Scan Action Limits (ALs): Rock Wool Insulation

Radionuclide	Waste Limit ^a (pCi/g)	Scan Action Level ^b (dpm/100 cm ²)
Cs-137	15.0	1,400
Co-60	5.0	480
Sr-90	1.0	95
Eu-152	1.0	95
Eu-154	1.0	95
Ag-108m	0.1	10

^aValue from Table 1 in PG&E Letter HBL-10-003.

^bValue based on mass-weighted density assuming 98% rock wool insulation and 2% asbestos-cement sheet. Value shown has been rounded down to 2 significant digits.

Relative Fractions^a:

Radionuclide-of-Concern	Average (pCi/g)	Relative Fraction
Cs-137	7.96	0.9583
Co-60	0.35	0.0417

^aBased on positive Cs-137 and Co-60 results for samples collected from Units 1 and 2, as reported in Table 4-7 in *Radiological Characterization Report, Humboldt Bay Power Plant* [ref ___].

The gross activity limit for scans was determined through the application of MARSSIM equation 4-4"

Gross activity scan limit = $1/\Sigma(f_1/\text{limit}_1 + f_2/\text{limit}_2 + \dots f_n/\text{limit}_n)$

For the Cs-Co mix associated with the fuel oil system, the gross activity scan limit is:

Gross activity scan limit = $1/\Sigma(0.9583/1,400 + 0.0417/480) = 1,296 \text{ dpm}/100 \text{ cm}^2$

Scan ALs: Ventilation

Radionuclide	Waste Limit ^a	Scan Action Level ^b
	(pCi/g)	(dpm/100 cm ²)
Cs-137	15.0	44,600
Co-60	5.0	14,800
Sr-90	1.0	2,900
Eu-152	1.0	2,900
Eu-154	1.0	2,900
Ag-108m	0.1	290

^aValue from Table 1 in PG&E Letter HBL-10-003.

^bValue based on density for aluminum. Value shown has been rounded down to 2 significant digits.

Relative Fractions^a:

Radionuclide-of-Concern	Average (pCi/g)	Relative Fraction
Cs-137	7.96	0.9583
Co-60	0.35	0.0417

^aBased on positive Cs-137 and Co-60 results for samples collected from Units 1 and 2, as reported in Table 4-7 in *Radiological Characterization Report, Humboldt Bay Power Plant* [ref ___].

The gross activity limit for scans was determined through the application of MARSSIM equation 4-4"

Gross activity scan limit = $1/\Sigma(f_1/\text{limit}_1 + f_2/\text{limit}_2 + \dots f_n/\text{limit}_n)$

For the Cs-Co mix associated with the fuel oil system, the gross activity scan limit is:

Gross activity scan limit = $1/\Sigma(0.9583/44,600 + 0.0417/14,800) = 41,145 \text{ dpm}/100 \text{ cm}^2$

Scan ALs: Steel

Radionuclide	Waste Limit ^a	Scan Action Level ^b
	(pCi/g)	(dpm/100 cm ²)
Cs-137	15.0	130,000
Co-60	5.0	44,000
Sr-90	1.0	8,800
Eu-152	1.0	8,800
Eu-154	1.0	8,800
Ag-108m	0.1	880

^aValue from Table 1 in PG&E Letter HBL-10-003.

^bValue based on density of iron. Value shown has been rounded down to 2 significant digits.

Relative Fractions^a:

Radionuclide-of-Concern	Average (pCi/g)	Relative Fraction
Cs-137	7.96	0.9583
Co-60	0.35	0.0417

^aBased on positive Cs-137 and Co-60 results for samples collected from Units 1 and 2, as reported in Table 4-7 in *Radiological Characterization Report, Humboldt Bay Power Plant* [ref ___].

The gross activity limit for scans was determined through the application of MARSSIM equation 4-4"

Gross activity scan limit = $1/\Sigma(f_1/\text{limit}_1 + f_2/\text{limit}_2 + \dots + f_n/\text{limit}_n)$

For the Cs-Co mix associated with the fuel oil system, the gross activity scan limit is:

Gross activity scan limit = $1/\Sigma(0.9583/130,000 + 0.0417/44,000) = 120,169 \text{ dpm}/100 \text{ cm}^2$

Scan ALs: DAW

Radionuclide	Waste Limit ^a	Scan Action Level ^b
	(pCi/g)	(dpm/100 cm ²)
Cs-137	15.0	14,000
Co-60	5.0	4,900
Sr-90	1.0	990
Eu-152	1.0	990
Eu-154	1.0	990
Ag-108m	0.1	90

^aValue from Table 1 in PG&E Letter HBL-10-003.

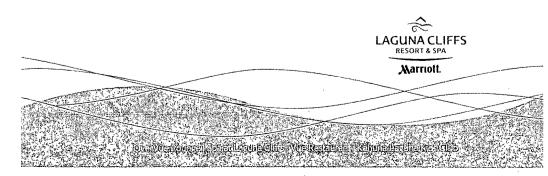
^bValue based on assigned density equal to 55 lbs per cubic foot (PG&E Letter HBL-10-0030. Value shown has been rounded down to 2 significant digits.

Relative Fractions^a:

Radionuclide-of-Concern	Average (pCi/g)	Relative Fraction
Cs-137	7.96	0.9583
Co-60	0.35	0.0417

^aBased on positive Cs-137 and Co-60 results for samples collected from Units 1 and 2, as reported in Table 4-7 in *Radiological Characterization Report, Humboldt Bay Power Plant* [ref ___].

The gross activity limit for scans was determined through the application of MARSSIM equation 4-4"


Gross activity scan limit = $1/\Sigma(f_1/\text{limit}_1 + f_2/\text{limit}_2 + \dots + f_n/\text{limit}_n)$

For the Cs-Co mix associated with the fuel oil system, the gross activity scan limit is: Gross activity scan limit = $1/\Sigma(0.9583/14,000 + 0.0417/4,900) = 12,990$ dpm/100cm²

Where everything comes together

What A Foot Believes Femele Vecel (M People? Parce Beat P Update Zion Notebooks License & TS Pages Bindles Spines (Zion Solutions

Visit lagunacliffs.com for your next Southern California experience.

_

Where everything comes together

50. 55 (a) (4) Maint Rule Fine to be addressed later \$ Does 50.65(a)(+) app 14 decon reactors ? 10 What is Halon ? \$140 K For 6K #5 Why use Helon ? Visit lagunacliffs.com for your next Southern California experience.

AGUNA CLIFFS RESORT & SPA Marriott.