Response to

Request for Additional Information No. 236 (2589), Supplement 1, Revision 0

6/12/2009

U. S. EPR Standard Design Certification AREVA NP Inc. Docket No. 52-020 SRP Section: 19 - Probabilistic Risk Assessment and Severe Accident Evaluation Application Section: 19

QUESTIONS for PRA Licensing, Operations Support and Maintenance Branch 2 (ESBWR/ABWR Projects) (SPLB)

Question 19-313:

A New section on risk metrics (Section 4.1) is included in the "AREVA NP Environmental Report Standard Design Certification," ANP-10290, draft Revision 1, wherein the core damage frequency (CDF) is used as the primary risk metric to characterize the frequency of occurrence of a severe accident. The actual radiological risk, as calculated in the U.S. EPR Level 3 PRA, is used to quantify averted costs for offsite consequences. Also, as indicated through various RAI responses, AREVA has corrected the radionuclide core inventory to higher values. The offsite consequence results used in the SAMDA analysis indicate slight reduction in total offsite population dose, which contradicts the expected higher value, even if the release fractions were to remain unchanged. Accordingly:

- 1. Please provide the fraction of the total CDF that is captured among the release categories considered in the Level 3 PRA, as well as the values of the release category frequencies.
- 2. Please provide the corrected radionuclide core inventory and released fractions used in the level 3 PRA analysis.
- 3. For the SAMDA candidate development, the top 100 Level 1 cutsets were chosen, equating to approximately 50% of the total CDF. This may not be conservative, however, because this cutset list may not correspond to the top 100 cutsets contributing to the large release frequency (LRF). Please provide the list of the top 100 LRF cutsets, and indicate the fraction of the LRF these comprise. In addition, please list and describe any additional candidates identified from using the top 100 LRF cutsets instead of the top 100 CDF cutsets, and which of these additional candidates are categorized as "consider for further evaluation." If any do fall into that category, please explain how the Maximum Benefit Evaluation would be affected.
- 4. In response to RAI 19-238, the applicant indicated that the screening process for the "Vent MSSV's in containment" will be changed from "Not Applicable" to "Excessive Implementation Cost," in the revised report. But, this change was not included in this revision. This change would also affect the "Result and Summary" section. Please make this change in the next revision of the report.

Response to Question 19-313:

Response to Question 19-313, Part 1:

The total CDF is captured among the release categories considered in the Level 3 probabilistic risk assessment (PRA). The total CDF is 5.3E-07/year, which is the sum of the release category frequencies. Table 19-313-1 provides the release category frequency vector used in the Level 3 PRA.

Response to Question 19-313, Part 2:

Radionuclide Core Inventory used in Level 3 PRA

The core inventory used in the modular accident analysis program (MAAP) model was updated to include the entire core inventory. The original U.S. EPR MAAP model used the masses of only the radioactive portion of the core inventory. To correct the core inventory used in the U.S. EPR MAAP model, an additional ORIGEN-2 model was developed and executed. This

Response to Request for Additional Information No. 236, Supplement 1 U.S. EPR Design Certification Application

ORIGEN-2 run provided the core inventory of fission products and actinides on an elemental mass basis. The elemental masses (which include both radioactive and non-radioactive isotopes) were used as input to the updated U.S. EPR MAAP model. The ORIGEN-2 run also provided the activity inventory (in curies). The activity inventory from the ORIGEN-2 run was compared to the previous ORIGEN-2 run activity inventory and the activity inventories were found to be identical.

The Level 3 PRA used the revised results of the updated U.S. EPR MAAP model runs to determine the mass fraction released to the environment for each radioisotope group, the core uncovery time, and release duration. However, the input of the core inventory to MACCS2 was unchanged because the radioisotope core inventory (in curies) did not change as a result of modifying the MAAP model core inventory. Table 19-313-2 provides the core inventory used in MACCS2.

Table 19-313-2 shows that the MAAP model uses the total elemental mass, while MACCS2 uses the core inventory for each radioisotope.

Release Fractions

Table 19-313-3 provides the release fractions from each release category used in the Level 3 PRA.

Response to Question 19-313, Part 3:

In addition to the top 100 CDF cutsets, the top 100 large release frequency (LRF) cutsets are evaluated to identify plant-specific modifications that could reduce the likelihood of the dominant containment challenges. The top 100 LRF cutsets are provided in Appendix A of this response.

The model used for this evaluation was developed in the Response to RAI 22, Supplement 3, Question 19-160. This model is the U.S. EPR FSAR Level 2 PRA model with the following LRF sequence removed: main steam line break (MSLB) inside of containment leading to an overcooling event, resulting in overpressure failure of the containment. This sequence did not lead to core damage in the Response to RAI 22, Supplement 3, Question 19-160. Removing this sequence addresses the staff's concern that the overly conservative treatment of that event would artificially reduce the relative importance of other failure modes.

The total U.S. EPR LRF, once the MSLB contribution has been removed, is approximately 1.4E-08/year. The top 100 LRF cutsets shown in Appendix A include all cutsets contributing greater than one percent to that total. The top 100 LRF cutsets equate to approximately 7E-09/year, or 50 percent of the total LRF. The individual contribution of the total LRF for the 101st cutset is 0.10 percent.

Examination of the top 100 LRF cutsets yielded no additional severe accident mitigation design alternatives (SAMDA) candidates beyond those initially identified in ANP-10290, Revision 1, "AREVA NP Environmental Report Standard Design Certification," Table 3-1. This is due to the comprehensive nature of the original SAMDA analysis, as it identified enhancements related to containment phenomena and containment bypass.

When the contribution from the containment failure due to an MSLB inside containment is removed, the Level 2 results for internal events, fire, and flooding are consistent.

Four containment failure mechanisms are found in the top 100 LRF cutsets:

- Early containment failure due to hydrogen flame acceleration.
- Steam generator tube rupture (SGTR) (pressure-induced or creep-induced).
- Interfacing system loss of coolant accidents (LOCAs).
- Containment isolation failures.

These phenomena are compared to the list of existing SAMDA candidates to evaluate if additional SAMDAs need to be considered.

Hydrogen Flame Acceleration

Containment failure due to hydrogen flame acceleration appears in more than 50 of the top 100 LRF cutsets. It is a dominant contributor to LRF, contributing approximately 40 percent to internal event LRF (see the Response to RAI 22, Supplement 3, Table 19-160-6), and approximately 80 percent to flood and fire LRF (see U.S. EPR FSAR Tier 2, Table 19.1-54 and Table 19.1-79).

The following SAMDA candidates from ANP-10290, Revision 1, Table 3-1 apply to containment failures due to hydrogen phenomena:

- Provide post-accident containment inerting capability (CP-07).
- Install an independent power supply to the hydrogen control system using either new batteries, a non-safety grade portable generator, existing station batteries, or existing AC/DC independent power supplies, such as the security system diesel (CP-19).
- Install a passive hydrogen control system (CP-20).

SGTR

Containment bypass due to SGTR appears in approximately 40 of the top 100 LRF cutsets.

Initiating events "SGTR" and "induced SGTR" (i.e., pressure-induced tube ruptures prior to core damage) contribute to LRF, making up almost half of the internal event LRF (see the Response to RAI 22, Supplement 3, Table 19-160-5)

The following SAMDA candidates from ANP-10290, Revision 1,Table 3-1 apply to containment bypass due to SGTR:

- Institute maintenance practice to perform a 100 percent inspection of steam generator (SG) tubes during each refueling outage (CB-09).
- Replace SG with a new design (CB-10).
- Increase the pressure capacity of the secondary side so that a SGTR would not cause the relief values to lift (CB-11).
- Provide improved instrumentation to detect SGTRs, such as Nitrogen-16 monitors (CB-14).

- Route the discharge from the main steam safety valves (MSSVs) through a structure where a water spray would condense the steam and remove most of the fission products (CB-15).
- Install a reliable (closed loop) SG shell-side heat removal system that relies on natural circulation and stored water sources (CB-16).
- Revise emergency operating procedures (EOPs) to direct isolation of a faulted SG (CB-17).
- Direct SG flooding after an SGTR, prior to core damage (CB-18).
- Vent MSSVs in containment (CB-19).

Creep-induced SGTRs during severe accident sequences at high pressure contribute approximately 17 percent to LRF (see U.S. EPR FSAR Tier 2, Table 19.1-50 and Table 19.1-75). The following SAMDA candidates from ANP-10290, Revision 1, Table 3-1 specifically address reducing primary system pressure during severe accident sequences, which is the preferred method for arresting the mechanism of induced SGTR during high pressure core damage sequences:

- Install a redundant spray system to depressurize the primary system during an SGTR (CB-12).
- Proceduralize use of pressurizer vent valves during SGTR sequences (CB-13).

Interfacing System LOCA

Interfacing system loss of coolant accidents (ISLOCAs) appear in four of the top 100 LRF cutsets and are a small contributor to LRF (approximately three percent of the internal events LRF, see the Response to RAI 22, Supplement 3, Table 19-160-2).

The following SAMDA candidates from ANP-10290, Revision 1, Table 3-1 address the issues associated with interfacing system LOCA:

- Install additional pressure or leak monitoring instruments for detection of ISLOCAs (CB-01).
- Increase leak testing of valves in ISLOCA paths (CB-03).
- Locate residual heat removal (RHR) inside containment (CB-05).
- Ensure that ISLOCA releases are scrubbed by plugging drains in potential break areas so that break points will be covered with water (CB-06).
- Revise EOPs to improve ISLOCA identification (CB-07).
- Improve operator training on ISLOCA coping (CB-08).
- Install relief valves in the component cooling water system (CCWS) (CB-20).

Containment Isolation Failure

Containment isolation failures appear in four of the top 100 LRF cutsets and are a contributor to LRF. The Response to RAI 22, Supplement 3, Table 19-160-2 and U.S. EPR FSAR Tier 2, Table 19.1-50 and Table 19.1-75 show the containment isolation failures account for about eight percent of LRF for internal events, five percent of LRF from flooding events, and two percent of LRF for fire events.

The following SAMDA candidates from ANP-10290, Revision 1, Table 3-1 address containment isolation failure:

- Add redundant and diverse limit switches to each containment isolation valve (CIV) (CB-02).
- Install self-actuating CIVs (CB-04).

No additional SAMDA candidates were identified.

Conclusion

When evaluating the top 100 LRF cutsets, no additional SAMDA candidates were identified. Therefore, the list of SAMDA candidates provided in ANP-10290, Revision 1, Table 3-1 is a comprehensive list of SAMDA candidates for the U.S. EPR.

The reference to ANP-10290 will change from Revision 0 to Revision 1 in U.S. EPR FSAR Tier 2, Section 19.2.7 and U.S. EPR FSAR Tier 2, Table 1.6-1.

Response to Question 19-313 Part 4:

The screening for the SAMDA candidate, "Vent MSSVs in containment," will be revised from "not applicable" to "excessive implementation cost" in ANP-10290, Revision 1.

U.S. EPR FSAR Tier 2, Section 19.2.6.4 will be revised to reflect this change in SAMDA candidate categorization.

FSAR Impact:

U.S. EPR FSAR Tier 2, Section 19.2.6.4, Section 19.2.7, and Table 1.6-1 will be revised as described in the response and as indicated on the enclosed markup.

Release Category	Frequency
RC101	3.43E-07
RC201	4.98E-10
RC202	3.97E-14
RC203	1.92E-12
RC204	2.78E-11
RC205	4.08E-10
RC206	1.65E-08
RC301	1.67E-12
RC302	2.18E-11
RC303	2.30E-09
RC304	1.75E-08
RC401	1.38E-11
RC402	2.75E-10
RC403	6.82E-10
RC404	1.34E-08
RC501	5.92E-13
RC502	2.87E-10
RC503	6.01E-10
RC504	1.19E-07
RC602	6.50E-10
RC701	1.02E-08
RC702	5.38E-09
RC802	2.64E-10
Total	5.3E-07

Table 19-313-1—Release Category Frequency Vector

Radioisotope	Bounding Core Inventory (curies)	Bounding Core Inventory (becquerels)	Radioisotope	Bounding Core Inventory (curies)	Bounding Core Inventory (becquerels)
Kr-85	2.10E+06	7.77E+16	Te-132	1.98E+08	7.33E+18
Kr-85m	4.50E+07	1.66E+18	I-131	1.39E+08	5.14E+18
Kr-87	9.02E+07	3.34E+18	I-132	2.01E+08	7.44E+18
Kr-88	1.29E+08	4.77E+18	I-133	2.90E+08	1.07E+19
Rb-86	5.80E+05	2.15E+16	I-134	3.18E+08	1.18E+19
Sr-89	1.61E+08	5.96E+18	I-135	2.69E+08	9.95E+18
Sr-90	1.69E+07	6.25E+17	Xe-133	2.89E+08	1.07E+19
Sr-91	2.07E+08	7.66E+18	Xe-135	9.26E+07	3.43E+18
Sr-92	2.14E+08	7.92E+18	Cs-134	6.48E+07	2.40E+18
Y-90	1.79E+07	6.62E+17	Cs-136	1.61E+07	5.96E+17
Y-91	1.96E+08	7.25E+18	Cs-137	2.47E+07	9.14E+17
Y-92	2.14E+08	7.92E+18	Ba-139	2.62E+08	9.69E+18
Y-93	2.34E+08	8.66E+18	Ba-140	2.52E+08	9.32E+18
Zr-95	2.29E+08	8.47E+18	La-140	2.54E+08	9.40E+18
Zr-97	2.43E+08	8.99E+18	La-141	2.41E+08	8.92E+18
Nb-95	2.29E+08	8.47E+18	La-142	2.35E+08	8.69E+18
Mo-99	2.59E+08	9.58E+18	Ce-141	2.24E+08	8.29E+18
Tc-99m	2.27E+08	8.40E+18	Ce143	2.28E+08	8.44E+18
Ru-103	2.42E+08	8.95E+18	Ce-144	1.70E+08	6.29E+18
Ru-105	1.96E+08	7.25E+18	Pr-143	2.26E+08	8.36E+18
Ru-106	1.43E+08	5.29E+18	Nd-147	9.44E+07	3.49E+18
Rh-105	1.75E+08	6.47E+18	Np-239	3.82E+09	1.41E+20
Sb-127	1.80E+07	6.66E+17	Pu-238	1.46E+06	5.40E+16
Sb-129	4.85E+07	1.79E+18	Pu-239	6.14E+04	2.27E+15
Te-127	1.79E+07	6.62E+17	Pu-240	1.40E+05	5.18E+15
Te-127m	2.43E+06	8.99E+16	Pu-241	2.53E+07	9.36E+17
Te-129	4.78E+07	1.77E+18	Am-241	2.88E+04	1.07E+15
Te-129m	7.08E+06	2.62E+17	Cm-242	1.31E+07	4.85E+17
Te-131m	2.04E+07	7.55E+17	Cm-244	6.94E+06	2.57E+17

Table 19-313-2—U.S. EPR Core Invento	ory in Curies and Becquerels
	ory in ouries and becquerers

Response to Request for Additional Information No. 236 U.S. EPR Design Certification Application

Page 9 of 11

	ST	1.8	ST1	l.8a	ST	1.8b	ST1	.8c	ST1.8f
Release Category	RC304	RC205	RC303	RC204	RC203	RC302	RC202	RC301	RC206
FREL(1)	9.78E-01	9.78E-01	9.47E-01	9.47E-01	8.87E-01	8.87E-01	7.93E-01	7.93E-01	1.85E-01
FREL(2)	5.71E-02	5.71E-02	2.76E-02	2.76E-02	5.31E-02	5.31E-02	2.35E-02	2.35E-02	5.61E-03
FREL(3)	2.89E-02	2.89E-02	1.57E-02	1.57E-02	2.40E-02	2.40E-02	1.20E-02	1.20E-02	7.65E-03
FREL(4)	4.05E-03	4.05E-03	1.68E-04	1.68E-04	1.37E-04	1.37E-04	2.44E-04	2.44E-04	1.24E-03
FREL(5)	9.81E-03	9.81E-03	5.33E-03	5.33E-03	6.75E-03	6.75E-03	3.44E-03	3.44E-03	7.25E-03
FREL(6)	3.63E-02	3.63E-02	1.64E-02	1.64E-02	2.80E-02	2.80E-02	1.46E-02	1.46E-02	4.98E-03
FREL(7)	6.08E-03	6.08E-03	3.17E-03	3.17E-03	2.21E-03	2.21E-03	2.38E-03	2.38E-03	4.20E-03
FREL(8)	2.96E-04	2.96E-04	1.45E-05	1.45E-05	1.50E-05	1.50E-05	1.87E-05	1.87E-05	5.49E-05
FREL(9)	5.32E-04	5.32E-04	6.21E-05	6.21E-05	2.36E-04	2.36E-04	6.79E-05	6.79E-05	1.80E-04
FREL(10)	9.33E-02	9.33E-02	3.59E-02	3.59E-02	1.58E-01	1.58E-01	1.99E-02	1.99E-02	8.99E-03
FREL(11)	4.44E-08	4.44E-08	2.43E-08	2.43E-08	8.53E-06	8.53E-06	1.46E-08	1.46E-08	5.13E-07
FREL(12)	1.17E-07	1.17E-07	6.46E-08	6.46E-08	2.63E-05	2.63E-05	1.62E-07	1.62E-07	3.42E-07

Table 19-313-3—MAAP Release Fractions (3 Sheets)

AREVA NP Inc.

Response to Request for Additional Information No. 236 U.S. EPR Design Certification Application

Page 10 of 11

	ST1.10			ST1.10a			ST1.10b	
Release Category	RC503	RC504	RC101	RC501	RC502	RC602	RC402	RC404
FREL(1)	1.00E+00	1.00E+00	1.90E-03	9.93E-01	9.93E-01	9.93E-01	9.73E-01	9.73E-01
FREL(2)	4.09E-04	4.09E-04	2.42E-05	7.73E-04	7.73E-04	7.73E-04	2.03E-02	2.03E-02
FREL(3)	5.12E-05	5.12E-05	3.61E-05	5.29E-05	5.29E-05	5.29E-05	7.30E-03	7.30E-03
FREL(4)	8.45E-06	8.45E-06	8.45E-06	7.38E-06	7.38E-06	7.38E-06	3.82E-03	3.82E-03
FREL(5)	4.43E-05	4.43E-05	4.43E-05	4.36E-05	4.36E-05	4.36E-05	2.05E-03	2.05E-03
FREL(6)	6.94E-05	6.94E-05	2.00E-05	4.04E-04	4.04E-04	4.04E-04	1.04E-02	1.04E-02
FREL(7)	2.40E-05	2.40E-05	2.40E-05	2.42E-05	2.42E-05	2.42E-05	7.34E-03	7.34E-03
FREL(8)	2.83E-07	2.83E-07	2.83E-07	2.16E-07	2.16E-07	2.16E-07	1.14E-04	1.14E-04
FREL(9)	7.32E-07	7.32E-07	7.32E-07	7.03E-07	7.03E-07	7.03E-07	4.93E-04	4.93E-04
FREL(10)	6.13E-04	6.13E-04	5.25E-05	1.73E-02	1.73E-02	1.73E-02	1.23E-02	1.23E-02
FREL(11)	8.76E-06	8.76E-06	2.44E-08	1.11E-05	1.11E-05	1.11E-05	1.83E-05	1.83E-05
FREL(12)	2.45E-09	2.45E-09	2.45E-09	5.98E-09	5.98E-09	5.98E-09	1.22E-05	1.22E-05

Table 19-313-3—MAAP Release Fractions (3 Sheets)

Response to Request for Additional Information No. 236 U.S. EPR Design Certification Application

Page 11 of 11

	ST1.10c		ST1.11	ST2.3		ST3.2a
Release Category	RC401	RC403	RC201	RC702	RC701	RC802
FREL(1)	7.97E-01	7.97E-01	3.63E-01	1.09E-01	1.09E-01	9.76E-01
FREL(2)	4.57E-03	4.57E-03	1.03E-01	8.42E-02	4.21E-03	7.06E-01
FREL(3)	2.32E-03	2.32E-03	7.64E-03	1.15E-01	5.74E-03	6.43E-01
FREL(4)	2.70E-03	2.70E-03	7.85E-05	1.20E-02	6.00E-04	1.25E-01
FREL(5)	1.47E-03	1.47E-03	1.06E-03	9.60E-02	4.80E-03	5.69E-01
FREL(6)	2.34E-03	2.34E-03	9.55E-02	8.70E-02	4.35E-03	6.93E-01
FREL(7)	5.21E-03	5.21E-03	4.13E-04	5.45E-02	2.72E-03	3.80E-01
FREL(8)	7.99E-05	7.99E-05	3.37E-06	4.49E-04	2.25E-05	3.85E-03
FREL(9)	3.35E-04	3.35E-04	1.72E-05	2.24E-03	1.12E-04	2.22E-02
FREL(10)	3.36E-03	3.36E-03	9.58E-03	1.39E-01	6.94E-03	6.42E-01
FREL(11)	9.76E-07	9.76E-07	0.00E+00	4.51E-06	2.25E-07	2.09E-05
FREL(12)	6.14E-06	6.14E-06	0.00E+00	1.06E-06	5.30E-08	1.36E-05

Table 19-313-3—MAAP Release Fractions (3 Sheets)

Response to Request for Additional Information No. 236, Supplement 1

Question 19-313

Appendix A

Top 100 LRF Cutsets

#LARGE RELEASE	EPR2SLB0		
Statistic Description	Value		
Analysis Case type	MCS Analysis Case		
Analysis Case ID	#LARGE RELEASE		
Description	large releases - level 2		

F

5.2334E-10

0.0000E+00

5.2334E-10

0.0000E+00

1.4188E-14

Type of calculation

Min cut upper bound1.3781E-081st order approximation1.3782E-082nd order approximationN/A3rd order approximationN/A

Cutoff error Module MCS cutoff error Demodularization cutoff error Used cutoff for module MCS Used cutoff for demodularization

Date & time	2008-10-07 16:37:56
BC Set used	
Cutoff type	Probabilistic
Input absolute cutoff value	1.0000E-20
Input relative cutoff value	1.0000E-06
Approximation	
Include CCF	No
Negated Event handling	Ignore ET success
Max no. of module MCS saved	0
Max no. of Basic Event MCS saved	100000

Gates	0
Basic Events	1948
CCF Events	1206
Modules	0
Gates in modularized tree	0
Primary Events in modularized tree	0
No. of boolean cutsets	0.00000E+0
No. of boolean cutsets in mod. tree	0.00000E+0
No. of module MCS > cutoff	0
No. of basic MCS evaluated	0.00000E+0
No. of basic MCS > cutoff	49669
No. of module MCS saved (binary)	0
No. of Basic Event MCS saved (binary)	54773
Run time (s)	0.00
MCS generation time (s)	0.00

Minimal Cutsets

Top Event frequency F = 1.378E-08

No.	Freq.	%	Event	Description
1	1.212E-09	8.79	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture
			OPE-RHR-4H	Operator Fails to Initiate RHR Within 4 Hours
2	5.120E-10	3.72	IE FLD-ANN ALL	Initiator - Flood in the RB Annulus (Contained)
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
			PROB ANNULUS	Probability that the connection boxes will withstand a flood in the Annulus
3	4.202E-10	3.05	IE FIRE-MS-VR	Initiator - Fire in One of Two MF/MS Valve Rooms With Spurious Opening of 1 MSRIV
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
			MSIV TR3 ISO-FIRE	MSIV 3 Fails to Isolate Due to Fire in MS/FW Valve Room
			MSIV TR4 ISO-FIRE	MSIV 4 Fails to Isolate Due to Fire in MS/FW Valve Room
			OPE-RHR-4H	Operator Fails to Initiate RHR Within 4 Hours
4	4.032E-10	2.93	IE FIRE-MCR	Initiator - Fire in the Main Control Room
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
			OPE-MCR-RSS-90M	Operator Fails to Transfer to the RSS in 90 Mins Given A MCR Fire
5	1.710E-10	1.24	IE FIRE-SAB-MECH	Initiator - Fire in the Pump Room of Any Safeguard Building
			L2CP SS2"DIAM	Level 2 conditional probability: Seal LOCA has 2" diameter
			L2PH ISGTR-SS2D=Y OPE-FCD-40M=Y	Induced SGTR. 2" LOCA, secondary depressurized
			OPF-RCP-10M	Operator Fails to Trip RCPs on a Loss of Seal Injection
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally
			PAS	Proccess Automation System (PAS) Fails (Estimate)
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Maintenance
6	1.574E-10	1.14	IE SGTR	Initiator - Steam Generator Tube Rupture
			EFWS PM4	EFWS Train 4 Unavailable due to Preventive Maintenance
			LBA40AA002PFC	MSS, Train 4 Main Steam Isolation Valve LBA40AA002, Fails to Close on Demand
			OPE-RHR-4H	Operator Fails to Initiate RHR Within 4 Hours
7	1.355E-10	0.98	IE SGTR	Initiator - Steam Generator Tube Rupture
			EFWS PM4	EFWS Train 4 Unavailable due to Preventive Maintenance
			LBA43AA101EFC	MSS, Train 4 MSRCV LBA43AA101, Fails to Close on Demand
			OPD-RHR4H/SGTR1H	Dependency (MED) Between Operator Actions for Stabilizing SGTR and Initiating RHR
			OPF-SGTR-1H	Operator Fails to Isolate SGTR and Initiate Cooldown

#LARGI	E RELEASE		EPF	R2SLB0 NO SLB	31
No.	Freq.	%	Event	Description	
8	1.284E-10	0.93	IE ISL-CVCS HPTR	Initiator - ISLOCA - Tube Rupture High Pressure Letdown Cooler	
			L2CP ISL BL NO WATER	Level 2 conditional probability: break location not under water (ISL)	
			OPD-RHR4H/ISLOCA	Dependency (MED) Between Operator Actions for Isolating ISLOCA and Initiating RHR	
9	1.259E-10	0.91	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TRD, TP, TPD cases.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS_B-ALL	CCF of the Air Cooled SCWS Chiller Units to Start	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
10	1.186E-10	0.86	IE FIRE-SAB-MECH	Initiator - Fire in the Pump Room of Any Safeguard Building	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TRD, TP, TPD cases.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Maintenance	
11	1.185E-10	0.86	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TRD, TP, TPD cases.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on Demand	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive Maintenance	
12	1.185E-10	0.86	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TRD, TP, TPD cases.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA40GH001_FS	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Start on Demand	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Maintenance	

#LARG	E RELEASE		EPF	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
13	1.140E-10	0.83	IE FIRE-SAB-MECH	Initiator - Fire in the Pump Room of Any Safeguard Building	
			L2CP SS2"DIAM	Level 2 conditional probability: Seal LOCA has 2" diameter	
			L2PH ISGTR-SS2D=Y	Induced SGTR. 2" LOCA, secondary depressurized	
			OPE-FCD-40M=Y		
			OPF-RCP-30M	Operator Fails to Trip RCPs on a Loss of Bearing Cooling	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Main	ntenance
14	1.065E-10	0.77	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			LBA13AA001PFO_D-ALL	CCF to Open Main Steam Relief Isolation Valves	
			OPE-FB-40M	Operator Fails to Initiate Feed & Bleed for SLOCA	
15	8.599E-11	0.62	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			JNG13AA005CFO_D-ALL	CCF to Open LHSI/MHSI Common Injection Check Valves	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			OPE-FCD-40M=Y		
16	8.581E-11	0.62	IE SGTR	Initiator - Steam Generator Tube Rupture	
			BRW70BUW710FL	ELEC, 24V DC I&C Power Rack 34BRW70/34BUW71, Fails Dur Operation	ring
			OPE-RHR-4H	Operator Fails to Initiate RHR Within 4 Hours	
17	8.538E-11	0.62	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Building 1 (or 4))
			31BRARFR	ELEC, 480V AC to 24V DC Rectifier for MCC 31BRA Control Pc to Run	wer, Fails
			CVCS VCT	CVCS Switchover to IRWST May Not Be Required	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			OPE-FB-40M=Y		
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of Seal Coolin	g
18	8.538E-11	0.62	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Building 1 (or 4))
			32BRARFR	ELEC, 480V AC to 24V DC Rectifier for MCC 32BRA Control Pc to Run	wer, Fails
			CVCS VCT	CVCS Switchover to IRWST May Not Be Required	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			OPE-FB-40M=Y		
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of Seal Coolin	g
19	6.844E-11	0.50	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Main	ntenance
			XKA30DFR	ELEC, Emergency Diesel Generator XKA30, Fails to Run	

#LARGE RELEASE			EPF	R2SLB0 NO SLBI
No.	Freq.	%	Event	Description
20	6.570E-11	0.48	IE SGTR	Initiator - Steam Generator Tube Rupture
			LBA13AA001PFO_D-ALL	CCF to Open Main Steam Relief Isolation Valves
			OPE-FB-90M	Operator Fails to Initiate Feed & Bleed for Transient
21	6.291E-11	0.46	IE LOMFW	Initiator - Total Loss of Main Feedwater
			L2PH INVREC(NR)=N	In vessel recovery phenomenological failure. Default, non-recoverable cases
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
			STUCK ROD	Stuck Control Rods
22	6.139E-11	0.45	IE SGTR	Initiator - Steam Generator Tube Rupture
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally
			SAC31AN001EFR_D-ALL	CCF to Run Normal Air Exhaust Fans
23	6.139E-11	0.45	IE SGTR	Initiator - Steam Generator Tube Rupture
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally
			SAC01AN001EFR_D-ALL	CCF to Run Normal Air Supply Fans
24	6.078E-11	0.44	IE LOOP	Initiator - Loss Of Offsite Power
			BTD01_BATST_D-ALL	CCF of Safety Related Batteries on Demand
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
25	6.013E-11	0.44	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Building 1 (or 4)
			CCWS/ESWS PM2	CCWS/ESWS Train 2 Pump Unavailable due to Preventive Maintenance
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
			LOOPFCSD+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Fire IEs Leading to a Controlled Shutdn
			OPE-FB-40M=Y	
			OPF-XTDIV-NSC	Operator Fails to Xtie Division 1 to Division 2 or Division 4 to Divison 3 During Non-SBO Conditions
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of Seal Cooling
26	5.822E-11	0.42	IE FIRE-SAB-MECH	Initiator - Fire in the Pump Room of Any Safeguard Building
			L2CP SS0.6"DIAM	Level 2 conditional probability: Seal LOCA has 0.6" diameter
			L2PH ISGTR-SS0.6D=Y OPE-FCD-40M=Y	Induced SGTR occurs. 0.6" LOCAs, secondary side depressurised
			OPF-RCP-10M	Operator Fails to Trip RCPs on a Loss of Seal Injection
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally
			PAS	Proccess Automation System (PAS) Fails (Estimate)
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Maintenance
27	5.320E-11	0.39	IE LOC	Initiator - Loss of Main Condenser (Includes MSIV Closure etc.)
			L2PH INVREC(NR)=N	In vessel recovery phenomenological failure. Default, non-recoverable cases
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)
			STUCK ROD	Stuck Control Rods

#LARG	E RELEASE		EPI	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
28	5.180E-11	0.38	IE ISL-CVCS REDS	Initiator - ISLOCA - Spurious Opening of Reducing Station	
			L2CP ISL BL NO WATER	Level 2 conditional probability: break location not under water (ISL)
			OPD-RHR4H/ISLOCA	Dependency (MED) Between Operator Actions for Isolating ISL Initiating RHR	
29	4.959E-11	0.36	IE FLD-SAB14 FB	Initiator - Flood in Safeguard Building 1 or 4 (Pump Room) Incl Building	uding Fuel
			L2CP SS2"DIAM	Level 2 conditional probability: Seal LOCA has 2" diameter	
			L2PH ISGTR-SS2D=Y OPE-FCD-40M=Y	Induced SGTR. 2" LOCA, secondary depressurized	
			OPF-RCP-10M	Operator Fails to Trip RCPs on a Loss of Seal Injection	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Ma	aintenance
30	4.674E-11	0.34	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LAS41AP001EFR	EFWS, Train 4 Motor Driven Pump LAS41AP001, Fails to Run	
			LBA40AA002PFC	MSS, Train 4 Main Steam Isolation Valve LBA40AA002, Fails t Demand	o Close on
			OPE-RHR-4H	Operator Fails to Initiate RHR Within 4 Hours	
31	4.666E-11	0.34	IE SGTR	Initiator - Steam Generator Tube Rupture	
			CLH22EQ021LD21SM	Backplane (half of subrack SBG6) fails (self-monitored)	
			OPD-RHR4H/SGTR4H	Dependency (LOW) Between Operator Actions for Isolating SG Lines and Initiating RHR	Blowdown
			OPF-SGTR-4H	Operator Fails to Isolate Blowdown Line for SGTR	
32	4.666E-11	0.34	IE SGTR	Initiator - Steam Generator Tube Rupture	
			CLH22EQ011LD11SM	Backplane (half of subrack SBG6) fails (self-monitored)	
			OPD-RHR4H/SGTR4H	Dependency (LOW) Between Operator Actions for Isolating SG Lines and Initiating RHR	Blowdown
			OPF-SGTR-4H	Operator Fails to Isolate Blowdown Line for SGTR	
33	4.585E-11	0.33	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour fo Leading to Auto Scram	r IEs
			OPF-XTDIVSBO-2H	Operator Fails to Xtie Division 1 to Division 2 or Division 4 to D During SBO Considitions	ivison 3
			XKA10DFR_D-ALL	CCF of EDGs to Run	
34	4.454E-11	0.32	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			LBA13AA001PFO_D-ALL	CCF to Open Main Steam Relief Isolation Valves	
35	4.268E-11	0.31	IE FIRE-SAB-MECH	Initiator - Fire in the Pump Room of Any Safeguard Building	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTF TP, TPD cases.	₹. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (H sequences)	li pressure
			LOOPFCSD+REC	Consequential LOOP and Failure of Recovery Within 1 Hour fo Leading to a Controlled Shutdn	r Fire IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Ma	iintenance

#LARG	E RELEASE		EP	PR2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
36	4.143E-11	0.30	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC=Y OSP 7-31H	Offsite power recovered between 7 and 31 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TP, TPD cases.	TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS_B-ALL	CCF of the Air Cooled SCWS Chiller Units to Start	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
37	4.127E-11	0.30	IE GT	Initiator - General Transient (Includes Turbine Trip and Reactor	Γrip)
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TP, TPD cases.	TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS_B-ALL	CCF of the Air Cooled SCWS Chiller Units to Start	
38	4.023E-11	0.29	IE SGTR	Initiator - Steam Generator Tube Rupture	
		0.20	LAS41AP001EFR	EFWS, Train 4 Motor Driven Pump LAS41AP001, Fails to Run	
			LBA43AA101EFC	MSS, Train 4 MSRCV LBA43AA101, Fails to Close on Demand	
			OPD-RHR4H/SGTR1H	Dependency (MED) Between Operator Actions for Stabilizing SC Initiating RHR	TR and
			OPF-SGTR-1H	Operator Fails to Isolate SGTR and Initiate Cooldown	
39	4.009E-11	0.29	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Building 1 (or 4)	
			EDG PM2	EDG Train 2 Unavailable due to Preventive Maintenance	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			LOOPFCSD+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to a Controlled Shutdn	Fire IEs
			OPE-FB-40M=Y		
			OPF-XTDIV-NSC	Operator Fails to Xtie Division 1 to Division 2 or Division 4 to Div During Non-SBO Conditions	ison 3
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of Seal Cooling	3
40	3.898E-11	0.28	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC=Y OSP 7-31H	Offsite power recovered between 7 and 31 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TP, TPD cases.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA40GH001_FS	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Start on Dem	and
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Mair	itenance

#LARG	E RELEASE		EPI	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
41	3.898E-11	0.28	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC=Y OSP 7-31H	Offsite power recovered between 7 and 31 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR TP, TPD cases.	. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on Den	nand
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive Mai	ntenance
42	3.883E-11	0.28	IE GT	Initiator - General Transient (Includes Turbine Trip and Reactor	.,
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR TP, TPD cases.	. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on Den	nand
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive Mai	ntenance
43	3.883E-11	0.28	IE GT	Initiator - General Transient (Includes Turbine Trip and Reactor	Trip)
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR TP, TPD cases.	.,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA40GH001_FS	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Start on Den	nand
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Mai	ntenance
44	3.882E-11	0.28	IE FIRE-SAB-MECH	Initiator - Fire in the Pump Room of Any Safeguard Building	
			L2CP SS0.6"DIAM	Level 2 conditional probability: Seal LOCA has 0.6" diameter	
			L2PH ISGTR-SS0.6D=Y OPE-FCD-40M=Y	Induced SGTR occurs. 0.6" LOCAs, secondary side depressuris	sed
			OPF-RCP-30M	Operator Fails to Trip RCPs on a Loss of Bearing Cooling	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Mai	ntenance
45	3.726E-11	0.27	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			LAS11AP001EFR_D-123	CCF of EFWS Pumps to Run	
46	3.631E-11	0.26	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			MSRIVSCPFO_P-ALL	CCF to Open Main Steam Relief Isolation Pneumatic Pilot Valve	es
			OPE-FB-40M	Operator Fails to Initiate Feed & Bleed for SLOCA	

#LARG	E RELEASE		EPI	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
47	3.563E-11	0.26	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	or IEs
			XKA10DFR_D-ALL	CCF of EDGs to Run	
			XKA50DFR	ELEC, SBO Diesel Generator XKA50, Fails to Run	
48	3.450E-11	0.25	IE ISL-SIS LHSI	Initiator - ISLOCA - Break in LHSI Cold Leg Inj. CV with LHSI L in Respective SAB	ine Break
			L2CP ISL BL NO WATER	Level 2 conditional probability: break location not under water (
					,IOL)
49	3.450E-11	0.25	IE ISL-SIS MHSI	Initiator - ISLOCA - Break in MHSI Cold Leg Injection CV with Break in Respective SAB	MHSI Line
			L2CP ISL BL NO WATER	Level 2 conditional probability: break location not under water ((ISL)
50	3.438E-11	0.25	IE FLD-SAB14 FB	Initiator - Flood in Safeguard Building 1 or 4 (Pump Room) Incl Building	uding Fuel
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTI TP, TPD cases.	R. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (I sequences)	li pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Ma	aintenance
51	3.422E-11	0.25	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	or IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			OPF-XTDIV-NSC	Operator Fails to Xtie Division 1 to Division 2 or Division 4 to D During Non-SBO Conditions	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive Ma	aintenance
			XKA20DFR	ELEC, Emergency Diesel Generator XKA20, Fails to Run	
52	3.332E-11	0.24	IE LBOP	Initiator - Loss of Balance of Plant - Closed Loop Cooling Wate Cooling Water	r or Aux
			L2PH INVREC(NR)=N	In vessel recovery phenomenological failure. Default, non-reco cases	verable
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (H sequences)	li pressure
			STUCK ROD	Stuck Control Rods	
53	3.306E-11	0.24	IE FLD-SAB14 FB	Initiator - Flood in Safeguard Building 1 or 4 (Pump Room) Incl Building	uding Fuel
			L2CP SS2"DIAM	Level 2 conditional probability: Seal LOCA has 2" diameter	
			L2PH ISGTR-SS2D=Y	Induced SGTR. 2" LOCA, secondary depressurized	
			OPE-FCD-40M=Y		
			OPF-RCP-30M	Operator Fails to Trip RCPs on a Loss of Bearing Cooling	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Ma	aintenance

#LARG	E RELEASE		EPR	22SLB0	NO SLBI
No.	Freq.	%	Event	Description	
54	3.283E-11	0.24	IE FIRE-MS-VR	Initiator - Fire in One of Two MF/MS Valve Rooms With Spurious of 1 MSRIV	Opening
			L2PH VECF-FA(HL)	Very early flame acceleration loads fail containment following ind Leg Rupture	uced Hot
			MSIV TR3 ISO-FIRE	MSIV 3 Fails to Isolate Due to Fire in MS/FW Valve Room	
			MSIV TR4 ISO-FIRE	MSIV 4 Fails to Isolate Due to Fire in MS/FW Valve Room	
			OPE-RHR-4H	Operator Fails to Initiate RHR Within 4 Hours	
55	3.200E-11	0.23	IE FLD-ANN ALL	Initiator - Flood in the RB Annulus (Contained)	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.	
			OPF-L2-CI-30M	Operators fails to initiate manual Containment Isolation Signal	
			PROB ANNULUS	Probability that the connection boxes will withstand a flood in the	
			PROB KLA10/20 OP	Probability that tje Containment Sweep Vent System Small Flow Open	Lines are
56	3.074E-11	0.22	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LBA13AA001PFO_D-123	CCF to Open Main Steam Relief Isolation Valves	
			OPE-FB-90M	Operator Fails to Initiate Feed & Bleed for Transient	
57	2.951E-11	0.21	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LAS31AP001EFR	EFWS, Train 3 Motor Driven Pump LAS31AP001, Fails to Run	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for I Leading to Auto Scram	Es
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Mair	Itenance
58	2.950E-11	0.21	IE SGTR	Initiator - Steam Generator Tube Rupture	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10AP107EFR_D-ALL	CCF of SCWS Pumps to Run	
59	2.760E-11	0.20	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Building 1 (or 4)	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure.	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi sequences)	pressure
			LOOPFCSD+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for I Leading to a Controlled Shutdn	Fire IEs
			OPE-FB-40M=Y		
			OPF-XTDIV-NSC	Operator Fails to Xtie Division 1 to Division 2 or Division 4 to Divi During Non-SBO Conditions	son 3
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of Seal Cooling	J
			XKA20DFR	ELEC, Emergency Diesel Generator XKA20, Fails to Run	
60	2.656E-11	0.19	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			KAA12AA005EFO_D-ALL	CCF to Open CCWS to LHSI HTX Cooling MOV	
61	2.620E-11	0.19	IE SGTR	Initiator - Steam Generator Tube Rupture	
			EFWS PM1	EFWS Train 1 Unavailable due to Preventive Maintenance	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	Es
			XKA10DFR_D-ALL	CCF of EDGs to Run	

#LARG	E RELEASE		EPF	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
62	2.620E-11	0.19	IE SGTR	Initiator - Steam Generator Tube Rupture	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within Leading to Auto Scram	1 Hour for IEs
			SBODG5 PM1	SBO-DG Train 1 Unavailable due to Preventive Main	itenance
			XKA10DFR_D-ALL	CCF of EDGs to Run	
63	2.408E-11	0.17	IE SGTR	Initiator - Steam Generator Tube Rupture	
			CCWS/ESWS PM3	CCWS/ESWS Train 3 Pump Unavailable due to Prev	ventive Maintenance
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within Leading to Auto Scram	1 Hour for IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to S	tart on Demand
64	2.287E-11	0.17	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			CL-PS-B-SWCCF	SW CCF of Protection System diversity group B	
			OPD-L2-CIH	Dependent operator failure to close containment isola	ation valves
			OPE-FCD-40M	Operator Fails to Initiate Fast Cooldown for SLOCA	
			PROB KLA10/20 OP	Probability that tje Containment Sweep Vent System Open	Small Flow Lines are
65	2.239E-11	0.16	IE SGTR	Initiator - Steam Generator Tube Rupture	
			MSRIVSCPFO_P-ALL	CCF to Open Main Steam Relief Isolation Pneumatic	Pilot Valves
			OPE-FB-90M	Operator Fails to Initiate Feed & Bleed for Transient	
66	2.224E-11	0.16	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			PED10AN002EFS_D-ALL	CCF to Start Standby Cooling Tower Fans	
67	2.084E-11	0.15	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			LBA13AA001PFO_D-123	CCF to Open Main Steam Relief Isolation Valves	
68	2.074E-11	0.15	IE LOOP	Initiator - Loss Of Offsite Power	
			BTD01_BATST_D-ALL	CCF of Safety Related Batteries on Demand	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2CP SS2"DIAM	Level 2 conditional probability: Seal LOCA has 2" dia	ımeter
			L2PH ISGTR-SS2D=Y	Induced SGTR. 2" LOCA, secondary depressurized	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
69	2.067E-11	0.15	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Build	ding 1 (or 4)
			CVCS VCT	CVCS Switchover to IRWST May Not Be Required	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pre	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acce sequences)	eleration (Hi pressure
			LBA13AA001PFO_D-ALL OPE-FB-40M=Y	CCF to Open Main Steam Relief Isolation Valves	
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of	Seal Cooling

#LARG	E RELEASE		EPF	NO S	LBI
No.	Freq.	%	Event	Description	
70	2.007E-11	0.15	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	е
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			XKA10DFR_D-ALL	CCF of EDGs to Run	
			XKA50DFR	ELEC, SBO Diesel Generator XKA50, Fails to Run	
			XKA80DFR	ELEC, SBO Diesel Generator XKA80, Fails to Run	
71	2.000E-11	0.15	IE LOOP	Initiator - Loss Of Offsite Power	
			BTD01_BATST_D-ALL	CCF of Safety Related Batteries on Demand	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC=Y OSP 7-31H	Offsite power recovered between 7 and 31 hours	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	е
72	1.955E-11	0.14	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			KAA12AA005EFO_D-ALL	CCF to Open CCWS to LHSI HTX Cooling MOV	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	е
			SAHR PM4	SAHR Train Unavailable due to Preventive Maintenance	
73	1.913E-11	0.14	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TR TP, TPD cases.	D,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	е
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on Demand	
			QKA40GH001_FS	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Start on Demand	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
74	1.812E-11	0.13	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TRI TP, TPD cases.	D,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi pressure sequences)	е
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FR_B-ALL	CCF of the Air Cooled SCWS Chiller Units to Run	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	

#LARGE RELEASE			EPF	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
75	1.809E-11	0.13	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC OSP 7-31H	Offsite power not recovered between 7 and 31 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISG TP, TPD cases.	TR. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration sequences)	(Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS_B-ALL	CCF of the Air Cooled SCWS Chiller Units to Start	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
76	1.705E-11	0.12	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISG TP, TPD cases.	TR. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration sequences)	(Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FR	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Run	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive N	<i>A</i> aintenance
77	1.705E-11	0.12	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISG TP, TPD cases.	TR. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration sequences)	(Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA40GH001_FR	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Run	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive N	<i>N</i> aintenance
78	1.702E-11	0.12	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC OSP 7-31H	Offsite power not recovered between 7 and 31 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISG TP, TPD cases.	TR. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration sequences)	(Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA40GH001_FS	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Start on D	emand
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive N	<i>Naintenance</i>

#LARG	E RELEASE		EPF	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
79	1.702E-11	0.12	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC OSP 2-7H	Offsite power not recovered between 2 and 7 hours	
			L2 REC OSP 7-31H	Offsite power not recovered between 7 and 31 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGT TP, TPD cases.	R. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (sequences)	Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on De	emand
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive M	aintenance
80	1.688E-11	0.12	IE FLD-SAB14 FB	Initiator - Flood in Safeguard Building 1 or 4 (Pump Room) Inc Building	luding Fuel
			L2CP SS0.6"DIAM	Level 2 conditional probability: Seal LOCA has 0.6" diameter	
			L2PH ISGTR-SS0.6D=Y	Induced SGTR occurs. 0.6" LOCAs, secondary side depressu	rised
			OPE-FCD-40M=Y		
			OPF-RCP-10M	Operator Fails to Trip RCPs on a Loss of Seal Injection	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			PAS	Proccess Automation System (PAS) Fails (Estimate)	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive M	aintenance
81	1.647E-11	0.12	IE SLBI	Initiator - Steam Break Inside Containment	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGT TP, TPD cases.	R. TR, TRD,
			L2PH ISGTR-TRD=N	No induced SGTR. Transients with secondary depressurized	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			SAC01AN001EFR_D-ALL	CCF to Run Normal Air Supply Fans	
82	1.647E-11	0.12	IE SLBI	Initiator - Steam Break Inside Containment	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGT TP, TPD cases.	R. TR, TRD,
			L2PH ISGTR-TRD=N	No induced SGTR. Transients with secondary depressurized	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			SAC31AN001EFR_D-ALL	CCF to Run Normal Air Exhaust Fans	
83	1.637E-11	0.12	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (sequences)	Hi pressure
			PED10AN002EFS_D-ALL	CCF to Start Standby Cooling Tower Fans	
			SAHR PM4	SAHR Train Unavailable due to Preventive Maintenance	
84	1.606E-11	0.12	IE SGTR	Initiator - Steam Generator Tube Rupture	
			EDG PM3	EDG Train 3 Unavailable due to Preventive Maintenance	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for Leading to Auto Scram	or IEs
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on De	emand

#LARGI	E RELEASE		EPI	R2SLB0 NO	O SLBI
No.	Freq.	%	Event	Description	
85	1.606E-11	0.12	IE SGTR	Initiator - Steam Generator Tube Rupture	
			EFWS PM3	EFWS Train 3 Unavailable due to Preventive Maintenance	
			LOOPCON+REC	Consequential LOOP and Failure of Recovery Within 1 Hour for IEs Leading to Auto Scram	
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FS	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Start on Demand	
86	1.590E-11	0.12	IE LOOP	Initiator - Loss Of Offsite Power	
			34BTD01_BATST	ELEC, 250V 1E 2-hr Battery 34BTD01, Fails on Demand	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TP, TPD cases.	TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi press sequences)	sure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive Maintena	ince
87	1.590E-11	0.12	IE LOOP	Initiator - Loss Of Offsite Power	
			31BTD01_BATST	ELEC, 250V 1E 2-hr Battery 31BTD01, Fails on Demand	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no ISGTR. TR, TP, TPD cases.	TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi press sequences)	sure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive Maintena	ince
88	1.518E-11	0.11	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			MSRIVSCPFO_P-ALL	CCF to Open Main Steam Relief Isolation Pneumatic Pilot Valves	
89	1.476E-11	0.11	IE LOOP	Initiator - Loss Of Offsite Power	
			EFWS PM1	EFWS Train 1 Unavailable due to Preventive Maintenance	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleration (Hi press sequences)	sure
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			XKA10DFR_D-ALL	CCF of EDGs to Run	
			XKA80DFR	ELEC, SBO Diesel Generator XKA80, Fails to Run	

#LARG	E RELEASE		EPR	R2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
90	1.476E-11	0.11	IE LOOP	Initiator - Loss Of Offsite Power	
			EFWS PM4	EFWS Train 4 Unavailable due to Preventive Maintenan	ice
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Accelera sequences)	ation (Hi pressure
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			XKA10DFR_D-ALL	CCF of EDGs to Run	
			XKA50DFR	ELEC, SBO Diesel Generator XKA50, Fails to Run	
91	1.476E-11	0.11	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Accelera sequences)	ation (Hi pressure
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SBODG8 PM4	SBO-DG Train 4 Unavailable due to Preventive Mainten	lance
			XKA10DFR_D-ALL	CCF of EDGs to Run	
			XKA50DFR	ELEC, SBO Diesel Generator XKA50, Fails to Run	
92	1.476E-11	0.11	IE LOOP	Initiator - Loss Of Offsite Power	
			L2 REC=Y OSP 2-7H	Offsite power recovered between 2 and 7 hours	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Accelera sequences)	ation (Hi pressure
			REC OSP 2HR	Failure to Recover Offsite Power Within 2 Hours	
			SBODG5 PM1	SBO-DG Train 1 Unavailable due to Preventive Mainten	ance
			XKA10DFR_D-ALL	CCF of EDGs to Run	
			XKA80DFR	ELEC, SBO Diesel Generator XKA80, Fails to Run	
93	1.435E-11	0.10	IE SLOCA	Initiator - Small LOCA (0.6 to 3-Inch Diameter)	
			CL-PS-B-SWCCF	SW CCF of Protection System diversity group B	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Accelera sequences)	ation (Hi pressure
			OPE-FCD-40M	Operator Fails to Initiate Fast Cooldown for SLOCA	
94	1.417E-11	0.10	IE FIRE-SAB14-AC	Initiator - Fire in Switchgear Room of Safeguard Building	g 1 (or 4)
			CVCS VCT	CVCS Switchover to IRWST May Not Be Required	
			KAA12AA005EFO_D-ALL	CCF to Open CCWS to LHSI HTX Cooling MOV	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high press	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Accelera sequences)	ation (Hi pressure
			PROB SEAL LOCA	Probability of Seal LOCA Occurring Given a Loss of Sea	al Cooling
95	1.362E-11	0.10	IE FIRE-SWGR	Initiator - Fire in the Switchgear Building	
			L2PH CPIHLR-TR,TP=Y	Induced hot leg rupture. Conditional probability given no TP, TPD cases.	ISGTR. TR, TRD,
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Accelera sequences)	ation (Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FR_B-ALL	CCF of the Air Cooled SCWS Chiller Units to Run	
96	1.359E-11	0.10	IE IND SGTR	Initiator - Induced Steam Generator Tube Rupture	
			LAS11AP001EFS_D-ALL	CCF of EFWS Pumps to Start	

#LARGE RELEASE			EPR	2SLB0	NO SLBI
No.	Freq.	%	Event	Description	
97	1.349E-11	0.10	IE FIRE-SWGR	Initiator - Fire in the Switchgear Building	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure).
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleratio sequences)	on (Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA10GH001_FR	SCWS, Train 1 Chiller Unit QKA10GH001, Fails to Run	
			SAC03/QKA30 PM3	Normal SAC03/QKA30 Train Unavailable due to Preventive	e Maintenance
98	1.349E-11	0.10	IE FIRE-SWGR	Initiator - Fire in the Switchgear Building	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure	e.
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleratio sequences)	on (Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA40GH001_FR	SCWS, Train 4 Chiller Unit QKA40GH001, Fails to Run	
			SAC02/QKA20 PM2	Normal SAC02/QKA20 Train Unavailable due to Preventive	e Maintenance
99	1.349E-11	0.10	IE FIRE-SWGR	Initiator - Fire in the Switchgear Building	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure	e.
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleratio sequences)	n (Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA30GH001_FR	SCWS, Train 3 Chiller Unit QKA30GH001, Fails to Run	
			SAC01/QKA10 PM1	Normal SAC01/QKA10 Train Unavailable due to Preventive	e Maintenance
100	1.349E-11	0.10	IE FIRE-SWGR	Initiator - Fire in the Switchgear Building	
			L2PH LOCA-DEPRESS=N	Level 2 phenomena. Small LOCA remains at high pressure	
			L2PH VECF-FA(H)	Very early containment failure due to H2 Flame Acceleratio sequences)	n (Hi pressure
			OPF-SAC-2H	Operator Fails to Recover Room Cooling Locally	
			QKA20GH001_FR	SCWS, Train 2 Chiller Unit QKA20GH001, Fails to Run	
			SAC04/QKA40 PM4	Normal SAC04/QKA40 Train Unavailable due to Preventive	e Maintenance

U.S. EPR Final Safety Analysis Report Markups

Table 1.6-1—Reports Referenced	
Sheet 2 of 4	

Report No. (See Notes 1, 2, and 3)	Title	Date Submitted to NRC	FSAR Section Number(s)
ANP-10285P ANP-10285NP	U.S. EPR Fuel Assembly Mechanical Design Topical Report	10/02/07	4
ANP-10286P ANP-10286NP	U.S. EPR Rod Ejection Accident Methodology Topical Report	11/20/07	4.3 and 15
ANP-10287P ANP-10287NP 19-313, Part 4	Incore Trip Setpoint and Transient Methodology for U.S. EPR Topical Report	11/27/07	4, 6, 7, and 15
ANP-10288P ANP-10288NP	U.S. EPR Post-LOCA Boron Precipitation and Boron Dilution Technical Report	12/6/07	15
ANP-10290 <u>.</u> <u>Revision 1</u>	AREVA NP Environmental Report Standard Design Certification	12/6/07	19.2
ANP-10291P ANP-10291NP	Small Break LOCA and Non-LOCA Sensitivity Studies and Methodology Technical Report	5/09	15
ANP-10292, Revision 1	U.S. EPR Conformance with Standard Review Plan (NUREG-0800) Technical Report	5/09	1.9
ANP-10293	U.S. EPR Design Features to Address GSI-191 Technical Report	2/08	15.6.5.4.3
ANP-10294, Revision 1	U.S. EPR Reactor Coolant Pump Motor Flywheel Structural Analysis Technical Report	3/09	5.4.1.6.6
<u>ANP-10304</u>	U.S. EPR Instrumentation and Control Diversity and Defense in Depth Methodology Technical Report	<u>5/09</u>	
BAW-10132-A	Analytical Methods Description – Reactor Coolant System Hydrodynamic Loadings During a Loss-of-Coolant Accident	7/20/79	App. 3C
BAW-10133P-A BAW-10133-A Revision 1, Addendum 1 and 2	Mark-C Fuel Assembly LOCA-Seismic Analysis	10/30/00	4.2
BAW-10147P-A, BAW-10147-A Revision 1	Fuel Rod Bowing in Babcock & Wilcox Fuel Designs	6/28/83	4.2, 4.4

training enhancements that could offer a potential risk reduction at a fraction of the cost of safety-related modifications.

- Very Low Benefit: If a SAMDA is related to a non-risk-significant system for which change in reliability is known to have negligible impact on the risk profile, it is deemed to have a very low benefit and is not retained. There are two ways to determine the risk impact for the U.S. EPR:
 - A PRA Level 1 importance list is used to determine if a given system is risk significant for the U.S. EPR. If a SAMDA candidate is associated with a system that is not included on the importance list, it can be concluded that the design alternative would have a negligible impact on the risk profile, and it is not retained.
 - If a SAMDA candidate can be shown to have a minimal impact on CDF, it is not retained.
- Not Required for Design Certification: Evaluation of any potential procedural or surveillance action SAMDA enhancements are not appropriate until the plant design is finalized and the plant procedures are being developed. If a SAMDA candidate is related to any of these enhancements, it is not retained for this analysis.
- Considered for Further Evaluation: Following the screening process, if a particular SAMDA is not categorized by any of the preceding categories, the SAMDA is considered for further evaluation and is subject to a cost-benefit analysis.

19.2.6.4 Risk Reduction Potential of Design Improvements

A total of 167 SAMDAs developed from industry and U.S. EPR documents were evaluated in this analysis.

- Twenty-one candidate SAMDAs were Not Applicable to the U.S. EPR design.
- Sixty-seven candidate SAMDAs were Already Implemented in the U.S. EPR design either as suggested in the SAMDA or an equivalent replacement that fulfilled the intent of the SAMDA. These are summarized in Table 19.2-5—SAMDA Candidates Already Implemented.
- Four candidate SAMDAs were Combined with another SAMDA because they had the same intent.
- Twenty-<u>threefour</u> candidate SAMDAs were categorized as Excessive Implementation Cost.
- One candidate SAMDA was categorized as Very Low Benefit.
- Fifty-one candidate SAMDAs were categorized as Not Required for Design Certification because they were related to procedural and surveillances actions.

19-313, Part 4

- WASH-1400 (NUREG-75/014), "Reactor Safety Study-An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants," U.S, Nuclear Regulatory Commission, October 1975.
- 6. NUREG-1116, "A Review of Current Understanding of the Potential for Containment Failure Arising from In-Vessel Steam Explosions," Steam Explosion Review Group (SERG), U.S. Nuclear Regulatory Commission, February 1985.
- 7. Theofanous, T. G., et al, DOE/ID-10489, "The Study of Steam Explosions in Nuclear Systems," Department of Energy, June 1996.
- 8. Deleted.
- 9. Wilks, S.S., "Determination of Sample Sizes for Setting Tolerance Limits," Ann. Math. Stat., Vol. 12, pp. 91-96, 1941.
- EPRI TR-103413, "The MELTSPREAD-1 Computer Code for the Analysis of Transient Spreading and Cooling of High-Temperature Melts – Code Manual," Electric Power Research Institute, December 1993.
- 11. Breitung, W., et al, "Flame Acceleration and Deflagration-to-Detonation Transition in Nuclear Safety," NEA/CSNI-(2000) 7, October 2000.
- 12. Tutu, N.K., T. Ginsberg, and L. Fintrok (1988). "Low Pressure Cutoff for Melt Dispersal from Reactor Cavities," Fourth Proceedings of Nuclear Thermal Hydraulics, 29-37.
- Pilch, M. M., et al, "Resolution of the Direct Containment Heating Issue for All Westinghouse Plants With Large Dry Containments or Subatmospheric Containments," NUREG/CR-6338, SAND95-2381, 1996.
- Meyer, L., et al, "Melt Dispersion and Direct Containment Heating (DCH) Experiments in the DISCO-H Test Facility," FZK Report FZKA 6988, ISSN 0947-8620, May 2004.
- ANP-10290, Revision θ<u>1</u>, "Environmental Report Standard Design Certification," AREVA NP Inc, <u>November 2007September 2009</u>.
- 16. NEI 05-01 (Rev A), "Severe Accident Mitigation Alternatives (SAMA) Analysis, Guidance Document," Nuclear Energy Institute, November 2005.
- 17. NUREG/BR-0184, "Regulatory Analysis Technical Evaluation Handbook," U.S, Nuclear Regulatory Commission, January 1997.

19-313, Part 4