V15 NON TENSION WIRE	SHOP CENTER FIELD	220.0 216.0 215.0	245.0 243.0 . 243.0	8.5 7.9 8.6	7.5 * 1.6 * 2.0 *
46H29 RANDOM WIRE	SHOP CENTER FIELD	227.0 226.0 229.0	253.0 253.0 254.0	7.4 7.1 7.5	0.2 * 0.2 * 3.0 *
46H29 BROKEN WIRE 1 OF 3	SHOP CENTER FIELD	217.0 217.0 214.0	242.0 242.0 242.0	8.3 8.7 8.5	7.8 * 0.5 * 8.5 *
46H29 BROKEN WIRE 2 OF 3	SHOP CENTER FIELD	221.0 227.0 227.0	253.0 252.0 252.0	8.5 8.5 8.5	8.8 * 8.9 * 3.3 *
46H29 BROKEN WIRE 3 OF 3	SHOP CENTER FIELD	222.0 219.0 215.0	245.0 242.0 240.0	7.8 8.7 7.5	8.5 * 8.5 * 0.5 *
ACCE	PTANCE TERIA	204.0 (min)	240.0 (min)	4.0 (min)	N/A

* Distance From Moving Jaw

19

FM 6.2 Exhibit 4

Crystal River Unit 3 Post-Tensioning System: 5th In-Service Tendon Surveillance Test Report: Revision 0

TABLE 7: SUMMARY OF TENDON WIRE TENSILE TEST RESULTS

TENDON NUMBER	WIRE SAMPLE LOCATION	YIELD STRENGTH (ksi @ 1% Ext)	ULTIMATE TENSILE STRENGTH (ksi)	PERCENT ELONGATION	LOCATION OF WIRE FAILURE (in)
D231 RANDOM WIRE	SHOP CENTER FIELD	219.0 219.0 221.0	243.0 239.0 244.0	6.3 6.4 6.2	1.0 * 5.3 * 0.5 *
46H47 RANDOM WIRE	SHOP CENTER FIELD	226.0 225.0 227.0	251.0 252.0 253.0	8.5 7.8 8.1	0.3 * 0.3 * 4.5 *
56V15 RANDOM WIRE	SHOP CENTER FIELD	212.0 216.0 212.0	244.0 243.0 243.0	7.8 6.5 8.7	8.5 * 2.0 * 8.5 *
56V15 NON TENSION WIRE	SHOP CENTER FIELD	220.0 216.0 215.0	245.0 243.0 243.0	8.5 7.9 8.6	7.5 * 1.6 * 2.0 *
46H29 RANDOM WIRE	SHOP CENTER FIELD	227.0 226.0 229.0	253.0 253.0 254.0	7.4 7.1 7.5	0.2 * 0.2 * 3.0 *
46H29 BROKEN WIRE 1 OF 3	SHOP CENTER FIELD	217.0 217.0 214.0	242.0 242.0 242.0	8.3 8.7 8.5	7.8 * 0.5 * 8.5 *
46H29 BROKEN WIRE 2 OF 3	SHOP CENTER FIELD	221.0 227.0 227.0	253.0 252.0 252.0	8.5 8.5 8.5	8.8 * 8.9 * 3.3 *
46H29 BROKEN WIRE 3 OF 3	SHOP CENTER FIELD	222.0 219.0 215.0	245.0 242.0 240.0	7.8 8.7 7.5	8.5 * 8.5 * 0.5 *
ACCE	PTANCE TERIA	204.0 (min)	240.0 (min)	4.0 . (min)	N/A

* Distance From Moving Jaw

: |

: 1

. 1

. 1

į

...!

20TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

VI. WIRE INSPECTION AND TESTING

One wire was scheduled for removal from each detensioned tendon for visual inspection and tensile testing. PSC Procedure SQ 10.3 outlines the details involved with the wire testing and the data was recorded on Data Sheets SQ 10.2 and SQ 10.3 with the results summarized in Table X.

All wire diameters were within the acceptance criteria of $0.27559 \pm 0.002^{\circ}$. The corrosion condition of all samples was level 1 - "bright metal; no visible oxidation" and the Ultimate Strength exceeded the minimum strength criteria of 240,000 psi (240 ksi) for all wire samples tested.

TABLE X: SUMMARY OF DATA SHEETS SQ 10.2 & 10.3 - VISUAL INSPECTION AND TENSILE TESTING OF WIRE

TENDON	SAMPLE No.	CORROSION LEVEL	SAMPLE LOCATION (FT)	DIAMETER (IN)	YIELD STRENGTH (PSI)	ULTIMATE STRENGTH (PSI)	ACCEPTABLE
61V21	1	1	20 - 29	0.275	210,770	249,197	YES
	2	1	90 - 99	0.275	210,251	251,793	YES
	3	- 1	170 - 179	0.275	209,212	242,966	YES
D304	1	1	20 - 29	0.2755	213,614	244,138	YES
	2	1	60 - 69	· 0.2755	213,614	241,552	YES
	- 3	1	100 - 109	0.2755	217,236	250,864	YES
421135	1	1	20 - 29	0.276	210,286	241,219	YES
	2	1	70 - 79	0.276	210,802	246,375	YES
	3	1	140 - 149	0.276	212,864	253,077	YES
51H26	. 1	1	10 - 19	0.2745	210,512	254,293	YES
	2	1	70 - 79	0.2745	209,990	248,560	YES
	3	I	140 - 149	0.2745	216,766	243,869	YES
51H26	1A _	1	10 - 19	0.2745	215,202	250,645	YES
	2A	I	70 - 79	0.2745	214,160	253,251	YES
	3A	1	146 - 155	0.2745	220,415	257,942	YES
621141	1	1	20 - 29	0.2755	211,545	247,760	YES
	2	1	70 - 79	0.2755	213,614	245,173	YES
	3	1	140 - 149	0.2755	214,390	241,552	YES

FM 6.2 Exhibit 4

25TH YEAR SURVEILLANCE OF THE POST-TENSIONING SYSTEM AT THE CRYSTAL RIVER NUCLEAR PLANT UNIT 3

VI. WIRE INSPECTION AND TESTING

One wire was scheduled for removal from each detensioned tendon for visual inspection and tensile testing. PSC Procedure SQ 10.3 outlines the details involved with the wire testing and the data was recorded on Data Sheets SQ 10.2 and SQ 10.3 with the results summarized in Table X.

All wire diameters were within the acceptance criteria of $0.27559^{\circ} \pm 0.002^{\circ}$. The corrosion condition of all samples was level 1 - "Bright metal, no visible oxidation", or level 2 - "Metal reddish brown color; no pitting". Also, the ultimate strength exceeded the minimum strength criteria of 240,000 psi (240 ksi) for all samples tested.

TABLE IX: SUMMARY OF DATA SHEETS SQ 10.2 & 10.3 - VISUAL INSPECTION AND TENSILE TESTING OF WIRE

	TENDON	SAMPLE No.	CORROSION LEVEL	SAMPLE LOCATION (FT)	DIAMETER (IN)	YIELD STRENGTH (PSI)	ULTIMATE STRENGTH (PSI)	ACCEPTABLE
	45V14	1	2	20 - 29	.275	226,477	267,691	YES
		2	2	90 - 99	.275	224,249	266,020	YES
		3	2	170 - 179	.275	228,148	265,184	YES
	53II16	1	1	10 - 19	.275	227,312	272,146	YES
		2	` 1	70 - 79	.275	231,211	266,298	YES
		3	1	140 - 149	.275	233,160	272,703	YES
	D339	1	1	20 - 29	.275	230,097	265,463	YES
÷		2	1	50 - 59	.275	231,489	257,944	YES
		3	1	90 - 99	.275	230,097	265,184	YES

32

FM 6.2 Exhibit 4

Page 10 of 10

DOCUMENT NUMBER: CR-N1002-504 DOCUMENT TITLE. PROJECT TITLE:

FINAL REPORT FOR THE 30TH YEAR CONTAINMENT IWL INSPECTION 30^{1H} YEAR TENDON SURVEILLANCE AT CRYSTAL RIVER

DATE: 01/24/08

PAGE: 42

REVISION: 0

WIRE INSPECTION AND TESTING 9.0

- 9.1 One tendon from each group (Vertical, Hoop, Dome) was completely detensioned. A single wire was removed from each detensioned tendon for inspection and testing. Each removed wire was examined over its entire length for corrosion and mechanical damage. Three samples from each wire were tested for diameter, yield strength, ultimate tensile strength and elongation. PSC Procedures SQ 10.2 and SQ 10.3 outline the details and acceptance criteria pertaining to the wire removal and testing. All data was recorded on Data Sheets SQ 10.2 and SQ 10.3 and the results summarized in Table 48.
- 9.1.1 All wire diameters were within the acceptance criteria of 0.2756 ± 0.002*.
- 9.1.2 The corrosion level for all of the test wires were:

1 - Bright metal; no visible oxidation.

- No mechanical damage was noted on any of the wires. 9.1.3
- 9.1.4 The yield strength of the wires tested exceeded the minimum acceptance criteria of 192,000 psi at 1% elongation. The lowest recorded yield strength was 225,678 psi.
- 9.1.5 The Ultimate Strength of the wires tested exceeded the minimum strength criteria of 240,000 psi on all samples. The lowest recorded ultimate strength was 257,305 psi.
- 9.1.6 The percent elongation at sample failure exceeded the required minimum of 4.0% on all samples tested. The recorded elongation on the samples varied from 4.5% to 5.3%.

TABLI	E 48: SQ10.	2 & SQ10	.3 – VISUÅL	INSPECT	ĨOŅ (ÁND (ŢĔ	NSILE TEST	ING OF V	VIRE :
TENDON	SAMPLE NUMBER	NOISOINAION NOISOINAION	SAMPLE LOCATION (ft)	DIAMETER (In.)	YIELD STRENGTH (Ksi)	ULTMATE STRENGTH (Kai)	ELONGATION	ACCEPT?
	1	1	10'-20'	276	227.805	259.164	4.6	YES
51 H 34	2	1	70'-80'	.276	226.210	262.353	5.1	YES
	3	1	140'-150'	.276	225.678	260.227	4.8	YES
	1	1	10:-20'	.275	230.535	263.194	4.6	YES
61V17	2	1	90'-100'	.275	229.464	263.194	5.0	YES
	3	1	170'-180'	.275	230.000	265.871	5.3	YES
	1	1	10'-20'	.275	230.000	260.517	47	YES
D238	2	1	50'-60'	.275	229.464	257.305	4,5	YES
	3	1	100'-110'	.275	228 393	263.1 94	50	YES

Page 1 of 1

	Historical SEEK data - CR3
RAN:	76000-0609
DOCNO:	TRL4, RPT
DATE:	12/07/1976
TITLE:	TRAILER FOUR DOCUMENTATION, MISCELLANEOUS ENGINEERING INFORMATION, REACTOR CONTAINMENT, STRUCTURAL INTEGRITY TEST
VEND:	G15000, GILBERT ASSOCIATES INC, GAI, 312637
LOC:	TSC VAULT, ROW 5, SHELF 6D, BOX 462
RETEN:	LIFE OF POLICY + 10

10/12/2005

ENCLOSURE 2

FLORIDA POWER CORPORATION QUALITY ASSURANCE RECORD TRANSMITTAL

ATTENTION:	RECORDS MANAGEMENT SECTION (NR2A) CRYSTAL RIVER UNIT NO. 3
DOCUMENTS TR	ANSMITTED:
GP 7-21	1-12
Title:	Reactor Containment Bldg. Structural
- · · · · ·	Integrity Test
Vend:	Gilbert
The Ouality	Assurance Records listed above are hereby transmitted for

inclusion in the Plant Quality File.

These records are complete and in compliance with the requirement of Florida Power Corporation's Quality Program.

auch 9/18/9~ DATE

Responsible Supervisor/Designee

RECEIPT ACKNOWLEDGEMENT BY:

	_			
Manager,	Nuclear	Information	Resources,	/Designee

FUTURE RETENTION OF THESE RECORDS IS THE RESPONSIBILITY OF RECORDS MANAGEMENT.

Page 82 (LAST PAGE)

DATE

Gen. PL. 2-21-12 Ship 41 DWR. 10

CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT

REACTOR CONTAINMENT BUILDING STRUCTURAL INTEGRITY TEST

PREPARED FOR:

FLORIDA

POWER

CORPORATION

CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT

REACTOR CONTAINMENT BUILDING STRUCTURAL INTEGRITY TEST

PREPARED FOR:

FLORIDA

POWER

CORPORATION

Gilbert/Commonwealth

ENGINEERS/CONSULTANTS Reading, PA/Jackson, MI

DECEMBER 7, 1976

GAI REPORT NO. 1930

CRYSTAL RIVER UNIT THREE

NUCLEAR GENERATING PLANT

REACTOR CONTAINMENT BUILDING

STRUCTURAL INTEGRITY

TEST

FLORIDA POWER CORPORATION

· .

.

Gilbert Associates, Inc. P. O. Box 1498 Reading, Pennsylvania

- Gilbert / Commonwealth -

TABLE OF CONTENTS

ł

₿

ł

ŀ

Ì

ŀ

Section	Title	Page
1.0	PURPOSE	1
2.0	SYNOPSIS	2
3.0	THE CONTAINMENT STRUCTURE	3
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3	STRUCTURE DESCRIPTION MATERIALS Liner Mild Steel Reinforcement Concrete Tendons DESIGN	3 4 4 5 5 5
4.0	CONTAINMENT DOME DEDATR	7
5.0	TECT DECULDEMENTS	, 8
6.0	TEST REQUIREMENTS	0
6.1 6.2 6.3 6.4	PRELIMINARY SAFETY ANALYSIS REPORT FINAL SAFETY ANALYSIS REPORT REACTOR BUILDING DOME DELAMINATION REGULATORY REQUIREMENTS	8 8 8
7.0	TEST PROCEDURES	9
7.1 7.2	GENERAL DESCRIPTION PREPARATION	9 10
8.0	INSTRUMENTATION	12
8.1 8.2	GENERAL DESCRIPTION CONCRETE CRACK MEASUREMENTS	12 12
9.0	AS BUILT CONDITIONS	14
10.0	CALCULATED RESPONSE	16
10.1 10.2 10.3	GENERAL DESCRIPTION DISPLACEMENTS CONCRETE CRACK PATTERNS	16 17 18
11.0	EVALUATION OF DATA	21
11.1 11.2 11.2.1 11.2.2	DISPLACEMENT AND STRAIN DATA CONTAINMENT WALL DISPLACEMENTS Vertical Displacements Radial Displacements	21 21 21 21 21

Gilbert / Common 1

	· · ·	·
	LIST OF TABLES	
	Title	Page
TABLE 10.1	DISPLACEMENT ACCEPTANCE CRITERIA	19
TABLE 11.1	RADIAL DISPLACEMENT @ PEAK PRESSURE (63.3 PSIG)	29
TABLE 11.2	CONTAINMENT WALL HOOP STRAINS (63.3 PSIG)	30
TABLE 11.3	CONTAINMENT WALL MERIDIONAL STRAINS (63.3 PSIG)	31
TABLE 11.4	DOME STRAINS (63.3 PSIG)	32
	LIST OF FIGURES	
FIGURE 9.1	PLAN OF REACTOR BUILDING	15
	,	
	· · · · · ·	
	· · ·	
· · ·		
		· .
1		

Ĺ

ł

Ĵ

I

.

PURPOSE

1.0

Ĩ

R

This report presents a detailed description of the Structural Integrity Test (SIT) performed on the Crystal River Unit 3 Nuclear Generating Plant (CR3) reactor containment building during October and November 1976. During the SIT the reactor containment building was subjected to a maximum internal pressure of 63.3 psig. Figure 8 of Enclosure 1 presents dates, times and pressures for the SIT.

Conclusions related to the SIT are based on the observations and measurements made during the test and documented in this report.

Gilbert / Commo

1

realth

SYNOPSIS

2.0

Measurements and observations recorded during the SIT have been evaluated and compared with predictions of the expected structural behavior during the test. The data confirmed the expected behavior. It is concluded that the CR3 reactor containment building, including the repaired dome, satisfies the requirements of the design criteria.

Test instrumentation performed reasonably well and most of the recorded data are considered to be valid. The few minor discrepancies in the data are noted and discussed in Section 11.0 of this report. The number of discrepancies was small compared to the amount of the data recorded during the test.

There was no evidence of structural instability during the test. Whitewashed areas and other areas which were inspected for cracks confirmed the predictions that minimal cracking would occur in the cylinder portion of the containment and that dome surface crack patterns would be regular and uniform during the test. Strains and displacements were generally less than the theoretical and limit values, indicating that the analysis of the test condition was conservative.

2

3.0 THE CONTAINMENT STRUCTURE

3.1 STRUCTURE DESCRIPTION

The containment structure is a post-tensioned concrete structure with cylindrical walls, a flat foundation mat and a shallow dome. The cylindrical walls are prestressed in the vertical and hoop directions. The dome is prestressed using a three-way post-tensioning system. In addition to the prestress, mild steel reinforcing was placed in the cylinder and dome.

The inside surface of the building is lined with a carbon steel liner to ensure leak tightness. The liner shell thickness is for the most part 3/8 inch. The base liner is 1/4 inch thick. The liner in transition between the base liner and cylinder wall is 3/4 inch thick.

The foundation mat slab is reinforced with conventional mild steel reinforcing. The mat bears on competent material and is 12.5 feet thick with a concrete slab 2 feet thick above the bottom liner plate.

The cylinder has an inside diameter of 130 feet, a thickness of 3 feet - 6 inches and a height of 157 feet from the top of the foundation slab to the spring line. The dome has a major radius of 110 feet, a transition radius of 20 feet - 6 inches and a thickness of 3 feet.

Two large openings are provided for access into the containment structure: one is a 22 foot - 4 inch inside diameter opening for the equipment access hatch; the other, a 10 foot inside diameter opening for the personnel lock. Penetrations for main steam, feedwater, purge air, other mechanical process piping and electrical cables are also

Gilbert / Commonwealth

provided in the cylinder wall. Drawings and a description of the containment structure are provided in the CR3 Final Safety Analysis Report (FSAR) and "Reactor Building Dome Delamination" report.

3.2 MATERIALS

3.2.1 <u>Liner</u>

The basic liner plate conforms to ASTM A283-67, Grade C. Thickened portions of the liner at the crane girder and reinforcing around penetrations conform to ASME-ASTM SA516 Grade 60 or 70. Non-accessible liner seams are covered with A36 steel test channels to permit leak testing. Penetration sleeves through the containment barrier consist of material conforming to ASME-ASTM SA-333, Grade 1 and SA-300.

3.2.2 <u>Mild Steel Reinforcement</u>

Mild steel reinforcement in the cylinder, dome, and reinforcement in the mat conforms to ASTM A-615-68, Grade 40 and Grade 60. The reinforcing steel in the cylinder and dome provides capacity for bending and shear. The mat reinforcing steel provides capacity in tension, bending and shear.

No. 14 and 18 bars were spliced with Cadwelds capable of developing the ultimate strength of the bars. Bars of size number 11 or smaller were lap spliced, except for some of the reinforcement in the ring girder and repaired dome which were Cadwelded.

> rt/Common 4

3.2.3 Concrete

The concrete mix used in the cylinder, dome and mat was designed to develop a minimum of 5000 psi compressive strength in 28 days. The in place strength of the dome concrete, based on the tests of concrete cores, is in excess of 6000 psi. Admixtures were used for air entrainment and water reduction.

3.2.4 Tendons

The prestressing used for the reactor containment building is the BBRV system utilizing a maximum of 163, 7 mm diameter wires. These wires conform to ASTM A-421-65 Type BA with a guaranteed ultimate tensile strength of 240,000 psi and use the BBRV button head system for end anchorages. Tendons are encased in galvanized steel conduits.

Tendons and included anchorages are coated with a temporary corrosion inhibitor for protection prior to bulk filling of the conduits.

3.3 DESIGN

The methods and assumptions used for the design of the structure are described in the FSAR and the "Reactor Building Dome Delamination" report.

4.0 <u>CONSTRUCTION METHODS</u>

The containment liner for the cylinder and dome was erected independently of placement of the concrete shell. Survey techniques were used to ascertain actual liner dimensions after construction.

Mild steel reinforcement for the cylinder is located on both faces with tendon conduits in between. Outside face concrete forms were tied to the liner on approximately 6 foot centers.

Dome tendon conduits (5" diameter Schedule 40 pipe) were pre-bent and spliced as required to span from one anchorage assembly to the other for each tendon location. Dome concrete was not placed until tendon conduits, trumpets, anchor plates and reinforcing bars were installed.

Tendons were stressed after the cylindrical wall and dome concrete has been placed and cured. Vertical tendons were stressed first. The stressing operation started at four positions along the circumference of the cylinder. The sequence of stressing vertical tendons was approximately symmetrical with respect to the cylindrical wall circumference. After completion of the vertical tendons, the hoop tendons were stressed in a sequence so as to minimize stress concentration in the shell. Then the dome tendons were stressed. For a description of the dome tendon stressing sequence see the "Reactor Building Dome Delamination" report. 5.0

I

ł

CONTAINMENT DOME REPAIR

A complete history and documentation of the CR3 dome repair are presented in the "Reactor Building Dome Delamination" report. This document has been filed with the Nuclear Regulatory Commission (NRC).

6.0 <u>TEST REQUIREMENTS</u>

6.1 PRELIMINARY SAFETY ANALYSIS REPORT

The CR3 Preliminary Safety Analysis Report (PSAR), Section 5.6 and Appendix 5F, Reactor Building Instrumentation, provided background information on initial commitments to the NRC on the subject of instrumentation to be used and measurements to be made during the SIT.

6.2 FINAL SAFETY ANALYSIS REPORT

Appendix 5A of the CR3 FSAR provides a description of commitments for the SIT.

6.3 REACTOR BUILDING DOME DELAMINATION

In order to ascertain that the repaired CR3 dome would function as intended, additional instrumentation was provided in excess of that defined in the FSAR. The additional instrumentation is described in the "Reactor Building Dome Delamination" report.

6.4 REGULATORY REQUIREMENTS

Prior to performing the SIT a comparison was made between the test requirements given in Appendix 5A of the FSAR and those required by Regulatory Guide 1.18, "Structural Acceptance Test for Concrete Primary Reactor Containment." The differences between these two documents were found to be minor and the intent of Regulatory Guide 1.18 had been met.

Appendix J of the "Reactor Building Dome Delamination" report contains the correspondence between the NRC and Florida Power Corporation (FPC) concerning instrumentation of the dome for the SIT.

8

7.0 TEST PROCEDURES

7.1 GENERAL DESCRIPTION

The SIT procedure was developed such that the response of the reactor containment building would be measured as it was subjected to internal pressures from 0 psig to 63.3 psig and back to 0 psig. The maximum test pressure, 63.3 psig, was 15 percent in excess of the design pressure, 55 psig, derived from the postulated maximum loss of coolant accident.

Pressurization and depressurization were accomplished in stages to permit readings and measurements at the following pneumatic pressure levels: 0 psig, 12 psig, 35 psig, 45 psig, 55 psig, 63.3 psig, 55 psig, 45 psig, 35 psig, 12 psig and 0 psig. The 12 psig level readings were added during the test, at the request of Mr. W. Swan, NRC, I&E Division. When a data acquisition pressure level was reached, the pressure was held for one hour prior to acquiring data to permit the structure to adjust to the applied pressure.

During the pressurization phase and after the hold period was maintained at a data acquisition pressure level, the following measurements were recorded:

a. Cylinder and dome displacements.

b. Strain measurements of reinforcing bars and the liner.

c. Crack patterns and crack width for whitewash areas.

Gilbert / Comm 9

d. General inspection of accessible exterior portions of the structure for cracking and possible interferences.

During the depressurization phase only items 1 and 2 above were recorded. At the final zero pressure level all data was recorded.

A description of the instrumentation used to measure the structural response and the measurements and observations made during the SIT are included in Enclosure 1.

Measurements and observations at each pressure level were compared with predicted results and evaluated prior to pressurizing or depressurizing to the next level.

Predicted displacements and strains are described in Section 10.0. The evaluation of test results is included as Section 11.0 of this report.

7.2 PREPARATION

A detailed test procedure was written prior to beginning the test. A checklist of items which were signed off before pressurization began included the following:

- a. Instruments necessary for measurements and equipment necessary for pressurization of the reactor containment building was available.
- Auxiliary equipment necessary for taking measurements was available.
- c. Prerequisite testing had been accomplished.
- d. Possible interferences had been investigated.

loert / Commonwea

- e. Interior temperature of the reactor containment building had been stabilized.
- f. Accessible exterior surfaces of the reactor containment building, tendon anchorage inspection areas and crack pattern areas had been inspected for cracks.

g. Exclusion areas had been established.

I

I

E
8.0 INSTRUMENTATION

8.1 GENERAL DESCRIPTION

Measurement and observation of the behavior of the reactor containment building during the test were accomplished using the following:

a. Displacement measurements

Linear Potentiometers (LP).

b. Strain measurements

1. Linear strain gages.

2. Rosette strain gages.

3. Ail Tech concrete strain gages.

c. Concrete crack measurements Optical comparators.

d. Miscellaneous

1. Electronic readout instruments for LP's and strain gages.

2. Thermocouples.

The location and identification of the instrumentation used for each measurement is presented in Enclosure 1.

Installation of the instruments and the data acquisition system are also discussed in Enclosure 1.

8.2 CONCRETE CRACK MEASUREMENTS

The accessible exterior surfaces of the reactor containment building were visually inspected for cracks and crack patterns before and during the test. Observed cracks were charted; with the size of any cracks equal or exceeding .01 inches in width noted. Approximately 1600 square feet of the exterior surface of the reactor containment building was whitewashed for measurement of spacing and width of cracks to confirm that the magnitude of local strains was not excessive. Whitewash areas were as follows:

- a. An area of the structure approximately 6 feet wide extending from dome apex, across the top of the ring girder and down its side to a point 6 feet below it.
- b. An area 6 feet by 6 feet on the cylinder at elevation 174'-0".
- c. An area 6 feet by 10 feet at the base of the cylinder.
- An area of approximately 28 feet by 32 feet at one upper quadrant of the equipment access opening.

A one foot by one foot grid system was laid out on each whitewashed area. Platforms were provided for access and protective covers shielded the areas from adverse weather. Cracks were plotted for each pressure level when pressurizing and at 0 psig after completion of the pressure test.

The crack pattern charts are presented in Appendix D of Enclosure 1 to this report.

The general condition of a group of selected tendon anchorages was reported in the same manner as the crack patterns. The anchors inspected are listed on page 17 of Enclosure 1.

The reports at each pressure level are included in Appendix D of Enclosure 1.

Gilbert / Commonwealth 13 9.0 AS BUILT CONDITIONS

A survey of the "as built" conditions of the reactor containment building was performed. This included a survey of the liner radius at several elevations as shown on Figure 9.1.

10.0 CALCULATED RESPONSE

10.1 GENERAL DESCRIPTION

The reactor containment building was analyzed prior to the SIT for . the 63.3 psig internal pressure load case.

The analyses took into account the actual strength of the concrete based on test cylinder results. The concrete modulus of elasticity (E) used was:

 $E = 4.0 \times 10^6$ Ksi Instantaneous Loads $E = 2.7 \times 10^6$ Ksi Present Prestress Losses

The value of Poisson's ratio (μ) used was:

The following properties were assumed for the liner:

 $E = 30 \times 10^6$ $\mu = 0.27$

Two separate analyses were performed to obtain theoretical (predicted) values for the various test parameters. The general structure was modeled for the KALNINS STATIC computer program. This program was used for the analysis and the design of the reactor containment building and was considered to be accurate for predictions of the overall behavior of the structure.

A second analysis was performed using a finite element program to provide a more accurate prediction of test parameters around thickened local portions of the shell which could not be modeled using KALNINS STATIC computer program. These portions included the

ert/Lommonwe

 $[\]mu = .17$

buttresses, equipment access hatch and personnel access hatch. The model included the entire cylindrical portion of the shell from the top of the mat to the spring line.

10.2 DISPLACEMENTS

Predicted and limiting displacements for each radial and vertical measurement point are given in Table 10.1. Pressure versus displacement plots for the data acquired during the SIT are presented in Appendix B of Enclosure 1. The predicted displacement at 63.3 is indicated by a circle, obtained from the analyses described in Section 10.1 proportioned linearly between 0.0 and 63.3 psig. The line labeled "LIMIT" includes an increase over the theoretical value to account for the precision of instruments, accuracy of readings, accuracy of loads and analytical techniques, and construction variables. Variables concerning instrumentation and measurements are discussed in the text of Enclosure 1.

The "LIMIT" at 63.3 psig was calculated by increasing the "theoretical displacement" by 25%, plus 0.005 inches which was the full range accuracy of the instruments used. These values were "rounded off" to the nearest 0.005 inches.

For example, if the "theoretical displacement" at 63.3 psig were .200 inches, the "LIMIT" includes 0.005 inches for the measurement accuracy and 25 percent of 0.20 inches, or 0.05 inches, for the analytical modeling:

17

.200 + .05 + .005 = .255 inches

10.3 CONCRETE CRACK PATTERNS

Stress cracking in the cylinder from the applied pressure loading was not anticipated due to the residual compressive stress remaining in the shell at 63.3 psig. It was expected that existing shrinkage cracks would enlarge slightly in width and propagate in length during reactor containment building pressurization.

In the dome cap where prestressing was minimal, a pattern of regularly spaced cracks was anticipated. The width of the cracks was expected to be small due to the presence of non-prestressed reinforcing steel.

TABLE 10.1

.

Displacement Acceptance Criteria

Gage	Measurement	Theoretical Displacement (inches)	Limiting Displacement (inches)	Tolerance (inches)
1 2 3	Radial	0.010	0.020	0.010
1, 2, 5	Padial	0.090	0.115	0.025
4, 5, 0		0.090	0.115	0.025
/, 8, 9	Radial	0.203	0.260	0,055
10, 11, 12	Radial	0.200	0.255	0.055
13, 14, 15	Radial	0.205	0.260	0.055
16, 17, 18	Radial	0.160	0.205	0.045
19, 20, 21	Radial	0.060	0.080	0.020
22, 23, 24	Radial	-0.025	-0.040	-0.015
25, 26, 27	Radial	-0.055	-0.070	0.015
28, 29, 30	Vertical	0.215	0.275	0.060
34	Vertical	0.905	1.135	0.230
35	Radial	0.10	0.130	0.030
35	Vertical	0.10	0.130	0.030
36	Radial	0.08	0.105	0.025
36	Vertical	0.10	0.130	0.030
37	Radial	0.12	0.155	0.035
37	Vertical	0.10	0.130	0.030
38	Radial	0.115	0.150	0.035
38	Vertical	0.10	0.130	0.030
39	Radial	0.115	0.150	0.035
39	Vertical	0.10	0.130	0.030

I

- Gilbert / Commonwealth

19

TABLE 10.1

. •

Gage ID	Measurement	Theoretical Displacement (inches)	Limiting Displacement (inches)	Tolerance (inches)
40	Radial	0.11	0.140	0.030
40	Vertical	0.10	0.130	0.030
41	Radial	0.11	0.140	0.030
41	Vertical	0.10	0.130	0.030
42	Radial	0.11	0.140	0.030
42	Vertical	0.10	0.130	0.030
43	Radial	0.090	0.120	0.030
43	Vertical	0.105	0.135	0.030
44	Radial	0.090	0.120	0.030
44	Vertical	0.105	0.135	0.030
45	Radial	0.095	0.125	0.030
45	Vertical	0.110	0.140	0.030
46	Radial	0.100	0.130	0.030
46	Vertical	0.11	0.140	0.030
47	Radial	0.105	0.135	0.030
47	Vertical	0.115	0.150	0.035
48	Radial	0.110	0.140	0.030
48	Vertical	0.120	0.155	0.035
128, 129, 130	Radial	0.040	0.055	0.015
128, 129, 130	Vertical	0.365	0.460	0.095
164, 165, 166	Vertical	0.900	1.130	0.230

ł

Displacement Acceptance Criteria (Cont'd)

•

-- Gilbert /Commonwealth 20

11.0 EVALUATION OF DATA

11.1 DISPLACEMENT AND STRAIN DATA

Enclosure 1 contains computer printouts, sketches and data collected during the SIT. It also contains an explanation of the types of instruments used and their locations.

11.2 CONTAINMENT WALL DISPLACEMENTS

11.2.1 Vertical Displacements

Vertical displacements for the containment wall were measured at 3 azimuths, 90 degrees, 200 degrees and 334 degrees, at the ring girder, elevation 267'-6", (Enclosure 1, Appendix B, Figure 21 and Table 23). These displacements were regular with the difference between the readings at 63.3 psig being .021 inches. The displacements were less than the predicted displacement which was .215 inches with a limiting value of .275 inches. The actual values at 63.3 psig were .171 inches (at 90 degrees); .180 inches (at 200 degrees); and .192 inches (at 334 degrees). The residual deformations were small and when converted to equivalent stress values, the maximum was less than 50 psi.

11.2.2 Radial Displacements

Radial displacements for the containment wall were measured at 3 azimuths, 90 degrees, 200 degrees, and 334 degrees at 9 elevations (see Enclosure 1, Appendix B, Figure 21 and Table 24). Figures 9, 10, and 11 of Enclosure 1 show plots of these displacements at various pressure levels and Appendix B shows plots of individual gage points. These displacements are regular and in good agreement with each other and with the predicted values. Table 11.1 indicates the values of the displacement at 63.3 psig.

21

The major variation appears to be due to a greater resistance to rotation of the ring girder than was predicted. Although the structure at 270'-8" was predicted to move outward due to rotation, (the top of the cylinder moves in) it actually moved slightly inward. This would indicate that the ring girder is stiffer in relation to the dome than assumed in making the calculations. No adverse affect on either the dome, ring girder or cylinder can be attributed to this.

Radial displacements for each elevation were generally less than limiting values. Although some of the smaller displacements exceeded the limiting value, these were small in the absolute sense and no adverse effects can attributed to them.

11.3 CONTAINMENT WALL STRAINS

The strains for the containment wall were measured with gages attached to the liner (Enclosure 1, Appendix A, Figure 18 and Table 12) and to reinforcing bars in the area of the dome cylinder transition (Enclosure 1, Appendix A, Figure 13 and Tables 6 through 11). The strains around openings and penetrations will be discussed in later sections.

On Page 19 of Enclosure 1, under TEST RESULTS, some of the specific problems resulting from the long delay between gage placement and actual testing are discussed. Some of the gages appear to have excessive "shake down" values, that is gage adjustment during the initial loading from 0 to 63.3 psig. Although these readings were not excessive in most cases, the value for strain change for the "second loading", that is from 63.3 to 0 psig is considered more accurate and is used in most cases for comparisons.

> Gilbert / Commonwealth 22

11.3.1 Hoop Strains

Table 11.2 indicates the actual and predicted values of hoop strains in microinches per inch. When two gages exist for a point, the result closest to the predicted value is reported in these tables. Results indicate low strains which are reasonably consistent with the predicted values. The strains at the upper elevations reflect lower values which are consistent with deflection readings.

11.3.2 Meridional Strains

Table 11.3 presents values of meridional strains. As with the hoop strains, the meridional strains were small. In this case the actual rotational behavior of the ring girder is strongly registered in very large relative differences between predicted and measured values in the upper elevations. The negative strains which would have resulted from the inward rotation of the top of the ring girder are positive due to the relative outward rotation. No detrimental effects are attributed to this difference in expected and actual behavior.

11.3.3 Liner Strains

The strains for the liner in the hoop and meridional directions are reported as part of Section 11.3.1 and 11.3.2. The gages used to measure these strains were Rosette type and are described on page 23 of Enclosure 1. The values of recorded strain are found in Table 12 of Enclosure 1, Appendix A. Figure 20 of Appendix A illustrates how the Rosette readings are reduced to maximum, minimum and shear strains. These values are given in tabular form by gage number under LINER GAGES in Appendix A. Also included is the stress computed from these values. All the values computed are small with the exception

> rt /Commonwi 23

of gage 71 and this gages behavior would indicate at least one of its elements is malfunctioning. There is no indication of detrimental strains in the liner.

11.4 DOME DISPLACEMENTS AND STRAINS

11.4.1 Vertical Displacements

Vertical displacements for the dome were measured at the apex and at horizontal distances from the apex of approximately 29' (the fourth spray ring), 49' (elevation 270'-8") and 56' (elevation 267'-6"). The results of the measurements are given in Enclosure 1, Appendix B, Table 23. The predicted values which include the wall deformation are included in Table 10.1. Data for individual gage locations are plotted in Enclosure 1, Appendix B. The displacement data are uniform, close to predicted values and within the "LIMIT" shown in each figure. The residual displacements at the end of the SIT were less than 15% of the maximum reading which is within the expected performance for this type of structure.

11.4.2 Dome Strains

Additional gages were added to permit more complete evaluation of strains during the SIT. Enclosure 1 describes these gages and Figures 14 and 19 of Appendix A indicate plan and through thickness locations. Tables A and B of Appendix A provide a listing of the gage numbers at each location. Tables 13, 14 and 15 indicate the meridional strains at each location and Tables 16, 17 and 18 the hoop strains. Because of the different type gages used; SR4 strain gages attached to reinforcing, AIL TECH concrete strain gages and Rosette gages attached to the liner, variations in the readings were expected. Table 11.4 compares the strains at the four through thickness locations with predicted values. The strains are low and although variable indicate a reasonable correlation with predicted values. No detrimental effects are indicated by any of the results.

In addition to measurements in the membrane direction, a series of radial bars were instrumented in order to confirm that little or no radial tension or deformation was taking place during the SIT. Tables 19 through 21 present radial strain results. The strains are too small to allow valid numerical comparisons. For example, a strain of 50 microinches per inch would correspond to less than 1500 psi stress in the radial reinforcing.

11.5 EQUIPMENT HATCH DISPLACEMENTS AND STRAINS

The displacements recorded at the equipment hatch are given in Enclosure 1, Appendix B, Tables 25 and 26, and are plotted on individual graphs in that Appendix. The locations of the measurement points are shown in Figure 23. The vertical displacements are all less than predicted. They tend to be more erratic than the radial gage readings during pressurization and depressurization although this may be due to the very small values being recorded. The radial displacements tend to follow the predicted slopes more closely with gages 38, 39, and 40 indicating slightly greater displacements than the limiting values set at 63.3 psig. However, the excess is slight and the instrument recovery was good with no indication of detrimental effects.

> Gilbert /Commonwealth 25

Strain results for the equipment hatch are presented in Enclosure 1, Appendix A, Tables 1 and 2. The meridional strains like the vertical displacements tend to be erratic. However, all values are quite small (maximum compression of 115 microinches per inch and a maximum tension of 100 microinches per inch). This would reflect a maximum steel stress of 3,400 psi.

11.6 PENETRATION STRAINS

The Rosette type strain gages were located on the metal liner at the main steam line penetration, the feedwater line penetration and at one spare penetration. Figures 15, 16, 17, and 18 indicate the location of the penetrations and the gages. Enclosure 1, Appendix A, Figure 20 illustrates how the gage readings were reduced to maximum, minimum, and shear strain values. This appendix also includes the strain values and their equivalent stresses for each of the penetrations. Several of the gages appear to have malfunctioning elements and did not record data which corresponded to the physical response of the structure. However, these gages (96, 98, 99, 100, 101, 102, 104, 105, 71, and 163) do not negate the results.

11.7 TENDON ANCHORAGES

No special instrumentation or surveillance of tendon anchorages was conducted during the test. Experience indicates that load cells installed under the button heads and strain gages placed on the bearing plates would not aid in the evaluation of the containment structure. This is due to the fact that the strains recorded would

26

be caused by the increase in tendon force resulting from the pressure loading. This increase amounts to only a small percentage of the total force in the tendon.

Visual inspection of the concrete at specified anchorage zones was accomplished prior to the start of the test, at each pressurization level and at the final zero. The results are reported in Appendix D on Data Sheet 6, TENDON ANCHORAGE OBSERVATION. No unusual cracking, bearing plate displacement or other unexpected occurrences were observed during the test.

11.8 CRACK PATTERNS

The results of the observation for cracking are shown in the crack pattern figures of Appendix D and confirm the original predictions.

The absence of stress cracking provides direct evidence that residual compression stress existed in this cylindrical shell at the peak pressure of 63.3 psig. The uniform nature of the cracks in the new dome cap at 63.3 psig, as well as the subsequent closing of these cracks with the removal of the pressure load indicate that the dome was responding elastically.

Existing shrinkage cracks were observed to enlarge slightly in width and length during the test. Some new hairline cracks did appear which were not initially observed. In all cases, crack patterns were random except in the dome cap. Crack widths were less than .01 inches at peak pressure in all areas except in the dome cap.

27

Gilbert /Com

In addition to the inspections in white wash areas, other areas in reactor containment building were inspected for cracks during the test. This inspection included accessible areas of the containment such as the dome and the intersection of the buttress and cylinder.

> Gilbert /Common 28

ŝ

Elevation (feet)	Predicted Theoretical	Value Limiting	90°	served Val	ues334 ⁰	Average Value
98	.01	.02	.031	.038	.036	.035*
108	.09	.115	.124	.106	.098	.109
140	.205	.260	.175	.244	.211	.210
172	.200	.255	.171	.205	.195	.190
204	.205	.260	.087	.138	.127	.117
236	.160	.205	.062	.114	.076	.084
246	.060	.080	042	.026	.039	.005
253	025	040	053	.011	007	016
267-6	~.055	070	114	071	081	·088*
270-8	.040	.055	120	004	007	043*

Radial Displacement @ Peak Pressure (63.3 psig) (inches)

*Value exceeds or varies in sign from predicted.

F

Ż

Gilbert /Commonwealth

29

Elevation Predicted Actual Difference 90° 200° 333⁰ (feet) Value Average * * *

Containment Wall Hoop Strains (63.3 psig) $(\mu \text{ inches/inch})$

. .

Ì

*Malfunctioning Gage.

Gilbert /Commonwealth

Elevation	Predicted Value	Acti	al Differe 200 ⁰	ence 333 ⁰	Average
172	252	143	73	50	88
204	258	59	109	167	109
244	106	*	84	120	102
249	28	15	48	103	55
255	-62	156	16 6	179	167
260	~79	118	192	. 148	153
266	-104	*	359	307	333
268	94	320	*	269	2 9 5

Containment Wall Meridional Strains (63.3 psig) $(\mu \text{ inches/inch})$

*Malfunctioning Gage

5

Î

1

Gilbert / Commonwealth 31

.

Dome Strains (63.3 psig) $(\mu \text{ inches/inch})$

-		Predicted	- c ⁰	Actual Di	Actual Difference		.
Locati	Lon	Value		165	200	345	Averag
15' from	0						
apex	1 н	324	_	321	210	-	265
-	М	313	-	205	182	-	199
	2 н	324	-	194	237	_	215
	M	317	_	236	294	-	265
	3 н	324	_	*	*	_	*
	M	320	-	*	137	-	137
	4 H	324	_	240	280	_	260
	M	343	· _	*	253	-	253
30' fro	m						
apex	1 H	492	431		-	420	426
•	М	354	533	-	-	617	575
	2 H	461	483	-	-	606	545
	М	348	265	-	-	364	315
	3 н	431	*	-	-	*	*
	м	343	*	-	. —	*	*
	4 н	231	227	_	· _	170	199
	М	298	217	-	-	193	205
45' fro	III.						
apex	1 H	497	108	346	242	104	200
	M	. 220	200	144	255	414	253
	2 Н	465	185	297	215	453	287
	М	199	78	136	236	158	152
	3 н	433	*	103	*	83	93
	M	178	*	*	*	*	*
	4 н	241	163	163	230	243	200
	M	48	57	280	40	167	131

101

ļ

Í

Ĵ

Ĵ

Ì

Ĩ

Ĵ

Ì

Î

Ŧ

- Gilbert /Commonwealth

۰,

12.0

STRUCTURAL INTEGRITY TEST CONCLUSIONS

The summary of Enclosure 1, page 31 provides an excellent statement of the engineering conclusions of the test. These are as follows:

- a. The overall response of the structure was well substantiated. The displacements observed were uniform between identical points on various azimuths. The displacements observed were within predicted values and were typical of displacements measured on other similar structures. The recovery observed was within limits one would normally expect for a structure of this type.
- b. Cracking observed on the dome was slightly greater than would normally be expected in a prestressed dome but substantially less and of a smaller magnitude than could be expected in a reinforced dome. The crack widths (under 0.01 inches) were such that they did not substantially increase steel stresses in the dome. The fact that at atmospheric pressure the cracks closed indicated that the structure was still within the elastic range.
- c. The strains recorded for the reinforcing steel were well within the elastic range of this material. This indicates that the structure could undergo more deformation before any significant signs of distress would appear.

It is concluded that the structural response of the Crystal River Unit 3 Nuclear Generating Plant reactor containment building was satisfactory during the SIT and demonstrates its capability to withstand postulated pressure loads.

> Gilbert / Commonwealth 33

ENCLOSURE 1

Ŕ

1

ŝ

STRUCTURAL RESPONSE OF SECONDARY CONTAINMENT

DURING STRUCTURAL INTEGRITY TEST AT

CRYSTAL RIVER PLANT - UNIT 3

FOR

FLORIDA POWER CORPORATION WJE NO. 71465

Viss Janney Elsther and Associates

Title

ENCLOSURE	1 WISS, JANNEY, ELSTNER AND ASSOCIATES REPORT	
	SCOPE	1
	OBJECTIVES	2
	DESCRIPTION OF THE SECONDARY CONTAINMENT	2
	TEST_PROGRAM	3
	FIGURE 1 - REACTOR BUILDING - CROSS SECTION	4
	STRAIN GAGE INSTRUMENTATION	6
	FIGURE 2 - REINFORCING BAR STRAIN GAGE ASSEMBLY - DUMMY	7
	DISPLACEMENT INSTRUMENTATION	9
	FIGURE 3 - TYPICAL INSTALLATION FOR CONCRETE GAGES AT DOME	10
	FIGURE 4 - INVAR WIRE EXTENSOMETER	12
	TEMPERATURE INSTRUMENTATION	13
	DATA ACQUISITION SYSTEM	13
	CRACK INSPECTION	14
	FIGURE 5 - DATA ACQUISITION SYSTEM	15
	FIGURE 6 - DATA ACQUISITION ROOM	16
	STRUCTURAL INTEGRITY TEST	17
,	FIGURE 7a - TYPICAL PLATFORM - DOME TENDON INSPECTION	18
· · ·	FIGURE 7b - DOME CRACK INSPECTION AREA PROTECTIVE COVER	18
	TEST RESULTS	- 19
	Stresses In Reinforcing Steel	19
	FIGURE 8 - TIME-PRESSURE CURVE	20
	Stresses In Liner Plate Stresses In Concrete	23 24

Page

1

Ì

Ê

Ì

Î

ľ

Í

Ĵ

1

	Title	Page
	RADIAL DISPLACEMENT OF CYLINDER WALL	24
	FIGURE 9 - RADIAL DISPLACEMENTS-CYLINDER WALL - AZIMUTH 90	25
	FIGURE 10 - RADIAL DISPLACEMENTS-CYLINDER WALL - AZIMUTH 200	26
	FIGURE 11 - RADIAL DISPLACEMENTS-CYLINDER WALL - AZIMUTH 333-5	5 27
	CYLINDER GROWTH AND DOME DISPLACEMENTS	28
	EQUIPMENT HATCH DISPLACEMENTS	28
	TEMPERATURE RESULTS	2 9
	CRACK PATTERNS	29
	DEVELOPMENT OF CRACKS DURING TEST	30
	SUMMARY	31
APPENDIX A	- STRAIN DATA	
	FIGURE 12 - EQUIPMENT ACCESS OPENING - STRAIN GAGE REINFORCING BAR LOCATION	A-1
	FIGURE 13 - STRAIN GAGE GROUP LOCATIONS	A-2
	FIGURE 14 - TYPICAL SECTION AT INSTRUMENT LOCATION	A3
	FIGURE 15 - ROSETTE GAGE LOCATION - INTERIOR FACE, MAIN STEAM PENETRATION	A-4
	FIGURE 16 - ROSETTE GAGE LOCATION - INTERIOR FACE, FEEDWATER PENETRATION	A-5
	FIGURE 17 - ROSETTE GAGE LOCATION - SPARE PENETRATION, INTERIOR FACE	A-6
	FIGURE 18 - ROSETTE LOCATIONS ON WALL	A-7
	FIGURE 19 - CONCRETE GAGE LOCATIONS AT DOME	A-8
	TABLE A - DOME STRAIN INSTRUMENTATION	A-9
	TABLE B - INSTRUMENTED RADIAL ANCHOR LOCATIONS	A-10
	TABLE 1 - EQUIPMENT HATCH MERIDIONAL STRAINS	A-11
	TABLE 2 - EQUIPMENT HATCH HOOP STRAINS	A-12

.

P

Ĩ

Title	Page
TABLE 3 - MAIN STEAM LINE PENETRATION STRAINS	A-13
TABLE 4 - FEEDWATER LINE PENETRATION STRAINS	A-14
TABLE 5 - SPARE PENETRATION STRAINS	A-15
<u>TABLE 6</u> - CYLINDER WALL AND DOME JUNCTION MERIDIONAL STRAINS AZIMUTH 90	A-16
TABLE 7 - CYLINDER WALL AND DOME JUNCTION MERIDIONAL STRAINS AZIMUTH 200	A-17
TABLE 8 - CYLINDER WALL AND DOME JUNCTION MERIDIONAL STRAINS AZIMUTH 333-55	A-18
TABLE 9 - CYLINDER WALL AND DOME JUNCTION HOOP STRAINS AZIMUTH 90	A-19
TABLE 10 - CYLINDER WALL AND DOME JUNCTION HOOP STRAINS AZIMUTH 200	A-20
TABLE 11 - CYLINDER WALL AND DOME JUNCTION HOOP STRAINS AZIMUTH 333-55	A-21
TABLE 12 - WALL LINER STRAINS	A-22
TABLE 13 - DOME MERIDIONAL STRAINS - RADIUS 45 FEET	A-23
TABLE 14 - DOME MERIDIONAL STRAINS - RADIUS 30 FEET	A-24
TABLE 15 - DOME MERIDIONAL STRAINS - RADIUS 15 FEET	A-25
TABLE 16 - DOME HOOP STRAINS - RADIUS 45 FEET	A-26
TABLE 17 - DOME HOOP STRAINS - RADIUS 30 FEET	A-27
TABLE 18 - DOME HOOP STRAINS - RADIUS 15 FEET	A-28
TABLE 19 - DOME RADIAL STRAINS - RADIUS 45 FEET	A-29
TABLE 20 - DOME RADIAL STRAINS - RADIUS 30 FEET	A-30
TABLE 21 - DOME RADIAL STRAINS - RADIUS 15 FEET	A-31
TABLE 22 - DOME LINER STRAINS	A-32
FIGURE 20 - ROSETTE DATA OUTPUT KEY	A-33

iii

<u>Title</u>

MAIN STEAM LINE PENETRATION

ROSETTE	NUMBER	76
ROSETTE	NUMBER	77
ROSETTE	NUMBER	78
ROSETTE	NUMBER	79
ROSETTE	NUMBER	80
ROSETTE	NUMBER	81
ROSETTE	NUMBER	82
ROSETTE	NUMBER	83
ROSETTE	NUMBER	84
ROSETTE	NUMBER	85
ROSETTE	NUMBER	86
ROSETTE	NUMBER	87
ROSETTÈ	NUMBER	88
ROSETTE	NUMBER	89

FEEDWATER LINE PENETRATION

ROSETTE	NUMBER	90
ROSETTE	NUMBER	91
ROSETTE	NUMBER	92
ROSETTE	NUMBER	94
ROSETTE	NUMBER	95
ROSETTE	NUMBER	96
ROSETTE	NUMBER	98
ROSETTE	NUMBER	'99'
ROSETTE	NUMBER	100
ROSETTE	NUMBER	101
ROSETTE	NIMBER	102

SPARE PENETRATION

I

Í

104
105
108
109
110
111
112
113
114
115
116
117

A-34 A-34 A-35 A-35 A-35 A-35 A-36 A-36 A-36 A-36 A-37 A-37 A-37 A-37 A-38 A-38

> A-39 A-39 A-40 A-40 A-40 A-40 A-41 A-41 A-41 A-42 A-42

A-43 A-43 A-43 A-44

A-44 A-45 A-45 A-45 A-45 A-46

A-46 A-46

iv

<u>Title</u>

LINER GAGES

Î

1

I

ľ

Ĩ

Ì

Ì

1

Í

I

ROSETTE	NUMBER	70		A-4
ROSETTE	NUMBER	71	•	A-4
ROSETTE	NUMBER	72		A4
ROSETTE	NUMBER	73		A-4
ROSETTE	NUMBER	74		A-4
ROSETTE	NUMBER	75		A-4
ROSETTE	NUMBER	134		A-4
ROSETTE	NUMBER	142		A-4
ROSETTE	NUMBER	138		A-4
ROSETTE	NUMBER	146		A-3
ROSETTE	NUMBER	151		A-1
ROSETTE	NUMBER	155		A-5
ROSETTE	NUMBER	159		A-5
ROSETTE	NUMBER	163		A-5

Page

APPENDIX B - DISPLACEMENTS

.

FIGURE 21 - RADIAL DISPLACEMENTS - CYLINDER WALL	B-1
FIGURE 22 - CYLINDER WALL DISPLACEMENTS	B-2
FIGURE 23 - PLAN VIEW - INSTRUMENTATION FOR EQUIPMENT ACCESS	B-3
TABLE 23 - VERTICAL DISPLACEMENTS	В-4
TABLE 24 - CYLINDER WALL RADIAL DISPLACEMENTS	B-5
TABLE 25 - EQUIPMENT HATCH VERTICAL DISPLACEMENTS	B-6
TABLE 26 - EQUIPMENT HATCH RADIAL DISPLACEMENTS	в-7
RADIAL DISPLACEMENT - LOCATION 1 - AZIMUTU 90 ET EV 08	-0 ¹¹ B.8
RADIAL DISPLACEMENT - LOCATION 2 - A7IMITH 200 FIFV 98	-0 B-0
RADIAL DISPLACEMENT - LOCATION 3 - AZIMUTH 330-55 FLEV 98	-0 B-J /_0" B_10
RADIAL DISPLACEMENT - LOCATION 4 - AZIMITH 90 FLEV. 108	ם שיבט אין אין אין אין אין אין אין אין אין אין
RADIAL DISPLACEMENT - LOCATION 5 - AZIMUTH 200 FLEV. 108	$B^{1} = 0^{11}$ B^{-12}
RADIAL DISPLACEMENT - LOCATION 6 - AZIMUTH 333-55 ELEV. 108	B-13
RADIAL DISPLACEMENT - LOCATION 7 - AZIMUTH 90 ELEV. 140	D' = 0'' = B = 14
RADIAL DISPLACEMENT - LOCATION 8 - AZIMUTH 200 ELEV. 140	D'-0" B-15
RADIAL DISPLACEMENT - LOCATION 9 - AZIMUTH 333-55 ELEV. 140	D'-0" B-16
RADIAL DISPLACEMENT - LOCATION 10 - AZIMUTH 90 ELEV. 172	2'-0" B-17
RADIAL DISPLACEMENT - LOCATION 11 - AZIMUTH 200 ELEV. 172	2'-0" B-18
RADIAL DISPLACEMENT - LOCATION 12 - AZIMUTH 333-55 ELEV. 172	2'-0" B-19
RADIAL DISPLACEMENT - LOCATION 13 - AZIMUTH 90 ELEV. 204	4'-0" B-20
RADIAL DISPLACEMENT - LOCATION 14 - AZIMUTH 200 ELEV. 204	4'-0" B-21
RADIAL DISPLACEMENT - LOCATION 15 - AZIMUTH 333-55 ELEV. 204	4'-0" B-22

v

-

<u>Title</u>

.

Î

l

İ

Page

RADIAL DISPLACEMENT - LOCATION 16	- AZIMUTH 90	ELEV. 236'-0"	B-23
RADIAL DISPLACEMENT - LOCATION 17	- AZIMUTH 200	ELEV. 236'-0"	B-24
RADIAL DISPLACEMENT - LOCATION 18	- AZIMUTH 333-55	ELEV. 236'-0"	B-25
RADIAL DISPLACEMENT - LOCATION 19	- AZIMUTH 90	ELEV. 246'-0"	B-26
RADIAL DISPLACEMENT - LOCATION 20	- AZIMUTH 200	ELEV. 246'-0"	B-27
RADIAL DISPLACEMENT - LOCATION 21	- AZIMUTH 333-55	ELEV. 246'-0"	B-28
RADIAL DISPLACEMENT - LOCATION 22	- AZIMUTH 90	ELEV. 253'-0"	B-29
RADIAL DISPLACEMENT - LOCATION 23	- AZIMUTH 200	ELEV. 253'-0"	B-30
RADIAL DISPLACEMENT - LOCATION 24	- AZIMUTH 333-55	ELEV. 253'-0"	B-31
RADIAL DISPLACEMENT - LOCATION 25	- AZIMUTH 90	ELEV. 267'-0"	B-32
RADIAL DISPLACEMENT - LOCATION 26	- AZIMUTH 200	ELEV. 267'-0"	B-33
RADIAL DISPLACEMENT - LOCATION 27	- AZIMUTH 333-55	ELEV. 267'-0"	B-34
VERTICAL DISPLACEMENT - LOCATION 28	- AZIMUTH 90	ELEV. 270'-8"	B-35
VERTICAL DISPLACEMENT - LOCATION 29	- AZIMUTH 200	ELEV. 270'-8"	B-36
VERTICAL DISPLACEMENT - LOCATION 30	- AZIMUTH 330-55	ELEV. 270'-8"	B-37
VERTICAL DISPLACEMENT - LOCATION 34	- DOME APEX		B-38
EQUIPMENT HATCH			
RADIAL DISPLACEMENT ~ LOCATION 35	- AZIMUTH 160	ELEV. 132'-0"	B-39
EQUIPMENT HATCH		•	
VERTICAL DISPLACEMENT - LOCATION 35	- AZIMUTH 160	ELEV. 132'-0"	B-40
EQUIPMENT HATCH		,	
RADIAL DISPLACEMENT - LOCATION 36	- AZIMUTH 150	ELEV. 120'-0"	B-41
EQUIPMENT HATCH	х. <u>-</u>		
VERTICAL DISPLACEMENT - LOCATION 36	- AZIMUTH 150	ELEV. 120'-0"	B-42
EQUIPMENT HATCH			2
RADIAL DISPLACEMENT - LOCATION 38	- AZIMUTH 126	ELEV. 132'-0"	B-43
EQUIPMENT HATCH			
VERTICAL DISPLACEMENT - LOCATION 38	- AZIMUTH 126	ELEV. 132'-0"	B-44
EQUIPMENT HATCH			2
RADIAL DISPLACEMENT - LOCATION 39	- AZIMUTH 131	ELEV. 132'-0"	B-45
EQUIPMENT HATCH			
VERTICAL DISPLACEMENT - LOCATION 39	- AZIMUTH 131	ELEV. 132'-0"	B-46
EQUIPMENT HATCH			
RADIAL DISPLACEMENT - LOCATION 40	- AZIMUTH 134	ELEV. 132'-0"	B-47
EQUIPMENT HATCH			
VERTICAL DISPLACEMENT - LOCATION 40	- AZIMUTH 134	ELEV. 132'-0"	B-48
EQUIPMENT HATCH			2.0
RADIAL DISPLACEMENT - LOCATION 41	- AZIMUTH 137	ELEV. 132'-0"	B-49
EQUIPMENT HATCH			
VERTICAL DISPLACEMENT - LOCATION 41	- AZIMUTH 137	ELEV. 132'-0"	B-50
EQUIPMENT HATCH			2 20
RADIAL DISPLACEMENT - LOCATION 42	- AZIMUTH 139	ELEV. 132'-0"	R-51
EQUIPMENT HATCH			0 71
VERTICAL DISPLACEMENT - LOCATION 42	- AZIMUTH 139	ELEV. 132'-0"	B-52
EQUIPMENT HATCH			D-24
RADIAL DISPLACEMENT - LOCATION 43	- AZ IMUTH 150	ELEV. 144'-0"	B-53
EQUIPMENT HATCH			
VERTICAL DISPLACEMENT - LOCATION 43	- AZIMUTH 150	ELEV. 144'-0"	R-54
EQUIPMENT HATCH			0-04
RADIAL DISPLACEMENT - LOCATION 44	- AZIMUTH 150	ELEV. 147'-0"	B-55
			 .

vi

Title

EQUIPMENT HATCH VERTICAL DISPLACEMENT - LOCATION 44 - AZIMUTH 150 ELEV. 147'-0" B-56 EQUIPMENT HATCH ELEV. 151'-0" - LOCATION 45 - AZIMUTH 150 B-57 RADIAL DISPLACEMENT EQUIPMENT HATCH VERTICAL DISPLACEMENT - LOCATION 45 - AZIMUTH 150 ELEV. 151'-0" B-58 EQUIPMENT HATCH ELEV. 155'-0" RADIAL DISPLACEMENT - LOCATION 46 - AZIMUTH 150 B-59 EQUIPMENT HATCH VERTICAL DISPLACEMENT - LOCATION 46 - AZIMUTH 150 ELEV. 155'-0" B-60 EQUIPMENT HATCH - LOCATION 47 - AZIMUTH 150 ELEV. 159'-0" B-61 RADIAL DISPLACEMENT EQUIPMENT HATCH VERTICAL DISPLACEMENT - LOCATION 47 - AZIMUTH 150 ELEV. 159'-0" B-62 EQUIPMENT HATCH RADIAL DISPLACEMENT - LOCATION 48 - AZIMUTH 150 ELEV. 163'-0" B-63 EQUIPMENT HATCH VERTICAL DISPLACEMENT - LOCATION 48 - AZIMUTH 150 ELEV. 163'-0" B-64 ELEV. 270'-8" RADIAL DISPLACEMENT - LOCATION 128 - AZIMUTH 90 B-65 ELEV. 267'-6" VERTICAL DISPLACEMENT - LOCATION 128 - AZIMUTH 90 B-66 VERTICAL DISPLACEMENT - LOCATION 129 - AZIMUTH 200 ELEV. 167'-6" B--67 - LOCATION 129 - AZIMUTH 200 RADIAL DISPLACEMENT ELEV. 270'-8" B--68 - LOCATION 130 - AZIMUTH 333-55 ELEV. 270'-0" RADIAL DISPLACEMENT B-69 VERTICAL DISPLACEMENT - LOCATION 130 - AZIMUTH 333-55 ELEV. 267'-6" B-70 VERTICAL DISPLACEMENT - LOCATION 164 - AZIMUTH 90 ELEV. 4th Spray B-71 Ring VERTICAL DISPLACEMENT - LOCATION 165 - AZIMUTH 200 ELEV. 4th Spray Ring B-72

APPENDIX C - TEMPERATURE DATA

VERTICAL DISPLACEMENT

FIGURE 24 - AMBIENT TEMPERATURE - CYLINDER WALLC-1TEMPERATURE READINGSC-2 to C-10

- LOCATION 166 - AZIMUTH 333-55 ELEV. 4th Spray

Ring

B-73 .

APPENDIX D	- CRACK INSPECTION	· ,
	AREA NO. 118 - BASE SLAB AND CYLINDER	D-1 to D-4
	AREA NO. 119 - CYLINDER MID HEIGHT	D-5 to D-8
	AREA NO. 120 - RING BEAM AND DOME	D-9 to D-30
	AREA NO. 121 - EQUIPMENT HATCH	D-31 to D-34
	TENDON ANCHORAGE OBSERVATION	D-35 to D-40

Page

Title	Page
APPENDIX E - COMPUTER OUTPUT - SAMPLE	
EQUIPMENT HATCH MERIDIONAL STRAINS	E-1
EQUIPMENT HATCH HOOP STRAINS	E-2
PENETRATION STRAINS MAIN STEAM LINE	E-3
PENETRATION STRAINS FEEDWATER LINE	E-4
RADIAL DISPLACEMENTS	E-5
EQUIPMENT HATCH VERTICAL DISPLACEMENTS	E-6
EQUIPMENT HATCH RADIAL DISPLACEMENTS	E-7

T

STRUCTURAL RESPONSE OF SECONDARY CONTAINMENT

W i

S,

Janney Elstner and

Associates

DURING STRUCTURAL INTEGRITY TEST AT

CRYSTAL RIVER PLANT - UNIT 3

FOR

FLORIDA POWER CORPORATION

November 23, 1976

SCOPE

The structural behavior study described hereunder was performed during the structural integrity test of the secondary containment vessel, Unit No. 3, Crystal River, Florida. Wiss, Janney, Elstner and Associates were retained by Florida Power Corporation to install the prescribed instrumentation, monitor the response of the instruments, conduct crack surveys prior to and during structural integrity testing, and to report on the results of this structural behavior study.

The location of test instrumentation was planned by Gilbert Associates, Incorporated. The work was performed in accordance with Gilbert Associates, Inc. Specifications No. SP5971 and No. SP-6488. All installation was performed or supervised by WJE personnel. That part of the work normal to their skills (routine installation of electrical lead wire, welding, etc.) was performed by site craft labor.

OBJECTIVES

W i s,

Janney,

Elstner

a n d

Associates

The instrumentation was planned to serve two purposes. First, the satisfactory response of the structure to specific test pressures; second, confirmation of the criteria assumed in the structural design.

DESCRIPTION OF THE SECONDARY CONTAINMENT

The reactor building is a reinforced concrete structure composed of a cylindrical wall with a flat foundation mat and a shallow dome roof. The sidewalls rise 157 ft from the top of the base mat (Elev. 93'-0") to the springline of the dome (Elev. 250'-0"). The sidewalls are 3 ft 6 in. thick and the dome is 3 ft 0 in. thick. The cylinder walls are prestressed with a post-tensioning system in the vertical and horizontal directions.

Major discontinuities occur in the structure at the following locations:

A. At Azimuth 150°, thickened boss area around equipment hatch opening, Centerline Elevation 132 ft 0 in.

B. At Azimuth 323°, a thickened boss area around the personnel lock, Centerline Elevation 122 ft 7 in.

C. At electrical and pipe penetrations. These areas are not thickened.

-2-

The interior wall of the containment vessel is lined with a 3/8 in. thick steel plate, continuously welded to form an airtight seal.

W

S,

Janney.

Elstner

a n d

Associates

The dome roof is prestressed utilizing a three-way posttensioning system. A major portion of the concrete above the top layer of prestressing tendons is essentially a non-prestressed conventionally reinforced section. This section is connected to the prestressed dome portion by a series of radial anchors. The radial anchors are #6, Grade 60 reinforcing bars, hooked into the top portion of the concrete. The Reactor Building Cross Section is shown in Fig. 1.

TEST PROGRAM

Test instrumentation was located to yield the following information:

- Radial displacement of the wall from

 Elevation 98 ft 0 in. to Elevation 270 ft 0 in.
 on Azimuths 90°, 200° and 333° 55'.
- Vertical growth of the cylinder and dome displacements of the structure.
- 3. Radial and vertical displacements around the equipment hatch.
- Hoop and Meridional strains in the reinforcing steel around the equipment hatch.

-3-

5. Hoop and Meridional strains in the reinforcing steel at the ring beam on Azimuths 90°, 200° and 333° - 55'.

W

S,

Janney,

Elstner

a n d

Associates

- 6. Liner strains on the cylinder wall at Elevations 172 ft and 204 ft at Azimuths 90°, 200° and 333° - 55'.
- Liner strains around the Main steam penetration,
 Feedwater penetration and Spare penetration.
- Hoop and Meridional strains in reinforcing steel of the new dome concrete.
- Strains in the radial anchor bars connecting in the new and old dome concrete.
- Hoop and Meridional strains in the dome concrete below the prestressing tendons.
- Hoop and Meridional strain on the liner plate of the dome.
- 12. Ambient temperatures at Elevations 267'-6", 194'-0" and 122'-0" on Azimuth 90° and at Elevations 267'-6", 172'-0", 122'-0" on Azimuth 200°.

-5-

- 13. Crack patterns at the following locations:
 - a) The discontinuity at the equipment hatch

W iss,

Janney,

Elstner

a n d

Associates

- b) On the cylinder wall near the base slab on Azimuth 270° at Elevation 93'-0"
- c) On the cylinder wall, at Elevation 172'-0" on Azimuth 270°
 - d) On the ring beam and dome on Azimuth 200°
 6 ft below the ring beam and continuing to the apex of the dome.
 - e) Both ends of the twenty-one surveillance tendons.

In addition to the instrumentation above, a continuous visual inspection of the entire structure was made to monitor major cracking which might occur.

All whitewashed areas were protected from the elements with Visqueen tents.

STRAIN GAGE INSTRUMENTATION

Strain information was obtained by mounting electrical resistance strain gages directly to the main reinforcing or to sister bars which were subsequently installed at the proper locations. Electrical resistance strain gages mounted on reinforcing bars or sister bars were

two-element (temperature-compensating) SR4, encapsulated gages. The following types were used

1. SR4-BLH Type FABT-28-12S6

W

í S,

Janney.

E

lstner

an d

Associates

2. SR4-MM Type EA-06-125-TA-120

Sister bars were fabricated using 3 ft sections of #4 reinforcing bar. The strain gages were attached to the bar using BLH-EPY150 epoxy. After the lead wires were attached, the installation received a layer of silicone lacquer and two overlays of epoxy. The entire installation was then encased in rigid polyvinyl chloride conduit, which was subsequently filled with wax. (Fig. 2)

To verify the adequacy of each assembly, each instrumented bar was continuously submerged in water for a minimum of 48 hours. After soaking the resistance to ground was checked. Any installation showing a resistance to ground of less than 1000 megohms was deemed to be defective and was not used in the structure. The sister bar assemblies discussed above were fabricated at the laboratories of WJE and shipped to the site for incorporation in the structure.

Installation of the fabricated units consisted of wiring the "gaged" bar to the appropriate reinforcing bar in the structure. The lead wires were then run to the exterior wall where they were terminated in a junction box.

Strain gages were applied directly to the main reinforcing steel at Locations 35 through 69. (A sister bar was also used at each location. The term sister bar and dummy bar are interchangeable terms). The field installation of these gages consisted of attaching the strain

-8-

gage with EPY 150, attaching the lead wires, coating the installation with silicone lacquer and finishing with two coats of epoxy.

w

S, S,

J

anney,

Elstner

and

Associat

ě

Strain gages attached to the steel liner were SR4 -Type FABR-50-12S9 three-element rosettes. Liner gages were attached with EPY 150. The gages were then waterproofed as described previously.

Concrete strains in the lower portion of the dome were monitored with concrete embedment gages. The gages used were Model CG129 manufactured by AIL TECH, Inc. The gages were cast in 5 in. by 2 in. waffers at the WJE labroatory. Because these gages were to be installed prior to removal of the top concrete, it was deemed practical to provide a package that needed only to be grouted in the proper location. The gage system was sent to the field where it was installed in a 6 in. core hole, which had been drilled at the proper locations. (See Fig. 3).

DISPLACEMENT INSTRUMENTATION

Radial displacements from Elevation 98 to 270'-8" and all vertical measurements (except equipment hatch verticals) were obtained using invar wire extensometers.

The invar wire extensometers were located entirely within the structure, and were connected to an external power supply and readout equipment by electrical leads which extended through penetrations in the cylinder wall.

Each installation consisted of a extensometer and a invar wire spanning the distance to be measured. One end (the "dead" end) was fixed to the steel liner, and the "live" end of the wire was attached

-9.

to a spring-loaded frame which was attached to rigid supports or interior walls in the direction of measurement. Deformations of the structure were measured with a linear potentiometer mounted in each frame. (The spring and potentiometer arrangement is shown in Fig. 4). The potentiometers are of the infinite resolution type with a total resistance of about 2000 ohms. A constant voltage of 1.5615 volts was applied to each potentiometer. At each measurement, voltage is measured between the movable contact point and one end of the resistor. The voltage changes are recorded on the external readout system.

S,

Janney.

Elstner

a n d

Associa

ė

Radial measurements above Elevation 172'-O" were made by bringing the invar wire diagonally down from the point of measurement to a fixed point on the operating floor. Additional vertical measurements were made at these same locations. The true radial movement was then calculated using the diagonal radial growth and the vertical movement at each location.

Prior to shipment to the field, all the frames were calibrated in our laboratory. In addition all instruments were calibrated in place. The field calibration provided verification that each unit was accurrate to + 0.005 inches.

Vertical measurements at the equipment hatch were made using spring-loaded linear potentiometers. The potentiometers were mounted on a rigid frame in close proximity to the containment wall. The potentiometer plunger rested on clip angles welded to the containment liner. Field calibration of these units was performed as previously described.

INVAR WIRE EXTENSOMETER

FIGURE 4

-12-

TEMPERATURE INSTRUMENTATION

W

Š,

Janney,

Elstner

a n d

Associates

Temperatures of the containment wall were measured at six locations using Leeds and Northrup Company Type J, #14 AWG Iron-Constantine wire. The temperatures were monitored using a Leeds and Northrup Speedomax Model J-6000 strip chart recorder.

DATA ACQUISITION SYSTEM

A computer based automatic data acquisition system was set up to obtain and process all the strain and deformation measurements during the test. The test station was located just outside the personnel lock and all results were made available to GAI engineers present at the test site.

The data acquisition system consisted of a Vidar Autodata Eight data logger interfaced with a Hewlett-Packard HP 9830 desk computer. The system is shown schematically in Fig. 5. The Vidar Autodata Eight is a microprocessor-controlled system used to read raw analog data from input transducers and transform it into digital form. The system included three Vidar Scanners equipped to handle up to 800 input channels. The Autodata Eight is connected to the HP 9830 computer via EIA Standard RS-232-C Serial interface. The HP 9830 is a stand-alone desk computer with 15808 bytes of Read/Write memory. The computer output is printed on a thermal printer at the rate of 250 lines per minute. The computer was set up to scan at the rate of one channel per second. The data was stored on a magnetic tape cassette for permanent record and further processing. All data acquisition functions were initiated and controlled from the HP 9830 computer. The data was recorded for 489 input channels. At any pressure level the operator was required only to key in the current pressure and execute the start command. The computer was programmed to initiate the scan and check each channel for overload and store all the voltage readings along with pressure, time of scan on the tape cassette. After all the data was collected, the program would compute the incremental strains or deformations for each gage using the original "zero" pressure reading and the necessary calibration factors. The results were printed in a page format and were submitted to GAI engineers. The data acquisition system would read 489 channels, process the data and print it in proper format in approximately 20 minutes. A sample output of the results is shown in Appendix E.

i 8 8,

Janney,

Elstner

a n d

Associates

The reliability and accuracy of the acquired data were checked, where applicable, using a resistor calibration box. The calibrator incorporates a precision resistor of known magnitude which, when switched into the system, produces a known voltage change. Any significant deviation from the theoretical voltage change would indicate a malfunction in the system.

The data acquisition system is shown in Fig. 6.

CRACK INSPECTION

Prior to the structural integrity test, the entire structure was surveyed for cracks. The survey was made from scaffolding, roof tops

DATA ACQUISITION SYSTEM

FIGURE 5

-15-

DATA ACQUISITION ROOM

FIGURE 6

and accessible walkways. Crack widths observed during the pressure test were measured using a 6X comparator.

Visual observations of the total exterior surface were made at designated pressures during the test (35, 45, 55, 63.3 psig).

The following tendon anchors were inspected for concrete crack development at the same pressure levels as above:

D 121	12V20	13H10
D 140	23V15	13H19
D 203	34V6	13H37
D 215	45V3	51H30
D 324	56V1	51H41
D 339		53H17
		53H32
		53H47
	· · ·	62H11
		64H21

9 5,

Janney.

Elstner

an d

Associates

Both shop and field buttonheaded ends were checked. The inspection of the tendon ends was made from sky climbers, skip box and platforms positioned at the proper locations.

Fig. 7A and B shows, respectively, a typical platform for dome tendon inspection and the dome with its protective cover over the crack inspection area.

STRUCTURAL INTEGRITY TEST

The structural integrity test was performed prior to the integrated leak rate test. Complete sets of data, were made at five pressure increments during the loading cycle and at four pressure increments during depressurization (i.e., 12, 35, 45, 55, 63.3 55, 45, 35, 12 psig) and finally at return to atmospheric pressure. Detailed

FIGURE 7a

FIGURE 7b

crack inspections were made during pressurization at 35, 45, 25, 63.3 psig and at atmospheric pressure.

During pressurization and depressurization all data points were read and printed out every 5 psi. The data was obtained "on the run" (pressurization was not stopped). These intermediate readings allowed GAI engineers to monitor the structural response throughout the test. At those designated test points i.e., 35, 45 etc., pressurization (or depressurization) was stopped and the structure was allowed to stabilize for one hour. Readings and crack inspections were not started until this one hour stabilization period had passed. (Additional readings were obtained immediately upon reaching each plateau). All readings were reduced and submitted to Gilbert Associate engineers for their review before proceeding to the next pressure level. Only those readings obtained at designated hold points have been incorporated in the tabulated data.

The structural integrity test started on October 31, 1976 at 1103 hours and officially ended on November 3, 1976 at 1208 hours. A time-pressure curve is presented in Fig. 8.

TEST RESULTS

Stresses In Reinforcing Steel

i 8 5,

Janney,

Elstner

a n d

Associates

Two-element strain gages were mounted directly on the main steel and on redundant sister bars at the same location. This procedure was used for all locations around the equipment hatch and ring girder (Gage Nos. 35 through 69). The gage locations are shown on Figs.12 and 13 in Appendix A.

FIGURE 8

Hoop and meridional steel strains in the repaired portion of the dome were monitored using two independent sister bars, at each location, wired to the main steel. The typical gage locations are shown in Fig. 14 Appendix A. Table A, Appendix A identifies the gages.

W i s,

Janney,

Elstner

and

Associates

Strains in the radial anchors were measured using field installed strain gages on each bar. Redundancy for each anchor was obtained by instrumenting the next closest anchor, i.e., Location L2ON17 the parent bar, Gage No. 171 and Location L 21N18 is redundant. The typical gage locations are shown in Fig. 14 of Appendix A. Identification of the gage numbers is shown in Table A and B of Appendix A.

A total of 220 gages were installed on reinforcing bars. (This number represents 110 measuring points). The following gages exhibited excessive drift and instability, and have been excluded from this report.

41M*	49M ·	65M	59н
42M	56M	65M*	61 H
45M	. 57M	66M	62н
47M	58M	67H	63H
35H	59M	67н*	64н
36н	62M	69M	65H
38H	63M	69M*	68н
45H	64M	55H	69н
*Red	undant Gages		69н

The exclusion of these gages in no way negates the results obtained from the remaining gages. Due to the redundancy of the gages, a complete response picture was obtained.

The total number of gages listed above exhibit a mortality rate in excess of what would normally be expected on an installation of this type. A number of circumstances are believed to be contributing factors in this mortality rate. The original SIT was scheduled for mid April. At this time all gages already installed were terminated with temporary wiring to the data acquisition center. In checking the gages at this time it was found that five years after the original installation only ten (10) were suspect. Approximately four days prior to the test date problems in the dome were discovered. Between May and October major repairs were made to the dome. Although every possible precaution was taken to protect wiring, damage did occur, due to the extent of the repair. It is the writer's opinion that the high loss of gages can be attributed to moisture reaching the gages through breaks or burns in the lead wire. It is also the writer's opinion that the losses which were observed were well below those which could have been expected under these conditions.

Š,

anney

Elstner

a n d

Associates

Steel strains measured throughout the structure were low, 200 microinches or less. Maximum strains observed in the repaired portion of the dome was 794 microinches, with the majority of strain 500 microinches or less.

At completion of the test a review was made of gages showing inconsistencies with other gages in certain groups. It was suspected that Gages 131H, 152H, 157M, 157H, 149M and 149H had been wired wrong causing a sign reversal. This sign reversal has been corrected in this report. It was also suspected that Gage 144M had been interchanged with Gage 143M and that Gage 144H had been interchanged with Gage 143H and that Gage 144H had been interchanged with Gage 143H.

-22-

Stresses In Liner Plate

W iss,

J anney.

Elstner

a n d

Associates

Strain gages were located around the main steam penetration, feedwater penetration and a spare penetration. The location of these gages are shown in Figs. 15, 16 and 17 in Appendix A. Additional gages were located on the cylinder wall at Azimuths 90°, 200°, and 333° - 55' at Elevations 172 ft and 204 ft. Fig. 18 shows the location of these gages.

Liner strains were measured at locations corresponding to measurements made on the main reinforcing steel in the dome.Typical locations of these installations are shown in Fig. 14 of Appendix A. Table A of Appendix A, lists actual gage numbers and locations.

Where applicable, the strain data obtained from each element of the rosette have been reduced to determine the principal stresses at each gage location. A Modulus of Elasticity of 29 x 10^6 was used in the calculations. Fig. 20 indicates the key to the direction of the major and minor principal stresses and maximum and minimum shears as related to the vertical and horizontal direction of the rosette. All these stresses are shown in Appendix A.

The maximum principal stresses found in the liner plate appear reasonable. In most cases, the orientation was found to be close to the hoop disection.

During the course of the test, single elements of rosettes 93, 97, 103, 106 and 107 exhibited unstable readings. These gages have therefore not been included in the rosette reduction program. Rosette No. 92 exhibited a false reading at 55 psi on depressurization, subsequently, this reading has been eliminated from the program.

-23-

Stresses In Concrete

Hoop and meridional strains were monitored in that portion of the original concrete not removed during the repair of the dome. The locations correspond to measurements made on the main steel. Fig. 19 in Appendix A, show the location of these gages.

Gages 133, 137M, 141M, 145M and 150M showed excessive drift and have not been included in the tabulated data. In general, the concrete strains were low, 137 microstrain being the maximum observed. Most of the concrete strains were less than 100 microstrain at peak pressure.

The data for these gages are presented in Tables 14 through 19 in Appendix A.

RADIAL DISPLACEMENT OF CYLINDER WALL

Radial displacements of the cylinder wall were measured with invar wire extensometers at Azimuths 90°, 200° and 335°. At each Azimuth, instruments were at elevations shown on Fig. 21 of Appendix B. Table 24 of Appendix B provides the deflections observed during the test. The individual deflection plots are also presented in Appendix B. Radial displacements of the cylinder wall have been plotted for each Azimuth. Figs. 9, 10 and 11 show the radial displacement of each wall for the pressure cycle only.

W

S.

-24-

CYLINDER GROWTH AND DOME DISPLACEMENTS

The vertical growth of the cylinder was measured relative to the base slab on three Azimuth, i.e., 90°, 200° and 333°. The displacement of the apex of the dome was measured relative to the operating floor. Fig. 22 of Appendix B shows the location of vertical measurements.

Vertical growth of the dome, observed, was between 80% and 83% of the predicted displacements at all locations. The instantaneous recovery, measured after a one hour hold at zero pressure, was 85% or better for all points. Additional recovery could be expected if readings could have been obtained at a later time.

The test data has been tabulated in Table 23 of Appendix B and deflection plots have also been included in Appendix B.

EQUIPMENT HATCH DISPLACEMENTS

The vertical and radial growth around the equipment hatch were measured at the locations shown in Fig. 23 of Appendix B. Gage 43V was inspected after the test and found to have been reverse mounted, causing a sign reversal. This sign reversal has been corrected in this report.

Radial and vertical deflections measured around the equipment hatch were small and in the range normally expected for this region.

The displacements have been tabulated and are shown on Tables 25 and 26 in Appendix B. The deflection plots corresponding to this data is also presented in Appendix B.

-28-

TEMPERATURE RESULTS

Thermocouples were installed at locations shown in Fig. 24 of Appendix C. Table 1 of Appendix C provides actual temperatures recorded during the test. The temperatures were normal during the test with daylight temperature ranging between 75° and 80°, and evening temperature ranging between 50° and 65°.

CRACK PATTERNS

The total structure was surveyed prior to the structural integrity test to reveal cracking which existed. The structure was again surveyed at each pressure level during the test to determine any major cracking which may have occurred. The following areas were whitewashed for detailed crack survey:

- 1. The discontinuity at the equipment hatch.
- On the cylinder wall near the base slab on Azimuth 270° Elevation 93'-0".
- On the cylinder wall at Azimuth 240°, Elevation 172'-0".
- 4. On the ring beam and dome, a 6 ft wide band starting six feet below the ring beam and continuing to the apex of the dome.
- 5. Both ends of the twenty-one surveilance tendons. (These were not whitewashed).

Pretest Survey

The pretest survey revealed only minor shrinkage cracks. These cracks were under 0.005 inches in width and were located primarily in

-29-

thickened section of the structure, i.e., bossed areas and buttresses. The repaired dome showed no visible cracks. The feathered edge in the repaired concrete interface with the old concrete was visible but no cracking could be seen.

The tendon anchorages were generally free of cracks. Cracks which were observed, were less than 0.005 inches with the exception of D203F which showed that the construction joint was open more than 0.01 inches.

DEVELOPMENT OF CRACKS DURING TEST

The cylinder walls remained relatively free of cracks during the test. The inspection area at Elevation 172 did not develop any cracks during the test. The equipment hatch area developed a hairline crack at 63.3 psig which closed completely upon returning to atmospere.

The area at the base slab and cylinder wall intersection developed cracking at 45 psig and had a well defined crack by 63.3 psig. The width of the cracks were all less than 0.005 inches in width. All the cracks observed at 63.3 psig closed upon return to atmospheric pressure.

No cracking was detected in the ring beam and wall junction, the ring beam proper or the first 14 ft of the dome during the test. Initial cracking of the dome was observed at 35 psig and appeared as meridional cracks on approximately 24 in. centers. At the 45 psig inspection additional meridional cracking had occurred and radial cracks were beginning to form. At 63.3 psig a well defined system

W

8 8,

J

anney.

Elstner

a n d

Associates

-30-

of cracks was observed. Meridional crack had a spacing of about 18 inches and radial crack spacing was about 24 inches. The majority of cracks observed were measured as hairline, less than 0.005 inches in width. Isolated cracks were observed that exceeded 0.01 inches for extremely short lengths. One crack on the dome, was observed to be 0.015 inches in width over a 16 in. length. Upon return to zero the cracks had closed and could not be seen.

Appendix D contains detailed crack drawing of the areas inspected.

Tendon anchorage in general performed well. The inspection sheets have been included in Appendix D.

SUMMARY

Interpretation of the data in light of design concepts is not within the scope of this report. However, we feel that a comparison of the response of this structure with the performance of numerous reinforced and prestressed concrete structure which we have observed under many types of test loading justifies the following general commentary regarding the behavior of this structure under the application of the test loading.

> The overall response of the structure was well substantiated. The displacements observed were uniform between identical points on various Azimuths. The displacements observed were within predicted values and were typical of displacements measured on other similar structures. The recovery observed

iss Janney Elstner and Associates

W

-31-

1) Continued

W i s,

Janney,

Elstner and

Associates

was within limits one would normally expect for a structure of this type.

2) Cracking observed on the dome was slightly greater than would normally be expected in a prestressed dome but substantially less and of a smaller magnitude than could be expected in a reinforced dome. The crack widths (under 0.01 inches) were such that they did not substantially increase steel stresses in the dome. The fact that at atmospheric pressure the cracks closed indicated that the structure was still within the elastic range.

3) The strains recorded for the reinforcing steel were well within the elastic range of this material. This indicates that the structure could undergo more deformation before any significant signs of distress would appear.

-32-

Respectfully submitted,

WISS, JANNEY, ELSTNER and ASSOCIATES, INC.

Talest Kauso

Robert Krause Assistant Manager of Power Engineering Services

T. M. Brown Manager Power Engineering Services

RK/TMB/iz

APPENDIX A

Wiss Janney Elstner and Associates

STRAIN DATA

EQUIPMENT ACCESS OPENING STRAIN EAGE REINFORCING BAR LOCATION

FIGURE 12

ROSETTE LOCATIONS ON WALL

FIGURE 18

A-7

TABLE A

I

I

Gage No.	Radius Ft	Azimuth Deg	Group	Notes
131	45	75	1	Hoop & merid. reinforcing strain
132			2	Hoop & merid. reinforcing strain
133			3	Hoop & merid. conc. strain
134			4	Hoop & merid. liner strain
167			5	Radial anchor strain
135	45	165	1	Hoop & merid reinforcing strain
136			2	Hoop & merid. reinforcing strain
137			3	Hoop & merid. conc. strain 🐄
138			4	Hoop & merid. liner strain
169			5	Radial anchor strain
139	45	255	1	Hoop & merid. reinforcing strain
140			2	Hoop & merid. reinforcing strain
141			3	Hoop & merid. conc. strain
142			4	Hoop & merid. liner strain
168			5	Radial anchor strain
143	45	345	1	Hoop & merid. reinforcing strain
144			. 2	Hoop & merid. reinforcing strain
145			3	Hoop & merid. conc. strain
146			4	Hoop & merid. liner strain
170			5	Radial anchor strain
148	30	75	1	Hoop & merid. reinforcing strain
419			2	Hoop & merid. reinforcing strain
150			3	Hoop & merid. concrete strain
151			4	Hoop & merid. liner strain
171			5	Radial anchor strain
152	30	345	1	Hoop & merid. reinforcing strain
153			2	Hoop & merid. reinforcing strain
154	•		3	Hoop & merid. concrete strain
155			4	Hoop & merid. liner strain
172			5	Radial anchor strain
156	15	255	1	Hoop & merid. reinforcing strain
157			2	Hoop & merid. reinforcing strain
158			3	Hoop & merid. concrete strain
159			4	Hoop & merid. liner strain
173			5	Radial anchr strain
160	15	165	1	Hoop & merid. reinforcing strain
161			2	Hoop & merid. reinforcing strain
162			3	Hoop & merid. conc. strain
163			4	Hoop & merid. liner strain
174			5	Radial anchor strain

DOME STRAIN INSTRUMENTATION

INSTRUMENTED RADIAL ANCHOR LOCATIONS

Gage No.	Bar No.	Radius	Azimut		
<u></u>		<u> </u>	Deg.		
167	L30N15	45	75		
167*	L31N16	45	75		
169	L8S4	45	165		
169*	L6S 4	45	165		
168	R30S16	45	255		
168*	R32S17	45	255		
170	R8N3	45	345		
170*	R1ON 3	45	345		
171	L20N17	30	75		
171*	L21N18	30	75		
172	R6N9	30	345		
172*	R4N9	30	345		
173	RÍ1519	15	255		
173*	R12S19	15	255		
174	L3S15	15	165		
174*	L1S15	15	165		

A-1]

EQUIPMENT HATCH MERIDIONAL STRAINS (MICFOIN./IN.)

PRESSURE (PS IC) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.CO 11/2 19.58	12.00 11/3 6.00	0.C0 11/3 12.08
GAGE	******	• •• • • • • • • • • •• •• •• •• •• ••	*****							. (go de de ge ge ge ge ar ar ar	
35M	0	8	82	-31	531	572	541	-74	167	-72	-159
35M*	0	- 3	49	54	118	154	141	41	64	5	-33
36M	0	- 3	13	5	41	46	41	-3	21	3	-8
3611*	0	-10	-3	44	-136	-141	-126	51	-36	41	59
4211*	· 0	3	33	97	-105	- 92	-90	95	-13	49	54
4 3 M	0	- 3	15	0	74	90	87	0	36	-3	-15
4 3M*	0	15	21	23	56	77	79	23	23	23	28
4 3 M	O	- 3	15	0	. 74	90	87	٥	36	~ 3	- 15
43M*	0	15	21	23	56	77	79	23	23	23	28
44M	0	-44	-13	26	-169	-149	-133	10	-197	3	-5
44M*	0	-18	-13	21	-146	-149	-136	28	-44	28	49
4 5M*	0	-13	3	-3	28	49	54	-23	5	-8	-13
46M	Q	- 33	-23	26	-103 '	-133	-85	-21	-49	-15	-5
46M*	0	-28	8	-8	-26	8	18	~31	-10	5	- 8
4 7M*	0	-23	36	23	74 -	118	115	-10	31	-5	-33
48M	0	13	33	5	138	156	141	-5	46	-8	-33
48M*	. 0	-41	5	41	-1 79	-156	-141	28	-49	28	36
42N*	0	3	33	97.	-105	- 92	-90	95	-13	49	54
41M	0	21	33	44	77	79	74	38	23	8	3
4 OM	0	-254	-26	115	-241	- 38	-297	138	-505	113	228
40M*	0	-62	0	36	5	-5	-23	23	-10	- 33	-54
39M	0	-92	-56	0	-95	-95	-95	-3	-72	-54	-56
3 9N*	0	21	67	72	118	154	149	67	69	21	0
38N	0	-141	-62	-77	-287	-138	-210	-44	-287	-208	-200
38M*	0	- 38	-13	69	-115	-138	-146	69	-62	23	33
3 7 M	0	-74	-44	51	-128	-146	-154	36	-197	-195	-87
37M*	0	-5	-23	44	-128	-151	-167	49	-85	5	31

* INDICATES REDUNDANT GAGE

TAE	LE	2
-----	----	---

EQUIPMENT HATCH HOOP STRAINS (MICROIN./IN.)

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 €.00	0.00 11/3 12.08
					~~~~~~~~						
GAGE											
2594	n	-15	<b>-5</b>	28	-72	-69	-67	15	-33	15	33
3284	0	21	64	44	172	208	205	38	92	13	-18
17U	ň	5	13	5	26	31	38	0	21	13	8
420	ñ	23	15	Õ	59	56	59	8	.31	3	-8
4211	ň	46	97	64	195	246	244	56	126	46	18
4 38 *	· ŏ	8	46	64	69	97	87	62	51	28	15
4 <b>7</b> H	· 0	46	97	64	195	246	244	56	126	46	18
430 439#	õ	8	46	64	69	97	87	62	51	28	15
4 3 11	ō	-15	-28	59	-177	-215	-231	69	-77	18	49
44H#	õ	5	13	51	-15	-23	-26	51	0	18	21
459*	0	-67	15	18	-110	- 56	-46	-38	-44	28	13
46H	ŏ	-21	10	23	~49	- 33	-33	3	-28	8	3
460	Ď	-46	0	21	-95	- 79	-85	-38	-87	-44	-54
478	õ	8	18	38	3	3	3 .	41	5	13	10
4 711#	ŏ	-13	46	85	-15	15	10	54	5	31	18
494	~ õ	-31	28	74	-82	- 56	-74	41	-18	28	5
488	ŏ	5	77	56	110	156	141	33	64	23	-15
4011	·	-								<b>,</b>	
42R	0	5	13	5	26	31	38	0	21	13	8
4211*	Ď	23	15	· 0	59	56	59	8	31	3	-8
418	õ	72	121	-54	492	597	595	-36	259	- 3	-85
41H*	Ō	-13	3	18	-21	-13	-3	8	-3	13	18
408	Ō	-18	-13	10	-67	-6 2	-62	-5	- 33	0	10
408*	Ō	-23	-10	13	-59	-62	- 56	0	-28	5	8
39/1	ō	8	49	49	72	100	100	44	54	21	0
3911*	Ō	- 59	-31	33	-126	-118	-118	13	-77	-15	0
3811*	ō	41	154	174	246	331	295	167	156	62	10
3.78	ō	-146	-103	62	-338	-354	-374	41	-213	-62	-28
3711*	ŏ	292	359	405	41	256	231	41	51	-69	-118

* INDICATES REDUNDANT GAGE

TAPLE 3

MAIN STEAM LINE PENETRATICS STEAINS (EICPOIN./IN.)

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 5.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	C.CO 11/3 12.08	
CAGE												
7611	. 0	-110	-87	-63	-7	3	-23	-63	٥	-80	-77	
76 D	0	-113	-140	-133	-97	-300	-123	~150	-107	-117	-63	
7614	Ö	-70	-17	40	\$7	120	100	57	13	-73	-47	
77H	0	-37	177	207	293	317	293	233	377	127	~40	
770	C	3	100	. 120	163	180	160	130	183	83	. 7	
77M	0	-87	- 30	-33	17	23	-3	-33	93	-27	-90	
781	Ō	-27	-23	-17	-3	10	-13	-30	-43	- 37	-10	
78D	0	- 33	17	43	90	110	70	37	43	-13'	-40	
7814	Ō	-7	-3	40	87	120	57	Ĩ	-57	-53	-23	
791	Ō	13	163	.200	260	290	273	220	267	137	້າດ	
79D	õ	1000	667	1000	667	667	333	667	667	667	667	
795	Ō	27	70	. 67	70	63	57	63	37	30	30	
801	Ō	-60	-20	-20	23	40	20	~17	60	-10	-67	
800	ŏ	- 37	13	23	57	70	53	20	73	. 10	-50	
8.01	ō	3	47	ēČ	77	87	73	57	ر برع	17	-7	
6111	Ö	-47	ō	3	53	67	50	ĨĨ	77		-60	
810	ā	-20	20	30.	57	63	67	27	47	2	-33	
815	õ	-3	50	-130	-83	33	20	ĩċ	17	-83	-73	
8211	ō	-3	53	77	110	123	100	77	£7	67	20	
820	ō	3	57	63	107	117	163	50	9.0	37	-7	
8 211	ō	õ	-333	0	0		-111	· Č	0	ů,	ć	
8 31	ō	-667	-333	-333	-1000	- 333	-667	-133	- 222	-667	0	
8 3 0	Ċ	-333	-333	-667	-667	-667	-667	-667	-117	-667	-667	
8 3M	ñ	-667	-333	-333	~333	-667	-667	-667	- 333	- 333		
- 8.411	ñ	- 33 3	-667	-667	~667	- 333	-667	-667	-333	-1000	-667	
840	ñ ·	-333	-667	-111	-667	-667	-667	-333	_333	- 333	-1000	
8.4M	ñ	333	0	0	272	- 333	-333	333	- 222	- 333	-7000	
850	ñ	0	- 333	õ	~177	0	-333	-333	0	- 772	. 0	
850	õ	- 333	-333	-773	+667	-667	-555	-555	-667	- 555	-667	
8.54	ñ	- 333	. 111	0	-337	-007	-007	-007	-007	-007	- 2 2 2	
10.0	ň	- 222	-667	-667	-1000	-333	ů Č	-667	555	-667	-333	
860	ŏ	- 333	-333	- 007	-1000	- 322	0	- 272	-322	- 222	-007	
86%	0	-555	- 33 3	-553	-333	- 3 3 3	-667	-333	Ů	-233	-333	
9.01	0	-007	- 32 2	-007	-007	- 223	-007	-007	0	-067	-667	
870	0	222		-222	- 222	- 222	-222	222	222	U	-333	
07U	0	222	- 333	-222	-222	- 33 3	3 3 3	-333	-333	U 222	-067	
998	0	_ 177	- 22 2	-222	- 222			-222	-00/		-333	
000	0	- 57	U - 222	-333	-222	-272 .	-00/	-172	575		-66/	
000	U O		- 222	-007	-333	0	- 3 3 3	-222	-333	- 333	-333	
0.01	U O	- <u>5</u> 5		0	- CCC -	- 555	-333	Ü	0	-333	-333	
0.00	U O	-333	~ 33 3	-00/	~ 3 3 3	- 333	-252	-667	-667	-667	-667	
0 0 0 0	U A	- 33 3	-333	-272	-00/	- 3 3 3	-66/	-333	-333	-333	-667	
8.95	U	- 555	U	U	υ	0	. 0	-333	0	-333	-667	

A 13

TABLE 4 _____

FEEDWATER LINE PENETRATION STRAIN	N 5	(MICFOIN./IN.)
-----------------------------------	-----	----------------

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35,00 11/2 19,58	12.00 11/3 6.00	0.CC 11/3 12.CP	
CAGE												
9 OH	0	-667	-333	-667	-667	-1000	-1333	-1000	-667	-667	-1000	
90D	0	-667	-1000	-667	-1600	-667	-667	-667	-667	-667	-1000	
9 014	0	0	~333	0	0	0	0	0	0	0	-333	
918	0	~ 33 3	0	-333	C	0	333	٥	0	0	0	
91D	· 0	333	٥	0	-333	-333	333	0	333	C	-333	
91M	0	- 33 3	~667	-1000	-667	-667	-667	-333	-333	- 333	-667	
92H	0	0	-667	-667	-667	-333	-333	-667	-333	0	-667	
92D	0	-667	-1000	-667	-667	-667	-1000	-667	-667	-667	-1000	
92:1	0	-333	-667	-667	-1000	-1000		-667	-333	-667	-667	
9311	0	- 33 3	0	-333	-333	-333	1333	-333	-333	-667	-667	
938	· 0	333	0	-333	0	333	-333	0	333	C	0	
9411	0	333	~ 33 3	-333	0	-333	-333	~333	333	-333	-667	
94D	0	- 50	17	7	33	53	40	13	63	3	-60	
94M	0	-27	43	43	77	90	73	47	93	27	-33	
9511	C	- 33	37	40	63	83	70	47 ·	97	27	-33	
95D	0	- 33	97	100	137	153	140	120	167	103	33	
95N	Ó	-27	33	40	67	87	70	47	90	17	-37	
96H	0	- 33 3	~667	-667	-667	-667	-667	-667	-333	- 333	-667	
96D	0	-333	~ 333	-333	-667	-333	-333	-667	-333	- 333	-333	
968	Ō	0	~333	-333	-333	-1000	-667	-667	-1000	-1000	-667	
970	Ō	0	-333	-667	-667	0	-667	-667	Ő	-667	-333	
97M	õ	Ō	~ 333	-333	-333	-333	ů,	-333	- 33 3	- 333	- 333	
9811	ŏ	- 33 3	ů.	Ő	0	0	õ	-333	0	- 333	- 3 3 3	
980	Ċ	-667	~667	-667	-333	+667	õ	-333	- 33 3	-667	-667	
9814	õ	-667	-667	-667	-667	-667	-667	-1000	- 77 7	-667	-1000	
99!!	ŏ	333	000	0	001	0	0.	1000	222	007	1000	
990	ñ	- 333	~667	-667	-667	-667	-667	-667	-667	-667	-667	
9.95	Ň	-313	~667	-667	-667	-667	-667	-667	-1000	-667	-667	
1001	ñ	- 333	001	007	-333	-333	0.07	-333	0001-	-667	-333	
1000	ň	667	667	-1000	-667	- 777	ŏ	-667	-667	-007	-333	
1000	õ	222	333	-1000	-007	322	222	-007	-007	- 22 2	- , , , , , , , , , , , , , , , , , , ,	
1010	0.	555	~ 333	- 667	_ 2 2 2	- 222			- 2 2 2	0	0	
1010	0	-667	-1000	-667	-333	- 333	-333	-222	-333	667	6.67	
1018	0	-007	-1000	- 227	-777	-222	-00/	-007	-00/	- 222	-00/	
1020	0	- 222	- 222	-177	-232	-00/	-222	-272	222	- 10 CC -	-222	
1020			- 222	دد د	0	222	00/	0	555	0	Ű	
1020	U	-00/	~00/	~00/	-00/	- 7 7 2	00/	-00/	-222	-00/	-667	
1020	Ű	5/	23	-4/	-33	50	20	0	20	-/	-37	
1030	U	- 22 2	0	- 222	-222	U	-333	-333	0	-333	-333	
1030	Q	U	~333	-333	-333	Q	<b>∽</b> 333	-333	-333	- 333	-333	

TABLE 5

______

SPARE PENETRATION STRAINS (MICROIN./IN.)

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08
GAGE											
104H	0	-333	-333	0	0	-333	-333	-333	-333	- 33 3	-667
104 D	0	-333	- 33 3	-667	-333	-333	0	-333	-333	- 333	-667
104M	0	- 33 3	-333	-667	-333	0	-333	-333	-667	-667	-667
10 5H	0	0	-333	0	-333	-333	-667	-333	-333	- 33 3	-667
105D	0	-667	-667	-333	-667	-667	-667	-1000	-667	-1000	-1000
105M	0	-333	-333	-333	-333	0	-333	0	0	-333	-333
1060	U	57	113	137	150	147	143	133	90	60	60
100M	0	-27	-37	-27	70	50 83	30 F7	63	· //	43	-83
1070	0	-7	43	63	87	103	93	73	23	23	-17
1080	ŏ	~23	30	50	73	97	83	60	83	30	-13
108D	Ō	27	67	77	107	110	113	117	80	77	70
108M	Ó	33	77	97	113	113	107	100	67	43	37
109н	0	-47	13	27	57	83	63	40	80	3	-63
109D	0	-123	-63	-53	0	37	10	-27	90	-17	-127
109M	0.	-40	10	23	47	63	53	33	73	23	-27
110H	0	-137	- 33	13	57	117	70	13	153	-10	-160
1100	0	~ 50	-7	0	27	47	37	20	77	20	-43
110M	U	-153	- 70	-63	-7	50	13	-37	117	-23	-173
	0	- 53	27	40	83	113	80	43	80	-10	-110
	. 0	-20	20	23	37	43	33	30	47	-7	-122
1121	0	-57	30	60	107	143	110	67	100	- /	-123
1120	õ	-37	-13	-10	-3	145	-3	-13	27	-7	-43
12M	õ	-90	-3	17	77	107	83	53	137	30	-50
131	0	-20	70	93	133	170	147	110	133	30	-47
13D	0	-113	-100	-137	-90	- 53	-83	-103	27	-60	-140
113M	0	-27	13	20	33	47	37	20	50	0.	-40
L14H	0	-10	80	103	143	173	147	110	127	30	-40
L14D	0	-143	-73	-83	-33	0	-27	-60	93	-43	-157
114M	0	-57	-10	-3	27	43	23	0	57	- 33	-107
.15H	0	-20	67	87	127	157	137	100	133	37	-33
150	U	-4/	20 T U	13	37	40	37	23	83	27	-27
1100	U A	-23	3U 70	40	6/ 120	8/	17	6U 107	90	30	-10
160	о Л	-20	/U 2	נע	120	7.20 7.20	130	107	113	45	-10
	õ	-107	- 73	-43	23 7	47	23	-23	100	-20	-130
1 70	õ		80	100	130	150	בב זיז	113	100 ,	47	-130
170	ŏ	- 57	-10	-20		13	-7	-33	30	-47	-117
178	ā ,	-53	23	30	70	107	na	53	120	20	-53

### TAELE 6

#### CYLINDER WALL AND DOME JUNCTION FERIDIONAL STRAINS (LICECIN./IN.) AZIHUTH 90

											· · · <b>-</b> ·	
PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.CO 11/2 19.58	12.00 11/3 6.00	C.CO 11/3 12.08	
GAGE												
7 CM	0	-27	-10	-3	30	50	30	7	43	-33	-93	
73M	0	- 57	-3	7	50	53	50	50	97	43	-7	
4914	0	15	82	115	-54	3	3	74	-10	-31	16	
5 213	0	49	-62	-90	-408	-367	-405	-154	-392	-82	-90	
5 2년 *	0	-18	54	56	-26	18	23	3	-10	13	3	
5 511	C	-28	-100	-18	-454	-410	-405	-10	-485	6	-3	
55M*	0	-44	15	103	-110	-105	~105	97	-49	54	51	
586*	0	44	82	97	128	146	128	100	92	46	28	
61M	0	-18	-26	-49	38	38	2315	2531	2661	2495	2523	
6.1M*	0	18	-5	-5	23	18	23	8	13	-21 ·	36	
6414	0	126	215	265	328 `	346	331	303	197	~503	64	
64M*	0 '	0	0	0	0	0	0	C	0	C	0	
6 7N	0	0.	0	0	0	0	Ũ	0	0	0	0	
6 7N*	0	-18	54	59	-8	31	51	-13	-26	8	-3	

* INDICATES REDUNDANT GAGE

.

### TALLE 7

#### CYLINDER WALL AND BOME JUNCTION MERIDIONAL STRAINS (MICROIN./IN.) AZIMUTE 200

٠

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.40	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.C0 11/3 12.08
GACE											· .
71M	0	-3	33	43	70	80	70	63	60	30	7
741	Ō	-27	20	43	87	100	90	S C	143	- 57	-10
504	0	-10	72	62	69	126	105	31	49	31	-10
5GN1*	0	-21	49	13	3	54	38	-44	-31	. 0	-31
5381	0	-13	46	8	10	51	44	-23	5	23	3
53/4*	0	-33	64	-21	5	67	26	-62	0	21	~36
-5G/:*	0	38	95	133	149	162	162	133	108	46	15
594*	0	18	105	110	141	174	138	105	90	23	-18
62M*	Ō	62	192	231	282	341	282	236	162	44	-18
651:	0	0	0	0	0	0	0	0	0	0	0
6 5N.*	. 0	C	0	0	0	C	O	0	· 0	0.	0
68M	Ó	5	31	18	-10	3	13	-10	-28	-10	5
6821*	Ó	-36	13 '	5	-33	-13	3	~36	-23	-10	-23

* INDICATES REDUNDANT GAGE

.

### INGLE 6

#### CYLINDEF WALL AND DONE JUNCTION ALFIDIONAL STRAINS (AICFOIN./IN.) AZIMUTH 333-55

PRESSURE (FS1C) ENTE 1INE	C.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.40	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 5.25	45.00 11/2 14.39	35.00 11/2 15.56	12.00 11/3 6.00	0.C0 11/3 12.C6
					· ·						
GAGE											
721	C	-17	10	20	40	40	33	30	47	17	-16
751	ō	-67	-133	-133	-133	-100	-100	-133	-100	-100	+67
5111	0	31	100	110	108	141	120	75	67	44	21
518*	Ō	28	151	164	167	226	192	100	121	54	- ĉ
540	. 0	13	18	72	31	15	46	-44	-20	-100	-164
548*	C	26	103	100	05	121	105	46	51	36	16
576*	Ċ	46	144	200	230	236	245	215	155	.97	56
6 CM	0	33	87	115	138	162	146	126	\$2	36	13
6021*	Ó	38	115	149	175	210	185	154	121	25	3
638*	Č	63	107	210	282	392	362	300	244	136	23
66::	Ċ	G	C	C	C	0	0	c	~	3	Ĵ
6623*	Ō	41	.144	167	236	267	220	150	145	44	-3
GSI:*	ō	0	C	0	Ğ	C	Ğ	Ĵ,	- ic	Ċ	ō

* INDICATES REDUNDANT GACE

### TAELE 9

#### CYLINDER WALL AND DONE JUNCTICN ECCF STRAINS (FICEOIF./HL.) AZIEUJE SO

PRESSURE (PSIG)	C.00	12.00	35.00	45.00	55.00	63.30	55.00	45.00	35.00	12.00	0.00
TIME	8.19	18.02	4.04	11.48	19.11	2.41	\$.25	14.35	19.58	6.00	12.08
CAGE											-
70!!	c	-140	-73	-87	-7	30	-23	-70	63	-63	-170
73:1	С	33	100 -	130	177	197	036	160	133	63	23
4 SH	0	110	228	190	221	287	256	177	95	51	0
4911*	0	-23	123	131	54	144	133	49	44	31	-3
5211	0	-28	62	38	~5	45	38	-18	8	10	-15
5211*	0	3	87	69	21	74	69	13.	-3	~56	5
5511*	0	0	-256	-256	513	256	C	513	2564	513	1026
5611	<b>C</b> .	0	-38	-51	-51	-69	-59	-31	-31	-3	18
5811*	0	- 8	-49	-33	-28	-46	-30	-5	-23	20	44
618*	C	62	185	241	310	354	315	274	213	<u>95</u>	31
G411	0	0	Ç	0	0	0	0	C	0	Ď	Ō
6411*	0	- 3	-59	-64	-67	-87	~72	- 33	- 36	-10	15
6 711	0	0	0	Ó	0	0	0	0	C	Ō	Ō
67H*	0	0	0	0	Ó	0	Ō	Ō	Ō	ō	Ō

* INDICATES REDUNDANT CACE

#### CYLINDER WALL AND DOME JUNCTION HOOP STRAINS (MICPOIN./IN.) AZIMUTH 200

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 5.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08
CAGE											
71!!	0	333	667	333	-333	-667	-1000	-1667	-1333	-2333	-2666
748	0	-10	73	110	180	207	173	150	180	37	-43
500	Ó	-36	69	8	-3	64	21	-100	-62	-46	-118
500*	0	- 3	103	59	77	149	118	16	33	38	-5
530	0	-618	-867	-367	~638	-674	-438	-508	-679	-669	-526
5311*	0	-15	49	13	21	64	28	-21	3	18	-15
561	0	-28	-44	-62	-56	-62	-67	~54	-10	-26	-38
5611*	0	- 3	-44	-44	-49	-67	-56	-31	-31	-5	13
5911*	0	~5	-49	-51	-56	-67	-64	-36	-21	3	23
6211*	0	-44	-151	-118	-154	-208	-182	-182	-190	-174	-149
6 511	Ō	0	0	C	0	0	0	0	. 0	0	Ū.
6511*	0	-10	-72	-69	-82	-100	-77	-44	-46	-8	13
688	0	0	Ō	0	C ·	0	Ó	0	0	ō	0
688*	C	62	82	138	77	123	182	10	33	-74	82

* INDICATES REDUNDANT GAGE

#### CYLINDER WALL AND DOME JUNCTION HOOP STRAIKS (MICROIN./IN.) AZIMUTH 333-55

•										_	
PFESSURE (PSIC) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08
CAGE					•						
7211	0	- 37	27	43	97	117	87	50	80	-7	-47
758	0	- 90	-103	-113	-83	-80	-97	-107	- 33	-67	-70
518	C	23	95	87	85	118	97	46	51	31	-5
518*	0	54	167	172	131	185	172	69	64	54	21
54H	0	36	95	318	13	192	231	131	172	95	41
5411*	0	36	131	123	79	126	113	36	36	44	30
5711	0	-15	-44	-56	~59 ·	-64	-64	-51	-28	-15	-15
57!1*	0	26	54	-41	-51	-64	-72	44	21	3	-13
6011	0	28	-100	-118	-130	-182	-126	-192	-141	-49	-82
6CH*	0	-8	-51	-51	-62	-74	-62	-38	- 31	-5	13
6 311*	0	-10	-62	-74	-85	-105	-87	-51	- 54	-10	21
6611	0	-256	-256	-256	256	0	256	256	256	256	C
6611*	0	-21	-69	-85	-82	- 90	-77	-46	-36	-8	13
6 911	0	0	0	0	0	0	0	C	0	0	0
6911*	0	0	0	0	Û	0	0	0	C	0	0

* INDICATES REDUNDANT GAGE

-

#### TABLE 12 _____

#### _____ PRESSURE (PSIG) 0.00 12.00 35.00 45.00 55.00 63.30 55.00 45.00 35.00 12.00 0,00 DATE 10/31 10/31 11/1 11/1 11/1 11/2 11/2 11/2 11/2 11/3 11/3 TIME 8.19 18.02 4.04 11.48 19.11 2.41 9.25 14.39 19.58 6.00 12.08 ----------____ _____ _____ GAGE A2. ELEV. 70H 90 172-0 0 -140 -73 -87 -7 30 -23 ~70 83 -63 -170 70D 0 -73 -37 -37 13 33 3 ~30 47 -57 -113 70M 0 -27 -10 -3 30 50 30 7 -33 43 -93 **7**1H 200 172-0 0 333 667 333 -333 -1000 -667 -1667 -1333 -2333 -2666 71D 0 -7 53 63 87 100 77 53 67 -3 -37 71M 0 -3 33 43 70 80 70 80 30 63 7 728 333-55 172-0 0 -37 27 43 97 117 87 50 80 -7 -47 72D -47 0 3 10 50 70 50 27 73 0 -43 7 2M 0 -17 10 20 40 40 33 30 47 17 -10 73H 90 204-0 33 0 100 130 177 197 180 160 133 63 23 73D -33 0 27 40 . 97 117 93 70 120 13 -50 7 3 M 0 -57 -3 7 50 53 50 50 97 43 ~7 74H 200 204-0 Q -10 73 110 180 207 173 150 180 37 ~43 74D 0 -83 - 17 90 -3 117 77 50 177 -117 Ω 74M 0 -27 20 43 87 100 90 90 143 57 -10 75H 333-55 204-0 0 ~90 -103 -113 -83 -80 -97 -107 -33 -67 -70 75D 0 -93 -60 -60 -7 20 37 43 183 103

-133

-100

-100

-133

-100

~100

-133

67

-67

WALL LINER STRAINS (MICROIN./IN.)

A-22

7 5M

-67

-133

0

TAELE	13
-------	----

DONE MERIDIONAL STRAINS (MICROIN./IN.) FADIUS 45 FEET

PRESSURE (PSIG)	0.00	12.00	35.00	45.00	55.00	63.30	55.00	45.00	35.00	12.00	0.60
DATE	10/31	10/31	11/1	11/1	11/1	11/2	11/2	11/2	11/2	11/3	11/3
TIME	8.19	18.02	4.04	11.48	19.11	2.41	9.25	14.39	19.58	6.00	12.08
GAGE											
	AZIMUT	CH 75									
131M	0	-24	-272	-279	-77	-292	-146	115	162	-90	253
131M*	0	-23	-121	-155	-145	-200	-183	-104	-100	-46	8
132M*	0	-1	73	87	62	74	78	51	28	13	0
134N	0	7	-3	7	27	37	37	37	7	-10	3
	AZIMUT	н 255	· .								
139M	0	32	281	281	336	487	400	229	222	119	35
139M*	0	27	109	114	115	255	227	126	128	83	28
140M	0	29	163	212	228	358	321	217	176	99	49
140M*	0	28	113	150	142	236	223	155	124	73	36
142M	0	7	3	13	33	40	40	47	23	13	10
·	az imut	H 165					•			·.	
135M	0	13	117	112	92	137	127	49	51	21	-29
135M*	0	-3	105	112	81	144	138	49	55	31	-27
136M	0	26	109	123	109	136	126	81	51	9	-23
136M*	0	14	96	119	105	136	128	81	51	17	-18
138M	0	80	120	157	153	167	170	173	87	100	213
	A2 IMUT	H 345									
143M	0	-37	-259	-277	-290	-414	-377	-274	-206	-105	-54
143M*	0	-40	-115	-227	-323	-562	-491	-304	-267	-154	-67
144M	0	38	131	131	129	158	142	72	67	23	-37
144M*	0	41	117	140	136	162	147	105	74	24	-18
146M	0	37	97	117	137	167	153	140	97	53	50

* INDICATES REDUNDANT GAGE

1

-

#### DOME MERIDIONAL STRAINS (MICROIN./IN.) RADIUS 30 FEET

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 5.00	0.00 11/3 12.08
GAGE			·								
	AZIMUT	'H 75									
148M	. 0	38	499	538	636	794	676	395	346	126	-9
1484*	0	-33	387	360	322	533	460	79	-10	-151	-251
149M	0	14	129	212	209	- 265	249	179	135	79	46
149M*	0	36	218	315	346	442	408	317	251	141	79
151M	0	60	117	160	190	217	210	207	140	127	120
	AZIMUT	H 345									
152M	0	-96	-453	-509	-554	-617	-570	-474	-349	-109	18
152M*	Ó	-47	-628	-724	-877	-1049	-872	-549	-440	-177	-45
153M	Ō	65	63	264	545	399	271	686	758	458	483
153M*	0	37	232	267	290	364	344	276	231	127	67
154M	0	-37	0	-13	. 10	13	-3	~20	43	-17	-70
155M	Ō	47	103	147	173	193	183	163	100	61	53

* INDICATES REDUNDANT GAGE

.

A-24

.

•

#### DOME MERIDIONAL STRAINS (MICROIN./IN.) RADIUS 15 FEET

									_ * *		
PRESSURE (PSIG) Date Time	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08
GAGE											
	AZIMUT	H 255				`					
156M 156M* 157M 157M* 158M 1594	0 0 0 0 0	29 23 -28 -32 -20 33	108 83 -118 -117 57 120	108 73 -195 -218 87 160	92 73 -201 -219 117 213	118 182 -258 -294 137 253	112 176 -244 -279 120 230	46 71 -179 -217 83 197	46 106 -131 -162 127 163	15 108 -64 -85 20 73	-31 56 -27 -47 -50 30
	az i mut	H 165									
160M 160M* 161M 161M* 162M 163M	0 0 0 0 0 0	-18 -19 -31 -40 -7 2913	-123 -81 -117 -121 0 -1766	-124 -376 -150 -415 -3 -1357	-112 -399 -158 -426 0 -857	-205 -533 -237 -520 -3 -823	-190 -456 -227 -463 -3 -820	-91 -221 -174 -326 -3 -847	-88 -186 -128 -209 17 -1470	-40 -85 -72 -74 -7 -1037	15 -14 -36 -21 -23 -1000

* INDICATES REDUNDANT GAGE

----

#### DOME HOOP STRAINS (MICROIN./IN.) RADIUS 45 FEET

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12,08
GAGE											
	AZIMUT	rh 75									
131H 131H* 132H 132H* 133H 133H	0 0 0 0 0	18 6 -31 -33 -17 -7	-86 -87 -131 -141 0 40	-77 -86 -164 -162 -7 73	-49 -54 -151 -162 -3 127	-108 -79 -185 -199 3 163	-96 -82 -172 -176 -7 137	-13 -24 -117 -121 -17 110	-28 -29 -85 -79 10 93	-13 -17 -35 -19 -7 13	23 15 5 19 -33 -20
	AZIMUT	PH 255									
139H 139H* 140H 140H# 141H 142H	0 0 0 0 0	6 3 24 -4 -73 -60	131 101 136 47 -50 63	117 74 153 58 -67 87	128 79 169 46 -43 187	242 94 215 53 10 230	200 83 183 58 -60 180	95 14 129 19 ~73 123	105 32 105 5 -100 220	67 19 50 -1 -140 47	14. -13 17 -19 -113 -37
	AZIMUT	H 165			-						
135H 135H* 136H 136H* 137H 138H	0 0 0 0 0	-29 -24 -13 -9 -43 23	260 171 187 86 40 137	218 209 247 197 47 177	245 200 218 177 73 240	346 305 297 259 103 280	285 281 281 250 70 250	82 141 168 165 40 210	115 150 118 114 87 203	72 109 72 67 0 97	-12 44 40 36 -67 43
	AZIMUT	H 345									
143H 143H* 144H 144H* 145H 145H	0 0 0 0 0	-33 -14 14 15 -37 -37	-59 -74 358 304 20 83	-38 -96 336 354 50 113	-35 -82 372 355 67 197	-59 -104 453 427 83 243	-37 -101 385 382 63 203	-22 -71 222 249 33 137	-41 -42 204 186 87 200	-19 -15 118 104 3 50	3 1 58 64 -53 -50

* INDICATES REDUNDANT GAGE

T	A	B	L	E			1	7	
-	-	_	_	-	-	-	-	-	-

#### DOME HOOP STRAINS (MICROIN./IN.) RADIUS 30 FEET

											•	
PRESSURE (PSIG) DATE TINE	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08	
GAGE												
	az imut	°H 75			,			,		-		
148H 148H#	0	-22	-168	-168	-213	- 351	-310	-167	-182	-103	-12	
1498	ő	-26	-326	-442	-465	-605	-546	-378	-278	-124	-47	
1491*	0	-40	-286	-363	-395	-483	-442	- 32 7	-245	-103	-35	
150H	0	-50	-40	-37	-27	-13	-20	-33	20	-27	-77	
1510	0	13	103	137	193	227	217	197	197	133	90	
	az i mut	H 345	•									
15211	0	35	345	404	509	612	495	288	265	112	6	
152#*	Û	27	210	244	308	420	353	182	163	68	-15	
15311	0	55	381	518	585	606	583	624	553	426	368	
153H*	0	31	324	4 5 9	508	632	560	383	274	122	55	
1548	0	-17	43	50	67	77	63	47	73	3	-40	
155H	0	-3	60	93	133	170	153	133	127	50	10	
			-									

* INDICATES REDUNDANT GAGE

. .

Ûn

A-27

.

T

#### DOME HOOP STRAINS (MICROIN./IN.) RADIUS 15 FEET

PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08
GAGE											
	az imut	°H 255									<u>.</u>
1568	0	-18	-227	-222	-251	- 321	-274	-127	-122	-60	-3
15611*	0	-33	~106	-113	-123	-164	-155	-85	-94	~59	-4
1578	0	36	-50	68	88	79	68	72	42	-26	-55
15711*	0	27	126	162	162	194	188	146	119	77	45
1588	· 0	-20	10	0	10	17	7	-13	40	-7	-60
1598	0	43	120	160	207	240	223	203	160	87	57
	AZIMUT	H 165									
160H	0	-12	-97	-135	-114	-205	-201	-109	-103	-59	-4
1608*	Ō	-32	-91	-135	-115	-210	-194	-97	-92	-45	6
1618	Ō	-27	-183	-265	-294	-400	-369	-276	-195	-90	-44
161H*	0	-36	-99	-151	-149	-237	-227	-173	-121	-63	-29
1628	0	-33	-30	-33	-20	-20	-30	-37	7	-30	-70
163H	0	37	113	150	217	280	337	323	280	467	487

* INDICATES RECUNDANT GAGE

TABLE	19
-------	----

#### DOME FADIAL STRAINS (MICROIN./IN.) RADIUS 45 FEET

			~~~~~									
PRESSURE (PSIG) DATE TIME	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08	
GAGE												
	AZIMUT	Н 75										
167R 167R*	0 0	8 -2	27 12	18 8	23 10	28 10	27 10	18 12	13 13	22 -168	35 -152	
	AZ IMUT	H 255			•							
168R 168R*	0 0	3 0	-3 2	-7 3	~8 12	-5 13	2 25	5 38	-7 72	13 95	27 105	
	az imut	H 165	•					-				
169R 169R*	0 0	-12 -18	-30 -15	-32 -23	-40 -15	-43 -12	-38 -17	-30 -18	-20 -10	-7 -8	-2 -2	
	AZ IMUT	H 345									· .	
170R 170R*	0 0	8 8-	-5 12	-2 27	-17 28	-22 62	-7 83	3 75	-13 60	15 77	32 82	

* INDICATES REDUNDANT GAGE

DOME RADIAL STRAINS (MICROIN./IN.) RADIUS 30 FEET

PRESSURE (PSIG)	0.00	12.00	35.00	45.00	55.00	63.30	55.00	45.00	35.00	12.00	0.00	•••
DATE	10/31	10/31	11/1	11/1	11/1	11/2	11/2	11/2	11/2	11/3	11/3	
TIME	8.19	18.02	4.04	11.48	19.11	2.41	9.25	14.39	19.58	6.00	12.08	
GAGE	r											
	AZIMUT	°H 75										
171R	0	-22	-25	-25	-28	-20	-12	-12	7	33	42	
171R*	0	-13	-22	-23	-33	-32	-25	-20	-15	5	12	
	a 2 i mu.t	H 345			-							
172R	0	-3	-2	-5	-3	-3	-2	-3	3	12	18	
172R*	0	-17	12	22	28	57	77	75	80	103	113	

* INDICATES REDUNDANT GAGE

•

A-30

.

DOME RADIAL STRAINS (MICROIN./IN.) RADIUS 15 FEET

PRESSURE (PSIG)	0.00	12.00	35.00	45.00	55.00	63.30	55.00	45.00	35.00	12.00	0.00
Date	10/31	10/31	11/1	11/1	11/1	11/2	11/2	11/2	11/2	11/3	11/3
Time	8.19	18.02	4.04	11.48	19.11	2.41	9.25	14.39	19.58	6.00	12.08
GAGE				,							
	A2 1MU1	XH 255						, ,			
173R	0	-12	17	12	27	37	30	18	37-	45	48
173R*	0	-28	-28	-27	-33	-35	~32	-37	-5	~8	-13
,	A2 IMU1	H 165			•						
1 74 R	0	572	625	663	658	660	668	667	675	693	700
1 74 R*	0	-13	-17	-13	-23	-23	-15	-8	3	15	27

.

* INDICATES REDUNDANT GAGE

1

A-31

•

1

٠

JVI TE	22

.

Pressure (PSIG) Date 1 ime	0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11,48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.0 11/3 12.0
GAGE		, 							· · · · · · · · · · · · · · · · · · ·		
134M	0	7	-3	7	27	37	37	37	7	-10	3
1340	õ	-23	-80	-63	- 20	-80	-70	-50	- 37	23	-3
1341	ō	-7	40	73	127	163	137	110	93	13	-20
142	ō	Ż	3	13	33	40	40	47	23	13	10
1420	Ö	-10	-63	-67	-63	-70	-50	-27	-33 -	-20	7
1428	Ó	-60	63	67	167	230	180	123	220	47	-37
1 3 C M	0	80	120	157	153	167	170	173	٤7	100	213
138D	Ö	70	\$7	120	187	22 7	227	317	160	127	133
1361	0	23	137	177	240	260	250	210	203	97	43
1464	C	37	\$7	117	137	167	153	140	57	53	50
1460	0	20	23	33	37	40	53	67	47	50	50
1 4 G H	C -	-37	ε3	113	197	243	203	137	200	50	-50
1514	0	60	117	160	190	217	210	207	140	127	120
1510	0	-7	83	117	170	210	187	143	173	77	20
L5111	C	13	103 -	137	193	227	217	197	197	133	50
1551:	0	47	103	147	173	193	103	163	100	63	53
1550	0	390	-183	-140	-63	50	63	33	10	47	<u> </u>
5511	. 0	-3	60	93	133	170	153	133	127	50	10
5914	C	33	120	160	213	253	230	197	163	73	30
59D	0	-57	57	97	177	240	200	137	260	33	-63
L 5 9H	0	43	120	160	207	240	223	203	160	67	57
163M	٥	2913	-1766	-1357	-057	-823	-820	-847	-1470	-1637	-1000
163D	. 0	183	-2086	-2046	-1703	-1423	-1153	-1193	-1230	-190	-216
16311	0	37	113	150	217	280	337	323	280	467	487

DOME LINER STRAINS (MICKOLU./1m.)

ROSETTE NUMBER 76

.

PRESSURE (PSIG)	(N MAX	STRAIN MICROIN. MIN	S /IN.) SHEAR	Max	ANGLE (DEG)		
			 0	 1à		 Й	 0.00
0.00 10 00	_50	_121	· 4 1	-2042	-4414	685	24.70
12.00	-02	-121 -147	190	-21	-4260	2119	34.19
3 J. 00 45 00	101	-144	264	2465	-3432	2948	33.50
40.00 55 00	102	-106	204	5228	-1499	3364	34.98
20.00	200	-110	244	6388	-1279	3834	35.08
55 00	207	-135	346	5447	-2272	3859	34.56
45 00	155	-162	317	3397	-3673	3535	33.88
40.00 25 QQ	100	-102	227	2808	-2256	2532	43.32
12 88	120	-117	20	-2281	-4071	895	42.62
0.00	-47	-77	30	-2218	-2891	<u>337</u>	3.17

ROSETTE NUMBER 77

F

1

PRESSURE	<i>е</i> в.	STRAIN	S ZTMI N		ANGLE (DEG)		
(PSIG)	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
 9.99	 Ø	 ผ	 Й	 0	0	9 9	0.00
12.00	Š	-131	139	-1001	-4108	1553	34.48
35.00	180	-33	213	5418	657	2380	7.24
45.00	211	-38	249	6368	812	2778	7.76
55.00	294	16	277	9512	3330	3091	1.72
63.30	317	23	294	10321	3763	3279	1.95
55.00	294	-4	298	9332	2681	3326	2.89
45.00	237	-37	273	7191	1094	3048	6.34
35.00	386	84	302	13098	6371	3364	-10.02
12.00	134	-34	167	3936	206	1865	11.75
0.00	11	-141	152	-1000	-4386	1693	35.38

ROSETTE NUMBER 78

PRESSURE	(14	STRAIN	S ZIN.)		ANGLE (DEG)		
(1010)	MAX	MIN	SHEAR	MAX	MIN	SHEAR	. – – – .
 0.00	 Ø	 এ	 0	 0	0	0	0.00
12.00	3	-36	39	-257	-1124	434	29.52
35.00	18	-45	63	153	-1258	705	-35.78
45.00	54	-31	85	1431	-465	948	-24.09
55.00	108	-24	132	3199	253	1473	-23.52
63.30	136	-6	142	4278	1107	1585	-19.64
55.00	81	-38	119	2229	-434	1331	-27.05
45.00	39	-66	195	623	-1728	1176	-35.78
35.00	44	-144	187	16	-4158	2087	42.96
12.00	-12	-78	65	-1134	-2594	730	37.63
0.00	12	~41	49	-149	-1232	541	-37.03

ROSETTE NUMBER 79

PRESSURE	ć b	STRAIN	IS ZTHIN		ANGLE (DEC)		
VI DI GZ	MAX	MIN	SHEAR	MAX	MIN	SHEAR	(DEG)
0.00	 0	 Ø	 0	 . 0	 0	0	0.00
12.00 .	1000	-960	1960	22688	-21031	21860	-44.81
35.00	669	-435	1104	17145	-7479	12312	42.58
45.00	1002	-736	1738	24912	-13865	19389	42.80
55.00	676	-346	1021	18224	-4554	11389	39.64
63.30	.680	-326	1006	18537	-3900	11218	38.49
55.00	365	-35	400	11300	2370	4465	28.62
45.00	672	-389	1062	17708	-5972	11840	40.76
35.00	679	-376	1055	18053	-5488	11770	38.71
12.00	669	-502	1171	16518	-9614	13066	42.39
0.00	667	-607	1273	15444	-12958	14201	45.00

ROSETTE NUMBER 80

PRESSURE (PSIG)	(14	STRAIN ICROIN.	S ZIN.)		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 0	 0		 Ø	0	0	0.00
12.00	4	-61	65	-443	-1904	730	7.37
35.00	47	-20	67	1296	-191	744	0.00
45.00	60	-20	80	1724	-67	895	-2.38
55.00	77	23	55	2684	1458	613 .	-7.02
63.30	88	39	49	3165	2082 -	541	-7.97
55.00	74	19	55	2546	1320	613	-7.02
45.00	57	-17	73	1646	11	818	0.00
35.00	74	40	34	2727 -	1968	379	39.35
12.00	17	-10	27	445	-168	307	-7.02
0.00	-4	-69	66	-787	-2251	732	11.98

ROSETTE NUMBER 81

PRESSURE (PSIG)	a	STRAIN MICROIN.	IS ZIN.)		ANGLE (TEG)		
	мах	MIN	SHEAR	MAX	MIN	SHEAR	
0.00		 0	0		 0	 0	0.00
12.00	-3	-47	44	-540	-1532	496	-6.50
35.00	50	-0	51	1604	467	569	5.65
45.00	51.	-178	229	-65	-5182	2558	27.23
55.00	84	-114	198	1587	-2830	2209	23.18
63.30	71	29	43	2547	1595	476	19.33
55.00	54	16	38	1874	1026	424	18.94
45.00	27	3	30	820	147	337	41.83
35.00	77	16	61	2619	1248	685	6.26
12.00	24	-104	127	-236	-3077	1420	23.56
0.00	-33	-101	68	-2003	-3520	758	39.35

.

ROSETTE NUMBER 82

PRESSURE (PSIG)	(1	STRAIN HICROIN.	S ZIN.)	STRESSES (PSI)				ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR		
0.00	 Ø	0	 0	. 0	0	 0		0.00
12.00	4	-7	11	49	-187	118		-35.78
35.00	136	-416	552	352	-11951	6151		22.74
45.00	- 97	-21	118	2906	269	1319		24.79
55.00	130	-20	151	3962	595	1683		21.61
63.30	144	-21	165	4398	711	1843		20.86
55.00	192	-425	617	2055	-11720	6887		22.72
45.00	. 95	-18	113	2851	325	1263		23.69
35.00	107	-20	127	3216	375	1420		23.56
12.00	67	-0	67	2128	634	747		2.86
0.00	29	-9	39	848	-19	434	١	-29.52

ROSETTE NUMBER 83

Ņ

P

PRESSURE (PSIG)	(STRAIN MICROIN.	AS ∕IN.)		ANGLE (DEG)		
	MAX	MIN	SHEHR	MHX	M1N	SHERR	
0.00	8		0 0	 Ø			0.00
12.00	-333	-1000	667	-20181	-35051	7435	45.00
35.00	-333	-333	Ø	-13808	-13893	Ø	45.00
45.00	-0	-667	667	-6373	-21243	7435	45.00
55.00	-333	-1668	667	-20181	-35051	7435	0.00
63.30	-264	-736	471	-15455	-25970	5257	-22.50
55.00	-667	-667	មិ	-27616	-27616	Ø	45.00
45.00	-264	-736	471	-15455	-25970	5257	-22.50
35.00	-333	-333	Ø	-13808	-13808	Ø	45.00
12.00	-264	-736	471	-15455	-25970	5257	22.50
0.00	360	-694	1054	4852	-18660	11756	-35.78

ROSETTE NUMBER 84

PRESSURE (PSIG)	<i>,</i> (STRAIN MICROIN.	łS ∠tn.)		ANGLE (TEG)		
	MAX	MIN	SHERR	MAX	MIN	SHEAR	i de ber ini i
 0.00	 Ø	 ยี	 Ø	 А	 ឲ្		<u></u> 0.00
12.00	$47\bar{1}$	-471	94Ŝ	10515	-10515	10515	22.50
35.00	138	-805	943	-3293	-24323	19515	22.50
45.00	-0	-667	667	-6373	-21243	7435	0.00
55.00	540	-874	1414	8868	-22676	15772	22.50
63.30	-0	-667	667	-6373	-21243	7435	45.00
55.00	-264	-736	471	-15455	-25970	5257	22.50
45.00	360	-694	1854	4852	-18660	11756	9.22
35.00	471	-471	943	10515	-10515	10515	22.50
12.00	27	-1827	1054	-8956	-32468	11756	-9.22
0.00	412	-1079	1491	2817	-30434	16626	31.72

PRESSURE (PSIG)	1	STRAIN AICRAIN.	48		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 0	я	0	.0	 0	0	0.00
12.00	333	-333	667	7435	-7435	7435	45.00
35.00	69	-402	471	-1647	-12162	5257	22.50
45.00	333	~333	667	7435	-7435	7435	45.00
55.00	-0	-667	667	-6373	-21243	7435	45.00
63.30	360	-694	1054	4852	-18660	11756	-35.78
55.00	360	-694	1054	4852	-18660	11756	35.78
45.00	360	-694	1054	4852	-18660	11756	35.78
35.00	1016	-683	1760	25860	-12052	18956	39.35
12.00	360	-694	1054	4852	-18660	11756	35.78
0.00	360	-694	1054	4852	-18660	11756	-35.78

ROSETTE NUMBER 86

0

 	 	 -	 	 	 	-	 	 -	-	

PRESSURE		STRAI) MICDOIN	48		ANGLE		
	MAX	MICROIM. MIN	SHEAR	MBX	(PSI) MIN	SHEAR	(DEP)
				~			
0.00	6	6	М	6 1	<u></u>	- M	0.00
12.00	-264	-736	471	-15455	-25970	. 5257	22.50
35.00	-264	-736	471	-15455	-25970	5257	-22.50
45.00	- 333	-1000	667	20181	-35051	7435	45.00
55.00	-306	-1360	1054	-22764	-46276	11756	-35.78
63.30	-264	-736	471	-15455	-25970	5257	-22.50
55.00	138	-805	943	-3293	-24323	10515	22.50
45.00	-333	-1600	667	-20181	-35051	7435	45.00
35.00	69	-402	471	-1647	-12162	5257	-22.50
12.00	-333	-1000	667	-20181	-35051	7435	45.00
0.00	-333	-1000	667	-20181	-35051	7435	45.00

ROSETTE NUMBER 87

PRESSURE (PSIG)	(†	STRAIN NCROIN.	S /IN.)		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	0,	0	<u>9</u>	 Ø	й	 Й	 0.00
12.00	333	-333	667	7435	-7435	7435	45. AA
35.00	69	-402	471	-1647	-12162	5257	-22.50
45.00	69	-462	471	-1647	-12162	5257	-22.50
55.00	69	-402	471	-1647	-12162	5257	-22.50
63.30	69	-402	471	-1647	-12162	5257	22.50
55.00	~Ð	-667	667	-6373	-21243	7435	45.00
45.00	69	-402	471	-1647	-12162	5257	-22.50
35.00	-0	-667	667	-6373	-21243	7435	9.88
12.00	69	-402	471	-1647	-12162	5257	22.50
0.00	-0	-667	667	-6373	-21243	7435	45.00

ROSETTE NUMBER 88

PRESSURE (PSIG)	4)	STRAIN MICROIN.	IS ZIN.)		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 0	 Ø	 0		 0	0	0.00
12.00	-0	-667	667	-6373	-21243	7435	45.00
35.00	333	-333	667	7435	-7435	7435	45,00
45.00	360	-694	1054	4852	-18660	11756	35.78
55.00	-333	-333	Ø	-13808	-13803	0	45.00
63.30 ⁰	-0	-667	667	-6373	-21243	7435	45.00
55.00	-264	-736	471	-15455	-25970	5257	-22.50
45.00	69	-402	471	-1647	-12162	5257	22.50
35.00	333	-333	667	7435	-7435	7435	45.00
12.00	~333	-333	0	-13808	-13808	0	45.60
0.00	-264	-736	471	-15455	-25970	5257	-22.50

ROSETTE NUMBER 89

PRESSURE (PSIG)	(1	STRAIN HICROIN.	¦S ∕IN.)		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	0	0	0	0	9	0	0.00
12.00	-333	-333	0	-13808	-13808	0	45.00
35.00	69	-402	471	-1647	-12162	5257	22.50
45.00	-0	-667	667	-6373	-21243	7435	0.00
55.00	360	-694	1054	4852	-18660	11756	35.78
63.30	69	-402	471	-1647	-12162	5257	22.50
55.00	.360	-694	1054	4852	-18660	11756	35.78
45.00	-264	-736	471	-15455	-25970	5257	-22.50
35.00	-0	-667	667	-6373	-21243	7435	0.00
12.00	-264	-736	471	-15455	-25970	5257	-22.50
0.00	-667	-667	Ø	-27616	-27616	0	45.00

.

ROSETTE NUMBER 90

PRESSURE (PSIG)	(STRAIN MICROIN.	AS //IN.)		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	,
0.00	 Ø	0	0 0		9 0	0	0.00
12.00	138	-805	943	-3293	-24323	10515	22.50
35.00	333	-1000	1333	1062	-28678	14870	45.00
45.00	138	-805	943	-3293	-24323	10515	22.50
55.00	412	-1079	1491	2817	-30434	16626	31.72
63.30	27	-1027	1054	-8956	-32468	11756	9.22
55.00	-0	-1333	1333	-12746	-42487	14870	0.00
45.00	27	-1027	1054	-8956	-32468	11756	9.22
35.00	138	-805	943	-3293	-24323	10515	22.50
12.00	138	-805	943	-3293	-24323	10515	22.50
0.00	-195	-1138.	943	-17101	-38131	10515	22.50

ROSETTE NUMBER 91

PRESSURE (PSIG)	G	STRAIN. MICROIN.	AS ZIN.)		ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIH	SHEAR	
0.00	10 10	10 10	51	<u></u>	<u>ں</u>	<u>ы</u>	២.សុស្
12.00	333	-1000	1333	1062	~28678	14870	45.00
35.00	138	-805	943	-3293	-24323	10515	22.50
45.00	79	-1412	1491	-10991	-44242	16626	31.72
55.00	-0	-667	667	-6373	-21243	7435	0.00
63.30	-0	-667	667	-6373	-21243	7435	0.00
55.00	540	-874	1414	8868	-22676	15772	22.50
45.00	69	~402	471	-1647	-12162	5257	22.50
35.00	360	-694	1054	4852	-18660	11756	35.78
12.00	69	-402	471	-1647	-12162	5257	22.50
0.00	-0	~667	667	-6373	-21243	7435	0.00

ROSETTE NUMBER 92

.

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	_
0.00			Ø		 0	0	0.00
12.00	36Ö	694	1054	4852	-18660	11756	-35.78
35.00	-333	-1000	667	-20181	-35051	7435	45.00
45.00	-667	-667	Ø	-27616	-27616	0	45.00
55.00	-598	-1069	471	-29263	-39778	5257	22.50
63.30	-333	-1696	667	-20181	-35051	7435	0.00
55.00							
45.00	-667	-667	Ø	-27616	-27616	Ø	45.00
35.00	-0	-667	667	6373	-21243	7435	45.00
12.00	138	-805	943	-3293	-24323	10515	-22.50
0.00	-333	-1960	667	-20181	-35051	7435	45.00

. •

ROSETTE NUMBER 94

PRESSURE	61	STRAINS (MICROIN ZINE)			STRESSES (PSI)			
	мөх	MIN	SHEAR	мөх	MIN	SHEAR	t de he test i	
0.00	- 0	 0	 ÿ	 Ø	 0	 0	0.00	
12.00	425	-118	543	12409	294	6057	-24.24	
35.00	103	-393	496	-470	-11543	5536	-20.32	
45.00	97	-387	484	-613 -	-11400	5394	-19.42	
55.00	77	-0	77	2450	726	862	3.72	
63.30	153	-396	549	1086	-11166	6126	-19.79	
55.00	135	-395	530	527 -	-11297	5912	-19.95	
45.00	103	-390	492	-445	-11430	5493	-19.75	
35.00	390	36	354	12783	4891	3946	-23.65	
12.00	85	-392	477	-1029	-11675	5323	-20.52	
0.00	79	-779	859	-4921	-24076	9578	-21.24	

.

ROSETTE NUMBER 95

PRESSURE (PSIG)	STRAINS (MICROIN.ZIN.)				ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00		0	<u>8</u>	 0	. 0	0	0.00
12.00	-25	-35	9	-1138	-1348	105	22.50
35.00	97	-27	123	.2826	74	1376	44,23
45.00	100	-20	120	2995	319	1338	45.00
55.00	137	-7	143	4292	1094	1599	-44.33
63.30	153	17	137	5046	1996	1525	-44.30
55.00	140	8	140	4461	1338	1561	45.00
45.00	120	-27	147	3569	297	1636	45.00
35.00	167	20	147	5504	2229	1637	43.70
12.00	103	-60	164	2723	-927	1825	43.25
0.00	33	-103	137	75	-2975	1525	44.30

ROSETTE NUMBER 96

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	_
0.00	9	 Ø	 0	Ø	ß	 Ø	0.00
12.00	69	-402	471	-1647	-12162	5257	22.50
35.00	-264	-736	471	-15455	-25970	5257	-22.50
45.00	-264	-736	471	-15455	-25970	5257	-22.50
55.00	-264	-736	471	-15455	-25970	5257	22.50
63.30	-306	-1360	1054	-22764	-46276	11756	35.78
55.00	-333	-1000	667	-20181	-35051	7435	45.00
45.00	-667	-667	Ø	-27616	-27616	0	45.00
35.00	-195	-1138	943	-17101	-38131	10515	22.50
12.00	-195	-1138	943	-17101	-38131	10515	22.50
0.00	-333	-1000	667	-20181	-35051	7435	45.00

.

PRESSURE (PSIG)	(STRAIN MICROIN.	S /IN.>		ANGLE . (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	•
0.00	 Ø	 Ø	0	0	 0	 Ø	0.00
12.00	-264	-736	471	-15455	-25970	5257	-22.50
35.00	138	-805	943	-3293	-24323	10515	-22.50
45.00	138	-805	943	-3293	-24323	10515	-22.50
55.00	-0	-667	667	-6373	-21243	7435	0.00
63.30	138	-805	943 .	-3293	-24323	10515	-22.50
55.00	138	-805	943	-3293	-24323	10515	22,50
45.00	-195	-1138	943	-17101	-38131	10515	22.50
35.00	69	-402	471	-1647	-12162	5257	-22.50
12.00	-264	-736	471	-15455	-25970	5257	-22.50
0.00	-333	-1000	667	-20181	-35051	7435	0.00

ROSETTE NUMBER 99

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)				ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN '	SHEAR	
 G 00	 0		 0		 ß	 Й	 0 00
12.00	471	-471	943	10515	-10515	10515	-22.50
35.00	138	-805	943	-3293	-24323	10515	-22.50
45.00	138	-805	943	-3293	-24323	10515	-22.50
55.00	138	-805	943	-3293	-24323	16515	~22.50
63.30	138	-805	943	-3293	-24323	10515	-22.50
55.00	138	-805	943	-3293	-24323	10515	-22.50
45.00	138	-805	943	-3293	-24323	10515	-22.50
35.00	412	-1079	1491	2817	-30434	16626	-13.28
12.00	138	-805	943	-3293	-24323	10515	-22.50
0.00	138	-805	943	-3293	-24323	10515	-22.50

ROSETTE NUMBER 100

PRESSURE (PSIG)	STRAINS (MICROIN, ZIN:)			STRESSES (PS1)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 Ø	 0		0	 0	 0	0.00
12.00	745	-745	1491	16626	-16626	16626	-31.72
35.00	694	-360	1054	18660	-4852	11756	-35.78
45.00	1000	-1000	2000	22305	-22305	22305	45.00
55.00	360	-694	1054	4852	-18660	11756	35.78
63.30	471	-471	943	10515	-10515	10515	22.50
55.00	402	-69	471	12162	1647	5257	22.50
45.00	745	-745	1491	16626	-16626	16626	31.72
35,00	667	-667	1333	14870	-14870	14870	45.00
12.00	$-\Theta$	-667	. 667	-6373	-21243	7435	0.00
0.00	69	-402	471	-1647	-12162	5257	22.50

PRESSURE (PSIG)	ć	STRAIN MICROIN.	AS ZINDO -		ANGLE (DEG)		
	MAXÌ	MIN	SHEAR	MAX	MIN	SHEAR	
					• •• •• •• •• ••		
0.00	0	0	0	~ Ø	0	0	0.00
12.00	360	-694	1054	4852	-18660	11756	-35.78
35.00	27	-1027	1054	-8956	-32468	11756	-35.78
45.00	-264	-736	471	-15455	-25970	5257	22.50
55.00	-0	-667	667	-6373	-21243	7435	45.00
63.30	-264	-736	471	-15455	-25970	5257	22.50
55.00	- Q	-667	667 .	-6373	-21243	7435	45.00
45.00	- Ø	-667	667	-6373	-21243	7435	45.00
35.00	360	-694	1054	4852	-18660	11756	35.78
12.00	360	-694	1054	4852	-18660	11756	-35.78
0.00	360	-694	1054	4852	-18660	11756	-35.78

ROSETTE NUMBER 102

PRESSURE STRAINS (PSIG) (MICROIN./I			IS ZIN.)	STRESSES N.) (PSI)				
	MAX	MIN	SHEAR	MAX MIN	SHEAR			
0.00	 Ø		 Q	0 0	0	0.00		
12.00	724	-667	1391	16689 -14341	15515	43.83		
35.00	387	-697	1084	5666 -18507	12086	35.39		
45.00	975	-689	1664	24495 -12620	18558	-38.40		
55.00	633	-667	1300	13813 -15194	14503	-44.27		
63.30	735	-352	1087	20069 -4190	12129	-37.45		
55.00	1404	-717	2121	37877 -9432	23655	-36.12		
45.00	667	-667	1333	14870 -14870	14870 ·	45.00		
35.00	710	-357	1067	19219 -4582	11900	-36.46		
12.00	660	-667	1327	14658 -14934	14796	-44.86		
0.00	630	-667	1297	13708 -15227	14467	-44.19		

PRESSURE (PSIG)	() MAX	STRAIN MICROIN. MIN	S /IN.) SHEAR	MAX	STRESSE (PSI) MIN	S SHEAR	ANGLE (DEG)
6 00	 0		 0		 а	 0	 0 00
12.00	-333	-333	ด้	-13808	-13808	ด้	45.00
35.00	-333	-333	õ	-13808	-13808	Ő	45.00
45,00	138	-805	943	-3293	-24323	10515	-22.50
55.00	69	-402	471	-1647	-12162	5257	-22.50
63.30	69	-402	471	-1647	-12162	5257	22.50
55.00	-0	-667	667	~6373	-21243	7435	45.00
45.00	-333	-333	Ø	-13808	-13808	0	45.00
35,00	-264	-736	471	-15455	-25970	5257	22.50
12.00	-264	-736	471	-15455	-25970	5257	22.50
0.00	-667	-667	0	-27616	-27616	Ø	45.00

ROSETTE NUMBER 105

PRESSURE	STRAINS				ANGLE (DEC)		
10101	MÁX	MIN	SHEAR	MAX	MIN	SHEAR	(DEG)
0.00	 0	 Ø	0 0			0	0.00
12.00	360	-694	1054	4852	-18660	11756	-35.78
35.00	-0	-667	667	-6373	-21243	7435	45.00
45.00	69	-402	471	-1647	-12162	15257	-22.50
55.00	-6	-667	667	-6373	-21243	7435	45.00
63.30	360	-694	1054	4852	-18660	11756	35.78
55.00	-264	-736	• 471	-15455	-25970	5257	22.50
45.00	683	-1016	1700	12052	-25860	18956	39.35
35.00	360	-694	1054	4852	-18660	11756	35.78
12.00	333	-1000	1333	1062	-28678	14870	45.00
0.00	27	-1027	1054	-8956	-32468	11756	35.78

ROSETTE NUMBER 108

.

PRESSURE	STRAINS (MICROIN ZIN)			STRESSES (PSI)			ANGLE (DEG)
, anoraz	MAX	MIN	SHEAR	MAX	MIN	SHEAR	(DEG/
<u></u> й. йй	 Й	я	 Й	 А	 Й	 Й	 Й. ЙЙ
12.00	41	-31	$7\overline{1}$	1003	-588	796	-18.70
35.00	80	26	54	2809	1610	599	-14.87
45.00	97	50	47	3564	2512	526	-4.07
55.00	117	69	48	4402	3330	536	-16.85
63.30	115	95	19	4566	4133	217	-15.48
55.00	117	73	43	4420	3451	485	-28.76
45.00	122	38	84	4246	2382	932	-30.69
35.00	85 .	65	19	3324	2890	217	15.48
12.00	77	-4	81 .	2423	614	905	-40.27
0.00	75	-52	127	1899	-932	1416	-33.40
PRESSURE.	Ċŀ	STRAIN MCROIN.	S ZINJO	STRESSES (PSI)			ANGLE (DEG)
-----------	---------------	-------------------	------------	-------------------	-------	-------	----------------
	МАХ	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	- 0	Ø	0	 0	 Ø	 0	0.00
12.00	37	-123	160	-9	-3581	1786	43.81
35.00	87	-63	150	2157	-1190	1673	-44.36
45.00	103	-53	157	2783	-712	1748	-44.39
55.00	104	-9	104	3298	982	1158	-42.24
63.30	111	35	76	3886	2190	848	-37.37
55.00	107	10	97	3500	1333	1084	-42.05
45.00	100	-27	127	2934	104	1415	-43.49
35.00	90	63	27	3482	2869	307	37.98
12.00	45	-18	63	1258	-153	705	35.78
0.00	39	-129	167	3	-3731	1867	38.67

ROSETTE NUMBER 110

.

PRESSURE (PSIG)	STRAINS (MICROIN.ZIN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00		0	0	 Ø	 ญ	 Ø	0.00
12.00	-50	-240	191	-3879	-8134	2127	42.49
35,00	-3	-100	97	-1056	-3224	1084	33.92
45.00	7	-84	92	-567	-2609	1021	28.44
55.00	57	-7	63	1743	328	707	1.51
63.30	133	34	99	4557-	2347	1105	23.86
55.00	70	13	58	2368	1084	642	-5.00
45.00	29	-52	81	417	-1383	900	25.85
35.00	196	74	122	6956	4228	1364	-36.28
12.00	21	-54	75	141	-1522	831	39.85
0.00	-43	-290	247	-4149	-9659	2755	43.45

ROSETTE NUMBER 111

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PS1)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00 12.00 35.00 45.00 55.00 53.30 55.00	-16 28 40 93 155 55	0 -130 2 -0 27 41 22	0 114 25 41 66 114 57	9 -1767 904 1281 3222 5345 3367	0 -4308 338 376 1749 2802 1862	0 1271 283 452 736 1272 753	0.00 34.72 11.60 4.73 -22.50 -37.37 -28.55
45.00 45.00 35.00 12.00 0.00	70 44 134 27 -3	20 - 46 - 43 - 230	42 - 89 - 70 227-	1437 4720 436 -2301	496 2736 -1127 -7365	470 992 782 2532	9.22 38.50 -43.64 43.32

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00		 0	0	9	0	9	0.00
12.00	-33	-114	81	-2139	-3936	898	32.78
35.00	45	-18	63	1254	-149	701	-29.00
45.00	91	-15	106	2769.	496	1181	-32.93
55.00	188	-5	192	5943	1652	2145	-40.51
63.30	245	5	239	7849	2507	2671	-40.60
55.00	198	-4	202	6255	1754	2250	-41.20
45.00	134	-14	147	4128	843	1642	-42.40
35.00	237	27	210	7799	3109	2345	43.64
12.00	44	-10	54	1290	91	599	30.13
0.00	-36	-107	71	-2173	-3764	796	-26.30

ROSETTE NUMBER 113

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 0	 0	0		0	.0	0.00
12.00	67	-113	180	1042	-2975	2009	~43.94
35.00	186	-103	289	4949	-1497	3223	-39.35
45.00	253	-140	394	6737	-2042	4389	-39.63
55.00	264	-97	361	7476	-572	4624	-36,95
63.30	281	-65	346	8347	628	3859	-34.56
55.00	275	-92	367	7889	-294	4092	-36.28
45.00	239	-109	348	6579	-1194	3887	-37.52
35.00	169	14	154	5519	2075	1722	-28.67
12.00	91	-61	153	2327	~1085	1706	-39.35
0.00	53	-140	193	362	-3953	2157	44.01

ROSETTE NUMBER 114

PRESSURE	STRAINS (MICROIN /IN)			STRESSES (PSI)			ANGLE
(1010)	M8X	MIN	SHEAR	MAX	MIN	SHEAR	· · · ·
0.00		 0	0	 Ø		 0	0.00
12.00	79	-146	225	1127	-3889	2508	-39.01
35.00	152	-82	235	4066	-1167	2617	-33.72
45.00	194	-94	287	5274	-1132	3203	-34.10
55.00	217	-47	264	6464	578	2943	-31.88
63.30	235	-18	253	7386	1670	2818	-29.52
55.00	213	-43	255	6366	676	2845	-30.55
45.00	182	-72	255	5122	-565	2843	-32.22
35.00	127	57	70	4579	3016	782	1.36
12.00	51	-54	105	1098	-1236	1167	-26.38
0.00 -	16	-163	179	-1036	-5040	2002	-34.10

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MÁX	MIN	SHEAR	MAX	MIN	SHEAR	
9.00	Ø	0	0	 Q	0	 0	0.00
12.00	3	-47	50	-339	-1456	559	-43.09
35.00	91	6	85	2950	1054	948	-32.22
45.00	118	8	110	3854	1393	1231	-32.49
55.00	164	30	134	5501	2508	1496	-31.72
63.30	210	33	178	7022	3058	1982	-33.40
55.00	183	31	152	6117	2720	1699	-33.40
45.00	140	20	120	4654	1974	1340	-35,28
35.00	147	76	71	5421	3830	796	-26.30
12.00	41	26	15	1547	1215	166	-31.72
0.00	~9	-34	25	-614	-1181	283	11.60

ROSETTE NUMBER 116

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	0	· 0	Ø	. 0	9	 Ø	0.00
12.00	7	-117	125	-886	-3670	1392	17.06
35.00	72	-35	108	1959	-441	1200	-8.09
45.00	96	-46	141	2614	-542	1578	-7.51
55.00	145	-8	153	4533	1128	1703	-18.06
63.30	185	9	176	5967	2041	1963	-26,35
55.00	147	-4	151	4659	1279	1690	-19.82
45.00	111	-28	139	3279	173	1553	-10.52
35.00	176	43	127	5839	2998	1420	~42.00
12.00	43	-20	63	1191	-224	707	1.51
0.00	13	-157	170	-1075	-4862	1893	23.30

ROSETTE NUMBER 117

Z

PRESSURE (PS16)	STRAINS (MICPOIN ZIN)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	мах	MIN	SHEAR	1, 20 July 1997
0.00	 0	 0	9	 9	 Ø		0.00
12.00	17	-67	85	-88	-1983	948	-24.09
35.00	120	-16	136	3654	627	1514	-32.66
45.00	157	-27	184	4743	642	2050	-33.81
55.00	198	2	196	6329	1956	2187	-36.09
63,30	245	11	234	7926	· 2706	2610	-39.67
55.00	223	-10	233	7016	1822	2597	-38.38
45.00	204	-37	241	6139	765	2687	-37.79
35.00	207	39	177	6873	2931	1971	44.46
12,00	114	-48	162	3190	-428	1809	-40.27
9.99	69	-120	179	759	-3245	2002	-37.47

A-46

	-						
PRESSURE (PSIG)	STRAINS (MICROIN./IN.)				ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00		0	0 0		0	 0	0.00
12.00	-26	-141	115	-2169	-4736	1284	-5.00
35.00	-10	-74	64	-1011	-2441	715	-4.49
45.00	-3	-87	85	-916	-2812	948	-5.65
55.00	30	-7	37	894	73	411	-2.60
63.30	52	28	24	1925	1389	268	16.85
55.00	30	-23	53	733	-457	595	0.00
45.00	7	-70	77	-456	-2168	856	-1.24
35.00	89	37	52	3204	2043	581	-19.90
12.00	-31	-65	34	-1619	-2385	383	14.53
0.00	-89	-174	85	-4506	-6402	948	-12.78

:

ROSETTE NUMBER 71

PRESSURE (PSIG)	(STRAÍN MICRÓIN.	(S ./IN.)		STRESSES (PSI)			
	MAX	MIN	SHEAR	MAX	MIN	SHEAR		
0.00	 0			0	 0	0	0.00	
12.00	405	-75	481 -	12198	1472	5363	-22.78	
35.00	777	-77	854	24026	4971	9528	-21.08	
45.00	386	-10	396	12221	3383	4419	-21.48	
55.00	166	-429	594	1175	-12084	6630	-23.64	
63.30	249	-836	1084	-55	-24247	12096	-23.25	
55.00	296	-1226	1523	-2280	-36244	16982	-22.68	
45.00	415	-2018	2432	-6980	-60337	27129	-22.33	
35.00	363	-1616	1980	-3877	-48942	22082	-22.23	
12.00	496	-2799	3295	-10954	-84460	36753	-22.89	
0.00	530	-3190	3720	-13608	-96581	41487	-22.03	

ROSETTE NUMBER 72

PRESSURE (PSIG)	STRAINS (MICROIN ZIN)			STRESSES (RST)			ANGLE ((DEG)
	МАХ	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	0	9	 0		 Ø		0.00
12.00	-4	-49	45	-686	-1603	499	31.72
35.00	35	1	34	1142	377	383	-30.47
45.00	56	7	49	1861	763	549	-30.85
55.00	102	35	67 (3583	2078	753	-16.45
63.30	118	39,	78	4120	2370	875	-6.13
55.00	88	32	57	3121	1850	635	-10.28
45.00	57	23	33	2029	1285	372	-26.57
35.00	83	44	39	3057	2190	434	15.48
12.00	18	-8	25	490	-76	283	11.60
9.90	~5	-52	47	-645	-1702	528	19.64

ROSETTE NUMBER 73 _____

.

PRESSURE	STRAINS (MICPOIN ZIN)			STRESSES			ANGLE (DEG)
() DIG/	MAX	MIN	SHEAR	MAX	MIN	SHEAR	a de bre de l
0.00	0	0	0	Ø	Ø	9	0.00
12.00	38	-62	100	631	-1597	1114	-12.85
35.00	104	-8	112	3252	752	1250	-11.38
45.00	136	0	136	4344	1317	1514	-12.34
55.00	179	48	131	6156	3234	1461	-7.37
63.30	197	53	144	6787	3569	1609	-3.32
55.00	183	46	137	6292	3236	1528	-9.22
45,00	170	40	130	5804	2895	1454	-16.24
35.00	134	96	38	5188	4340	424	7.63
12.00	95	12	82	3129	1290	920	-37.98
0.00	69	-52	120	1689	-998	1343	-37.79

ROSETTE NUMBER 74

45.00 55.00 63.30 55.00 45.00 35.00 12.00

0.00

PRESSURE (PSIG)	< M	STRAIN HICROIN.	S ZIN.)	STRESSES (PSI)		
	MAX	MIN	SHEAR	MAX	MIH	SHEAR
0.00	0	0	Ø	0	0	· 0
12.00	47	-84	131	702	-2221	1462
35.00	103	-10	113	3197	669	1264

			المعاجبة مترجم مماجد ليترخص				
•	0	0	0	· 0	0	· 0	0.00
	47	-84	131	702	-2221	1462	-41.35
	103	-10	113	3197	669	1264	~30.96
	145	8	137	4707	1645	1531	-30.47
	197	70	127	6944	4103	1420	-21.44
	218	89	129	7795	4908	1444	17.25
•	201	63	138	6993	3915	1539	-26.43
	196	44	152	6670	3272	1699	-33.40
	185	138	47	7225	6169	528	19.64
	94	-1	95	2998	869	1065	38.95
	65	-118	183	937	-3146	2042	39.75

ANGLE

(DEG)

.

ROSETTE NUMBER 75 _____

PRESSURE (PSIG)	(t	STRAIN MICROIN.	S ZIN.)	,	ANGLE (DEG)		
	MAX	MIN	SHEAR	MeX	MIN	SHEAR	
0.00	 0'	0	 Ø	 0	 Ø	Ø	0.00
12.00	-59	-97	38	-2821	-3669	424	26.06
35.00	-58	-179	120	+3558	-6245	1343	37.79
45.00	-59	-187	128	-3679	-6539	1430	40.51
55.00	-4	-213	209	-2152	-6823	2335	38.09
63.30	20	-200	221	-1264	-6192	2464	42.40
55.00	37	-233	270	-1062	-7085	3011	44.65
45.00	44	-284	328	-1316	-8626	3655	42.67
35.00	186	-319	504	2864	-8387	5626	41.20
12.00	104	-271	375	728	-7632	4180	42.45
0.00	67	-203	270	181	-5842	3011	-44.65

A-48

PRESSURE (PSIG)	STRAINS (MICROIN.ZIN.)				STRESSES (PSI)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 Ø		0	0	<u>9</u>	0	0.00
12.00	24	-24	49	541	-541	541	37.03
35.00	119	-82	201	3005	-1487	2246	-38.79
45.00	168	-88	. 255	4507	-1193	2850	-37.44
55.00	241	~88	329	6844	-492	3668	-36.15
63.30	291	-91	382	8399	-114	4256	-35.31
55.00	251	-78	329	7258	-78	3668	-36.15
45.00	202	-55	257	5908	168	2870	-36.72
35.00	147	-47	194	4233	-90	2161	-31.72
12.00	29	-26	55	684	-546	615	-32.49
0.00	4	-21	25	-62	-628	283	-11.60

ROSETTE NUMBER 142

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES ((PSI)			RNGLE (DEG)
·	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 Ø	0	 0		 Ø	0	0.00
12.00	11	-64	75	-273	-1936	831	-13.28
35.00	135	-68	202	3638	-877	2258	-36,38
45.00	172	-72	245	4799	-657	2728	-36,28
55.00	300	-80	379	8784	329	4228	-33.07
63.30	361	-91	452	10632	553	5040	-32.57
55.00	285	~65	349	8452	661	3895	-33,19
45.00	203	-33	236	6155	888	2633	-35,53
35.00	305	-62	367	9134	946	4094	-28.30
12.00	83	-23	105	2418	67	1176	-35.78
0.00	17	-44	61	133	-1238	-685	-20.30

ROSETTE NUMBER 138

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX `	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	8	0	0	 0		- 0	0.00
12.00	85	18	67	2893	1388	753	-16.45
35.00	161	96	65	6047	4586	730	-37.63
45,00	214	119	95	7969	5840	1065.	-38,95
55.00	241	152	89	9139	7155	992	-6.50
63.30	280	167	114	10518	7985	1266	1.68
55.00	253	167	87	9666	7733	967	11.31
45.00	318	65	253	10758	5122	2818	40.83
35.00	205	85	120	7350	4663	1343	7.21
12.00	127	70	57	4706	3440	633	-43.32
0.00	213	43	170	7215	3417	1899	-1.68

(

PRESSURE (PSIG)	STRAINS (MICROIN, ZIN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	 0	0	0	0	0	0	0.00
12.00	42	-42	84	932	-932	932	-14.31
35.00	157	23	134	5223	2234	1494	42.14
45.00	197	33	163	6586	2942	1822	44.42
55.00	300	33	267	9880	3928	2976	-38.50
63.30	374	36	339	12270	4714	3778	-38.46
55.00	306	51	255	10231	4544	2843	-39.35
45.00	210	67	143	7329	4131	1599	44.33
35,00	262	34.	228	8688	3601	2544	-31.53
12.00	54	49	5	2193	2088	53	22.50
0.00	71	-71	141	1577	-1577	1577	-22.50

ROSETTE NUMBER 151

PRESSURE (PSIG)	STRAINS (MICROIN.ZIN.)			STRESSES (PSI)			ANGLE (DEG)
	MAX	MIH	SHEAR	MAX	MIN	SHEAR	
0.00		 0	<u>e</u>	0		0	0.00
12.00	86	-13	98	2617	421	1098	30.85
35.00	137	83	55	5170	3944	613	37.98
45.00	182	115	67	6897	5392	753	34.89
55.00	213	170	43 -	8424	7455	485	-42.80
63.30	234	209	25	9466	8899	283	-33.40
55.00	240	186	54	9437	8238	599 -	-41.44
45.00	260	143	117	9660	7048	1306	42.55
35.00	197	140	58	7615	6331	642	5.00
12.00	183	77	107	6577	4193	1192	-43.21
0.00	191	19	173	6275	2424	1925	40.00

ROSETTE NUMBER 155

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)				ANGLE (DEG)		
	MAX	MIN	SHEAR	MAX	MIH	SHEAR	
 ม. คด	 Й	 0	 Ŋ		 Ø	9.	9.99
12.00	391	-347	738	9132	-7337	8235	-43.06
35.00	348	-184	532	9314	-2548	5931	42.66
45.00	381	-141	523	10801	-859	5830	42.07
55.00	371	-64	435	11205	1498	4853	42.36
63.30	314	49	264	10474	4577	2948	42.47
55.00	274	62	212	9339	4607	2366	40.93
45.00	264	32	232	8731	3558	2587	41.28
35.00	218	9	208	7019	2371	2324	-41.32
12.00	69	45	24	2615	2079	268	28.15
0.00	53	10	43	1796	827	485	2.20

•

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)				STRESSES (PSI)		
	MAX	MIN	SHEAR	MAX	MIN	SHEAR	
0.00	0	0	0	0	0	0	9.00
12.00	133	-57	190	3710	-534	2122	-43.49
35.00	183	57	127	6384	3558	1413	45.00
45.00	223	97	127	8041	5215	1413	45.00
55.00	243	176	67	9446	7952	747	42.14
63.30	256	237	19	10428	10008	210	22.50
55.00	254	200	54	9989	8790	599	41.44
45.00	263	137	127	9700	6870	1415	-43.49
35.00	200	123	77	7553	5841	856	-43.76
12.00	127	33	94	4365	2262	1051	-40.93
0.00	151	-64	215	4193	-603	2398	-41.44

ROSETTE NUMBER 163

PRESSURE (PSIG)	STRAINS (MICROIN./IN.)			STRESSE (PSI)	ANGLE (DEG)	
	MAX	MIN	SHEAR	MAX MIN	SHEAR	
0.00	Ø	0	Ø	0 0	Ø	0.00
12.00	3408	-458	3866	104222 17980	43121	20.96
35.00	745	-2398	3144	82069308	35064	-26.64
45.00	1025	-2231	3256	11323 -61308	36316	-31.22
55.00	1164	-1804	2967	19841 -46352	33096	-34.40
63.30	1005	-1548	2554	17230 -39737	28484	-32.20
55.00	838	-1321	2159	14071 -34092	24082	-28.80
45.00	838	-1362	2200	13699 -35378	24538	-28.94
35.00	486	-1676	2162	-532 -48763	24115	-17.98
12.00	473	-1043	1515	5094 -28706	16900	3.60
0.00	488	-1001	1489	5981 -27245	16613	1.80

A-51

.

٨

APPENDIX B

Wiss, Janney, Elstner and Associates

DISPLACEMENTS

RADIAL DISPLACEMENTS - CYLINDER WALL

FIGURE 21

CYLINDER WALL DISPLACEMENTS

FIGURE 22

TABLE 23

VERTICAL DISPLACEMENTS (IN.)

•												•
PRESSURE (PSIG) DATE TIKE		0.00 10/31 8.19	12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08
GAGE	ELEV.*											,
		AZIMUTI	H 90							•		
28V 128V 164V 34V	270-8 267-6 4th SP RNG Dome Apex	0.000 0.000 0.000 0.000	0.023 0.044 0.103 0.116	0.097 0.167 0.374 0.376	0.118 0.215 0.492 0.499	0.168 0.278 0.632 0.635	0.171 0.297 0.745 0.750	0.163 0.276 0.677 0.665	0.158 0.249 0.567 0.557	0.129 0.205 0.458 0.448	0.061 0.093 0.199 0.190	0.026 0.040 0.073 0.058
		AZIMUTI	1 200									
29V 129V 165V 34V	270-8 267-6 4TH SP RNG DOME APEX	0.000 0.000 0.000 · 0.000 ·	0.025 0.045 0.093 0.116	0.095 0.151 0.354 0.376	0.133 0.210 0.472 0.499	0.180 0.272 0.605 0.635	0.196 0.316 0.715 0.750	0.186 0.294 0.666 0.665	0.169 0.257 0.559 0.557	0.130 0.206 0.451 0.448	0.047 0.084 0.200 0.190	0.014 0.027 0.079 0.058
		AZIMUTH	1 3 33-55			<i>,</i> .						
30V 130V 166V 34V	270-8 267-6 4th SP RNG Dome APEX	0.000 0.000 0.000 0.000	0.029 0.044 0.081 0.116	0.096 0.157 0.359 0.376	0.127 0.210 0.481 0.499	0.166 0.266 0.620 0.635	0.192 0.308 0.731 0.750	0.182 0.289 0.672 0.665	0.159 0.249 0.559 0.557	0.128 0.201 0.473 0.448	0.056 0.090 0.212 0.190	0.020 0.035 0.087 0.058

* VERTICAL DISPLACEMENTS ARE FROM BASE SLAB ELEV. 93-0 TO ELEV. SHOWN

.

TABLE	24

CYLINDER WALL RADIAL DISPLACEMENTS (IN.)

PRESSURE (PSIG) DATE TIME		0.00 10/31 8.19) 12.00 10/31 18.02	35.00 11/1 4.04	45.00 11/1 11.48	55.00 11/1 19.11	63.30 11/2 2.41	55.00 11/2 9.25	45.00 11/2 14.39	35.00 11/2 19.58	12.00 11/3 6.00	0.00 11/3 12.08	
GNGE	ELEV.										, ,		
		A Z I NU	TH 90										
1	98-0	0.000	0.003	0.019	0.024	0.028	0.031	0.030	0.026	0.022	0.012	0.007	
4	108-0	0.000	0.015	0.069	0.089	0.109	0.124	0.115	0.096	0.079	0.036	0.014	
10	172-0	0.000	0.026	0.110	0.139	0.139	0.171	0.103	0.132	0.107	0.043	0.007	
13	204-0	0.000	0.002	0.028	0.048	0.077	0.087	0.088	0.080	0.062	0.005	-0.022	
16	236-0	0.000	-0.001	0.003	0.016	0.042	0.062	0.064	0.064	0.044	-0.001	-0.026	
19	246-0	0.000	~0.001	-0.039	-0.045	-0.059	-0.049	-0.047	-0.046	-0.043	-0.022	-0.013	
22	253-0	0.000	-0.002	-0.044	~0.051	-0.064	-0.053	-0.051	-0.050	-0.046	-0.029	-0.028	
25	267-0	0,000	-0.020	-0.079	-0.089	-0.111	-0.114	-0.107	-0.101	-0.076	-0.052	-0.038	
125	270-8	0.000	-0.034	-0.088	-0.101	-0.121	~0.120	-0.099	-0.077	-0.072	-0.057	-0.047	
1		AZIMU	TH 200										
2	98-0	0.000	0.000	0.017	0.024	0.031	0.038	0.038	0.038	0.03B	0.031	0.024	
5	108-0	0.000	0.015	0.067	0.084	0.097	0.106	0.103	0.092	0.082	0.039	0.013	
.8	140-0	0.000	0.039	0.128	0.173	0.210	0.244	0.237	0.206	0.168	0.080	0.035	
11	172-0	0.000	0.034	0.102	0.155	0.184	0.205	0.186	0.178	0.138	0.053	0.015	
14	204-0	0.000	0.014	0.054	0.099	0.116	0,136	0.130	0.130	0.097	0.028	-0.001	
20	246-0	0.000	-0.010	~0.044	-0.002	0.094	0.114	0.097	0.091	0.000	0.013		
23	253-0	0.000	-0.007	-0.025	-0.012	0.000	0.011	0.012	0.014	0.019	0.006	0.003	
26	267-0	0.000	-0.024	-0.052	-0.064	-0.076	-0.071	-0.062	-0.046	-0.008	0.048	0.053	
129	270-8	0.000	0.003	-0.001	-0.003	-0.002	-0.004	0.015	0.018	0.021	0.026	0.027	
		AZ I MUT	CH 333-55										
2	04 0	0.000	0 000										
5	98-0 109-0	0.000	0.002	0.018	0.024	0.031	0.036	0.036	0.036	0.032	0.020	0.015	
. U Q	140-0	0.000	0.010	0.002	0.009	0.065	0.098	0.092 0 194	0.000	0.000	0.028	0,008	
12	172-0	0.000	0.034	0.058	0.131	0.171	0.195	0.179	0.164	0.134	0.059	0.020	
15	204-0	0.000	0.008	0.044	0.074	0.104	0.127	0.127	0.127	0.101	0.038	0.008	
18	236-0	0.000	-0.008	0.026	0.054	0.076	0.076	0.078	0.082	0.090	0.045	0.023	
21	246-0	0.000	-0.010	-0.007	0.005	0.024	0.039	0.042	0.047	0.055	0.026	0.017	
24	253-0	0.000	-0.011	-0.032	-0.029	-0.016	-0.007	-0.004	0.001	0.011	0.011	0.008	
27	267-0	0.000	-0.028	-0.077	-0.078	-0.075	-0.031	-0.071	-0.049	-0.019	0.019	0.029	
130	270-8	0.000	0.000	-0.014	-0.011	-0.002	-0.007	-0.002	0.007	0.005	0.002	0.000	

B-5

.

•

.

TABLE 25

EQUIPMENT HATCH VERTICAL DISPLACEMENTS (IN.)

			0.00	12 00		45 00		63 20		45 00			
DATE		10/31	10/31	11/1	11/1	11/1	11/2	11/2	11/2	11/2	11/3	11/3	
TIME			8.19	18.02	4.04	11.48	19.11	2.41	9.25	14.39	19.58	6.00	12.08
GAGE	ΛZ	ELEV.				۰							
48V	150	163-0	0.000	-0.002	0.048	0.054	0.061	0.051	0.051	0.057	0.054	0.036	0.023
4 7 V	150	159-0	0.000	-0.003	0.065	0.075	0.085	0.067	0.067	0.073	0.069	0.042	0.027
46V	150	155~0	0.000	0.000	0.065	0.073	0.084	0.065	0.067	0.071	0.072	0.049	0.033
4 5 V	150	151-0	0.000	-0.003	0.041	0.044	0.050	0.038	0.041	0.045	0.044	0.028	0.017
44V	150	147-0	0.000	-0.004	0.055	0.059	0.066	0.051	0.054	0.061	0.060	0.041	0.028
4 3 V	150	144-0	0.000	-0.003	0.038	0.040	0.047	0.035	0.037	0.041	0.040	0.028	0.021
35V	160	132-0	0.000	0.001	0.026	0.030	0.035	0.036	0.035	0.034	0.030	0.016	0.010
36V	150	120-0	0.000	-0.003	0.020	0.023	0.026	0.024	0.026	0.026	0.025	0.013	0.007
42 V	139	132-0	0.000	0.000	0.024	0.023	0.032	0.032	0.032	0.032	0.032	0.032	0.026
41 V	127	132-0	0 000	0 000	0 026	0 030	0 034	0 0 3 3	0 033	0 0 1 2	0 020	0 01 0	6 0.13
401	134	132-0	0.000	0,000	0.020	0.030	0.034	0.038	0.033	0.035	0.037	0.019	0 013
397	121	132-0	0.000	0.001	0.025	0.029	0.033	0 035	0.035	0.035	0.032	0 020	0.015
281	126	132-0	0.000	-0 003	0.021	0.024	0.033	0.027	0.027	0.027	0.032	0.016	0.013
v	120	1 1 4 - 0	0.000	0.001	0.041	0.067	0.020	0.027	0.027	0.027	0.020	0.010	0.011

в-6

TABLE 26

_____ ------12.00 35.00 45.00 55.00 63.30 55.00 45.00 35.00 12.00 0.00 PRESSURE (PSIG) 0.00 10/31 10/31 11/1 11/1 11/1 11/2 11/2 11/211/2 11/3 11/3CATE TIME 8.19 18.02 4.04 11.48 19.11 2.41 9.25 14.39 19.58 6.00 12.08 - - - - - -------____ ----_____ --------_ _ _ _ _ ---------GAGE AZ. ELEV. 35 160 132-0 0.000 0.022 0.057 0.071 0.097 0.110 0.096 0.084 0.071 0.037 0.019 0.041 0.050 0.065 0.069 0.061 0.055 0.050 0.029 0.019 36 150 120-0 0.000 0.010 0.094 0.108 139 132-0 0.000 0.022 0.059 830.0 0.091 0.074 0.062 0.033 0.014 42 150 144-0 0.000 0.008 0.026 0.028 0.044 0.049 0.044 0.039 0.034 0.012 0.003 43 42 139 132-0 0.000 0.022 0.059 0.068 0.094 0.108 0.091 0.074 0.062 0.033 0.014 0.062 0.072 0.097 0.109 0.095 0.033 0.015 41 137 132-0 0.000 0.020 0.078 0.066 134 132-0 0.000 0.025 0.079 0.095 0.128 0.145 0.134 0.113 0.097 0.055 0.031 40 131 132-0 0.000 0.089 0.108 0.139 0.157 0.142 0,103 0.053 0.024 39 0.032 0.120 126 132-0 0.000 0.038 0.110 0.138 0.182 0.208 0.189 0.159 0.136 0.068 0.030 38 43 150 144-0 0.000. 0.008 0.026 0.028 0.044 0.049 0.044 0.039 0.034 0.012 0.003 0.025 0.026 0.043 0.047 0.047 0.018 0.009 150 147-0 0.000 0.069 0.044 0.038 44 0.035 0.054 0.057 0.052 0.009 45 150 151-0 0.000 0.015 0.032 0.050 0.043 0.020 46 150 155-0 0.000 0.018 0.044 0.048 0.070 0.071 0.060 0.058 0.052-0.022 -0.005 0.047 0.073 47 150 159-0 0.000 0.017 0.041 0.077 0.073 0.070 0.060 0.028 0.013 150 163-0 0.052 0.061 0.094 0.101 0.028 48 0.000 0.025 0.086 0.081 0.069 0.010

EQUIPMENT HATCH RADIAL DISPLACEMENTS (IN.)

ŗ

Þ

V

Ę

ľ

N

Ì

7

ŝ

3-18

.

DISPLACEMENT (INCHES)

B-33

B-39

B-41

k

Ī

APPENDIX C

Wiss Janney Elstner and Associates

TEMPERATURE DATA

AMBIENT TEMPERATURE - CYLINDER WALL

C-1

·..

2 DATA SHEET PAGE ____ OF _9_

le'

.						Commence of the second s		
	DATE	TIME	TEST PRESSURE	LOCATION	TEMP.	INITLAL/DATE	NOTES	
	10-31-74	1013	0	TC 122	64°F	NBB 110-31.7	-	•
	10-51-74	1013	0	TC123	76°F	NBB 110/31/		
• /	10-31-76	1013	0	TCIZO	72°F	UBB 110-31-71		l
	10-31-76	1013	. 0	TC 125	82°F	NBB 110-31-70		
_	10-31-76	1013	0	TC 126	72°F	ARB 110-31-70	4	
	10-31-76	1013	0	TC 127	70°F	NB 110-31-76		l
.				,				
			1	<u> </u>		/		1
		L	ļ			·		
.	[ļ			· /		
			<u> </u>	<u> </u>		1		
A States	(1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and the second	and the states	ie of <u>stra</u> ed	1-24-1-24	ر از در ماند میروند. مراجع میروند میروند میروند میروند از این از این از این از این از این از این از این از این از این از این از این	141.00t
		ļ	Ļ	L		/		
		ļ	<u> </u>			· · · /		Į
		ļ	ļ		L	/		Į ·
ر ـــــ				<u> </u>		1		
				<u></u>	,	1		}
-					<u> </u>	//	-	
	ļ		<u> </u>			1		1
-			<u> </u>			/		
*		<u> </u>				1		1
		ļ				. /		1
	L				<u> </u>	//	·	1
		<u> </u>			·	/]
.					ļ]
	L	ļ				1		1
		_ _		<u> </u>		//		
		Land	11_1		<u> </u>	1		<u>.</u>
2	BY:	KI BB/	içe			T.S	. Signoff	
	TP 7 1 1	<u>10/31/</u>	76		C-2		- 11-5-75	· .
							•	

.

2____ DATA SHEET PAGE Z OF 9

TP 7 1 150 1 0

	DATE	TIME	TEST PRESSURE	LOCATION	TENP.	INITIAL	/DATE	NOTES
	11-1-76	0410	35	TCIZZ	50°=	Tit	111-1-76	
	((TCIZ3	56°F	Kit.	111-1-76	
		·	5	TC 124	60°F	The	111-1-74	
				TC 125	58° F	THE	111-1-76	
		· · · ·		TC 126	73°.F	XI	111-1-76	
	11-1-76	0410	35	TCIZT	63°=	XI	111-1-76	•
							1	
							,	. •
						· ·	1	·
-					ł		1	
•				· ·		1	1	<u>}</u>
,	and and the	· · · · · · · · · ·			• • :. *	and the second	1	······································
			1]	1	· · · · · · · · · · · · · · · · · · ·
		1	<u>j</u>	Í	[[1	
		}	1	1			1	
		1		1	<u>.</u>		,	
			1	<u> </u>	•	1	1	
		· ·	1	1		1	/	
		1	1	<u>†</u>	Í	<u> </u>	/	
		· · · ·	1	<u>+</u>	1	1	/	
		1	1	1	1	<u> </u>	·	
	<u> </u>	1			<u> </u>	<u> </u>	/	······································
		1		+		ļí	/	· · · · · · · · · · · · · · · · · · ·
•	[1	/	
				+	<u>+</u>		/	
	}		+		+		, 1	
						<u> </u>		
	L		<u> </u>		<u> </u>	1	· <u>·</u> ··	

C-3

. 11-5-75

2 DATA SHEET PAGE _____ OF ____

le i

TEST DATE TIME TEHP. LOCATION INITIAL/DATE NOTES PRESSURE 75°F 45 1340 TCIZZ 11-1-76 111-1-76 45 64°F 70123 1340 UKB 111-1-76 45 1340 TC 124 7.3°F 111-1-76 45 TC. 125 1340 103°F 111-1-70 45 40 TC 126 70°5 45 1340 10005 TC 127 -71. (IF) 111-1-76 ٠. 1 . . 1 1 2 1 يعاية هو وتتعادر CAN INTERNAL STAR SALESTER / PROPER فيتنصف ومردك and the second second second second second second second second second second second second second second second - .---74 . : ſ 1 ļ . 1 1 1 1 1 . 1 1 1 1 1 BY: T.S. Signoff 11-5-75

TP 7 1 150 1 0

C-4

_____ DATA SHEET PAGE ____ OF ____

		والمريدة والمتحد والتجاري ويتحدث والمتح	······			ويستكريها والشكرة فيستكار فستشتر فالمتحدث والمتحدث والمحاج والمحاج	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l
DAT	E	TINE	TEST PRESSURE	LOCATION	TEMP.	INITIAL/DATE	NOTES
11-1.	74	1911	55.0	TC 122	65°F	Tit 111-1-76	
		1	$\left[\right]$	TC 123	66°F	X = 111-1-76	
		5		TC124	71°E	Kit 111-1-74	
\Box			. (TC 125	69°F	X# 111-1.7%	
\square		1	}	TC124	72°F	XI 111-1-76	
11-1	-76	1911	55.0	TC127	66°F	KA 111-1-76	
·		· ·					
						1	
						• 1	
	•					. 1	
						1 /	
4					1 + 1: 1 m 2 -	······································	
				T T		/	
			1			1	
			1			,	
			1	Ī	1		
				Ì	•	1	
				1		1 /	
			T	1	1	1	
	·		1	1		/	
				1		1	
		1		1	T T	. /	
-	<u></u>	1				1	hanna Anna
		1			1	1	
		1	1	1	1	,	· · · · · · · · · · · · · · · · · · ·
		<u>† </u>	1	1	1	1	
				1	1	1	· ·
		· ·	Í.	Ť – – –	1	1	· · · · · · · · · · · · · · · · · · ·
BY:	Z	F Tite 11-1-7	6		, , , , , , , , , , , , , , , , , , , 	T.S.	Signofit

TP 7 1 150 1 0

C-5

DATA SHEET 2 PAGE 5 OF 9

1	· · · · · · · · · · · · · · · · · · ·		707		1	· · · · · · · · · · · · · · · · · · ·		1	•
	DATE	TIME	PRESSURE	LOCATION	TEMP.	INITIAL	/DATE	NOTES	
Ī	11-2-76	0240	63.3	TCIZZ	58	The A	/11-2-74		l.
		((TC 123	58	Tit	111-2-76		1,
		\sum		TC124	66	Tit	111-2-76		۱.
				TCIZS	69	Xit	111.2.76		1
	5	1	7	TC 126	79	Kit	111-2-76		ł
	11-2-76	0240	63.3	TC 127	66	Tit	111-2.76		1
ł							1		ļ
							1		١
						·	/		ļ
]					· ·	1		ļ
							1		ļ
	,	• • • • • • •	:		• ::` .::.	1.28. A. 1977	/		•
						ĺ	1		ł
Ì		1					1		ţ
				· · · · · · · · · · · · · · · · · · ·			1		Į
					· ·		/		1
				İ			/		
							1		ļ
ļ							1		ļ
ļ							1		ţ
							<u>i</u>		1
					/		/		1
							1		1
							1		1
							1		ł
							1		!
							1		1
							/		1
	вү: 🔾	: # Xiz 11-2-	26				T. s.	Signoff Jif A	1 fa
	TP 7 1 15	50 1 0			C-6		•	11-5-75	

DATA SHEET _____ PAGE 6 0F 9

			ومبينيت تستعيدهم				
	DATE	TIME	TEST PRESSURE	LOCATION	TEMP.	INITIAL/DATE	NOTES
Ľ	11-2-76	0930	55 PSIG	TC 122	63	X=+ 111-2-76	
Ĺ	(]	_/		TC 123	78	- A.L. 111-2-74	
				TC 124	64	XF 111-2-70	
[<u> </u>	TCIZS	84	X= 111-2.76	
[2.			TC126	71	X=R 111-2-76	
E.	11-2-76	0930	55 PSIG	TC127	68	Tit 111.2.78	
[L				
[· · · · ·		//	
[· /	
[• 1	
· ſ						1	
1 - 74		· · · · · · · · ·		and the same	1. 1. 2. 1. 2	······································	
: [1	
· T						1	
Γ						/	
						1	
ľ						1	
· t]	1	/	
ł					· .	/	
Ì							
. 1	,					/	
						. /	
						1	:
			1			/	
		T	1		1	1 1	
	[1	1		1	1 1	
		1	1	İ	1	/ / /	
· . •	BY:	JEZ.	For			T.S.	Signofi X 2
		11-2-	76				• • •
	TP 7 1 1.	50 1 0			C-7	••	- 11-5-75

Ì,

DATA SHEET PAGE ____ DF ____

ŧ

	DATE	TINE	TEST PRESSURE	LOCATION	TEMP.	INITLA	L/DATE	NOTES
	11-2-76	1445	45 PSIC	TC 122	82°F	Xz	1/1-2-7/	
E	(1	1	TC 123	76°F	XI	111-2-76	
				TC 124	89°F	Tit	111-2-76	
			.)	TC 125	88°F	K#	111-2.74	
))	ζ	TCIZL	70°F	TE	111-2.76	
T .	11-2.76	1445	45 PSIG	TC127	69°F	Tit	111-2-76	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		ļ		·
						1		
				· · ·	· ·	ļ	/	
1 .				<u>{</u>]		<u> </u>	/	
						1	<u> </u>	
	<u> </u>	<u>}</u>					· / · · · · · ·	
		<u> </u>		<u> </u>	}			
	ļ	<u> </u>	1				_/	
			· ·		· ·			
				<u> </u>		1	/	
			1		1	1	1	
	 	1				1	1	
							/	
							/	
-						1.	_/	
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	/	
		<u> </u>	ļ	<u> </u>		·	/	
		<u> </u>	ļ		1		_/	
	<u> </u>	<u> </u>	<u> </u>		<u></u>		_/	· · · · · · · · · · · · · · · · · · ·
	<u>}</u>	}						-
	L	L	<u> </u>	<u> </u>	<u> </u>	1	_/	
	BY: 2	it Ai	to-				T.S. 3	Signoity
	•	11-2-7	4					
	TP 7 1 1	50 1 0		- <u></u>	C-8			11-5-75

DATA SHEET $\frac{2}{9}$ PAGE $\frac{8}{9}$ OF $\frac{9}{9}$

	BATE	TINE	TEST PRESSURE	LOCATION	ТЕИР.	INITIA	L/DATE	NOTES
	11.2.76	2000	35 PSIG	TC 122	64°F	Tit	111-2.76	
	\langle	((TC123	64° #	X.F	111-2.76	
				TC124	73°F	K-H	111-2-76	
			. /	TC125	69°F	Xit	111-2.76	
_		\rangle	}	TC126	70°F	T.L	111-2-7	
	11-2.76	2000	35 PSIG	TC127	70° F	77	111-2-76	
-						ĺ	/	
					<u> </u>	<u> </u>	/	
,		×				· ·	/	
Ň						•	1	
		ļ	ļ	<u> </u>	1		1	
		1.5.1 a.1	•	1992 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	A ← 141 10 m.	erzen etter a	:/-:.:-	
			ļ	<u> </u>		ļ	1	
=		<u> </u>	<u> </u>			1	1	
			ļ	1		<u> </u>	1	
		<u> </u>		<u> </u>		<u> </u>	1	
	 				<u>'</u>		1	· · · · · · · · · · · · · · · · · · ·
~		1		<u> </u>	·	<u> </u>	/	
	ļ			<u></u>	<u></u>	<u> </u>	1	۰۰۰۰۰۰ ۲۰۰۰
		<u> </u>	ļ	<u></u>		ļ	1	
1		1		· · · · · · · · · · · · · · · · · · ·	<u></u>	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·
		<u> </u>	<u> </u>	<u> </u>		<u> . </u>	1	
				1	ļ	<u></u>	1	
	ļ.	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>		/	
						ļ	1	``````````````````````````````````````
	L	1		<u> </u>	<u> </u>	1	1	
			<u> </u>	<u> </u>			1	
	L	<u> </u>	<u> </u>			1	1	
A C	BY:	TT X	ta		·		T.S.	Signoff
	TP 7 1 1	<u>//·Z-</u> 50 1 0	16		C-9		•	<i>∥-3-[[</i> 11-5-75

DATA SHEET PAGE _____ OF ____

TEST PRESSURE LOCATION TINE DATE TEMP. INITIAL/DATE NOTES 61°F 11-3-76 0600 12 PSIG TC122 111.3.76 66°F TC 123 111.3.74 69°F 111-3.70 TC 124 64°F 111-3.74 TCIZS 72°F TCIZL え 111.3.76 12 PSIG 11-3-76 0600 67° P 111-3-74 TC127 ス ÷ 1 1 1 • 1 and a second and the second second second ···· * • • • • • • • • 1 T BY: Tit Xita T.S. Signofix + Xite 11-3-76 · •

TP 7 1 150 1 0

: C-10

11-5-75

APPENDIX D

Wiss Janney Elstner and Associates

CRACK INSPECTION

AREA NO. 118

Wiss Janney Elstner and Associates

Ĵ

BASE SLAB AND CYLINDER

n

TIME ATO SURVEYED BY TTR

D-3

-

AREA NO. 119

Wiss Janney Elstner and Associates

CYLINDER MIDHEIGHT

LEV. 178-0	N	o Cracks			
· ·					
		•			
· · ·					
				•	
	·		•		
	:				
<u>.</u>			•	Ì	1
					· .
				L	<u> </u>

D-6

NO CRACKS ELEV. 178-0" ELEV. 178-0" CRACKS No ٠., D-8 ۰. × 1. ELEV. 172-0" ELEV. 172-0" 4 5 З 2 2 3 4 5 . CRYSTAL RIVER - UNIT No. 3 2 CRYSTAL RIVER - UNIT No. 3. FLORIDA POWER CORPORATION FLORIDA POWER CORPORATION CRACK SURVEY - AZIMUTH 270 CRACK SURVEY - AZIMUTH 270 DATE 18-3-76 1450 HAR 1430 TIME 3:15 AM_ SURVEYED BY DWIE DATE 11-2-76 PRESSURE _O SURVEYED BY PRESSURE (03.3 psig WJE No. 71465 WJE N. 71465

AREA NO. 120

Wiss Janney Elstner and Associates

RING BEAM AND DOME

ELEV. 253-10 1/2" 9 8 **7**· 6 5 bish 85 crack 4 بده سالح cher mitter 6-13149 D-10 3 2 -1 ELEV. 244'-0" 2 3 t 4 5 6 CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION CRACK SURVEY - AZIMUTH 200 TIME 10 2 -DATE 10-29-76 PRESSURE_0 SURVEYED BY PL + WP WJE No. 71465

.

WJE No. 71465

ELEV. 253-10 1/2" . 9 8 . 7 · · 6 5 - 4. D D-12 3 **.**.... 2 --2 1 "ELEV. 244'-0"

> CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

3

CRACK SURVEY - AZIMUTH 200 DATE 11-2-76

PRESSURE 63.3

WJE No. 71465

1

2

TIME 0325 SURVEYED BY TT. Kance

4

5

D-13

D-14

SURVEYED : PK + WP

PRESSURE C

WJE No. 71465

TOP SURFACE OF RING BEAM

CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

CRACK SURVEY - AZIMUTH 200

DATE 10-19-76 PRESSURE WJE No. 71465

D-16

TIME 940 SURVEYED BY <u>RK+ uP</u>

SHERT.

CRYSTAL RIVER - UNIT No. 3 Florida Power Corporation

CRACK SURVEY - AZIMUTH 200

DATE 11-1-76 PRESSURE 35 WJE No. 71465

TIME 057 . SURVEYED BY R. Kicm

TOP SURFACE OF RING BEAM

D-17

1

2

1

3

CRYSTAL RIVER - UNIT No. 3

FLORIDA POWER CORPORATION

TIME 1225

SURVEYED BY R. Kame

4

5

6

TOP SURFACE OF RING BEAM

CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

4

5

CRACK SURVEY - AZIMUTH 200

DATE 11-1-76 PRESSURE_55 WJE No. 71465

TIME 2º 4rs SURVEYED BY R. Ramag

CRACK SURVEY - AZIMUTH 200

DATE 11-1-16 PRESSURETIE 45 WJE No. 71465

.

Sheer

TOP SURFACE OF RING BEAM

TOP SURFACE OF RING BEAM

CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

CRACK SURVEY - AZIMUTH 200

:. DATE 11-2-76 PRESSURE 63.3 WJE No. 71465

TIME 0330 SURVEYED BY R. Krouse

30 29 28 27 26 25 24 HAIRLINE 23 CRALK S 22 EXCEPT 1 D-23 AS NOTED 21 20 · . 19 18 · 17 16 15 12 3 4 5 6 CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION CRACK SURVEY - AZIMUTH 200 ; DATE //-/-74 TIME 1151- 17.45 PRESSURE 45 SURVEYED BY BN

WJE' No. 71465

ALS RELIVE CRACES 2 3 1 4 5 6 CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

.

TIME -----SURVEYED BY B.N.

PLY PATELIAS -CRACKS ECLEDT -B' NOTEP : . CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

CRACK SURVEY - AZIMUTH 200

DATE 11/2/14	TIME_ #245.0745
PRESSURE	SURVEYED BY F.M.
WJE No. 71465	

. 43 JIL BLY GLACK3 NO CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION CRACK SURVEY - AZIMUTH 200

DATE 10-27-76 PRESSURE_0 WJE No. 71455

WJE No. 71465

D-27

AREA NO. 121

Wiss Janney Elstner and Associates

EQUIPMENT HATCH

CRACK SURVEY - AZIMUTH 150

4

TIME 0320

SURVEYED BY R. Knows

DATE //- L-74 PRESSURE <u>63.</u> WJE No. 71465

D-32

29 28

DATE //-,3-76 PRESSURE 0 WJE No. 71465

-ELEV. 148-0

TIME 12 45 SURVEYED OV R. Krower

> CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

> > TIME 12 2.0

SURVEYED DY R. Krouse

CRACK SURVEY - AZIMUTH 150

DATE //-/-76 PRESSURE //5 WJE N. 71465

D-33

CRYSTAL RIVER - UNIT No. 3 FLORIDA POWER CORPORATION

CRACK SURVEY - AZIMUTH 150

DATE<u>11-1-76</u> PRESSURE<u>55</u> WJE No. 71465

TIME 1945 SURVEYED BY R. Krann

DATA SHEET G

TEST PRESSURE . DATE DATE Ø

TENDON	END TH	4.5	. NOTES	i.	
D 121	5 51	321	(THIR TR	
Ð 14G	-5 CC F 07	62	016 1	Trils	
D 203	5 072	Ź	OK CS EDAN MORE	TR ALTER AL	THB
D 215	5 107	15 7 C 5 (OF (Inclus Markeel	TR 7/13	
D 324	5 107 F 107	25	ric CIK	772	
D 339	5 0°	142	0Ľ	712	
12 V 20	5 07	120	OK tre	72	
23 1 15	5 07	27	OF OF PERIHETICZ CRALL	FREE TH	
34V&	3 07	28	ok Ch		
45 V 3	5 117	720	OL CL		
56VI	5 67	31	0F		
IB H 10	5 0	130	OK OL I	RK-	
13 4 19	S CC	25	SE NE		ωP
13 H 37	5 6	<u> </u>	<u>c</u> <u>k</u>	TILL	ωP
51430	5 5	·56		5-16-5	WP
51 H 41	5 C	<u>115</u>	Chielen But dut to imp	with first	di enti
53 H (7	5 0	140	H.L Crit Top left	Corner +	
53H32	5600	110	ELOL	776	.,
53847	<u> </u>	010	OL CHERS PIESTANT	TJG	
62.811	5 0	14-	H.L. Cr. Top Left	.3 cm	<u>;</u> Pri-
G4H21	5 0	610	OF THE HETE Complex Marches	<u> </u>	

2

T.S. SIGNOF

117.

D-35

. . .

DATA SHEET 6

(

h

P

TEST FRESSURE 35 ps / DATE ______

 $\langle \rangle$

	•	· ·		
TENDON Number	END	TIME	NOTES	
	i s	10 460	0K	TMIS
D 121	F	175:00	0r	TE
0.110	5	C440	î î l.	TIH
040	F	1540	OF	5N
	5	1550	OK	TR
D 203	F	55:5	CK CT Same as imitial 1.0	IS) IMB
in air	5	0405	OK	BN
0 215	F	6425	A opened to . cic's	15" TI-13
0 324	5	0540	014	BN
	F	050	OF .	TR
0 222	5	125.32	OF H.L. CRACK BIM RT.	<u> </u>
	F	1515	No Phation	TEIT
17 1 20	5	105-7	OK t	TR-
	F	12412	016	<u> </u>
23 115	5	0502	012	772
	F	6425	OK	<u> </u>
34V 5	5	0712	0F-	78
	ļ ř	0:10	0K	772
45 1 3	5	10010		TR
}		060	OK	
5GVI		0400		
·		1.00		11
BHIO	2-	- +	HLC uppen : lever right	Churos PF
		10 7 20		TC X INV
· 13 H 19		1.3-1.33		
		104=0		TEEUP
13 H 37	F	1742		109101
	5	0420	106	TGEUR
51H 30	F	65cu	OK	TGCUP
Files	5	10430	ICK	TGELOP
5184	F	10510	IOK	TGELIT
	5	12:50	No Chance	Durli
55 H 17	F	6456	1 CIL	Tin
53 H 32	S	C 51	CK	TELUI
	F	04:40	EK New Concle sources	THI
E2017	ç	10.520	ick	TGLU'r
55847	=	1944	1. IC	TAI
62 1111	5	124:0	No Change	Burg
	F	0417	ICK	
62471	<u>_</u>	<u>C43</u>		<u> </u>
1 Orn El		16-	1 1711	71.46

g.r. BY

T.S. 516NO

DATA SHEET G

£.,

TEST PRESSURE 45 PST _

٠,

•

ſ	TENDON NUMBER	END	TIME	NOTES		
Ĩ	D 121	5	1248	DR	THB	
ł	D 140	5	1121		THIS	• •
ł	D 203	S. F	110	$O_{2}^{L} - TJG$	TAL	
t	D 215	5	101	OL CT Come 2 1212	<u>72</u>	
Ì	D 324	5	1201	AL CRACE AT FOGE, TOP LET O	IRNER TELA	TC.
ł	D 339	5	1615	NO CHANGE	TR	
	12 V 20	5	1150	OF	TE	
	23 V IS	5 F	1/122		12 D.B	
	34 V 6	5	1/22	OF	-IK-	
	45 V B	5	12:00	12 HI CREEF LIEFT CORNER	TK	
	5841	5	1158	1 OIC	TI	-
	13 H 10	_ې_	12:30	No change	Awfo K (<	•
	·13 H 19	<u>5</u> F	12:05	9K 7	6-ul	
	13 H 37	5. F	12.10		Gand	
ł	51 H 30	5	11.30	οκ. ····································	G-40	
	51 H 41	5 F	11:55	Г <u>ек</u> Т Гр. Т	6-407 (0-407	
	53 H 17	5	12:30	No chine Protection Alit	2008	ceffe .
•	·53 H B2	5	12,15	I OK T	G-GA	TNB
•	53 H 47	C) F	112:20	0K 7	TN B	,
	62.411	5 F	112:30	Suspection between P. I concrete the	W ANI	3
	64 4 21	5	12:1	204 TC/2	IG-VO INB	ſ

R.K. T.G. W DWB, IMB BY:

10.7.1 150 ML A

D-37

T.S. SIGNOFF

~140.

DATA SHEET 6

Y

-

TEST PRESSURE 55 ps; DATE 1-1-76

TENDON NUNSER	and	TIME	NOTES	
		7. 12	A 1/	
D 121	<u> </u>	1116		
	ļ	1720		
040	<u></u>	104	<u> </u>	
		1947	OR	77<
D 203	5	$corr}$	OL	-IR
	<u> </u>	que	No Change	
D 215	5	20:0	<u> </u>	TR
	F	5005	OK NO CHA-1740	TAB
D 376	5	1970	CRACE 6,003 ON COWER BE	VEC TR
	F	70.20	C.K.	TTYIS
D 332	5	1142	NOCHANGE	ZZ
	F	2020	OL	TR
121/20	5	1930	OK	TR
12 4 20	5	12035	No Change	DWB
SENIE	5	1934	OF	72
23 415	F	2530	No Change	DWB
SAVE	5	1434	OK	R
52.46	F	2070	No Change	DWB
	S	144 3	H.C. CEACH LEET CORNER	TR
45 V 5	1.5	2235	OK	Au R
	S	1940	41. (RACK LEET CORNER	12
56YI	F	2035	t at	Deie
		12.00	the Charge	Aur
I I I H IO	1	1/2 02	D K	
	15	1940		
· IS H IS	F	1/425		49
	1 5	1700		
15 H 37	<u> </u>	1.4.4.2	The WINDY AT TO INSPECT	- With The
		144		
;51H30	E E	17.00	LICE COLEFI JOL COLOUL	. 1) - 1
}	· · · ·	12010		11-10
51441	5	117.25		works
1		1201-5	IOK	
53 H 17		1471	CE New Creek (1167. UI)	<u> </u>
	127	1745	No Change	- they s
53H32	<u></u>	1950	10%	4,16
	<u></u>	1452	OK NO CHARGE (CJ 7.CI)	THIB,
53847	5	12000	OK	W. TG
	1 =	15% -5	ICK	
67.811	5	20-5	1BL creat ~ . CO3 extends to P. bel	w AuB
	-L_F_	1204-5	TAD Charge	<u>کانینتے</u>
6:421	<u>s</u>	11945	ICK '	WE THE
וזיחייטן	F	1430	ICK	THIS

BY: R.K., WP. TG

T.S. SIGNOFF .

DATA SHEET G

I-

TEST PRESEURE 63.3 psic DATE _____

	TENDON NUMBER	END	TIME	NOTES	
	0121	<u> 5 k</u>	335	CK TA	13
		= 0	315		TE
• •	D 140	-	307	0.5	R
·	D 203	50	2352	OK	TE-
e les crister inter a set	0.215	- 7	13:91	OF	TE
			3051	No Change (CJabriel) T	14/5
•	D 324	F	2412	OK	TR.
	D 339	S C	136/01	Add H.C. X ON INSIGE CORNER	10
•	· 17 V 20	50	2259	OK	12 HB
· · ·			220	HL inside cal	
	23 1 15	FK	225	NC £	NWB
	34V&	5	252	<u>0K</u>	π^{ζ}
	45 1 5	3 (307	H.C. CEACE & LEFT CORNER	
•		F K	243DI	OK DEF LARABE	43 72
- .	SGVI	1 = 2	2430	ok B	-B
	БНЮ		<u>0420 </u> 22 - 11	NC. 21	214
	13 4 19	5	0505	or wp.9	-6
			2375		<u> </u>
	13 H 37	- F	53/2	OK TI	113
	51 H 30		0250	OF OF NORCE IN CRACE SITE WP	76
•	51 H 41	5	0300	ok w?	TG
			0330	N.C.	13
	53 H 17	-	C 317	CK- No Chattie T	1-113
	53 K 51	S F	0 <u>315</u> 71,17	or wo -	<u>16</u> 3
	53 847	<u> </u>	0520	ok will T	IG_
			<u>ور زرم</u> محص		JR JR
	G2 H H	F	0325	NC DI	wis .
	64H21	5	0310	ok ult	

BY: WP. TG THIS DWB

T.S. SIGNOFF

. . .

D-39

•• -

DATA SHEET G

C

TEST PRESSURE ${\mathfrak O}$

TENDON NUMBER	END	TIME	NOTES
	5	14157	OIL THIS
0121	F	125-1	CK EN
	.5	12 -7	CK THB
0 140	F	1255	nk bila
	5	1400	OK RK
0 203	۶	HIT	OK CI STILL OFFICE OFF' THE
· • • • •	5	1305	OK
0 215	F	1431	Prout sus - Clary some det-minster
0 324	5	1250	oic RK
0 324	F	1255	OK RK
· D 330 ·	5	1323	HARLINE JOOCK BOTTOM RIGHT STOP FIN
0 222	F	1310	ok TG
10 1/ 20	5	11250	DIC RK
12 4 20	F	1238	014
22 1/15	5	1250	OK RK
C2 V 13	F	1230	oK
3446	5	1250	OK RK
54 7 6	1 7	12.32	oic Tes
45 V 3	S	1250	OK RK
.43 ¥ 3	F	1234	ok
56 V I	S	1250	OK Ric
	F	1236	ok TG.
BHIO	S	1244	ok T.G.
19 11 10	۴	1230	IOK RK
13 11 19	s	1310	OK WATE
	F	1230	OK R.K.
13 H 37	5	1315	ck. WP+TE
	F	1432	CK THIS
51 H 30	<u>_</u>	1300	ot white
	F	1/335	ck. 43376.
51 H 41	5	1/205	Ick WHSTE
	F	1340	OK WITE
53 H 17	1-5-	1445	IOK TG
	F	1421	OIC THB
·53 H32	5	1275	IOK WHATG
	L F	1425	CIL TIMP
53 H 47	5	1330	10E 109+76
	1 =	1422	DK THI
62.411	S	112:47	DK TE
	<u> </u> =	12-11	OK TC
64421	5	1320	IOK LOGTE
1 orn 11		Y541	ICK TAIT

BY: R.L. W. TG.

...

D-40

T.S. SIGNOFF

APPENDIX E

Wiss Janney Elstner and Associates

COMPUTER OUTPUT - SAMPLE

DATA SHEET 3 PG. 1 OF 5

.

.

۰.

6

DATE : 10 / 31 / 76

Ŧ

EQUIPMENT HATCH MERIDIONAL STRAINS

PRESSURE	20.00	PSIG	TIME : 22.12
CHANNEL		GAGE	STRAIN
480 481 482 483 484 485 485 486 487		35M 35M* 36M 36M* 42M 42M* 43M 43M*	5.3844E+01 1.7948E+01 5.1280E+00 -5.1280E+00 1.2807E+04 1.280E+01 5.1280E+00 1.5384E+01
486 487 488 490 490 491 492 493 494 495 495 496 497		43M 43M* 44M 44M* 45M 45M* 46M 46M* 47 47M* 48M 48M	5.1280E+00 1.5384E+01 -1.0256E+01 -1.5384E+01 2.5050E+04 -7.6920E+00 1.2820E+00 1.2820E+00 1.7051E+03 7.6920E+00 2.5640E+01 -1.7948E+01
484 485 498 500 501 502 503 504 505 506 507	-	42M 42M* 41M 41M* 40M 40M* 39M 39M* 38M 38M* 38M* 37M	1.2807E+04 1.2820E+01 2.3076E+01 7.3774E+05 -8.9740E+01 -3.8460E+01 -7.9484E+01 3.5896E+01 -9.2304E+01 -3.5896E+01 -3.8460E+01 -4.6152E+01

SIGNED

E-1

DATA SHEET 3 PG. 2 OF 5 EQUIPMENT HATCH HOOP STRAINS

.

DATE : 10 / 31 / 76

PRESSURE	20.00	PSIG	TIME : 22.12
CHANNEL		GAGE	STRAIN
508 509 510 511 512 513 514 515		35H 35H* 36H 36H* 42H 42H* 43H 43H*	-7.9484E+03 -1.5384E+01 7.4356E+03 5.1280E+01 1.2820E+01 2.5640E+01 7.9484E+01 2.0512E+01
514 515 516 517 518 519 520 521 522 523 523 524 525	•	43H 43H* 44H 44H* 45H 45H* 46H 46H* 46H* 47H 47H* 48H	7.9484E+01 2.0512E+01 -4.3588E+01 -2.5640E+00 -6.7177E+02 -2.8204E+01 -1.2820E+01 -3.0768E+01 5.1280E+00 2.5640E+00 -2.3076E+01 4.1024E+01
512 513 526 527 528 529 538 531 532 533 534 535	•	42H 42H* 41H 41H* 40H 40H* 39H 39H* 38H 38H* 38H* 37H	1.2820E+01 2.5640E+01 1.3076E+02 -5.1280E+00 -2.0512E+01 -2.3076E+01 2.5640E+01 -5.8972E+01 1.4461E+04 8.9740E+01 -1.6922E+02 2.8460E+02

SIGHED

.

E-2

DATA SHEET 3 PG. 3 OF 5

•

DATE : 10 / 31 / 76

3

PENETRATION STRAINS MAIN STEAM LINE

۰.

PRESSURE	20.00	PSIG	TIME : 22.12
CHANNEL		GAGE	STRAIN
560 561 562 563 564 565 566 566 568 566 568 566 568 571 572 577 577 577 577 577 577 577 577 577		76H 76D 76M 77D 778H 78D 78H 78D 78H 79H 79D 79H 80D 80D 80H 80D 80H 80D 80H 80D 80D 80H 80D 80D 80D 80D 80D 80D 80D 80D 80D 80D	-1.0332E+02 -1.2665E+02 -7.9992E+01 5.6661E+01 4.3329E+01 -5.9994E+01 -2.3331E+01 -9.9990E+00 -6.6660E+00 7.3326E+01 9.9990E+02 4.6662E+01 -1.3332E+01 -1.3332E+01 -2.6664E+01 -3.3330E+00 1.9998E+01 1.9998E+01 1.9998E+01 2.3331E+01 0.0000E+00 -3.3330E+02 -6.6660E+02 -6.6660E+02 -3.3330E+02 -3.330E+02 -3.33
595 596		87M 88H	-6.6660E+02 -3.3330E+02
597	•	88D	0.0000E+00
598		881	0.0000E+00
577 700		89H	-3.3330E+02
600 701	·	891	~6.6660E+02
601		89M	0.6666F+66

SIGHED

٠.

E-3 👘

DATA SHEET 3 PG. 4 OF 5

۰.

PENETRATION STRAINS FEEDWATER LINE

DATE : 10 / 31 / 76

		•	•
PRESSURE	20.00	PSIG	TIME : 22.12
CHANNEL		GRGE	STRAIN
CHANNEL 602 603 604 605 605 608 609 610 611 612 613 614 615 616 617 618 616 617 618 616 617 618 620 621 622 623 624 625 626 627 628 629 631 632 633 634 635 635 635 635 635 635 635 635 635 635		GAGE 90H 90D 90M 91H 91D 92H 92D 92H 92D 93H 93D 93H 93D 93H 93D 93H 94H 94D 95H 95D 95H	-6.6660E+02 -6.6660E+02 3.3330E+02 0.6000E+00 -9.9990E+02 -3.3330E+02 -6.6660E+02 0.8000E+00 9.3324E+03 0.8000E+00 -3.3330E+02 -1.3332E+01 6.6660E+00 0.0000E+00 -1.9998E+01 0.0000E+00 -3.3330E+02 -3.3330E+02 -3.3330E+02 -3.3330E+02 -6.6660E+02 3.3330E+02 -6.6660E+02 -3.3330E+02 -6.6660E+02 -3.3330E+02 -6.6660E+02 -3.3330E+02 -6.6660E+02 -3.3330E+02 -3.3330E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -3.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.660E+02 -5.660E+02 -5.3330E+02 -5.6660E+02 -5.3330E+02 -5.6660E+02 -5.660E+
639 640 641 642		1020 102m 103h 103D 103M	-5.55552+92 -3.3330E+91 -3.3330E+92 0.0000E+90 0.0000E+00

•

SIGNED

E-4

DATA SHEET 4 PG. 2 OF 4

RADIAL DISPLACEMENTS

444 445 446

	·	
PRESSURE	20.00 PSIG	TIME : 22.12
CHANNEL	GAGE	DISPLACEMENT
417 418 419 420 421 422 423 423 425 425	1 4 7 10 13 16 19 22 25 128	1.1426E-02 3.5696E-02 6.3327E-02 2.3800E-02 4.3027E-03 -1.6176E-02 -3.8006E-02 -3.2196E-02 -4.6264E-02 -5.2914E-02
427 428 429 430 431 432 433 434 435 435	2 5	6.1910E-03 3.6842E-02 7.0028E-02 5.5005E-02 2.4269E-02 1.9287E-02 -2.9685E-02 -4.4497E-02 -4.9303E-02 3.2825E-02
437 438 439 440 441 442 443	3 6 9 12 15 18 21	7.7418E-03 2.9133E-02 6.3910E-03 5.6250E-02 2.0355E-02 1.9055E-02 -3.5883E-03

24 27 130

DATE : 10 / 31 / 76 -

-5.5883E-03 -2.0221E-02

-4.9783E-02 2.3196E-03

SIGNED ----

E-5

.

DATE : 10 / 31 / 76

DATA SHEET 4 PG. 3 OF 4

EQUIPMENT HATCH VERTICAL DISPLACEMENTS

PRESSURE	20.00	PSIG	TIME : 22.12
CHANNEL		GRGE	DISPLACEMENT
447		48V	3.2208E-02
448		47V	-1.5066E-02
449		46V	4.2533E-02
450		45V	2.7995E-02
451		44V	3.7141E-02
452		43V	-2.5694E-02
453		35V	1.9253E-02
454		35V	1.8987E-02
455		42V	1.6047E-02
456	i na ka sa	41V	1.8088E-02
457		40V	1.8861E-02
458		39V	1.7470E-02
459		38V	1.6675E-02
460		37V	0.0000E+00

an a hand gangan sa ananggang sa sa Nga sa kanalan kanalan na managan sa Marana kana kana kana ang

SIGNED

E-6

DATA SHEET 4 . PG. 4 OF 4

DATE : 10 / 31 / 76

•

.

EQUIPMENT HATCH RADIAL DISPLACEMENTS

	PRESSURE	20.00	PSIG	TIME : 22.12
	CHANNEL		GAGE	DISPLACEMENT
	461 462 463 464 463 465 465 465 466 468		35 36 42 43 43 41 40 39 38	2.9663E-02 2.3788E-02 2.6757E-02 1.5588E-02 2.9949E-02 3.9824E-02 4.7841E-02 5.8478E-02
. **	464 470 471 472 473 473		43 44 45 46 47 48	1.5588E-02 1.6135E-02 2.1666E-02 3.0442E-02 2.6030E-02 3.3047E-02

an a bha chuan bhfar an ann add ann bheann a bhann a priortan bhair an galaiste an an ann a chuan a chuan ba c

D

SICHED

E-7