
Crystal River Unit #3 Containment Investigation and Repair

September 2, 2010

Fission Product Barriers Simplified Schematic

Steam Generator Replacement Opening Identification of Issue

SGR Opening Dimensions

@ Liner 23' 6" x 24' 9"

@ Concrete Opening 25' 0" x 27' 0"

Root Cause Analysis *Investigation & Design Basis Team*

Comprehensive Team Commissioned

- Progress Energy personnel expertise across fleet
- Industry peers:
 - Exelon
 - Southern Company
 - SCE&G
- External expertise:
 - Performance Improvement International (PII)
 - MPR Associates
 - AREVA
 - Worley Parsons
 - Wiss, Janney, Elstner Associates (WJE)
 - Construction Technology Laboratories (CTL)

Root Cause Analysis *Investigation & Design Basis Team (continued)*

- Material Laboratories Support
 - MacTec
 - Soil & Materials Engineers (S&ME)

Field Data Support

- Sensing Systems, Inc
- Core Visual Inspection Services (Core VIS)
- Nuclear Inspection & Consulting, Inc
- Precision Surveillance
- Gulf West Surveying, Inc
- AREVA

Root Cause Analysis *Investigation & Design Basis Team (continued)*

Numerous PhDs (11) with expertise in:

- Root Cause Investigation Techniques
- Nuclear Engineering
- Nuclear Operations & Maintenance
- Material Science & Testing
- Concrete Standards & Construction
- Concrete Testing
- Concrete Creep
- Concrete Fracture
- Human Performance
- Process Analysis
- Containment Analysis
- Computer Modeling

Concrete Operational Experience (OE)

Worley Parsons

- 1976 dome delamination investigation and repair (as Gilbert Commonwealth)
- Structural Preservation Systems (SPS)
 - Largest Concrete Repair Contractor in the US, 2nd largest Concrete Contractor (of any type) in the US
 - Performs > 4,000 repair projects per year

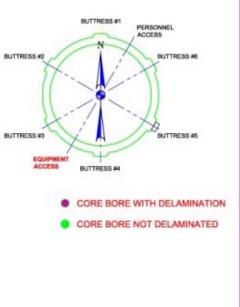
• Wiss, Janney, Elstner Associates, Inc (WJE)

- Structural engineering and materials science firm specializing in failure investigations and problem solving
- Specialist in structural condition assessments and design of repairs and retro-fits for reinforced and post tension concrete structures
- Conducted original CR3 Structural Integrity Test (SIT)

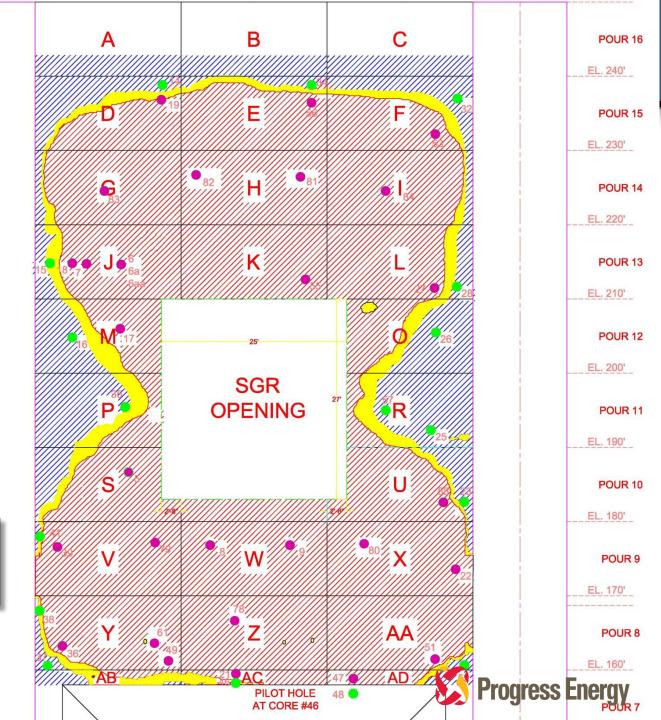
Nuclear Safety Oversight Committee (NSOC) Containment Sub-Committee Membership

Member	Title
John Elnitsky (PGN)	VP – New Generation Programs and Projects (Chairman)
Joe Donahue (PGN)	VP - Nuclear Oversight
Chris Burton (PGN)	VP - Harris
Greg Selby	Technical Director - EPRI
Dr. Shawn Hughes	VP - Shaw Stone & Webster
Dr. Paul Zia	Civil Engineering Professor, NCSU
Hub Miller	33 years industry oversight experience
Darrell Eisenhut	41 years industry operation and oversight experience

Root Cause Analysis Investigation Approach


- Complex Investigation with 75 Potential Failure Modes Considered
- Non-Destructive Testing (NDT) of Containment Wall Surfaces
 - Use of Impulse Response (IR) Method and Ground Penetrating Radar (GPR)
 - Over 8,000 IR data points taken
 - Comprehensive on all accessible areas

Concrete Core Bores


- Over 150 core bores performed
- Ranged from 1" to 8" diameter, 6" to 32" long
- Validated Impulse Response (IR) data, along with boroscopic inspections
- Laboratory testing

Core Borings

Conclusion – Physical observation of core boring has validated the delamination boundary, as accurately predicted by Impulse Response (IR).

Concrete Core Laboratory Analyses

- Petrographic Examination
- Modulus of Elasticity and Poisson's Ratio
- Density, Absorption, and Voids
- Compressive Strength, Splitting Tensile Strength, and Direct Tensile Strength
- Fracture Energy
- Accelerated Creep Test
- Accelerated Alkali Silica Reaction (ASR) Test
- Chemistry and Contamination Test
- Scanning Electron Microscope (SEM) Examination of Micro-Cracking

- Existing Industry Analysis Techniques Predicted Acceptable Margin to Delamination at CR3
- Investigation Required Development of New FEA Tools of Progressively Increasing Complexity based on Data Obtained from the Delamination
 - 360° global containment model
 - Visco-elastic / non-linear model
 - Model includes individual tendons, rebar, liner, etc.
 - Sub-models (1" mesh) provide higher resolution of localized behavior

Root Cause Analysis Summary

Conclusions

- Design is Acceptable for Normal and Emergency Operations
- Construction was in Accordance with Design
- Delamination Occurred During the Outage
- Investigation was Thorough and Comprehensive
- New State-of-the-Art Analytical Methods had to be Created to Analyze Containment Response
- **Root cause:** De-tensioning scope and sequence resulted in redistribution of stresses that exceeded tensile capacity
 - Could not have been predicted based on existing information and models at that time

Design Basis & Repair *FSAR Structural Design Parameters*

- Containment Design Features Remain Unchanged
 - Prestressed concrete cylindrical wall (shell), shallow dome roof
 - Carbon steel liner serves as fission product barrier
 - Liner anchored to concrete
- Containment Design Basis Maintained
 - Leak-tight structure to contain Design Basis LOCA
 - Elastic response to design basis loading to protect liner
 - Design loads and combinations based on operating, accident and applicable code requirements
 - Load factors applied to provide safety margin

All Containment Design Loads Analyzed

- Live, Prestress, Dead Loads
- Wind
- Tornado Wind
- Tornado Pressure
- Tornado Missiles
- Seismic
- Temperature Loads
- Accident Pressure (LOCA)
- Accidental Containment Spray Actuation Pressure

- Final repair condition expected to be acceptable under 10 CFR 50.59
 - Design basis loading conditions will be satisfied
 - Design code requirements will be met
 - Changes to analysis inputs accepted by 50.59 evaluation
 - Analysis consistent with the existing FSAR described Method of Evaluation

Design Basis & Repair Repair Sequence

- Stress Relief Cut Complete
- De-tensioning Complete
- **Concrete Removal** Complete
- Concrete Placement In Progress
- Re-tensioning
- Post-Repair Testing
- Unit Restart

- Integrated Leak Rate Test (ILRT) required per ASME XI code
 - For removing / replacing liner in SGR opening
- Plan to perform a Structural Integrity Test (SIT)
 - Normally a one-time initial construction structural test
 - Test intent: measures structural integrity and deformation at 1.15 Peak Design Pressure (63.3 psig)
 - SIT will be followed by ILRT

Summary

- Containment original design and construction are acceptable for normal and emergency operations
- Planned repair approach meets design basis requirements and code requirements
- The final repair condition is expected to be acceptable under 10 CFR 50.59
- Containment will be fully capable of meeting its design safety function upon completion of repairs and testing

