AP1000 CONTAINMENT VESSEL EXTERNAL PRESSURE ANALYSIS AND DESIGN
AGENDA

- Introductions
- Executive Summary (Mike Corletti)
- Transient Analysis (Tom Kindred)
- Vacuum Relief System Design (Dave Kanuch)
- Containment Vessel (Kevin Moore)
- Questions/Comments
EXECUTIVE SUMMARY

- Westinghouse identified discrepancy in Chapter 6 regarding the containment external pressure analysis.
- In addition, it has been noted that there is a discrepancy between the negative pressure analysis in Chapter 6 and the containment service limits in Chapter 3.
- In response, Westinghouse has performed a new safety analysis and is implementing a design change to incorporate a vacuum relief system that demonstrates acceptable containment design.
- The containment differential pressure is changed to 1.7 psid.
- As a result of changes, the containment vessel and vacuum relief system are in compliance with all requirements.
PURPOSE

- The purpose of the analysis is to evaluate the bounding transient that generates the maximum pressure differential for the purposes of the Ch. 6 safety analysis
- The most limiting event is a complete loss of AC power (station blackout) at hot no load conditions with no decay heat
REVISED CH. 6 SAFETY ANALYSIS

- Ch. 6 Safety Analysis is being revised and will be included in DCD Rev. 18
 - Safety Analysis Methodology is the same as prior analysis (Rev. 15 of DCD)
 - Revised analysis includes revised bounding assumptions
 - New transient analysis evaluation will not credit operator action to mitigate the event
 - Vacuum relief system added to mitigate event
TRANSIENT DESCRIPTION

- Transients were performed at three different external/internal temperatures

<table>
<thead>
<tr>
<th>Int. Temp (°F)</th>
<th>Ext. Temp (°F)</th>
<th>ΔT (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78.6</td>
<td>-40</td>
<td>-118.6</td>
</tr>
<tr>
<td>104.9</td>
<td>8</td>
<td>96.9</td>
</tr>
<tr>
<td>121.4</td>
<td>33</td>
<td>88.4</td>
</tr>
</tbody>
</table>
For each external temperature, three different transients were analyzed:

- Initial equilibrium conditions
- Humidity (50%, 100%)
- Heat loads (Mode 3 NOP/NOT, zero decay heat)

To determine the bounding negative pressure scenario
-40°F TRANSIENTS

Containment Pressure: -40°F Transients

*Vacuum relief system not credited
8°F TRANSIENTS

Containment Pressure: 8°F Transients

*Vacuum relief system not credited
33°F TRANSIENT

Containment Pressure: 33 F Transients

*Vacuum relief system not credited
100% HUMIDITY TRANSIENTS

Containment Pressure: 100% Humidity

*Vacuum relief system not credited
ZERO HEAT LOAD TRANSIENTS

Containment Pressure: Zero Heat Load

*Vacuum relief system not credited
PRESSURE RESPONSE MAGNITUDE VALUES

The table below shows the peak external pressure at t=3600 seconds post-transient

<table>
<thead>
<tr>
<th>(psia)</th>
<th>H100%</th>
<th>NOHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>13.04</td>
<td>13.28</td>
</tr>
<tr>
<td>P33</td>
<td>12.91</td>
<td>13.32</td>
</tr>
<tr>
<td>N40</td>
<td>13.24</td>
<td>13.16</td>
</tr>
</tbody>
</table>
PHENOMENA RANKING

Based on the table and the plots on the previous slides it was determined that the dominant phenomena for a negative pressure excursion in order of rank is:

1. Humidity
2. Heat load
KEY ASSUMPTIONS

- Humidity is maximized (100%) to the highest possible value
 - Maximizes the contribution of the partial pressure of water
 - Shell temperature always below dew point
- The heat transfer gradient to the exterior was maximized
 - No active containment cooling was modeled
 - Design basis sensible heat loads were used to maximize containment internal temperature
 - Containment equilibrated with PCS in natural convection
 - At transient initiation instantaneous step change to force flow convection (24.8 ft/s)
KEY ASSUMPTIONS (CONT’D)

- Transient initiation external temperature was decreased 20°F according to chopped cosine distribution with a periodicity of 24 hours
- Conservative RCS sensible heat loss to containment was modeled
 - Assumed instantaneous step change to approximately 1/5th of the design value
- Zero decay heat was assumed
CONCLUSION

- The 33°F/120°F case with 100% humidity yielded the bounding negative depressurization rate
 - Used to confirm the vacuum relief design to mitigate the bounding external pressure excursion
- Next step is to demonstrate transient performance with vacuum relief
CONTAINMENT PRESSURE RESPONSE WITH VACUUM RELIEF

Containment design pressure differential is 1.7 psi

[Graph showing Containment Pressure Response with time in seconds on the x-axis and pressure in psia on the y-axis.]
VACUUM RELIEF SYSTEM DESIGN
DESCRIPTION

- Vacuum relief is required based on 6.2.1.1.4 containment external pressure analysis
- Current AP1000 Containment has no provision for containment vacuum relief
- Design change is being developed to resolve this issue
PROPOSED DESIGN CHANGE
SIZING CONSIDERATIONS

- 6” System based on the following:
 - Revised transient analysis results
 - -0.8 psig setpoint
 - ±0.4 psi instrument accuracy for pressure measurement
 - Valve opening time (20 secs)
 - Mitigates the transient and supports the -1.7 psig containment vessel design external pressure
- Includes significant margin in hydraulic resistance
SIZING CONSIDERATIONS

Containment Pressure Response

Nominal Setpoint (-0.8 psig)

Valve Actuation Worst Case including instrument inaccuracies (-1.2 psig)
VALVE SELECTION – ORC

- Motor operated butterfly valve selected for outboard relief
- High Cv (low resistance)
- Powered by 1E batteries
- Meets Code compliance
 - ASME Section III, ANSI 56.2, OM Code
VALVE SELECTION – IRC

- Self actuated swing check valve selected for inboard relief
- Simple design
- Horizontally Installed
- Balanced and Adjustable
- Soft-seated steel valve
- Meets Code compliance
 - ASME Section III, ANSI 56.2, OM Code
ASME CODE COMPLIANCE

● ASME Section III, Article NE-7000
 – NE-7110 (Scope)
 – Applicability of the vacuum relief system to the CV design
 – NE-7120(a) (Integrated Overpressure Protection)
 – Defines method use for overpressure protection
 – NE-7142 (Provisions when Stop Valves are Used)
 – No stop valves placed at the inlet or discharge lines of the relief device
ASME CODE COMPLIANCE (CONT’D)

– NE-7152 (Vacuum Relief Devices)
 – (a) Vacuum relief system is designed to Class 2
 – (b) Inboard check valve is compliant
 – (c)(1) Two independent external power operated valves (POV)
 – (c)(2) Two parallel self actuating relief devices in series with each POV
ASME CODE COMPLIANCE (CONT’D)

– NE-7220 (Content of Report)
 – Vacuum relief system design uses redundancy and diversity consistent with single failure analysis to maintain system function

– NE-7311 (Relieving Capacity)
 – Each independent relief path provides system capacity to prevent the CV design pressure from being exceeded
CONTAINMENT ISOLATION CONSIDERATIONS

- ANSI 56.2 and ANSI 56.8
 - GDC 54 (Test Ability)
 - Spool pieces and temporary test connections to be used for leakage rate testing
 - GDC 55 (RCS Boundary)
 - N/A
 - GDC 56 (Containment Isolation)
 - Automatic valve outside and inside containment
 - GDC 57 (Closed Systems)
 - N/A
CONTAINMENT ISOLATION CONSIDERATIONS

ANSI 56.2
MOV CONTROL LOGIC

*Open function has priority over close function
CONTAINMENT VESSEL DESIGN
CHANGES TO CV DESIGN DUE TO ADDITION OF VACUUM RELIEF SYSTEM

- The CV design external pressure is selected to be 1.7 psid
- Chapter 6 safety analysis demonstrates that the system precludes pressures exceeding the design external pressure
CHANGES TO DCD CHAPTER 3.8.2

- **DCD Section 3.8.2.4.1.1**
 - Removed all descriptions of transients used as basis for design external pressure analysis
 - Added statement defining design external pressure based on vacuum relief system actuation point

- **DCD Table 3.8.2-1**
 - CV design external pressure is now evaluated in Service Levels A and D as well as design case 2
 - To meet N-284 requirements, thermal loads were added to the external pressure design load combination
changes to TR09:
- Use of P_e combined with normal operation in cold weather
- Update of Load Combinations based on Table 3.8.2-1 revision
- Re-evaluation of CV stability in the vicinity of large penetrations
- More conservative ASME service level evaluations are now performed for CV external pressure cases
CV STRUCTURAL ANALYSIS SUMMARY

- DCD Revision 15 contained CV design external pressure of 2.9 psid and was included in Load Combinations Level A and D
- Potential buckling was seen when cold weather thermal case was considered (original non-mechanistic assumptions)
 - If thermal loads are not considered in this case, the CV design meets NE-3133 for buckling
- Chapter 6 analysis was then refined with more realistic assumptions to define design external pressure (0.9 psid)
- This resulted in a dual design external pressure in Table 3.8.2-1, which was found to be in conflict with the ASME Code Section NE-3113
- The optimum design external pressure is now defined by the Chapter 6 safety analysis while still providing acceptable results in all load combinations to meet N-284 at 1.7 psid
Stability analysis has been performed for the containment vessel for load combination service levels A and D at 1.5 psid.

- N-284 requirements are met for global and local instability.
- All requirements of NE-3000 for allowable stress intensities are also met.
- These are the only 2 service level cases that contain external pressure – design case Des2 for external pressure is the same as service level A.

Currently performing the analysis to verify 1.7 psid design external pressure.
FINAL SUMMARY

- Westinghouse has described design and analysis changes to address the containment vessel external pressure issue.
- Westinghouse will submit formal change notice describing these changes and DCD impacts on July 30.
- Westinghouse will support the staff to reach their final safety determination on this issue.