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" Acronyms and Abbreviations

gpd gallons per day

gpm gallons per minute

ID inner (inside) diameter

ISR In-Situ Recovery

UZF unsaturated zone flow

WDEQ Wyoming Department of Environmental Quality
WY Wyoming
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MPH.1  HANK SITE NUMERICAL GROUND-WATER MODELING

Several modeling techniques were employed to evaluate ground-water impacts by the proposed
ISR mining operations. The products of this modeling included predictions of operational
drawdown, gradient changes, recovery, horizontal wellfield flare, and vertical flare.

The primary modeling approach used a version of the MODFLOW model to evaluate ground-
water flow and drawdown resulting from the planned mining operations. The MODFLOW
model was developed by the USGS in 1988 and has been updated and revised several times.
MODFLOW-2005 (Harbaugh, 2005) was used for modeling of the ground-water system at the
Hank Project. MODFLOW-2005 was used for the Hank Project because it has provisions for
modeling of unsaturated zone flow (UZF) under unconfined conditions. The names MODFLOW
and MODFLOW-2005 are used interchangeably in the remainder of the addendum.

The horizontal flare from an operating ISR wellfield was evaluated with the contaminant
transport model MT3DMS (Zheng and Wang, 2006) which utilizes cell by cell flow terms
produced by the MODFLOW model. With this coupling to the MODFLOW model, MT3DMS
and MODFLOW use a common model domain and configuration to evaluate the transport flare
of mining solutions during conveyance between ISR injection and production wells. The use of
a convection dispersion equation based numerical transport model allows a fairly sophisticated
interpretation of the expected flare that will occur with the proposed injection and collection well
operation.

The vertical flare of mining solution was evaluated by compiling multiple runs of an analytical
radial well flow model (WTAQ (Barlow and Moench, 1999)) into a spreadsheet based matrix

_representing a paired ISR injection and extraction well. The WTAQ model incorporates partial
penetration of both the injection and extraction wells, allows a large degree of anisotropy in the
ratio of vertical to horizontal hydraulic conductivity and utilizes an implementation of the
Neuman (1972) solution for unconfined aquifers. Predicted drawdowns from the WTAQ model
were then compiled in a spreadsheet, and, using some additional programming to interpret the
WTAQ model output, the results were converted to a matrix of heads and velocities for the
aquifer 1nterval between the palred wells. :

The numerical model was also used to evaluate the potential for retrieval of excursions and the
sufficiency of the monitor well spacing. Well stress rates for a local area were adjusted shghtly
to produce a stronger gradient reversal in simulating the proposed response to a local excursion.
The magnitude of the gradient reversal was then compared with baseline simulations to evaluate
the effectiveness in retrieval of an excursion.

MPH.1.1 Hank Project Modeling

MODFLOW-2005 was used to model the ground-water flow prior to, during and after operation
of the wellfield(s). A model grid was developed to cover the proposed mine area with a
relatively fine grid (30 foot by 30 foot cells) and extending the modeled area with increased cell
size to encompass approximately 283 square miles. Injection and production wells were
included as well stresses within the fine grid area. MODFLOW-2005 has the capability of
modeling partially saturated flow through an unsaturated zone flow (UZF) module, and this was
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used for the single layer unconfined aquifer Hank model in the area around the active ISR
mining. This module allowed incorporation of delayed drainage from the zone above the water .
table for the aquifer under unconfined conditions.

MPH.1.1.1 Model Configuration

The single layer model utilized an unconfined aquifer type, with a series of general head
boundaries on the perimeter of the model grid. The initial potentiometric head in the ore sand
was approximated as a uniform gradient across the model grid areas. This surface was
developed using the typical gradient of 0.005 feet/feet and the general gradient is from east to
west. The base of the aquifer in the immediate mine area was determined from drill hole based
structural mapping. Outside of the mine area, the elevation of the base of the aquifer was
extrapolated based on typical structural dip from the available structural mapping. The thickness
of the aquifer was established as the typical thickness of 90 feet.

On the periphery of the model grid, selected cells were designated as general head boundary cells
to stabilize the potentiometric surface. The head in each of the 106 designated general head
boundary cells was set at the initial model head and the cell conductance was set at a relatively
high level to provide a generally stable regional potentiometric surface.

MPH.1.1.1.1 Model Grid

The model grid consists of 274 rows by 98 columns and is rotated approximately 10.5 degrees
counterclockwise from the orthogonal directions. The smallest cell dimension is 30 feet by 30
feet, and the largest cell dimension is 13,500 feet by 13,500 feet as shown in Figure MPH.1-1.

MPH.1.1.1.2 Aquifer Properties

The primary aquifer properties information used in the model included hydraulic conductivity
and specific yield. The hydraulic conductivity was set at 1.0 foot/day and an effective specific
yield of 0.14. The water level is near the overlying confining layer in some areas of the planned
wellfields, and it is likely that a significant portion of the wellfield area will be under unconfined
conditions both prior to and during mining. This results in a condition where there is potentially
an impact by vertical partially saturated flow from areas where the wellfield bleed causes

* significant drawdown in the aquifer. ' '

The partially saturated flow conditions require additional definition of hydraulic properties. The
UZF module in MODFLOW-2005 utilizes the ratio of vertical to horizontal hydraulic
conductivity and a Brooks-Corey function to approximate the hydraulic conductivity under
partially saturated conditions. The ratio of vertical to horizontal hydraulic conductivity was
estimated at 0.085. The Brooks-Corey function uses an exponent (epsilon) to define the shape of
the partially saturated hydraulic conductivity as a function of volumetric moisture content and
that was set at 3.5. The effective saturated volumetric moisture content was set at 0.30 and the
UZF module uses the specific yield of 0.14 to approximate residual saturation.

MPH.1.1.1.3 Wellfield Configuration

The proposed mining sequence includes two distinct wellfields with an anticipated mining period
of 1% years for each wellfield. Each wellfield consists of a combination of staggered production
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and injection wells arranged generally in a line drive layout for the sinuous ore body. The
number of wells and well locations are preliminary and will be refined with further definition of
the ore body. Because the natural gradient is from east to west, the well arrangement for the
typically narrow ore body places the injection wells on the upgradient side of the ore zone with
the production wells on the downgradient side of the ore zoné. Several model runs were
conducted to evaluate horizontal flare, general wellfield operation, and post mining recovery.
The model runs and wellfield configuration for the horizontal flare evaluation are described in a
following section. Figure MPH.1-2 presents the wellfield #1 production and injection well
layout. Figure MPH.1-3 presents the wellfield #2 production and injection well layout.

MPH.1.1.1.4 Operational Parameters

The anticipated production rates from the wellfield #1 wells range from 12.5to 12.7 gpm. A

~ total of 198 production wells were included in the full wellfield #1 operation. Total production
rate was 2,500 gpm. Injection well operational rates ranged from 5.2 to 12.7 gpm with a total of
271 injection wells. Excess production or bleed rate was set at 3% of total production with a
resulting injection rate of 2,425 gpm.

The anticipated production rate from the 93 production wells in wellfield #2 is 26.9 gpm with a
resulting total production rate of 2,500 gpm. Injection well operational rates ranged from 15.6 to
20 gpm with a total of 119 injection wells. Excess production or bleed rate was set at 3% of total
production with a resulting injection rate of 2,425 gpm.

MPH.1.1.1.5 Stress Periods

Numerous stress periods were included to allow comparison of predicted aquifer response to the
wellfield operations at several times during the simulation period. A transient simulation also
requires very small computational time steps after each significant change in aquifer stresses
including startup or shutdown of well operation. This is necessary to prevent a failure to
converge in the model computation. The initial stress period and time steps were set at a very
small value (0.0001 day with 5 time steps) to produce a model output result that essentially
reflects initial head conditions. The stress period lengths were then gradually increased until
there was a significant change in model stresses, at which the sequence reverted to a short stress
period followed by gradually increasing stress period lengths. A total of 12 stress periods were
used in a total simulation period of six years which included 1.5 years of operation of each
wellfield followed by a three year period of post-mining recovery. '

VMPH.1.1.2 Model Results

The MODFLOW model produces output in terms of predicted drawdown or predicted head at
selected times within the simulation. The drawdown or water-level rise is calculated as the
difference between head at a selected time and the initial head for the aquifer at the start of the
simulation. Both results are useful in the interpretation of aquifer response to the mining and are
used to evaluate the modeling predictions.

MPH.1.1.2.1 Wellfield #1

The configuration for wellfield #1 is show in Figure MPH.1-2. The modeled potentiometric
surface prior to the start of mining is presented Figure MPH.1-4. The mining operation of the
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production and injection wells is expected to continue for 18 months, after which mining of
wellfield #2 begins. Figure MPH.1-5 presents the predicted drawdown contours for wellfield #1
after one year of operation. Figure MPH.1-6 presents the predicted water-level] elevation
contours for wellfield #1 after one year of operation. The operation of the wellfield at a bleed
rate of 3% of the planned 2,500 gpm production rate has resulted in development of a significant
cone of depression around the operating wellfield. The area of gradient reversal extends
approximately 800 to 1,300 feet to the west of wellfield #1.

MPH.1.1.2.2 Wellfield #2

The configuration for wellfield #2 is show in Figure MPH.1-3. The operation of wellfield #2
will begin after mining is completed in wellfield #1. Figure MPH.1-7 presents the predicted
drawdown contours for the mine area after 18 months of operation of wellfield #1 and 18 months
of operation of wellfield #2. The drawdown calculation is based on water level change from the
pre-mining potentiometric surface and this drawdown reflects significant residual drawdown
from the operation of wellfield #1. The drawdown at the end of mining shown in Figure MPH.1-
7 is very similar to drawdown predictions produced by the analytical model. This similarity
between the numerical and analytical model results demonstrates the adequacy of analytical
modeling with an appropriate configuration. Figure MPH.1-8 presents the predicted water-level
elevation contours for the mine area at the end of mining in wellfield #2. Wellfield #2 is planned
to be operated at a bleed rate of 3% of the planned 2,500 gpm production rate. The area of
gradient reversal extends approximately 1,200 to 1,600 feet to the west of wellfield #2.

MPH.1.1.2.3 End of Mining

The end of mining water level changes are reflected in Figures MPH.1-7 and MPH.1-8 as
described in the previous section. The planned Hank area ISR project includes two adjacent
wellfields operated in sequence for a period of 18 months per wellfield. Wellfield #1
encompasses a larger area, but the effective stress rate of 75 gpm still produces a significant
impact on the potentiometric surface. Following cessation of mining in wellfield #1, the
potentiometric surface exhibits some recovery in the northern portion of the mining project.
Simultaneously, the operation of wellfield #2 causes drawdown in the southern portion of the
. project area.

MPH.1.2 Horizontal Flare Evaluation

Horizontal flare around the operating well field was evaluated by modeling transport of a generic
solute that was introduced into the injection wells. The MODFLOW-2005 results for a selected
ore zone within wellfield #1 were used as a basis for simulating flare of the lixiviant in the
operating wellfield.

MPH.1.2.1 © MT3DMS Modeling

The MT3DMS model is a convection-dispersion equation (CDE) based model that utilizes
ground-water flow output from the MODFLOW model to simulate solute transport. This is
accomplished using a routine in MODFLOW that produces a transfer file that includes cell by
cell flow terms. This transfer file is then read by MT3DMS, and the solute transport processes
are “superimposed” on the ground-water flow. The MT3DMS has features for solute adsorption,
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retardation, transformation, degradation, etc., but for this application, the solute was assumed to
be conservatively transported and these features were not used. :

In order to evaluate the flare, a generic solute was used with an elevated concentration of the
lixiviant injectate. The ratio of lixiviant concentration to background concentration was 5, and
the background concentration was set at 1.0 for simplicity. The lixiviant concentration was set at
5.0, and the increase in concentration in the area surrounding injection wells was used as the
indicator of flare. Because the solute was generic and the magnitude of concentration changes is
used to quantify flare, the units of concentration do not affect the evaluation.

MPH.1.2.1.1 Transport Model Configuration

The model grid, dimensions, and layout are the same as those established in the MODFLOW-
2005 modeling.

MPH.1.2.1.2 Wellfield Configuration

The wellfield utilized in the MODFLOW-2005/MT3DMS modeling was limited to the lower
ore zone of wellfield #1, This subset of wellfield #1 included 88 production wells operating at a
rate of 12.5 gpm, and 125 injection wells operating at a rate ranging from 5.2 to 12.7 gpm. There
was a 3% bleed in the well field operation with a resulting net extraction stress of approximately
33 gpm. The wells included in the horizontal flare modeling are shown along with the
approximate boundary of the identified ore body in Figure MPH.1-9

MPH.1.2.1.3 Stress Periods

Because MT3DMS and MODFLOW-2005 are coupled through a transfer file, the stress periods
for MT3DMS are the same as those used in MODFLOW-2005. A modeling period of 120 days
was used in the interpretation of horizontal flare. This modeling period was selected as being
sufficient to allow establishment of pseudo steady-state solution flow paths and gradients within .
the operating wellfield, while being a short enough period that the increased gradient reversal
with longer operation will not appreciably change or reduce the flare zone. With only a subset of
wellfield #1 included in the stress rate, total magnitude of drawdown and corresponding gradient
reversal to the wellfield is also conservatively small so-there should also be some degree of
conservatism in the estimation of flare. ’ '

MPH.1.2.1.4 MT3DMS Inputs

The typical aquifer thickness for the MODFLOW-2005 modeling is 90 feet, but the anticipated
completion interval for an ore body is roughly 15 feet.” A cell thickness of 15 feet was specified
in the MT3DMS model to represent the typical anticipated completion thickness. The effective
~ porosity of the ore zone was estimated at 30%. The dispersivity was set at 2 feet, but it is not
considered a critical factor because ISR mining is primarily a pseudo steady-state convection
dominated process. The diffusion coefficient was set at zero. As discussed previously, the
background generic solute concentration was set at one, with a lixiviant injectate concentration
of five.
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MPH.1.2.2  Model Results

The development of the drawdown around the operating wellfield area with the 120 day
simulation period results in gradient reversal to the wellfield. Figure MPH.1-10 presents the
predicted potentiometric surface for the horizontal flare wellfield operation. On the west side of
the wellfield, the zone of gradient reversal generally extends a few hundred feet after 120 days of
operation. Since the ore body is irregularly shaped and consists of two separate zones, the
potentiometric surface is complex. '

The MT3DMS simulation utilized the ground-water flow predictions from MODFLOW-2005 to
simulate the transport of the generic solute from the injection wells to the production wells. The
results of this simulation are presented in Figure MPH.1-11 as concentration contours centered
around the operating injection wells. The contour interval is 0.5 units, and the outer contour is
1.5 times the natural background concentration of the aquifer. This is interpreted as a
concentration change representing the extent of the lixiviant flare. In the model cells containing
an active injection well, the concentration approaches the injectate concentration of five.

MPH.1.2.2.1 Flare Evaluation

As shown in Figure MPH.1-11, the combination of radial flow of the lixiviant immediately
around the injection wells and the radial capture zone around production wells results in flow
paths that extend throughout and slightly beyond the ore body. This horizontal flare is quantified
as the ratio of the area contacted by the injectate to the area of the ore body under wellfield
pattern (see Figure MPH.1-9). The area contacted by the injectate is represented by the contour
line where there is a 0.5 unit concentration increase over the background concentration of 1.0.
The ratio of the area within the 1.5 concentration contour to the area of the ore body within the
well pattern is 1.39 and this is considered the horizontal flare factor. This flare factor is larger
than a more typical estimate of 1.25, and this reflects the relatively narrow linear nature of the
ore body and wellfield.

MPH.1.3 Vertical Flare Evaluation

The vertical flare was estimated using a combination of the WTAQ program to calculate heads
through a cross section of the aquifer and a spreadsheet for compositing the heads to evaluate the

~ resulting velocity field. The WTAQ program incorporates a two-dimensional analytic solution
~ for axial-symmetric ground-water flow in both confined and unconfined aquifers. The solution

allows simulation of partially penetrating wells for an unconfined aquifer, which is directly
applicable for the Hank ISR mining project.

The product of the WTAQ model is prediction of observation well drawdown at specified time(s)
after pump start and at specified distance(s) from the pumping well. For an injection well, the
drawdown predictions are simply inverted to represent water-level rise. The WTAQ program
was run multiple times and the results composited to generate a matrix of drawdown predictions
with matrix rows representing one foot of vertical thickness and matrix columns representing
radial distance from the well in increments of one foot. The matrix dimensions were 90 rows (90
feet aquifer thickness) by 68 columns (69 feet radial distance from well). The matrix was
basically mirrored on a vertical axis to provide a matrix for both an operating injection and
production well. The resulting matrices were then incorporated into the spreadsheet to represent
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a combination of an ISR injection and production well pair at a spacing of 69 feet in a 90 feet
thick aquifer. '

MPH.1.3.1  WTAQ Modeling

Inputs to the WATQ model define the completion interval for the simulated production and
injection wells, and the required aquifer properties for the solution. Both the production and
injection wells were located within a 90 foot thick water table aquifer. Horizontal hydraulic
conductivity was 1.0 feet per day, and the ratio of vertical to horizontal hydraulic conductivity
was 0.085. The aquifer storage properties included a storage coefficient of 2.1E-06 (ft/ft) and a
specific yield of 0.14. The wells were assumed to be completed from a depth of 76 to 85 feet
(inclusive) below the top of the aquifer for a ten foot ore body. This represents a likely
configuration for a major ore body at the Hank site.

The observation well which represents the general aquifer was assumed to be fully penetrating.
Drawdown was simulated for both 10 and 30 days since the start of injection, but only the 30 day
simulation was used in the vertical flare analysis. This was considered sufficient time for
development of the flow regime. Because the paired well arrangement reduces a typical
wellfield arrangement to a simple pair of wells rather than a production well surrounded by
multiple injection wells, the anticipated well production rate was reduced to approximately 6.2
gpm to represent the simplified configuration. The multiple runs of the WTAQ program were
accomplished with an external shell program that incremented through the depth and distance
from the well while compiling the predicted drawdown into the matrix. The matrices were then
incorporated into the vertical flare spreadsheet.

MPH.1.3.2  Vertical Flare Spreadsheet

With the product of the WTAQ program in a matrix of predicted drawdown at one foot intervals
in both horizontal and vertical dimensions for the hypothetical vertical cross section, an EXCEL
spreadsheet with additional Visual Basic programming was used to evaluate the vertical flare.
The matrix of drawdown values was inserted into the spreadsheet to represent the propagation of
drawdown from a production well after 30 days of operation. A mirror image of the matrix was
used to represent the injection well water-level rise. The summation of the drawdown due to the
production well and water-level rise represents the head change in each cell representing a square
foot of the aquifer between the wells.

An arbitrary water-level elevation value of 90 feet was added to the water-level change in order
to produce a “head” matrix for the cross section between the two wells. This head matrix then
allowed calculation of both a horizontal and vertical ground-water velocity for each cell using
the head in surrounding cells to calculate a gradient. When combined with the horizontal and
vertical hydraulic conductivities of 1.0 ft/day and 0.085 ft/day, respectively, the horizontal and
vertical Darcy velocities can be calculated.

MPH.1.3.2.1 Velocity Field

The velocity field for the simple well configuration is used to interpret vertical flare. Because
the differential between horizontal and vertical hydraulic conductivity is large, the vertical
velocity is reduced very quickly with small vertical distance from the completion interval. The
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horizontal and vertical ground-water velocity tabulations in the two dimensional field are
presented in Figure MPH.1-12. The tabulations are abbreviated to show only the lower portion
of the aquifer where there is active injection and production. The vertical and horizontal
velocities are presented in units of feet per day. The well completion is shown as the larger
diameter interval in the schematic at each end of the section.

The direction of the vertical velocity is indicated by the sign with a positive value indicating
upward flow and a negative value indicating downward flow. In close proximity to the injection -
well, the larger head values within the completion interval produce upward and downward flare.
With increasing distance from the injection well, there is a gradual convergence from intervals
above and below the completion interval to the completion interval. Near the production well,
the vertical convergence to the completion interval becomes stronger.

The horizontal ground-water movement is from the injection well to the production well. The
horizontal velocities are greatest near the injection and production wells because of the radial
flow representation of the drawdown values produced by WTAQ. The radial flow calculation
also results in a variable area represented by each column in the matrix. Each column can be
viewed as one-half of a cylinder with a radius of the distance from the nearest of the two wells,
.and this makes the area proportional to the square of the radius. Hence, the calculation of
composite flare is weighted to the square of the radius from the wells.

MPH.1.3.2.2 Flare Evaluation

The vertical flare is calculated as a ratio of the area (or volume) of the aquifer wherein there is a
significant vertical velocity away from the completion interval to the actual completion interval.
This area or volume is calculated as the thickness of cells in each column where the magnitude
of the vertical velocity is significant multiplied by the fraction of the area/volume represented by
each column in the matrix. Figure MPH.1-12 presents the vertical velocity matrix with a red
boundary line indicating the 10 foot thick ore zone and cells above and below the ore zone where
the velocity is 0.05 feet/day or greater away from the ore zone. Horizontal velocity is typically
an order of magnitude or more larger than the vertical velocity and the threshold velocity
boundary shown for a velocity is 0.50 feet/day or larger. The bounded area for horizontal
velocity also includes the entire 10 foot thick ore zone, but does not include horizontal velocity
greater than 0.50 feet/day where the vertical flow is convergent to the ore zone. ‘

The proportional area/volume represented by each column increases with distance from the
injection well or production well to a maximum at the midpoint between the injection and
production wells. The column closest to the injection well represents only 0.043% of the
area/volume included in the model, and each of the two columns bridging the midpoint between
the wells represents 2.9% of the area/volume.

The number of cells included in each column that were within one or both of the bounded areas
shown on Figure MPH.1-12 were summed and then multiplied by the fraction of the area/volume
represented by the column. These products of cell counts and fractional area/volume where then
summed and divided by the corresponded cell counts for the ore zone only. This ratio represents
the estimated vertical flare for the specified configuration, and was calculated as 1.22. This is
similar to the industry standard vertical flare of 1.25. Although there are necessary
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simplifications and uncertainties involved in this simulation approach, the results are reasonable
and consistent with vertical flare estimates from existing ISR operations.

MPH.1.4 Excursion Control and Retrieval

The potential for excursion was considered in a MODFLOW-2005 modeling scenario by
adjusting modeling parameters to produce a temporary and local imbalance in wellfield
operation. The imbalance involves either insufficient production rate or excess injection rate for
a local area such that the local bleed rate is zero or actually negative representing more injection
than production. Limiting this condition to a Jocal area of a few wells is considered appropriate
because a wider scale imbalance with insufficient bleed is unlikely given continuous monitoring
of production and injection rates. '

Simulation of retrieval of an excursion is essentially a reversal of the process that created the
excursion. Increasing the effective bleed rate for a local area will increase the local drawdown
and cause an expansion of the area of gradient reversal. Within this zone of gradient reversal,
ground water will be flowing to the production wells and any ground water that has been
impacted by mining fluids will be retrieved.

MPH.1.4.1 MODFLOW Modeling Changes

The MODFLOW-2005 modeling configuration described in Section MPH.1.2 was used for the
simulation of excursion and retrieval. The model included a wellfield for the lowest ore zone
and consisted of 88 production wells operating at a rate of 12.5 gpm, and 125 injection wells
operating at a rate ranging from 5.2 to 12.7 gpm. There was a 3% bleed in the well field
operation with a resulting net extraction stress of approximately 33 gpm.

In order to simulate a local imbalance, the extraction rate for the four southernmost production
wells was adjusted for two separate simulations. The first simulation included operation of the
wellfield in a balanced condition for 30 days, followed by 30 days of operation with reduced
production rates for the four southernmost production wells to produce a local imbalance. This
was in turn followed by a 30 day period with increased production in the four designated wells to
affect retrieval and restore gradient reversal. The magnitude of rate changes (both decrease and
increase) was 1.04 gpm for each of the four wells. This is approximately an 8% change in the
well production rate for the four wells, but only resulted in a wellfield bleed rate range of 2.6 to
3.4% of total wellfield production. The second simulation used the same sequence of balanced,
decreased production, and increased production from the wellfield, but utilized a 60 day period
for each of the phases.

MPH.1.4.2 30 Day Excursion and Retrieval Simulation

The results of a MODFLOW-2005 simulation of 30 days of normal wellfield operation are
presented in Figure MPH.1-13. The cone of depression around the wellfield is expanding, and
on the west side of the southern end of the wellfield, the area of gradient reversal extends more
than 400 feet from the wellfield. At the end of the initial 30 day period, the production rates
were reduced for four wells on the southern end of the wellfield. The potentiometric surface
after 30 days of operation with this local imbalance is presented in Figure MPH.1-14. The
reduction of production rates for this simulation has resulted in loss of the gradient reversal and a
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very flat potentiometric surface west of the southern end of the wellfield. The width of the zone
where the gradient reversal is lost is more than 500 feet, and based on the very small ground-
water gradient in this area, an excursion is possible but movement rates would be extremely
slow. Based on the surface presented in Figure MPH.1-14, the potential excursion of mining
fluids would also be spread over a width that is approaching the width of the interval where
gradient reversal is lost. Figure MPH.1-15 presents the potentiometric surface after an additional
30 day stress period with increased well production rates. The gradient reversal has been
regained and extends approximately 400 feet to the west of the wellfield. This indicates that
retrieval will be effective, but the gradient reversal is still relatively mild and the rates of both
excursion and retrieval will be slow.

MPH.1.4.3 60 Day Excursion and Retrieval Simulation

The second simulation used a period of 60 days for normal wellfield operation followed by 60
days with a local wellfield imbalance with a subsequent 60 days of overproduction in the
affected area. After 60 days of balanced wellfield operation, there is distinct gradient reversal
west of the wellfield. After an additional 60 days with local imbalance the potentiometric
surface shown in Figure MPH.1-16 indicates that gradient reversal has been lost and that a very
flat potentiometric surface extends for approximately 400 feet west of the southern end of the
wellfield. When the production rates are increased to retrieve any mining fluid impacted ground
water moving to the west of the wellfield, gradient reversal is regained within 60 days as shown
in Figure MPH.1-17. The zone of restored gradient reversal extends beyond 500 feet from the
edge of the wellfield.

MPH.1.4.4 Discussion of Excursion Mode! Results

The excursion and retrieval simulations indicate that development of excursion conditions under
moderately imbalanced wellfield conditions will be relatively slow, and that regaining gradient
reversal will also be a slow process. This is attributed in large part to the expected unconfined
conditions for the Hank wellfield areas. The large volume of ground water released or stored
with a unit change in head greatly extends the time frame for significant gradient changes. The
width of the zone over which gradient reversal is lost is also relatively wide at approximately 500
feet. Mining fluids that are migrating away from the active wellfield will be spread over a width
that is approaching the width of the area where gradient reversal is iost, and there will be
additional flare as the impacted ground water moves away from the wellfield. This indicates that
the anticipated monitoring ring well spacing of 500 feet will be sufficient to detect potential
excursions.
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Figure MPH.1-3. Hank Wellfield #2 Model Configuration
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Figure MPH.1-12. Predicted Vertical and Horizontal Velocity Fields For Well Pair Simulation
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Uranerz Energy Corporation Nichols Ranch ISR Project

ADDENDUM 6B:

NICHOLS RANCH ISR PROJECT SURETY ESTIMATE

June 2010
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3 Uranerz

ENERGY CORFPORATION

Surety Estimate
First Year of Operation
Nichols Ranch In-Situ Recovery Project
Uranerz Energy Corporation

Total Restoration and Reclamation Cost Estimates

No. Cost Item Cost
1 |GROUNDWATER RESTORATION COST $2,955,240
2a |PLANT EQUIPMENT REMOVAL AND DISPOSAL COST $213,150
2b |BUILDING DEMOLITION AND DISPOSAL COST $911,292
3 [SOIL REMOVAL & DISPOSAL COST $234,300
4 |TOTAL WELL ABANDONMENT COST $319,234
5 [(WELLFIELD EQUIPMENT REMOVAL & DISPOSAL COST $335,643
6 |TOPSOIL REPLACEMENT & REVEGETATION COST $313,978
7 [MISCELLANEOUS RECLAMATION COST $3,335
Subtotal Restoration and Reclamation Cost Estimate $5,286,171
Subtotal $5,286,171
Administration,Overhead and Contingency (25%) $1,321,543
Total $6,607,714
TOTAL CALCULATED IN 2010 DOLLARS $6,607,714
US DEPT. of COMMERCE PRODUCER PRICE INDEX ADJUSMENT 2007 to 2010 5.78%
US DEPT. of COMMERCE PRODUCER PRICE INDEX ADJUSMENT 2009 to 2010 5.31%

Note: Unit costs presented in the various worksheets in this estimate originally
incorporated 2007 values. Subsequently, where available, unit costs from the latest
version (2009) of WDEQ Guideline 12, App K were included. All unit costs, whether
2007 or 2009, were adjusted by the Producer Price Index factor for the respective data.
Note that PPl was used rather than Consumer Price Index as identified during WDEQ
review, as changes in producer prices are more appropriate for industrial applications
than a consumer price index.
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June 2010

Worksheet 1, No. | --

Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

GROUNDWATER RESTORATION
-_Mining Unit
Cost Item Nichols #1 Notes
Technical Assumptions
Wellfield Area (F£) 1,551,650

Wellfield Area (Acres)

35.62|66.21 Ac at Nichols, 45.56 at Hank per URZ permit

Affected Ore Zone Area (th) 1,551,650
Avg Completed Thickness (Ft) 7.27
Factor for Flare 1.45
Affected Volume: 16,356,717
Porosity 0.3
Gallons per Cubic Foot 7.48
Gallon per Pore Volume 36,704,474
Number of Wells in Unit(s)
Recovery Wells 233
Injection Wells 259
Monitor Wells 33
Average Well Spacing (Ft) 100
Average Well Depth (Ft) 550
| Groundwater Sweep
A. Plant & Office
Operating Assumptions:
Flowrate (gpm) 50
PV's Required 1.00
Total Gallons for Treatment 36,704,474
Total Kgals for Treatment 36,704
Cost Assumptions:
Power
Avg Connected Hp 15
Kwh's/Hp 0.9325
$/Kwh 0.05|$.02 plus demand charges per quote
Gallons per Minute 50
Gallons per Hour 3000
Cost per Hour $0.74
Cost per Kgal () $0.247
Chemicals
Barium Chloride ($/Kgals) $0.043] Costs from operating ISR facility experience (Cogema)
Antiscalent ($/Kgals) $0.000| Costs from operating ISR facility experience (Cogema)

Eiution ($/Kgals)

$0.105| Costs from operating ISR facility experience (Cogema)

Repair & Maintenance ($/Kgals)

$0.065| Costs from operating ISR facility experience (Cogema)

Analysis ($/Kgals)

$0.173| Costs from operating ISR facility experience (Cogema)

Total Cost per Kgal $0.63
Total Treatment Cost $23,223
Utilities
Power ($/Month) 1,904
Propane ($/Month) 846
Time for Treatment
Minutes for Treatment 734,089
Hours for Treatment 12,235
Days for Treatment 510
Average Days per Month 30
Months for Treatment 17.0
Years for Treatment 1.42
Utilities Cost ($) - $46,735
TOTAL PLANT & OFFICE COST $69,958
B. WELLFIELD
Cost Assumptions:
Power
Avg Flow/Pump (gpm) 1
Avg Hp/Pump 1.5
Avg # of Pumps Required 50
Avg Connected Hp 75
Kwh's/Hp 0.9325
$/Kwh 0.05289
Gallons per Minute 50
Gallons per Hour 3000
Costs per Hour ($) $3.70
Costs per Gallon ($) $0.0012
Costs per Kgal ($) $1.23
Repair & Maintenance ($/Kgals) $0.017
Total Cost per Kgal $1.250
TOTAL WELLFIELD COST $45,878
TOTAL GROUNDWATER SWEEP COST $115,836

Page 2 of 17



June 2010

Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

Worksheet 1, No. I

GROUNDWATER RESTORATION
Mining Unit
Cost ltem Nichols #1 Notes
Il REVERSE OSMOSIS
A. PLANT & OFFICE
Operating Assumptions:
Flowrate (gpm) 50
PV's Required 6.00
Total Gallons for Treatment 220,226,842
Total Kgals for Treatment 220,227
Feed to RO (gpm) 50
Permeate Flow (gpm) 40
Brine Flow (gpm) 10
Average RO Recovery 80%
Cost Assumptions:
Power
Avg Connected Hp 20
KWh/Hp 0.9325
$/Kwh 0.05289{$.02 plus demand charges per quote
Gallons per Minute 50
Gallons per Hour 3000
Cost per Hour () $0.99
Cost per Gallon ($) $0.0003
Cost per Kgal (3) $0.33
Chemicals
Sulfuric Acid ($/Kgals) $0.080|Costs from operating ISR facility experience (Cogema)
Caustic Soda ($/Kgals) $0.117|Costs from operating ISR facility experience (Cogema)
Hydrochloric Acid ($Kgals) $0.010/Costs from operating ISR facility experience (Cogema)
Hydrochloric Sulfide ($Kgals) $0.322{Costs from operating ISR facility experience (Cogema)
Repair & Maintenance ($Kgals) $0.295|Costs from operating ISR facility experience (Cogema)
Sampling & Analysis ($/Kgals) $0.173|Costs from operating ISR facility experience (Cogema)
Total Cost per Kgal ($) $1.33
Total Pumping Cost ($) $292,088
Utilities
Power ($/Month) 1,904
Propane ($/Month) 846
Time for Treatment 0
Minutes for Treatment 4,404,537
Hours for Treatment 73,409
Days for Treatment 3,059
Average Days per Month 30
Months for Treatment 101
Utilities Cost ($) $276,720
TOTAL PLANT & OFFICE COST $568,808
B. WELLFIELD
Cost Assumptions:
Power
Avg Flow/Pump (gpm) 1
Avg Hp/Pump 1.5
Avg # of Pumps Required 725
Avg Connected Hp 108.75
Kwh's/Hp 0.9325
$/Kwh 0.053
Galllons per Minute 72.5
Gallons per Hour 4350
Costs per Hour ($) $5.36
Costs per Gallon ($) $0.0012
Costs per Kgal ($) $1.23
Repair & Maintenance ($/Kgals) $0.017
Total Cost per Kgal $1.250
TOTAL WELLFIELD COST $275,267
TOTAL REVERSE OSMOSIS COST $844,075
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Worksheet 1, No lll --

Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

GROUNDWATER RESTORATION
Mining Unit
Cost Item Nichols #1 Notes
Il Deep Disposal Well
Operating Assumptions:
Total Disposal Requirement

RO Brine Total Gallons 44,045,368

RO Brine Total Kgallons 44,045

Brine Concentration Factor 1

Total Concentrated Brine (Gals) 44,045,368

Months of RO Operation 17.0

Average Monthly Regm't (Gallons) 2,592,000

Average Brine Flow (gpm) 60.0

Total DDW Disposal (Gallons) 44,045,368

Total DDW Disposal (Kgallons) 44,045

Cost Assumptions:

Avg Connected Hp 20
Kwh's/Hp 0.9325
$/Kwh 0.053/$.02 plus demand charges per quote
Gallons per Minute 60.0
Gallons per Hour 3600
Cost per Hour ($) $0.99
Cost per Gallon ($) $0.0003
Cost per Kgal ($) $0.27

Chemicals
RO Antiscalent ($/Kgals) $0.203|Costs from operating ISR facility experience (Cogema)
WDW Antiscalent ($/Kgals) $0.239|Costs from operating ISR facility experience (Cogema)

Sulfuric Acid ($/Kgals)

$0.296|Costs from operating ISR facility experience (Cogema)

Corrosion Inhibitor

$0.230|Costs from operating ISR facility experience (Cogema)

Algacide $0.085|Costs from operating ISR facility experience (Cogema)

Other $0.000|Costs from operating ISR facility experience (Cogema)

Repair & Maint. ($/Kgals) $0.243|Costs from operating ISR facility experience (Cogema)
Total Cost per Kgal $1.570
TOTAL DEEP DISPOSAL WELL COST $69,143
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|I Worksheet 1, Nos. IV&V --

GROUNDWATER RESTORATION

Surety Estimate

First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

Mining Unit
Cost Item Nichols #1 Labor Cost Factors Notes
WIV STABILIZATION MONITORING
Operating Assumptions:
Time of Stabilization (mos) 17.0
Frequency of Analysis (mos) 3
Total Sets of Analysis 6
Cost Assumptions:
Power ($/Month) $0 No add'l power required to sample
Total Power Cost $0
Quantity of Monitoring Wells 12
Cost per Event $349
Sampling & Analysis (each set) $4,189 12 Monitoring Wells @ $330 per event
Total Sampling & Analysis Cost ($) $25,133
Utilities ($/Month) $0 No add! utilities required to sample
Total Utilities Cost ($) $0
TOTAL STABILIZATION COST $25,133
V LABOR
Cost Assumptions: No. Cost/Hour [Hours/Year|  Cost
Crew:
1. Supervisor 1 29 2080| $60,320
2. Operators 4 22 2080| $183,040
3. Maintenance 2 20 2080 $83,200
4. Vehicles 2 10 2080|  $41,600
Cost per Year $368,160
Time Required - Years 5.02
$1,848,163

’TOTAL RESTORATION LABOR COST
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Surety Estimate
First Year of Operation
, Nichols Ranch ISR Project
. Uranerz Energy Corporation
Worksheet 1, Nos. VI, VIl & Summary --
GROUNDWATER RESTORATION

Mining Unit
Cost Item Nichols #1 Notes
VI RESTORATION CAPITAL REQUIREMENTS
| Deep Disposal Well(s) 1
Il Plug and Abandon DDW $52,890
Il Reverse Osmosis Unit $0|Already in Processing Plant
TOTAL RESTORATION CAPITAL REQUIREMENTS $52,890
VIl RESTORATION OF EXCURSION WELLS
| Shallow Sand Well(s)
Total Wells in Excursion 0|Assume no excursions during Year 1
Cost of Clean-Up $0
Total Shallow Sand Cleanup $0
{l Ore Zone Wells
Total Wells in Excursion 0
Cost of Clean-Up $0
Total Ore Zone Cleanup $0
I Deep Zone Wells
' Total Wells in Excursion 0
Cost of Clean-Up $0
Total Deep Zone Cleanup $0
TOTAL WELLFIELD COST
TOTAL EXCURSION CLEANUP COST $0
SUMMARY:
} GROUNDWATER SWEEP $115,836
I REVERSE OSMOSIS $844,075
I WASTE DISPOSAL WELL $69,143
IV STABILIZATION $25,133
SUB TOTAL $1,054,186
V LABOR $1,848,163
VI CAPITAL $52,890
VIl EXCURSION CLEANUP $0
TOTAL GROUNDWATER RESTORATION COST $2,955,240
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Worksheet 2 a

PLANT EQUIPMENT REMOVAL AND DISPOSAL

Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

Nichols Mine Unit

Office & P:\gilenss Maintenance | Resin + Sand | External | Header
Cost ltem Laboratory Building Building Filter Media | Tanks Houses Sub Total Notes
add 4 add'l 17,000 gal tanks.
Volume (Yds?) 40 200 45 110 109 240 84 cy each crushed to 21 cy.
Quantity per Truck Load (Yds®) 20 20 20 20 20 20
Number of Truck Loads 2 10 225 55| 545 12
| Decontamination Cost
Decontamination Cost ($/Load) 634.68 634.68 634.68 634.68| ©634.68 634.68
Percent Requiring Decontamination 20% 100% 20% 0% 50% 100%
Total Cost $254 $6,347 $286 $0| $1,730 $7,616
il Dismantle and Loading Cost
Cost per Truck Load ($) $846 $846 $846 $846 $846 $846
Total Cost $1,692 $8,462 $1,904 $4654] $4,612 $10,155
Il Oversize Charges
Percent Requiring Permits 40% 40% 40% 0% 50% 40%
Cost per Truck Load ($) $423 $423 $423 $423 $423 $423
Total Cost $338 $1,692 $381 $0] $1,153 $2,031
IV _Transportation & Disposal
A. Landfil
Percent to be Shipped 90% 80% 90% 0% 100% 80%
Distance (Miles) 75 75 75 75 75 75
Transport Cost ($/Ton-Mile) $0.16 $0.16 $0.16 $0.16 $0.16 $0.16
Transportation Cost $463 $2,056 $521 $0|  $1,401 $2,468
Disposal Fee per Cubic Yard $65 $65 $65 $65 $65 $65
Disposal Cost ($) $2,323 $10,324 $2,613 $0| $7.033} $12,389
Total Cost $2,786 $12,380 $3,134 $0| 98,434 $14,857
B. Licensed Site
Percent to be Shipped 10% 20% 10% 100% 0% 20%
Distance (Miles) 160 160 160 160 160 160
Transport Cost ($/Ton-Mile} $0.16 $0.16 $0.16 $0.16 $0.16 $0.16
Transport Cost $691 $6,912 $778 $19,008 $0 $8,294
Disposal Cost ($/Ton) $370 $370 $370 $370 $370 $370
Quantity per Truck Load (Yds®) 20 20 20 20 20 20
Quantity per Truck Load (Tons) 21.6 21.6 216 21.6 216 21.6 Based on avg 80Ibs per cf
Disposal Cost $1,599 $15,994 $1,799 $43,983 $0] $19,193
Total Cost $2,291 $22,906 $2,577 $62,991 $0] $27.487
Total Cost $5,076 $35,286 $5,711 $62,991] $8,434] $42344
TOTAL COST NICHOLS RANCH MINE $7,361 $51,788 $8,281 $67,646| $15,929 $62,146 $213,150
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Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

Worksheet 2 b -
BUILDING DEMOLITION AND DISPOSAL

Nichols Mine Unit
Office & Main Process Maintenance
Cost Item Laboratory Building Building Header Houses Sub Total Notes
STRUCTURE DEMOLITION & DISPOSAL
Structural Character
Demolition Volume (Ft) 90,000 1,188,000 144,000 3,000
Demolition Unit Cost per WDEQ
Unit Cost of Demolition ($/ Ft%) $0.257 $0.257 $0.257 $0.257 Guideline No.12, App. K ($/ft3)
Total Demolition Cost $23,126 $305,264 $37,002 $771
Weight of Disposal Material in Tons 41 535 85 1
Factor for Gutting 0.1 0.3 0.2 0.25
Cost for Gutting ($) $2,313 $91,579 $7,400 $193
Quantity per Truck Load (Ton) 21.6 216 216 21.6
Number of Truckloads 1.9 24.8 3.0 0.1
Distance to Landfill 75 75 75 75
Unit Cost (Ton-Mile) $0.16 $0.16 $0.16 $0.16
Transportation Cost $481.96 $6,361.87 $771.14 $16.07
Demolition Unit Cost per WDEQ
Guideline No.12, App. K, Adjusted
Disposal Cost ($/ton) $102.89 $102.89 $102.89 $102.89 Cost per Unit
Disposal Cost ($) $4,166.96 $55,003.86 $6.667.13 $138.90
TOTAL STRUCTURE DEMO & DISPOSAL $30,088 $458,209 $51,840 $1,119 $541,256
CONCRETE DECONTAMINATION, DEMO & DISPOSAL
Area 9000 29700 8000 3000 12 header houses @250 sq ft each
Average Thickness (Ft) 05 05 0.5 0.5
Volume (Fta) 4500 14850 4000 1500
Weight of Disposal Concrete Assuming 145lbs/cubic foot 652,500 2,153,250 580,000 217,500
Weight of Disposal in Tons 326 1077 290 109
Percent Requiring Decontamination 0% 100% 0% 10%
Volume Decontaminated (Ft?) 0 14,850 0 150
Decontamination by Steam Cieaning
Decontamination ($/Ft?) $0.301 $0.301 $0.301 $0.301 (137.5 ft2/hr) ECHOS Unit Cost Book
Decontamination Cost $0 $4,469 $0 $45
Demolition Unit Cost per WDEQ
Guideline No.12, App. K, Adjusted
Demolition ($/Ft2) $5.05 $5.056 $5.056 $5.05 Cost per Unit
Demolition Cost $45,494 $150,130 $40,439 $15,165
Transportation & Disposal
A. Onsite Disposal
Percent to be Disposed Onsite 100% 75% 100% 100%
Transportation Cost $0 $0 $0 $0
Demolition Unit Cost per WDEQ
Guideline No.12, App. K, Adjusted
Disposal Cost per Cubic Yard ($) $8.49 $8.49 $8.49 $8.49 Cost per Unit
Disposal Cost ($) $1,415 $4,668 $1,257 $472
B. Licensed Site
Percent to be Shipped 0% 25% 0% 0%
Distance (Miles) 160 160 160 160
Unit Cost (Ton-Mile) $0.16 $0.16 $0.16 $0.16
Transportation Cost ($) $0 $6,833 $0 $0
Disposal Cost ($/Ton) $370 $370 $370 $370
Disposal Cost ($) $0 $99,650 $0 $0
TOTAL TRANSPORT & DISPOSAL COST $46,909 $265,750 $41,697 $15,681 $370,037
TOTAL BUILDING DEMO & DISPOSAL COST $76,996 $723,959 $93,537 $16,800 $911,292
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Worksheet3 b -
SOIL REMOVAL & DISPOSAL

Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

Nichols Mine Unit

Office & Main Process | Maintenance Header
Cost item Laboratory Building Building Houses Sub Total Notes
SOIL EXCAVATION, TRANSPORT & DISPOSAL
Removal Under Building Footprints
$89.04/hr per WDEQ Guideline12 and 150
Excavation, Front End Loader $52 $172 $46 $17 cy/hr
Quantity to be Shipped (Ft) 2,250 7,425 2,000 750 Pesum :ﬁﬁ':;‘fr:a':' &sp:::a[fz'ga[ea Soi
Weight in Tons 112.5 371.25 100 37.5 Licensed facility (ft3)
Distance (Miles) 160 160 160 160
Transportation Unit Cost (Ton/Mile) $0.16 $0.16 $0.16 $0.16
Transportation Cost $2,856 $9,425 $2,539 $952
Disposal Fee ($/Ton) $370 $370 $370 $370
Disposal Cost ($) $41,651 $137.448 $37,023 $13,884 $230,005
Removal NPDES Pts.
Quantity to be Shipped (Ft) Q V] ¢] Q Zero discharge facility
Weight in Tons 0 0 0 0
Distance (Miles) 160 160 160 160
Transportation Cost Ton/Mile ($) $0.16 $0.16 $0.16 $0.16
Transportation Cost $0 $0 $0 $0
Disposal Fee ($/Ton) $370 $370 $370 $370
Disposal Cost ($) $0 $0 $0 $0
Total NPDES Removal Cost $0 $0 $0 $0 $0
TOTAL SOILS EXC., TRANSPORT & DISPOSAL $41,651 $137,448 $37,023 $13,884 $230,005
DIATION SURVEY
Area Required (Acres) 0.21 0.68 0.18 0.07
Survey Cost ($/Acre) $635 $635 $635 $635
Number of Structures 1 1 1 12
Cost per Structure ($) $238 $238 $238 $238
TOTAL RAD SURVEY COST $369 $671 $355 $2,900 $4,294
TOTAL SOIL REMOVAL & DISPOSAL COST $42,020 $138,119 $37,378 $16,783 $234,300
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Surety Estimate
First Year of Operation

Nichols Ranch ISR Project
. Uranerz Energy Corporation
Worksheet 4 --
Well Abandonment
Mining Unit
Cost ltem Nichols #1 Notes
Number of Wells 515]Includes injection, recovery and monitor wells.
Average Depth (ft) 550
Average Diameter (inch) 5
Area of Annulus (ft) 0.1364
Materials
Bentonite Chips Required (Ft*/Well) 40.91300 feet of clay above water
Bags of Chips Required/Well 55
Cost per Bag (3) $6.82
Cost/Well Bentonite Chips ($) $375
Gravel Fill Required (Ft*/Well) 34.1|Avg depth less 300 feet filled w/ gravel
Cost of Gravel/Yd® ($) $21
Cost/Well Gravel Fill ($) $27
Cement Cone/Markers Req'd/Well 1
Cost of Cement Cones Markers (3) $6.35
Total Materials Cost per Well $408
Labor
Hours Required per Well 2
Labor Cost per Hour _ $74
. Total Labor Cost per Well ($) 148.092
Equipment Rental
Hours Required per Well 1
Backhoe w/Operator Cost/Hr (3) $63
Total Equipment Cost per Well ($) $63
Total Cost per Well ($) - $620
TOTAL WELL ABANDONMENT COST ($) $319,234
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Surety Estimate
First Year of Operation
Nichols Ranch ISR Project

. Uranerz Energy Corporation
Worksheet 5, No. | -

WELLFIELD EQUIPMENT REMOVAL & DISPOSAL

Mining Unit
Cost Item Nichols #1 Notes
1 Wellfield Piping
A. Removal
Total Number of Wells 482|Includes total injection and recovery wells
Feeder lines from HH to Injection wells 1" HDPE (Ft) 71,560{From Preliminary Design
Pregnant solution feeder lines from production wells to HH 1" HDPE (Ft) 50,427 |From Preliminary Design
Total Quantity of 1" HDPE Piping (Ft) 121,987
Thickness Based on WL Plastics Corp PSI
Plastic Volume (Ft%) 400.05]160 (R1=.05479', R2=.04425")
Chipped Volume Assuming 30% Void Space (Ft3) 520.07
Disposal Weight (tons) 20.80|Year 1 buildout only to include Nichols 1
Based on 20 cy per truckload and 80lbs per
Quantity per Truck Load (Tons) 21.6{cf
Total Number of Truck Loads 1
Total Length of Feeder line Trench (ft) 40,765|Includes Shared Trenches
Pipeline Removal Unit Cost ($/ft of trench) $2.38{Quote - Jordan Construction
Total Cost for Trunkline Removal ($) $97,022
Total Cost - Removal $97,022

B. Survey & Decontamination

No survey or decon needed. Total volume

Percent Requiring Decontamination 0[to low level disposal
Loads for Decontamination 0
Cost for Decontamination ($/Load) $635
Cost for Decontamination ($) $0
C. Transport & Disposal
1.) Landfill
a. Transportation
Percent to be Shipped 0%
Loads to be Shipped : 0
Distance (Miles) 75
Transportation Cost (Ton/Mile) ($) $0.16
Transportation Cost ($) $0
b. Disposal
Disposal Fee per Yd* , $65
Yds® per Load 20
Disposal Cost (3) $0
Total Cost - Landfill $0
2.) Licensed Site
a. Transportation
Percent to be Shipped 100%
Loads to be Shipped 1
Tons to be Shipped 20.80
Distance (Miles) 160
Transportation Ton/Mile ($) $0.16
Transportation Cost ($) $528
b. Disposal
Disposal Fee per ton $370
Disposal Cost (3$) $7,702
Total Cost - Licensed Site $8,230
Total Cost - Transport & Disposal $8,230
Total Cost - WF Piping Removal & Disposal $105,251
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Surety Estimate
First Year of Operation

Nichols Ranch ISR Project

Uranerz Energy Corporation

Worksheet 5, No. Il
WELLFIELD EQUIPMENT REMOVAL & DISPOSAL

Mining Unit
Cost Item Nichols #1 Notes
Il Production Well Pumps
A. Pump and Tubing Removal

Number of Production Wells 233

Cost of Removal ($/well) $42

Cost of Removal ($) $9,859

Number of Pumps per Truck Load 180

Number of Truck Loads (Pumps) 1.29

Weight of Pumps 21.29{Assume 20 T per truck

B. Survey & Decontamination (Pumps)

Percent Requiring Decontamination 50%

Loads for Decontamination 0.65

Cost for Decontamination ($/Load) $635

Cost for Decontamination ($) $411
C. Tubing Volume Reduction & Loading

Length per Well (Ft) 300

Thickness Based on WL Plastics Corp

Total Quantity (Ft%) 229.2|PSI 160 (R1=.05479', R2=.04425")
Chipped Volume Assuming 30% Void Space (Ft) 298.0
Cost of Removal ($/Ft) $0.03
Cost of Removal ($) $9.52
Quantity per Truck Load (Ft°) 540
Number of Truck Loads 0.42
D. Transport & Disposal
1.) Landfill
a. Transportation
Percent to be Shipped (Pumps) 50%
Loads to be Shipped 0.6
Distance (Miles) 75
Transportation Ton/Mile ($) $0.16
Transportation Cost ($) $166
b. Disposal
Disposal Fee per Yd° $65
Yds® per Load 20
Disposal Cost (3) $835
Total Cost - Landfill $1,002
2)) Licensed Site
a. Transportation
Percent to be Shipped (Pumps) 50%
Percent to be Shipped (Tubing) 100%
Loads to be Shipped 1.07
Distance (Miles) 160
Transportation Ton/Mile (3) $0.16
Transportation Cost ($) $588
b. Disposal
Disposal Cost per Yd® $18.51
Disposal Volume per Load (cy) 20
Disposal Cost $397
Total Cost - Licensed Site $984
Total Cost - Transport & Disposal $1,986
Total Cost - Pump Removal & Disposal $12,265
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Worksheet 5, No. Il
WELLFIELD EQUIPMENT REMOVAL & DISPOSAL

Surety Estimate
First Year of Operation

Nichols Ranch ISR Project
Uranerz Energy Corporation

Mining Unit
Cost ltem Nichols #1 Notes
Il Buried Trunkline
A. Removal
Trunk lines from Resin Plant to HH 8" HDPE Pipe (Ft) 38,473
Pregnant solution trunk lines form HH to Resin Plant 8" HDPE Pipe (Ft) 38,473
Total Quantity of 8" HDPE Piping (Ft) 76,946
Thickness Based on WL
Plastics Corp PSI 160
Plastic Volume (Ft%) 51,906{(R1=.7188', R2=.5494')
Chipped Volume Assuming 30% Void Space (Ft) 67,478
Disposal Tons 320|8.315lb/ft per WL Plastics
Quantity per Truck Load (Tons) 21.6
Total Number of Truck Loads 15
Total Length of Trunkline Trench (ft) 38,473
Pipeline Removal Unit Cost ($/ft of trench) $2.38|Quote Jordan Construction
Total Cost for Trunkline Removal ($) $91,568
. Survey & Decontamination
No survey or decon needed.
Total volume to low level
Percent Requiring Decontamination 0|disposal
Loads for Decontamination 0
Cost for Decontamination ($/Load) $635
Cost for Survey & Decontamination ($) $0
C. Transportation & Disposal
1.) Landfill
a. Transportation
Percent to be Shipped 0%
Loads to be Shipped 0
Distance (Miles) 75
Transportation Cost (Ton/Mile) ($) $0.16
Transportation Cost ($) $0
b. Disposal
Disposal Fee per Yd® $65
Yds® per Load 20
Disposal Cost ($) $0
Total Cost - Landfill $0
2.) Licensed Site
a. Transportation
Percent to be Shipped 100%
Loads to be Shipped 15
Tons to be Shipped 319.90
Distance (Miles) 160
Transportation Ton/Mile ($) $0.159
Transportation Cost ($) $8,121
b. Disposal
Disposal Fee per ton $370
Disposal Cost ($) $118,438
Total Cost - Licensed Site $126,559
Total Cost Transportation & Disposal $126,559
Total Cost - Buried Trunkline Removal & Disposal $218,127
. TOTAL WELLFIELD EQUIPMENT REMOVAL & DISPOSAL COST $335,643
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Surety Estimate
First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

Worksheet 6, No. |
TOPSOIL REPLACEMENT & REVEGETATION

Mining Unit
Cost Item Nichols #1 Notes
I Process Plant and Office Building
A. Topsoil Handling & Grading
Affected Area (Acres) 5.2]|Plant site is 475' by 475'
Average Affected Thickness (Ins) 12
Topsoil Volume (Yds®) 8,356
Unit Cost ($/cy) | $5|Price from Dragstrip Soil Cover Project MT
Sub Total - Topsoil $44,197
B. Radiation Survey & Soil Analysis
Unit Cost ($/Ac) $635
Sub Total - Survey & Analysis $3,287
C. Revegation
Fertilizer ($/Ac) $245.41|Price from Dragstrip Soil Cover Project MT
Seeding Prep & Seeding ($/Ac) $240.12|Price from Dragstrip Soil Cover Project MT
Mulching & Crimping ($/Ac) $105.78(Price from Dragstrip Soil Cover Project MT
Sub Total Cost/Acre $591.31
Sub Total Revegation $3,063
TOTAL PLANT AND OFFICE BUILDING
‘TOPSOIL REPLACEMENT & REVEG COST $50,548

June 2010 Page 14 of 17



Worksheet 6, Nos. Il & il

Surety Estimate

First Year of Operation
Nichols Ranch ISR Project
Uranerz Energy Corporation

TOPSOIL REPLACEMENT & REVEGETATION

Mining Unit
Cost Item Nichols #1 Notes
Il Wellfields
A. Topsoil Handling & Grading
Affected Area (Acres) 22|Equals trench length times 12 feet wide
Average Affected Thickness (Inch) 12
Topsoil Volume (Yds®) 35,217
Unit Cost - Haul/Place/Grading ($/cy) $5.29!|Price from Dragstrip Soil Cover Project MT
Sub Total - Topsaoil $186,261
B. Radiation Survey & Soil Analysis
Unit Cost ($/Ac) $635 i
Sub Total - Survey & Analysis $13,854
C. Spill Cleanup
Affected Area (Acres) 0
Affected Area (Ft) 0
Affected Area Thickness (Ft) 0.25
Affected Volume (Ft) 0
Quantity per Truckload (Ft) 540
Quantity to be Shipped (Loads) 0
Distance (Miles) 160
Transportation Cost (Ton/Mile) ($) $0.16
Transportation Cost ($) $0
Handling Cost ($/Load) $212
Handling Cost ($) $0
Disposal Fee ($/Ton) $370
Disposal Cost ($) $0
Sub Total - Spill Cleanup $0
D. Revegation
Fertilizer ($/Ac) $245.41|Price from Dragstrip Soil Cover Project MT
Seeding Prep & Seeding ($/Ac) $240.12|Price from Dragstrip Soil Cover Project MT
Mulching & Crimping ($/Ac) $105.78/Price from Dragstrip Soil Cover Project MT
Sub Total Cost/Acre $591.31
Sub Total Revegation $12,907
Sub Total - Wellfields $213,023
TOTAL WELLFIELDS COST $213,023
lll Roads
A. Topsoil Handling & Grading
Affected Area (Acres) 5.17|3750 feet by 60 feet wide
Average Affected Thickness (Ins) 12
Topsoil Volume (Ydss) 8,333
Unit Cost - Haul/Place/Grading ($/cy) $5.29]Price from Dragstrip Soil Cover Project MT
Sub Total - Topsaoil $44,075
B. Radiation Survey & Soil Analysis
Unit Cost ($/Ac) $635
Sub Total - Survey & Analysis $3,278
C. Revegation
Fertilizer ($/Ac) $245]Price from Dragstrip Soil Cover Project MT
Seeding Prep & Seeding ($/Ac) $240|Price from Dragstrip Soil Cover Project MT
Mulching & Crimping ($/Ac) $106|Price from Dragstrip Soil Cover Project MT
Sub Total Cost/Acre $591
Sub Total Revegation $3,054
Sub Total - Roads $50,408
TOTAL ROADS COST $50,407.59
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Surety Estimate
First Year of Operation
Nichols Ranch ISR Project

' Uranerz Energy Corporation
Worksheet 6, Nos IV & V

TOPSOIL REPLACEMENT & REVEGETATION

Mining Unit
Cost Item Nichols #1 Notes
IV Other
A. Topsoil Handling & Grading
Affected Area (Acres) 0
Average Affected Thickness (Ins) 3
Topsoil Volume (Yds®) 0
Unit Cost - Haul/Place/Grading ($/Ac) $5.29|Price from Dragstrip Soil Cover Project MT
Sub Total - Topsoil $0
B. Radiation Survey & Soil Analysis
Unit Cost ($/Ac) ~ $635
Sub Total - Survey & Analysis $0
C. Revegation
Fertilizer ($/Ac) $245.41|Price from Dragstrip Soil Cover Project MT
Seeding Prep & Seeding ($/Ac) $240.12|Price from Dragstrip Soil Cover Project MT
Mulching & Crimping ($/Ac) $105.78|Price from Dragstrip Soil Cover Project MT
Sub Total Cost/Acre $591.31
Sub Total Revegation 30
Sub Total - Other $0
TOTAL OTHER COST $0
.V Remedial Action
A. Topsoil Handling & Grading
Affected Area (Acres) 0|Assume no excursions/spills
Average Affected Thickness (Ins) 3
Topsoil Volume (Yds®) 0
Unit Cost - Haul/Place/Grading ($/cy) $5.29]Price from Dragstrip Soil Cover Project MT
Sub Total - Topsoil 30
B. Radiation Survey & Soil Analysis
Unit Cost ($/Ac) $635
Sub Total - Survey & Analysis 30
C. Revegation
Fertilizer ($/Ac) $245.41|Price from Dragstrip Soil Cover Project MT
Seeding Prep & Seeding ($/Ac) $240.12|Price from Dragstrip Soil Cover Project MT
Mulching & Crimping ($/Ac) $105.78]Price from Dragstrip Soil Cover Project MT
Sub Total Cost/Acre $591.31
Sub Total Revegation $0
TOTAL REMEDIAL ACTION $0

TOTAL TOPSOIL REPLACEMENT &
REVEGETATION COST (Total of 7l through 7V) $313,978
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Surety Estimate
First Year of Operation
Nichols Ranch ISR Project

. Uranerz Energy Corporation
Worksheet 7, Nos I - ViI

MISCELLANEOUS RECLAMATION

Mining Unit
Cost Item Nichols #1 Notes
| Fence Removal & Disposal
Quantity (Ft) . 8,558
Demolition Unit Cost per WDEQ Guideline
Cost of Removal/Disposal ($/Ft) ' $0.39{No.12, App. H
Cost of Removal/Disposal ($) $3,335

ll Powerline Removal & Disposal
Power to Wells, header houses. Other power|
Quantity (Ft) 160,460]already in place by CBM companies

Lines buried in pipe trenches. Excavation
costs covered on Sheets 6l and 6lll. Assume
Cost of Removal/Disposal ($/Ft) $0}salvage of wire at no cost.

Cost of Removal/Disposal ($) $0

1] Powerpole Removal & Disposal
Overhead powerpoles and lines will remain in

Quantity Olplace for future gas production
Cost of Removal/Disposal ($/Each) 0
Cost of Removal/Disposal ($) $0.00
Q IV |Transformer Removal & Disposal
Quantity 0

Tri-County Electric will remove at no cost,

Cost of Removal/Disposal ($/Each) 0|WDEQ Guideline No.12, App. H
Cost of Removal/Disposal ($) 0
\ Culvert Removal & Disposal
Quantity (Ft) O0[{None
($101.21/20") WDEQ Guideline No.12, App.
Cost of Removal/Disposal ($/Ft) $5.33|J
Cost of Removal/Disposal ($) $0.00
VI Guardrail Removal
Quantity (Ft) O{None
Cost of Removal/Disposal ($/Ft) $6.88
Cost of Removal/Disposal ($) $0
VIl |Low Water Stream Crossing
Quantity O{None
Cost of Removal/Disposal ($/Each) $8,462
Cost of Removal/Disposal ($) $0
TOTAL MISCELLANEOUS COST $3,335
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