AGENDA HYPERION MEETING WITH NRC SEPTEMBER 30, 2010

U.S. Nuclear Regulatory Commission Two White Flint North 11545 Rockville Pike, Room T2B3

ТІМЕ	ΤΟΡΙΟ	LEAD
9:00 a.m. – 9:15 a.m.	Opening Remarks and Introductions	NRC / HPG
9:15 a.m. – 9:30 a.m.	Hyperion Corporate Overview	HPG
9:30 a.m. – 10:15 a.m.	Hyperion Product & Technology	HPG
10:45 a.m. – 11:00 a.m.	Pre-Application Planning	HPG
11:00 a.m. – 11:15 a.m.	Break	
11:15 a.m. – 11:45 a.m.	Overall Approach to Licensing	HPG
11:45 a.m. – 12:00 p.m.	Public Questions/Comments	NRC/Public
12:00 p.m.	Adjourn	
12:00 p.m. – 1:00 p.m.	Lunch	
1:00 p.m. – 3:00 p.m.	Closed Meeting	NRC/HPG

Hyperion Power Generation Inc. 2399 Blake Street, Suite 105 Denver, Colorado 80205 U.S.A. Voice: +1 (505) 216-9130

Web: www.HyperionPowerGeneration.com

Hyperion Power Generation Information Sharing Meeting with US NRC Date of Public Meeting: September 30, 2010

Morning Session (Public)

Roster of Hyperion Power Presenters:

Mark S. Campagna, PMP, Chief Operating Officer / Chief Nuclear Officer Dr. Turner J. (TJ) Trapp, VP Engineering Pat McClure, Los Alamos National Laboratory Manager Rich Starostecki, Regulatory Manager

Topic Number	Торіс	Pres. Org.	RP HPG Content	Presentation Time (Start/Duration)
1	Introduction & Objectives	HPG	Mark Campagna	0900 / 15mins
2	Introductions of Participants	HPG & NRC	Mark Campagna	0915 / 30mins
3	Hyperion Corporate Overview Corporate safety approach	HPG	Mark Campagna	0945 / 15mins
4	 Hyperion Product & Technology a. Technology History & Status b. Concept & Key Topics Uranium Nitride Fuel Performance Lead Bismuth Eutectic Thermal Hydraulic Performance Sealed Primary System at Near Atmospheric Pressure c. Design Description Below Ground Containment Pool Type Concept Intermediate Loop 70 MWth / 25 MWe 	HPG	TJ Trapp & Pat McClure	1000 / 45mins
5	Pre-Application Planning Topical report (discuss number & nature & priority) submittals quarterly	HPG & NRC	Rich Starostecki	1045 / 15mins

6	Overall Approach to Licensing	HPG	Rich	1100 / 30mins
	a. HPG is responsible & accountable for safety		Starostecki	
	(we will present safety case for licensing); we			
	look forward to independent verification by			
	NRC based on our technical data			
	b. Demonstrate equivalency to current NRC GDC			
	c. Use of topical reports to convey technical			
	information at early stage; role of peer reviews			
	d. Reliance on consensus Codes and Standards			
	e. Discuss proposed Analytical Methods			
	f. First of a kind plant – demonstration & test			
	reactor instrumented for confirmatory data			
	g. Approach to severe accidents consistent with			
	NRC policy			
	n. Mechanistic source term under development			
	(explain science & engineering aspects)			
	I. WORKING WITH ANS/NET SWIR task force Re:			
	licensing process of generic issues			
	j. HPM owner's group envisioned			
7	084	HPG &	Mark	1130 / 30mins
,	NGC .	NRC	Campagna, TJ	1100 / 00111113
			Trann. & Rich	
			Starostecki	

	Param	ete
Reactor Power	70MW thermal	
Electrical Output	25MW electric	
Lifetime	7 – 10 years	
Size (meters)	1.5w x 2.5h	
Weight (tonnes)	Less than 50 (Incl. vessel, fuel and primary coolant LBE)	
Structural Material	HT-9 or T-91	
Coolant	LBE (45% Pb, 55% Bi wt%)	
Fuel	HT-9 or T-91 clad, uranium nitride	
Enrichment (% U-235)	<20%	
Refuel on Site	No	
Sealed Core	Yes	
Passive Shutdown	Yes	
Active Shutdown	Yes	
Transportable	Yes – intact core	
Factory Fueled	Yes	
Safety & Control Elements	Two redundant shutdown systems	

		Criticality Calculations
	<u>k-eff</u>	configuration (beginning-of-life)
	1.081	cold, reserve-shutdown and control out
	0.871	cold, reserve-shutdown and control in
	0.954	cold reserve-shutdown in and control out
	0.956	cold reserve-shutdown out and control in
	1.069	warm all out
	1.058	warm all out, core coolant voided
	0.995	warm all out, all reactor coolant voided (plena, downcomer)
s	eptember 30, 2010	Copyright 2010, Hyperion Power Generation, Inc. All rights reserved.

		opical Reports.
		Sequence 1
HPM Mater	rials	Fuel cladding, the reactor vessel materials, including support structures, their performance over the design life time of the reactor, including expected transients and accident conditions, and must include discussion on erosion, corrosion, embrittlement, surface coatings, etc.
UN Fuel Perfo	rmance	UN fuel performance (including swelling, void formation, fission gas release and maximum burnup) with and without clad defects and failures.
Reactivity Control an Reactor Shut	d Emergency down	Normal and emergency reactor plant reactivity control systems and methods.

	Sequence 1
LBE Corrosion Control	LBE corrosion issues and concerns and the systems and methods used to minimize and/or prevent LBE corrosion.
Coolant Chemsitry Control	Purification loop - how is polonium controlled, including polonium generation in coolant and cover gas regions, removal and control mechanisms required to maintain acceptable LBE coolant purity and what are plant limitations due to radiotoxicity, oxygen and corrosion.
Alternative Source Term	Derivation of alternative source term for HPM reactor, assuming partial core failure and release of fission products into LBE coolant.

	HPM Topical Reports:
	Sequence 2
Core Neutronics	Neutronics, including neutron spectra in various regions of the core and surrounding areas as effected by transient conditions during or resulting from postulated accidents.
LBE	LBE thermal hydraulic performance under startup, transients and accident conditions – include systems (primary, intermediate and SG systems) response to transients via TRAC code.
Fission Product Managemen and Control	t Fission product management requirements internal to the fuel pins.
Severe Accidents	Severe Accident performance relative to NRC's severe accident policy •Containment (including robustness, design pressure, etc.) •Inherent retention capability •PRA (including HCDA, core melt, other SA scenarios) •Toxic Chemical Releases •Severe Accident Strategy •Hypothetical Core Disruptive Accidents (HCDAs) •Steam Explosions •Containment Design Pressure •Core Retention Device •HVAC
Emergency and Shutdown Decay Heat Removal	Systems and methods used to remove decay heat during emergency situations, and following normal reactor shut down.
September 30, 2010	Copyright 2010, Hyperion Power Generation Inc. All rights reserved.

HPMI	opical Reports:
	Sequence 2
Electro-Magnetic (or Mechanical) Pumps	Technology used to provide for both primary and intermediate LBE fluid movement (or pumping capacity) and the associated limitiations.
LBE Leak Detection	Systems and methods used to detect LBE leaks, and the methods and/or systems used to minimize adverse consequences from these leaks. This must also include some discussion on plant operations in the event that LBE leaks are discovered.
Intermediate Heat Exchange and Steam Generator	Materials, thermal-hydraulics, interfaces, pressures, etc. for the IHX and S/G.
In Service Inspections (ISI) and Remote Monitoring and Diagnostics	Method in which ISI and remote monitoring and diagnostics will be implemented in the design.
Accident Analyses	Address risk informed approach to be used for design.
September 30, 2010 Copyright 2010, Hyperion Power	Generation Inc. All rights reserved.

HPM	Topical Reports:
	Sequence 3
Integrated Plant Operations	Normal operations, and shut down.
Physical and Cyber Security	Reactor start-up, normal operations, and shut down, consistent with NRC guidelines.
Aircraft Impact	Evaluation of aircraft impact on the HPM power plant, consistent with NRC guidelines.
Seismic	Evaluation of seismic event on HPM power plant, consistent with NRC guidelines.
Requirements Management	May be combined with HFE.
Human Factors Engineering	Cover the requirements of NUREG 0711.
Quality Assurance	This is a unique chapter (17) in DCD space.
September 30, 2010 Copyright 2010, Hyperion	Power Generation Inc. All rights reserved.

	Sequence 3
HPM Transportation Strategies and Methodologies	Methods and strategies used to transport the HPM and associated radiological and/or biohazard systems or sub-systems to and from operational sites.
GDC	Establish equivalency with Appendix A criteria.
DCIS	Instrumentation & Control considerations (including automatic response and reliance on digital systems) for the design basis of an LBE fast reactor plant. It must also include details on the schemas or methodologies used to implement digital instrumentation and controls and ensure verification and validation requirements can be met. Additionally, cyber security, hardware and software diversity and defense in depth in depth methodologies must be defined for safety and/or non-safety related DCIS.

