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EXECUTIVE SUMMARY

Changes to the Lower Withlacoochee River due to construction of portions of the Cross
Florida Barge Canal have reduced flows to the tidal portion of the river from those that were
observed historically. Concerns have been raised regarding the effects of the decline in
flows through the system on the lower river’s biota. These concerns are related to the death
and stress of bald cypress trees along the lower river, and to other changes in vegetation
and associated decline in fish habitat. A study completed for the District (Stahl and Griffin,
2006) included sampling a subset of the dead cypress trees along the lower river. This
study concluded that the ten trees sampled died between 1981 and 2004, and that eight of
them died between 1997 and 2001.

Since no salinity data existed from the right time and place to determine if increases in
salinity contributed to the bald cypress deaths, a model was developed to predict salinity
throughout the river as a function of river flow. The model was used to hindcast salinity
within the river for the 1998-2002 period, when six of the trees died. The output from this
model was then used to develop relationships between river inflows and salinity within the
river for application to the other years during which cypress trees died. This allowed a
determination of whether increases in salinity were implicated in the deaths, and what river
flows should be to protect existing cypress trees.

The monthly and annual locations of the salinity levels important for bald cypress
were estimated for 1970-2004. Bald cypress cannot withstand persistent salinities of
2-3 ppt, so the locations of the 2 ppt bottom isohaline were estimated. These
locations, and their durations, were compared to the locations of the dead cypress
trees. All the dead trees were between 2 and 4 km upstream from the mouth of the
river (Figure ES-1). This analysis determined that most of the dead trees had been
exposed to median monthly salinities greater than 2 ppt for relatively long periods
of time, in excess of 12 months for most of the trees. Elevated salinity levels may
have been a contributing factor to eight of the ten bald cypress deaths during this
period.

To address this problem, the SWFWMD developed alternative flow scenarios for the
river focused on increasing the amount of freshwater entering the river when
additional water is available in the system. These alternative flow scenarios were
used as input to the modeling tool, which provided expected changes in the salinity
regime for evaluation. The alternative flow scenarios as designed would provide
increased flows to the lower river, but primarily during the wet season, when
appropriate salinity regimes typically already exist in the lower river. During dry
periods, flows to the river resulting from these alternative scenarios could only
increase if additional water were available in the system. For those periods when
extended low flows occurred, most notably in 2000-2001 when three of the trees
died, there was little additional water in the system to increase the flows in the river.

To aid in the evaluation of the alternative flow scenarios, water quality data and
benthic data were also examined. Dissolved oxygen values in the river, important



for fish and benthos, showed no melationship with flow, with very little evidence of
poor conditions, so that changes in the freshwater inflow to the river would not
likely improve dissolved oxygen. The benthic community in the river is dominated
by omganisms preferring salinities greater than 7 ppt.  There i only oné non-invasive
species with a central salinity preference |ess than 5 ppt. Based on the alernative flow
scenanos provided for tis evaluation, the volume of water less than 5 ppt would
wmetimes increase and sometimes decrsass, depending on the available water in the
sysiem, with no overall benelil 1o the benthos

Given the information provided above, any additional alternative flow scenarios should be
eviluated with respect o their ability %o extend the period of relatively high lows o the
river o the typical dry season. To keep the 2 ppt botiom isohaling downstream ol the
bald oypress trees, at 2 km from the mouth of the river, average flows of 1300 os are
necessary, and 1100 cfs 1o keep the isohaline at 3 km from the mouth. Most of the bald
cypress deaths occurmed during or immediately following periods when typical dry season
conditions extended for long penods, with low lows resulting in movement of the 2 ppt
boftom isonaline upsiream of 4 &M fnom (e mouth o 1.0 consecutlive mManing or more
The altemative low scenarios evaluated here do not provide for any impeovement in this
sifuahion, primanly because there are limes when there B nol enough water available in the
vysiem. such as 2000- 2001
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Figure E5-1. Locations of dead cypress trees and year of death, with river kilometer
syslem (modified irom Stahl and Griffin, 2006).
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1. INTRODUCTION

Changes to the Lower Withlacoochee River due to construction of portions of the Cross
Florida Barge Canal (CFBC) have changed flows to the tidal portion of the river from those
that were observed historically, with a present day maximum discharge of 1540 cfs.
Historical flows have been estimated as 1900 cfs on an annual basis, with monthly
maximum flows exceeding 7000 cfs.

Concerns have been raised regarding the effects of the decline in flows through the system
on the lower river’s biota. These concerns are related to the death and stress of bald
cypress trees along the lower river, and to other changes in vegetation and associated
decline in fish habitat. One of the most visible changes in the lower river’s biota is the
death of bald cypress trees along the lower river, which may be related to low river flows.
A study has been completed for the District (Stahl and Griffin, 2006) identifying the years
that ten of the trees died, and concluded that the ten trees died over 1981-2004, with eight
of the deaths between 1997 and 2001. This study could not definitively conclude that
increases in salinity resulted in these deaths, however.

To understand if the bald cypress deaths were related to increases in salinity, and thus to
lower than normal river flows, it would be most appropriate to utilize salinity data collected
during 1981-2004 in this portion of the lower river. If these data existed, they could be
used to examine the role of salinity as a potential contributor to the tree deaths. However,
the only data available were collected at two sites along the river sampled monthly since
1996, upstream of the sampled dead trees, and thus insufficient to examine the conditions
which existed when the tree deaths occurred. Therefore, a method has been developed to
hindcast the salinity regime in the river using hydrodynamic models for 1998-2002,
allowing examination of the salinity regime in the river during the period when six of the
trees died. Development of relationships between river flows and salinity also allows
examination of the salinity when the remaining tree deaths occurred.

The Southwest Florida Water Management District is assessing the potential for restoring
freshwater inflows to the estuary by modifying the structures in the Lower Withlacoochee
River. The Withlacoochee River Basin Board provided funding in fiscal year 2003 for a
Basin Initiative to investigate the restoration alternatives of the Western Terminus of the
Cross Florida Greenway. In fiscal year 2005 the Board provided additional funding to
further evaluate impacts to the estuary and the potential water quality and natural systems
benefits of increasing freshwater flows to the lower river.

As part of this evaluation, the goals of this portion of the project are to:

1. develop three-dimensional hydrodynamic models of the Lower Withlacoochee
River and contiguous inshore waters of the Gulf of Mexico,

2. apply the models to examine the effects of various freshwater inflows on the
circulation and salinity structure of the estuary and the shelf region,

3. compile existing information on the biota of the lower river, including collection of
tree cores from riparian trees, and



4. assess whether changes in freshwater inflows have affected the benthos, fish, and
vegetation of the lower river.

The first goal has been completed, and is described in a previous report (Janicki
Environmental, 2006). In that report, the three-dimensional hydrodynamic models of the
Lower Withlacoochee River and the contiguous inshore waters of the Gulf of Mexico were
described. The calibrations of the models were discussed, with comparison of model
predictions to the observed data. The models are a large-scale Gulf Coast Shelf Model
(GCSM), and a higher-resolution Lower Withlacoochee River Model (LWRM). These
models are described later in this report.

The third goal has been addressed in a report presenting the results of tree coring of living
and dead bald cypress trees (Stahle and Griffin, 2006). The results indicated that six of the
ten dead trees died during the 1998-2002 period, but did not provide sufficient information
to link these deaths to increases in salinity.

The second and fourth goals of the project are addressed in this report. This includes model
implementation of flow restoration scenarios utilizing the models developed, and
comparison of results from various flow scenarios. Additionally, this report provides
descriptions of the likely responses of the biota of the system to flow changes in the system.
The results from the tree coring study are incorporated into the analyses presented in this
report.

The remainder of this report provides the specific objectives of this work effort, descriptions
of the proposed restoration alternatives, descriptions of the models used to examine these
alternatives, and evaluation of the results of the restoration alternatives.

2. OBJECTIVES

The objectives of the work effort described in this report are as follows:

Assess the differences in salinity structure in the Lower Withlacoochee River resulting
from potential flow scenarios through application of the three-dimensional hydrodynamic
model of the contiguous inshore waters of the Gulf of Mexico (the Gulf Coast Shelf Model
- GCSM) and the three-dimensional hydrodynamic model of the lower Withlacoochee
River (the Lower Withlacoochee River Model - LWRM).

Discussion with the District identified four scenarios for analysis. These scenarios are:

o Observed Conditions October 1983—March 1986:
observed freshwater inflows for comparison to an existing salinity dataset,

. Observed Conditions 1998-2002:
observed freshwater inflows for baseline,

. Alternative 3 1998-2002:



freshwater inflows resulting from implementation of proposed flows of 2500
cfs maximum to the river (Alternative 3), and

] Modified Alternative 3 1998-2002:
freshwater inflows resulting from implementation of proposed flows of 3500
cfs maximum to the river (modification of Alternative 3).

The model results are used to assess the effects of salinity structure on the biotic systems of
the river for which data are available (benthos and vegetation).

3. MODEL SCENARIOS

This section provides descriptions of and rationale for the four model scenarios completed.

Observed Conditions October 1983—March 1986: Data were collected by the District,
USGS, and Mote Marine Lab during January 1984 through February 1986 in the river and
just outside the mouth (M.S. Flannery, pers. comm.). These data were collected along the
longitudinal axis of the river on a given date, at various depths, including the surface. Most
of the sampling was completed at high tide conditions, but a few sampling events were
during low tide events. This time period had higher than average flows. Average annual
flows for the 1970-2003 period were 1040 cfs, while during 1983-1986 the average was
1220 cfs. Comparison of the model output to the observed data serves as a verification of
the LWRM. These comparisons are discussed in Appendix A.

Observed Conditions 1998-2002: For the 1998-2002 period, salinity and temperature data
were collected by the COAST monitoring program at sites from Anclote to the
Withlacoochee (Appendix A, Figure A-1). The calibration report (Janicki Environmental,
2006) compared observed data to model output for the calibration period, March-
September 2002. The longer 1998-2002 period provides additional verification data for
both the GCSM and the LWRM (Appendix A). The LWRM for this period using observed
flows also serves as the baseline for comparison to the other two 1998-2002 scenarios,
which incorporate higher flow limits down the Withlacoochee River. The 1998-2002
period includes very high discharge (the El Nifio event of winter 1997-1998) and very low
discharge (the drought of 2000-2001), and so is a good period for examination of the
models’ responses to a wide range of flow conditions. This time period had lower than
average flows. Average annual flows for the 1998-2002 period were 850 cfs,
approximately 200 cfs less than the 1040 cfs average annual flow during 1970-2003. Based
on the tree coring study (Stahle and Griffin, 2006), six of the ten bald cypress deaths in the
lower river occurred during the 1998-2002 period.

Alternative 3 1998-2002: This scenario implements Alternative 3, as described in URS
(2004). Alternative 3 increases the capacity of the Bypass Channel from the current

‘maximum of 1540 cfs discharge to the Lower River to 2500 cfs maximum. To model this

scenario, the total discharge from the combined discharges to the Lower River and the
Barge Canal was split so that up to 2500 cfs was discharged to the Lower River when
available, with the remainder discharged to the Barge Canal. Additionally, when there
would be no discharges to the Barge Canal for a one-week period under this scenario, 400
cfs was released to the Barge Canal for one day, as specified in the Alternative 3 definition



(URS, 2004). For the purposes of this modeling effort, if a minimum of 400 cfs was not
available from the combined discharges to the Lower River and the Barge Canal on the
given day, the difference was made up with additional water release from the Inglis Dam.
This condition occurred 27 times during the 1998-2002 simulation, with a maximum
quantity of 82 cfs needed to make up the 400 cfs pulse.

Modified Alternative 3 1998-2002: At the request of the District, this scenario employs a
maximum discharge to the river of 3500 cfs. Other than this modification, the scenario is
the same as the 2500 cfs maximum flow scenario.

For all three 1998-2002 scenarios, the GCSM was implemented using observed flows. Both
the Barge Canal and the Lower Withlacoochee River discharge to the same cell of the
GCSM, so that no additional GCSM runs were needed to establish downstream boundary
conditions.

4. MODEL DESCRIPTIONS

This section provides descriptions of the two hydrodynamic models utilized in this work
effort. A large-scale model has been developed for the Gulf coast to provide boundary
conditions for the higher-resolution lower river model. Detailed discussions of the
calibrations of both these models are provided in Janicki Environmental (2006).

4.1. Gulf Coast Shelf Model Description

The large-scale Gulf Coast Shelf Model (GCSM) domain extends from the mouth of Tampa
Bay to Cape San Blas, as shown in Figure 4-1. The GCSM contains 2155 horizontal cells,
with ten layers in the vertical. The model grid cells are approximately rectangular, with
dimensions of about six km by four km, with some variation. The map of the bathymetry
utilized for the GCSM is shown in Figure 4-2. A map showing the locations of USGS flow
gages and other monitoring sites used to estimate freshwater inflows to the system is
provided in Figure 4-3. The locations of stations used for atmospheric forcing data are
shown in Figure 4-4. Offshore water surface elevations were obtained from the Eastcoast
2001 tidal constituent database (Mukai, 2001). Each of these data sources is described
more fully in the hydrodynamic model calibration report (Janicki Environmental, 2006).
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Figure 4-2. Bathymetry for the large-scale Gulf Coast Shelf Model.
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4.1. Lower Withlacoochee River Model Description

The Lower Withlacooches River Model (LWRM) domain extends from the westem end of
Lake Rousseau 1o the nearshore area of the Gulf of Mexico, and includes the Barge Canal,
the tidally influenced portion of the Lower Withlacoochee River, and the estuary region
within 4.5 km of the mouth. Model output from the GCSM supplies the boundary
conditions for water surface elevation, salinity, and water temperature. Figure 4-5 displays

the LWRM grid system with the GCSM large gnid system overlay.
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Figure 4-5. Lower Withlacoochee River Model grid. GCSM cell identifiers are shown in
black.

The LWRM grid contains 2442 horizontal cells, and four vertical layers.  The vertical layers
within each horizontal grid cell are of equal depth, so that sach layer is one-fourth of the
water column. Cell dimensions range from 8 m 1o 369 m in the x-direction (east-west) and
from 5 m to 351 m in the ydirection (north-south). Larger cells are in the offshore area,
with smaller cells in the tidal creeks and river, Bathymetric data were collected specifically
for this project by Dr. Ping Wang of USF (Wang, 2006), and are displayed in Figure 4-6,
Freshwater inflows were obtained from the LISGS for the Lower Withlacoochee River and
Barge Canal, with the locations of these two gages shown in Figure 47, The
Withlacoochee River at Inglis Dam discharges from Lake Rousseau to the Barge Canal, and
the Withlacoochee River Bypass Canal discharges to the lower river. For atmospheric data,
a subset of the stations used for the GCSM was used for the LWRM, as described in Janick]
Environmental (2006).
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Figure 4-6. Map of Lower Withlacoochee River and nearshore bathymetry (developed by
Dr. Ping Wang, USF).
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5. EVALUATION OF RESTORATION ALTERNATIVES

This section provides an analysis of the differences in salinity predictions for the three
LWRM model scenarios of 1998-2002, with primary attention given to the predicted
responses of important biological salinity boundaries within the river. To aid in this
discussion, biologically important salinity regimes are first defined, including the salinity
requirements for bald cypress. Next, a comparison of river flow and its effects on salinity
prior to and following construction of the Barge Canal are provided, along with an analysis
of the effects of flow on water quality.

The analysis of salinity differences is then presented, and the salinity fields resulting from
the observed condition flows for the 1998-2002 period are examined with respect to
benthic community needs and locations of the dead bald cypress trees, with the potential
effects of flow alternatives evaluated. A discussion of the impacts of model error on the
prediction of isohaline locations is also provided.

A discussion of sea level rise in the area is provided using data from Cedar Key, with
implications for any potential flow regime modifications. Finally, equations relating the
locations of isohalines to river flows are provided, useful for developing the flows necessary
to maintain the desired isohaline locations.

5.1. Ecologically Important Salinity Zones

One of the most well known salinity zonation schemes is the Venice System. The Venice
System breaks down estuarine salinity ranges into five ecologically important zones:

o limnetic: 0-0.5 ppt,

o oligohaline: 0.5-5 ppt,

* mesohaline: 5- 18 ppt,

e polyhaline: 18 - 30 ppt, and
o euhaline: > 30 ppt.

Brief descriptions of each of the four lower salinity zones are provided in the following.
The euhaline zone is typically marine, and is rarely found within the river.

Difficulty exists in establishing biologically meaningful salinity zones that can be applied
universally. Salinity changes represent a gradient of conditions and depending on the
system, as particular threshold salinities may vary. The Venice System (1958 and 1959) is
one of the oldest and most widely used salinity classifications. Cowardin et al. (1979) and
Bulger et al. (1993) have also established salinity classifications. Cowardin’s system
represents only a slight modification to the Venice System and is the same except in the
manner in which it groups salinities over 30 ppt. The salinity classification developed by
Bulger et al. (1993) is fairly similar to the Venice System, with each salinity group differing
by only a few ppt. The main difference of the Bulger system is that it classifies all salinities
below 4 ppt into a single group. While no classification system exists without some degree
of criticism (Hartog, 1974 and 1960), the Venice System remains widely used and has been
applied to the modeling developed for this project.
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Limnetic zone:

The limnetic zone (0.0-0.5 ppt) represents the most downstream extent of freshwater
dominated conditions. This zone is not typically influenced by tidal input and is
characterized by freshwater species. At the lowest extent of this zone, slight tidal influence
may result in the occurrence of tidal freshwater marshes. Several important habitats located
in the limnetic zone are riparian woody snags, floodplain wetlands, and tidal freshwater
marsh.

Snag habitat (i.e., areas of large woody debris submerged in the river channel) is known to
support high biological diversity and production (Dolloff, 1994; Maser and Sedell, 1994)
especially in southeastern streams (Benke et al., 1984; Benke et al., 1985). Snags provide
important structure and food sources for aquatic invertebrates and fishes. Much of the fish
production in southeastern streams is associated with snag habitat (Benke et al., 1985;
Smock and Gilinsky, 1992).

Floodplain wetlands are also known to be important components of the river ecosystem
because of their roles in nutrient cycling, production of organic matter, sediment dynamics,
and fish and wildlife habitat (Wharton, et al. 1982; Mitsch and Gosselink, 1986; Schlosser,
1991; Light et al., 1998). Specifically, cypress swamps dominated by bald cypress
(Taxodium distichum) and other freshwater riparian vegetation provide important habitat
and generally have low tolerances to salinity intrusion. Pezeshki et al. (1987) found that
bald cypress seedlings exhibited reduced photosynthetic rates at salinity of 2 ppt and
higher. Allen et al. (1997) found that bald cypress had the highest mean leave, stem, and
root biomass at salinities of O ppt and 2 ppt. Increases in salinity in a previously freshwater
zone can cause undesirable shifts in species composition of the canopy, sub-canopy, or
groundcover plant communities and cause encroachment of saline species further upstream
and the loss of acreage of specific forest types.

Tidally influenced rivers typically have a gradient of marsh types that corresponds to the
gradient of salinity. The general structure and function of tidal marshes has been described
by Odum et al. (1984). Tidal freshwater marshes are found in the upstream, lowest salinity
reach, and generally have the highest plant diversity of all the marsh types. The fisheries
habitat value of this marsh type is likely equivalent to that of the more saline marshes
occurring further downstream, but far less studied than salt marsh fish communities (Odum
et al., 1984). Tidal freshwater marshes were designated as a high priority habitat target for
conservation in the northern Gulf of Mexico by Beck et al. (2000).

Oligohaline zone:

The oligohaline zone (0.5-5.0 ppt) represents the most upstream part of the system that is
regularly influenced by tidal input. Most freshwater species can not handle the increased
salinity and are replaced by euryhaline species. Oligohaline habitat is important for many
commercially and recreationally important fish species, and is used as nursery grounds for
the early larval stages (Rozas and Hackney, 1983; Comp and Seaman, 1985). It is also an
important area for estuarine-dependent fishes which rely on low salinity habitat to complete
a portion of their life cycle. The oligohaline environment is also important for many
invertebrate species. However, compared to higher salinity habitats, the transition area
from freshwater to estuary is typically species poor in terms of benthic invertebrates (Flink
and Kalke, 1985; Gaston et al., 1988; Rabalais, 1990; Rakocinski et al., 1991). Oligohaline
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marshes were designated as priority habitat target for conservation in the northern Gulf of
Mexico by Beck et al. (2000).

Mesohaline and Polyhaline zones:

The mesohaline (5.0-18.0 ppt) and polyhaline zones (18.0-30.0 ppt) are heavily utilized by
many species of fish, including those of marine origin, estuarine residents, and various life
stages of estuarine-dependent species. Additionally, along with the previously described
marsh types, these higher salinity marshes also provide important habitat. The combination
of marsh and tidal creeks provide nursery habitat for many fishes of commercial and/or
recreational importance, particularly during the early larval stages (Rozas and Hackney,
1983; Comp and Seaman, 1985). In benthic invertebrate communities, higher salinity is
often associated with higher species diversity and sandier sediments (lower percent silt-clay)
(Flink and Kalke, 1985; Gaston et al., 1988; Rabalais, 1990; Rakocinski et al., 1991).
Mesohaline and polyhaline marshes were also identified by Beck et al., (2000) as priority
habitat target for conservation in the northern Gulf of Mexico.

The limnetic and oligohaline zones are used when discussing the model results to provide
bounding isohaline locations and volumes, since the 18 ppt isohaline is often outside the
mouth of the river.

In addition to the locations of the 0.5 ppt and 5 ppt isohalines, the 2 ppt and 3 ppt isohaline
locations are also tracked. Various studies have indicated that bald cypress cannot
withstand persistent salinities of 2-3 ppt (Brown and Montz, 1986; Allen et al., 1996; Allen
et al., 1997; Pezeshki et al., 1987).

5.2. Pre- and Post-Barge Canal Conditions

The construction of the Barge Canal during the 1960s and dredging of the lower river in the
1940s resulted in changes to the relationship between flow and salinity in the river. Given
a smaller cross-sectional area prior to dredging, and greater river flows prior to diversions to
the Barge Canal, the lower river historically was less salty, and the locations of low-salinity
isohalines further downstream. The District requested that the LWRM be used to provide
an estimate of the differences between pre- and post-Barge Canal conditions in the lower
river, including the likely differences in water quality constituents other than salinity.

5.2.1. Differences in Isohaline Locations

The LWRM model was modified to provide estimates of isohaline locations resulting from
bathymetry representative of pre-dredging conditions. Approximate river channel
dimensions prior to dredging were discussed with District staff, resulting in modifications to
the existing bathymetry to recreate an approximation of the pre-dredging bathymetry. To
accomplish this, the existing bathymetry, as defined by the bathymetry cross-section data
collected for the District for this project, was modified so that the river channel for 35 feet
on both sides of the centerline (deepest channel) was raised to match the depths along the
sides of the channel, in keeping with the dredged channel being 70 feet wide along the
centerline. This was done for the bathymetry from the mouth of the river to the US 19
crossing. The greatest difference in isohaline locations within the river is expected to be
during periods when relatively low flows occurred, so that the pre-construction scenario
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was run for March-May 2000, a period of very low flows. Comparison of the results of this
run was made with the results from the existing conditions run.

The downstream locations of the surface and bottom 0.5 ppt and 5 ppt isohalines are
provided in Table 5-1 for both the historical and existing conditions for March-May 2000.
The river kilometer system is provided in Figure 5-1. The locations of the historical surface
0.5 ppt isohalines average 3.8 km downstream of those from the existing condition, and the
historical surface 5 ppt isohalines average 2.0 km downstream of those from the existing
condition. For the bottom isohalines, the differences are even greater, as the shallower
bathymetry does not allow higher salinity waters to move up the river as far. The locations
of the historical bottom 0.5 ppt isohalines average 6.8 km downstream of those from the
existing condition, and the historical bottom 5 ppt isohalines average 4.3 km downstream
of those from the existing condition.

It is apparent that the shallower bathymetry of the river prior to dredging allowed for more
downstream locations of low salinity isohalines, as saltier water did not reach up river as far
as it does currently. It is not only at low flow conditions that these differences between pre-
dredging and current conditions may be found, however. Even during high flows, the
effects of the dredging on isohaline locations is expected to result in isohaline locations
further upriver than would be the case given pre-dredging bathymetry, although the
differences between isohaline locations when comparing current and pre-dredging
conditions likely would not be as great as they are under low flow conditions. Deeper
channels allow more upstream incursion of saltier water under any flow conditions.

5.2.2. Effects on Other Water Quality Constituents

To address the expectations as to what changes occurred in the Lower Withlacoochee
resulting from construction of the Cross Florida Barge Canal (CFBC), an analysis was
completed in which hypothetical flows were estimated in the absence of the CFBC for the
1970-2003 period. The hypothetical flows were estimated as the sum of the observed flows
at the dam and through the Bypass Canal to the lower river. The time series of these flows,
and the observed flows in the river, are displayed below for daily (Figure 5-2), mean
monthly (Figure 5-3) and mean annual (Figure 5-4) periods.

As seen in Figure 5-3, for all months, flows would be greater on average over the 1970-
2003 period without the CFBC, and especially during January-April and August-October.
During both of these periods, the flows without the CFBC are about 400 cfs greater than the
flows with the CFBC.

As seen in Figure 5-4, for almost all years, the flows without the CFBC are greater than the
flows with the CFBC. Note, however, that in 1999-2002, the flows are not very different,
with differences of 100 cfs or less.

The most obvious expected difference in indicators is salinity. However, for the 1999-2002
period, the annual average locations of the isohalines are not expected to differ by much,
since the annual flows are very similar, without considering differences in bathymetry, as
addressed above is section 5.2.1. For those years during which large differences in flows
are shown in Figure 5-4, it is expected that the locations of the surface isohalines would be
shifted downstream given flows without the CFBC.
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Historical Condithon Existing Condition Difference
Location (River Kmj Location (River Kim) {Kma)
0.5 ppt March Surface 1.7 d.2 1.5
0.5 ppt Apeil Surface 1.7 49 3.2
0.5 ppt May Surface 2.2 .0 5.8
0.5 ppt Surface Average 1.9 57 s
0.5 ppt March Botiom 1.9 7.0 5.1
0.5 ppt Apall Bottom 1.8 an 7.0
0.5 ppt May Bollom 1.2 10,6 B4
0.5 ppt Bottom Average 2.0 B8 6.8
5 ppl March Surface 0.7 2.3 1.6
5 ppt April Surface 0.2 2.3 2.0
5 ppt May Surface 0.3 2.7 2.4
| 5 ppl Surface Average 0.4 2.4 2.0
5 ppt March Botom 1.7 4.1 24
5 ppt Apell Bottom 1.5 Ry a2
5 ppt May Bomom 1.8 B4 fi.fi
5 ppt Bottom Average 1.7 6.0 43

'

¢

g " i
Figure 5-1. River kilometer system for the Lower Withlacoochee River




Other water quality indicators may be important to the system as well. Relationships often
exist in river systems between dissolved oxygen and flow, and bottom DO is an indicator of
benthic health as well as an expression of nutrient loadings and algal biomass. An
examination of bottom DO and flow relationships in the Withlacoochee River, however,
shows no relationship between the two. As an example, bottom DO from Station 1, at
River Km 4.8, of the Mote 1984-1985 study is plotted against flow in Figure 5-5. For the
remainder of the 10 sites sampled by Mote during this period, the same lack of pattern is
seen. Most importantly, based on the Mote data, very little evidence of low bottom DO
(<4 mg/L) is seen. There is also no relationship between surface DO and flow using data
collected as part of the COAST monitoring program at two sites in the river between 1996
and 2004, as shown in Figure 5-6.

As for bottom and surface DO, examination of the relationships between flow and nutrients
and chlorophyll indicates that in the lower river, nutrients and chlorophyll concentrations
do not serve as indicators of health. Figures 5-7 and 5-8 show TN and TP concentrations,
respectively, as functions of flow. Concentrations of these nutrients increase with
increasing flows. As seen in Figure 5-9, which shows chlorophyll concentrations in relation
to flows, these increases in nutrient concentrations do not result in increased chlorophyll
concentrations. This is at least in part due to the decreased residence time of the nutrients
in the river during higher flows, allowing less time for algal uptake and increases in
chlorophyll concentrations. It appears that the primary indicator of system health is the
locations of the isohalines, which determine habitable zones for benthos and vegetation.
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Figure 5-2. Daily flows in the Withlacoochee River with and without the CFBC.
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Figure 5-3. Mean monthly flows in the Withlacoochee River with and without the CFBC.
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Figure 5-4. Mean annual flows in the Withlacoochee River with and without the CFBC.
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Figure 5-6. Surface DO as a function of same day flow, at COAST sites 2 and 3.
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Figure 5-7. Surface TN as a function of same day flow, at COAST sites 2 and 3.
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Figure 5-8. Surface TP as a function of same day flow, at COAST sites 2 and 3.
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5.3. Comparisons of Results of Scenarios

This section provides the comparisons of the results of the flow scenarios, and discusses
these results with respect to ecologically important salinity zones described above in
section 5.1. Initially, a comparison between the 1983-1986 and 1998-2002 observed
conditions scenarios is made. Then, the results of the three 1998-2002 scenarios are
presented.

5.3.1. Differences Between 1983-1986 and 1998-2002 Periods

The primary difference between the two time periods is the discharge to the river, resulting
in differences in isohaline locations. Discharge during the 1983-1986 period averaged
1220 cfs, 200 cfs greater than the 34-year (1970-2003) mean. During 1998-2002, the
average annual discharge was 850 cfs, 200 cfs less than the 34-year mean.

As a result of the flow differences, isohaline locations were typically much further upstream
during the 1998-2002 period than during the 1983-1986 period, with the exception of early
1998, during the high-flow period associated with the El Nifio of winter 1997-1998.

For the 1998-2002 period, using observed flows, the monthly median locations of the daily
downstream extent of the surface 0.5 ppt isohaline were as far upriver as 9.9 km during
June 2000, and was upstream of the 6 km mark during May and June, 2000, during
September 2000-January 2001, and during May and June 2001.

For the 1983-1986 period, using observed flows, the maximum upstream excursion of the
monthly median location of the surface 0.5 ppt isohaline was 3.6 km, during May 1985.

Other differences in driving mechanisms existed as well, although these differences were
small. Tides during 1983-1986 were approximately 2-3 cm lower than in 1998-2002.
Wind speeds input to the models were slightly lower in the 1983-1986 run than in the
1998-2002 run, by approximately 1 m/s, possibly due to different sources being used for
the wind data. The 1983-1986 run used Tampa International Airport winds, while the
1998-2002 run used Cedar Key winds.

5.3.2. Differences Between 1998-2002 Scenarios

The 1998-2002 scenarios differ only in flows to the lower Withlacoochee River and to the
Barge Canal. Time series plots of the daily flows for the three scenarios, observed
conditions, 2500 cfs alternative, and 3500 cfs alternative, are provided for each year (1998-
2002) in Figures 5-10 through 5-14. As seen in these figures, the only year during which
flows differ between the 2500 cfs alternative and the 3500 cfs alternative is 1998.

During 1998, as seen in Figure 5-10, an unusually large amount of water was discharged
from the Withlacoochee system, especially during the first four months of the year. Up to
7000 cfs was discharged on a given day. The 2500 cfs alternative would have resulted in
approximately 1500 cfs more than in the observed scenario each day going to the river
during this four month period, and the 3500 cfs alternative in approximately 2500 cfs more
each day. As shown in Figures 5-15 through 5-18 below, the surface 0.5 ppt isohaline
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would be translated downstream more than 2 km during January-April 1998 under the
alternatives.

Conversely, during September-December of 2000, extremely low flows occurred. For the
alternative scenarios (for which both the 2500 cfs and 3500 cfs scenarios had the same
flows during this period), less river flow occurred than for the observed conditions. This is
the result of the one day per week release of 400 cfs to the Barge Canal per the alternative
scenarios, in contrast to the observed conditions of 70 cfs baseflow from the dam during
low flow conditions. The location of the surface 0.5 ppt isohaline for the alternative flow
scenarios is upstream of its location for the observed conditions during each of these
months, as shown in Figures 5-19 through 5-22, by as much as 3 km.

As stated above, for low flow conditions, the proposed and modified alternative scenarios
resulted in discharges to the lower river less than those observed. The 400 cfs weekly one-
day discharge from Inglis Dam to the Barge Canal as included in the alternative scenarios is
not an operational requirement and is not proposed for implementation. These weekly
discharges were used to investigate water quality benefit to the portion of the lower river
downstream of the dam and upstream of the Barge Canal. Isohaline results under observed
flows during the low flow periods should be considered rather than the proposed and
modified alternative scenario results, which reflect the 400 cfs releases.
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Figure 5-10. Scenario flows in the Lower Withlacoochee River and Barge Canal, 1998,
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Figure 5-15. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,
January 1998, during high flow conditions.

Figure 5-16. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,
February 1998, during high flow conditions.



Figure 5-17. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,

March 1998, during high flow conditions.
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Figure 5-18. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,

April 1998, during high flow conditions.
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Figure 5-19. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,
September 2000, during low flow conditions. Proposed and Modified Alternative 3
scenarios include conditions which will not be implemented (the 400 cfs one day/week
discharge to the Barge Canal), so that the location of the isohaline resulting from the
ohserved flows should be considered.

Figure 5-20. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,
October 2000, during low flow conditions. Proposed and Modified Alternative 3
scenarios include conditions which will not be implemented (the 400 cfs one day/week
discharge to the Barge Canal), so that the location of the isohaline resulting from the
observed flows should be considered.
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Figure 5-21. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,
November 2000, during low flow conditions. Proposed and Modified Alternative 3
scenarios include conditions which will not be implemented (the 400 cfs one day/week

discharge 1o the Barge Canal), so that the location of the isohaline resulting from the
ohserved flows should be considered.

¢ oS
Figure 5-22. Median monthly locations of surface 0.5 ppt isohalines for flow scenarios,
December 2000, during low flow conditions, Proposed and Modified Alternative 3
scenarios include conditions which will not be implemented (the 400 cfs one day/week
discharge 1o the Barge Canall, so that the location of the isohaline resulting from the
observed flows should be considered.
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Comparison of the locations of specific isohalines within the river demonstrates the effects
of the potential flow modifications to the Lower Withlacoochee River. The monthly median
locations of specific surface isohalines, 0.5, 2, 3, and 5 ppt, within each year are shown in
Appendix B. The locations of the isohalines for the 3500 cfs alternative are different from
those of the 2500 cfs alternative only during 1998, as the flows are the same for the two
alternatives for the remainder of the model period. The river kilometer system utilized is
that shown in Figure 5-1.

A comparison of the 0.5 and 5 ppt surface and bottom isohaline locations are provided in
Figures 5-23 and 5-24, respectively. As shown by the time series of isohaline locations,
during times when flows are high enough so that more water may be directed down the
lower river in the 2500 cfs alternative, as in early 1998, the isohalines are displaced further
downriver than in the baseline condition. However, at other times, such as in 2000 and
2001 when observed flows were extremely low, the 2500 cfs scenario can actually result in
isohaline locations upstream of those in the baseline condition. As seen when examining
Figures 5-12 and 5-13, this is the result of supplying the once per week one-day 400 cfs
flow to the Barge Canal as provided for in the alternative scenario.

As seen in Figures 5-11 through 5-14, for scenario flows during 1999-2002, proposed and
modified alternative scenario flows to the lower river were often less than those observed.
This was especially true during 2000-2001 and the first half of 2002. For this period, the
analysis results from the observed condition should be considered, as the 400 cfs one day
per week discharge to the Barge Canal, as reflected in the proposed and modified
alternative scenarios, would not actually be implemented.

An additional analysis examined the effects of the flow modifications over all the channels
included in the model domain. For this analysis, the Barge Canal was excluded, so that
only the river and the other channels, from the Gulf shore inland, are included (Figure 5-
25). The volumes of specific salinity regimes within the system were calculated for the
alternative scenarios, and compared to the salinity regime volumes in the baseline scenario.
The monthly comparison of volumes for each year for the 0-0.5 ppt and 0.5-5 ppt volumes
are provided in Appendix C. Here, the relative volumes for the 2500 and 3500 cfs
alternatives are shown separately for 1998, but for the remaining years, when the flows and
thus the volumes are the same, only the 2500 cfs alternative volumes are shown.

The review of the scenario comparisons indicates that alternative scenarios would result in
changes in the amount of freshwater in the Lower Withlacoochee River. However, these
changes do not always represent an increase in freshwater volume, as the weekly one-day
400 cfs discharge to the Barge Canal can result in less total freshwater in the lower river
than found in the baseline. The modifications to isohaline locations and salinity regime
volumes are dependent on the total amount of water available in the combined discharge to
the Lower River and the Barge Canal, and the Barge Canal discharge schedule. The ability
to increase the volume and extent of low salinity regimes in the river is enhanced during
wet periods, but decreases during dry periods, with very low flow periods resulting in
decreases in low-salinity volumes for the 2500 and 3500 alternatives as compared to the
existing baseline flow scenario, most notably as in 2000 and 2001.
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Figure 5-25. Region of model domain for which comparative volume analysis was
completed.

5.4. Salinity and Benthos in the Lower Withlacoochee River

This section provides a description of the benthic community in the Lower Withlacoochee
River, details the salinity requirements for the community, and discusses the benefits and
drawbacks of flow modifications with respect to these requirements.

lhe number of benthic samples collected in the Lower Withlacoochee River by calendar
month s summarized in Table 5-2. These samples were collected by FDEP (1975-1981, 48
samples) and Mote Marine Laboratory (1984-1985, 24 samples).

Table 5-2. Numbers of benthic samples collected by month. =0

lan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total

Withlacoochee | 7 | 10 | © 7 ) 5 7] 8 - W B S N

Analysis of benthic sampling data reveals three salinity classes (<7 ppt, 7 - 18 ppt, and 18 -
29 ppt) in the Lower Withlacoochee River (Table 5-3). Because salinities in the lower river
are typically in the range of the classically defined aligohaline habitat (0 - 5 ppt), the species
in the <7 ppt class (Table 5-3) will be discussed further. The breakdown of the data into
the three salinity classes results in an extension of the oligohaline class (defined in the
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Venice system as 0.5-5 ppt) over the salinity range 0-7 ppt. This class contains those
benthos found in the 0.5-5 ppt range, with preferred ranges included in the 0-7 ppt range.

Janicki Environmental (2007) developed optimum salinity plots for benthic species in the
Coastal Springs zone which includes the Lower Withlacoochee River. Salinity optima for
the most abundant species in the <7 ppt salinity class are presented in Figures 5-26 to 5-
31. The two most abundant species in the <7 ppt salinity class (Table 5-3) have
“optimum” salinities in the mesohaline salinity class (7-18 ppt). Therefore, an upstream
migration of the 5 ppt isohaline would not have a negative impact on the abundance of
these species. Polymesoda caroliniana (marsh clam) prefers very low salinity water, but can
be found in salinities as high as 20 ppt. Corbicula fluminea (Asiatic clam), an invasive
species, can occur at salinities greater than 10 ppt, but prefers fresh to very low salinity
water. A downstream migration of the 0.5 ppt isohaline would increase the amount of
available habitat for Corbicula.

Based on these data, most of the benthic species found in the 0-7 ppt salinity regime show
central salinity preferences greater than 5 ppt. The only non-invasive species with a central
salinity preference less than 5 ppt in the Coastal Springs region is Polymesoda. This is the
one non-invasive species that would likely benefit from a downstream movement of the
low-salinity isohalines, and more habitat available in the oligohaline and mesohaline zones.
It should be noted, however, that the invasive species Corbicula would also likely benefit
from this downstream movement. As seen when comparing Figures 5-28 and 5-29, the
invasive Corbicula preference range is for oligohaline waters (<5 ppt), whereas the more
estuarine ‘Polymesoda has a much wider preference range, over the oligohaline and
mesohaline zones. This indicates that if more oligohaline (<5 ppt) habitat were provided
in the lower river, the invasive Corbicula would likely benefit more than the more estuarine
Polymesoda from the extension of oligohaline habitat.
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ental
Oligohaline Salinity Class (<7 ppt)

Laeonereis culveri (clam worm)

Cyathura polita (isopod)

Corbicula fluminea (Asiatic clam)

Polymesoda caroliniana (marsh clam)

Amphicteis gunneri (polychaete)

Grandidierella bonnieroides (amphipod crustacean)
Mesohaline Salinity Class (>7 <18 ppt)

Grandidierella bonnieroides (amphipod crustacean)
Laeonereis culveri (clam worm)

Amphicteis gunneri (polychaete)

Cyathura polita (isopod)

Halmyrapseudes bahamensis (tanaidacean crustacean)
Cerapus benthophilus (amphipod crustacean)
Streblospio gynobranchiata (spionid polychaete)
Edotea montosa (isopod)

Hargeria rapax (tanaidacean crustacean)

Polyhaline Salinity Class (> 18 <29 ppt)
Halmyrapseudes bahamensis (tanaidacean crustacean)
Cyathura polita (isopod)

Xenanthura brevitelson (isopod)

Grandidierella bonnieroides (amphipod crustacean)
Laeonereis culveri (clam worm)

Tagelus plebeius (stout razor clam)

Heteromastus filiformis (capitellid polychaete)
Cerapus benthophilus (amphipod crustacean)
Parandalia Americana (polychaete)

Streblospio gynobranchiata (spionid polychaete)
Mediomastus ambiseta (capitellid polychaete)
Ampelisca holmesi (amphipod crustacean)

() = logistic regression significant for “all rivers” but not for Springs Coast Rivers alone

NS =logistic regression not significant

%
Composition

18.7
13.1
7.3
5.0
5.0
4.5

7.1
7.1

7.1
7.1
7.1
4.3
3.8
3.8
3.8

8.2
7.0
5.9
5.1
4.7
3.8
34
3.4
3.2
3.0
2.4
2.4

Optimum  Salinity Class
Springs Coast Rivers (Logistic
Regression Analysis)
Mesohaline

Mesohaline
(Oligohaline)
Oligohaline
Mesohaline
Mesohaline

Mesohaline
Mesohaline

Mesohaline
Mesohaline
Mesohaline
Mesohaline
Mesohaline
Mesohaline
(Euhaline)

Mesohaline
Mesohaline
(Polyhaline)
Mesohaline
Mesohaline
Mesohaline
NS
Mesohaline
NS
Mesohaline
Euhaline
Euhaline
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Salinity Tolerance Compared Between River Groups
by Taxon andSeason in the Order of Taxonomic Dominance

Dominance Rank=56 Taxon=Laeorersis culveri Season=All

Cozstal Springs | I ——————— ]
TampaBay | (—— |
Charlotte Harbor | e —— |

rrrrrJprryvrrr1rrrjrreorprrr T T U T T T

0 5 10 15 20 29 30 35 40

Salinity (ppt)
Figure 5-26. Optimum (circle), preference range (thick solid bar), and 10th to 90th
percentile (thin solid bar) of salinity for Laeonereis culveri (Polychaeta), by river group
and season, based upon logistic regression analysis. Open bar represents range of
observed salinities. The absence of symbols indicates that the relationship was not
statistically significant. (Source: Janicki Environmental, 2007).

Salinity Tolerance Compared Between River Groups
by Taxon andSeason in the Orcer of Taxonomic Dominance

Dominance Rank=47 Taxon=Cyathura polita Season=Wet

AlRives | Co—— ———

Coazstal Springs { | e —— |
TampaBay | | - |
Charlotte Harbor
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0 5 10 15 20 25 30 35 40
Salinity (ppt)

Figure 5-27. Optimum (circle), preference range (thick solid bar), and 10th to 90th
percentile (thin solid bar) of salinity for Cyathura polita (Isopoda), by river group and
season, based upon logistic regression analysis. Open bar represents range of observed
salinities. The absence of symbols indicates that the relationship was not statistically
significant. (Source: Janicki Environmental, 2007).
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Salinity Tolerance Compared Between River Groups
by Taxon andSaason in the Order of Taxonomic Dominance

Dominaroe Rank=10 Taxon=Corbicua flumirea Saason=All

AllRivers | @e—— ]

Coestal Springs

Tampa Bay | @f= |

Ghariotte Harbor { (@immms———— |
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0 5 10 15 20 25 30 35 40

Salinity (pat)
Figure 5-28. Optimum (circle), preference range (thick solid bar), and 10th to 90th

percentile (thin solid bar) of salinity for Corbicula fluminea (Bivalvia) (Asiatic clam), an
invasive species, by river group and season, based upon logistic regression analysis. Open
bar represents range of observed salinities. The absence of symbols indicates that the
relationship was not statistically significant. (Source: Janicki Environmental, 2007).

Salinity Tolerance Compared Between River Groups
by Taxon and Season in the Order of Taxonomic Dominance

Dominaroe Rank=15 Taxon=Polymesoda camliniana Season=All

AlRiver | ——eee——————

Cozstal Springs | (e—— ]

Tampa Bay | @@ !
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Figure 5-29. Optimum (circle), preference range (thick solid bar), and 10th to 90th
percentile (thin solid bar) of salinity for Polymesoda caroliniana (Bivalvia) (marsh clam),
by river group and season, based upon logistic regression analysis. Open bar represents
range of observed salinities. The absence of symbols indicates that the relationship was
not statistically significant. (Source: Janicki Environmental, 2007).
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Salinity Tolerance Compared Between River Groups
by Taxon andSeason in the Order of Taxonomic Dominance

Dominance Hank=3% Taxon=Amphicteis gunneri Season=All

AlRivers | | P

Cozstal Springs | o ———————— |
Tampa Bay | —+—— |
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Salinity (ppt)
Figure 5-30. Optimum (circle), preference range (thick solid bar), and 10th to 90th
percentile (thin solid bar) of salinity for Amphicteis gunneri (Polychaeta), by river group
and season, based upon logistic regression analysis. Open bar represents range of
observed salinities. The absence of symbols indicates that the relationship was not
statistically significant. (Source: Janicki Environmental, 2007).

Salinity Tolerance Compared Between River Groups
by Taxon and Seascn in the Order of Texonomic Dominance

Dominance Rank=1 Taxon=Grandidierella bonniemicee Season=All
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Figure 5-31. Optimum (circle), preference range (thick solid bar), and 10th to 90th

percentile (thin solid bar) of salinity for Grandidierella bonnieroides (Amphipoda), by
river group and season, based upon logistic regression analysis. Open bar represents
range of observed salinities. The absence of symbols indicates that the relationship was
not statistically significant. (Source: Janicki Environmental, 2007).
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5.5. Salinity and Bald Cypress in the Lower Withlacoochee River

This section provides a discussion of the results of the bald cypress study with respect to
isohaline locations. Included is a discussion of the impacts of model error on prediction of
isohaline locations.

Stahle and Griffin (2006) sampled ten dead cypress trees found along the Lower River. Of
these ten dead trees, six died during the 1998-2002 period. Three of these trees died
during 1998-1999, while the remaining three died during 2000-2001.

Following is an examination of river flows and resultant isohaline locations and durations
during the years of the trees’ deaths. The locations of the dead trees, as provided in Stahle
and Griffin (2006), are shown in Figure 5-32. For reference to the river kilometer system,
the tree locations are also provided in Figure 5-33. Note that all the dead bald cypress trees
are between RKm 2 and 4.

As noted previously, studies have indicated that bald cypress cannot withstand
persistent salinities of 2-3 ppt. It has been noted, however, that little information
exists on the long-term effects of elevated salinity in mature coastal forests (Conner
and Inabinette, 2003), so that the definition of “persistent” is inexact. It is likely that
during a “normal” year under natural conditions, the cypress trees along the river
were subjected to higher salinities during the dry season and fresh water during the
wet season. When the wet season does not provide relief from the higher salinities,
however, as during a prolonged (multi-year) drought, the cypress trees are provided
no period of relief from the higher salinity environment. Such a period occurred
during 2000-2001.

The monthly median locations of the surface and bottom isohalines for both 2 and 3
ppt are provided in Figures 5-34 and 5-35, respectively, for 1998-2002. Note that
surface salinity isohalines for both 2 and 3 ppt are typically downstream of RKm 4,
and seldom upstream of RKm 3 (Figure 5-34). The locations of the bottom
isohalines, however, are upstream of RKm 4 for a long period. The median monthly
location of the 2 ppt bottom isohaline for the observed baseline condition was
upstream of RKm 4 from December 1999 through September 2001, or for 22
straight months. Similarly, the location of the 3 ppt bottom isohaline was upstream
of RKm 4 for March 2000 through September 2001, or for 19 straight months.
Elevated salinity levels during 2000-2001 may well have been a contributing factor
to the three bald cypress deaths during this period.

During 1998, two tree deaths occurred at about RKm 3.0. During all of 1998, the median
monthly locations of the 2 and 3 ppt bottom isohaline were downstream of here. However,
the median monthly locations of the 2 ppt bottom isohaline was upstream of RKm 4 during
October 1996-September 1997, so that the trees may have been impacted by this long
period (12 months) of relatively high salinity. The isohaline locations for 1996-1997 were
estimated utilizing the relationships between flow and isohaline location described below
in Section 5.7.
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During 1999, one tree death occurred at about RKm 2.5. During 1999, the median
monthly locations of the 2 and 3 ppt bottom isohalines were upstream of here during April-
December, but averaged only 0.7 km upstream of RKm 2.5. It is possible that elevated
salinity over this nine month period contributed to this death, but the flows during this
period were not exceptionally low, and the resultant relevant isohaline locations were not
exceptionally far upstream,

From this analysis, it appears that exposure to salinities in excess of 2 or 3 ppt for prolonged
periods of one year or more may play a role in the deaths of the bald cypress along the
lower river. During 2000-2001, when three of the 10 sampled bald cypress deaths
occurred, exposures to elevated salinities, in excess of 3 ppt, were for 19 months or more.

The predictions of the isohaline locations should be viewed with an appreciation for the
errors associated with these predictions. All predictive methods inherently contain errors.
For simulation modeling, this error is quantified through use of various statistical measures
of error (mean error, root mean squared error, absolute mean error). Acceptable values for
these statistical measures instill confidence in the robustness of the model in recreating
observed conditions.

The statistical measures of error for the GCSM and LWRM are within acceptable values (see
Appendix A). This gives confidence that comparison of results from the various flow
scenarios provides a meaningful estimate of the changes to be expected from
implementation of a flow alternative. Some error in the prediction of isohaline locations
exists, and may be estimated by examining the locations of isohalines within 1 ppt of each
other, such as the 2 and 3 ppt isohalines. As the mean errors for the two models are less
than 0.5 ppt, this should provide a sufficient bound for possible isohaline locations.

The differences between the predicted 2 and 3 ppt isohaline locations for the baseline
existing conditions, as seen in Figures 5-34 and 5-35, averages 0.4 km for the surface
isohalines and 0.3 km for the bottom isohalines. The greatest mean annual differences
between the locations for the bottom 2 and 3 ppt isohalines are 0.6 km, during 2000 and
2001. This implies that for a conservative estimate of salinity prediction error of 1 ppt, the
bottom isohaline location would be off by as much as 0.6 km. This represents an upper
bound to the potential error in the predictions of the locations of the bottom isohalines, as
the mean error in the salinity predictions is less than 0.5 ppt.
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Figure 5-32. Locations, specimen identification numbers, and death dates of bald cypress
trees along the Lower Withlacoochee River, from Stahle and Grifiin, 2006,
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Figure 5-33. Locations of sampled bald cypress trees along the lower river in relation to
the river kilometer system.
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Figure 5-35. Monthly median locations of bottom 2 and 3 ppt isohalines, baseline, 2500
cis alternative, and 3500 cis alternative,
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5.6. Sea Level Rise

Increasing sea level in the western Gulf of Mexico is an important consideration when
evaluating any potential flow modification scenario for increasing low-salinity habitat in the
river. Costs associated with flow modification must be weighed against the likelihood that
sea level rise will obviate any gains in low-salinity habitat in the long term.

Sea level records exist for Cedar Key, just north of the Withlacoochee River, since 1914.
Based on the monthly mean sea level, NOAA estimates sea level rise here to be 1.87
mm/year, or 0.61 ft/century if the trend remains the same (http://tidesandcurrents.noaa.gov).
An increase in tidal level of this magnitude will result in increased upstream migration of
isohaline locations due solely to higher water surface elevations at the mouth of the river.
Estimation of the magnitude of this migration, and the effects of various flow regimes, may
be obtained via modification of the existing models for the Gulf coast and lower river,
utilizing estimated sea level increases as boundary conditions for predictive runs to estimate
potential effects on isohaline locations. This modeling effort may be performed in the
future if the District so desires.

5.7. Isohaline Locations in Response to River Flow

To aid in estimating the flows necessary to maintain specific isohaline locations in the river,
relationships between daily flow and isohaline locations as predicted by the baseline model
run were developed for the 0.5, 2, 3, and 5 ppt surface and bottom isohalines. A plot of
daily surface 0.5 isohaline locations as a function of flow is provided in Figure 5-36, and
Figure 5-37 shows a similar plot for the surface 5 ppt isohaline locations.

Linear relationships were developed for each isohaline by log-transforming the flow term.
The equations relating isohaline locations to same-day flow are provided below.

Surface 0.5 ppt Location (R Km)=28.95311-3.79580*In[flow(cfs)], with an r* of 0.73
Bottom 0.5 ppt Location (R Km)=43.33141-5.72812*In[flow(cfs)], with an r* of 0.79

Surface 2 ppt Location (R Km)=17.79367-2.34108*In[flow(cfs)], with an r? of 0.81
Bottom 2 ppt Location (R Km)=39.97063-5.28288*In[flow(cfs)], with an r* of 0.75

Surface 3 ppt Location (R Km)=16.70229-2.24335*In[flow(cfs)], with an r* of 0.84
Bottom 3 ppt Location (R Km)=237.27137-4.91364*n[flow(cfs)], with an r* of 0.72

Surface 5 ppt Location (R Km)=14.21276-1.95444*In[flow(cfs)], with an r? of 0.86
Bottom 5 ppt Location (R Km)=231.41245-4.10688*In[flow(cfs)], with an r? of 0.66
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Figure 5-36. Location of surface 0.5 ppt isohaline as a function of same-day flow.
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Figure 5-37. Location of surface 5 ppt isohaline as a function of same-day flow.
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6. CONCLUSIONS

Hydrodynamic models were developed to aid in examination of the potential impacts to
salinity regime in the Lower Withlacoochee River resulting from modifications to the system
due to construction of portions of the Cross Florida Barge Canal. These modifications have
reduced flows to the tidal portion of the river from those that were observed historically.
Concerns have been raised regarding the effects of the decline in flows through the system
on the lower river’s biota, specifically with respect to the deaths of bald cypress trees along
the lower river. A study has been completed for the District (Stahl and Griffin, 2006)
identifying that ten sampled trees died between 1981 and 2004, and that eight of the ten
died between 1997 and 2001.

The model was used to hindcast salinity within the river for the 1998-2002 period, when six
of the trees died. The output from this model was then used to develop relationships
between river inflows and salinity within the river for application to the other years during
which cypress trees died. This allowed a determination of whether increases in salinity
were implicated in the deaths, and what river flows should be to protect existing cypress
trees.

The monthly and annual locations of the salinity levels important for bald cypress
were estimated for 1970-2004. Bald cypress cannot withstand persistent salinities of
2-3 ppt, so the locations of the 2 ppt bottom isohaline were estimated. These
locations, and their durations, were compared to the locations of the dead cypress
trees. All the dead trees were between 2 and 4 km upstream from the mouth of the
river. Except for the trees that died in 1999 and 2004, the remaining dead trees had
been exposed to median monthly salinities greater than 2 ppt for relatively long
periods of time, in excess of 12 months for most of the trees. Elevated salinity levels
may have been a contributing factor to eight of the ten bald cypress deaths during
this period.

To address this problem, the SWFWMD developed alternative flow scenarios for the
river focused on increasing the amount of freshwater entering the river when
additional water is available in the system. The alternative flow scenarios as
designed would provide increased flows to the lower river, but primarily during the
wet season, when appropriate salinity regimes typically already exist in the lower
river, and increased flows provide minimal benefits. During dry periods, flows to
the river resulting from these alternative scenarios could only increase if water were
available in the system. For those periods when extended low flows occurred, most
notably in 2000-2001 when three of the trees died, there was little additional water
in the system to increase the flows in the river.

To aid in the evaluation of the alternative flow scenarios, water quality data and
benthic data were also examined. Based on these analyses, modifications to
freshwater inflows would not result in improvement in water quality or benthic
habitat availability in the lower river.
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The alternative flow scenarios evaluated in this report did not provide any increased
freshwater to the system in the periods when freshwater inflows would be most beneficial,
i.e. the observed low flow periods. Any additional alternative flow scenarios should be
evaluated with respect to their ability to extend the period of relatively high flows to the
river into the typical dry season. The relationships developed between freshwater inflow
and important isohaline locations for bald cypress habitat were used to estimate necessary
flows. To keep the 2 ppt bottom isohaline downstream of the bald cypress trees, at 2 km
from the mouth of the river, average flows of 1300 cfs are necessary, and 1100 cfs to keep
the isohaline at 3 km from the mouth. Most of the bald cypress deaths occurred during or
immediately following periods when typical dry season conditions extended for long
periods, with low flows resulting in movement of the 2 ppt bottom isohaline upstream of 4
km from the mouth for 12 consecutive months or more. The alternative flow scenarios
evaluated here do not provide for any improvement in this situation, primarily because the
prolonged upstream movement of the 2 ppt bottom isohaline coincides with times when
there is not enough water available in the system to prevent this movement, such as 2000-
2001.

Based on this evaluation, modification of the operations of the CFBC structures would not
provide any benefit to the system, as the cypress deaths occurred during and following
periods when sufficient water was not available to prevent >2 ppt water from moving
upstream.
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Appendix A
Comparisons of Observed Conditions
Simulation Results to Observed Data:

GCSM 1998-2002
LWRM 1983-1986
LWRM 1998-2002



A.1. Gulf Coast Shelf Model, 1998-2002

The GCSM observed conditions run for 1998-2002 provides model output for comparison
to salinity and temperature measured at the COAST sites shown in Figure A-1. Comparison
to these observed data provides verification of the GCSM, which was calibrated using
March-September 2002 data (Janicki Environmental, 2006).

Location maps of the COAST sites combined with the GCSM grid cell locations are
provided in Appendix A.1.

A.1.1. Elevation

Predicted water surface elevations are compared to observed water surface elevations at
Clearwater Beach and Cedar Key (Figure A-2). Observed data were obtained from the
Center for Operational Oceanographic Products and Services (CO-OPS) maintained by
NOAA'’s National Ocean Service, at hourly frequency.

Time series plots of predicted and observed elevations, at hourly frequency, over 1998-
2002 are provided in Figures A-3 and A4 for Clearwater Beach and Cedar Key,
respectively. Statistical summaries of the relationships between predicted and observed
data are provided in Table A-1. These statistics, and the time series plots, indicate that the
model predicts the observed tidal range well, with a mean error (ME) of -4 cm at Cedar Key,
and -2 cm at Clearwater Beach. The lower r value at Cedar Key is indicative of a slight
offset in the tidal signal in time, but the tidal range is simulated appropriately.

f comparison of hout
tion, GCSM. =
Statistic Clearwater Beach Cedar Key
r? 0.81 0.76
RMSE (m) 0.12 0.19
ME (m) -0.02 0.04
AME (m) 0.09 0.15

A.1.2. Salinity and Temperature

Observed salinity and temperature values from the COAST sites from Anclote to the
Withlacoochee (Figure A-1) were compared to predicted salinity and temperature over the
entire 1998-2002 period. For this comparison, the instantaneous measurements of surface
salinity and temperature at the COAST sites were plotted as time series along with the
hourly model output for the surface.

The model output is representative of the entire grid cell, which covers an area of
approximately 24 km?. It is possible that several COAST sites fall within a given cell. To
get a better understanding of the comparison of predicted values over a large area to
observed values representative of specific points, the predicted salinity and temperature for
a given cell are compared to the data from one or more COAST sites.
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The COAST sites selected for comparison to a given cell are either within the cell or nearby
(see Appendix A.1 for locations of COAST sites and grid cells). A single COAST site may be
used for comparison to more than one grid cell. Table A-2 provides a listing of the COAST
sites compared with each model grid cell. The time series plots are provided in Appendix
A.2 (salinity) and Appendix A.3 (temperature). Each time series graphic is for a specific grid
cell, identified by the (i,j) coordinates in the figure title.

grid cells for plots in Appendices B and

COAST Sites Grid Cell (i) COAST Sites

AN-4.5,6,7 41,13) WE-10

AN-1,23,4 (44,14) CH-5,6,7,8,9
(27,11) AN-3,8 (45,14) CH-7,10
(28,10) AN-2,9,10 (45,15) CH-10, HO-9
(29,10) AN-10, PI-8,10 (46,15) HO-7,8,9
(30,10) PI-4,6 (46,16) HO-2,6,7
(30,11) PI-5,6 (47,16) HO-2,3
(31,10) PI-6,7 47,17) HO-1,2
(31,11) PI-6, HU-8,10 (48,17) HO-1, CR-8
32,11) HU-6,8,9,10 (49,17) CR8,9
(33,11) HU-4,6 (50,17) CR-6,9
(33,12) HU-1,3 (50,18) CR5,6
(34,11) HU-2, AR-6 (50,20) WI-10
(34,12) AR-6 (51,17) CR-6,7
(35,11) AR4,7 (51,18) CR-2,6
(35,12) AR4,10 (51,20) WI-8,9
(36,11) AR-1,2,5 (51,21) Wi4,7,8
(36,12) AR-2,9 (52,20) WI-5,9
37,12) AR1,8 (52,21) WI-1,4,5
(39,12) WE-7,8,9 (53,20) WI6
(40,12) WE-6,7,9 (53,21) WI-1
(41,12) WE-5,6

Table A-3 provides a salinity calibration summary for those cells near the mouth of the
Withlacoochee River, and over all cells shown in Appendix A.2. The COAST data were
typically collected between 10 AM and 3 PM. The mean predicted salinity for the period
10 AM - 3 PM of each day for a given grid cell was compared to the COAST salinity data
collected on that day. Over all cells listed in Table A-2 above, the model does well, with a
mean error (ME) of -3.2 ppt, an absolute mean error (AME) of 4.0 ppt, and a relative error
These differences would be smaller if the first half of 1998 were excluded
from the model, as the El Nifio event during the typically dry season resulted in relatively
low salinities within much of the comparison cells, while the model did not predict
salinities as low as those observed.

(RE) of 16%.

For those cells near the mouth of the Withlacoochee River (Table A-3), the model
predictions were very good, as denoted by the small relative errors of 13% or less, and the

mean error difference of 2.0 ppt or less.
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Grid Cell (1)) RMSE (ppt) ME (ppt) AME (ppt)

(51,21) 3.8 0.6 2.4

(51,20) 4.9 -2.0 3.0

(52,21) 3.2 0.1 2.2 9
(53,21) 3.1 1.3 2.1 9
All Cells 5.6 -3.2 4.0 16

A similar analysis was completed for temperature, as this model may well be utilized in the
future for examination of potential temperature responses to changes in flow. Table A-4
provides the temperature calibration summary for those cells near the mouth of the
Withlacoochee River, and over all cells shown in Appendix A.3. As for salinity, the mean
predicted temperature for the period 10 AM - 3 PM of each day for a given grid cell was
compared to the COAST temperature data collected on that day. Over all cells listed in
Table A-2 above, the model does well, with a mean error (ME) of -1.0 °C, an absolute mean

error (AME) of 1.7 °C, and a relative error (RE) of 7%.

Grid Cell (1,)) RMSE (°C) ME (°C) AME (°Q) RE (%)
(51,21) 2.0 0.9 1.4 6
(51,20) 1.9 0.2 1.3 6
(52,21) 2.3 -1.3 1.6 7
(53,21) 2.5 -1.6 1.8 8
All Cells 2.3 -1.0 1.7 7
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GCSM Predicted and Observed Water Surface Elevations
Data Source: CO-OPS

Wiater Level Clearwater Beach
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Figure A-1. Time series of predicted and observed tidal record at Clearwater Beach.



GCSM Predicted and Obsearved Water Surface Elevations
Data Source; CO-0PS
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Figure A-4. Time series of predicted and observed tidal record at Cedar Key.
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A.2. Lower Withlacoochee River Model, 1983-1986

The LWRM was implemented for the period Septernber 1, 1983 through March 31, 1986,
The locations of the COAST salinity and temperature sites in relation o the LWRM grid
system are shown in Figue A-5. The GOSM was also run for the same period, so that
downstream salinity and temperature boundary conditions and offshore water surface
elevations could be developed. The results of this model implementation are for
comparison 1o observed data collected from January 1984 through February 1986 along the
axis of the river. Time series of the daily flows during this period for the Lower
Withlacoochee River and Inglis Dam (locations shown in Figure 1-7) are provided in Figure
A-D
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Figure A-5. Locations of Withlacoochee COAST sites in relation 1o LWRM grid.
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Figure A-6. Flows in from Bypass Canal to river and Inglis Dam to Barge Canal.

The model output is compared graphically o the data colleced by More Marine Lab,
SWFWMD, and USGS during the 1984-1986 period. For each data collection event, the
tidal stage was noted (high or low), and the model output fior the same day and same tidal
condition was compared 1o the observed data. Graphical presentations of the river axis
salinity profiles, both abserved and predicied, are provided in Appendix A4, For location
reference, Figure A-7 provides the river kilometer system.

A total of 46 horizontal profiles of surface salinity along the axis of the river were taken. Of
these, the mode! results match very well with 15 of the profiles. For the remaining profiles,
the model predicts the locations of the 0.5 and 5.0 ppt surface isohalines further
downatream than observed, Since T6% of the predicied profiles malch with the observed
data, it is unlikely that the underying hydrodynamics of the sysiem are being
misrepresented by the model. Potential causes of the differences include several
candidates. For example, the model is driven by daily constant freshwater inflows over the
full 24 hours of the day, so that any deviation from 3 real-world constant discharge over the
entire day will result in differences between predicied and observed salinity structure,
Sirnilarly, the winds used 1o force the GCSM and the LWRM are not site-specific o the
Lower Withlacooches River, and so variations in wind panems may result in ridal elevation
differences between predicied and observed, and different upstream incursion of saline
water, However, the very good agreement between 76% of the predicted profiles and the



observed profiles is indicative that the model correctly predicts the tidal signal in the river
and nearshore area.

||_ & L .F‘L\ —f
Figure A-7. River kilometer system for the Lower Withlacoochee River,

A3, Lower Withlacoochee River Model, 1998-2002

The LWREM receives freshwater inflow from the Bypass Canal at the upstream extent of the
river domain, and from the Inglis Dam to the Barge Canal. Offshore baundary conditions of
elevation, salinity, and temperature are provided by the GCSM, at the western, northern,
and southem boundaries of the LWRM grid outside the mouth of the river. Calibration of
the LWRM was to the tidal gage near the mouth of Bird Creek, and to the surface salinity
and temperature observations at the COAST sites within the model domain.

A1, Elevation

A time series plot of predicied and observed water surface alevation at the Bird Creek site is
provided in Figure A8 for hourly values for the May-Septamber 2002 period (the Bird
Creek record begins in May 2002). A statistical summary of the comparison between
predicted and observed water level is provided in Table A-5, Here ' is the coefficient of
determination, RMSE is the root mean sguare error, ME is the mean error, and AME s the
absolute mean error.



Statistic Bird Creek
r ' 0.71
RMSE (m) 0.27
ME (m) -0.13
AME (m) 0.21

The comparison shows good agreement between predicted and observed hourly water
surface elevations, with the AME of 21 cm, and the ME of -13 cm indicating slight
overprediction of water surface elevations, at the tidal maxima, compared to observed
values over the time period.

A.3.2 Salinity and Temperature

Observed salinity and temperature values from the COAST sites from the Withlacoochee
that fell within the model domain were compared to predicted salinity and temperature.
For this comparison, the instantaneous measurements of surface salinity and temperature at
the COAST sites were plotted as time series along with the hourly model output for the
surface.

The COAST sampling monitors two sites within the river (Figure A-5), Station 2
approximately 5.6 km (3.5 mi) upstream of the mouth, and Station 3 about midway
between Station 2 and the Bypass Channel. Outside the mouth of the river, four additional
COAST sites fall within the LWRM domain, including Station 6 between the mouths of the
Withlacoochee River and Bird Creek.

As discussed in the calibration report (Janicki Environmental, 2006), it appears that the
COAST salinity data from Station 2 are unreasonable. Thus, the verification comparison is
confined to the remaining stations within the LWRM model domain.

The time series plots of observed and predicted salinity are provided in Appendix A.5 for
COAST stations 3, 5, 6, 8, and 9, and for observed and predicted surface temperature in
Appendix A.6. Table A-6 provides a salinity calibration summary for each COAST site
used, and over all sites. The COAST data were typically collected between 10 AM and 3
PM. The mean predicted salinity for the period 10 AM - 3 PM of each day for a given grid
cell was compared to the COAST salinity data collected on that day.

RMSE (ppt) AME (ppt) RE (%
3 0.3 0.1 45
5 4.6 3.7 15
6 5.6 4.6 33
8 5.2 3.8 16
9 5.6 4.4 20
All Stations 4.7 3.3 20
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LWRM Predicted and Observed Water Surface Elevations

Data Sowrce: SWEFAWMD
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Figure A-8. Time series of predicted and observed tidal record at Bird Creek.



The river model does well in predicting both the magnitude and signal in salinity. The
mean errors of 2.1 ppt or less indicate that the model is predicting magnitude correctly, and
visual inspection of the figures in Appendix A.5 shows that the seasonal patterns are
predicted accurately.

A similar analysis was completed for temperature. Table A-7 provides the temperature
calibration summary for those cells containing COAST sites. As for salinity, the mean
predicted temperature for the period 10 AM - 3 PM of each day for a given grid cell was
compared to the COAST temperature data collected on that day. As seen from the
temperature time series plots (Appendix A.6), the model does well, with a mean error (ME)
over all sites of 1.4 °C, an absolute mean error (AME) of 2.3 °C, and a relative error (RE) of
10%.

3 3.7 2.6
5 2.1 0.4
6 2.0 0.9
8 2.4 1.1

9 4.2 3.7
All Stations 3.0 1.4

A.4. Comparison of Model Statistics

To provide a measure of the ability of the GCSM and LWRM to simulate salinity conditions,
a comparison is provided between the salinity comparison statistics for these two models
and three other hydrodynamic model applications in Florida. Three models for comparison
are the Suwannee River (SW) EFDC model developed by the USGS (Bales et al., 2006), the
Indian River Lagoon (IRL) EFDC model developed for the Lower St. Johns River (Cerco,
2003), and the Tampa Bay (TB) ECOM-3D model (Vincent et al., 2000).

For the Suwannee River, comparison statistics are for four salinity sites near the mouth of
the river. All sites in the Indian River Lagoon model are used, as are all sites in the Tampa
Bay model. For the Withlacoochee River models, the five cells near the mouth of the river
were used for comparison from the GCSM, and the five COAST sites provided (Tables A-6
and A-7) were used for comparison from the LWRM.

Statistic Model
GCSM LWRM IRL SW B
Mean Error (ME) -0.3 0.4 -0.2 1.0 -1.3
Root Mean Squared Error (RMSE) 3.8 4.7 4.0 - -

The GCSM and LWRM calibrations compare very well to those of other models.
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Appendix A.1
Locations of COAST Monitoring Sites and GCSM Grid Cells
COAST Sites are in Color, Grid Cells I-} in Black
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COAST Crystal River monitoring sites.
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Appendix A.2
GCSM: Time Series Predicted and Observed Surface Salinity
at Grid Cells and COAST Sites
1998-2002
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Appendix A.3
GCSM: Time Series Predicted and Observed Surface
Temperature at Grid Cells and COAST Sites
1998-2002
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Appendix A.4
LWRM 1984-1986: River Axis Plots of Predicted and
Observed Surface Salinity
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Appendix A.5
LWRM: Time Series Predicted and Observed Surface
Salinity at COAST Sites
1998-2002
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Appendix A.6
LWRM: Time Series Predicted and Observed Surface
Temperature at COAST Sites
1998-2002
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Appendix B
LWRM Scenarios: Monthly Median Locations of 0.5, 2, 3,
and 5 ppt Surface and Bottom Isohalines, by Year, 1998-2002
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Appendix C
LWRM Scenarios: Comparison of Monthly Median Volumes
of 0-0.5 ppt and 0.5-5 ppt Salinity Regimes in All Channels
Excluding the Barge Canal,
by Year, 1998-2002
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