ES-301

Administrative Topics Outline FINAL

Facility: McGuire		Dat	e of Examination:	8/2/10
Examination Level:	RO	Op	erating Test Number:	N10-1
Administrative Topic Type Code* Describe activity to be performed (see Note)		erformed		
Conduct of Operations	M, R	2.1.37 (4.3)	Knowledge of procedures, guidelines or limitations associated with reactivity management	
		JPM:	Perform an ECP	
Conduct of Operations	D, P, R	2.1.25 (3.9)	Ability to interpret refe as graphs, curves, tab	
		JPM:	Determine Boric Acid Addition to FWST	
Equipment Control	M, R	2.2.12 (3.7)	Knowledge of Surveill	ance Procedures.
	,	JPM:	Perform a Manual NC Leakage Calculation	
Dediction Control		2.3.11 (3.8)	Ability to control radial	tion releases
Radiation Control	M, R	JPM:	Perform a Unit Vent Flow Calculation of a Containment Air Release	
NOTE: All items (5 total) retaking only the			oplicants require only 4 i are required.	tems unless they are
*Type Codes & Criteria:	(D)irect from (N)ew or (M)	bank (≤ 3 for R odified from bai	for, (0) or Class(R)oom (Os; \leq 4 for SROs & RO hk (\geq 1) (3) idomly selected) (1)	,

RO Admin JPM Summary

- A1a This is a modified JPM using Bank JPM-RT-RB:073 as its basis. The operator will be told that Reactor Startup is an hour away, and provided with a set of initial conditions. The operator will be asked to perform an Estimated Critical Position (ECP) in accordance with OP/0/A/6100/06 (Reactivity Balance Calculation), Enclosure 4.2 (Estimated Critical Rod Position). During the course of the ECP, the operator will be given a set of power history conditions, and asked to perform a Shutdown Fission Product Correction calculation in accordance with OP/0/A/6100/06 (Reactivity Balance Calculation), Enclosure 4.8 (Shutdown Fission Product Correction Calculation) in support of the ECP. This is the same JPM as the SRO Exam.
- A1b This is a bank JPM, and previously used on the 2009 NRC Operating Test. The operator will be told that a leak, which is now isolated has lowered the FWST level to 440 inches, and that it has been decided to use the Recycle Holdup Tank (RHT) to refill the FWST. The operator will be told that Enclosure 4.4, (FWST Makeup Using the RHT), of OP/1/A/6200/014 (Refueling Water System) is in progress and completed through Step 3.9, and provided with Chemistry Data for the BAT and RHT. The operator will then be directed to determine the amount of Boric Acid needed to raise the FWST level to 480" using the RHT in accordance with Step 3.10 of Enclosure 4.4 of OP/1/A/6200/014 (Refueling Water System). The operator will be expected to calculate the amount of Boric Acid that must be added from the BAT to refill the FWST.
- A2 This is a modified JPM using Bank JPMs ADM-NRC-A2-05 and 12 as its basis. The operator will be told that Unit 1 is at 100% power, the Unit 1 OAC point M1L4554 is out of service, and that PT/1/A/4200/040 (Reactor Coolant Leakage Detection) has been completed showing that NCS Leakage is 1.6 gpm. The operator will be given Enclosure 13.2 (NC Leakage Determination Using Manual Calculations) of PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) with the necessary raw data compiled on a Data Sheet; and directed to complete the calculations within the Enclosure. The operator will be expected to complete all calculations, and identify any Technical Specification Limits that have been exceeded.
- A3 This is a modified JPM using Bank JPM ADM-NRC-A3-010 as its basis. The operator will be told that GWR Package # 2010013 for Unit 1 Containment Air Release is currently in use to conduct a series of Containment air releases, and that during the first release, conducted using Enclosure 4.2 (Air Release Mode With VQ Flow Monitor Operable) of OP/1/A/6450/017 (Containment Air Addition and Release), the Unit 1 VQ Monitor became inoperable. The operator will be told that the crew stopped the release and continued the air release using Enclosure 4.3 (Air Release Mode with VQ Flow Monitor Inoperable) of OP/1/A/6450/017 (Containment Air Addition and Release), and that three previous releases have been made; including the one which was made with the Unit 1 VQ Flow Monitor in operation. Finally, the operator will be provided with the pertinent data for the current release, and then be directed to calculate the volume released for the current release and to determine the total volume released from the Containment during all releases. The operator will be expected to calculate the volume of air released from the Containment during the final release, and determine the total volume of air released in the series of four releases.

ES-301

Administrative Topics Outline FINAL

Form ES-301-1

Facility: McGuire		Da	te of Examination:	8/2/10	
Examination Level:	SRO	Operating Test Number:		N10-1	
Administrative Topic (see Note)	Type Code*		Describe activity to be performed		
Conduct of Operations	M, R	2.1.37 (4.6)	Knowledge of procedures, guidelines or limitations associated with reactivity management		
		JPM:	Perform an ECP		
Conduct of Operations	D, P, R	2.1.25 (4.2)	Ability to interpret reference materials, suc as graphs, curves, tables, etc.		
		JPM:	Determine Boric Acid	Addition to FWST	
		2.2.12 (4.1)	Knowledge of Surveillance Procedures.		
Equipment Control	M, R	JPM:	Perform/Review a Manual NC leakage Calculation		
.		2.3.11 (3.8)	Ability to control radia	tion releases	
Radiation Control	M, R	JPM:	Perform a Unit Vent Flow Calculation of a Containment Air Release		
Emergency Procedures/Plan	N, R	2.4.44 (4.4)	Knowledge of emerge action recommendation		
		JPM:	Provide an updated P	AR	
NOTE: All items (5 total) a only the administra			ants require only 4 items un	less they are retaking	
*Type Codes & Criteria:	(D)irect from b (N)ew or (M)o	ank (≤ 3 for ROs dified from bank	(0) or Class(R)oom (5) ; ≤ 4 for SROs & RO retake (≥ 1) (4) mly selected) (1)	es) (1)	

SRO Admin JPM Summary

- A1a This is a modified JPM using Bank JPM-RT-RB:073 as its basis. The operator will be told that Reactor Startup is an hour away, and provided with a set of initial conditions. The operator will be asked to perform an Estimated Critical Position (ECP) in accordance with OP/0/A/6100/06 (Reactivity Balance Calculation), Enclosure 4.2 (Estimated Critical Rod Position). During the course of the ECP, the operator will be given a set of power history conditions, and asked to perform a Shutdown Fission Product Correction calculation in accordance with OP/0/A/6100/06 (Reactivity Balance Calculation), Enclosure 4.8 (Shutdown Fission Product Correction Calculation) in support of the ECP. This is the same JPM as the RO Exam.
- A1b This is a bank JPM, and previously used on the 2009 Operating Test. The operator will be told that a leak, which is now isolated has lowered the FWST level to 440 inches, below the Technical Specification Limit, and that it has been decided to use the Recycle Holdup Tank (RHT) to refill the FWST. The operator will be told that Enclosure 4.4 (FWST Makeup Using the RHT), of OP/1/A/6200/014 (Refueling Water System) is in progress and completed through Step 3.10, and provided with Chemistry Data for the BAT and RHT. The operator will then be directed to perform the Independent Verification (SRO aspect) of the calculation in Step 3.10 of Enclosure 4.4 to determine the amount of Boric Acid that must be added from the Boric Acid Tank (BAT), in order to raise the FWST Level to 480" using the RHT. The operator will discover two errors within the previous calculation, and determine the correct volume of Boric Acid to add. Following this, the operator will be given a makeup flowrate to the FWST and asked to identify the impact on the Technical Specification ACTION. The operator will be required to identify that ACTION C is applicable after one hour.
- A2 This is a modified JPM using Bank JPMs ADM-NRC-A2-05 and 12 as its basis. The operator will be told that Unit 1 is at 100% power, the Unit 1 OAC point M1L4554 is out of service, and that PT/1/A/4200/040 (Reactor Coolant Leakage Detection) has been completed showing that NCS Leakage is 1.6 gpm. The operator will be given Enclosure 13.2 (NC Leakage Determination Using Manual Calculations) of PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) with the necessary raw data compiled on a Data Sheet; and directed to complete the calculations within the Enclosure. The operator will be expected to complete all calculations in accordance with the provided Key, identify any Technical Specification Limits that have been exceeded, and (SRO aspect) identify with all Technical Specification ACTION.
- A3 This is a modified JPM using Bank JPM ADM-NRC-A3-010 as its basis. The operator will be told that GWR Package # 2010013 for Unit 1 Containment Air Release is currently in use to conduct a series of Containment air releases, and that during the first release, conducted using Enclosure 4.2 (Air Release Mode

· · · · · · · · · · · · · · · · · · ·		
ES-301	Administrative Topics Outline	
E3-301		Form ES-301-1
	•	
	FINAL	
	FINAL	

With VQ Flow Monitor Operable) of OP/1/A/6450/017 (Containment Air Addition and Release), the Unit 1 VQ Monitor became inoperable. The operator will be told that the crew stopped the release and continued the air release using Enclosure 4.3 (Air Release Mode with VQ Flow Monitor Inoperable) of OP/1/A/6450/017 (Containment Air Addition and Release), and that three previous releases have been made; including the one which was made with the Unit 1 VQ Flow Monitor in operation. Finally, the operator will be provided with the pertinent data for the current release, and then be directed to calculate the volume released for the current release and to determine the total volume released from the Containment during all releases. The operator will be expected to calculate the volume of air released from the Containment during the final release, and determine the total volume of air released in the series of four releases. This is the same JPM as the RO Exam.

A4 This is a new JPM. The operator will be placed in a post-accident condition with a Large Break LOCA with a release from the Containment. The operator will be told that a General Emergency has been declared, and provided with the initial Protective Action Recommendation (PAR). The operator will be given a subsequent set of plant conditions and meteorological data, and asked to provide an updated PAR in accordance with Enclosure 4.4 (Offsite Protective Recommendations) of RP/0/B/5700/029 (Notifications to Offsite Agencies from the Control Room). The operator will be expected to determine the Updated PAR for the subsequent conditions.

Appendix C	Job Performance Measure	Form ES-C-
	Worksheet	
JPN	I A1a RO/S	

2010 Admin - JPM A1a RO/SRO 🐁

NUREG 1021, Revision 9

Appendix C	Pag	e 2 of 17	Form ES-C-1
	Job Performance	Measure Workshee	t
Facility:	McGuire	Task No.:	214OP_010
Task Title:	Perform an ECP	JPM No.:	<u>2010 Admin - JPM A1a</u> <u>RO/SRO</u>
K/A Reference:	GK/A 2.1.37 (4.3/4.6)		
Examinee:		NRC Examiner	.
Facility Evaluator:		Date:	
Method of testing			
Simulated Perform	nance:	Actual Perform	ance: X
Class	room X Simulator	Plant	

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions:	Unit 1 startup in progress per OP/1/A/6100/001 (Controlling Procedure for Unit Startup).
	All steps are complete up to determining the desired estimated critical rod height.
	The Unit tripped from 30% power, 70 hours ago.
	Prior to that the Unit had operated at 2 EFPD since the previous plant trip, which resulted in a shutdown lasting 24 hours.
	The following Cycle 21 conditions exist:
	• EFPD = 125
	 NC Boron = 1577 PPM Xenon Worth = 0
	Samarium = 150 PCM greater than equilibrium
	It is intended to pull rods to criticality with criticality achieved in approximately 1 hour.
	Reactor Engineer Chad Adams has been contacted earlier today and has reported that there have been no unusual trends on ECPs.
	The OAC and REACT Program are unavailable.
Task Standard:	The Actual Estimated Critical Rod Position Bank for Xenon at time of Criticality agrees with the evaluator calculated ECP \pm 10 steps.

	Job Performance Measure Worksheet Calculator	
•	Calculator	
General References:	OP/1/A/6100/001 (Controlling Procedure for Unit Start	up)
	OP/0/A/6100/006 (Reactivity Balance Calculation)	
	OP/1/A/6100/022 (Unit 1 Data Book – Cycle 21)	
	SOMP 01-02 (Reactivity Management)	
Handouts:	OP/0/A/6100/006 (Reactivity Balance Calculation) End (Estimated Critical Rod Position (ECP))	closure 4.2
	OP/0/A/6100/006 (Reactivity Balance Calculation) End (Fission Product Correction Calculation)	losure 4.8
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, 7 Shutdown Fission Product Correction	able 6.7,
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, C Boron Concentration HZP, ARO, NO XENON, EQ Sm	•
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, C Differential Boron Worth, HZP, ARO, NO XENON, EQ	•
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, 7 and Samarium Worths.	able 6.9, Xenon
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, 7 Integral Rod Worth in Overlap, HZP, NO XENON.	able 6.3.A,
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, 7 Integral Rod Worth in Overlap, HZP, PEAK XENON.	able 6.3.B,
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, C Rod Insertion Limit as a Function of Power.	Graph 1.2, Control
	OP/1/A/6100/022 (Unit 1 Data Book), Enclosure 4.3, 1 Withdrawal Limits.	able 2.8, Rod
	The CRS has directed you to perform an ECP per End (Estimated Critical Rod Position (ECP)) of OP/0/A/610 Balance Calculation).	
Time Critical Task:	NO	
Validation Time:	40 minutes	

Page 4 of 17 PERFORMANCE INFORMATION

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue (Last Page of this JPM), and Handout all documents identified in the Handout section.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
1	(Note prior to Step 3.1) All curves/tables used in this procedure are found in OP/1(2)/A/6100/022 (Unit One (Two) Core Data Book). These procedures will be referred to as the "Data Book."	The operator reads the Note and proceeds.		
2	(Step 3.1) Record the following: (Step 3.1.1)	The operator records Unit <u>1</u> .		
	Unit Cycle	The operator records Cycle <u>21</u> .		
3	(Step 3.1.2) Recent trends on ECP. Reactor Engineer contacted Date	The operator recognizes that Chad Adams has been contacted. The operator records RE name as <u>Chad Adams</u> and <u>today's date</u> .		
4	(Step 3.1.3) Date/Time of Shutdown.	The operator records <u>Date/Time</u> (70 hours ago) from current Date/Time.		
5	(Step 3.1.4) Anticipated Date/Time of Criticality /	The operator records <u>today's date</u> and <u>1 hour</u> <u>from the time calculation</u> <u>is started</u> as the time of criticality.		

Page 5 of 17 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
6	(Step 3.1.5) Burnup: (P1457)	The operator records <u>125</u> <u>EFPD</u> .		
7	(Step 3.1.6) NC System Boron Concentration:			
	(Step 3.1.6.1) If pulling rods to Criticality: (Step 3.1.6.1A) If OAC is unavailable, record the current NC System boron concentration. OR	The operator recognizes from initial conditions that OAC is unavailable and it is intended to pull rods to criticality. The operator records <u>1577</u> in Step 3.1.6.1A.		
	(Step 3.1.6.1B) If OAC is available	The operator places <u>NA</u> in Step 3.1.6.1B.		
8	(Step 3.1.6.2) If dilution to Criticality	The operator places <u>NA</u> in Step 3.1.6.2.		
9	(Step 3.1.6.3) Record the Effective Boron Concentration: (Step 3.1.6.1A or Step 3.1.6.1B3 or 3.1.6.2)	The operator records <u>1577</u> ppm from Step 3.1.6.1A.		
10	(Step 3.1.7) Xenon worth at anticipated time of Criticality (From OAC program Xenon Samarium – XESM or REACT Program).	The operator records <u>0</u> from initial conditions.		
11	(Step 3.1.8) If burnup from Step 3.1.5 is > 0 EFPD, record the difference between equilibrium and present samarium worth (P1475, Samarium program on OAC or REACT).	The operator recognizes that burnup is > 0 EFPD and records <u>150</u> from initial conditions.		

Page 6 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
12	(Step 3.1.9) If burnup from Step 3.1.5 is > 12 EFPD, perform Enclosure 4.8 to determine the fission product correction.	The operator recognizes that burnup is > 12 EFPD and that fission product correction is needed, and proceeds to Enclosure 4.8.		
13	(Enclosure 4.8/Notes prior to Step 3.1) All curves /tables used in this procedure are found in OP/1(2)/A/6100/022 (Unit One (Two) Core Data Book). These procedures will be referred to as the "Data Book." Number of hours shutdown is the difference in time between the time the reactor went subcritical and the expected time of criticality.	The operator reads Notes, and proceeds.		
14	(Step 3.1) Shutdown Fission Product Correction Calculation: (Step 3.1.1) If Unit operated > 3 EFPD from previous shutdown to current shutdown	The operator reviews power history and recognizes that the Unit did NOT operate > 3 EFPD from previous shutdown to current shutdown. The operator records an <u>NA</u> in Step 3.1.1, and proceeds to Step 3.1.2.		

Page 7 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
15	(Step 3.1.2) If Unit operated < 1 EFPD from previous shutdown to current shutdown	The operator reviews power history and recognizes that the Unit operated > 1 EFPD from previous shutdown to current shutdown. Operator records an <u>NA</u> in Step 3.1.2, and proceeds to		
		Step 3.1.3.		
*16	(Step 3.1.3) If Unit operated between 1 EFPD and 3 EFPD from previous shutdown to current shutdown and current shutdown < 72 hours use Data Book Table 6.7 to determine the shutdown fission product correction based on the following:	The operator reviews power history and recognizes that the Unit operated between 1 EFPD and 3 EFPD from previous shutdown to current shutdown, and the current shutdown is < 72 hours. Operator proceeds to Step 3.1.3.1.		
17	(Step 3.1.3.1) Previous Shutdown: (A) Number of hours during previous shutdown: hrs (B) Shutdown Fission Product Correction: ppm	The operator recognizes from initial conditions that the number of hours during the previous shutdown is 24, and records <u>24</u> . The operator addresses Data Book Table 6.7 and determines the Shutdown Fission Product Correction to be 10, and records <u>10</u> .		

Page 8 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
18	(Step 3.1.3.2) Current Shutdown: (A) Number of hours since current shutdown:	The operator recognizes from initial conditions that the number of hours during the current shutdown to the time of the ECP is 71, and records <u>71</u> .		
	hrs (B) Shutdown fission product correction: ppm	The operator addresses Data Book Table 6.7 and determines the shutdown fission product correction is 35, and records <u>34.5</u> .		
19	(Step 3.1.3.3) Shutdown Fission product Correction: (Step 3.1.3.1B x 0.5) + (Step 3.1.3.2B) =ppm	The operator uses value determined in Step 3.1.3.1B and 3.1.3.2 and determines the Shutdown Fission Product Correction is 39.5 ppm. Operator records <u>39.5</u> (± 0.5). (10 x 0.5) + (34.5) = 40 ppm		

Page 9 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
20	(Step 3.1.4) If Unit operated between 1 EFPD and 3 EFPD from previous shutdown to current shutdown and current shutdown > 72:	The operator reviews power history and recognizes that the Unit operated between 1 EFPD and 3 EFPD from previous shutdown to current shutdown, however, the current shutdown is < 72 hours.		
		Operator records an <u>NA</u> in Step 3.1.4.		
		Operator reports that the Shutdown Fission Product Correction factor is <u>39.5</u> (±0.5).		
21	(Enclosure 4.2/Step 3.2) If desired, perform automated calculations using REACT	The operator recognizes from initial conditions that REACT is NOT available and proceeds to Step 3.3.		
22	 (Step 3.3) Manual Calculations: (Step 3.3.1) Boron Concentration: (Step 3.3.1.1) Determine the all rods out (ARO), hot zero power (HZP), no xenon, equilibrium samarium, boron concentration for present burnup from Step 3.1.5 (Data Book Graph 6.1) (Step 3.3.1.2) Record value 	The operator addresses Data Book Graph 6.1. (NOTE: The operator should use chart at bottom, and NO interpolation is needed). The operator records <u>1818</u>		
	(Step 3.3.1.2) Record Value in Table 4.2.1 Line A.	The operator records <u>1818</u> in Table 4.2.1 Line A.		

Page 10 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
23	(Step 3.3.2) Differential Boron Worth: (Step 3.3.2.1) Determine the ARO differential boron worth for present burnup of step 3.1.5 (Data Book Graph 6.8) (Step 3.3.2.2) Record value in Table 4.2.1 Line B	The operator addresses Data Book Graph 6.8. (NOTE: Operator should use chart at bottom, and NO interpolation is needed). The operator records <u>-6.35</u> in Table 4.2.1 Line B.		
24	(Step 3.3.3) Determine the Rod Inserted Worth: Step (3.3.3.1) Record values from Steps 3.1.6 - 3.1.9 in Table 4.2.1.	The operator records values from steps 3.1.6 - 3.1.9 in Table 4.2.1 as follows: C. Present Effective Boron Concentration: <u>1577</u> D. Xenon Worth: <u>0</u> E. Diff from Eq Sm Worth: <u>150</u> F. Fission Product Correction: <u>39.5 (±0.5)</u>		
25	(Step 3.3.3.2) Complete Table 4.2.1, recording 0 for any N/A'd Reference Steps.	The operator records remaining values in Table 4.2.1, as follows: G. Reactivity Equivalent of Boron Difference (C - A) x B = <u>1530</u> . (1577 - 1818) x - 6.35 = 1530 pcm H. Reactivity Equivalent of Fission Product Correction F x B = <u>250.83</u> 39.5 x -6.35 = -250.83 Reactivity of Inserted Rods: (D + E + G) - H = <u>1931 (±4)</u> (0 + 150 + 1530) - (-)250.83 = 1931		

Appendix C

Page 11 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
26	(Step 3.3.4) If result from Table 4.2.1 < 0	The operator recognizes result from Table 4.2.1 > 0 and records <u>NA</u> in Step 3.3.4.		
27	(Step 3.3.5) Peak xenon worth: (Step 3.3.5.1) Determine the peak xenon worth for present burnup from step 3.1.5 (Data Book Table 6.9)	The operator addresses Data Book Table 6.9.		
	(Step 3.3.5.2) Record value in Table 4.2.2 Line C.	The operator records <u>3913</u> in Table 4.2.2 Line C.		
28	(Step 3.3.6) Calculate the Estimated Critical Rod Positions: (Step 3.3.6.1) Record values from Step 3.1.7 and Table 4.2.1 in Table 4.2.2.	The operator records values in Table 4.2.2 as follows: A. Xenon Worth: <u>0</u> B. Reactivity of inserted rods: <u>1931</u> C. Peak Xenon Worth: <u>3913</u> D. Lower Band Reactivity Worth: <u>2681</u> E. Upper Band Reactivity Worth: 1181		

Page 12 of 17 PERFORMANCE INFORMATION

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
29	(Step 3.3.6.2) Complete Table 4.2.2.	The operator completes Table 4.2.2 as follows: The operator addresses Table 6.3.A of the Data Book and determines: F. No Xenon Rod Position for Reactivity of B - <u>Bank C</u> @ 35 steps, +2/-3 steps. G. No Xenon Rod Position for Reactivity of D - <u>Bank B</u> @ 39 steps, +2/-3 steps. H. No Xenon Rod Position for Reactivity of E - <u>Bank D</u> @ 3 steps, +2/-3 steps. The operator addresses Table 6.3.B of the Data Book and determines: I. Peak Xenon Rod Position for Reactivity of B - <u>Bank C</u> @ 49 steps, +2/-3 steps. J. Peak Xenon Rod Position fro Reactivity of D - <u>Bank B</u> @ 68 steps, +2/-3 steps. K. Peak Xenon Rod Position for Reactivity of E - <u>Bank D @ 26 steps, +2/-3</u> steps.		
*30	(Table 4.2.2) Estimated Critical Position	The operator records <u>Bank</u> <u>C @ 35 steps, +2/-3 steps.</u> [(I - F) x (A ÷ C)] + F.		
*31	(Table 4.2.2) Lower Limit of Band	The operator records <u>Bank</u> <u>B @ 39 steps, +2/-3 steps.</u> [(J - G) x (A ÷ C)] + G		

Appendix C

Page 13 of 17 PERFORMANCE INFORMATION

Form ES-C-1

r	P			
STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*32	(Table 4.2.2) Upper Limit of Band	The operator records <u>Bank</u> <u>D @ 3 steps, +2/-3 steps.</u>		
		[(K - H) x (A ÷ C)] + H		
*33	(Step 3.4) Check the following:	The operator addresses Graph 1.2 and determines		
	(Step 3.4.1) Rod Positions of Table 4.2.2 or REACT output are greater than insertion limits per Data Book Graph 1.2.	rod positions are NOT greater than insertion limits.		
	(Step 3.4.2) Rod positions of Table 4.2.2 or REACT Output are less than rod withdrawal limits per Data Book Table 2.8.	The operator addresses Table 2.8 and determines no withdrawal limits exist.		
34	(Step 3.5) If Step 3.4 CANNOT be met, contact reactor Engineering.	The operator contacts Reactor Engineering.		
		Cue:		
		Reactor Engineering acknowledges.		
35	Calculations performed By: (RO)	The operator records <u>Name</u> and <u>date</u> .		
	Date			

Terminating Cue:

Evaluation on this JPM is complete.

STOP TIME:

Appen	dix	С

Page 14 of 17 VERIFICATION OF COMPLETION

Job Performance Measure No.:	<u> 2010 Admin - JP</u>	M A1a RO/SRO	
Examinee's Name:			
Date Performed:			
Facility Evaluator:			
Number of Attempts:			
Time to Complete:			
Question Documentation:			
Result:	SAT	UNSAT	-

Examiner's Signature: Date:

Appendix C

Page 15 of 17 VERIFICATION OF COMPLETION

KEY:

Table 4.2.1: Rod Inserted Worth Calculation

Description	Reference	Value
A. ARO, HZP, No Xenon, Eq. Samarium Boron	Step 3.3.1	1818ppm
B. ARO/DBW	Step 3.3.2	-6.35pcm/ppm
C. Present Effective Boron Concentration	Step 3.1.6.3	1577ppm
D. Xenon Worth	Step 3.1.7	0pcm
E. Diff from Eq Sm Worth	Step 3.1.8	150pcm
F. Fission Product Correction	Step 3.1.9	39.5(±0.5)ppm
G. Reactivity Equivalent of Boron Difference	(C-A) x B (1577 - 1818) x -6.35	1530pcm
H. Reactivity Equivalent of Fission Product Correction	F x B 39.5 x -6.35	-250.83pcm (-247.65 – (-) 254)
Reactivity of Inserted Rods	(D + E + G) –H (0 + 150 + 1530) – (-250.83)	1930.83pcm (1927.65 - 1934)

Appendix C

Page 16 of 17 VERIFICATION OF COMPLETION

KEY^(Cont'd):

Table 4.2.2: Estimated Critical Rod Positions

Description	Reference		Value
A. Xenon Worth	Step 3.1.7		0pcm
B. Reactivity of inserted rods	Table 4.2.1		1931±4pcm
C. Peak Xenon Worth	Step 3.3.5	-	3913pcm
D. Lower Band Reactivity Worth	B + 750		2681pcm
E. Upper Band Reactivity Worth	B - 750		1181pcm
F. No Xenon Rod Position for Reactivity of B	Data Book Table 6.3.A	BankC	35+2/-3steps w/d
G. No Xenon Rod Position for Reactivity of D	Data Book Table 6.3.A	BankB	39+2/-3steps w/d
H. No Xenon Rod Position for Reactivity of E	Data Book Table 6.3.A	BankD	3+2/-3steps w/d
I. Peak Xenon Rod Position for Reactivity of B	Data Book Table 6.3.B	BankC	48+2/-3steps w/d
J. Peak Xenon Rod Position for Reactivity of D	Data Book Table 6.3.B	BankB	68+2/-3steps w/d
K. Peak Xenon Rod Position for Reactivity of E	Data Book Table 6.3.B	BankD	26+2/-3steps w/d
Estimated Critical Position	[(I - F) x (A/C)] + F [(C48 – C35) x (0/3913)] + C35	BankC	35 +2/-3steps w/d
Lower Limit of Band	[(J - G) x (A/C)] + G [(B68 - B39) x (0/3913)] + B39	BankB	39+2/-3steps w/d
Upper Limit of Band	[(K - H) x (A/C)] + H [(D26 – D3) x (0/3913)] + D3	BankD	3 +2/-3steps w/d

.

.

А	pp	end	dix	С
---	----	-----	-----	---

	Initial Conditions:	Unit 1 startup in progress per OP/1/A/6100/001 (Controlling Procedure for Unit Startup).
		All steps are complete up to determining the desired estimated critical rod height.
		The Unit tripped from 30% power, 70 hours ago.
		Prior to that the Unit had operated at 2 EFPD since the previous plant trip, which resulted in a shutdown lasting 24 hours.
		The following Cycle 21 conditions exist:
		 EFPD = 125 NC Boron = 1577 PPM Xenon Worth = 0
		 Samarium = 150 PCM greater than equilibrium
		It is intended to pull rods to criticality with criticality achieved in approximately 1 hour.
		Reactor Engineer Chad Adams has been contacted earlier today and has reported that there have been no unusual trends on ECPs.
		The OAC and REACT Program are unavailable.
_		
		The CPS has directed you to perform an ECP per Englacy of 2

INITIATING CUE:

The CRS has directed you to perform an ECP per Enclosure 4.2 (Estimated Critical Rod Position (ECP)) of OP/0/A/6100/006 (Reactivity Balance Calculation).

Enclosure 4.2 Estimated Critical Rod Position (ECP)

1. Limits and Precautions

ą

- 1.1 The calculation shall be performed twice. A Licensed Reactor Operator performs the calculation. The second, independent calculation shall be performed by a Qualified Reactor Engineer as a separate verification of the original calculation (NSD 304).
- 1.2 Criticality should not be obtained outside the maximum window (\pm 750 pcm) of estimated critical control bank position.
- 1.3 Estimated critical rod position must be recalculated if criticality will not be achieved within ± 2 hours from previously anticipated time of criticality.
- 1.4 For Dilution to Criticality (Initial Startup for Cycle): The ECP shall be performed using the All Rods Out, HZP, 0 EFPD Critical Boron Concentration provided in the Data Book.
- 1.5 Rod Worths listed in Data Book Tables 6.3.A, 6.3.B and 6.3.3 do not need to be interpolated over EFPD. The worths are valid over the range given in each column.
- 1.6 The maximum allowable rod position is ARO and the minimum allowable rod position is 0.

2. Initial Conditions

2.1 None

3. Procedure

NOTE: All curves/tables used in this procedure are found in OP/1(2)/A/6100/022 (Unit One (Two) Data Book). These procedures will be referred to as the "Data Book."

- 3.1 Record the following:
 - □ 3.1.1
 Unit ____ Cycle ____

 □ 3.1.2
 Recent trends on ECP
Reactor Engineer contacted: ______ Date _____

 □ 3.1.3
 Date/Time of Shutdown: _____/_____

 □ 3.1.4
 Anticipated Date/Time of Criticality: _____/

 □ 3.1.5
 Burnup: (P1457)

3.1.6	Enclosure 4.2 Estimated Critical Rod Position (ECP) NC System Effective Boron Concentration:	OP/ 0 /A/6100/006 Page 2 of 6
	3.1.6.1 IF Pulling Rods to Criticality:	
	A. <u>IF</u> OAC is unavailable, record the current NC Boron Concentration	ppm
	B. <u>IF</u> OAC is available:	
	□ 1. Record B-10 Atom Percent, Best Estimate (P5613)	%
	□ 2. Record the current NC Boron Concentration	ppm
ş	□ 3. Calculate the Effective Boron C (Step 3.1.6.1B.2 x Step 3.1.6.1B.1)÷	
	(x) ÷ 19.8 =	ppm
	3.1.6.2 IF Dilution to Criticality, record All Roc Out, HZP, Critical Boron Concentration for 0 EFPD. (Databook Graph 6.1)	
	3.1.6.3 Record the Effective Boron Concentration (Step 3.1.6.1A or Step 3.1.6.1B.3 or 3.1.6.2) =	on: ppm
□ 3.1.7	Xenon worth at anticipated time of criticality (from OAC program Xenon Samarium - XESM or REACT program).	pcm
3.1.8	IF burnup from step 3.1.5 is > 0 EFPD, record the difference between equilibrium and present samarium worth (P1475, Samarium program on OAC or REACT). {MCEI-0400-150}	pcm
3.1.9	<u>IF</u> burnup from step 3.1.5 is > 12 EFPD, perform Enclosure 4.8 to determine the fission product correct	ppmb tion.

¢

OP/**0**/A/6100/006 Page 3 of 6

Estimated Critical Rod Position (ECP)

- _ 3.2 <u>IF</u> desired, perform automated calculations using REACT (Reactivity Balance ECP module) by performing the following:
 - □ 3.2.1 Enter data from Section 3.1 into REACT and calculate, ensuring effective boron concentration from 3.1.6.3 is used as NC System Boron concentration.
 - \Box 3.2.2 Attach REACT output to this enclosure.
 - \square 3.2.3 N/A section 3.3 and go to step 3.4.

3.3 Manual Calculations:

- 3.3.1 Boron Concentration:
 - □ 3.3.1.1 Determine the all rods out (ARO), hot zero power (HZP), no xenon, equilibrium samarium, boron concentration for present burnup from Step 3.1.5 (Data Book Graph 6.1).
 - \Box 3.3.1.2 Record value in Table 4.2.1 Line A.
- 3.3.2 Differential Boron Worth:
 - □ 3.3.2.1 Determine the ARO differential boron worth for present burnup of step 3.1.5 (Data Book Graph 6.8)
 - \Box 3.3.2.2 Record value in Table 4.2.1 Line B.

OP/**0**/A/6100/006 Page 4 of 6

Estimated Critical Rod Position (ECP)

- Determine the Rod Inserted Worth: 3.3.3
 - □ 3.3.3.1 Record values from Steps 3.1.6 - 3.1.9 in Table 4.2.1.
 - Complete Table 4.2.1, recording 0 for any N/A'd Reference Steps. □ 3.3.3.2

Description	Reference	Value	
A. ARO, HZP, No Xenon, Eq. Samarium Boron	Step 3.3.1	ppm	
B. ARO DBW	Step 3.3.2	pcm/ppm	
C. Present Effective Boron Concentration	Step 3.1.6.3	ppm	
D. Xenon Worth	Step 3.1.7	pcm	
E. Diff from Eq Sm Worth	Step 3.1.8	pcm	
F. Fission Product Correction	Step 3.1.9	ppm	
G. Reactivity Equivalent of Boron Difference	(C - A) x B () x	pcm	
H. Reactivity Equivalent of Fission Product Correction.	F x B	pcm	
Reactivity of Inserted Rods	(D + E + G) - H		
	(+ +)	pcm	

Table 4.2.1 Rod Inserted Worth Calculation

- 3.3.4 **IF** result from Table 4.2.1 < 0 perform the following:
 - Perform Enclosure 4.1 for an ECB. □ 3.3.4.1
 - □ 3.3.4.2 Exit this Enclosure.
- Peak xenon worth: 3.3.5
 - Determine the peak xenon worth for present burnup from step □ 3.3.5.1 3.1.5 (Data Book Table 6.9).

Record value in Table 4.2.2 Line C. □ 3.3.5.2

OP/**0**/A/6100/006 Page 5 of 6

Estimated Critical Rod Position (ECP)

- 3.3.6 Calculate the Estimated Critical Rod Positions:
 - \Box 3.3.6.1 Record values from Step 3.1.7 and Table 4.2.1 in Table 4.2.2.
 - \Box 3.3.6.2 Complete Table 4.2.2.

Table 4.2.2: Estimated Critical Rod Positions

Description	Reference	Value
A. Xenon Worth	Step 3.1.7	pcm
B. Reactivity of inserted rods	Table 4.2.1	pcm
C. Peak Xenon Worth	Step 3.3.5	- pcm
D. Lower Band Reactivity Worth	B + 750	pcm
E. Upper Band Reactivity Worth	B - 750	pcm
F. No Xenon Rod Position for Reactivity of B	Data Book Table 6.3.A	Bank steps w/d
G. No Xenon Rod Position for Reactivity of D	Data Book Table 6.3.A	Bank steps w/d
H. No Xenon Rod Position for Reactivity of E	Data Book Table 6.3.A	Bank steps w/d
I. Peak Xenon Rod Position for Reactivity of B	Data Book Table 6.3.B	Bank steps w/d
J. Peak Xenon Rod Position for Reactivity of D	Data Book Table 6.3.B	Bank steps w/d
K. Peak Xenon Rod Position for Reactivity of E	Data Book Table 6.3.B	Bank steps w/d
Estimated Critical Position	[(I - F) x (A÷C)] + F [() x (÷)] +	Bank steps w/d
Lower Limit of Band	[(J - G) x (A÷C)] + G [() x (÷)] +	Bank steps w/d
Upper Limit of Band	[(K- H) x (A÷C)] + H [() x (÷)] +	Bank steps w/d

Enclosure	4.2
-----------	-----

OP/**0**/A/6100/006 Page 6 of 6

Estimated Critical Rod Position (ECP)

- 3.4 Check the following:
 - □ 3.4.1 Rod Positions of Table 4.2.2 or REACT output are greater than insertion limits per Data Book Graph 1.2.
 - □ 3.4.2 Rod Positions of Table 4.2.2 or REACT output are less than rod withdrawal limits per Data Book Table 2.8.
- 3.5 **IF** Step 3.4 **CANNOT** be met, contact Reactor Engineering.

Reactor Engineer Contacted / Date / Time

Calculations Performed By: ______ (RO) Date: _____

Separate Verification By: ______ (QRE) Date: _____

- 3.6 <u>**WHEN**</u> criticality is achieved, record the following Actual Critical Data (with power leveled off at 10^{-8} amps on I/R):
 - □ 3.6.1 Critical Time _____
 - \Box 3.6.2 T_{avg} at Time of Criticality _____°F
 - □ 3.6.3 Critical Rod Position: Bank _____ at ____ steps w/d
 - □ 3.6.4 Critical Boron Concentration _____ ppm
- \Box 3.7 Request that Primary Chemistry obtain an NC system boron sample for ¹⁰B analysis.
- 3.8 **IF** criticality is achieved outside the upper or lower band rod position, generate a N coded Reactivity Management PIP.

PIP Number:

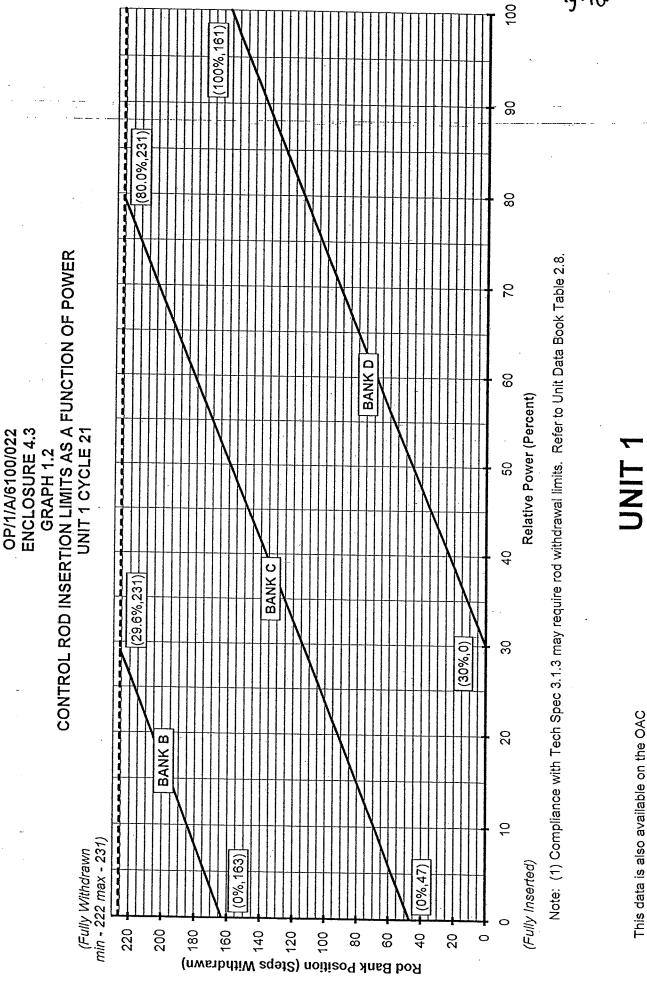
□ 3.9 Forward a copy of this Enclosure to Reactor Engineering.

End of Enclosure

1. Limits and Precautions

None

2. Initial Conditions


None

3. Procedure

1							
NOTE:	 All curves/tables used in this procedure are found in OP/1(2)/A/6100/022 (Unit One (Two) Data Book). These procedures will be referred to as the "Data Book." 						
	2. Number of hours shutdown is the difference in time between the time the reactor went subcritical and the expected time of criticality.						
3.1	Shute	lown Fission Pro	oduct Correction Calculation:				
	_ 3.1.1	IF Unit op	erated > 3 EFPD from previous shutdown to current shutdown:				
		□ 3.1.1.1	Use Data Book Table 6.7 to determine the shutdown fission product correction:				
		□ 3.1.1.2	Number of hours shutdown hrs				
		□ 3.1.1.3	Shutdown Fission Product Correction: ppm				
	_ 3.1.2	IF Unit op	erated < 1 EFPD from previous shutdown to current shutdown:				
		□ 3.1.2.1	Use Data Book Table 6.7 to determine the shutdown fission product correction based on the number of hours since the first shutdown:				
		□ 3.1.2.2	Number of hours since shutdown hrs				
		□ 3.1.2.3	Shutdown Fission Product Correction: ppm				

	Enclosure 4.8	
	Fission Product Correction Calculation	Page 2 of 2
current	t operated between 1 EFPD and 3 EFPD fror shutdown and current shutdown < 72 hours rmine the shutdown fission product correction	use Data Book Table 6.7
3.1.3.1	Previous Shutdown:	
	\Box A. Number of hours during previous	shutdown: hrs
	□ B. Shutdown fission product correction	on: ppm
3.1.3.2	Current Shutdown:	
	\Box A. Number of hours since current shu	tdown: hrs
	□ B. Shutdown fission product correction	on: ppm
□ 3.1.3.3	Shutdown Fission Product Correction:	
	(Step 3.1.3.1B x 0.5) + Step 3.1.3.2B =	:
	(x 0.5) +	ppm
	t operated between 1 EFPD and 3 EFPD from shutdown and current shutdown > 72 hours:	
□ 3.1.4.1	Use Data Book Table 6.7 to determine product correction using the time of the	

- \Box 3.1.4.2 Number of hours shutdown _____ hrs
- □ 3.1.4.3 Shutdown Fission Product Correction: _____ ppm

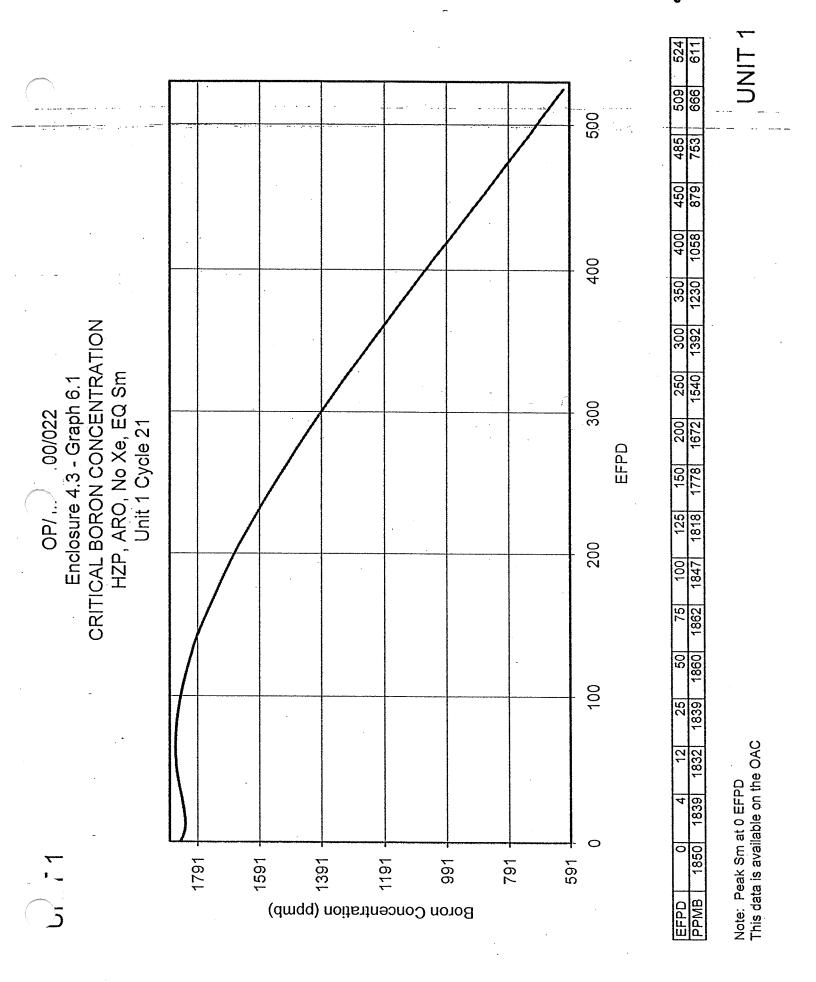
UNIT 1

Chg AG

UNIT 1

OP/1/A/6100/022 ENCLOSURE 4.3

TABLE 2.8


ROD WITHDRAWAL LIMITS

McGUIRE UNIT 1 CYCLE 21

McGuire Unit 1 is required to operate with a Moderator Temperature Coefficient within the limits of Tech Spec 3.1.3 and as shown in the McGuire Unit 1 Cycle 21 Core Operating Limits Report, MCEI-0400-232, Revision 0.

For McGuire Unit 1 Cycle 21, there are NO ROD WITHDRAWAL LIMITS.

UNIT 1

Lng Mi

Enclosure 4.3 - Table 6.3.A Integral Rod Worth in Overlap HZP, No Xenon

Unit 1 Cycle 21

	•			4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Control Bank Position		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW		
Step	s Withdra	wn *		IRW	IRW	IRW	IRW	IRW
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
226	226	226	226	0	0	0	0	0
226	226	226	225	2	1	2	2	3
226	226	226	220	14	8	9	13	18
226	226	226	215	26	15	17	24	33
226	226	226	210	39	22	25	35	49
226	226	226	205	63	41	47	63	84
226	226	226	200	88	59	68	91	119
226	226	226	195	113	77	90	120	155
226	226	226	190	138	95	111	148	190
226	226	226	185	161	117	136	179	225
226	226	226	180	184	138	161	209	259
226	226	226	175	. 207	160	186	240	294
226	226	226	170	230	181	211	271	329
- ?^ _	226	226	165	250	202	235	296	355
	226	226	160	270	223	258	322	381
<u> </u>	226	226	155	290	245	281	347	407
6	226	226	150	311	266	305	373	433
_226	226	226	145	327	286	325	392	450
226	226	226	140	344	306	345	412	467
226	226	226	135	361	326	366	431	484
226	226	226	130	378	346	386	450	501
226	226	226	125	393	364	404	·465	512
226	226	226	120	407	. 383	421	479	522
226	226	226	116	418	398	435	490	531
226	226	226	110	433	418	454	504	540
226	226	221	105	454	438	473	523	561
_226	226	216	100	475	459	492	542	583
226	226	211	95	514	491	527	584	637
226	226	206	90	553	524	562	627	692
226	226	201	85	593	557	596	670	747

NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

4 · - - - - -

UNII 1

Enclosure 4.3 - Table 6.3.A Integral Rod Worth in Overlap HZP, No Xenon

Unit 1 Cycle 21

- --

				4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Control Bank Position		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW		
Steps Withdrawn *		IRW	IRW	IRW	IRW	IRW		
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	· · · · (PCM)	(PCM)	(PCM)
226	226	196	80	632	589	631	712	801
226	226	191	75	670	- 626	672	762	862
226	226	186	70	707	664	713	812	923
226	226	181	65	745	701	754	862	984
226	226	176	60	782	. 739	795	911	1045
226	226	171	55	819	777	836	957	1097
226	226	166	50	856	816	878	1004	1148
226	226	161	45	893	855	919	1050	1200
226	226	156	40	930 ·	894	961	1096	1251
226	226	151	35	969	934	1002	1138	1295
226	226	146	30	1008	974	1043	1181	1338
226	226	141	25	1047	1014	1084	1224	1381
226	226	136	20	1086	1054	1125	1266	1425
225	226	131	[.] 15	1124	1091	1162	1302	1457
~ _	226	126	10	1161	1129	1199	1338	1489
6	226	121	5	1198	1167	1236	1374	1522
226	226	116	0	1235	1205	1273	1410	` 1554
226	226	110	0	1269	1246	1312	1446	1583
226	221	105	0	1300	1282	1346	1477	1611
226	216	100	0	1330	1318	1380	1508	1639
226	211	95	0	1367	1360	1420	1547	1682
226	206	90	0	1404	1402	1461	1587	1725
226	201	85 ·	0	1441	1444	1501	1627	1769
226	196	80	0	1477	1486	1541	1666	1812
226	191	75	0	1523	1534	1589	1712	1859
226	186	70	0	1569	1583	1636	1758	1907
226	181	65	0	1614	1632	1683	1804	1954
226	176	60	0	1660	1680	1730	1850	2002
226	171	55	0	1719	1732	1781	1897	2044
226	166	50	0	1778	1784	1831	1944	2087

.

*NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

·· ·· · · · · ·

·· ----

UNIT

UNII 1

Enclosure 4.3 - Table 6.3.A Integral Rod Worth in Overlap HZP, No Xenon

.

-

Chy AG

.....

......

Unit 1 Cycle 21

				4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Contro	l Bank Po	sition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Step	s Withdrav	wn *		IRW	IRW	IRW	IRW	IRW
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	(PCM)	(PCM)	·(PCM)
226	161	· 45	0	1836	1837	1881	1991	2130
226	156	40	0	1895	1889	1932	2038	2172
226	151	35	0	1954	1933	1974	2076	2203
226	146	30	0	2013	1978	2016	2114	2234
226	141	25	0	2072	2022	2058	2151	2265
226	136	20	0 .	2131	2066	2100	2189	2295
226	131	15	0	2168	2097	2127	2212	2312
226	126	10	0	2205	2127	2155	2235	2329
226	121	5	0	2241	2158	2183	2257	2346
226	116	0	0	2278	2188	2210	2280	2363
226	110	0	0.	2300	2213	2233	2297	2375
221	105	0	0	2323	2236	2255	2317	2396
216	100	0	0	2347	2260	2276	2337	2416
211	95	0	0	2379	2291	2309	2374	2460
<u> </u>	90	0	0	2412	2323	2342	2411	2504
	85	0	0	2445	2355	2375	2448	2548
<u>)6</u>	80	0	0	2477	2387	2407	2485	2592
191	75	0	0	2510	2422	2445	2527	2639
186	70	0	0	2542	2457	2483	2569	2686
181	65	0	0	2574	2493	2521	2611	2732
176	60	0	0	2606	2528	2558	2653	2779
171	55	0	0	2640	2565	2596	2691	2816
166	50	0	Ó	2674	2601	2634	2730	2853
161	45	0	0	2708	2638	2673	2768	2890
156	40	0	: 0	2742	2675	2711	2806	2928
151	35	0	0	2774	2710	2746	2839	2955
146	30	0	0	2807	2746	2781	2871	2982
141	25	0	0	2839	2782	2816	2903	3008
136	20	0	0	2871	2817	2852	2936	3035
131	15	0	0	2895	2848	2880	2959	3051

*NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

.... -

..

.

Enclosure 4.3 - Table 6.3.A Integral Rod Worth in Overlap HZP, No Xenon

Unit 1 Cycle 21

- .

._____

---- - - -

			1	. 4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Contro	ol Bank Po	osition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Step	s Withdra	wn *		IRW	IRW	IRW	IRW	IRW
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
126	10	0	0	2920	2878	2908	2981	3067
121	5	0	0	2944	2909	2937	3004	3083
<u>116 ·</u>	θ.	0 -	0	2969	2939	2965	3027	3098
110	0	0	0	2988	2970	2993	3047	3110
105	0	0	0	3003	2994	3014	3060	3118
_ 100	0	0	0	3018	3018	3035	3074	3126
95	0	0	0	3030	3039	3052	3084	3130
90	0	0	0	3042	3060	3069	3093	3134
85	0	0	0	3054	3081	3087	3103	3139
80	0	0 -	0	3066	3102	3104	3112	3143
75	0	0	0	3074	3117	3115	-3117	3145
70	0	0	0	3082	3131	3126	3123	3147
65	0	0	0	3090	3145	3137	3128	3149
60	0	0	0	3099	3160	3148	3133	3151
	0	0	0	3103	3167	3153	3135	3152
\sim $-$	0	0	0	3108	3174	3159	3138	3153
	0	0 ·	0	3112	3182	3164	3140	3154
40	0	0	0	3117	3189	3170	3143	3155
35	0	0	0	3119	3192	3172	3144	3155
30	0	0	0	3121	3195	3174	3145	3156
25	0	0	0	3124	3198	3176	3146	3156
20	Ó	0	0	3126	3201	3179	3147	3156
15	0	0	0 ·	3127	3202	3179	3147	3156
10	0	0	0	3128	3203	3180	3147	3157
5	0	0	0	3129	3204	3180	3148	3157
0	0	0	0	3130	3205	3181	3148	3157

٢

'NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

Chg AG

7. 27.

.

UNIT '

Enclosure 4.3 - Table 6.3.A Integral Rod Worth in Overlap HZP, No Xenon

Unit 1 Cycle 21

- -

		•				4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Control		Shutdo	wn Bank F	osition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Bank		Step	s Withdra	wn *		IRW	IRW	IRW	IRW	IRW
Position	SD E	SD D	SD C	SD B	SD A	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
226	226	226 [¨]	226	226	226	0.	- 0	0	0	0
0	226	226	226	226	226	3130	3205	3181	3148	3157
0	0	226	226	226	226	3985	4047	3973	3911	3907
0	0	0	226	226	226	4497	4671	4658	4614	4623
. 0	0	0	0	226	226	5047	5361	5438	5429	5463
0	0	0	0	0	226	6289	6430	6420	6370	6394
0	0	0	0	0	0	6402	6563	6568	6525	6562

*NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

UNIT

- -----

Enclosure 4.3 - Table 6.3.B Integral Rod Worth in Overlap HZP, Peak Xenon

Unit 1 Cycle21

- .

-___

				4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Contr	ol Bank Po	sition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Ste	ps Withdrav	wn *		IRW	IRW "	· IRW	IRW	IRW
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
226	226	226	226	0	0	0	0	0
226	226	226	225	3.	2	3	3	4
226	226	226	220	19	15	16	19	23
226	226	226	215	34	27	29	34	42
226	226	226	210	49	39 -	42	50	61
226	226	226	205	81	69	75	88	103
226	226	226	200	113	99	109	126	145
226	226	226	195	144	129	142	163	187
226	226	226	190	176	159 -	175	201	229
226	226	226	185	203	188	209	238	267
226	226	226	180	231	218 -	243	274	305
226 ·	226	226	175	259	248	276	311	. 343
226	226	226	170	286	278	310	347	381
ک ر ا	226	226	165	308	302	336	374	407
~ <u>.</u>	226	226	160	330	326	362	400	432
26	226	226	155	352	350	389	427	458
226	226	226	150	373	375	415	453	484
226	226	226	145	390	393	434	470	499
226	226	226	140	407	412	452	487	514
226	226	226	135	423	430	471	504	529
226	226	226	130	440	449	489	521·	544
226	226	226	125	453	463	502	532	553
226	226	226	120	466	478	515	542	561
226	226	226	116	477	489	525 ·	550	568
226	226	226	110	490	503	536	559	. 574
226	226	221	105	512	523	556	580	599
226	22,6	216	100	534	543	575	601	623
226	226	211	95	580	587	625	658	689
226	226	206	90	627	630	674	715	755
226	226	201	85	674	· 674	723	773	821

. ...

4 47

*NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

....

UNIT

UNIT 1

· -

Enclosure 4.3 - Table 6.3.B Integral Rod Worth in Overlap HZP, Peak Xenon

Unit 1 Cycle21

			•••		4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
	Contre	ol Bank Po	osition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
	Step	s Withdra	wn *		IRW	IRW	IRW	IRW	IRW
	Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	. (PCM)	(PCM)	(PCM)
	226	226	196	80	. 720	718	773	830	887
	226	226	191 -	75	761	763	827	894	958
	226	226	186	70	802	808	881	957	1028
	226	226	181	65	843	854	935	1021	1099
_	226	226	176	60	884	. 899	990	1084	1169
:	226	226	171	55	923	942	1038	. 1137	1225
_	226	226	166	50	961	984	1085	1189	1280
	226	226	161	45	1000	1027	1133	1242	1336
	226	226	156	40	1039	1070	1181	- 1295	1392
	226	226	151	35	1079	1111	1224	1338	1433
	226	226	146	30 ·	1119	1153	1267	- 1381	. 1475
	226	226	141	25	1159	1194	1310	1424	1516
	226	226	136	20	1200	1236	1354	1467	1558
	<u>م</u>	226	131	15	1236	1271	1388	1498	1584
, and the second second	<u>;</u>	226	126	10	1272	1307	1423	1529	1610
	_26	226	121	5	1308	1342	1457	1561	1636
	226	226	116	0	1344	1377	1492	1592	1662
-	226	226	110	0	1375	1410	1524	1618	1682
	226	221	105	0	1403	1439	1553	1645	1709
	226	216	100	0	1431	1468	1582	1673	1736
	226	211	95	0	1467	1506	1624	1721	1792
_	226	206	90	0	1502	.1544	1666	1769	1847
	226	201	85	0	1537	1582	1708	1817	1903
_	226	196	80	0	1572	1620	1750	1866	1958
	226	191	75	0	1616	1666	1799	1918	2015
	226	186	70	0	1660	1713	1847	1970	2072
	226	181	65	0	1703	1759	1895	2022	2129
	226	176	60	0	1747	1806	1944	2074	2186
_	226	171	55	0	1805	1862	1996	2121	2230
_	226	166	50	0	1863	1919	2047	2168	2275

*NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

UNIT 1

· •• •·

Enclosure 4.3 - Table 6.3.B Integral Rod Worth in Overlap HZP, Peak Xenon

Unit 1 Cycle21

.....

				4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Contr	ol Bank Po	sition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Step	os Withdra	wn *		IRW	IRW	IRW	IRW -	IRW
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
226	161	45	·``0	1921	1975	2099	2215	2320
226	156	40	0	1979	2032	2151	2262	2364
226	151	35	0	2043	2085	2195	2298	2395
226	146	30	0	2106	2139	2239	2333	2425
226	141	25	0	2170	2193	2282	2368	2455
226	136	20	0	2233	2246	2326	2404	2485
226	131	15	0	2275	2279	2352	2423	2501
226	126	10	0	2316	2313	2378	2443	2516
226	121	5	0	2357	2346	2404	2463	2532
226	116	0	0	2398	2379	. 2430	2482	2548
226	- 110	0	0	2421	2401	2448	2496	2558
221	105	0	0	2445	2424	2469	2516	2579
216	100	0	0	2469	2447	2490	2536	2601
211	95	0	0	2503	2483	2529	2578	2646
<u>کر</u>	90	0	0	2536	2518	2567	2620	2692
<u> </u>	85	0	0	2570	2553	2606	2662	2738
96	80	0	0	2603	2588	2644	2704	2783
191	75	0	0	2637	2626	2685	2748	2828
186	70	0	0	2670	2664	2727	2791	2873
	65	0	0	2704	2702	2768	2835	2917
176	60	0	0	2738	2740	2809	2878	2962
171	55	0	0	2773	2778	2846	2913	2993
166	50	0	0	2808	2816	2882	2947	3025
161	45	0	0	2843	2854	2918	2981	3056
156	40	0	0	2878	2892	2955	3015	3088
151	35	0	0	2908	2923	2983	3038	3107
146	30	0	0	2938	2955	3010	3061	3126
141	25	0	0	2968	2987	3038	3084	3145
136	20	0	0	2998	3019	3066	3107	3164
131	15	0	0.	3017	3039	3083	3120	3174

*NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

· ······

UNIT

..

·····

Enclosure 4.3 - Table 6.3.B Integral Rod Worth in Overlap HZP, Peak Xenon

Unit 1 Cycle21

			1	4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Contro	ol Bank Po	osition		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Step	s Withdra	wn *		IRW	IRW	IRW	IRW	IRW
Bk A	Bk B	Bk C	Bk D	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
126	10	0	0	3035	3060	3100	3132	3184
121	5	0	0	3054	3081	3117	3145	3193
116	0	• 0'		3072	3101	3134	3158	3203
110	0	0	0	3085	3118	3147	3167	3210
105	0	0	0	3094	3129	3156	3173	3213
100	0	0	0	3103	3140	3165	3179	3217
95	0	0	0	3110	3149	3170	3182	3219
90	0	0	0	3117	3157	3176	3185	3221
85	0	0	0	3123	. 3165	3181	3189	3224
80	0	0	0	3130	3174	3187	3192	3226
75	0	0 -	0	3134	3179	3190	3194	3226
70	0	0	0	3138	3183	3193	3195	. 3227
65	0	0	0	3142	3188	3196	3196	3228
60	0	0	0	3146	3193	3198	3198	3229
· • •	0	0	0	3149	3196	3200	3199	3229
<u> </u>	0	0	0	3151	3199	3201	3199	3229
	. 0	0	0	3153	3201	3203	3200	3230
40	0	0	0	. 3156	3204	3204 -	3201	3230
35	. 0	0	0	3157	3205	3205	3201	3230
<u> </u>	0	0	0	3158	3206	3205	3201	3230
25	0	0	0	3160	3208	3206	3201	3230
20	0	0	0	3161	3209	3207	3202	3230
15	0	0	0	3161	3209	3207	3202	3230
10	0	0	0	3162	3210	3207	3202	3230
5	0	0	0	3162	3210	3207	3202	3231
	0	0	0	3163	3211	3208	3202	3231

NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

· • -

Enclosure 4.3 - Table 6.3.B Integral Rod Worth in Overlap HZP, Peak Xenon

Unit 1 Cycle21

.....

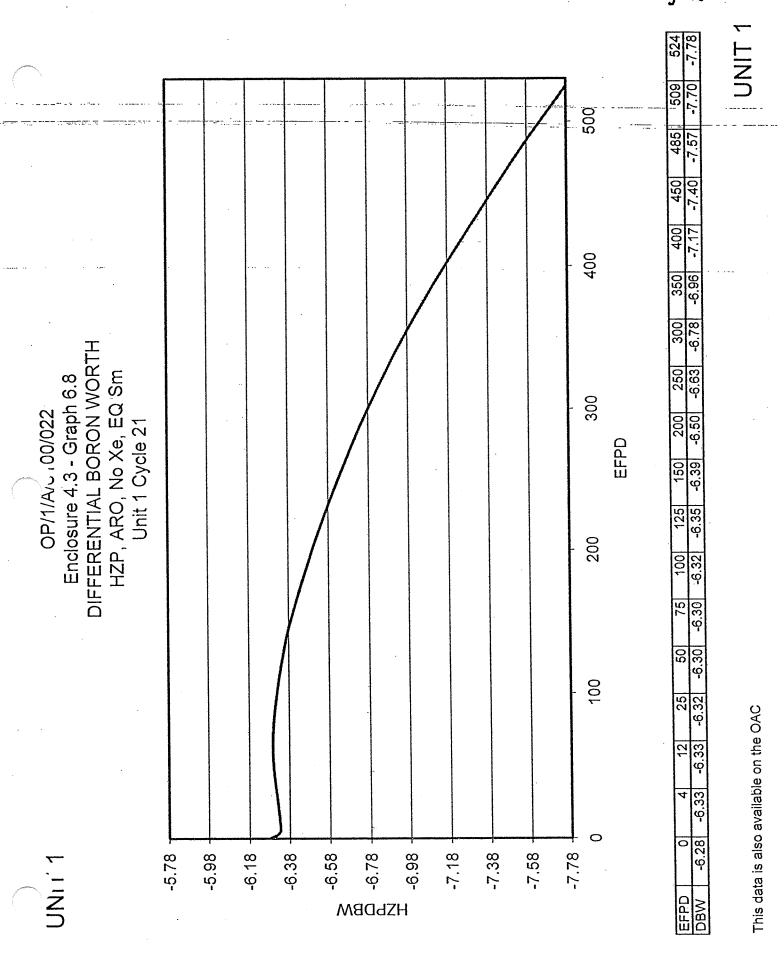
						4 EFPD	100 EFPD	200 EFPD	300 EFPD	400 EFPD
Control	•	Shutdo	wn Bank F	Position		0 - 50 EFPD	51 - 150 EFPD	151 - 250 EFPD	251 - 350 EFPD	351 - EOW
Bank		Step	os Withdra	wn *		IRW 1	IRW	IRW	. IRW	IRW
Position	SD E	SD D	SD C	SD B	SD A	(PCM)	(PCM)	(PCM)	(PCM)	(PCM)
226	226	226	226	226	226	•	0	0	0	0
0	226	226	226	226	226	3163	3211	3208	3202	3231
-0	0	226	226	226	226	3925	3955	3916	3890	3906
0	0	0	226	226	226	4506	4639	4652	4643	4674
. 0	Ó	0	0	226	226	5152	5424	5515	5539	- 5598
0	0	0	0	0	226	6427	6542	6544	6523	6567
0	0	0	0.	0	0	6612	6749	6762	6749	6813

NOTE: For actual ALL Rods out Overlap Data, see Enclosure 4.3, Section 1.13 of the Data Book

UNIT

UNIT 1

~


OP/ 1/A/6100/022 Enclosure 4.3 Table 6.7

Shutdown Fission Product Correction

Tir	ne	Correction	· Ti	me	Correction	Τ	Tir	ne	Correction
(hours)	(days)	(ppm)	(hours)	(days)	(ppm)		(hours)	(days)	(ppm)
0	0.0	0	96	4.0	37		192	8.0	46
8	0.3	3	104	4.3	38	'	200	8.3	47
16	0.7	6	112	4.7	. 39	1	208	8.7	47
24	1.0	10	120	5.0	39	-	,216	9.0	48
32	1.3	. 14	128	5.3	40	-	224	9.3	49
40	1.7	18	136	5.7	41	-	232	9.7	49
48	2.0	23	144	6.0	41	1	240	10.0	50
56	2.3	27	152	6.3	42	-	480	20.0	53
64	2.7	31	160	6.7	43	1 -	720	30.0	56
72	3.0	35	168	7.0	43	-	960	40.0	56
80	3.3	35	176	7.3	44	-	1200	50.0	56
88	3.7	36	184	7.7	45	•			

UNIT 1

r

Chg AG

UNIT 1

27

OP/1/A/6100/022 ENCLOSURE 4.3 TABLE 6.9

McGuire 1 Cycle 21

Xenon and Samarium Worths

	HFP Equilibrium	HZP Peak	HFP Equilibrium
Burnup	Xenon	Xenon	Samarium
(EFPD)	_(pcm)_	(pcm)	<u>(pcm)</u>
0		-	748
4	2523	3860	564
12	_2519	3850	654
25	2523	3853	753
50	2534	3865	792
75	2548	3880	809
100	2564	3896	825
125	2580	3913	841
150	2597	3932	857
200	2632	3983	887
250	2668	4052	914
300	2706	4144	940
350	2744	4253	963
400	2783	4372	985
450	2822	4499	1006
485	2849	4603	1019
509	2868	4691	1028
524	2879	4738	1033

Chg AG Page 1 of 1

. . .

JPM A1b RO

2010 Admin - JPM A1b RO

NUREG 1021, Revision 9

Appendix C	Page 2	of 8	Form ES-C-1
	Job Performance Me	asure Workshee	t
Facility:	McGuire	Task No.:	217MFW002
Task Title:	Determine Boric Acid Addition to FWST	JPM No.:	<u>2010 Admin - JPM A1b</u> <u>RO</u>
K/A Reference:	GK/A 2.1.25 (3.9/4.2)		
Examinee:		NRC Examiner	,
Facility Evaluator:		Date:	
Method of testing:			
Simulated Perform	ance:	Actual Perform	ance: X
Classr	oom X Simulator	Plant	

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions:	• The plant was at 100% power when a leak developed on the FWST.
	 FWST Level dropped to 440 inches before leak was isolated.
	 Enclosure 4.4, "FWST Makeup Using the RHT," of OP/1/A/6200/014, "Refueling Water System" is in progress and completed through Step 3.9.
	 LCO 3.5.4, Refueling Water Storage Tank (RWST), was entered 10 minutes ago.
	 Chemistry has provided the following information:
	BAT Boron Conc. = 7234 ppm
	RHT Boron Conc.= 1076 ppm
	FWST Make up Boron Concentration: Use COLR Minimum

Task Standard:The operator will calculate the amount of Boric Acid that must be added
from the BAT to refill the FWST is 7,912 gallons +300/-75 gallons.

Required Materials: Calculator

General References: OP/1/A/6200/014, Refueling Water System

Appendix C	Page 3 of 8	Form ES-C-1
	Job Performance Measure Worksheet	
	McGuire Core Operating Limits Report (Cycle 21)	
	McGuire U-1 Data Book	
	OMP 8-2, Component Verification Techniques	
Handouts:	Enclosure 4.4 of OP/1/A/6200/014, Refueling Wate for place-keeping through Step 3.9 as follows:	r System, marked up
	Initial Conditions 2.1 -2.3 are initialed.	
	• Procedure Step 3.1 – Checkbox is checked.	
	• Procedure Step 3.2 – Left blank (Conditional st	ep).
	 Procedure Step 3.3 – initialed, Person Notified: present. 	CHEMIST, date/time
	• Procedure Step 3.4 – NA, initialed.	
	• Procedure Step 3.5 – initialed.	
	• Procedure Step 3.6 – NA, initialed.	
	• Procedure Step 3.7 – NA, initialed.	
	• Procedure Step 3.8 – NA, initialed.	
	 Procedure Step 3.9 – initialed, Person Notified: date/time: present. 	R.P. TECH,
	McGuire 1 Cycle 21 Core Operating Limits Report	(Page 26 of 32)
	OP/1/A/6100/22, Enclosure 4.3, Curve 7.7, Refuelin Tank Level (Volume vs. Tank Level)	ng Water Storage
Initiating Cue:	Determine the amount of Boric Acid needed to rais 480" using the RHT in accordance with Step 3.10 c OP/1/A/6200/014, "Refueling Water System."	of Enclosure 4.4 of
Time Critical Task:	NO	
Validation Time:	20 minutes	

C. C. Marine

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue (Last Page of this JPM), and Handout all three (3) identified Handout documents, marked up as described.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*1	(Step 3.10) Determine the amount of Boric Acid needed to raise makeup water to the limits specified in the Core Operating Limits Report (COLR).	The operator refers to the COLR, Section 2.13.1 on Page 26 of 32 and determines that the minimum boron concentration to be used in the calculation is 2675 ppm. The operator records <u>2675</u> ppm in the first line (Desired Page Concentration of		
		Boron Concentration of Addition from COLR) of the Doer Calculation in Step 3.10 of Enclosure 4.4.		
*2	(1 st Bullet) Desired Boron Concentration of Addition from COLR + 25 ppmB margin = Desired Boron Concentration	The operator adds an additional 25 ppm and determines Desired Boron Concentration to be 2700 ppm. The operator records 2700 ppm in the 2 nd line (Desired Boron Conc) of the Doer Calculation in Step 3.10 of Enclosure 4.4.		
*3	(2 nd Bullet) { <u>(Desired Cb) - (RHT Cb)</u> } (BAT Cb) - (RHT Cb)	The operator identifies Desired Cb = <u>2700</u> from previous Step and records.		
	x {Desired Total Makeup Volume to FWST}	The operator recognizes that RHT Cb = <u>1076</u> ppm and records (Initial Conditions).		
	= Desired BAT Volume			

Appendix C

Page 5 of 8 PERFORMANCE INFORMATION

Form ES-C-1

ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED
			FOR UNSAT
	The operator recognizes		
	that BAT Cb = <u>7234</u> ppm and records (Initial Conditions).		
	The operator addresses OP/1/A/6100/22, Enclosure 4.3, Curve 7.7, and determines from graph that total makeup volume is 30,000 by comparing 480" volume of 390,000 gallons to the 440" volume of 360,000 gallons.		
	The operator records <u>30,000 (+1300[#])</u> gallons.		
	The operator calculates the Desired BAT Volume to be added to be 7,912 gallons +300/-75 gallons.		
	The operator records <u>7,912</u> gallons <u>+300/-75</u> gallons as the Desired BAT Volume in the Doer Calculation.		
	ELEMENTS	The operator recognizes that BAT Cb = 7234 ppm and records (Initial Conditions).The operator addresses OP/11/A/6100/22, Enclosure 4.3, Curve 7.7, and determines from graph that total makeup volume is 30,000 by comparing 480" volume of 390,000 gallons to the 440" volume of 360,000 gallons.The operator records 30,000 (+1300**) gallons.The operator calculates the Desired BAT Volume to be added to be 7.912 gallons +300/-75 gallons.The operator records 7.912 gallons $\pm 300/-75$ gallons as the Desired BAT Volume in	The operator recognizes that BAT Cb = 7234 ppm and records (Initial Conditions).The operator addresses OP/1/A/6100/22, Enclosure 4.3, Curve 7.7, and determines from graph that total makeup volume is 30,000 by comparing 480" volume of 390,000 gallons to the 440" volume of 360,000 gallons.The operator records 30,000 (+1300#) gallons.The operator calculates the Desired BAT Volume to be added to be 7.912 gallons +300/-75 gallons.The operator records 57.912 gallons ±300/-75 gallons as the Desired BAT Volume in

Terminating Cue:

Evaluation on this JPM is complete.

STOP TIME:

Appendix C	Ap	pen	ıdix	С
------------	----	-----	------	---

Page 6 of 8 VERIFICATION OF COMPLETION

Form ES-C-1

Job Performance Measure No.:	<u> 2009 Admin - JPM A1b RO</u>
------------------------------	---------------------------------

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to Complete:

Question Documentation:

Result:

SAT UNSAT

Examiner's Signature: _____ Date: _____

Page 7 of 8 VERIFICATION OF COMPLETION

KEY:

Desired Boron Concentration from COLR + 25 ppmB = Desired Boron Concentration

2675 ppm (From COLR) + 25 ppmB = 2700 ppm

{(Desired Cb) - (RHT Cb)} x {Desired Total Makeup Volume to FWST} = Desired BAT Volume (BAT Cb) - (RHT Cb)

Given:

RHT Cb = **1076** ppm BAT Cb = **7234** ppm

Desired Total Makeup Volume to FWST = Overflow volume – Present volume (From Enclosure 4.3, Curve 7.7 of Unit 1 Core Data Book:) 390,000 gallons – 360,000 gallons (440") = **30,000** gallons[#]

#: If the operator uses develops a "gallons/inch" volume from the information block on Curve 7.7, the operator will determine the makeup volume to be 31,277 gallons.

Volume at 484 inches = 394,089 gallons Volume at 0 inches = 15,638 gallons

(394,089 gallons - 15,638 gallons)/484 inches = 781.92 gallons/inch

OR

Volume at 455.88 inches = 372,100 gallons Volume at 0 inches = 15,638 gallons

(372,100 gallons - 15, 638 gallons)/455.88 inches = 781.92 gallons/inch

Therefore, 781.92 gallons/inch x 40 inches = 31,276.80 gallons (This may be used as the makeup volume instead of 30,000 gallons).

If this volume is used, the calculation will result in a Desired BAT Volume below of 8132 gallons

So:

{(Desired Cb)-(RHT Cb)} x {Desired Total Makeup Volume to FWST} = Desired BAT Volume (BAT Cb)-(RHT Cb)

 $\{(2700)-(1076)\}$ x $\{30000\}$ = Desired BAT Volume (7234)-(1076)

{<u>1624</u>} x {30000} = Desired BAT Volume 6158

.26 x {30000} = Desired BAT Volume or **7,912** gallons +300/-75 gallons

OR between 7,837 and 8212 gallons

INITIAL CONDITIONS:

- The plant was at 100% power when a leak developed on the FWST.
- FWST Level dropped to 440 inches before leak was isolated.
- Enclosure 4.4, "FWST Makeup Using the RHT," of OP/1/A/6200/014, "Refueling Water System" is in progress and completed through Step 3.9.
- LCO 3.5.4, Refueling Water Storage Tank (RWST), was entered 10 minutes ago.
- Chemistry has provided the following information:
 - BAT Boron Conc. = 7234 ppm
 - RHT Boron Conc.= 1076 ppm
 - FWST Make up Boron Concentration: <u>Use COLR</u>
 <u>Minimum</u>

INITIATING CUE:

Determine the amount of Boric Acid needed to raise the FWST level to 480" using the RHT in accordance with Step 3.10 of Enclosure 4.4 of OP/1/A/6200/014, "Refueling Water System."

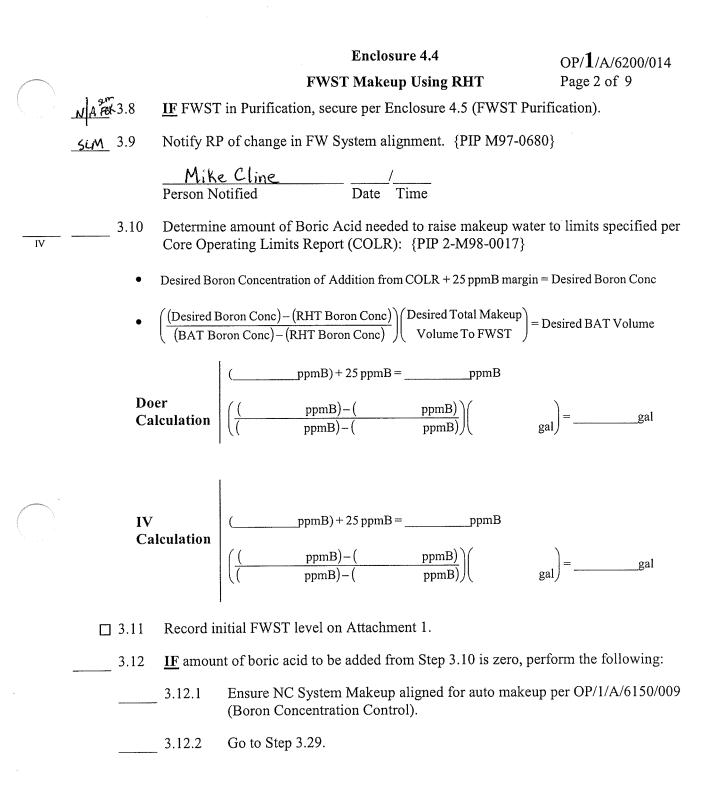
OP/**1**/A/6200/014 Page 1 of 9

FWST Makeup Using RHT

1. Limits and Precautions

- / 1.1 Maximum FWST Tech Spec temperature limit is 100°F.
- $\sqrt{1.2}$ Minimum FWST Tech Spec temperature limit is 70°F.
- $\sqrt{1.3}$ All electrically operated engineered safeguard valves must be operated electrically after any manual operation.
- $\sqrt{1.4}$ Maximum FWST level is 483 inches unless FWST overflow is required. (Overflows to SFP at 484 inches)
- $\sqrt{1.5}$ NC System sampling during makeup to the FWST is prohibited.

2. Initial Conditions


- <u>5LM</u> 2.1 Boron concentration control systems available per OP/1/A/6150/009 (Boron Concentration Control).
- 5LM 2.2 NB System aligned per OP/0/A/6200/003 (Boron Recycle System).
- 5LM 2.3 NI check valve test header alignment to FWST secured.

3. Procedure

- $\sqrt{3.1}$ Evaluate all outstanding R&Rs that may impact performance of this procedure.
 - 3.2 IF Emergency Boration Flow is needed, secure makeup to FWST.
- <u>SLM</u> 3.3 Notify Chemistry to sample RHT.

Kevin Hodges		/
Person Notified	Date	Time

- NAR 3.4 IF RHT is unacceptable for use, exit this enclosure.
- SEM 3.5 Ensure that a pre-job briefing has been performed that includes discussion of reactivity management concerns with this procedure.
- NATE 3.6 IF FWST in Recirculation per Enclosure 4.1 (FWST Recirculation Using 1A (1B) FWST Recirc Pump), stop the following:
 - 1A FWST Recirc Pump
 - 1B FWST Recirc Pump
- <u>NARE 3.7</u> <u>IF</u> FWST in Recirculation with #1 FWST Pump, secure per Enclosure 4.6 (FWST Recirculation Using Unit 1 FWST Pump).

			Enclosure 4.4	OP/ 1 /A/6200/014	
			FWST Makeup Using RHT	Page 3 of 9	
3.13	Add amo	ount of Boric	Acid calculated in Step 3.10 to FWST	' from Blender as follows:	
	3.13.1	Ensure clos	sed one of the following:		
		• 1NI-96	B (NI Chk Test Hdr C/I Outside)		
		OR			
		• 1NI-99	(Unit 1 NI Check Valve Test Hdr To	FWST Isol)	
	3.13.2	Ensure loc	ked closed, either:		
		_ 3.13.2.1	1NS-70 (1A & 1B NS HX Outlet To	FWST Throttle)	
			OR		
		3.13.2.2	Both of the following:		
		CV	• 1NS-8 (1B NS HX Outlet To FV	VST Isol)	
		<u></u>	• 1NS-25 (1A NS HX Outlet To F	WST Isol)	
C] 3.13.3	Ensure clo	sed 1NB-5 (Unit 1 Boric Acid Blender 6, KK-51, S End U1 VCT Hallway)	To NB System Isol).	
	3.13.4	Open:			
	. <u></u>		72 (Unit 1 Boric Acid Blender To NB 74 (Unit 1 Boric Acid Blender To FW		
	3.13.5 Select "MANUAL" on "NC Sys M/U Controller".				
	3.13.6	Ensure in	"STOP":		
			M/U Water Pump M/U Water Pump		
	_ 3.13.7	IF both B	A Trans Pumps off, ensure in "AUTO"	one of the following:	
		• 1A BA	Trans Pump		
		OR			
		• 1B BA	Trans Pump		

÷

Enclosure 4		Enclosure 4.4	.4 OP/ 1 /A/6200/0			
		FWST	Makeup Using R	HT	Page 4 of 9	
	3.13.8	<u>IF</u> VCT is set up for following:	automatic makeup	, record curren	t Setpoint(s) (SP) for the	
		• "Rx M/U Water I	Flow Control":	gpm		
		• "BA Flow Contro	ol": gi	om		
	3.13.9	Place "Rx M/U Wate	r Flow Control" in	manual and c	lose.	
NOTE:		Total Makeup Flow and Boric Acid Flow Counters must be reset for NC Makeup System to operate.				
3.14	Ensure th	e following reset to ze	ro:			
		Make Up Flow Count Acid Flow Counter	er			
3.15	Set Total	Set Total Makeup Flow Counter to desired value.				
3.16	Set Boric	Set Boric Acid Flow Counter to desired value.				
NOTE:	Valve leakage may occur causing input to the VCT.					
□ 3.17	Monitor the following parameters:					
	• SM F	ressure				
		or Power				
	TavgRod 1	Motion				
3.18	IF plant	parameters indicate oth	her than expected i	esponse, notif	y CRS.	
NOTE:		el should be maintain (OAC Hi level alarm)	ed less than 481 in	ches unless FV	VST overflow is	
3.19	Momenta	arily select "START" of	on "NC System Ma	ake Up".		
□ 3.20	Check lit	"NC System Makeup	" red light.			
3.21	<u>IF</u> in "A	IF in "AUTO", ensure BA Trans Pump starts.				
3.22	Place "B	Place "BA Flow Control" in manual and adjust to desired flow rate.				

.

	Enclosure 4.4		Enclosure 4.4	OP/ 1 /A/6200/014	
			FWST Makeup Using RHT	Page 5 of 9	
3.23	HOLD u	ntil desired a	amount of boric acid added then perform the	ne following:	
	3.23.1	IF in "AUT	ΓO", ensure off:		
		-	Trans Pump Trans Pump		
	3.23.2	Flush flow	path for 5 minutes as follows:		
		3.23.2.1	Select "OFF" on "NC Sys M/U Controlle	er".	
		3.23.2.2	Close "BA Flow Control".		
		3.23.2.3	Open "Rx M/U Water Flow Control".		
		3.23.2.4	Select "STOP" on the following:		
			1A BA Trans Pump1B BA Trans Pump		
		3.23.2.5	Select "AUTO" on one of the following:		
			• 1A Rx M/U Water Pump		
			OR		
			• 1B Rx M/U Water Pump		
		3.23.2.6	Select "MANUAL" on "NC System M/L	J Controller".	
		3.23.2.7	Momentarily select "START" on "NC Sy	ystem Make Up".	
		3.23.2.8	Check lit "NC System Makeup" red light		
		3.23.2.9	Ensure Rx M/U Water Pump starts.		
		3.23.2.10	HOLD until flush complete then select " Makeup".	OFF" on "NC System	
3.24	Place in a	auto:			
	• "BA	Flow Contro	Ι"		

- "Rx M/U Water Flow control"
- 3.25 Close:

٠

- 1NV-172 (Unit 1 Boric Acid Blender To NB & FW Isol)
- 1NV-174 (Unit 1 Boric Acid Blender To FWST Isol)

FWST Makeup Using RHT

- 3.26 **IF** BAT to be in recirc, perform the following:
 - 3.26.1 Select "START" on one of the following:
 - IA BA Trans Pump

OR

- 1B BA Trans Pump
- □ 3.26.2 Go to Step 3.28.
- 3.27 Select "AUTO" on one of the following:
 - IA BA Trans Pump

OR

- 1B BA Trans Pump
- 3.28 Return the following controllers to values recorded in Step 3.13.8:
 - BA Flow Control (+/- 0.2 gpm)
 - Rx M/U Water Flow Control (+/- 0.2 gpm)
- 3.29 Select "AUTO" on "NC Sys M/U Controller".
 - 3.30 Momentarily select "START" on "NC System Make Up".
 - □ 3.31 Check lit "NC System Makeup" red light.

3.32 Open:

- 1FW-22 (NB To Unit 1 FW Pump Disch Hdr Isol)
- 1FW-24 (Unit 1 FW Pump Disch To FWST Isol)
- □ 3.33 Check closed 1FW-2 (Unit 1 FWST To Refueling Cavity Fill & Drn).

OP/**1**/A/6200/014 Page 7 of 9

FWST Makeup Using RHT

 Person Notified
 /

 Date
 Time

 3.34.1
 Operate the following as required:

 □
 1NB-126 (NB Evap Feed Pumps RHT Contents Transfer Isol)

 □
 1NB-127 (NB Evap Feed Pumps Disch Isol To U1 & U2 FWST)

 □
 3.34.2

 Operate both Recycle Evaporator Feed Pumps to complete makeup from RHT.

Notify Radwaste Chemistry to perform the following:

- 3.35 **HOLD** until FWST is at desired level.
- 3.36 Notify Radwaste Chemistry to operate Recycle Evaporator Feed Pumps as desired.

Person Notified / Date Time

3.37 Close:

3.34

- 1FW-22 (NB To Unit 1 FW Pump Disch Hdr Isol)
- 1FW-24 (Unit 1 FW Pump Disch To FWST Isol)
- 3.38 Notify Radwaste Chemistry to close:

Person Notified

□ 1NB-126 (NB Evap Feed Pumps RHT Contents Transfer Isol)

Date Time

- □ 1NB-127 (NB Evap Feed Pumps Disch Isol To U1 & U2 FWST)
- □ 3.39 Record final FWST level on Attachment 1.
- □ 3.40 Record in Auto Log final blender contents, either:
 - □ Rx Makeup Water

OR

□ Blend

OR

□ Boric Acid

OP/**1**/A/6200/014 Page 8 of 9

FWST Makeup Using RHT

- □ 3.41 Place routing stamp in remarks section of cover sheet, check (✓) "Engineering" and fill in "Attachment 1 only".
- ____ 3.42 <u>IF</u> desired to align for automatic NC System Makeup, align per OP/1/A/6150/009 (Boron Concentration Control).
 - 3.43 **IF** FWST Recirc Pump stopped in Step 3.6, start one of the following:
 - 1A FWST Recirc Pump

OR

- 1B FWST Recirc Pump
- _____ 3.44 <u>IF</u> FWST Recirculation with #1 FWST Pump is desired, place FWST in Recirculation per Enclosure 4.6 (FWST Recirculation Using Unit 1 FWST Pump).
- 3.45 <u>**IF**</u> FWST Purification is desired, place FWST in Purification per Enclosure 4.5 (FWST Purification).

×

FWST Makeup Using RHT

OP/**1**/A/6200/014 Page 9 of 9

Attachment 1

FWST Makeup Data

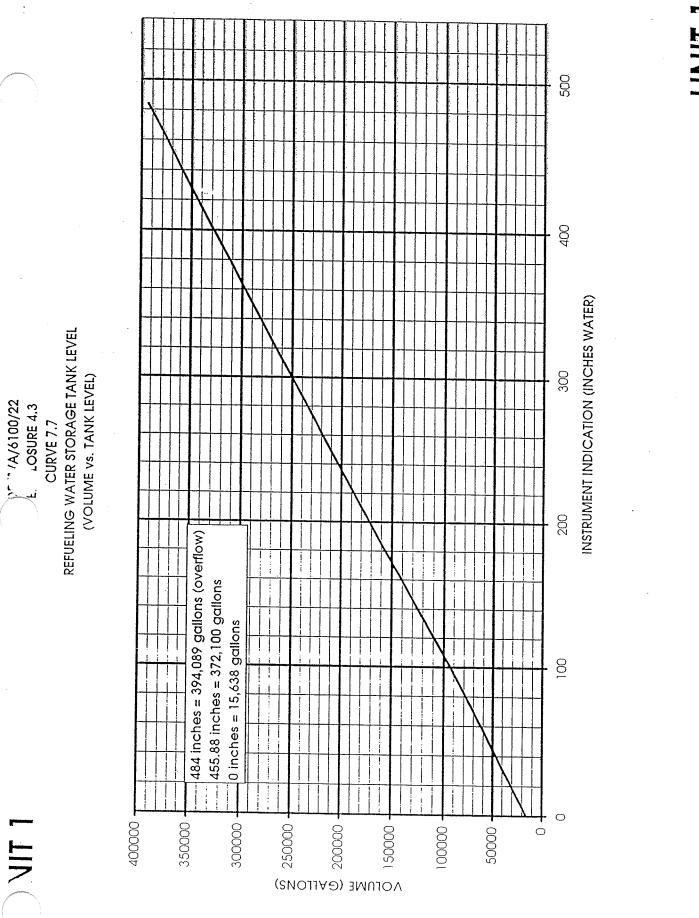
Initial FWST Level	inches	Date	Time
Final FWST Level	inches	Date	Time
Data Collected By			

End of Enclosure

McGuire 1 Cycle 21 Core Operating Limits Report

2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.


2.12 Accumulators (TS 3.5.1)

2.12.1 Boron concentration limits during MODES 1 and 2, and MODE 3 with RCS pressure >1000 psi:

	Parameter	Limit	
	Accumulator minimum boron concentration.	2,475 ppm	•
	Accumulator maximum boron concentration.	2 , 875 ppm	
2.13	Refueling Water Storage Tank - RWST (TS 3.5.4)		

2.13.1 Boron concentration limits during MODES 1, 2, 3, and 4:

Parameter	Limit
RWST minimum boron concentration.	2,675 ppm
RWST maximum boron concentration.	2,875 ppm

This data is also available on the OAC.

UNIT

JPM A1b SRO

Appendix C	Page 2 of 10		Form ES-C-1	
	Job Performance Me	t		
Facility:	McGuire	Task No.:	217MFW002	
Task Title:	Determine Boric Acid Addition to FWST	JPM No.:	<u>2010 Admin - JPM A1b</u> <u>SRO</u>	
K/A Reference:	GK/A 2.1.25 (3.9/4.2)			
Examinee:		NRC Examine	.	
Facility Evaluator:		Date:		
Method of testing:				
Simulated Performance:		Actual Perform	ance: X	
Classr	oom X Simulator	Plant		

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions: The plant was at 100% power when a leak developed on the FWST. • FWST Level dropped to 440 inches before leak was isolated. • Enclosure 4.4, "FWST Makeup Using the RHT," of OP/1/A/6200/014, . "Refueling Water System" is in progress and completed through Step 3.9. LCO 3.5.4, Refueling Water Storage Tank (RWST), was entered 10 minutes ago. Chemistry has provided the following information: BAT Boron Conc. = 7234 ppm RHT Boron Conc.= 1076 ppm FWST Make up Boron Concentration: Use COLR Minimum The BOP has just completed the Doer Calculation of Step 3.10 of Enclosure 4.4, "FWST Makeup Using the RHT," and has asked you to perform an Independent Verification on the calculation.

> r Maria III. Maria

Appendix C	Page 3 of 10	Form ES-C-			
	Job Performance Measure Worksheet				
Fask Standard:	The operator will calculate the amount of Boric Acid that must be added from the BAT to refill the FWST is 7,912 gallons +300/-75 gallons, determine that the BOP made two errors in the original calculation, and identify that Technical Specification ACTION C is now applicable.				
Required Materials:	Calculator				
	Reference Cart with all identified General References.				
General References:	OP/1/A/6200/014, Refueling Water System				
	McGuire Core Operating Limits Report (Cycle 21)				
	McGuire U-1 Data Book				
	McGuire Technical Specifications				
	McGuire Selected Licensee Commitment Manual				
	OMP 8-2, Component Verification Techniques				
Handouts:	Enclosure 4.4 of OP/1/A/6200/014, Refueling Wat for place-keeping and the Doer Calculation of Ste				
	Initial Conditions 2.1 -2.3 are initialed.				
	 Procedure Step 3.1 – Box checked. 				
	Procedure Step 3.2 – Left blank (Conditional s	step).			
	 Procedure Step 3.3 – initialed, Person Notified present. 	I: CHEMIST, date/tim			
	 Procedure Step 3.4 – NA, initialed. 				
	• Procedure Step 3.5 – initialed.				
	 Procedure Step 3.6 – NA, initialed. 				
	• Procedure Step 3.7 – NA, initialed.				
	 Procedure Step 3.8 – NA, initialed. 				
	 Procedure Step 3.9 – initialed, Person Notified date/time: present. 	I: R.P. TECH,			
	Procedure Step 3.10 – initialed.				
	Doer Calculation:				
	(2875 ppmB + 25 ppmB = 2900 ppmB				
	{ <u>(2900 ppmB) – (1076 ppmB)</u> } {15,000} = 4443 g (7234 ppmB) – (1076 ppmB)	jal			
	McGuire 1 Cycle 21 Core Operating Limits Report	t (Page 26 of 32)			
	McGuire Technical Specifications				
	OP/1/A/6100/22, Enclosure 4.3, Curve 7.7, Refue	ling Water Storage			

Appendix C	Page 4 of 10	Form ES-C-1		
	Job Performance Measure Worksheet			
Initiating Cue:	Perform the Independent Verification (IV) of the calculation in Step 3.10 of Enclosure 4.4 to confirm the amount of Boric Acid that must be added from the Boric Acid Tank (BAT), in order to raise the FWST Level to 480" using the RHT.			
	AFTER the calculations have been completed and verified in the FWST make up procedure, an 80 gpm Makeup is started to the FWST, and continues for 1 hour.			
	At the end of this 1 hour period:			
	What is the status of compliance with LCO 3.5.4?			
	FWST Temperature = 85 Deg	opm		
Time Critical Task:	NO			

Validation Time: 15 minutes

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue (Last Page of this JPM), and Handout all four (4) identified Handout documents, marked up as described.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*1	(Step 3.10) Determine the amount of Boric Acid needed to raise makeup water to the limits specified in the Core Operating Limits Report (COLR).	The operator refers to the COLR, Section 2.13.1 on Page 26 of 32 and determines that the minimum boron concentration to be used in the calculation is 2675 ppm, and <u>NOT 2875 ppm used</u> by BOP (1 st Error). The operator records <u>2675</u> ppm in the first line (Desired Boron Concentration of Addition from COLR) of the IV calculation in Step 3.10		
*2	(1 st Bullet) Desired Boron Concentration of Addition from COLR + 25 ppmB margin = Desired Boron Concentration	of Enclosure 4.4. The operator adds an additional 25 ppm and determines Desired Boron Concentration to be 2700 ppm. The operator records <u>2700</u> ppm in the 2 nd line (Desired Boron Conc) of the IV calculation in Step 3.10 of Enclosure 4.4.		
*3	(2 nd Bullet) { <u>(Desired Cb) - (RHT Cb)</u> } (BAT Cb) - (RHT Cb) x {Desired Total Makeup Volume to FWST} = Desired BAT Volume	The operator identifies Desired Cb = 2700 from previous Step and records. The operator recognizes that RHT Cb = 1076 ppm and records Initial Conditions).		

Appendix C

Page 6 of 10 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*3 (CONT'D)		The operator recognizes that BAT Cb = <u>7234</u> ppm and records (Initial Conditions).		
		The operator addresses OP/1/A/6100/22, Enclosure 4.3, Curve 7.7, and determines from graph that total makeup volume is 30,000 by comparing 480" volume of 390,000 gallons to the 440" volume of 360,000 gallons.		
		The operator records <u>30,000 (+1300[#])</u> gallons; and <u>NOT 15,000 gallons</u> <u>used by the BOP (2nd <u>Error).</u></u>		
		The operator records <u>30,000 (+1300[#])</u> gallons in the IV Calculation. The operator calculates the Desired BAT Volume to be added to be <u>7,912</u> gallons +200/ 75 gallons		
		+300/-75 gallons. The operator records 7,912 gallons +300/-75 gallons as the Desired BAT Volume in the IV Calculation.		

Page 7 of 10 PERFORMANCE INFORMATION

Form ES-C-1

				
STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*4	(Technical Specification LCO 3.5.4) The RWST shall be OPERABLE.	The operator observes TS LCO 3.5.4 and determines that ACTION B was entered at the start of the JPM action was necessary within 1 hour to restore volume.		
		The operator determines that the FWST Volume TS Limit is 372,100 gallons.		
		The operator determines that 12,100 gallons must be added to the FWST to comply with this ACTION Statement, and that in one hour 4800 gallons will be added.		
		The operator identifies that ACTION C is now applicable.		

Terminating Cue:

Evaluation on this JPM is complete.

STOP TIME:

Appen	dix	С
-------	-----	---

Page 8 of 10 VERIFICATION OF COMPLETION

Form ES-C-1

Job Performance Measure No.:	2010 Admin - JPM A1b SRO
------------------------------	--------------------------

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to Complete:

Question Documentation:

Result:

SAT UNSAT

Examiner's Signature: Date: Page 9 of 10 VERIFICATION OF COMPLETION

KEY:

Desired Boron Concentration from COLR + 25 ppmB = Desired Boron Concentration

2675 ppm (From COLR) + 25 ppmB = 2700 ppm

{(Desired Cb) - (RHT Cb)} x {Desired Total Makeup Volume to FWST} = Desired BAT Volume (BAT Cb) - (RHT Cb)

Given:

RHT Cb = **1076** ppm BAT Cb = **7234** ppm

Desired Total Makeup Volume to FWST = Overflow volume – Present volume (From Enclosure 4.3, Curve 7.7 of Unit 1 Core Data Book:) 390,000 gallons – 360,000 gallons (440") = **30,000** gallons[#]

#: If the operator uses develops a "gallons/inch" volume from the information block on Curve 7.7, the operator will determine the makeup volume to be 31,277 gallons.

Volume at 484 inches = 394,089 gallons Volume at 0 inches = 15,638 gallons

(394,089 gallons - 15,638 gallons)/484 inches = 781.92 gallons/inch

OR

Volume at 455.88 inches = 372,100 gallons Volume at 0 inches = 15,638 gallons

(372,100 gallons - 15, 638 gallons)/455.88 inches = 781.92 gallons/inch

Therefore, 781.92 gallons/inch x 40 inches = 31,276.80 gallons (This may be used as the makeup volume instead of 30,000 gallons).

If this volume is used, the calculation will result in a Desired BAT Volume below of 8132 gallons

So:

{(Desired Cb)-(RHT Cb)} x {Desired Total Makeup Volume to FWST} = Desired BAT Volume (BAT Cb)-(RHT Cb)

 $\{(2700)-(1076)\}$ x $\{30000\}$ = Desired BAT Volume (7234)-(1076)

{<u>1624</u>} x {30000} = Desired BAT Volume 6158

.26 x {30000} = Desired BAT Volume or **7,912** gallons +300/-75 gallons

OR between 7,837 and 8212 gallons

INITIAL CONDITIONS: The plant was at 100% power when a leak developed on the FWST. FWST Level dropped to 440 inches before leak was isolated. Enclosure 4.4, "FWST Makeup Using the RHT," of OP/1/A/6200/014, "Refueling Water System" is in progress and completed through Step 3.9. LCO 3.5.4, Refueling Water Storage Tank (RWST), was entered 10 minutes ago. Chemistry has provided the following information: BAT Boron Conc. = 7234 ppm RHT Boron Conc.= 1076 ppm FWST Make up Boron Concentration: Use COLR Minimum The BOP has just completed the Doer Calculation of Step 3.10 of Enclosure 4.4, "FWST Makeup Using the RHT," and has asked you to perform an Independent Verification on the calculation. Perform the Independent Verification (IV) of the calculation in Step INITIATING CUE:

3.10 of Enclosure 4.4 to confirm the amount of Boric Acid that must be added from the Boric Acid Tank (BAT), in order to raise the FWST Level to 480" using the RHT.

AFTER the calculations have been completed and verified in the FWST make up procedure, an **80 gpm** Makeup is started to the FWST, and continues for **1 hour**.

At the end of this 1 hour period: What is the status of compliance with LCO 3.5.4?

· 4

FWST Temperature = 85 Deg FWST [B] = 2775 ppm

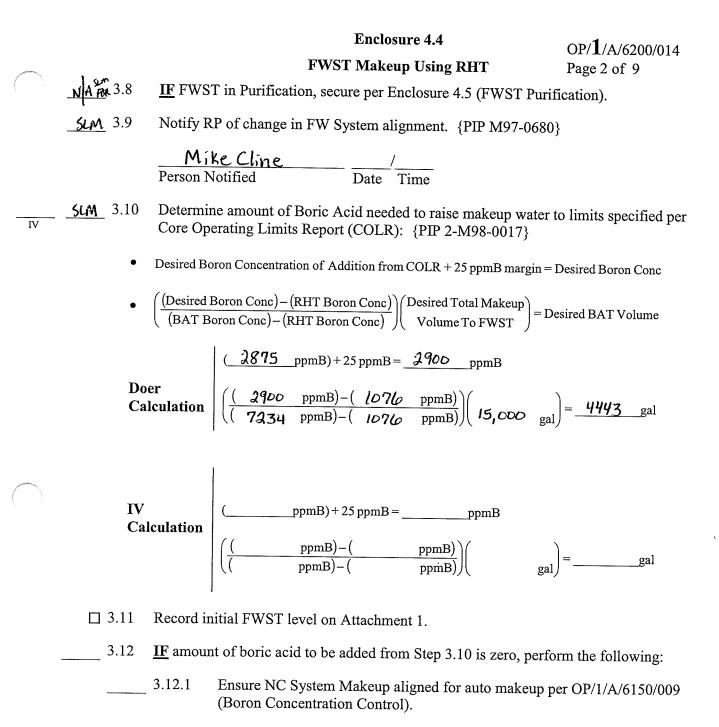
Enclosure 4.4

FWST Makeup Using RHT

1. Limits and Precautions

- 1.1 Maximum FWST Tech Spec temperature limit is 100°F.
- \checkmark 1.2 Minimum FWST Tech Spec temperature limit is 70°F.
- $\sqrt{1.3}$ All electrically operated engineered safeguard valves must be operated electrically after any manual operation.
- $\sqrt{1.4}$ Maximum FWST level is 483 inches unless FWST overflow is required. (Overflows to SFP at 484 inches)
- $\sqrt{1.5}$ NC System sampling during makeup to the FWST is prohibited.

2. Initial Conditions


- <u>SLM</u> 2.1 Boron concentration control systems available per OP/1/A/6150/009 (Boron Concentration Control).
- <u>SLM</u> 2.2 NB System aligned per OP/0/A/6200/003 (Boron Recycle System).
- <u>SLM</u> 2.3 NI check valve test header alignment to FWST secured.

3. Procedure

- \checkmark 3.1 Evaluate all outstanding R&Rs that may impact performance of this procedure.
- 3.2 **IF** Emergency Boration Flow is needed, secure makeup to FWST.
- **SLM** 3.3 Notify Chemistry to sample RHT.

<u>Kevin Hodges</u> / Person Notified Date Time

- NATA 3.4 IF RHT is unacceptable for use, exit this enclosure.
- $\frac{5LM}{SRO}$ 3.5 Ensure that a pre-job briefing has been performed that includes discussion of reactivity management concerns with this procedure.
- **IF** FWST in Recirculation per Enclosure 4.1 (FWST Recirculation Using 1A (1B) FWST Recirc Pump), stop the following:
 - 1A FWST Recirc Pump
 - 1B FWST Recirc Pump
- NATE 3.7 IF FWST in Recirculation with #1 FWST Pump, secure per Enclosure 4.6 (FWST Recirculation Using Unit 1 FWST Pump).

_____ 3.12.2 Go to Step 3.29.

	Enclosure 4.4	OP/ 1 /A/6200/014
	FWST Makeup Using RHT	Page 3 of 9
ount of Boric	c Acid calculated in Step 3.10 to FWST	from Blender as follows:
Ensure clo	osed one of the following:	
• 1NI-96	6B (NI Chk Test Hdr C/I Outside)	
OR		
• 1NI-99	O (Unit 1 NI Check Valve Test Hdr To	FWST Isol)
Ensure loc	ked closed, either:	
_ 3.13.2.1	1NS-70 (1A & 1B NS HX Outlet To	FWST Throttle)
	OR	
3.13.2.2	Both of the following:	
	• 1NS-8 (1B NS HX Outlet To FW	/ST Isol)
<u> </u>	• 1NS-25 (1A NS HX Outlet To F	WST Isol)
		To NB System Isol).
Open:		
Select "MA	ANUAL" on "NC Sys M/U Controller".	
Ensure in '	'STOP":	
	-	
IF both BA	A Trans Pumps off, ensure in "AUTO"	one of the following:
• 1A BA	Trans Pump	
OR		
• 1B BA	Trans Pump	
	Ensure clo OR OR Ensure loc 3.13.2.1 3.13.2.2 CV Ensure clo (AB 733'+ Open: 1NV-1 Select "MA Ensure in ' Ensure in ' 1A Rx 1B Rx IF both BA OR	FWST Makeup Using RHT out of Boric Acid calculated in Step 3.10 to FWST Insure closed one of the following: - 1NI-96B (NI Chk Test Hdr C/I Outside) OR 0R - 1NI-999 (Unit 1 NI Check Valve Test Hdr To 1) Ensure locked closed, either: 3.13.2.1 3.13.2.1 1NS-70 (1A & 1B NS HX Outlet TO OR 3.13.2.2 Both of the following: CV - 0R 1NS-8 (1B NS HX Outlet To FW CV - 1NS-25 (1A NS HX Outlet To FW CV - Ensure closed 1NB-5 (Unit 1 Boric Acid Blender for NB W Open: - - 1NV-172 (Unit 1 Boric Acid Blender To FW Select "MANUAL" on "NC Sys M/U Controller" Ensure in "STOP": - 1A Rx M/U Water Pump IB Rx M/U Water Pump IF both BA Trans Pumps off, ensure in "AUTO" - 1A BA Trans Pump

			Enclo	sure 4.4		OP/ 1 /A/6200/014
			FWST Make	up Using RHT		Page 4 of 9
	3.13.8	<u>IF</u> VCT is following:	set up for autom	atic makeup, ree	cord curren	t Setpoint(s) (SP) for the
		• "Rx M/	'U Water Flow C	Control":	gpm	
		• "BA Fle	ow Control":	gpm		
	3.13.9	Place "Rx M	M/U Water Flow	v Control" in ma	nual and cl	ose.
NOTE:	Total Mal System to	keup Flow and operate.	nd Boric Acid F	low Counters m	ust be reset	for NC Makeup
3.14	Ensure th	he following	reset to zero:			
		l Make Up Flo Acid Flow C				
3.15	Set Total	Makeup Flo	w Counter to de	sired value.		
3.16	Set Boric	c Acid Flow C	Counter to desire	ed value.		
NOTE:	Valve leal	kage may occ	cur causing input	t to the VCT.		
□ 3.17	Monitor	the following	parameters:			
	• SM P	ressure				
		tor Power				
	 Tavg Rod M 	Motion				
3.18			dicate other than	a expected respo	nse, notify	CRS.
NOTE:	FWST lev required. (el should be OAC Hi leve	maintained less el alarm)	than 481 inches	unless FW	ST overflow is
3.19	Momenta	rily select "S'	TART" on "NC	System Make U	p".	
□ 3.20	Check lit	"NC System	Makeup" red lig	;ht.		
3.21	IF in "AU	JTO", ensure	BA Trans Pump	o starts.		
3.22	Place "BA	A Flow Contro	ol" in manual ar	id adjust to desir	red flow rat	е.

FWST Makeup Using RHT

 3.23	HOLD until desired	amount of boric acid added then perform the following:		
		IF in "AUTO", ensure off:		
		A Trans Pump A Trans Pump		
	3.23.2 Flush flow	path for 5 minutes as follows:		
	3.23.2.1	Select "OFF" on "NC Sys M/U Controller".		
	3.23.2.2	Close "BA Flow Control".		
	3.23.2.3	Open "Rx M/U Water Flow Control".		
	3.23.2.4	Select "STOP" on the following:		
		 1A BA Trans Pump 1B BA Trans Pump 		
	3.23.2.5	Select "AUTO" on one of the following:		
		• 1A Rx M/U Water Pump		
		OR		
		• 1B Rx M/U Water Pump		
	3.23.2.6	Select "MANUAL" on "NC System M/U Controller".		
	3.23.2.7	Momentarily select "START" on "NC System Make Up".		
	□ 3.23.2.8	Check lit "NC System Makeup" red light.		
	3.23.2.9	Ensure Rx M/U Water Pump starts.		
	3.23.2.10	HOLD until flush complete then select "OFF" on "NC System Makeup".		
3.24	Place in auto:			

- "BA Flow Control"
- "Rx M/U Water Flow control"
- 3.25 Close:
 - 1NV-172 (Unit 1 Boric Acid Blender To NB & FW Isol)
- 1NV-174 (Unit 1 Boric Acid Blender To FWST Isol)

FWST Makeup Using RHT

3.26 **IF** BAT to be in recirc, perform the following:

- 3.26.1 Select "START" on one of the following:
 - IA BA Trans Pump

OR

- 1B BA Trans Pump
- □ 3.26.2 Go to Step 3.28.
- 3.27 Select "AUTO" on one of the following:
- 1A BA Trans Pump

OR

- 1B BA Trans Pump
- 3.28 Return the following controllers to values recorded in Step 3.13.8:
- BA Flow Control (+/- 0.2 gpm)
- Rx M/U Water Flow Control (+/- 0.2 gpm)
- 3.29 Select "AUTO" on "NC Sys M/U Controller".
- 3.30 Momentarily select "START" on "NC System Make Up".
- □ 3.31 Check lit "NC System Makeup" red light.

3.32 Open:

- 1FW-22 (NB To Unit 1 FW Pump Disch Hdr Isol)
- 1FW-24 (Unit 1 FW Pump Disch To FWST Isol)
- □ 3.33 Check closed 1FW-2 (Unit 1 FWST To Refueling Cavity Fill & Drn).

FWST Makeup Using RHT

3.34	Notify Radwaste Chemistry to perform the following:			
	Person Notified / Date Time			
	Person Notified Date Time			
	3.34.1 Operate the following as required:			
	 1NB-126 (NB Evap Feed Pumps RHT Contents Transfer Isol) 1NB-127 (NB Evap Feed Pumps Disch Isol To U1 & U2 FWST) 			
	3.34.2 Operate both Recycle Evaporator Feed Pumps to complete makeup from RHT.			
3.35	HOLD until FWST is at desired level.			
3.36-	Notify Radwaste Chemistry to operate Recycle Evaporator Feed Pumps as desired.			
	/			
	Person Notified <u>/</u> Date Time			
3.37	Close:			
	• 1FW-22 (NB To Unit 1 FW Pump Disch Hdr Isol)			
	• 1FW-24 (Unit 1 FW Pump Disch To FWST Isol)			
3.38	Notify Radwaste Chemistry to close:			
	Person Notified / Date Time			
	Person Notified Date Time			
	 1NB-126 (NB Evap Feed Pumps RHT Contents Transfer Isol) 1NB-127 (NB Evap Feed Pumps Disch Isol To U1 & U2 FWST) 			
□ 3.39	Record final FWST level on Attachment 1.			
□ 3.40	Record in Auto Log final blender contents, either:			
	□ Rx Makeup Water			
	OR			
	□ Blend			
	OR			
	□ Boric Acid			

Unit 1

•

	Enclosure 4.4	OP/ 1 /A/6200/014
	FWST Makeup Using RHT	Page 8 of 9
□ 3.41	Place routing stamp in remarks section of cover sheet, check (\checkmark) in "Attachment 1 only".) "Engineering" and fill
3.42	IF desired to align for automatic NC System Makeup, align per (Boron Concentration Control).	OP/1/A/6150/009
3.43	IF FWST Recirc Pump stopped in Step 3.6, start one of the follo	owing:
	• 1A FWST Recirc Pump	
	OR	
·	• 1B FWST Recirc Pump	
3.44	IF FWST Recirculation with #1 FWST Pump is desired, place F per Enclosure 4.6 (FWST Recirculation Using Unit 1 FWST Pur	WST in Recirculation np).
3.45	IF FWST Purification is desired, place FWST in Purification per Purification).	Enclosure 4.5 (FWST

Enclosure 4.4

FWST Makeup Using RHT

OP/**1**/A/6200/014 Page 9 of 9

Attachment 1

FWST Makeup Data

Initial FWST Level	inches	Date	Time
Final FWST Level	_inches	Date	Time
Data Collected By			

End of Enclosure

McGuire 1 Cycle 21 Core Operating Limits Report

2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

2.11.1 The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1)

2.12.1 Boron concentration limits during MODES 1 and 2, and MODE 3 with RCS pressure >1000 psi:

	Parameter	Limit	
· 	Accumulator minimum boron concentration.	2,475 ppm	· · ·
	Accumulator maximum boron concentration.	2,875 ppm	
2.13	Refueling Water Storage Tank - RWST (TS 3.5.4)		

2.13.1 Boron concentration limits during MODES 1, 2, 3, and 4:

Parameter	Limit
RWST minimum boron concentration.	2,675 ppm
RWST maximum boron concentration.	2,875 ppm

200 40 INSTRUMENT INDICATION (INCHES WATER) Cr '/A/6100/22 L. LOSURE 4.3 CURVE 7.7 REFUELING WATER STORAGE TANK LEVEL (VOLUME vs. TANK LEVEL) 300 200 484 inches = 394,089 gallons (overflow) 0 inches = 15,638 gallons 0000 ! 400000 350000 -0 300000 -VOLUME (GALLONS) 100000 0 , NIT 50000

This data is also available on the OAC.

UNIT 1

JPM A2 RO

2010 Admin - JPM A2 RO

NUREG 1021, Revision 9

Appendix C	Page 2	of 12 Form ES-0
	Job Performance Me	asure Worksheet
Facility:	McGuire	Task No.:
Task Title:	Perform a Manual NC Leakage Calculation	JPM No.: <u>2010 Admin - JPM /</u> RO
K/A Reference:	GK/A 2.2.12 (3.7)	
Examinee:		NRC Examiner:
Facility Evaluator:		Date:
Method of testing:		
Simulated Perform	ance:	Actual Performance: XX
Classroom X Simulator		Plant

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions:	Unit 1 is at 100% power.
	The Unit 1 OAC point M1L4554 is out of service.
	PT/1/A/4200/040 (Reactor Coolant Leakage Detection) has been completed showing that NCS Leakage is 1.6 gpm.
	A manual NC System leakage calculation is in progress in accordance with PT/1/A/4150/001B (Reactor Coolant Leakage Calculation)
	Enclosure 13.2 (NC Leakage Determination Using Manual Calculations) of PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) has been completed through Step 1.9.
Task Standard:	The operator will complete all calculations in accordance with the attached Key, and identify that the Unidentified RCS Leakage Technical Specification has been exceeded.
Required Materials:	None.
General References:	PT/1/A/4200/040 (Reactor Coolant Leakage Detection) PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) McGuire Unit 1 Technical Specifications

Appendix C	Page 3 of 12	Form ES-C-
	Job Performance Measure Worksheet	
Handouts:	PT/1/A/4150/001B (Reactor Coolant Leakage Calc follows:	culation) marked up a
	Step 7.1 – Initialed	
	Steps 8.1 through 8.5 – Initialed.	
	Step 12.1 Enclosure 13.2 Checkbox is checked.	
	PT/1/A/4150/001B (Reactor Coolant Leakage Calc 13.2 (NC Leakage Determinations Using Manual C up as follows:	,
	Step 1.1 – Checkbox is checked/Initialed.	
	Step 1.2 – Initialed.	
	Step 1.3 – Initialed.	
	Determine VCT Purge Status Checkbox is chec	ked.
	Secured Checkbox is checked.	
	NC System leakage calculation is in progress C	heckbox is checked.
	To refrain from sampling Checkbox is check	ed.
	Person Notified Mike Smith Today's Date/Time	
	Step 1.4 – Initialed.	
	NC System leakage calculation is in progress C	heckbox is checked.
	To check that NC sample Checkbox is check	ked.
	NC System sampling Checkbox is checked.	
	Person Notified Melvin Smith Today's Date/Time	e
	Step 1.5 – Initialed.	
	Step 1.6 – All Checkboxes checked/Initialed.	
	Step 1.7 – Initialed.	
	Step 1.7.1 – Initialed.	
	Step 1.7.2 – Initialed.	
	Step 1.8 – Initialed.	
	Step 1.9 – Initialed.	
	Enclosure 13.3 (NCDT Volume) of PT/1/A/4150/00 Leakage Calculation)	1B (Reactor Coolan
	Enclosure 13.4 (PRT Volume) of PT/1/A/4150/001 Leakage Calculation)	3 (Reactor Coolant
Initiating Cue:	Using Enclosure 13.2 (NC Leakage Determination Calculations), AND the attached Datasheet, compl Leakage Calculation, by performing Steps 1.10 and	ete the NC System
	Indicate whether or not a Technical Specification h	as been exceeded.
Time Critical Task:	NO	

2010 Admin - JPM A2 RO

۸r	nor	div	\sim
γĻ	per	ndix	C

Page 4 of 12 Job Performance Measure Worksheet

Form ES-C-1

Validation Time: 20 minutes

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue, and associated Datasheet (Last two (2) Pages of this JPM); and Handout PT/1/A/4150/001B procedure body marked up as described, Enclosure 13.2 marked up as described, Enclosure 13.3 and Enclosure 13.4.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
1	(Enclosure 13.2, Steps 1.10.1 through 13, 22, 26 and 1.11.1) Record raw data.	The operator transposes raw data from the Data Sheet provided.		
2	(Enclosure 13.2, Step 1.10.14) Calculate change in NC System Tave:	The operator calculates the change in NC System Tave to be <u>0°F</u> , and records.		
3	(Enclosure 13.2, Step 1.10.15) Calculate VCT Leakage Rate:	The operator calculates the VCT Leakage Rate to be <u>1.55 gpm</u> , and records.		
4	(Enclosure 13.2, Step 1.10.16) Calculate PZR Leakage Rate:	The operator calculates the PZR Leakage Rate to be 0.02 gpm , and records.		
5	(Enclosure 13.2, Step 1.10.17) Calculate Total Leakage:	The operator calculates the Total Leakage to be <u>1.57</u> <u>gpm</u> , and records.		

Page 6 of 12 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
6	(Enclosure 13.2, Step 1.10.18) Using Enclosure 13.4 (PRT Volume), record the following: Initial PRT Volume Final PRT Volume	The operator uses Enclosure 13.4 and an initial PRT Level of 76.0 %, and determines that initial PRT Volume is <u>10636.1</u> <u>gal</u> , and records. The operator uses Enclosure 13.4 and interpolates a PRT Volume for 76.1% to be <u>10649.5</u> <u>gal</u> , and records.		
7	(Enclosure 13.2, Step 1.10.19) Calculate PRT Leakage Rate:	The operator calculates the PRT Leakage Rate to be <u>.19 gpm</u> , and records.		
8	(Enclosure 13.2, Step 1.10. 20) Using Enclosure 13.3 (NCDT Volume), record the following: Initial NCDT Volume Final NCDT Volume	The operator uses Enclosure 13.3 and an initial NCDT Level of <u>30.0%</u> , and determines that initial NCDT Volume is <u>105.9 gal</u> , and records.		
		The operator uses Enclosure 13.3 and a final NCDT Level of <u>33.0%</u> , and determines that final NCDT Volume is <u>116.2 gal</u> , and records.		
9	(Enclosure 13.2, Step 1.10.21) Calculate NCDT Leakage Rate:	The operator calculates the NCDT Leakage Rate to be .14 gpm, and records.		
10	(Enclosure 13.2, Step 1.10.23) Calculate Total Background Leakage:	The operator calculates the Total Background Leakage to be <u>0 gpm</u> , and records.		

Page 7 of 12 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*11	(Enclosure 13.2, Step 1.10.24) Calculate Identified Leakage:	The operator calculates the Identified Leakage to be 0.33 (±10%) gpm , and records.		
*12	(Enclosure 13.2, Step 1.10.25) Calculate Unidentified Leakage:	The operator calculates the Unidentified Leakage to be 1.24 (±10%) gpm , and records.		
*13	(Enclosure 13.2, Step 1.10.26) Determine Total NC Pump #1 Seal Leakoff:	The operator calculates the Total NC Pumps #1 Seal Leakoff to be <u>12.8 (±10%)</u> <u>gpm</u> , and records.		
*14	(Enclosure 13.2, Step 1.10.27) Calculate Total Accumulative Leakage:	The operator calculates the Total Accumulative Leakage to be <u>14.37</u> (±10%) gpm, and records.		
15	(Enclosure 13.2) Calculated By/ Date/Time:	The operator places their name in the Calculated by BLOCK, and signs. The operator enters the Date and Time.		

Appendix C

Page 8 of 12 PERFORMANCE INFORMATION

Form ES-C-1

			_	
STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*16	Technical Specification LCO 3.4.13: RCS operational LEAKAGE shall be limited to:	The operator returns the completed Enclosure 13.2 and reports that LCO 3.4.13 has been exceeded because there is greater		
	a. No pressure boundary LEAKAGE;	than 1 gpm unidentified LEAKAGE.		
	b. 1 gpm unidentified LEAKAGE;	Examiner NOTE:		
	c. 10 gpm identified LEAKAGE;	See KEY on Page 9 of this JPM.		
	d. 389 gallons per day total primary to secondary LEAKAGE through all steam generators (SGs); and			
	e. 135 gallons per day primary to secondary LEAKAGE through any one steam generator (SG).	i		
	APPLICABILITY: MODES 1, 2, 3, and 4.			

Terminating Cue: Evaluation on this JPM is complete.

STOP TIME:

Ap	pend	dix	С
· • • • •			<u> </u>

Page 9 of 12 VERIFICATION OF COMPLETION

Form ES-C-1

Job Performance Measure No.:	<u> 2010 Admin - JPI</u>	<u>M A2 RO</u>	
Examinee's Name:	•		
Date Performed:			
Facility Evaluator:			
Number of Attempts:			
Time to Complete:			
Question Documentation:			
	· · ·		
Decult	CAT		
Result:	SAT	UNSAT	
Examiner's Signature:		Da	te:

Appendix C

Page 10 of 12 VERIFICATION OF COMPLETION

KEY:

Enclosure 13.2, Step 1.10.14 (JPM Step 2): Change in NC System Tave: $584.8^{\circ}F - 584.8^{\circ}F = 0^{\circ}F$

Enclosure 13.2, Step 1.10.15 (JPM Step 3): VCT Leakage Rate: (53.4% – 47.6%) x19.3 gallons/%/72 minutes = 1.55 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.16 (JPM Step 4): PZR Leakage Rate: (54.9% – 54.1%) x 132.5 gallons/% x .01613 /72 minutes = 0.02 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.17 (JPM Step 5): Total Leakage: 1.55 gpm + 0.02 gpm = 1.57 gpm

Enclosure 13.2, Step 1.10.18 (JPM Step 6): PRT Final Volume:

(10770.4-10636.1)/10 = 13.43/.1% PRT Level, 10636.1 + 13.43 = 10649.53 (gal)

Enclosure 13.2, Step 1.10.19 (JPM Step 7): Total PRT Leakage: (10649.5 gallons – 10636.1 gallons)/72 minutes = 0.19 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.21 (JPM Step 9): Total NCDT Leakage: (116.2 gallons – 105.9 gallons)/72 minutes = 0.14 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.23 (JPM Step 10): Total Background Leakage: (0 gpm + 0 gpm) = 0 gpm

Enclosure 13.2, Step 1.10.24 (JPM Step 11): Identified Leakage: (.19 gpm + .14 gpm + 0 gpm) = 0.33 gpm

Enclosure 13.2, Step 1.10.25 (JPM Step 12): Unidentified Leakage: (1.57 gpm - .33 gpm) = 1.24 gpm

Enclosure 13.2, Step 1.10.26 (JPM Step 13): Total NC Pumps #1 Seal Leakoff: (2.8 gpm + 3.6 gpm + 3.1 gpm + 3.3 gpm) = 12.8 gpm

Enclosure 13.2, Step 1.10.27 (JPM Step 14): Total Accumulative Leakage: (.33 gpm + 1.24 gpm + 12.8 gpm) = 14.37 gpm

LCO 3.4.13 (1 gpm unidentified LEAKAGE) has been exceeded.

Appendix C	Form ES-C-1
	JPM CUE SHEET
INITIAL CONDITIONS:	Unit 1 is at 100% power.
	The Unit 1 OAC point M1L4554 is out of service.
	PT/1/A/4200/040 (Reactor Coolant Leakage Detection) has been completed showing that NCS Leakage is 1.6 gpm.
	A manual NC System leakage calculation is in progress in accordance with PT/1/A/4150/001B (Reactor Coolant Leakage Calculation)
	Enclosure 13.2 (NC Leakage Determination Using Manual Calculations) of PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) has been completed through Step 1.9.
INITIATING CUE:	Using Enclosure 13.2 (NC Leakage Determination Using Manual Calculations), AND the attached Datasheet, complete the NC System Leakage Calculation, by performing Steps 1.10 and 1.11.
	Indicate whether or not a Technical Specification has been exceeded.

Form ES-C-1

JPM CUE SHEET

Data Sheet

Start Time	0100	
Stop Time	0212	
	Initial	<u>Final</u>
VCT Level	53.4	47.6
Pzr Level	54.9	54.1
NC System Tave	584.8	584.8
PRT Level	76.0	76.1
NCDT Level	30	33
NC Sample Purge Flow v	alue recorded in Autolog	0
Any quantified (measured) lea	akage that has been identified	0
NC Pump 1A #1 S	Seal Leakoff Flow	2.8
	Seal Leakoff Flow	3.6
NC Pump 1C #1 \$	Seal Leakoff Flow	3.1
NC Pump 1D #1 S	Seal Leakoff Flow	3.3
1EMF71	1.2	
1EMF72	1.7	
1EMF73	1.1	
1EMF74	1.9	

Duke Energy
McGuire Nuclear Station
Reactor Coolant Leakage Calculation

Procedure No. PT/1/A/4150/001 B

Revision No. 067

Electronic Reference No. MC0047QI

Continuous Use

PERFORMANCE

**⁴

(ISSUED) - PDF Format

Revision History (significant issues, limited to one page)		
Rev 067	Changed format of procedure to split out calculation performed by OAC and performed by manual calculation. Combined leakage calculation using the OAC steps with current Enclosure 13.1 and renamed enclosure "NC Leakage Calculation Using OAC". Combined manual leakage calculation steps with Enclosure 13.2 and renamed enclosure "NC Leakage Determination Using Manual Calculation". Changed all references throughout procedure to include these format changes. Encl. 13.5. Added Independent Verification sign offs for calculation of seven day rolling average of Unidentified Leakage. {PIP M-09-1307} Revised current steps for determining if Tier Two or Tier Three Action levels exceeded to reference step numbers associated with determination. Intent is to clarify steps. Reworded steps that state "IF directed" by engineering to "IF advised" by engineering. Definition of "directed" changed with new fatigue rule. Added PIP M-09-1857 as an additional reference to NCP seal leakage basis. Modified steps that begin with "WHEN" to reflect NSD 704 Rev 016 requirements.	
Rev 066	Body of procedure. Added a limit and precaution about manipulation of VA System during leakage calculation has an affect on VCT level. Re-worded Step 12.6.17. The leakage calculation is considered valid after 60 minutes but is preferred to run up to 3 hours. The step as written requires the operator to print calculation after 60 minutes when 1 of 3 conditions met. This is procedure use and adherence issue. Re-worded step to give operator flexibility to print calculation summary between 60 minutes and 3 hours. Re-worded Step 12.6.35. If operator performs section 12.6.16 to abort leakage calculation early, enclosure 13.1 is not performed. 12.6.35 directs operator to perform Encl. 13.5, however, this enclosure requires data from enclosure 13.1. Re-worded step to stipulate if unit at 100% RTP AND Encl. 13.1 completed, then perform Encl. 13.5. Procedure use and adherence issue.	
Rev 065	 Added step to make operator aware that if leakage calc ran for greater than 30 minutes but less than 60 minutes, the data can still be valid if it meets certain conditions. Added step to record status of VCT purge at beginning of procedure. Added steps to take NV-137A "hard" to VCT and back to "AUTO" prior to starting leakage calculation. Encl. 13.5. Reworded section if any Tier One, Two, or Three Action level is exceeded to make it easier to understand. 	

.ℓ

.

Reactor Coolant Leakage Calculation

1. Purpose

. *

/ To determine NC System Leakage using the Operator Aid Computer (OAC) or manual calculations to ensure Tech Spec requirements met.

2. References

- ✓ 2.1 Tech Spec TS SR 3.4.13.1, 3.4.13.2, TS 3.4.15
- $\sqrt{2.2}$ SLC 16.9.7 Standby Shutdown System
- ./2.3 MCS-1274.00-00-0016 (License Renewal Basis Spec), Section 4.29
- ✓2.4 UFSAR Chapter 18 (Aging Management Program and Activities), Table 18-1, Reactor Coolant Operational Leakage Monitoring Program
- ✓ 2.5 SLC 16.7.6 Radiation Monitoring for Plant Operation
- √2.6 WCAP-16423-NP (Methodology for calculating Unidentified NC System leakage)
- √2.7 WCAP-16465-NP (Action levels and response guidelines for increasing Unidentifed NC System leakage less than Tech Spec limits)
- √2.8 MCC-1201.01-00-0053 (MNS Unit 1 & 2 NC Pump Response to Loss of Seal Cooling)

3. Time Required

 \checkmark 3.1 One operator for three hours every 72 hours.

4. Prerequisite Test

/None

5. Test Equipment

/None

6. Limits and Precautions

. *

- ✓ 6.1 NC System Tave, Reactor Power, Containment Temperature, and SM Pressure should remain constant during calculation.
- $\sqrt{6.2}$ Positioning values during calculation which could adversely affect results will invalidate the calculation.
- $\sqrt{6.3}$ Performing Leakage Calculation between 3 am and 8 am on Wednesdays may cause calculation to fail due to OAC weekly backup routine.
- ./6.4 Performing PT/1/A/4200/019 (ECCS Pump and Piping Vent) during calculation could adversely affect results and will invalidate the calculation.
- ★.5 Manipulation of VA System should be avoided while performing Leakage Calculation due to affect on VCT level.

7. Required Unit Status

51M 7.1 NC System filled and vented with a steam bubble in the Pzr.

8. Prerequisite System Conditions

- SLM 8.1 NC System Tave at steady state condition. $(\pm 0.5^{\circ}F)$
- Sign 8.2 Reactor Power at steady state condition. $(\pm 0.2\%)$
- 5iM 8.3 Main Steam pressure at steady state condition. (± 1%)
- **SUM** 8.4 NCDT and PRT will **NOT** need to be pumped down during calculation.

NOTE: ✓ Background leakage consists of known valve stem leakage and NC Sample Purge Flow.

- Sim 8.5 IF background leakage provided, data meets the following requirements:
 - Measured within last 7 days
 - Associated system conditions unchanged since calculated

9. Test Method

- IF OAC available for leakage calculation, NC System leakage is calculated using a water inventory balance around the NC System based on input data from the OAC. OAC NC System Leakage Calculation will be initiated once per 72 hours and will then run automatically for 3 hours. During the first 15 minutes of calculation, no correlation coefficient will be displayed.
- \sqrt{IF} elapsed time greater than 60 minutes, program data may be used for leakage calculation when one of the following sets of criteria met:
- ✓ "TOTAL LEAKAGE BEST" <u>NOT</u> between ±0.15 gpm and "TOTAL LEAKAGE CORRELATION COEFF" greater than 0.6

OR

"TOTAL LEAKAGE BEST" less than 0.15 gpm and "IDENTIFIED LEAKAGE BEST" greater than or equal to "BACKGROUND LEAKAGE".

OR

- ✓ TOTAL LEAKAGE BEST" less than 0.1 gpm
- IF plant stability can <u>NOT</u> be maintained <u>AND</u> elapsed time greater than 30 minutes, leakage calculation data may be used when absolute value for Total Leakage Correlation Coefficient greater than or equal to 0.50 and Identified Leakage Best greater than or equal to Background Leakage.
- **IF** OAC is partially or wholly unavailable, NC System leakage will be calculated manually. Initial data will be recorded followed by final data after 60 - 75 minute wait. Tank volume / gallon conversion and water densities are used in equations to determine NC System leakage.
- Individual NC Pump #1 Seal Leakoff flows will be recorded and compared to the maximum allowable limit of 4.0 gpm.
- Primary to Secondary Leakage will be recorded from EMF indication(s) or Chemistry sample and compared to a maximum of 135 gpd through any one steam generator or a maximum of 389 gpd through all steam generators.
- "TOTAL ACCUMULATIVE LEAKAGE" will be calculated using "IDENTIFIED LEAKAGE BEST", "UNIDENTIFIED LEAKAGE BEST" and "TOTAL NC PUMP SEAL LEAKOFF FLOWS".

10. Data Required

- A10.1 Enclosure 13.1 (NC Leakage Calculation Using OAC) or Enclosure 13.2 (NC Leakage Determination Using Manual Calculations).
- ∧10.2 <u>IF</u> Unit 1 at 100% RTP, Enclosure 13.5 (Evaluation of NC System Unidentified Leakage Results)
- ↓0.3 Indicate on cover sheet of this procedure under Remarks Section any special system alignments made for this calculation.

11. Acceptance Criteria

- $\sqrt{11.1}$ NC System Identified Leakage shall be limited to 10 gpm. (Reference TS 3.4.13)
- $\sqrt{11.2}$ NC System Unidentified Leakage shall be limited to 1 gpm. (Reference TS 3.4.13)
- √1.3 Total NC Pumps #1 Seal Leakoff shall be limited to 16.3 gpm. (Reference SLC 16.9.7) {PIP 04-3317}
- √1.4 Total Accumulative Leakage (sum of Identified Leakage, Unidentified Leakage, and NC Pumps #1 Seal Leakoff) shall be limited to 20 gpm. (Reference SLC 16.9.7) {PIP M99-3926}
- A1.5 Each NC Pump #1 Seal Leakoff flow shall be limited to a sustained value of less than
 4.0 gpm. (Reference SLC 16.9.7, MCC-1201.01-00-0053) {PIP 05-779, M-09-1857}
- $\sqrt{1.6}$ Primary to Secondary Leakage shall be limited to 135 gpd through any one steam generator and 389 gpd through all steam generators. (Reference TS 3.4.13)

12. Procedure

- 12.1 Perform one of the following:
 - □ Enclosure 13.1, NC Leakage Calculation Using OAC

OR

Enclosure 13.2, NC Leakage Determination Using Manual Calculations

PT/**1**/A/4150/001 B Page 7 of 7

13. Enclosures

• `

- 13.1 NC Leakage Calculation Using OAC
- 13.2 NC Leakage Determination Using Manual Calculations
- 13.3 NCDT Volume
- 13.4 PRT Volume
- 13.5 Evaluation of NC System Unidentified Leakage Results

End of Body

Enclosure 13.2 NC Leakage Determination Using Manual Calculations

1. Procedure

- ☑ 1.1 Evaluate all outstanding R&Rs that may impact performance of this procedure.
- **NOTE:** \checkmark **IF** Unit 1 in Mode 3 or 4, this procedure is **NOT** required until 12 hours of steady state operation have elapsed.
 - \checkmark The first calculation is considered the first calculation after 18:00 hrs for normal operation.
- <u>SUM</u>^{FOK} 1.2 <u>IF</u> more than one leakage calculation performed per shift, a brief explanation should be entered on Autolog indicating reason for repeating calculation.

NOTE: \checkmark A continuous vent is maintained on the PRT and a continuous purge is maintained on the VCT by Radwaste Chemistry.

- 54M 1.3 Notify Radwaste Chemistry of the following:
 - Determine VCT purge status:
 - \Box Active \blacksquare Secured
 - ☑ NC System leakage calculation is in progress
 - ✓ To refrain from sampling PRT, NCDT and VCT or changing vent (purge) status of PRT, NCDT and VCT {PIPM-00-0615}

<u>Mike Smith</u> / Person Notified Date Time

- 5LM 1.4 Notify Primary Chemistry of the following:
 - ☑ NC System leakage calculation is in progress
 - ☑ To check that NC Sample Purge Flow value is unchanged from the current Autolog entry (Prerequisite System Condition 8.5)
 - ☑ NC System sampling shall only be performed with permission from the Control Room

Melvin Smith / Notified Date Time Person Notified

<u>3100</u> 1.5 Ensure adequate VCT level to prevent auto makeup during calculation.

Enclosure 13.2 NC Leakage Determination Using Manual Calculations

PT/**1**/A/4150/001 B Page 2 of 10

NOTE: Leakage Calculation will be invalid if any valve in Step 1.6 or 1.7 is repositioned during calculation.

1.6 Check closed:

- ☑ 1NC-58A (PRT Spray Supply Block)
- ☑ 1NI-9A (NC Cold Leg Inj From NV)
- ☑ 1NI-10B (NC Cold Leg Inj From NV)
- ☑ 1NV-39A (A NC Pump Standpipe Fill)
- ☑ 1NV-55B (B NC Pump Standpipe Fill)
- ☑ 1NV-71A (C NC Pump Standpipe Fill)
- ☑ 1NV-87B (D NC Pump Standpipe Fill)
- ☑ 1NV-171A (BA Blender To VCT Inlet)
- ☑ 1NV-175A (BA Blender To VCT Outlet)
- ☑, 1NV-221A (NV Pumps Suct From FWST)
- ☑ 1NV-222B (NV Pumps Suct From FWST)
- <u>SLM</u> 1.7 IF 1NV-137A (NC Filters Otlt 3-Way Cntrl) in "AUTO", perform the following:
 - 3LM 1.7.1 Place 1NV-137A to "VCT" position.
 - <u>3LM</u> 1.7.2 <u>HOLD</u> until 1NV-137A indicates "VCT", <u>THEN</u> place 1NV-137A to "AUTO".
- SLM 1.8 Place "1WL-23 Mode Select" in "MAN".
- SIM 1.9 Close 1WL-23 (NCDT Pump Level Control).

Enclosure 13.2 NC Leakage Determination Using Manual Calculations

 \Box 1.10 Perform the following:

۰.

NOTE: IF available, the OAC should be used to obtain data required for calculation.				
□ 1.10.1	Record Start Time:			
□ 1.10.2	Record initial VCT Level (M1P0201):	%		
□ 1.10.3	Record initial PZR Level (M1P0200):	%		
NOTE: <u>IF</u> Tave 1 and T_C .	ess than 530°F AND OAC unavailable, Tave must be calculat	ted using WR T _H		
□ 1.10.4	Record initial NC System Tave (M1P1479):	°F		
□ 1.10.5	Record initial PRT Level (M1P0202):	%		
□ 1.10.6	Record initial NCDT Level (M1P0203):	%		
1.10.7	HOLD until 60 - 75 minutes elapsed.			
□ 1.10.8	Record Stop Time:			
□ 1.10.9	Record final VCT Level (M1P0201):	%		
□ 1.10.10	Record final PZR Level (M1P0200):	%		
NOTE: <u>IF</u> Tave 1 and T_C .	ess than 530°F AND OAC unavailable, Tave must be calculat	ted using WR T _H		
□ 1.10.11	Record final NC System Tave (M1P1479):	•F		
□ 1.10.12	Record final PRT Level (M1P0202):	%		
□ 1.10.13	Record final NCDT Level (M1P0203):	%		

Enclosure 13.2 PT/**1**/A/4150/001 B NC Leakage Determination Using Manual Calculations

Page 4 of 10

□ 1.10.14	Calculate change in NC System Tave:	
	$\frac{1}{10000000000000000000000000000000000$	
□ 1.10.15		
	[Initial Level (%) - Final Level (%)] x (19.3 Gal/%) Stop Time - Start Time (Min)	
	[] x 19.3 Initial (Step 1.10.2) Final (Step 1.10.9) ==	gpr
	Stop Time (Step 1.10.2)	
□ 1.10.16	Calculate PZR Leakage Rate:	
	[Initial Level (%) - Final Level (%)] x (132.5 Gal/%) X (0.01613 ¹) Stop Time - Start Time (Min)	
] x 132.5 x 0.01613 Initial (Step 1.10.3) Final (Step 1.10.10) =	gpm
Sto	p Time (Step 1.10.8) Start Time (Step 1.10.1)	
□ 1.10.17	Calculate Total Leakage:	
	VCT Leakage Rate (Step 1.10.15) + =	gpm
□ 1.10.18	Using Enclosure 13.4 (PRT Volume), record the following:	
	 Initial PRT Volume: gal (Step 1.10.5) Final PRT Volume: gal (Step 1.10.12) 	
□ 1.10.19	Calculate PRT Leakage Rate:	

¹ Specific Volume for saturated liquid at PZR temperature.

۰.

	Enclosure 13.2	PT/ 1 /A/4150/001 B
	NC Leakage Determination Using Manual Calculations	
□ 1.10.20	Using Enclosure 13.3 (NCDT Volume), record the fo	llowing:
	 Initial NCDT Volume: gal (Step Final NCDT Volume: gal (Step 	
□ 1.10.21	Calculate NCDT Leakage Rate:	
Fi		gpm
□ 1.10.22	Record the following:	
	 NC Sample Purge Flow value recorded in Autolo Any quantified (measured) leakage that has been 	
□ 1.10.23	Calculate Total Background Leakage:	
	$\frac{1}{\text{NC Purge (Step 1.10.22)}} + \frac{1}{\text{Quantified (Step 1.10.22)}} = \underline{\qquad} gpm$	
□ 1.10.24	Calculate Identified Leakage:	
PRT Leakage Rate (Step 1.10.1	+ + = 9) NCDT Leakage Rate (Step 1.10.21) Background Leakage (Step 1.10.23)	gpm ² (< 10 gpm)
□ 1.10.25	Calculate Unidentified Leakage:	
Total Leakage (Step 1.10.17) - Identified Leakage (Step 1.10.24)	gpm ² (< 1 gpm)
□ 1.10.26	Determine Total NC Pump #1 Seal Leakoff flow:	
	 NC Pump 1A #1 Seal Leakoff Flow	_ gpm ² (< 4.0 gpm) _ gpm ² (< 4.0 gpm) _ gpm ² (< 4.0 gpm)

;

² Acceptance Criteria Value

, *

Enclosure 13.2 Calculations

NOTE:

PT/**1**/A/4150/001 B

Page 6 of 10 NC Leakage Determination Using Manual "0" should be entered below for any negative identified or unidentified value. □ 1.10.27 Calculate "Total Accumulative Leakage": $\frac{1}{\text{Identified (Step 1.10.24)}} + \frac{1}{\text{Unidentified (Step 1.10.25)}} + \frac{1}{\text{Total NC Seal Leakoff (Step 1.10.26)}} = \frac{1}{\text{Total Accumulative Leakage}} gpm^{3} (< 20 gpm)$ Determine Primary to Secondary Leakage by performing the following: 1.11 IF in Mode 1 AND greater than or equal to 40% RTP, record indication on the 1.11.1 following: 1EMF71: . _____ gpd 1EMF72: _____ gpd . _____ gpd 1EMF73: 1EMF74: _____ gpd ٠ IF any N-16 EMF inoperable, perform the following: 1.11.1.1 A. Notify Secondary Chemistry to provide Primary to Secondary leakage. ____ /____ Date Time Person Notified □ B. Record Primary to Secondary leakage as determined by _____ gpd ³ Secondary Chemistry: C. Record date and time Primary to Secondary leakage was determined (provided by Secondary Chemistry): Date / _____ Time IF in Mode 1 AND less than 40% RTP, perform the following: 1.11.2

> Notify Secondary Chemistry to provide Primary to Secondary 1.11.2.1 leakage.

> > _____ <u>/</u>_____ Date Time Person Notified

³ This value is a total primary to secondary leakage of all four S/Gs. A value of less than or equal to 135 gpd conservatively implies leakage through any one S/G is less than or equal to 135 gpd.

	Enclosure 13.2	рт/ 1 /А/4150/001 в
NC	C Leakage Determination Using Manual Calculations	Page 7 of 10
□ 1.11.2.2	Record Primary to Secondary leakage Secondary Chemistry:	as determined by gpd ⁴
□ 1.11.2.3	Record date and time Primary to Second etermined (provided by Secondary C	
	Date / Time	
1.11.3 <u>IF</u> in M	odes 2, 3 or 4, perform the following:	
1.11.3.1	Notify Secondary Chemistry to provid leakage via grab sample.	e Primary to Secondary
	Person Notified/	
	Person Notified Date	Time
□ 1.11.3.2	Record Primary to Secondary leakage Secondary Chemistry grab sample:	
□ 1.11.3.3	Record date and time Primary to Second time determined (provided by Secondary C	
	/ Date Time	
Calculated By:	Date:	Time:
Checked By:	Date:	Time:

e *

⁴ This value is a total primary to secondary leakage of all four S/Gs. A value of less than or equal to 135 gpd conservatively implies leakage through any one S/G is less than or equal to 135 gpd.

NC Leakage Determination Using Manual Calculations

 \Box 1.12 In Autolog, perform the following:

v *

NOTE	• Calculations run during power escalation <u>AND</u> other than Mode 1 calculations should be identified as such.			
	• The first calculation is considered the first calculation after 18:00 hrs for normal operation.			
	1.12.1 Enter the following values with any pertinent comments:			
	 "IDENTIFIED" leakage (Step 1.10.24) "UNIDENTIFIED" leakage (Step 1.10.25) "TOTAL NC PUMPS #1 SEAL LEAKOFF" leakage (Step 1.10.26) "TOTAL" leakage (Step 1.10.27) "CALCULATION START TIME" Primary to Secondary leakage 			
	1.12.2 IF other than the first calculation for the day, record reason and any pertinent comments.			
NOTE	: Unidentified Leakage values are expected to be within ± 0.5 gpm for Manual Calculations. Exceeding ± 0.5 gpm does NOT invalidate leakage calculation.			
1.1	I3 IF unidentified leakage \underline{NOT} between ± 0.5 gpm, notify Primary System Engineer.			

Person Notified

Date Time

NC Leakage Determination Using Manual Calculations

- 1.14 Evaluate Acceptance Criteria per one of the following:
 - □ 1.14.1 Check Acceptance Criteria specified in Section 11 met.

OR

<u>IIF</u> Acceptance Criteria specified in Section 11 <u>NOT</u> met, perform the following:

SRO	1.14.2.1	Log applicable Tech Spec or SLC. {PIP M-07-00393}
SRO	1.14.2.2	<u>IF</u> Total NC Pumps #1 Seal Leakoff is greater than 16.3 gpm, declare SSF capability degraded.
	1 1 4 2 3	IF Total Accumulative Leakage is greater than 20 gpm OR Tota

	1.14.2.3	IF Total Accumulative Leakage is greater than 20 gpm OR Total
SRO		NC Pumps #1 Seal Leakoff greater than 16.3 gpm, notify
		Security of degraded SSF capabilities.

	/	
Person Notified	Date	Time

1.14.2.4IF any NC Pump #1 Seal Leakoff has a sustained value of greater
than OR equal to 4.0 gpm, notify SSS Engineer and Security of
degraded SSF capability.

		/
Person Notified	Date	Time

- 1.15 IF this is the second Leakage Calculation and elevated leakage is indicated, evaluate performing PT/1/A/4150/001 D (Identifying NC System Leakage).
- 1.16 Lower NCDT level less than 48%.
- 1.17 Close 1WL-23 (NCDT Level Control).
- 1.18 Place "1WL-23 Mode Select" to "AUTO".

	Enclosure 13.2	РТ/ 1 /А/4150/001 В
	NC Leakage Determination Using Manual Calculations	Page 10 of 10
1.19	Notify Radwaste Chemistry of the following:	
	□ NC System leakage calculation is complete	
	□ PRT, NCDT and VCT sampling or venting may be initiated	{PIPM-00-0615}
	Person Notified / Date Time	
1.20	Notify Primary Chemistry of the following:	
	□ NC System leakage calculation is complete	
	□ NC System sampling may be initiated	
	Person Notified /	
1.21	IF Unit 1 at 100% RTP AND OAC is available, perform Enclos NC System Unidentified Leakage Results).	ure 13.5 (Evaluation of

÷ *

End of Enclosure

Enclosure 13.3 NCDT Volume

w K

PT/**1**/A/4150/001 B Page 1 of 1

NCDT LEVEL %	NCDT VOLUME	NCDT LEVEL %	NCDT VOLUME	NCDT LEVEL %	NCDT VOLUME
	(Gal)		(Gal)		(Gal)
0	19.7	35	123.1	70	247.3
1	21.9	36	126.6	71	250.7
2	24.1	37	130.1	72	254.0
3	26.4	38	133.6	73	257.3
4	28.8	39	137.1	74	260.6
5	31.2	40	140.7	75	263.9
6	33.7	41	144.3	76	267.2
7	36.2	42	147.8	77	270.4
8	38.8	43	151.4	78	273.6
9	41.4	44	155.0	79	276.8
10	44.1	45	158.6	80	279.9
11	46.9	46	162.2	81	283.0
12	49.6	47	165.8	82	286.1
13	52.5	48	169.4	83	289.1
14	55.3	49	173.0	84	292.1
15	58.2	50	176.6	85	295.1
16	61.2	51	180.2	86	298.0
17	64.2	52	183.8	87	300.9
18	67.2	53	187.5	88	303.8
19	70.3	54	191.1	89	306.6
20	73.4	55	194.7	90	309.4
21	76.5	56	198.2	91	312.1
22	79.6	57	201.8	92	314.7
23	82.8	58	205.4	93	317.4
24	86.0	59	209.0	94	319.9
25	89.3	60	212.5	95	322.4
26	92.6	61	216.1	96	324.9
27	95.9	62	219.6	97	327.3
28	99.2	63	223.1	98	329.6
29	102.5	64	226.6	99	331.9
30	105.9	65	230.1	100	334.0
31	109.3	66	233.6		
32	112.7	67	237.0		
33	116.2	68	240.5		
34	119.6	69	243.9		

End of Enclosure

Enclosure 13.4 PRT Volume

. .

PT/**1**/A/4150/001 B Page 1 of 1

PRT LEVEL %	PRT VOLUME (Gal)	PRT LEVEL %	PRT VOLUME (Gal)	PRT LEVEL %	PRT VOLUME (Gal)
0	303.2	35	4472.0	70	9799.8
1	371.9	36	4621.5	71	9942.5
2	445.6	37	4771.8	72	10084.0
3	523.9	38	4922.8	73	10224.1
4	606.7	39	5074.6	74	10362.9
5	693.6	40	5227.0	75	10500.3
6	784.5	41	5379.9	76	10636.1
7	879.0	42	5533.4	77	10770.4
8	977.0	43	5687.3	78	10903.1
9	1078.3	44	5841.7	79	11034.1
10	1182.7	45	5996.4	80	11163.3
11	1290.0	46	6151.4	81	11290.6
12	1400.2	47	6306.6	82	11416.0
13	1513.0	48	6461.9	83	11539.3
14	1628.4	49	6617.4	84	11660.6
15	1746.2	50	6772.9	85	11779.6
16	1866.2	51	6928.4	86	11896.2
17	1988.5	52	7083.8	87	12010.4
18	2112.9	53	7239.0	88	12122.0
19	2239.2	54	7394.1	89	12231.0
20	2367.5	55	7548.9	90	12337.0
21	2497.6	56	7703.4	91	12440.0
22	2629.4	57	7857.5	92	12539.9
23	2763.0	58	8011.2	93	12636.3
24	2898.1	59	8164.3	94	12729.2
25	3034.8	60	8316.9	95	12818.3
26	3172.9	61	8468.9	96	12903.4
27	3312.4	62	8620.3	97	12984.2
28	3453.3	63	8770.9	98	13060.5
29	3595.5	64	8920.7	99	13132.0
30	3738.9	65	9069.6	100	13198.3
31	3883.4	66	9217.7		
32	4029.1	67	9364.8		
33	4175.7	68 .	9510.9		
34	4323.4	69	9655.9		

End of Enclosure

JPM A2 SRO

2010 Admin - JPM A2 SRO

NUREG 1021, Revision 9

Appendix C	Page 2	of 12	Form ES-C-1
	Job Performance M	easure Worksheet	
Facility:	McGuire	Task No.:	
Task Title:	Perform/Review a Manual NC Leakage Calculation	JPM No.:	<u>2010 Admin - JPM A2</u> <u>SRO</u>
K/A Reference:	GK/A 2.2.12 (4.1)		
Examinee:		NRC Examiner	:
Facility Evaluator:		Date:	
Method of testing:			
Simulated Perform	ance:	Actual Perform	ance: X
Classr	oom X Simulator	Plant	

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions:	Unit 1 is at 100% power.
	The Unit 1 OAC point M1L4554 is out of service.
	PT/1/A/4200/040 (Reactor Coolant Leakage Detection) has been completed showing that NCS Leakage is 1.6 gpm.
	A manual NC System leakage calculation is in progress in accordance with PT/1/A/4150/001B (Reactor Coolant Leakage Calculation)
	Enclosure 13.2 (NC Leakage Determination Using Manual Calculations) of PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) has been completed through Step 1.9.
Task Standard:	The operator will complete all calculations in accordance with the attached Key, identify that the Unidentified RCS Leakage Technical Specification has been exceeded, and the required ACTION.
Required Materials:	None.
General References:	PT/1/A/4200/040 (Reactor Coolant Leakage Detection) PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) McGuire Unit 1 Technical Specifications

Appendix C	Page 3 of 12	Form ES-C-
	Job Performance Measure Worksheet	
Handouts:	PT/1/A/4150/001B (Reactor Coolant Leakage Cal follows:	lculation) marked up a
	Step 7.1 – Initialed	
	Steps 8.1 through 8.5 – Initialed.	
	Step 12.1 Enclosure 13.2 Checkbox is checked.	
	PT/1/A/4150/001B (Reactor Coolant Leakage Cal 13.2 (NC Leakage Determinations Using Manual up as follows:	,
	Step 1.1 – Checkbox is checked/Initialed.	
	Step 1.2 – Initialed.	
	Step 1.3 – Initialed.	
	Determine VCT Purge Status Checkbox is che	cked.
	Secured Checkbox is checked.	
	NC System leakage calculation is in progress (Checkbox is checked.
	To refrain from sampling Checkbox is check	ked.
	Person Notified Mike Smith Today's Date/Time	:
	Step 1.4 – Initialed.	
	NC System leakage calculation is in progress (Checkbox is checked.
	To check that NC sample Checkbox is chec	cked.
	NC System sampling Checkbox is checked	
	Person Notified Melvin Smith Today's Date/Tim	ne
	Step 1.5 – Initialed.	
	Step 1.6 – All Checkboxes checked/Initialed.	
	Step 1.7 – Initialed.	
	Step 1.7.1 – Initialed.	
	Step 1.7.2 – Initialed.	
	Step 1.8 – Initialed.	
	Step 1.9 – Initialed.	
	Enclosure 13.3 (NCDT Volume) of PT/1/A/4150/00 Leakage Calculation)	01B (Reactor Coolant
	Enclosure 13.4 (PRT Volume) of PT/1/A/4150/001 Leakage Calculation)	IB (Reactor Coolant
	McGuire Technical Specifications	
Initiating Cue:	Using Enclosure 13.2 (NC Leakage Determination Calculations), AND the attached Datasheet, comp Leakage Calculation, by performing Steps 1.10 ar the Acceptance Criteria.	lete the NC System
	Identify any Technical Specifications impacted an ACTION.	d any required

2010 Admin - JPM A2 SRO

NUREG 1021, Revision 9

Ap	pendix	С
----	--------	---

Time Critical Task: NO

Validation Time: 25 minutes

Page 5 of 12 PERFORMANCE INFORMATION

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue, and associated Datasheet (Last two (2) Pages of this JPM); and Handout PT/1/A/4150/001B procedure body marked up as described, Enclosure 13.2 marked up as described, Enclosure 13.3 and Enclosure 13.4.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
1	(Enclosure 13.2, Steps 1.10.1 through 13, 22, 26 and 1.11.1) Record raw data.	The operator transposes raw data from the Data Sheet provided.		
2	(Enclosure 13.2, Step 1.10.14) Calculate change in NC System Tave:	The operator calculates the change in NC System Tave to be <u>0°F</u> , and records.		
3	(Enclosure 13.2, Step 1.10.15) Calculate VCT Leakage Rate:	The operator calculates the VCT Leakage Rate to be <u>1.55 gpm</u> , and records.		
4	(Enclosure 13.2, Step 1.10.16) Calculate PZR Leakage Rate:	The operator calculates the PZR Leakage Rate to be 0.02 gpm , and records.		
5	(Enclosure 13.2, Step 1.10.17) Calculate Total Leakage:	The operator calculates the Total Leakage to be <u>1.57</u> <u>gpm</u> , and records.		

Page 6 of 12 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
6	(Enclosure 13.2, Step 1.10.18) Using Enclosure 13.4 (PRT Volume), record the following: Initial PRT Volume Final PRT Volume	The operator uses Enclosure 13.4 and an initial PRT Level of 76.0 %, and determines that initial PRT Volume is <u>10636.1</u> <u>gal</u> , and records. The operator uses Enclosure 13.4 and interpolates a PRT Volume for 76.1% to be <u>10649.5</u> <u>gal</u> , and records.		
7	(Enclosure 13.2, Step 1.10.19) Calculate PRT Leakage Rate:	The operator calculates the PRT Leakage Rate to be <u>.19 gpm</u> , and records.		
8	(Enclosure 13.2, Step 1.10. 20) Using Enclosure 13.3 (NCDT Volume), record the following: Initial NCDT Volume Final NCDT Volume	The operator uses Enclosure 13.3 and an initial NCDT Level of <u>30.0%</u> , and determines that initial NCDT Volume is <u>105.9 gal</u> , and records.		
		The operator uses Enclosure 13.3 and a final NCDT Level of <u>33.0%</u> , and determines that final NCDT Volume is <u>116.2 gal</u> , and records.		
9	(Enclosure 13.2, Step 1.10.21) Calculate NCDT Leakage Rate:	The operator calculates the NCDT Leakage Rate to be .14 gpm, and records.		
10	(Enclosure 13.2, Step 1.10.23) Calculate Total Background Leakage:	The operator calculates the Total Background Leakage to be <u>0 gpm</u> , and records.		

Page 7 of 12 PERFORMANCE INFORMATION

Form ES-C-1

Г	1			
STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*11	(Enclosure 13.2, Step 1.10.24) Calculate Identified Leakage:	The operator calculates the Identified Leakage to be <u>0.33 (±10%) gpm</u> , and records.		
*12	(Enclosure 13.2, Step 1.10.25) Calculate Unidentified Leakage:	The operator calculates the Unidentified Leakage to be 1.24 (±10%) gpm , and records.		
*13	(Enclosure 13.2, Step 1.10.26) Determine Total NC Pump #1 Seal Leakoff:	The operator calculates the Total NC Pumps #1 Seal Leakoff to be <u>12.8 (±10%)</u> <u>gpm</u> , and records.		
*14	(Enclosure 13.2, Step 1.10.27) Calculate Total Accumulative Leakage:	The operator calculates the Total Accumulative Leakage to be <u>14.37</u> (±10%) gpm, and records.		
15	(Enclosure 13.2) Calculated By/ Date/Time:	The operator places their name in the Calculated by BLOCK, and signs. The operator enters the Date and Time.		

, ³

Page 8 of 12 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS
			0,0	REQUIRED
				FOR UNSAT
*16	Technical Specification LCO 3.4.13: RCS operational LEAKAGE shall be limited to:	The operator returns the completed Enclosure 13.2 and reports that LCO 3.4.13.b (1 gpm unidentified LEAKAGE) has been		
	shan be innited to.	exceeded.		
	a. No pressure boundary LEAKAGE;	The operator identifies that		
	b. 1 gpm unidentified LEAKAGE;	CONDITION A is met, RCS Operational LEAKAGE not within limits for reasons		
	c. 10 gpm identified LEAKAGE;	other than pressure boundary LEAKAGE or primary to secondary		
	d. 389 gallons per day total primary to secondary LEAKAGE through all steam generators (SGs); and	LEAKAGE; AND that the REQUIRED ACTION is to Reduce LEAKAGE to within limits, within 4 hours.		
	e. 135 gallons per day primary to secondary	Examiner NOTE:		
	LEAKAGE through any one steam generator (SG).	See KEY on Page 10 of this JPM.		
	APPLICABILITY: MODES 1, 2, 3, and 4.	, ,		

Terminating Cue:

Evaluation on this JPM is complete.

STOP TIME:

Appendix C	А	pp	en	dix	С
------------	---	----	----	-----	---

Page 9 of 12 VERIFICATION OF COMPLETION

Form ES-C-1

Job Performance Measure No.:	2010 Admin - JF	PM A2 SRO	
Examinee's Name:			
Date Performed:			
Facility Evaluator:			
Number of Attempts:	1		
Time to Complete:			
Question Documentation:			
Result:	SAT	UNSAT	
Examiner's Signature:		Dat	e:

Appendix C

Page 10 of 12 VERIFICATION OF COMPLETION

KEY:

Enclosure 13.2, Step 1.10.14 (JPM Step 2): Change in NC System Tave: $584.8^{\circ}F - 584.8^{\circ}F = 0^{\circ}F$

Enclosure 13.2, Step 1.10.15 (JPM Step 3): VCT Leakage Rate: (53.4% – 47.6%) x19.3 gallons/%/72 minutes = 1.55 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.16 (JPM Step 4): PZR Leakage Rate: (54.9% – 54.1%) x 132.5 gallons/% x .01613 /72 minutes = 0.02 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.17 (JPM Step 5): Total Leakage: 1.55 gpm + 0.02 gpm = 1.57 gpm

Enclosure 13.2, Step 1.10.18 (JPM Step 6): PRT Final Volume:

(10770.4-10636.1)/10 = 13.43/.1% PRT Level, 10636.1 + 13.43 = 10649.53 (gal)

Enclosure 13.2, Step 1.10.19 (JPM Step 7): Total PRT Leakage: (10649.5 gallons – 10636.1 gallons)/72 minutes = 0.19 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.21 (JPM Step 9): Total NCDT Leakage: (116.2 gallons – 105.9 gallons)/72 minutes = 0.14 gallons per minute (gpm)

Enclosure 13.2, Step 1.10.23 (JPM Step 10): Total Background Leakage: (0 gpm + 0 gpm) = 0 gpm

Enclosure 13.2, Step 1.10.24 (JPM Step 11): Identified Leakage: (.19 gpm + .14 gpm + 0 gpm) = 0.33 gpm

Enclosure 13.2, Step 1.10.25 (JPM Step 12): Unidentified Leakage: (1.57 gpm - .33 gpm) = 1.24 gpm

Enclosure 13.2, Step 1.10.26 (JPM Step 13): Total NC Pumps #1 Seal Leakoff: (2.8 gpm + 3.6 gpm + 3.1 gpm + 3.3 gpm) = 12.8 gpm

Enclosure 13.2, Step 1.10.27 (JPM Step 14): Total Accumulative Leakage: (.33 gpm + 1.24 gpm + 12.8 gpm) = 14.37 gpm

LCO 3.4.13.b (1 gpm unidentified LEAKAGE) has been exceeded, CONDITION A is met, RCS Operational LEAKAGE not within limits for reasons other than pressure boundary LEAKAGE or primary to secondary LEAKAGE; AND that the REQUIRED ACTION is to Reduce LEAKAGE to within limits, within 4 hours.

INITIAL CONDITIONS: Unit 1 is at 100% power.

The Unit 1 OAC point M1L4554 is out of service.

PT/1/A/4200/040 (Reactor Coolant Leakage Detection) has been completed showing that NCS Leakage is 1.6 gpm.

A manual NC System leakage calculation is in progress in accordance with PT/1/A/4150/001B (Reactor Coolant Leakage Calculation)

Enclosure 13.2 (NC Leakage Determination Using Manual Calculations) of PT/1/A/4150/001B (Reactor Coolant Leakage Calculation) has been completed through Step 1.9.

INITIATING CUE:Using Enclosure 13.2 (NC Leakage Determination Using Manual
Calculations), AND the attached Datasheet, complete the NC
System Leakage Calculation, by performing Steps 1.10 and 1.11,
AND evaluate the Acceptance Criteria.

Identify any Technical Specifications impacted and any required ACTION.

: • • • • į• •

JPM CUE SHEET

Data Sheet

Start Time	0100	
Stop Time	0212	- Kales
	Initial	<u>Final</u>
VCT Level	53.4	47.6
Pzr Level	54.9	54.1
NC System Tave	584.8	584.8
PRT Level	76.0	76.1
NCDT Level	30	33
NC Sample Purge Flow v	alue recorded in Autolog	0
	akage that has been identified	0
NC Pump 1A #1 Seal Leakoff Flow		2.8
	Seal Leakoff Flow	3.6
	Seal Leakoff Flow	3.1
NC Pump 1D #1 S	Seal Leakoff Flow	3.3
1EMF71	Reading	1.2
1EMF72		1.7
1EMF73		1.1
1EMF74	Reading	1.9

Duke Energy	Procedure No.
McGuire Nuclear Station	рт/ 1 /А/4150/001 в
Reactor Coolant Leakage Calculation	Revision No.
	067
	Electronic Reference No
Continuous Use	MC0047QI
PERFORMANCE	
* * * * * * * * * * UNCONTROLLED FOR PRINT * * * * * * *	* *
(ISSUED) - PDF Form	at

· .

•

,

•

i

Revision	Revision History (significant issues, limited to one page)				
Rev 067	Changed format of procedure to split out calculation performed by OAC and performed by manual calculation. Combined leakage calculation using the OAC steps with current Enclosure 13.1 and renamed enclosure "NC Leakage Calculation Using OAC". Combined manual leakage calculation steps with Enclosure 13.2 and renamed enclosure "NC Leakage Determination Using Manual Calculation". Changed all references throughout procedure to include these format changes. Encl. 13.5. Added Independent Verification sign offs for calculation of seven day rolling average of Unidentified Leakage. {PIP M-09-1307} Revised current steps for determining if Tier Two or Tier Three Action levels exceeded to reference step numbers associated with determination. Intent is to clarify steps. Reworded steps that state "IF directed" by engineering to "IF advised" by engineering. Definition of "directed" changed with new fatigue rule. Added PIP M-09-1857 as an additional reference to NCP seal leakage basis. Modified steps that begin with "WHEN" to reflect NSD 704 Rev 016 requirements.				
Rev 066	Body of procedure. Added a limit and precaution about manipulation of VA System during leakage calculation has an affect on VCT level. Re-worded Step 12.6.17. The leakage calculation is considered valid after 60 minutes but is preferred to run up to 3 hours. The step as written requires the operator to print calculation after 60 minutes when 1 of 3 conditions met. This is procedure use and adherence issue. Re-worded step to give operator flexibility to print calculation summary between 60 minutes and 3 hours. Re-worded Step 12.6.35. If operator performs section 12.6.16 to abort leakage calculation early, enclosure 13.1 is not performed. 12.6.35 directs operator to perform Encl. 13.5, however, this enclosure requires data from enclosure 13.1. Re-worded step to stipulate if unit at 100% RTP AND Encl. 13.1 completed, then perform Encl. 13.5. Procedure use and adherence issue.				
Rev 065	 Added step to make operator aware that if leakage calc ran for greater than 30 minutes but less than 60 minutes, the data can still be valid if it meets certain conditions. Added step to record status of VCT purge at beginning of procedure. Added steps to take NV-137A "hard" to VCT and back to "AUTO" prior to starting leakage calculation. Encl. 13.5. Reworded section if any Tier One, Two, or Three Action level is exceeded to make it easier to understand. 				

Г

Reactor Coolant Leakage Calculation

1. Purpose

/ To determine NC System Leakage using the Operator Aid Computer (OAC) or manual calculations to ensure Tech Spec requirements met.

2. References

- ✓ 2.1 Tech Spec TS SR 3.4.13.1, 3.4.13.2, TS 3.4.15
- ✓ 2.2 SLC 16.9.7 Standby Shutdown System
- /2.3 MCS-1274.00-00-0016 (License Renewal Basis Spec), Section 4.29
- ✓2.4 UFSAR Chapter 18 (Aging Management Program and Activities), Table 18-1, Reactor Coolant Operational Leakage Monitoring Program
- ✓ 2.5 SLC 16.7.6 Radiation Monitoring for Plant Operation
- √2.6 WCAP-16423-NP (Methodology for calculating Unidentified NC System leakage)
- √2.7 WCAP-16465-NP (Action levels and response guidelines for increasing Unidentifed NC System leakage less than Tech Spec limits)
- √2.8 MCC-1201.01-00-0053 (MNS Unit 1 & 2 NC Pump Response to Loss of Seal Cooling)

3. Time Required

 $\sqrt{3.1}$ One operator for three hours every 72 hours.

4. Prerequisite Test

/None

5. Test Equipment

/_{None}

6. Limits and Precautions

- ✓ 6.1 NC System Tave, Reactor Power, Containment Temperature, and SM Pressure should remain constant during calculation.
- $\sqrt{6.2}$ Positioning values during calculation which could adversely affect results will invalidate the calculation.
- $\sqrt{6.3}$ Performing Leakage Calculation between 3 am and 8 am on Wednesdays may cause calculation to fail due to OAC weekly backup routine.
- √6.4 Performing PT/1/A/4200/019 (ECCS Pump and Piping Vent) during calculation could adversely affect results and will invalidate the calculation.
- ★.5 Manipulation of VA System should be avoided while performing Leakage Calculation due to affect on VCT level.

7. Required Unit Status

5LM 7.1 NC System filled and vented with a steam bubble in the Pzr.

8. Prerequisite System Conditions

- <u>SIM</u> 8.1 NC System Tave at steady state condition. $(\pm 0.5^{\circ}F)$
- <u>SLM</u> 8.2 Reactor Power at steady state condition. $(\pm 0.2\%)$
- <u>5LM</u> 8.3 Main Steam pressure at steady state condition. (± 1%)
- **SEM** 8.4 NCDT and PRT will **NOT** need to be pumped down during calculation.

NOTE: ✓ Background leakage consists of known valve stem leakage and NC Sample Purge Flow.

- <u>SLM</u> 8.5 <u>IF</u> background leakage provided, data meets the following requirements:
 - Measured within last 7 days
 - Associated system conditions unchanged since calculated

9. Test Method

IF OAC available for leakage calculation, NC System leakage is calculated using a water inventory balance around the NC System based on input data from the OAC. OAC NC System Leakage Calculation will be initiated once per 72 hours and will then run automatically for 3 hours. During the first 15 minutes of calculation, no correlation coefficient will be displayed.

 \sqrt{IF} elapsed time greater than 60 minutes, program data may be used for leakage calculation when one of the following sets of criteria met:

✓ "TOTAL LEAKAGE BEST" <u>NOT</u> between ±0.15 gpm and "TOTAL LEAKAGE CORRELATION COEFF" greater than 0.6

OR

"TOTAL LEAKAGE BEST" less than 0.15 gpm and "IDENTIFIED LEAKAGE BEST" greater than or equal to "BACKGROUND LEAKAGE".

OR

- ✓ TOTAL LEAKAGE BEST" less than 0.1 gpm
- **<u>IF</u>** plant stability can <u>NOT</u> be maintained <u>AND</u> elapsed time greater than 30 minutes, leakage calculation data may be used when absolute value for Total Leakage Correlation Coefficient greater than or equal to 0.50 and Identified Leakage Best greater than or equal to Background Leakage.
- JF OAC is partially or wholly unavailable, NC System leakage will be calculated manually. Initial data will be recorded followed by final data after 60 - 75 minute wait. Tank volume / gallon conversion and water densities are used in equations to determine NC System leakage.
- Individual NC Pump #1 Seal Leakoff flows will be recorded and compared to the maximum allowable limit of 4.0 gpm.
- Primary to Secondary Leakage will be recorded from EMF indication(s) or Chemistry sample and compared to a maximum of 135 gpd through any one steam generator or a maximum of 389 gpd through all steam generators.
- "TOTAL ACCUMULATIVE LEAKAGE" will be calculated using "IDENTIFIED LEAKAGE BEST", "UNIDENTIFIED LEAKAGE BEST" and "TOTAL NC PUMP SEAL LEAKOFF FLOWS".

1

10. Data Required

- √10.1 Enclosure 13.1 (NC Leakage Calculation Using OAC) or Enclosure 13.2 (NC Leakage Determination Using Manual Calculations).
- ★10.2 <u>IF</u> Unit 1 at 100% RTP, Enclosure 13.5 (Evaluation of NC System Unidentified Leakage Results)
- ↓0.3 Indicate on cover sheet of this procedure under Remarks Section any special system alignments made for this calculation.

11. Acceptance Criteria

- $\sqrt{11.1}$ NC System Identified Leakage shall be limited to 10 gpm. (Reference TS 3.4.13)
- $\sqrt{1.2}$ NC System Unidentified Leakage shall be limited to 1 gpm. (Reference TS 3.4.13)
- √1.3 Total NC Pumps #1 Seal Leakoff shall be limited to 16.3 gpm. (Reference SLC 16.9.7) {PIP 04-3317}
- 1.4 Total Accumulative Leakage (sum of Identified Leakage, Unidentified Leakage, and NC Pumps #1 Seal Leakoff) shall be limited to 20 gpm. (Reference SLC 16.9.7) {PIP M99-3926}
- ▲1.5 Each NC Pump #1 Seal Leakoff flow shall be limited to a sustained value of less than
 4.0 gpm. (Reference SLC 16.9.7, MCC-1201.01-00-0053) {PIP 05-779, M-09-1857}
- √1.6 Primary to Secondary Leakage shall be limited to 135 gpd through any one steam generator and 389 gpd through all steam generators. (Reference TS 3.4.13)

12. Procedure

12.1 Perform one of the following:

□ Enclosure 13.1, NC Leakage Calculation Using OAC

OR

Enclosure 13.2, NC Leakage Determination Using Manual Calculations

13. Enclosures

- 13.1 NC Leakage Calculation Using OAC
- 13.2 NC Leakage Determination Using Manual Calculations
- 13.3 NCDT Volume
- 13.4 PRT Volume
- 13.5 Evaluation of NC System Unidentified Leakage Results

End of Body

: 1

NC Leakage Determination Using Manual Calculations

1. Procedure

- ☑ 1.1 Evaluate all outstanding R&Rs that may impact performance of this procedure.
- **NOTE:** \checkmark IF Unit 1 in Mode 3 or 4, this procedure is <u>NOT</u> required until 12 hours of steady state operation have elapsed.
 - ✓ The first calculation is considered the first calculation after 18:00 hrs for normal operation.

<u>SCM</u>^{FBK} 1.2 IF more than one leakage calculation performed per shift, a brief explanation should be entered on Autolog indicating reason for repeating calculation.

NOTE: \checkmark A continuous vent is maintained on the PRT and a continuous purge is maintained on the VCT by Radwaste Chemistry.

5LM 1.3 Notify Radwaste Chemistry of the following:

Determine VCT purge status:

 \Box Active \blacksquare Secured

- MC System leakage calculation is in progress
- ✓ To refrain from sampling PRT, NCDT and VCT or changing vent (purge) status of PRT, NCDT and VCT {PIPM-00-0615}

<u>Mike Smith</u> / Person Notified Date Time

- **SLM** 1.4 Notify Primary Chemistry of the following:
 - M NC System leakage calculation is in progress
 - ☑ To check that NC Sample Purge Flow value is unchanged from the current Autolog entry (Prerequisite System Condition 8.5)
 - ✓ NC System sampling shall only be performed with permission from the Control Room

<u>Melvin Smith</u> / Person Notified Date Time

31.5 Ensure adequate VCT level to prevent auto makeup during calculation.

NC Leakage Determination Using Manual Calculations

NOTE:√	Leakage Calculation will be invalid if any value in Step 1.6 or 1.7 is repositioned during calculation.
1.6	Check closed:
	 INC-58A (PRT Spray Supply Block) INI-9A (NC Cold Leg Inj From NV) INI-10B (NC Cold Leg Inj From NV) INV-39A (A NC Pump Standpipe Fill) INV-55B (B NC Pump Standpipe Fill) INV-71A (C NC Pump Standpipe Fill) INV-87B (D NC Pump Standpipe Fill) INV-171A (BA Blender To VCT Inlet) INV-175A (BA Blender To VCT Outlet)
	 INV-221A (NV Pumps Suct From FWST) INV-222B (NV Pumps Suct From FWST)
<u>slm</u> 1.7	IF 1NV-137A (NC Filters Otlt 3-Way Cntrl) in "AUTO", perform the following:
SLM	1.7.1 Place 1NV-137A to "VCT" position.
<u>_3LM</u>	1.7.2 HOLD until 1NV-137A indicates "VCT", THEN place 1NV-137A to "AUTO".
<u>SLM</u> 1.8	Place "1WL-23 Mode Select" in "MAN".

i

<u>SIM</u> 1.9 Close 1WL-23 (NCDT Pump Level Control).

Unit 1

3

NC Leakage Determination Using Manual Calculations

□ 1.10	Perform the following:
--------	------------------------

NOTE: <u>IF</u> availa	able, the OAC should be used to obtain data required for calculation	ion.				
□ 1.10.1	Record Start Time:					
□ 1.10.2	Record initial VCT Level (M1P0201):	_%				
□ 1.10.3	Record initial PZR Level (M1P0200):	_%				
NOTE: <u>IF</u> Tave and T _C .	less than 530°F AND OAC unavailable, Tave must be calculated	using WR T _H				
□ 1.10.4	Record initial NC System Tave (M1P1479):	°F				
□ 1.10.5	Record initial PRT Level (M1P0202):					
□ 1.10.6	Record initial NCDT Level (M1P0203):	%				
1.10.7	HOLD until 60 - 75 minutes elapsed.					
□ 1.10.8	Record Stop Time:					
□ 1.10.9	Record final VCT Level (M1P0201):	%				
□ 1.10.10	Record final PZR Level (M1P0200):	%				
NOTE: <u>IF</u> Tave less than 530°F <u>AND</u> OAC unavailable, Tave must be calculated using WR T_H and T_C .						
□ 1.10.11	Record final NC System Tave (M1P1479):	°F				
□ 1.10.12	Record final PRT Level (M1P0202):	%				
□ 1.10.13	Record final NCDT Level (M1P0203):	%				

Unit 1

١

NOTE: <u>IF</u> chang be repeat	the in Tave greater than 0.25° F (0.1°F using OAC), calculation is invited.	valid and must
□ 1.10.14	Calculate change in NC System Tave:	
	Initial (Step 1.10.4) Final (Step 1.10.11)	
□ 1.10.15	Calculate VCT Leakage Rate:	
	[Initial Level (%) - Final Level (%)] x (19.3 Gal/%) Stop Time - Start Time (Min)	
	[] x 19.3	
	Initial (Step 1.10.2) Final (Step 1.10.9) = Stop Time (Step 1.10.8) Start Time (Step 1.10.1)	gpm
□ 1.10.16	Calculate PZR Leakage Rate:	
	[Initial Level (%) - Final Level (%)] x (132.5 Gal/%) X (0.01613 ¹) Stop Time - Start Time (Min)	
[_] x 132.5 x 0.01613 Initial (Step 1.10.3) Final (Step 1.10.10) =	
Sto	pp Time (Step 1.10.8) Start Time (Step 1.10.1)	gpm
□ 1.10.17	Calculate Total Leakage:	
	+ = =	gpm
□ 1.10.18	Using Enclosure 13.4 (PRT Volume), record the following:	
	 Initial PRT Volume: gal (Step 1.10.5) Final PRT Volume: gal (Step 1.10.12) 	
□ 1.10.19	Calculate PRT Leakage Rate:	
	·	
	Final Volume (Step 1.10.18) Initial Volume (Step 1.10.18)	gpm
	Stop Time (Step 1.10.8) Start Time (Step 1.10.1)	

¹ Specific Volume for saturated liquid at PZR temperature.

	Enclosure 13.2 NC Leakage Determination Using Manual Calculations	PT/ 1 /A/4150/001 B Page 5 of 10
□ 1.10.20	Using Enclosure 13.3 (NCDT Volume), record the following	llowing:
	 Initial NCDT Volume: gal (Step Final NCDT Volume: gal (Step 	1.10.6) 1.10.13)
□ 1.10.21	Calculate NCDT Leakage Rate:	
F	inal Volume (Step 1.10.20) Initial Volume (Step 1.10.20) = Stop Time (Step 1.10.8) Start Time (Step 1.10.1)	gpm
□ 1.10.22	Record the following:	
	 NC Sample Purge Flow value recorded in Autolog Any quantified (measured) leakage that has been i 	;: gpm dentified: gpm
□ 1.10.23	Calculate Total Background Leakage:	
	$\frac{1}{\text{NC Purge (Step 1.10.22)}} + \frac{1}{\text{Quantified (Step 1.10.22)}} = gpm$	
	Calculate Identified Leakage:	
PRT Leakage Rate (Step 1.10.1	+ + = 9) NCDT Leakage Rate (Step 1.10.21) Background Leakage (Step 1.10.23)	gpm ² (< 10 gpm)
□ 1.10.25	Calculate Unidentified Leakage:	
Total Leakage (S	tep 1.10.17) Identified Leakage (Step 1.10.24)	_ gpm ² (< 1 gpm)
□ 1.10.26	Determine Total NC Pump #1 Seal Leakoff flow:	
	 NC Pump 1B #1 Seal Leakoff Flow + NC Pump 1C #1 Seal Leakoff Flow + NC Pump 1D #1 Seal Leakoff Flow + 	$gpm^{2}(< 4.0 gpm)$ $gpm^{2}(< 4.0 gpm)$ $gpm^{2}(< 4.0 gpm)$ $gpm^{2}(< 4.0 gpm)$ $gpm^{2}(< 16.3 gpm)$

i Y

² Acceptance Criteria Value

Unit 1

į

Enclosure 13.2

NC Leakage Determination Using Manual Calculations

			Calculations
NOTE:	"0" shou	ld be entered	below for any negative identified or unidentified value.
	1.10.27	Calculate "	Fotal Accumulative Leakage":
Identified (Step 1.	+ 10.24) Unio	dentified (Step 1.10	+ = gpm ³ (< 20 gpm) 25) Total NC Seal Leakoff (Step 1.10.26) Total Accumulative Leakage
1.11	Determin	e Primary to	Secondary Leakage by performing the following:
	1.11.1	IF in Mode following:	1 AND greater than or equal to 40% RTP, record indication on the
		 1EMF7 1EMF72 1EMF72 1EMF74 	2: gpd 3: gpd
		1.11.1.1	IF any N-16 EMF inoperable, perform the following:
			 A. Notify Secondary Chemistry to provide Primary to Secondary leakage. <u>Person Notified</u> / <u>Date Time</u>
			Person Notified Date Time
			B. Record Primary to Secondary leakage as determined by Secondary Chemistry: gpd ³
			C. Record date and time Primary to Secondary leakage was determined (provided by Secondary Chemistry): //
1	.11.2	IF in Mode	Date Time 1 <u>AND</u> less than 40% RTP, perform the following:
. Nast		1.11.2.1	Notify Secondary Chemistry to provide Primary to Secondary leakage.
			Person Notified / Date Time

³ This value is a total primary to secondary leakage of all four S/Gs. A value of less than or equal to 135 gpd conservatively implies leakage through any one S/G is less than or equal to 135 gpd.

	Enclosure 13.2 PT/1/A/4150/001
NC	C Leakage Determination Using Manual Page 7 of 10 Calculations
□ 1.11.2.2	Record Primary to Secondary leakage as determined by Secondary Chemistry: gpd ⁴
□ 1.11.2.3	Record date and time Primary to Secondary leakage was determined (provided by Secondary Chemistry):
	/ Date Time
1.11.3 <u>IF</u> in Mc	odes 2, 3 or 4, perform the following:
1.11.3.1	Notify Secondary Chemistry to provide Primary to Secondary leakage via grab sample.
	Person Notified / Date Time
	Person Notified Date Time
□ 1.11.3.2	Record Primary to Secondary leakage as determined by Secondary Chemistry grab sample: gpd ⁴
□ 1.11.3.2 □ 1.11.3.3	
	Secondary Chemistry grab sample: gpd ⁴ Record date and time Primary to Secondary leakage was determined (provided by Secondary Chemistry):
	Secondary Chemistry grab sample: gpd ⁴ Record date and time Primary to Secondary leakage was
□ 1.11.3.3	Secondary Chemistry grab sample: gpd ⁴ Record date and time Primary to Secondary leakage was determined (provided by Secondary Chemistry):

⁴ This value is a total primary to secondary leakage of all four S/Gs. A value of less than or equal to 135 gpd conservatively implies leakage through any one S/G is less than or equal to 135 gpd.

NC Leakage Determination Using Manual Calculations

 \Box 1.12 In Autolog, perform the following:

I		
NOTE:	• Calcu be ide	ulations run during power escalation <u>AND</u> other than Mode 1 calculations should entified as such.
	• The f opera	irst calculation is considered the first calculation after 18:00 hrs for normal tion.
	1.12.1	Enter the following values with any pertinent comments:
		 "IDENTIFIED" leakage (Step 1.10.24) "UNIDENTIFIED" leakage (Step 1.10.25) "TOTAL NC PUMPS #1 SEAL LEAKOFF" leakage (Step 1.10.26) "TOTAL" leakage (Step 1.10.27) "CALCULATION START TIME" Primary to Secondary leakage
	_ 1.12.2	\underline{IF} other than the first calculation for the day, record reason and any pertinent comments.
NOTE:	Unidentif Calculation	fied Leakage values are expected to be within ± 0.5 gpm for Manual ons. Exceeding ± 0.5 gpm does NOT invalidate leakage calculation.
1.13	IF unide	ntified leakage NOT between +0.5 gpm, notify Primary System Engineer

gp uly Prima System Engineer. цу

Person Notified

Date Time

Enclosure 13.2

NC Leakage Determination Using Manual Calculations

- 1.14 Evaluate Acceptance Criteria per one of the following:
 - □ 1.14.1 Check Acceptance Criteria specified in Section 11 met.

OR

- 1.14.2 IF Acceptance Criteria specified in Section 11 NOT met, perform the following:
 - Image: 1.14.2.1Log applicable Tech Spec or SLC. {PIP M-07-00393}Image: 1.14.2.2Image: 1.14.2.2Image: SROImage: 1.14.2.2Image: SRO
 - <u>IIF</u> Total Accumulative Leakage is greater than 20 gpm <u>OR</u> Total NC Pumps #1 Seal Leakoff greater than 16.3 gpm, notify Security of degraded SSF capabilities.

/ Date Time Person Notified

- 1.14.2.4IF any NC Pump #1 Seal Leakoff has a sustained value of greater
than OR equal to 4.0 gpm, notify SSS Engineer and Security of
degraded SSF capability.
 - Person Notified / Date Time
- 1.15 **IF** this is the second Leakage Calculation and elevated leakage is indicated, evaluate performing PT/1/A/4150/001 D (Identifying NC System Leakage).
- 1.16 Lower NCDT level less than 48%.
- 1.17 Close 1WL-23 (NCDT Level Control).
- 1.18 Place "1WL-23 Mode Select" to "AUTO".

	Enclosure 13.2	PT/ 1 /A/4150/001 B
	NC Leakage Determination Using Manual Calculations	Page 10 of 10
1.19	Notify Radwaste Chemistry of the following:	
	□ NC System leakage calculation is complete	
	□ PRT, NCDT and VCT sampling or venting may be initiated	{PIPM-00-0615}
	Person Notified / Date Time	
1.20	Notify Primary Chemistry of the following:	
	□ NC System leakage calculation is complete	
	□ NC System sampling may be initiated	
1.21	IF Unit 1 at 100% RTP AND OAC is available, perform Enclose	ure 13.5 (Evaluation of
	NC System Unidentified Leakage Results).	

End of Enclosure

i

Enclosure 13.3 NCDT Volume

PT/**1**/A/4150/001 B Page 1 of 1

NCDT LEVEL %	NCDT VOLUME (Gal)	NCDT LEVEL %	NCDT VOLUME (Gal)	NCDT LEVEL %	NCDT VOLUME (Gal)
0	19.7	35	123.1		247.3
1	21.9	36	126.6	71	250.7
2	24.1	37	130.1	72	254.0
3	26.4	38	133.6	73	257.3
4	28.8	39	137.1	74	260.6
5	31.2	40	140.7	75	263.9
6	- 33.7	41	144.3	76	267.2
7	36.2	42	147.8	77	270.4
8	38.8	43	151.4	78	273.6
9	41.4	44	155.0	79	276.8
10	44.1	45	158.6	80	279.9
11	46.9	46	162.2	81	283.0
12	49.6	47	165.8	82	286.1
13	52.5	48	169.4	83	289.1
14	55.3	49	173.0	84	292.1
15	58.2	50	176.6	85	295.1
16	61.2	51	180.2	86	298.0
17	64.2	52	183.8	87	300.9
18	67.2	53	187.5	88	303.8
19	70.3	54	191.1	89	306.6
20	73.4	55.	194.7	90	309.4
21	76.5	56	198.2	91	312.1
22	79.6	- 57	201.8	92	314.7
23	82.8	58	205.4	93	317.4
24	86.0	59.	209.0	94	319.9
25	89.3	60	212.5	95	322.4
26	92.6	61	216.1	96	324.9
27	95.9	62	219.6	97	327.3
28	99.2	63	223.1	98	329.6
29	102.5	64	226.6	99	331.9
30	105.9	65	230.1	100	334.0
31	109.3	66	233.6		
32	112.7	67	237.0		
33	116.2	-68	240.5		
34	119.6	69	243.9		

End of Enclosure

Enclosure 13.4 PRT Volume

PT/**1**/A/4150/001 B Page 1 of 1

PRT LEVEL %	PRT VOLUME (Gal)	PRT LEVEL %	PRT VOLUME (Gal)	PRT LEVEL %	PRT VOLUME (Gal)
0	303.2	35	4472.0	70	9799.8
1	371.9	36	4621.5	71	9942.5
2	445.6	37	4771.8	72	10084.0
3	523.9	38	4922.8	73	10224.1
4	606.7	39	5074.6	74	10362.9
5	693.6	40	5227.0	75	10500.3
. 6	784.5	41	5379.9	76	10636.1
7	879.0	42	5533.4	77	10770.4
8	977.0	43	5687.3	78	10903.1
9	1078.3	44	5841.7	79	11034.1
10	1182.7	45	5996.4	80	11163.3
11	1290.0	46	6151.4	81	11290.6
12	1400.2	47	6306.6	82	11416.0
13	1513.0	48	6461.9	83	11539.3
14	1628.4	49	6617.4	84	11660.6
15	1746.2	50	6772.9	85	11779.6
16	1866.2	51	6928.4	86	11896.2
17	1988.5	52	7083.8	87	12010.4
18	2112.9	53	7239.0	88	12122.0
19	2239.2	54	7394.1	89	12231.0
20	2367.5	55	7548.9	90	12337.0
21	2497.6	56	7703.4	91	12440.0
22	-2629.4	57 · · ·	7857.5	92	12539.9
23	2763.0	58	8011.2	93	12636.3
24	2898.1	59	8164.3	94	12729.2
25	3034.8	60	8316.9	95	12818.3
26	3172.9	61	8468.9	96	12903.4
27	3312.4	62	8620.3	97	12984.2
28	3453.3	63	8770.9	98	13060.5
29	3595.5	64	8920.7	99	13132.0
30	3738.9	65	9069.6	100	13198.3
31	3883.4	66	9217.7		
32	4029.1	67	9364.8		
33	4175.7	68 -	9510.9		
34	4323.4	69	9655.9		

End of Enclosure

JPM A3 RO/SRO

2010 Admin - JPM A3 RO/SRO

NUREG 1021, Revision 9

Appendix C	Page 2 d		Form ES-C-1
, ipperion e	Job Performance Me		
Facility:	McGuire	Task No.:	
Task Title:	Perform a Unit Vent Flow Calculation of a Containment Air Release		<u>n 2010 Admin -</u> A3 RO/SRO
K/A Reference:	GK/A 2.3.11 (3.8/3.8)		
Examinee:		NRC Examiner:	
Facility Evaluator:		Date:	
Method of testing:			
Simulated Perform	ance:	Actual Performance:	X
Classr	oom <u>X</u> Simulator	_ Plant	

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions:	GWR Package # 2010013 for Unit 1 Containment Air Release is currently in use to conduct a series of Containment air releases.
	During the first release, conducted using Enclosure 4.2 (Air Release Mode With VQ Flow Monitor Operable) of OP/1/A/6450/017 (Containment Air Addition and Release), the Unit 1 VQ Monitor became inoperable.
	The crew stopped the release and continued the air release using Enclosure 4.3 (Air Release Mode with VQ Flow Monitor Inoperable) of OP/1/A/6450/017 (Containment Air Addition and Release).
	Three previous releases have been made; including the one which was made with the Unit 1 VQ Flow Monitor in operation.
	At 1743 on 8/4/10, containment pressure was 0.17 PSIG and a VQ release was initiated to reduce pressure to 0.12 PSIG per Step 3.8 of Enclosure 4.3.
	This release was secured at 1839 on 8/4/10 and the procedure was completed through step 3.7.1 for this release.
	RP has requested that the current GWR paperwork be closed out after the on-going release.

Appendix C	Page 3 of 11	Form ES-C-1
	Job Performance Measure Worksheet	
Task Standard:	The operator will calculate the volume of air relea Containment during the final release, and determ air released in the series of four releases in accor provided KEY.	ine the total volume of
Required Materials:	Calculator	
General References:	OP/1/A/6450/017 (Containment Air Addition and I	Release)

. . .

Appendix C	Page 4 of 11 Form ES-	-C-
	Job Performance Measure Worksheet	
Handouts:	Handout #1 - Enclosure 4.2 (Air Release Mode With VQ Flow Monit Operable) of OP/1/A/6450/017 (Containment Air Addition and Releas marked up as follows:	
	Step 2.1 – Initialed.	
	Step 2.2 – Initialed.	
	Step 2.3 – Initialed.	
	Step 2.4 – Initialed, GWR# 2010013 recorded.	
	Step 3.1 – Checkbox is checked and Initialed.	
	Step 3.2 – Initialed.	
	Step 3.2.1 – Initialed and CV initialed.	
	Step 3.2.2 – Initialed and CV initialed.	
	Step 3.2.3 – Initialed and Mike Cline /Date/Time Recorded consisten with first release Date/Time (8/4/10 0903).	t
	Step 3.3 – Initialed.	
	Step 3.3.1 – Initialed.	
	Step 3.3.2 – Checkbox is checked and Initialed.	
	Step 3.4 – Initialed and CV initialed.	
	Step 3.5 – Initialed.	
	Step 3.6 – Initialed.	
	Step 3.7 – Initialed.	
	Step 3.7.1 – Checkbox is checked and Initialed.	
	Step 3.7.2 – Checkbox is checked and Initialed.	
	Step 3.7.3 – Initialed and CV initialed, VQ Monitor flow is recorded as 1594, and Actual Volume Released is recorded as 15,940.	5
	Step 3.7.4 – Initialed.	
	Step 3.7.5 – Checkbox is checked and Initialed.	
	Step 3.8.1 – Checkbox is checked and Initialed.	
	Step 3.8.2 – Checkbox is checked and Initialed.	
	Step 3.8.3 – Checkbox is checked and Initialed.	
	Step 3.8.4 – Checkbox is checked and Initialed.	
	Step 3.8.5 – Both Checkbox' are checked and Initialed.	
	Step 3.8.6 – Initialed.	
	Step 3.9 – Initialed.	

Page 5 of 11 Job Performance Measure Worksheet

Page 5 of 5 (Attachment 1) is marked up as follows: Sheet 1 of 1

1VQ-2B Open				1VQ-2B Closed		
Doer	CV	VQ Flow Monitor Counting (√)	Date/Time	Doer	CV	Date/Time
Initial	Initial		8/4/10 0903	Initial	Initial	8/4/10 1016

Handout #2 - Enclosure 4.3 (Air Release Mode With VQ Flow Monitor Inoperable) of OP/1/A/6450/017 (Containment Air Addition and Release) marked up as follows:

- Step 2.1 Initialed.
- Step 2.2 Initialed.
- Step 2.3 Initialed.
- Step 2.4 Initialed, GWR# 2010013 recorded.
- Step 3.1 Checkbox is checked and Initialed.
- Step 3.2 Initialed.
- Step 3.2.1 Initialed and CV initialed.
- Step 3.2.2 Initialed and CV initialed.
- Step 3.2.3 Initialed and Person Notified/Date/Time Recorded consistent with <u>first</u> release Date/Time on Page 6 of 6.
- Step 3.3 Initialed.
- Step 3.4 Initialed and CV initialed.
- Step 3.5.1 Checkbox is checked and Initialed.
- Step 3.5.2 Checkbox is checked and Initialed.
- Step 3.5.3 Checkbox is checked and Initialed.
- Step 3.5.4 Both Checkbox' are checked and Initialed.
- Step 3.5.5 Checkbox is checked and Initialed.
- Step 3.5.6 Initialed.
- Step 3.6 NA and Initialed.
- Step 3.7 Initialed.
- Step 3.7.1 Checkbox is triple-checked and Initialed.
- Step 3.7.2-3 Checkbox is double-checked and Initialed.
- Step 3.8 Initialed.
- Step 3.9.1 through 3.9.3 Initialed.

Page 6 of 11

Job Performance Measure Worksheet

1VQ-2B Open				1VQ-2B Closed					
Doer	cv	Date/Time	Start Pressure (psig)	Doer	CV	Date/Time	Stop Pressure (psig)	Ft ³ Released	Total Ft ³ Released
Initial	Initial	8/4/10 1117	0.21	Initial	Initial	8/4/10 1258	0.12	21,469.28	21,469.28
Initial	Initial	8/4/10 1432	0.19	Initial	Initial	8/4/10 1547	0.12	15,534.63	37,003.91
Initial	Initial	8/4/10 1743	0.17	Initial	Initial		0.12		

Page 6 of 6 (Attachment 1) is marked as follows: Sheet 1 of 1

Initiating Cue:You have been directed to calculate the volume released for this release
and complete all required paperwork starting with Step 3.7.2, AND,
since this is the last release perform Steps 3.9.4 through 3.9.8 of
Enclosure 4.3 to determine the total volume released from the
Containment.The CRS notified RP (Mike Cline) at 1840 on 8/4/10 that the release has
been terminated.
Complete all required paperwork.

Time Critical Task: NO

Validation Time: 15 minutes

Page 7 of 11 PERFORMANCE INFORMATION

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue (Last Page of this JPM), and Handouts #1 and #2.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
1	(Enclosure 4.3, Step 3.7.2) Record stop date/time on Attachment 1	The operator records <u>8/4/10</u> <u>1839</u> in the 1VQ-2B Closed Date/Time Block of Attachment 1.		
2	(Step 3.7.3) Calculate volume released using the following and record on Attachment 1.	The operator uses Table 1 of Enclosure 4.3 and determines X to be <u>10.51</u> (Start Pressure of 0.17).		
	Cu. Ft. Released = X + (YxZ) Where:	The operator uses Table 1 of Enclosure 4.3 and determines Y to be <u>201.1</u> (Start Pressure of 0.17).		
	X and Y are from Table 1 Z is actual release duration in minutes from Attachment 1.	The operator uses Attachment 1 of Enclosure 4.3 and determines Z to be <u>56</u> (Stop Time of 1839 - Start Time of 1743).		
		The operator calculates volume released as follows:		
*		10.51 + (201.1 x 56) = <u>11,272.11±1% (See KEY)</u> , and records this value in the 1VQ-2B Closed Cubic Ft Released Block of Attachment 1.		
3	(Step 3.9.4) Ensure release stop date/time recorded on Attachment 1.	The operator ensures <u>8/4/10 1839</u> recorded in the 1VQ-2B Closed Date/Time Block of Attachment 1.		
4	(Step 3.9.5) Notify RP that release has been terminated	The operator recognizes from the initial conditions that RP has been notified.		

Page 8 of 11 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
5	(Step 3.9.6) Determine Total Cu. Ft Released on Attachment 1.	The operator adds the volume of this most recent release (11,272.11) to the total previously released on Attachment 1 (37,003.91) and determines that the total volume released is $\frac{48,276.02 \text{ ft}^3 \pm 1\%}{\text{KEY}}$.		
		The operator records this value in the 1VQ-2B Closed Total Cubic Ft Released Block of Attachment 1.		
6	(Step 3.9.7) Record Total Cu. Ft Released from Attachment 1:ft ³	The operator records <u>48,276.02</u> in the 1VQ-2B Closed Cubic Ft Released Block of Attachment 1.		
7	(Step 3.9.8) IF Enclosure 4.2 (Air Release Mode With VQ Flow Monitor Operable) was used during this release, perform the following: (Step 3.9.8.1) Record Actual Volume Released from Enclosure 4.2, Step 3.7.3ft ³ (Step 3.9.8.2) Calculate Total Volume Released as follows: ft ³ +ft ³ =ft ³ Step 3.10.7 Step 3.10.8.1 Total Vol Rel	The operator observes Step 3.7.3 of Enclosure 4.2 and determines that $15,940$ ft ³ had been released when the VQ Monitor was operable, and records this value on Enclosure 4.3, Step 3.9.8.1. The operator adds the total volume released recorded in Step 3.9.7 ($48,276.02$) and the total volume released recorded in Step 3.9.8.1 ($15,940$), and determines the Total Volume Released for this series of Containment Air Releases is $64,216.02$ ft ³ $\pm 1\%$ (See KEY).		

Terminating Cue:

Evaluation on this JPM is complete.

STOP TIME:

2010 Admin - JPM A3 RO/SRO

Appendix C	Ap	penc	lix	С
------------	----	------	-----	---

Page 9 of 11 VERIFICATION OF COMPLETION

Job Performance Measure No.:	2010 Admin - JPM A3 RO/SRO
Examinee's Name:	
Date Performed:	
Facility Evaluator:	
Number of Attempts:	
Time to Complete:	
Question Documentation:	

Result:	SAT	UNSAT	·····
Examiner's Signature:			Date:

Page 10 of 11 VERIFICATION OF COMPLETION

KEY:

Enclosure 4.3, Attachment 1:

RED = filled in at start of JPM. GREEN = filled in during JPM performance

1VQ-2B Open				1VQ-2B Closed						
Doer	cv	Date/Time	Start Pressure (psig)	Doer	cv	Date/Time	Stop Pressure (psig)	Ft ³ Released	Total Ft ³ Released	
Initial	Initial	8/4/10 1117	0.21	Initial	Initial	8/4/10 1258	0.12	21,469,28	21,469,28	
Initial	Initial	8/4/10 1432	0.19	Initial	Initial	8/4/10 1547	0.12	15,534.63	37.003.91	
Initial	Initial	8/4/10 1743	0.17	Initial	Initial	8/4/10 1839	0.12	11,272.11	48,276.02	

Enclosure 4.3, Step 3.7.3 (JPM Step 2): Volume released, current release: $10.51 \text{ ft}^3 + (201.1 \text{ ft}^3/\text{min x 56 min}) = 11,272.11 \text{ ft}^3$

Enclosure 4.3, Step 3.9.7 (JPM Step 3): Total Volume released, during performance of Enclosure 4.3:

11,272.11 ft³ + 37,003.91 ft³ = 48,276.02 \pm 1% ft³ (47,793.26 - 48758.78)

Enclosure 4.3, Step 3.9.8.2 (JPM Step 5): Total Volume released, during performance of GW Permit: 48,276.02 ft³ + 15940 ft³ = 64,216.02 \pm 1% ft³ (63,573.86 - 64,858.18)

INITIAL CONDITIONS: GWR Package # 2010013 for Unit 1 Containment Air Release is currently in use to conduct a series of Containment air releases.

During the first release, conducted using Enclosure 4.2 (Air Release Mode With VQ Flow Monitor Operable) of OP/1/A/6450/017 (Containment Air Addition and Release), the Unit 1 VQ Monitor became inoperable.

The crew stopped the release and continued the air release using Enclosure 4.3 (Air Release Mode with VQ Flow Monitor Inoperable) of OP/1/A/6450/017 (Containment Air Addition and Release).

Three previous releases have been made; including the one which was made with the Unit 1 VQ Flow Monitor in operation.

At 1743 on 8/4/10, containment pressure was 0.17 PSIG and a VQ release was initiated to reduce pressure to 0.12 PSIG per Step 3.8 of Enclosure 4.3.

This release was secured at 1839 on 8/4/10 and the procedure was completed through step 3.7.1 for this release.

RP has requested that the current GWR paperwork be closed out after the on-going release.

INITIATING CUE:

You have been directed to calculate the volume released for this release and complete all required paperwork starting with Step 3.7.2, <u>AND</u>, since this is the last release perform Steps 3.9.4 through 3.9.8 of Enclosure 4.3 to determine the total volume released from the Containment.

The CRS notified RP (Mike Cline) at 1840 on 8/4/10 that the release has been terminated.

Complete all required paperwork.

Air Release Mode With VQ Flow Monitor Operable

1. Limits and Precautions

- $\sqrt{1.1}$ Containment Pressure Tech Spec limit is ± 0.3 psig.
- $\sqrt{1.2}$ All Engineered Safeguards Valves shall be cycled electrically after any manual operation.

2. Initial Conditions

- <u>SLM</u> 2.1 Per Tech Spec 3.9.4, movement of recently irradiated fuel assemblies within Containment, is <u>NOT</u> in progress. {PIP M-05-1608, PIP M-07-0033, CAPR}
- SLM 2.2 VQ Flow Monitor is operable.
- <u>SLM</u> 2.3 Containment pressure requires an air release.
- SLM 2.4 GWR # 2010013 has been issued.

3. Procedure

- ☑ 3.1 Evaluate all outstanding R&Rs that may impact performance of this procedure.
- SIM 3.2 IF 1EMF-39L monitoring release, perform the following:
- Fok SLM 3.2.1 Ensure 1EMF-39L Trip 1 setpoint set per GWR.
- FBK 3.2.2 Ensure 1EMF-39L Trip 2 setpoint set per GWR.
 - 3.2.3 Notify RP to update 1EMF-39L setpoints in EMF Setpoint Log.

Mike Cline	8/4/10	/ <u>090</u> 3
Person Notified	Date	Time

- <u>4</u>M 3.3 <u>IF</u> this is initial release <u>OR</u> directed to this enclosure from Enclosure 4.3, (Air Release Mode With VQ Flow Monitor Inoperable), perform the following:
 - **£**M 3.3.1 Reset VQ Flow Monitor.
 - \blacksquare 3.3.2 Record Release start date and time on GWR paperwork.
- FBK 3.4 Throttle 1VQ-4 (VQ To Unit Vent Control) 15% open.
 - SIM 3.5 Ensure 1VQ-2B (Cont Air Rel Outside Isol) closed.
 - 3.6 Open 1VQ-1A (Cont Air Rel Inside Isol).

OP/**1**/A/6450/017 Page 2 of 5

Air Release Mode With VQ Flow Monitor Operable

- <u>SEM</u> 3.7 <u>IF AT ANY TIME VQ</u> Flow Monitor stops counting <u>OR</u> becomes inoperable, perform the following:
 - ☑ 3.7.1 Ensure 1VQ-2B (Cont Air Rel Outside Isol) closed per Attachment 1.
 - \checkmark 3.7.2 Ensure release stop date / time recorded on Attachment 1.
- FbK 54 3.7.3 Record VQ Flow Monitor actual volume released as follows: {PIP 05-5685}

 $\frac{1594}{\text{VQ Flow Monitor}} \ge 10 = \frac{15,940}{\text{Actual Volume Released}} \text{ft}$

- 54 3.7.4 Reset VQ Flow Monitor.
 - ☑ 3.7.5 Exit this enclosure and go to Enclosure 4.3 (Air Release Mode With VQ Flow Monitor Inoperable).
- 3.8 Start initial VQ release as follows:
 - ☑ 3.8.1 Open 1VQ-2B (Cont Air Rel Outside Isol) per Attachment 1.
 - ☑ 3.8.2 Maintain a release rate less than 300 cfm by throttling 1VQ-4 (VQ To Unit Vent Control).
 - \checkmark 3.8.3 Record that VQ Flow Monitor is counting on Attachment 1.
 - ☑ 3.8.4 Record start date / time on Attachment 1.
 - 3.8.5 Record the following in Auto Log:
 - Release number
 - Start time
- 5LM 3.8.6 Ensure "Release Initiation" on GWR is completed.
- 3.9 To secure release, close 1VQ-2B (Cont Air Rel Outside Isol) per Attachment 1.
- 3.10 **IF AT ANY TIME** it is desired to throttle 1VQ-4 (VQ To Unit Vent Control) in subsequent releases, maintain release rate less than 300 cfm.
- 3.11 <u>IF</u> subsequent releases with existing GWR are required, maintain containment pressure less than 0.20 psig per Attachment 1.

Air Release Mode With VQ Flow Monitor Operable

- 3.12 **IF** desired to close out existing GWR, perform the following:
 - 3.12.1 Close 1VQ-1A (Cont Air Rel Inside Isol).
- _____ 3.12.2 Close 1VQ-4 (VQ To Unit Vent Control).

¢

C٧

- _____ 3.12.3 Ensure 1VQ-2B (Cont Air Rel Outside Isol) closed per Attachment 1.
 - 3.12.4 Ensure release stop date / time recorded on Attachment 1.
 - _____ 3.12.5 Notify RP that VQ release has been terminated and 1EMF-38, 1EMF-39, and 1EMF-40 setpoints need to be evaluated. {PIP 1-M97-1925}

	Person Not	ified	<u>Da</u>	/ te Time			
3.12.6	Record VQ	Flow Monitor	total vol	ume release	d as fol	lows: {PIP 05-	5685}
		x 10 =			ft ³		
	VQ Flow M	Monitor	Total V	olume Relea	sed		
3.12.7		re 4.3 (Air Rele this release, p				Ionitor Inoperat	ole) was
	3.12.7.1	Record "Tota Attachment 1		Released" fro	om Encl	osure 4.3,	
			ft ³				
	3.12.7.2	Calculate Tot	al Volun	ne Released	as follo	ws:	
		Step 3.12.6	$_{-}$ ft ³ + _	Step 3.12.7.	-1 ft ³ =	Total Vol Rel	ft ³

s:

Air Release Mode With VQ Flow Monitor Operable

3.12.8	Record the following in Auto Log:
	 Release number Stop time Volume released
□ 3.12.9	Record release stop date / time on GWR.
□ 3.12.10	Record and CV "Total Vol. Rel." on GWR. (Step 3.12.6 or Step 3.12.7.2) {PIP 05-5685}
 3.12.11	Ensure "Release Completion" on GWR is completed.
□ 3.12.12	Route GWR to SRO.
3.12.13	Reset VQ Flow Monitor.

OP/**1**/A/6450/017 Page 5 of 5

Air Release Mode With VQ Flow Monitor Operable

Attachment 1

5? L

Sheet 1 of 1

		1VQ-2B O	pen		1V0	Q-2B Closed
Doer	CV	VQ Flow Monitor Counting (√)	Date/Time	Doer	CV	Date/Time
SLM	FBK	√	8/4/10 / 0903	FAR	SLM	8/4/10 / 1016
	· · · · · ·					
	, , , , , , , , , , , , , , , , , , ,					
				· · · · · · · · · · · · · · · · · · ·		

End of Enclosure

Air Release Mode With VQ Flow Monitor Inoperable

1. Limits and Precautions

- $\sqrt{1.1}$ Containment Pressure Tech Spec limit is ± 0.3 psig.
- $\sqrt{1.2}$ All Engineered Safeguards Valves shall be cycled electrically after any manual operation.

2. Initial Conditions

- <u>SLM</u> 2.1 Per Tech Spec 3.9.4, movement of recently irradiated fuel assemblies within Containment, is <u>NOT</u> in progress. {PIP M-05-1608, PIP M-07-0033, CAPR}
- SLM 2.2 VQ Flow Monitor is inoperable.
- **SLM** 2.3 Containment pressure requires an air release.
- SLM 2.4 GWR # 2010013 has been issued.

3. Procedure

CV

- \checkmark 3.1 Evaluate all outstanding R&Rs that may impact performance of this procedure.
- **SLM** 3.2 **IF** 1EMF-39L monitoring release, perform the following:
- FBK <u>SLM</u> 3.2.1 Ensure 1EMF-39L Trip 1 setpoint set per GWR.
- FOR SLM 3.2.2 Ensure 1EMF-39L Trip 2 setpoint set per GWR.
 - Sim 3.2.3 Notify RP to update 1EMF-39L setpoints in EMF Setpoint Log.

Mike Cline	8/4/10	1115
Person Notified	Date	Time

SLM 3.3 Open 1VQ-1A (Cont Air Rel Inside Isol).

NOTE: V 1VQ-4 (VQ To Unit Vent Control) is required to be in full open position for air releases with VQ Flow Monitor inoperable.

FBK SLM 3.4 Fully open 1VQ-4 (VQ To Unit Vent Control).

CV

Air Release Mode With VQ Flow Monitor Inoperable

3.5 Start initial VQ release as follows:

9

CV

- ☑ 3.5.1 Open 1VQ-2B (Cont Air Rel Outside Isol) per Attachment 1.
- ☑ 3.5.2 Record start date / time on Attachment 1.
- ☑ 3.5.3 Record start pressure on Attachment 1.
 - 3.5.4 Record the following in Auto Log:
 - ☑ Release number☑ Start time
- ☑ 3.5.5 Record release start date / time on GWR.
- 5. M 3.5.6 Ensure "Release Initiation" on GWR is completed.

NAME 3.6 IF AT ANY TIME VQ Flow Monitor becomes operable, perform the following:

- 3.6.1 Ensure 1VQ-2B (Cont Air Rel Outside Isol) closed per Attachment 1.
- 3.6.2 Ensure release stop date / time recorded on Attachment 1.
- 3.6.3 Record Total Cu. Ft. Released on Attachment 1. {PIP 05-5685}
 - □ 3.6.4 Exit this enclosure and go to Enclosure 4.2 (Air Release Mode With VQ Flow Monitor Operable).

Air Release Mode With VQ Flow Monitor I Inoperable

- **SLM** 3.7 **HOLD** until containment pressure reaches 0.12 psig, <u>THEN</u> secure VQ release as follows:
 - √ 3.7.1 Close 1VQ-2B (Cont Air Rel Outside Isol) per Attachment 1.
 - $\sqrt{12}$ 3.7.2 Record stop date / time on Attachment 1.
 - $\sqrt{12}$ 3.7.3 Calculate volume released using the following and record on Attachment 1: (Documentation of calculation <u>NOT</u> required)

Cu. Ft. Released = $X + (Y \times Z)$

Where: X and Y are from Table 1 Z is actual release duration in minutes from Attachment 1

 $\underbrace{\text{Table}}_{X \text{ (Table)}} ft^3 + (\underbrace{\text{Table}}_{Y \text{ (Table)}} ft^3 / \min X \underbrace{\text{Table}}_{Z \text{ (Release Duration)}} \min) = \underbrace{\text{min}}_{ft^3} ft^3$

Table 1

Start Pressure	Stop Pressure (Always 0.12)	X	Y
(psig)	(psig)	(ft ³)	(ft ³ /min)
0.12	0.12	0	0
0.13	0.12	0	188.29
0.14	0.12	0.64	191.71
0.15	0.12	2.39	194.98
0.16	0.12	5.60	198.10
0.17	0.12	10.51	201.10
0.18	0.12	17.31	203.99
0.19	0.12	26.13	206.78
0.20	0.12	37.07	209.47
0.21	0.12	50.21	212.07
0.22	0.12	65.57	214.60
0.23	0.12	83.20	217.06
0.24	0.12	103.09	219.44

Air Release Mode With VQ Flow Monitor Inoperable

- <u>Sim</u> 3.8 <u>IF</u> subsequent releases required, maintain containment pressure less than 0.20 psig per Attachment 1.
 - 3.9 **IF** it is desired to close out existing GWR, perform the following:
 - <u>sim</u> 3.9.1 Close 1VQ-1A (Cont Air Rel Inside Isol).
- Fok sum 3.9.2 Close 1VQ-4 (VQ To Unit Vent Control).
 - SLM 3.9.3 Ensure 1VQ-2B (Cont Air Rel Outside Isol) closed per Attachment 1.
 - 3.9.4 Ensure release stop date / time recorded on Attachment 1.
 - 3.9.5 Notify RP that VQ release has been terminated and 1EMF-38, 1EMF-39, and 1EMF-40 setpoints need to be evaluated. {PIP 1-M97-1925}

	Person No	otified Date Time
□ 3.9.6	Determine	e Total Cu. Ft Released on Attachment 1.
□ 3.9.7	Record To	otal Cu. Ft Released from Attachment 1: ft ³
3.9.8		sure 4.2 (Air Release Mode With VQ Flow Monitor Operable) was ng this release, perform the following:
	□ 3.9.8.1	Record Actual Volume Released from Enclosure 4.2, Step 3.7.3:
		ft ³
	□ 3.9.8.2	Calculate Total Volume Released as follows:

 $\frac{1}{\text{Step 3.9.7}} \frac{\text{ft}^3 + \dots}{\text{Step 3.9.8.1}} \frac{\text{ft}^3 = \dots}{\text{Total Vol Rel}} \frac{\text{ft}^3}{\text{ft}^3}$

Air Release Mode With VQ Flow Monitor Inoperable

3.9.9	Record the following in Auto Log:
	 Release number Stop time Volume released
□ 3.9.10	Record release stop date / time on GWR.
□ 3.9.11	Record and CV "Total Vol. Rel." on GWR. (Step 3.9.7 or Step 3.9.8.2) {PIP 05-5685}
3.9.12	Ensure "Release Completion" on GWR is completed.

 \Box 3.9.13 Route GWR to SRO.

OP/**1**/A/6450/017 Page 6 of 6

•

Air Release Mode With VQ Flow Monitor Inoperable

Attachment 1

Sheet 1 of 1

	Total Cubic Ft Released	21, 4leg.28	37,003.91												
	Cubic Ft Released per Step 3.7.3	21,469.28	15,534.63												Total Cu. Ft Released
1VQ-2B Closed	Stop Pressure (psig)	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	
1	lime	1,258	1547		•										
	Date/Time	sjulio /	8/4/10 /1547												
	CV	W7S	W7S	SLM											
	Doer	F&K	FOK	FBX											
	Start Pressure (psig)	0.31	0.19	0,17											
	me	Lm/	432	1743											
1VQ-2B Open	Date/Time	21/h/8		8/4/10 / 1743											
IVG	CV	Fak													
	Doer	SLM	SLM	SLM											

End of Enclosure Unit 1

JPM A4 SRO

2010 Admin - JPM A4 SRO

Appendix C	Page	2 of 11	Form ES-C-1
	Job Performance	Measure Worksheet	
Facility:	McGuire	Task No.:	
Task Title:	Provide an Updated PAR		2010 Admin - JPM A4 SRO
K/A Reference:	GK/A 2.4.44 (4.4)		
Examinee:		NRC Examiner:	
Facility Evaluator:		Date:	
Method of testing:			
Simulated Perforn	nance:	Actual Performan	ice: X
Class	room X Simulator	Plant	

READ TO THE EXAMINEE

I will explain the initial conditions, which steps to simulate or discuss, and provide initiating cues. When you complete the task successfully, the objective for this Job Performance Measure will be satisfied.

Initial Conditions:	A LOCA inside containment has occurred on Unit 1.
	The crew implemented EP/1/A/5000/ECA-1.1 (Loss of Emergency Coolant Recirc) due to multiple ECCS component failures.
	A Containment Red Path and a Core Cooling Red Path have occurred.
	The Emergency Coordinator declared a General Emergency per RP/0/A/5700/000, Enclosure 4.1, EAL # 4.1.G.2 (Loss of Any two Barriers AND Potential loss of the third).
	An Emergency Notification Form, along with the initial PAR was sent at the appropriate time.
	The following conditions exist 1 hour after the start of the event:
	The radioactive release is still on-going.
	The wind speed is 9 mph.
	The wind direction is 158.9°.
	EMF51 A and B reading is 800 R/hr.
	A Radioactive Release is still in progress above normal limits.
	The OAC is NOT available.

1

Appendix C	Page 3 of 11 Form I	ES-C-1
	Job Performance Measure Worksheet	
Task Standard:	The operator will determine the PAR for the current conditions to reflected on the provided KEY.	be as
Required Materials:	None	
General References:	RP/0/A/5700/000 (Classification of Emergency)	
	RP/0/B/5700/029 (Notifications to Offsite Agencies from the Cont Room)	rol
Handouts:	Initial Emergency Notification Form	
	Copy of Enclosure 4.4 (Offsite Protective Action Recommendatio RP/0/B/5700/029 (Notifications to Offsite Agencies from the Cont Room) marked up to step 2.	,
Initiating Cue:	Based on the present conditions, the OSM directs you to update to PAR by completing steps 2 through 12 of Enclosure 4.4 (Offsite Protective Action Recommendation) of RP/0/B/5700/029 (Notification Offsite Agencies from the Control Room).	
	Complete the Sections below as appropriate.	
Time Critical Task:	NO	
Validation Time:	10 minutes	

Page 4 of 11 PERFORMANCE INFORMATION

(Denote Critical Steps with an asterisk*)

Provide Candidate with Initial Conditions/Cue (Last Page of this JPM) and Handout the Initial Emergency Notification Form and Enclosure 4.4 of RP/0/B/5700/029 marked up to step 2.

START TIME:

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
1	(Enclosure 4.4, Step 1) If a General Emergency is declared, determine initial Protective Action Recommendation	The operator recognizes per the initial conditions this step is already complete.		
*2	(Step 2) If Wind Speed is less than or equal to	The operator recognizes that Wind Speed is greater than 5 mph, and proceeds to Step 3.		

Page 5 of 11 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*3	(Step 3) If Wind Speed is greater than 5 mph, evacuate and shelter zones as shown in the table below based on wind direction	The operator uses the Table and determines that the applicable Wind Direction range is 157.6- 180.0°.	· ·	
	Caution 1: Once a zone is selected for evacuation, it should not be removed. Caution 2: A short term release is any release that can be projected to be 3 hours or less in duration. An example would be a "puff release." A controlled release is one that can be started or stopped at the licensee's discretion, such as the venting of Containment for pressure control. If a release is short term and controlled, then sheltering in lieu of evacuation should be considered.	 The operator observes that Sectors A, B, C, L, M, and N are recommended to be evacuated for a 2 mile radius, and 5 miles downwind. The operator observes that Sectors D, E, F, G, H, I, J, K, O, P, Q, R and S are recommended to be sheltered. The operator applies Caution 1, and recognizes that Sectors D, O and R have previously been evacuated, and although the Table recommends that they be sheltered, they must remain evacuated. The operator recognizes that Caution 2 does NOT apply. The operator recommends that Sectors A, B, C, D, L, M, N, O and R remain evacuated for a 2 mile radius, and 5 miles downwind; and that Sectors E, F, G, H, I, J, K, P, Q, and S are remain sheltered. 		

2010 Admin - JPM A4 SRO

Page 6 of 11 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
4	(Step 4) If notified by RP Dose Assessment that dose projections or field measurements indicate that thyroid dose will be greater than 5 Rem	The operator recognizes that no RP Dose Assessments have been made, and proceeds to Step 5.		
5	(Step 5) For any other Protective Action Recommendation, Check E (Other), and record information	The operator recognizes that there are no other PARs, and proceeds to Step 6.		
*6	(Step 6) After the initial PARS are transmitted to offsite agencies, check for large fission product inventory in Containment as follows:			
	(Step 6.1) If the OAC is available	The operator recognizes that the OAC is NOT available and proceeds.		
	(Step 6.2) If the OAC is unavailable, use the following EMFs: 1EMF51A, 1EMF51B	The operator recognizes that 1EMF51 A and B readings must be used.		
	(Step 6.3) Check if Containment radiation level exceeds the following limits based on time after shutdown:	The operator uses the table in the Time after Shutdown column of 0-2 hours, and compares the 1EMF51A and B readings of 800 R/hr to the established limit of 864 R/hr determining that the Large Fission Product Inventory in Containment has NOT been met.		

Page 7 of 11 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*7	(Step 7) If Containment radiation level exceeds limits in Step 6.3	The operator recognizes that the radiation levels are NOT exceeded, and proceeds to Step 8.		
8	(Step 8) A McGuire EPZ Map is located on Page 8 of 8, if it is desired to visually see zones evacuated or sheltered.	The operator acknowledges and proceeds to Step 9.		
9	(Step 9) If notified by RP Dose Assessment that dose projections or field measurements indicate that thyroid dose will be greater than 5 Rem	The operator recognizes that no RP Dose Assessments have been made, and proceeds to Step 10.		
10	(Step 10) On a continuing basis, evaluate specific plant conditions including: large fission product inventory in Containment, EMF 51 A/B readings, offsite dose projections, wind speed and wind direction, field monitoring team data, and assess the need to update Protective Action Recommendations made to the states and counties in the previous notification.	The operator acknowledges and proceeds to Step 11.		
11	(Step 11) Review dose projections with the on-shift dose assessor (if available) to determine if Protective Action Recommendations are required beyond the 10- mile radius.	The operator recognizes that no Dose Assessments have been made, and proceeds to Step 12.		

Appendix C

Page 8 of 11 PERFORMANCE INFORMATION

Form ES-C-1

STEPS	ELEMENTS	STANDARD	S/U	COMMENTS REQUIRED FOR UNSAT
*12	(Step 12) If Protective Action Recommendations are required beyond 10 miles	The operator recognizes that no RP Dose Assessments have been made, and returns the completed PAR marked up as established on the KEY.		

Terminating Cue:

Evaluation on this JPM is complete.

STOP TIME:

Appe	ndix	С
------	------	---

Page 9 of 11 VERIFICATION OF COMPLETION

Job Performance Measure No.:	<u> 2010 Admin - JPM A4 SRO</u>
------------------------------	---------------------------------

Examinee's Name:

Date Performed:

Facility Evaluator:

Number of Attempts:

Time to Complete:

Question Documentation:

Result:

SAT

UNSAT

Examiner's Signature: _____ Date:

ſ

Page 10 of 11 VERIFICATION OF COMPLETION

KEY:

PROTECTIVE	E ACTION RECOMMENDATIONS:
	Evacuate: A, B, C, D, L, M, N, O and R remain evacuated for a 2 mile radius, and 5 miles downwind
	Shelter: E, F, G, H, I, J, K, P, Q, and S
D	Consider the Use of KI (Potassium Iodide) in accordance with State Plans and Policy: NA
E	Other: NA

Initial Conditions:

A LOCA inside containment has occurred on Unit 1.

The crew implemented EP/1/A/5000/ECA-1.1 (Loss of Emergency Coolant Recirc) due to multiple ECCS component failures.

A Containment Red Path and a Core Cooling Red Path have occurred.

The Emergency Coordinator declared a General Emergency per RP/0/A/5700/000, Enclosure 4.1, EAL # 4.1.G.2 (Loss of Any two Barriers AND Potential loss of the third).

An Emergency Notification Form, along with the initial PAR was sent at the appropriate time.

The following conditions exist 1 hour after the start of the event:

- The radioactive release is still on-going.
- The wind speed is 9 mph.
- The wind direction is 158.9°.
- EMF51 A and B reading is 800 R/hr.

A Radioactive Release is still in progress above normal limits.

The OAC is NOT available.

INITIATING CUE:

Based on the present conditions, the QSM directs you to update the PAR by completing steps 2 through 12 of Enclosure 4.4 (Offsite Protective Action Recommendation) of RP/0/B/5700/029 (Notifications to Offsite Agencies from the Control Room).

Complete the Sections below as appropriate.

PROTECTIVE	E ACTION RECOMMENDATIONS:
В	Evacuate:
С	Shelter:
D	Consider the Use of KI (Potassium lodide) in accordance with State Plans and Policy:
E	Other:

	FOR TRAINING USE ONLY	ENF Handout	ADMIN JPM A4 SRO
	NUCLEAR POWER P	LANT EMERGENCY NOTIFICA	
1.	ADRILL BACTUAL EVENT		MESSAGE # / AUTHENTICATION # onfirmation Phone # (704) 875-6044
4.	EMERGENCY A UNUSUAL EVENT CLASSIFICATION: 4.1.G.2 BASED ON EAL# 4.1.G.2	BALERT C SITE AREA EM	ERGENCY D GENERAL EMERGENCY roduct Barriers and Potential Loss of the Third
5.	PROTECTIVE ACTION RECOMMENDATIONS:	ANONE	
	EVACUATE A, B, C, D, L, M, N, O and R		
	SHELTER E, F, G, H, I, J, K, P, Q, and	3	
	D CONSIDER THE USE OF KI (POTASSIUM IOD	IDE) IN ACCORDANCE WITH STATE PLANS	AND POLICY. NA
	E OTHEF NA		
6.	EMERGENCY RELEASE: A None	B Is Occurring	C Has Occurred
7.	RELEASE SIGNIFICANCE: A Not applicable	B Within normal operating limits C Abov	e normal operating limits D Under Evaluation
8.	EVENT PROGNOSIS:	B Stable C Deg	rading
9.	METEOROLOGICAL DATA: Wind D	irection* from <u>132.5</u> degrees	Wind Speed* mph
	* May not be available for Initial Precipi Notifications)	tation* None Stability	Class* A B C D E F G
10.	A DECLARATION B TERMINATION	Time Event Start Time	Date Today / Today
1	FFECTED UNIT(S): 1 2 3 AI]	
	, hit Status: (Unaffected Unit(s) Status Not Required for Initial	A U1 0 % Power Shutdown a	Time T minus 10 Date TODAY / TODAY / TODAY
	Notifications)	B U2 100 % Power Shutdown a	t: Time Date //
		C U3% Power Shutdown at	:: Time Date //
13.	REMARKS:		
	FOLLOW-UP INFORMATION (Lines 1	4 through 16 Not Required for In	itial Notifications)
		DATA. NOT REQUIRED IF LINE 6A IS SELEC	
14.	RELEASE CHARACTERIZATION: TYPE: A Ele	vated B Mixed C Ground UNIT	S: A Ci B Ci/sec C µCi/sec
	MAGNITUDE: Noble Gases:	lodines: Particulate	s: Other:
	FORM: A Airborne Start Time:	Date: / / /	Stop Time Date //
	BLiquid Start Time:	Date: / / / /	
15.	PROJECTION PARAMETERS: Projection Perio Projection performed: Time		nated Release Duration:Hours
16.	PROJECTED DOSE: <u>DISTANCE</u>		Did CDE (mrem)

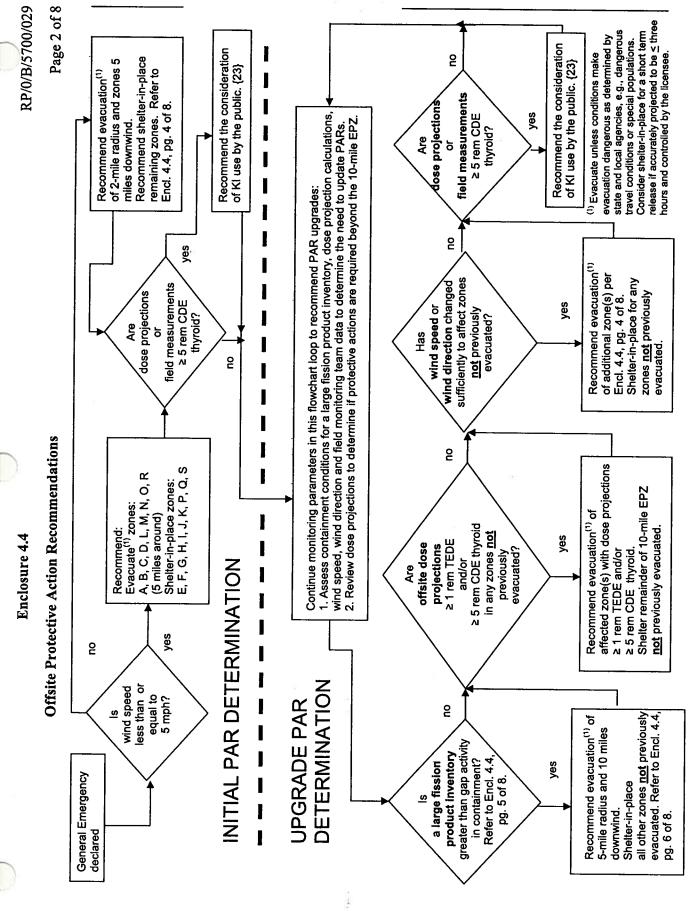
Site boundary 2 Miles 5 Miles

17. APPROVED BY_____

NOTIFIED BY:

10 Miles Time: _____ Date ____ / ____ / ____ Title: Emergency Coordinator RECEIVED BY: Time: _____ Date ____ / ____ / ADMIN JPM A4 SRO FOR TRAINING USE ONLY

Offsite Protective Action Recommendations Page 1 of 8


NOTE: 1. Protective Action Recommendations (PARs) for the public apply during a General Emergency, and include sheltering, evacuation and consideration of KI use. PARs are based on plant conditions independent of projected dose, and can also be based on projected dose. Protective Action Guides (PAGs) are levels of radiation dose at which prompt protective actions should be initiated and are based on EPA-400-R-92-001, <u>Manual of protective Action Guides and Protective Actions for Nuclear Incidents</u>. The projected dose PARs specified in this enclosure are based on the PAGs listed below. The PAG for KI is taken from <u>Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies, FDA Guidance</u>, November 2001 and <u>Guidance for Industry, KI in Radiation Emergencies, Questions and Answers, FDA</u>, December 2002. {23}

PROTECTIVE ACTION GUIDES (PAGs)

Total Effective Dose Equivalent (TEDE)	Committed Dose Equivalent (CDE) Thyroid	Recommendation
< 1 rem	< 5 rem	No Protective Action is required based on projected dose.
\geq 1 rem	≥ 5 rem	Evacuate affected zones and shelter the remainder of the 10-mile EPZ not evacuated.
N/A	≥ 5 rem	Consider the use of KI (potassium iodide) in accordance with State Plans and Policy.

Projected Dose

2. IF desired, you may refer to the flow chart of page 2 of this enclosure. {PIP M-06-5137, C.A.3}

(

RP/0/B/5700/029

Offsite Protective Action Recommendations

Page 3 of 8

- **<u>SLM</u>** 1. **IF** a General Emergency is declared, determine Initial Protective Action Recommendations as follows (PIP-M-02-6163):
 - ☑ 1.1 Obtain the wind speed and direction, use chart recorder 1EEBCR9100, point #5 (Average Lower Wind Speed) and point #8 (Average Upper Wind Direction).

Wind Direction (Point 8): <u>158.9°</u>

Wind Speed (Point 5): 9

NAR 1.2 IF Chart Recorder unavailable, obtain wind direction from one of the following sources, preferred sequence:

DA. Unit 1 OAC:

- Average Upper Wind Direction M1P0847
- Average Lower Wind Speed M1P0848.
- B. DPC Meteorologist (9-704-382-0139 or 9-704-373-7896).
- □ C. National Weather Service in Greer, S.C. (9-864-879-1085 or 9-800-268-7785).
- 2. **IF** wind speed less than or equal to 5 MPH, recommend the following:

CAUTION: 1. Once a zone is selected for evacuation, it should not be removed. {PIP-M-03-3483}
2. A short term release is any release that can be projected to be 3 hours or less in duration. An example would be a "puff release". A controlled release is one that can be started and stopped at the licensee's discretion, such as the venting of Containment for pressure control. IF a release is short term and controlled, THEN sheltering in lieu of evacuation should be considered. {PIP-M-05-3631}

- 2.1 Evacuate zones A, B, C, D, L, M, N, O, R. (See Caution 2 above)
- 2.2 Shelter zones E, F, G, H, I, J, K, P, Q, S.

RP/0/B/5700/029

Offsite Protective Action Recommendations

Page 4 of 8

- IF wind speed is greater than 5 MPH, evacuate and shelter zones as shown in the table below 3. based on wind direction:
- CAUTION: 1. Once a zone is selected for evacuation, it should not be removed. {PIP-M-03-3483} 2. A short term release is any release that can be projected to be 3 hours or less in duration. An example would be a "puff release". A controlled release is one that can be started and stopped at the licensee's discretion, such as the venting of Containment for pressure control. IF a release is short term and controlled, THEN sheltering in lieu of evacuation should be considered. {PIP-M-05-3631}

W	ind Speed Greater than 5 Miles per I	Iour
Wind Direction (deg from N) Chart Recorder 1EEBCR9100		
Point # 8 Average Upper Wind	Evacuate*	Shelter
Direction	2 Mile Radius-5 Mile Downwind	Remaining Sectors
0.1 - 22.5	B,C,D,L,M,O,R	A,E,F,G,H,I,J,K,N,P,Q,S
22.6 - 45.0	B,C,D,L,M,O,R	A,E,F,G,H,I,J,K,N,P,Q,S
45.1 - 67.5	B,C,D,L,M,O,R	A,E,F,G,H,I,J,K,N,P,Q,S
67.6 – 90.0	B,C,D,L,M,N,O,R	A,E,F,G,H,I,J,K,P,Q,S
90.1 - 112.5	B,C,L,M,N,O,R	A,D,E,F,G,H,I,J,K,P,Q,S
112.6 - 135.0	A,B,C,L,M,N,O,R	D,E,F,G,H,I,J,K,P,Q,S
135.1 – 157.5	A,B,C,L,M,N,O	D,E,F,G,H,I,J,K,P,Q,R,S
157.6 - 180.0	A,B,C,L,M,N	D,E,F,G,H,I,J,K,O,P,Q,R,S
180.1 - 202.5	A,B,C,L,M,N	D,E,F,G,H,I,J,K,O,P,Q,R,S
202.6 - 225.0	A,B,C,D,L,M,N	E,F,G,H,I,J,K,O,P,Q,R,S
225.1 - 247.5	A,B,C,D,L,M	E,F,G,H,I,J,K,N,O,P,Q,R,S
247.6 - 270.0	A,B,C,D,L,M	E,F,G,H,I,J,K,N,O,P,Q,R,S
270.1 - 292.5	A,B,C,D,L,M	E,F,G,H,I,J,K,N,O,P,Q,R,S
292.6 - 315.0	A,B,C,D,L,M	E,F,G,H,I,J,K,N,O,P,Q,R,S
315.1 - 337.5	B,C,D,L,M,R	A,E,F,G,H,I,J,K,N,O,P,Q,S
337.6 - 360.0	B,C,D,L,M,R	A,E,F,G,H,I,J,K,N,O,P,Q,S

Protoctive Action Zames Determined

* See Cautions 1 and 2 above.

IF notified by RP Dose Assessment that dose projections or field measurements indicate that 4. Thyroid dose will be \geq 5 Rem, KI use by the General Public must be recommended in accordance with State Plans and Policy. {PIP-G-03-606}

5. For any other Protective Action Recommendation, check E (Other) and record information.

RP/0/B/5700/029

Offsite Protective Action Recommendations

Page 5 of 8

- 6. After the Initial PARS are transmitted to offsite agencies, check for large fission product inventory in containment as follows:
- 6.1 **IF** the OAC is available, call up the following computer points based on need:

Unit 1 OAC	Unit 2 OAC	
M1A0829	M2A0829	
M1A0835	M2A0835.	

6.2 **IF** the OAC is unavailable, use the following EMF's:

Unit 1	Unit 2
1EMF51A	2EMF51A
1EMF51B	2EMF51B.

□ 6.3 Check if containment radiation level exceeds the following limits based on time after shutdown:

TIME AFTER SHUTDOWN (hours)	EMF51A(B) reading(R/HR)	
>0-2	864	
>2-4	624	
>4-8	450	
>8	265	

RP/0/B/5700/029

Offsite Protective Action Recommendations

Page 6 of 8

- 7. IF containment radiation level exceeds limits in Step 6.3, perform the following:
 - \Box 7.1 Evacuate and shelter zones in the table below based on wind direction:

CAUTION: 1. Once a zone is selected for evacuation, it should not be removed. {PIP-M-03-3483}

 A short term release is any release that can be projected to be 3 hours or less in duration. An example would be a "puff release". A controlled release is one that can be started and stopped at the licensee's discretion, such as the venting of Containment for pressure control. <u>IF</u> a release is short term <u>and</u> controlled, <u>THEN</u> sheltering in lieu of evacuation should be considered. {PIP-M-05-3631}

For Containment Radiation Levels Exceeding GAP Activity			
Wind Direction (deg from N)			
Chart Recorder 1EEBCR9100			
Point # 8 Average Upper Wind	Evacuate*	Shelter	
Direction	5 Mile Radius-10 Mile Downwind	Remaining Sectors	
0.1 - 22.5	A,B,C,D,E,F,L,M,N,O,R,S	G,H,I,J,K,P,Q	
22.6 - 45.0	A,B,C,D,E,L,M,N,O,Q,R,S	F,G,H,I,J,K,P	
45.1 - 67.5	A,B,C,D,E,L,M,N,O,Q,R,S	F,G,H,I,J,K,P	
67.6 - 90.0	A,B,C,D,L,M,N,O,P,Q,R,S	E,F,G,H,I,J,K	
90.1 - 112.5	A,B,C,D,K,L,M,N,O,P,Q,R,S	E,F,G,H,I,J	
112.6 - 135.0	A,B,C,D,I,K,L,M,N,O,P,Q,R,S	E,F,G,H,J	
135.1 – 157.5	A,B,C,D,I,K,L,M,N,O,P,Q,R	E,F,G,H,J,S	
157.6 - 180.0	A,B,C,D,I,J,K,L,M,N,O,P,R	E,F,G,H,Q,S	
180.1 – 202.5	A,B,C,D,G,H,I,J,K,L,M,N,O,P,R	E,F,Q,S	
202.6 - 225.0	A,B,C,D,G,H,I,J,K,L,M,N,O,P,R	E,F,Q,S	
225.1 - 247.5	A,B,C,D,F,G,H,I,J,L,M,N,O,R	E,K,P,Q,S	
247.6 - 270.0	A,B,C,D,F,G,H,I,J,L,M,N,O,R	E,K,P,Q,S	
270.1 - 292.5	A,B,C,D,E,F,G,H,J,L,M,N,O,R	I,K,P,Q,S	
292.6 - 315.0	A,B,C,D,E,F,G,L,M,N,O,R	H,I,J,K,P,Q,S	
315.1 - 337.5	A,B,C,D,E,F,G,L,M,N,O,R	H,I,J,K,P,Q,S	
337.6 - 360.0	A,B,C,D,E,F,L,M,N,O,R,S	G,H,I,J,K,P,Q	

Protective Action Zones Determination

* See Cautions 1 and 2 above.

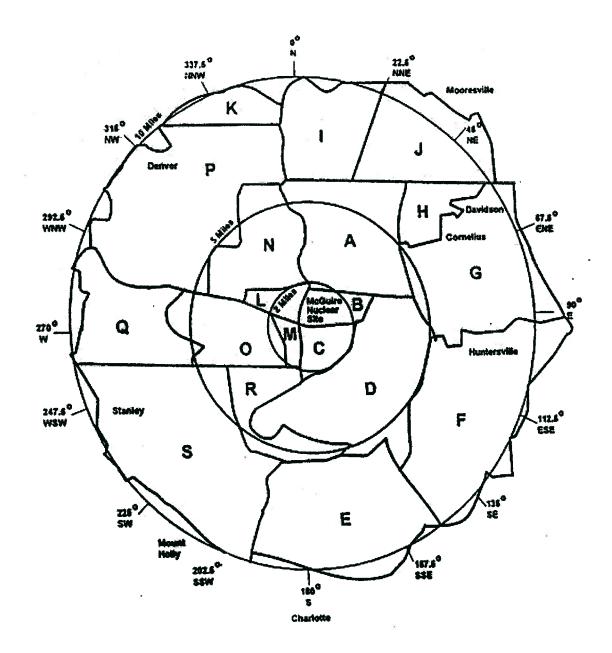
RP/0/B/5700/029

Offsite Protective Action Recommendations

Page 7 of 8

- 8. A McGuire EPZ map is located on page 8 of 8, if it is desired to visually see zones evacuated or sheltered.
- 9. <u>IF</u> notified by RP Dose Assessment that dose projections or field measurements indicate that Thyroid dose will be ≥ 5 Rem, KI use by the General Public must be recommended in accordance with State Plans and Policy. {PIP-G-03-606}
- 10. On a continuing basis, evaluate specific plant conditions including: large fission product inventory in containment, EMF 51 A/B readings, offsite dose projections, wind speed and wind direction, field monitoring team data, and assess the need to update Protective Action Recommendations made to the states and counties in the previous notification.
- 11. Review dose projections with the on-shift dose assessor (if available) to determine if Protective Action Recommendations are required beyond the 10-mile EPZ.
 - 12. IF Protective Action Recommendations are required beyond 10 miles, notify the states and counties and request that they consider sheltering/evacuating the general populations located beyond the affected 10-mile EPZ.

RP/0/B/5700/029


Offsite Protective Action Recommendations

Page 8 of 8

McGUIRE PROTECTIVE ACTION ZONES

(2 and 5 mile radius, inner circles)

10-MILE EPZ

1