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Overview 

The purpose of this exercise was to examine false indication probabilities in the context of MSPI, 
in order to investigate pros and cons of different approaches to resolving two coupled issues: (1) 
what prior to use for updating, and (2) whether (in a particular plant configuration) to model the 
fuel oil transfer pump (FOTP) as a separate component, or integrally to its emergency diesel 
generator (EDG). False indication probabilities were quantified for the following situations: (1) 
all components at baseline, so that the true indication is green, and white or above would be false 
positive; (2) one or more components degraded to the extent that the true indication would be 
(mid) white, and “false” would be green (negative) or yellow (negative) or red (negative). In key 
respects, this was the approach taken in NUREG-1753. 

Simulations were performed for a single EDG “train,” as was done for NUREG-1753.  Two 
paradigms were explored:  1) failures to start (FTS) of the EDG FOTP were counted as EDG 
failure to run (FTR), 2) failures on demand of the FOTP were counted as failures of a separate 
component.  For both paradigms, only the unreliability index (URI) portion of the Mitigating 
System Performance Index (MSPI) was examined; no changes in the unavailability index (UAI) 
were considered.  Thus, the change in core damage frequency (CDF) was approximated as 

 ( )01 ppIURICDF B −=≈ ∑∆  (1)  

In this equation, IB is the Birnbaum importance of the failure mode under consideration, with the 
summation being across the failure modes that contribute to URI (cf. Eq. 3 in App. F to NEI 99-
02), p0 is the baseline failure probability, and p1 is the Bayesian-corrected failure probability, 
using the terminology of NEI 99-02.  In the case of FTR, p1 is approximated by λ1tm, where λ1 is 
the posterior mean failure rate and tm is the mission time, and p0 by λ0tm , where λ0 is the baseline 
failure rate. 

All calculations were performed using the R package (R Development Core Team, 2010). 

Base case parameter values 

IB in the base case simulation was taken to be 5 × 10-5/yr for EDG FTS, EDG FTR, EDG failure 
to load (FTL), and FOTP FTS, per direction of Bruce Mrowca.  The baseline mean values of p 
and λ were taken from Table 8 in App. F of NEI 99-02.  For EDG FTS, p0 is 0.005.  For EDG 
FTL, p0 is 0.003.  For EDG FTR, λ0 is 8 × 10-4/hr.  Finally, for the FOTP, p0 is 0.0019. 

The mission time of the EDG in the base case was taken to be 8 hr.  There were assumed to be 2 
demands on the FOTP for each hour of EDG operation.  Over the MSPI evaluation period, there 
were assumed to be 69 demands for the EDG to start and load, and 105 hr of EDG operating 
time.  There were assumed to be 210 demands on the FOTP over the evaluation period.  All of 
these values are per direction of Bruce Mrowca. 
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Prior distributions 

In its present form, MSPI uses constrained noninformative (CNI) prior distributions to represent 
the variability in the baseline industry parameter values.  A CNI prior has a designated mean 
value, and uncertainty characteristics that are otherwise “noninformative” in a particular sense. 
The associated distributions are listed in Table 8 in App. F to NEI 99-02.  For EDG FTS, The 
CNI prior is approximated as a beta(0.492, 97.9) distribution.  For EDG FTL, the CNI prior is 
approximated as a beta(0.495, 164) distribution.  For EDG FTR the CNI prior is a gamma(0.5, 
625 hr) distribution.  Finally, for the FOTP , the CNI prior is approximated as a beta(0.497, 261) 
distribution. 

Four other prior distributions were considered.  The Jeffreys prior is a beta(0.5, 0.5) distribution 
for failures on demand, and is an improper gamma(0.5, 0) prior for FTR.  It is used to provide a 
reference point that is almost completely data-driven.  The two heavy-tailed nonconjugate priors 
examined were a logistic-normal and logistic-Cauchy distribution for failures on demand, and a 
lognormal and log-Cauchy distribution for FTR. 

The density function of the logistic-normal distribution is given by 
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For the logistic-Cauchy distribution, the density function is 
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In this equation, θ = log[p/(1 – p)]. 

The lognormal density function is 
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The log-Cauchy density function is given by Eq. 3 with θ = logλ. 

A CNI prior is completely specified by the mean value to which the distribution is “constrained.” 
For the distributions considered here other than the CNI and the Jeffreys, it is necessary to 
choose additional parameters. In the case of the logistic-normal and lognormal priors, the mean 
and 95th percentiles of the CNI priors were used to determine the distribution parameters.  For 
the logistic-normal distribution, the mean cannot be written in closed form, so the resulting 
equations were solved numerically for µ and σ.  In the case of the lognormal distribution, the 
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resulting equations are algebraic and can be solved in closed form for µ and σ.  For the logistic-
Cauchy and log-Cauchy distributions, the parameters of the CNI prior were used directly.  For 
the logistic-Cauchy distribution, the parameters µ and σ are related to the parameters of the CNI 
prior (α and β) by the following equations: 
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In this equation ψ(•) is the digamma function and ψ’(•) is the trigamma function, the first and 
second derivatives of the logarithm of the gamma function.  In the case of the log-Cauchy prior 
for FTR, the equations for µ and σ are 
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The fourth type of prior distribution examined was a mixture of conjugate priors, as described in 
(Atwood, et al., 2005).  The baseline mean from NEI 99-02 was taken as the mean of the normal 
state, with the first parameter of the beta or gamma distribution taken to be 0.5.  The mean of the 
degraded state was taken to be a factor of 10 larger.  The shape parameter for the beta or gamma 
distribution representing the degraded state was taken to be 1.5, following (Youngblood, et al., 
2005).  The other parameter is then determined from the mean.  The mixing coefficients were 
taken to be 0.99 for the normal state and 0.01 for the degraded state. 

Description of the simulations 

Over an MSPI evaluation period, failures of an EDG or its associated FOTP are assumed to 
occur randomly, in accordance with the assumed likelihood function (i.e., aleatory model).  For 
failures on demand (FTS, FTL, or FOTP), the aleatory model is assumed to be a binomial 
distribution with parameters p and neval , where p is the probability of failure on each demand, 
and neval is the number of demands during the evaluation period (69 for EDG FTS and FTL, and 
210 for the FOTP).  For EDG FTR, the aleatory model for the number of failures during the 
evaluation period is assumed to be a Poisson distribution with parameter λtoper, where λ is the 
EDG failure rate and toper is the cumulative operating time over the evaluation period (105 hr). 

100,000 “time histories” were simulated.  For each time history, a failure count was generated 
for each failure mode from its associated distribution (binomial or Poisson).  The prior 
distribution for p or λ was updated with the simulated data and this updated value was used in the 
calculation of the URI, per Eq. 1.  For EDG FTS or FTL this is straightforward.  For the case in 
which the FOTP is “lumped” together with the EDG, the simulated FTR failures and FOTP 
failures over the evaluation period are summed to give an aggregate failure count, and λ for EDG 
FTR is updated with this aggregate failure count.  The contribution to the URI from FTR is then 
just (λ1 – λ0)tm. 

For the case where the FOTP is treated as a separate component, the updated value of p for the 
FOTP is used to calculate the probability that the FOTP fails during an EDG mission time, which 
is given by 1 – (1 – p)n,  where n is the number of FOTP demands during the EDG mission (16 in 
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the base case).  The contribution to URI from FOTP failures during the evaluation period in this 
case is given by 

 ( ) ( )[ ]nn
B ppI 10 11 −−−  (7)  

 

The parameter values used to generate the failure counts were set as follows.  For those cases in 
which only one parameter was being varied, the baseline parameter value (p0 or λ0) was 
multiplied by a factor so that the URI contribution from that failure mode alone would be 
sufficient to reach the desired threshold for ∆CDF.  For the case of failure on demand, this gives 
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For FTR, the relation is 
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A case was also run in which all parameters were increased by a factor, f, to bring ∆CDF to the 
threshold value.  The following equation is used to determine f for a specified ∆CDF: 

 
)nptpp(I

CDFf
FOTP

m
FTLFTS

B 0000

1
+++

+=
λ

∆
 (10)  

 

In this equation, we have approximated (1 – p)n by np, where n is the number of FOTP demands 
during the mission time of the EDG. 

The mid-white performance state was set at ∆CDF = √10 × 10-6/yr.  For each time history, a 
check is made of whether the calculated ∆CDF is above or below 10-6/yr.  If the parameters were 
at their baseline values, and ∆CDF > 10-6/yr, this is counted as a false positive.  Conversely, if 
one or all of the parameters are set to values corresponding to ∆CDF > 10-6/yr but that time 
history’s ∆CDF < 10-6/yr, this is counted as a false negative indication.  The false indication 
(positive or negative) probability is then estimated as the number of false positive or negative 
counts divided by the number of time histories (100,000). 

As an example, consider a time history in which p for the FOTP has increased sufficiently that 
∆CDF is at the mid-white threshold listed above, even though all other components are at 
baseline.  Thus, the value of p used to simulate FOTP failures is 0.066, with all other parameters 
at their baseline values.  For this time history, there was 1 failure of the EDG to start (FTS) and 2 
failures of the FOTP; no other failures were observed.  Thus, there is a positive contribution to 
URI from FTS and FOTP (FTR) and a negative contribution from FTL.  Under the lumped 
paradigm, the 2 FOTP failures would be treated as 2 FTR failures in 105 hr of EDG operation.  
With the Jeffreys prior, the posterior mean of pFTS will be 0.021, and the posterior mean of λFTR 
will be 0.024/hr.  For FTL, the posterior mean will be 0.007; this is larger than the baseline value 
of 0.003 and reflects the shape parameter of 0.5 in the Jeffreys prior.  With 0 FTL failures, this 
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increase above the baseline is artificial and so the contribution to URI from FTL will be taken to 
be 0.  Therefore, with the Jeffreys prior, URI for this time history will be 

 ( ) ( )[ ] yr/.hrhr/.hr/...yr/URI
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This is > 10-6/yr, so it would not count as a false negative indication.  However, because it is at 
the white-yellow threshold, it would count as a false positive indication for yellow. 

With the CNI priors, the posterior mean of pFTS will be 0.0089, and the posterior mean of λFTR 
will be 0.0034/hr.  With 0 failures in 69 demands, the posterior mean of pFTL decreases to 0.002, 
making the contribution to URI from FTL negative. Therefore, with the CNI prior, URI for this 
time history will be 
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This is > 10-6/yr, so it would not count as a false negative indication. 

Under the paradigm of separate treatment of the FOTP, the URI with the CNI prior will be 
different.  The 2 FOTP failures occur in 210 demands of the FOTP, and the posterior mean of 
pFOTP would be 0.0053.  Assuming 16 demands on the FOTP during the 8-hr EDG mission time, 
the URI for this time history becomes 
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This is also > 10-6/yr, so it would not count as a false negative indication. 

The results for the base case are shown on the following pages.  Note that the results have been 
rounded to two decimal places and thus the columns in each table may not sum exactly to unity. 

Three sensitivity cases were run, in which the number of FOTP demands were reduced, along 
with the Birnbaum importance of the FOTP.  The parameter values (i.e., number of FOTP 
demands per hour of EDG operation and FOTP Birnbaum importance) for these three sensitivity 
cases were supplied by Bruce Mrowca.  The results are shown in Tables 7-12.  Only results for 
the CNI prior are reported for the lumped paradigm.  The results for the log(istic)-Cauchy prior 
are shown in parentheses for the separate paradigm.  Note that for the lumped paradigm, the 
revised FOTP Birnbaum value played no role, as the EDG Birnbaum value was used in the 
adjustment of parameter values and the calculation of URI.  In the separate paradigm, the revised 
values of FOTP Birnbaum importance were used.  In the separate paradigm, the factor, f, by 
which all parameter values were multiplied in Case 5, is given by a modified version of Eq. 10: 
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One issue is worth some discussion, as it illustrates what is perhaps an important issue with how 
the MSPI is calculated.  What has to be kept in mind is that URI can be < 0, and it will be so 
whenever the failure count is 0, because the new mean failure probability will be less than the 
baseline value, causing ∆p to be < 0.  However, this is not the case with the Jeffreys and 
log(istic)-Cauchy priors.  For these priors, even with 0 failures, ∆p > 0.  Thus, there is no 
negative contribution to URI with 0 failures with these priors. However, ∆p > 0 is unreasonable 
in the case of 0 failures, so in the simulation of the Jeffreys and log(istic)-Cauchy priors, URI is 
set equal to 0 whenever the failure count is 0. 

From a broad perspective, with the parameter at its baseline value, 0 is the most likely failure 
count, and so it does not seem appropriate to have URI < 0 in this case, because 0 failures are 
consistent with the baseline parameter value, not evidence of performance that is better than the 
baseline.  However, URI was allowed to be < 0 for the other priors in the simulation, as this is 
how MSPI has been implemented. 
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Table 1  Base case results 

Paradigm 1, FOTP Lumped into EDG FTR 
 

Paradigm 2, Separate FOTP 

Case 0: All Components of Train at Baseline 

 

Case 0: All Components of Train at Baseline 

  

Mixture 
  Logistic-

Normal/Lognor
mal 

 Logistic-
Cauchy/log

-Cauchy 

          
CNI 

    
Jeffreys  

  Mixture 
  Logistic-

Normal/Lognorm
al 

 Logistic-
Cauchy/log

-Cauchy 

          
CNI 

    
Jeffreys 

 P(G|G) 0.91 0.78 0.6 0.95 0.55 
 

 P(G|G) 0.89 0.66 0.60 0.81 0.55 
 
P(W|G) 0.09 0.22 0.39 0.05 0.41 

 

 
P(W|G) 0.11 0.34 0.40 0.19 0.43 

 P(Y|G) 0 0 0.01 0 0.04 
 

 P(Y|G) 0 0 0 0 0.02 

 P(R|G) 0 0 0 0 0 
 

 P(R|G) 0 0 0 0 0 
 

Table 2  Elevated EDG FTS probability 

Case 1: EDG FTS at 1E-6 * sqrt(10). All others at Baseline 
 

Case 1: EDG FTS at 1E-6 * sqrt(10). All others at Baseline 

  Mixture   Logistic-
Normal 

 Logistic-
Cauchy 

          
CNI 

    
Jeffreys    Mixture   Logistic-

Normal 
 Logistic-
Cauchy 

          
CNI 

    
Jeffreys 

 P(G|1E-
6*sqrt(10)) 0.22 0.08 0.08 0.22 0.02 

 

 P(G|1E-
6*sqrt(10)) 0.33 0.09 0.08 0.51 0.02 

 P(W|1E-
6*sqrt(10)) 0.78 0.92 0.89 0.78 0.82 

 

 P(W|1E-
6*sqrt(10)) 0.67 0.90 0.91 0.49 0.86 

 P(Y|1E-
6*sqrt(10)) 0.00015 0 0.03 0 0.15 

 

 P(Y|1E-
6*sqrt(10)) 0.0002 0.01 0.01 0 0.12 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 

 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 
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Table 3  Elevated EDG FTL probability 

Case 2: EDG FTL at 1E-6 * sqrt(10). All others at Baseline 
 

Case 2: EDG FTL at 1E-6 * sqrt(10). All others at Baseline 

  Mixture   Logistic-
Normal 

 Logistic-
Cauchy 

          
CNI 

    
Jeffreys    Mixture   Logistic-

Normal 
 Logistic-
Cauchy 

          
CNI 

    
Jeffrey

s 
 P(G|1E-
6*sqrt(10)) 0.23 0.08 0.03 0.46 0.02 

 

 P(G|1E-
6*sqrt(10)) 0.34 0.09 0.03 0.62 0.02 

 P(W|1E-
6*sqrt(10)) 0.77 0.92 0.94 0.54 0.83 

 

 P(W|1E-
6*sqrt(10)) 0.66 0.89 0.96 0.38 0.86 

 P(Y|1E-
6*sqrt(10)) 0 0 0.03 0 0.15 

 

 P(Y|1E-
6*sqrt(10)) 0.0001 0.01 0.01 0 0.12 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 

 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 

 

Table 4  Elevated EDG failure rate 

Case 3: EDG FTR at 1E-6 * sqrt(10). All others at Baseline 
 

Case 3: EDG FTR at 1E-6 * sqrt(10). All others at Baseline 

  Mixture   Logistic-
Normal 

 Logistic-
Cauchy 

          
CNI 

    
Jeffreys    Mixture   Logistic-

Normal 
 Logistic-
Cauchy 

          
CNI 

    
Jeffreys 

 P(G|1E-
6*sqrt(10)) 0.62 0.47 0.26 0.75 0.24 

 

 P(G|1E-
6*sqrt(10)) 0.71 0.49 0.26 0.71 0.24 

 P(W|1E-
6*sqrt(10)) 0.38 0.52 0.65 0.25 0.52 

 

 P(W|1E-
6*sqrt(10)) 0.29 0.50 0.69 0.29 0.52 

 P(Y|1E-
6*sqrt(10)) 0 0.01 0.09 0 0.24 

 

 P(Y|1E-
6*sqrt(10)) 0.0004 0.01 0.05 0 0.24 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 

 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 
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Table 5  Elevated FOTP failure probability 

Case 4: FOTP FTS at 1E-6 * sqrt(10). All others at Baseline 
 

Case 4: FOTP FTS at 1E-6 * sqrt(10). All others at Baseline 

  Mixture   Logistic-
Normal 

 Logistic-
Cauchy 

          
CNI 

    
Jeffreys    Mixture   Logistic-

Normal 
 Logistic-
Cauchy 

          
CNI 

    
Jeffreys 

 P(G|1E-
6*sqrt(10)) 0.62 0.47 0.26 0.75 0.24 

 

 P(G|1E-
6*sqrt(10)) 0.59 0.29 0.26 0.48 0.24 

 P(W|1E-
6*sqrt(10)) 0.38 0.52 0.65 0.25 0.52 

 

 P(W|1E-
6*sqrt(10)) 0.41 0.67 0.695 0.52 0.6 

 P(Y|1E-
6*sqrt(10)) 0 0.01 0.09 0 0.24 

 

 P(Y|1E-
6*sqrt(10)) 0.002 0.04 0.04 0.0003 0.16 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 

 

 P(R|1E-
6*sqrt(10)) 0 0 0 0 0 

 

Table 6 All parameters elevated above baseline 

Case 5: All Components of Train at factor F * Baseline 
 

Case 5: All Components of Train at factor F * Baseline 

  Mixture   Logistic-
Normal 

 Logistic-
Cauchy 

          
CNI 

    
Jeffreys    Mixture   Logistic-

Normal 
 Logistic-
Cauchy 

          
CNI 

    
Jeffreys 

 
P(G|BL*f
) 0.62 0.36 0.25 0.67 0.19 

 

 
P(G|BL*f
) 0.56 0.33 0.25 0.46 0.19 

 
P(W|BL*
f) 0.38 0.63 0.66 0.33 0.54 

 

 
P(W|BL*
f) 0.43 0.64 0.71 0.54 0.62 

 
P(Y|BL*f
) 0 0.008 0.09 0 0.27 

 

 
P(Y|BL*f
) 0.001 0.03 0.03 0.0002 0.18 

 
P(R|BL*f
) 0 0 0 0 0 

 

 
P(R|BL*f
) 0 0 0 0 0 
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Table 7  Results of sensitivity cases, base case (CNI prior + log(istic)-Cauchy for paradigm 2) 

Paradigm 1, FOTP Lumped into EDG FTR 

 

Paradigm 2, Separate FOTP 

Case 0: All Components of Train at Baseline 

 

Case 0: All Components of Train at Baseline 

  

Base 

1 FOTP 
demand/hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
5E-5/yr 

1 FOTP demand/ 
8 hr 

Birnbaum = 5E-
5/yr 

 
  Base 

1 FOTP 
demand/hr 

Birnbaum = 
4E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
1E-5/yr 

1 FOTP demand/ 8 
hr 

Birnbaum = 5E-
6/yr 

 P(G|G) 
0.95 0.98 0.99 0.995 

 

 P(G|G) 0.81 0.95 (0.73) 0.997 (0.89) 0.997 (0.89) 

 
P(W|G) 

0.05 0.02 0.01 0.005 

 

 P(W|G) 0.19 0.05 (0.27) 0.003(0.11) 0.003(0.11) 

 P(Y|G) 
0 0 0 0 

 

 P(Y|G) 0 0 (0) 0 (0) 0 (0) 

 P(R|G) 
0 0 0 0 

 

 P(R|G) 0 0 (0) 0 (0) 0 (0) 
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Table 8  Results of sensitivity cases, elevated EDG FTS (CNI prior + log(istic)-Cauchy for paradigm 2) 

Paradigm 1, FOTP Lumped into EDG FTR 

 

Paradigm 2, Separate FOTP 

Case 1: EDG FTS at 1E-6 * sqrt(10). All others at Baseline 

 

Case 1: EDG FTS at 1E-6 * sqrt(10). All others at Baseline 

  

Base 

1 FOTP 
demand/hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
5E-5/yr 

1 FOTP demand/ 
8 hr 

Birnbaum = 5E-
5/yr 

 

  Base 

1 FOTP 
demand/hr 

Birnbaum = 
4E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
1E-5/yr 

1 FOTP demand/ 8 
hr 

Birnbaum = 5E-
6/yr 

 
P(G|1E-
6*sqrt(
10)) 

0.22 0.25 0.27 0.28 

 

 
P(G|1E
-
6*sqrt(
10)) 

0.51 0.35 (0.09) 0.28 (0.11) 0.28 (0.11) 

 
P(W|1E
-
6*sqrt(
10)) 

0.78 0.75 0.73 0.72 

 

 
P(W|1
E-
6*sqrt(
10)) 

0.49 0.65 (0.91) 0.72 (0.89) 0.72 (0.89) 

 
P(Y|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(Y|1E
-
6*sqrt(
10)) 

0 0 (0) 0 (0) 0 (0) 

 
P(R|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(R|1E
-
6*sqrt(
10)) 

0 0 (0) 0 (0) 0 (0) 



12 
 

 

Table 9  Results of sensitivity cases, elevated EDG FTL (CNI prior + log(istic)-Cauchy for paradigm 2) 

Paradigm 1, FOTP Lumped into EDG FTR 

 

Paradigm 2, Separate FOTP 

Case 2: EDG FTL at 1E-6 * sqrt(10). All others at Baseline 

 

Case 2: EDG FTL at 1E-6 * sqrt(10). All others at Baseline 

  

Base 

1 FOTP 
demand/hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/ 8 hr 

Birnbaum = 5E-
5/yr 

 
  Base 

1 FOTP 
demand/hr 

Birnbaum = 
4E-5/yr 

1 FOTP 
demand/4 
hr 

Birnbaum = 
1E-5/yr 

1 FOTP demand/ 
8 hr 

Birnbaum = 5E-
6/yr 

 
P(G|1E-
6*sqrt(
10)) 

0.46 0.52 0.57 0.58 

 

 
P(G|1E
-
6*sqrt(
10)) 

0.62 0.58 (0.04) 0.59 (0.05) 0.59 (0.05) 

 
P(W|1E
-
6*sqrt(
10)) 

0.54 0.48 0.43 0.42 

 

 
P(W|1
E-
6*sqrt(
10)) 

0.38 0.42 (0.96) 0.41 (0.95) 0.41 (0.95) 

 
P(Y|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(Y|1E
-
6*sqrt(
10)) 

0 0 (0) 0 (0) 0 (0) 

 
P(R|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(R|1E
-
6*sqrt(
10)) 

0 0 (0) 0 (0) 0 (0) 
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Table 10  Results of sensitivity cases, elevated EDG FTR (CNI prior + log(istic)-Cauchy for paradigm 2) 

Paradigm 1, FOTP Lumped into EDG FTR 

 

Paradigm 2, Separate FOTP 

Case 3: EDG FTR at 1E-6 * sqrt(10). All others at Baseline 

 

Case 3: EDG FTR at 1E-6 * sqrt(10). All others at Baseline 

  

Base 

1 FOTP 
demand/hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
5E-5/yr 

1 FOTP demand/ 
8 hr 

Birnbaum = 5E-
5/yr 

 
  Base 

1 FOTP 
demand/hr 

Birnbaum = 
4E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
1E-5/yr 

1 FOTP demand/ 8 
hr 

Birnbaum = 5E-
6/yr 

 
P(G|1E-
6*sqrt(
10)) 

0.75 0.80 0.84 0.85 

 

 
P(G|1E
-
6*sqrt(
10)) 

0.71 0.78 (0.32) 0.86 (0.39) 0.86 (0.39) 

 
P(W|1E
-
6*sqrt(
10)) 

0.25 0.20 0.16 0.15 

 

 
P(W|1
E-
6*sqrt(
10)) 

0.29 0.22 (0.64) 0.14 (0.59) 0.14 (0.59) 

 
P(Y|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(Y|1E
-
6*sqrt(
10)) 

0 0 (0.04) 0 (0.03) 0 (0.03) 

 
P(R|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(R|1E
-
6*sqrt(
10)) 

0 0 (0) 0 (0) 0 (0) 
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Table 11  Results of sensitivity cases, elevated FOTP FTS (CNI prior + log(istic)-Cauchy for paradigm 2) 

Paradigm 1, FOTP Lumped into EDG FTR 

 

Paradigm 2, Separate FOTP 

Case 4: FOTP FTS at 1E-6 * sqrt(10). All others at Baseline 

 

Case 4: FOTP FTS at 1E-6 * sqrt(10). All others at Baseline 

  

Base 

1 FOTP 
demand/hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
5E-5/yr 

1 FOTP demand/ 
8 hr 

Birnbaum = 5E-
5/yr 

 
  Base 

1 FOTP 
demand/hr 

Birnbaum = 
4E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
1E-5/yr 

1 FOTP demand/ 8 
hr 

Birnbaum = 5E-
6/yr 

 
P(G|1E-
6*sqrt(
10)) 

0.75 0.81 0.85 0.85 

 

 
P(G|1E
-
6*sqrt(
10)) 

0.48 0.59 (0.26) 0.98 (0.05) 0.99 (0) 

 
P(W|1E
-
6*sqrt(
10)) 

0.25 0.19 0.15 0.15 

 

 
P(W|1
E-
6*sqrt(
10)) 

0.52 0.41 (0.71) 0.2 (0.95) 0.01 (1.0) 

 
P(Y|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(Y|1E
-
6*sqrt(
10)) 

0.0003 0 (0.04) 0 (0) 0 (0) 

 
P(R|1E-
6*sqrt(
10)) 

0 0 0 0 

 

 
P(R|1E
-
6*sqrt(
10)) 

0 0 (0) 0 (0) 0 (0) 
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Table 12  Results of sensitivity cases, all parameters elevated (CNI prior + log(istic)-Cauchy for paradigm 2) 

Paradigm 1, FOTP Lumped into EDG FTR 

 

Paradigm 2, Separate FOTP 

Case 5: All Components of Train at factor F * Baseline 

 

Case 5: All Components of Train at factor F * Baseline 

  

Base 

1 FOTP 
demand/hr 

Birnbaum = 
5E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
5E-5/yr 

1 FOTP demand/ 
8 hr 

Birnbaum = 5E-
5/yr 

 
  Base 

1 FOTP 
demand/hr 

Birnbaum = 
4E-5/yr 

1 FOTP 
demand/4 hr 

Birnbaum = 
1E-5/yr 

1 FOTP demand/ 8 
hr 

Birnbaum = 5E-
6/yr 

 
P(G|BL
*f) 

0.67 0.70 0.68 0.67 

 

 
P(G|B
L*f) 

0.46 0.59 (0.26) 0.68 (0.29) 0.65 (0.24) 

 
P(W|B
L*f) 

0.33 0.30 0.32 0.33 

 

 
P(W|B
L*f) 

0.54 0.41 (0.73) 0.32 (0.70) 0.35 (0.75) 

 
P(Y|BL
*f) 

0 0 0 0 

 

 
P(Y|B
L*f) 

0.0002 0 (0.01) 0 (0.01) 0 (0.01) 

 
P(R|BL
*f) 

0 0 0 0 

 

 
P(R|BL
*f) 

0 0 (0) 0 (0) 0 (0) 

 


