

Mapping HLRs & SRs for the PP Technical Element to NUREG/CR-6850, EPRI TR 1011989

Element	HLR	SR	6850 Sections	Comments			
PP	Α	The Fire PRA shall define global boundaries of the analysis so as to include all plant locations relevant to the plant-wide Fire PRA					
		1	1.5.1				
	В	The Fire PRA shall perform a plant partitioning analysis to identify and define					
		the ph	ysical analysis units to	be considered in the Fire PRA			
		1	1.5.2				
		2	1.3.2 and 1.5.2				
		3	1.3.2 and 1.5.2				
		4	1.3.2 and 1.5.2	Cable raceway fire barriers are not explicitly			
				addressed in 6850			
		5	1.3.2 and 1.5.2				
		6	1.5.2				
		7	1.4.3, 1.5.2 and				
			1.5.3				
	С	The fire PRA shall document the results of the plant partitioning analysis in a					
		manne	er that facilitates Fire P	RA applications, upgrades, and peer review			
		1	n/a	The requirements within these SRs are not			
		2	n/a	specifically addressed in Section 1.5.4 of 6850			
		3	1.5.4				
		4	1.5.2				
		-					

FIRE IGNITION FREQUENCIES Plant Level Frequencies (λ_{IS})

	ID	Location	Ignition	Ignition Source		Generi Freq	eneric S Freq			Split Fractions for Fire Typ			
			(Equipme	ent Type)		(per rx)	r) Elect	rical Oil	Transie	ent Hotwork	Hydrogen	HEAF	/
	1	Battery Room	Batteries		All	7.5E-0	¥ 1.0	0 0	0	0	0	0	
	2	Containment (PWR)	Reactor Coola	nt Pump	Power	6.1E-0	3 0.1	4 0.86	0	0	0	0	
	4	Control Room	Main Control E	loard	All	2.5E-0	3 1.	0	0	0	0	0	
	lgn (Equ	ition Source	Mode	Generic Freq (per rx yr)	Elec	trical	Sp Oil	lit Frac Trans	tions ient H	for Fire lotwork	Type Hydroge	en HE	EAF ¹
Batte	ries		All	7.5E-04	1	.0	0	0		0	0		0
Read	tor C	Coolant Pump	Power	6.1E-03	0.	14	0.86	0		0	0		0
Transients and Hotwork			Power	2.0E-03		0	0	0.44	1	0.56	0		0
Main	Con	trol Board	All	2.5E-03	1	.0	0	0		0	0		0
	32 1. See	Turbine Building	Main Feedwate	er Pumps g fault (HEAF) fires	Power	1.3E-0	2 0.1	1 0.89	0	0	0	0	
A Work	shop,	2010, Washingtor		S	lide 1'	2	A	Collabora	ntion of	U.S. NRC	Office of N	uclear I	Regula

Plant specifi	c locations shou	uld be mapped	to the bin definition	locations.
EXa	Plant Specific Location	Bin Location	WL	
	Emergency Battery Enclosure	Battery Room	Number of site units that share common set of batteries.	
	Main Control Room	Control Room	Number of site units that share the same control room.	-
	Control Building	Control / Auxiliary /	Number of site units that	
	Primary Auxiliary Building	Reactor Building	share the same building type.	
Correspon	ding PRA Stand	lard SR: IGN-A	47	

FIRE IGNITION FREQUENCIES Step 6. (cont'd) Examples:

- *Bin 1– Batteries:* Each bank of interconnected sets of batteries located in one place should be counted as one battery set. Cells may not be counted individually.
- *Bin 5– Cable Fires Caused by Welding and Cutting:* ... Assume that all exposed cables (i.e., cables that are not in conduits or wrapped by noncombustible materials) have an equal likelihood of experiencing a fire caused by welding and cutting across the entire location....
- *Bin 15– Electric Cabinets:* Electrical cabinets represent . . switchgears, motor control centers, DC distribution panels, relay cabinets. . . . Free standing electrical cabinets should be counted by their vertical segments, . . .

Slide 26

Table 6-3 Description of Transient Fire Influencing Factors						
Influencing Factor	No (0)	Low (1)	Medium (3)			
Maintenance	Maintenance activities during power operation are precluded by design.	Small number of PM/CM work orders compared to the average number of work orders for a typical compartment.	Average number of PM/CM work orders.			
Occupancy	Entrance to the compartment is not possible during plant operation.	Compartment with low foot traffic or out of general traffic path.	Compartment not continuously occupied, but with regular foot traffic.			

FIRE IGNITION FREQUENCIES Step 8. Fire Frequency Evaluation

The fire frequency (generic or plant-specific) for each ignition source, $\lambda_{\text{IS},J},$ can now be calculated using the data quantified in the preceding steps.

$$\lambda_{J,L} = \sum_{\text{summed over all ignition sources}} \lambda_{IS} W_L W_{IS,J,L}$$

Where:

 $\lambda_{J,L}$: Fire frequency associated with PAU J at location L

 λ_{IS} : Plant level fire ignition frequency associated with ignition source IS

WL: Location weighting factor

WIS.J.L: Ignition source weighting factor

Corresponding PRA Standard SR: IGN-A7

Fire PRA Workshop, 2010, Washington DC Task 6: Fire Ignition Frequency

Slide 41

FIRE IGNITION FREQUENCIES Number of Events

For each plant and bin combination, the number of events were estimated using the following eight possible event classifications:

	Info	rmation Deficie	Frequency Estimation Action		
Class. #	Known Plant	Known Op. Mode	Challenging Fire	Multiplier	Method of inclusion
1	Yes	Yes	Yes	1	As is
2	Yes	Yes	Undetermined	q	As is
3	Yes	No	Yes	р	As is
4	Yes	No	Undetermined	qp	As is
5	No	Yes	Yes	1	Distribute among units
6	No	Yes	Undetermined	q	Distribute among units
7	No	No	Yes	р	Distribute among units
8	No	No	Undetermined	qp	Distribute among units

FIRE IGNITION FREQUENCIES Reactor Years

- For each plant, two time periods were established:
 - Power production mode and
 - Low power or shutdown mode
- · In analysis of data:
 - Assumed 62% capacity factor prior to 1994
 - NUREG-1350 data for post 1994 capacity factors
 - Total reactor years since initial commercial operation
 - Added the reactor years of the units for multi-unit sites

Corresponding PRA Standard SR: IGN-A5

Fire PRA Workshop, 2010, Washington DC Task 6: Fire Ignition Frequency

Slide 46

FIRE IGNITION FREQUENCIES Generic Fire Ignition Frequencies

Fire Igniti	on Bin Adjuste	ed Counts and A	Associated Rea	actor Years
	1968	-1990	1991	-2000
Bin #	Counts	Rx Yrs	Counts	Rx Yrs
1	1	1376.2	0	1075.3
2	5.5	641.2	1	585.6
3	2.1	641.2	1.2	585.6
4	4.5	1376.2	0.5	1075.3
5	0	994.9	1.8	861.5
6	10.5	994.9	1.7	861.5
7	2.2	994.9	4.5	861.5
8	43	1376.2	5	1075.3
9	0.5	1376.2	4.5	1075.3
10	3	1376.2	1	1075.3
11	2	994.9	0.5	861.5
12	10.5	1376.2	1	1075.3
13	5.5	1376.2	0	1075.3

Note: The industry generic plant-wide fire frequency values presented in Appendix C of 6850/1011989 and in Chapter 10 of EPRI 1019259 were developed using a method consistent with PRA Standard requirements IGN-A1, A5, and A10.

Fire PRA Workshop, 2010, Washington DC Task 6: Fire Ignition Frequency

Slide 47

FIRE IGNITION FREQUENCIES Concluding Remarks Fire ignition frequency evaluation (Task 6) uses a mix of plant specific and generic information to establish the ignition frequencies for specific fire compartments or PAUs and from that for specific fire scenarios. - Generic fire ignition frequencies based on industry experience

- Elaborate data analysis method
- Frequencies binned by equipment type
- Methodology to apportion frequencies according to relative characteristics of each fire compartment or PAU

Slide 48

SCOPING FIRE MODELING **Step 1: Preparation for Walkdown**

It is recommended that walkdown forms be prepared for each compartment to be visited

- Create a list of ignition sources in each compartment. _
 - Equipment counted in Task 6
 - Flag equipment in the PRA equipment list created in Task 2
 - Assigned a HRR to each ignition source (98th percentile of the pdf)
- Workshop Problem 08-01 (file: 05 01 03... part 1)
- Collect damage criteria information for the equipment in the room
 - Qualified/Unqualified cables, solid state equipment etc.
- Workshop Problem 08-02 (file: 05_01_03... part 2
- Develop and document zone of influences in each compartment
- Corresponding PRA Standard SRs: FSS-D10 and D11

Fire PRA Workshop, 2010, Washington DC Module III: Scoping Fire Modeling, Task 8

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Plant Fire Area Compartment			-			Dmage Crite Temperature Heat flux [k]	eria [C] V/m2]	205 6	ł
Pre-Walkdown Ir	nputs	WALKDO	WN INPUTS					Input	I
	HRR			Calculated	Critical 98th				
Equip ID	PDF	Fire Condition	Dist to Target (m)	HRR [kW]	HRR [kW]	Screen ?	SF	(Task 6) λ	Adjusted
Cabinet A	1	Flames	0.5	49	211	No	3.4E-01	1.0E-04	3.44E-05
Cabinet B	1	Plume	3	401	211	Yes	0.0E+00	1.0E-04	0
Cabinet C	3	Ceiling jet	1.5	4870	211	Yes	0.0E+00	1.0E-04	0
Pump	6	Plume	2	179	211	No	3.0E-02	1.0E-04	2.97E-0

HEAT RELEASE RATES Objectives

The objectives of this module are:

- 1. Define heat release rate and heat release rate profile
- 2. Review the recommended peak heat release rate values for typical ignition sources in NPPs
- Describe the method provided for developing heat release rate profiles for fixed and transient ignition sources in NPPs

NOTE: Appendix G recommends values for ignition sources only. Heat release rates associated with fires propagating outside of the ignition source have to be evaluated accordingly.

Fire PRA Workshop, 2010, Washington DC Module III: Appendix G - Heat Release Rates A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

HEAT RELEASE RATES HRR Profile

The HRR profile can be expressed as a constant or as a function of time

- Incipient stage: Not recommended to be modeled
 Duration and intensity are uncertain
- Growth: Depends on the fuel and geometry of the scenario
 - Based on engineering judgment and/or experimental observations
- Fully developed: Usually after the fire reaches its peak intensity
 - Also known as steady burning
 - Starts at ignition if the growth period is not considered
 - A constant fire intensity should be the peak heat release rate of the profile
- Decay: In general, less hazardous conditions than the growth and fully developed stage

Fire PRA Workshop, 2010, Washington DC Module III: Appendix G - Heat Release Rates

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

- Answer to the first question:
 - Use the MCR non-suppression probability curve for <u>ALL</u> fires in the main control room
 - e.g., electrical fires, transient fires, ...

HEAT RELEASE RATES Recommended Peak HRR Values

Ignition Source	HI kW (B	RR Btu/s)	Gamma Distribution		
-	75th	98th	α	β	
Vertical cabinets with qualified cable, fire limited to	69 ¹	211 ²	0.84	59.3	
one cable bundle	(65)	(200)	(0.83)	(56.6)	
Vertical cabinets with qualified cable, fire in more than	211 ²	702 ³	0.7	216	
one cable bundle	(200)	(665)	(0.7)	(204)	
Vertical cabinets with unqualified cable, fire limited to	90 ⁴	211 ²	1.6	41.5	
one cable bundle	(85)	(200)	(1.6)	(39.5)	
Vertical cabinets with unqualified cable, fire in more	232 ⁵	464 ⁶	2.6	67.8	
than one cable bundle closed doors	(220)	(440)	(2.6)	(64.3)	
Vertical cabinets with unqualified cable, fire in more	232 ⁵	1002 ⁷	0.46	386	
than one cable bundle open doors	(220)	(950)	(0.45)	(366)	
Pumps (electrical fires)	69	211 ²	0.84	59.3	
	(65)	(200)	(0.83)	(56.6)	
Motors ⁸	32	69	2.0	11.7	
	(30)	(65)	(2.0)	(11.1)	

*See report for footnotes

Fire PRA Workshop, 2010, Washington DC Module III: Appendix G - Heat Release Rates A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

13

HEAT RELEASE RATES Fire Growth in Electrical Cabinets

The methodology suggests a fire growth rate for electrical cabinet fires

- The fire grows to its peak HRR in approximately 12 min
- The fire burns at its peak HRR for approximately 8 min
- Based on experiments reported in NUREG/CR-4527

Fire PRA Workshop, 2010, Washington DC

Module III: Appendix G - Heat Release Rates

	Tost		Units in Minutes	
cabinet	1691	Time to Peak	Steady Burning	Time to Decay
Cabinot	ST1	7	8	15
	ST2	6	11	17
	ST3	10	8	18
	ST4	14	3	17
ak HRR	ST5	8	9	17
	ST6	8	17	25
	ST7	18	7	25
	ST8	10	20	30
	ST9	10	10	20
	ST10	10	20	30
кпкк	ST11	18	2	20
	PCT1	11	10	21
	PCT2	12	2	14
	PCT3	13	14	27
	PCT4a	16	0	16
eported	PCT4c	16	0	16
	PCT5	17	0	17
	PCT6	11	0	11
	Test 21	4	14	18
	Test 22	9	2	11
	Test 23	10	0	10
	Test 24	12	0	12
	Average	11.4	7.1	19

FAQ 08-0042: "Fire Propagation From Electrical Cabinets"

• Purpose & Scope

- Provide clarification on conflicting language in NUREG/CR-6850 related to the description of fire propagation from unvented cabinets
 - Guidance in Appendix G is in conflict with the guidance in chapters 6 and 11 of NUREG/CR-6850
- The scope of this FAQ is limited to the clarification of the conflicting guidance provided in NUREG/CR-6850 related to fire propagation outside unvented cabinets.
- Reference:
 - NRC Closure Memo, ADAMS ML092110537

Fire PRA Workshop, 2010, Washington DC Module III: Appendix G - Heat Release Rates A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

HEAT RELEASE RATES Concluding Remarks

Peak HRR values are recommended for some typical fixed and transient ignition sources in NPP fire scenarios

- Values are for localized ignition source (not for fires propagating outside the ignition source)
- HRR for flammable liquid fires can be calculated from fundamental equations
- HRR for "solid" ignition sources are generally expressed as probability distributions based on experimental data and expert judgment

Fire PRA Workshop, 2010, Washington DC Module III: Appendix G - Heat Release Rates A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Exposed structural steel given a very large fire source (e.g., catastrophic loss of the main TG set – more later)

Fire PRA Workshop, 2010, Washington DC Module III: Appendix H: Damage Criteria A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Damage Time						
 Example of the Time to 	Table H-5: Failure Time-Temperature Relationship for Thermoset cables (Table A.7.1 from reference H.6).					
Damage look-	Exposure T	emperature	Time to Failure			
up tables:	°C	٥F	(minutes)			
	330	625	28			
	350	660	13			
	370	700	9			
	390	735	7			
	410	770	5			
	430	805	4			
	450	840	3			
	470	880	2			
	490 (or greater)	915 (or greater)	1			

Fire PRA Workshop, 2010, Washington DC Module III: Appendix H: Damage Criteria A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Damage Criteria Smoke Damage

- Assume that vulnerable components adjacent to or connected to the fire source will be damaged by smoke:
 - Within the same electrical cabinet or housing as a fire source
 - e.g. given a panel fire, the whole panel is lost due to smoke and/or heat
 - In an adjacent cabinet if the cabinet-to-cabinet partitions are not well-sealed
 - In a common *stack* of electrical cubicles
 - In a nearby cabinet with a direct connection to the fire source
 - e.g., a shared or common bus-duct

Fire PRA Workshop, 2010, Washington DC Module III: Appendix H: Damage Criteria A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

HRR (kW)	Probability	Probability of exceeding	Damage?	
11	0.445	1.000	No	
36	0.219	0.555	No	
61	0.129	0.336	No	
87	0.078	0.207	No	
112	0.048	0.129	Yes	
137	0.030	0.081	Yes	$\lambda = \lambda \times 0.120$
162	0.019	0.051	Yes	$\Lambda_{\text{damage}} = \Lambda_{\text{Fire}} \times 0.128$
187	0.012	0.032	Yes	
212	0.007	0.020	Yes	
237	0.005	0.013	Yes	
262	0.003	0.008	Yes	
287	0.002	0.005	Yes	
312	0.001	0.003	Yes	
337	0.001	0.002	Yes	
405	0.001	0.001	Yes	
Total	1.000			

		· · · · · · · · · · · · · · · · · · ·	1		1	
HRR (kW)	Probability P _i	Probability of exceeding	Damage	t _s (min)	P _{NS,i}	$P_{i} P_{NS,i}$
11	0.445	1.000	No	No Damage	0.0	0.0E+00
36	0.219	0.555	No	No Damage	0.0	0.0E+00
61	0.129	0.336	No	No Damage	0.0	0.0E+00
87	0.078	0.207	No	No Damage	0.0	0.0E+00
112	0.048	0.129	Yes	28	0.03	1.7E-03
137	0.030	0.081	Yes	24	0.06	1.7E-03
162	0.019	0.051	Yes	20	0.09	1.7E-03
187	0.012	0.032	Yes	16	0.15	1.8E-03
212	0.007	0.020	Yes	13	0.21	1.5E-03
237	0.005	0.013	Yes	11	0.27	1.3E-03
262	0.003	0.008	Yes	9	0.34	1.0E-03
287	0.002	0.005	Yes	7	0.43	8.6E-04
312	0.001	0.003	Yes	5	0.55	5.5E-04
337	0.001	0.002	Yes	3	0.70	7.0E-04
405	0.001	0.001	Yes	1	0.89	8.9E-04
Total	1.000					0.014

FIRE SEVERITY Heat Release Rate Distributions

The heat release rate of the following equipment classes have been defined:

Caso	Ignition Source	HRR (Btu/s)
Case	Ignition Source	75th	98th
1	Vertical cabinets with qualified cable, fire limited to one cable bundle	65	200
2	Vertical cabinets with qualified cable, fire in more than one cable bundle	200	665
3	Vertical cabinets with unqualified cable, fire limited to one cable bundle	85	200
4	Vertical cabinets with unqualified cable, fire in more than one cable bundle closed doors	220	440
5	Vertical cabinets with unqualified cable, fire in more than one cable bundle open doors	220	950
6	Pumps (electrical fires)	65	200
7	Motors	30	65
8	Transient Combustibles	135	300

Fire PRA Workshop, 2010, Washington DC Module III: Appendix E: Fire Severity A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

				ilpic	
Table E HRR Dis Limited	1 stribution for V to One Cable E	ertical Cabine Bundle	ts with Qualifie	d Cables, Fire	
	Hea	t Release Rate (Btu/s)	Severity Factor	
Bin	Lower	Upper	Point Value	(P _i)	
1	0	25	10.5	0.446	
2	25	50	36	0.219	
3	50	75	61	0.129	
4	75	100	87	0.078	
5	100	125	112	0.048	
6	125	150	137	0.030	
7	150	175	162	0.019	
8	175	200	187	0.012	
9	200	225	212	0.007	
10	225	250	237	0.005	
11	250	275	262	0.003	
12	275	300	287	0.002	
13	300	325	312	0.001	
14	325	350	337	0.001	
15	350	Infinity	405	0.001	

FIRE SEVERITY Severity Factor for Oil Spill Fires

- The severity factors for oil spills are recommended to be established from the following steps:
 - 1. Determine the amount of oil that can be spilled in the room.
 - 2. Assign a severity factor of 0.02 to a scenario consisting of 98% or more of the amount of oil spilled and ignited.
 - 3. Assign a severity factor of 0.98 to a scenario consisting of 10% of the amount of oil spilled and ignited.
- Note that a modified approach for the MFW pump oil fire was developed via FAQ 07-0044
 - See presentation on Appendix G for details

Fire PRA Workshop, 2010, Washington DC Module III: Appendix E: Fire Severity A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Table Reco Mode	e 11-1 ommended Severity el	Factors for Ignition \$	Sources in the Frequency
ID	Location	Ignition Source	HRR Distribution Category
1	Battery Room	Batteries	Electric motors
2	Containment (PWR)	Reactor coolant Pump	Pumps (Electrical)/Oil spills
4a	Control Room	Electrical cabinets	Applicable electrical cabinet
4b	Control Room	Main control board	See Appendix L
5	Control/Auxiliary/ Reactor Building	Cable fires caused by welding and cutting	Assume 1.0
6	Control/Auxiliary/ Reactor Building	Transient fires caused by welding and cutting	Transients
21	Plant-Wide Components	Pumps	Pump (Electrical)/Oil spills

Mapping HLRs & SRs for the FSS Technical Element to NUREG/CR-6850, EPRI TR 1011989

PP9				
Technical Element	HLR	SR	6850 Sections	Comments
FSS	С	The F extent target	ire PRA shall character of fire damage for eac sets selected per HLR	ize the factors that will influence the timing and th combination of an ignition source and damage -FSS-A.
		1	8.5.1, 11.3.3, 11.3.4, 11.5.1.3	Section 8 of 6850/1011989 partly address the requirements of this SR
		2	8.5.1, 11.3.3, 11.3.4, 11.5.1.3	
		3	11.3.3, 11.3.4, 11.5.1.3	These sections of 6850/1011989 imply the requirements of this SR.
		4	11.5.1.9, Appendices E and G	Section 11.3 of 6850/1011989 directs the reader to these Appendices where discussion: relevant to the requirements of this SR are provided.
		5	8.5.1.2, Appendix H	
		6	11.5.1.7.6, Appendix H	
		7	n/a	Appendix P of 6850/1011989 implies the requirements of this SR but does not explicitly address it.
		8	11.5.1.7.3, Appendices M and Q	Referenced section and appendices of 6850/1011989 do not fully address the requirements of this SR.

Technical Element	HLR	SR	6850 Sections	Comments			
FSS	E	The pa generi plant-s plant-s accorr	The parameter estimates used in fire modeling shall be based on relevant generic industry and plant-specific information. Where feasible, generic and plant-specific evidence shall be integrated using acceptable methods to obtai plant-specific parameter estimates. Each parameter estimate shall be accompanied by a characterization of the uncertainty.				
	-	1 2	11.3, 11.5.1, Appendices G, H, L, N, O, R, and S	6850/1011989 does not discuss plant-specific fire modeling parameters. However, the discussions in the referenced sections and appendices imply the requirements of this SR.			
		3	11.3, 11.5.1, Appendices E, G and P				
		4	n/a	The requirement in this SR is not explicitly addressed in 6850/1011989			
	F	The Fi potent	re PRA shall search fo ial for causing fire-indu	or and analyze risk-relevant scenarios with the iced failure of exposed structural steel.			
		1	n/a	Failure of exposed structural steel from fire			
	l	2	n/a	impact is not explicitly discussed in			
		3	n/a	6850/1011989. Appendix Q addresses passive			
				exposed structural steel.			

l echnical Element	HLR	SR	6850 Sections	Comments
FSS	G	The Fi scenar	re PRA shall evaluate ios.	the risk contribution of multicompartment fire
		1	11.5.4.6	
		2	11.5.4	
		3	11.5.4	
		4	11.5.4.4	
		5	11.5.4.4	
		6	11.5.4.5, 11.5.4.6	t the second section of the first second first second first
	н	Ine Fi	re PRA shall documer	a information for according coloction, underlying
		analys	ntions scenario desci	intions, and the conclusions of the quantitative
		analys	is in a manner that fa	cilitates Fire PRA applications upgrades and
		peer re	eview.	
		1	n/a	Documenting the analysis and the results is
		2	n/a	discussed in Chapter 16 and in several parts of
		3	n/a	Chapter 11 of 6850/1011989. The specific
		4	n/a	requirements of these SRs is generally not
		5	n/a	explicitly addressed.
		6	n/a	
		7	n/a	-
			n/a	
		8		
		8 9	n/a	

Module III: FIRE MODELING Role and Scope

- Fire modeling: An approach for predicting various aspects of fire generated conditions
 - Requires idealization and/or simplifications of the physical processes involved
 - Departure of the fire system from this idealization can affect the accuracy and validity
- Fire scenario: A set of elements representing a fire event
 - Fire source/initiation
 - Fire growth
 - Fire propagation (room heating, HEAF, intervening combustibles, etc.)
 - Active fire protection features, e.g., detection/suppression
 - Passive fire protection features, e.g., fire stops
 - Target sets (cables), habitability, etc.

Joint Fire PRA Course, 2010, Washington DC Module III: Task 11a- Detailed Fire Modeling & Single Compartment Fire Scenarios A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Module III: PROCESS Hand Calcs – NUREG 1805

02.1_Temperature_NV.xls						
02.2_Temperature_FV.xls						
02.3_Temperature_CC.xls						
03_HRR_Flame_Height_Burning_Duration_Calc	ulation.xls					
04_Flame_Height_Calculations.xls						
05.1_Heat_Flux_Calculations_Wind_Free.xls						
05.2_Heat_Flux_Calculations_Wind.xls						
05.3_Thermal_Radiation_From_Hydrocarbon_Fit	reballs.xls					
06_Ignition_Time_Calculations.xls	09 Plume Temperature Calculations.xls					
07_Cable_HRR_Calculations.xls 08_Burning_Duration_Soild.xls 09_Plume_Temperature_Calculations.xls	10 Detector Activation Time.xls					
	13_Compartment_ Flashover_Calculations.xls					
	14_Compartment_Over_Pressure_Calculations.xls					
	15_Explosion_Claculations.xls					
	16_Battery_Room_Flammable_Gas_Conc.xls					
	17.1_FR_Beams_Columns_Substitution_Correlation.xls					
	17.2_FR_Beams_Columns_Quasi_Steady_State_Spray_Insulated.xls					
	17.3_FR_Beams_Columns_Quasi_Steady_State_Board_Insulated.xls					
	17.4_FR_Beams_Columns_Quasi_Steady_State_Uninsulated.xls					
	18_Visibility_Through_Smoke.xls					
Joint Fire PRA Course, 2010, Washington DC	A Collaboration of U.S. NRC Office of Nuclear Regulatory 12					
Module III: Task 11a- Detailed Fire Modeling & Single Compartment Fire Scenarios	Research (RES) & Electric Power Research Institute (EPRI)					

Module III: PROCESS Hand Calcs – FIVE-Rev1

- More than ten years after FIVE, most of the equations are still considered "State-of-the-Art"
- A revision of the quantitative fire hazard techniques in FIVE
- Most of the hand calculations in the original EPRI publication and some other models available in the fire protection engineering literature
 - 4 stage heat release rate profile based on t² growth
 - Heskestad's flame height model
 - A radiation model from a cylindrical flame to targets
 - Models for velocity of plume and ceiling jet flows
 - Model for plume diameter as a function of height
 - MQH model for room temperature
 - Model for visibility through smoke

Joint Fire PRA Course, 2010, Washington DC Module III: Task 11a- Detailed Fire Modeling & Single Compartment Fire Scenarios A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

- FAQ 50 changes the detection/suppression event tree:
 - Collapses "manual/fixed" and "fire brigade" into one top event "manual suppression"
 - "Manual suppression" top event credits any plant personnel suppressing fire, not just the fire brigade (all actors)
 - For plant specific cases: Top event "manual suppression" can include manual actuation of fixed suppression, but timing may be different (i.e., the generic PNS curves may not apply) and dependencies must be addressed
- FAQ 50 solution assumes no delay in initiating manual fire fighting
 - Per NRC closure memo if manual actuation of fixed suppression is credited, plant specific analysis must be performed and must address:
 - · procedures and training for manually actuating a fixed suppression system, and
 - explain how dependencies between manual actuation of a fixed suppression system and other manual suppression activities.(e.g., manual suppression by portable extinguishers and hose stream) are addressed.

Joint Fire PRA Course, 2010, Washington DC Module III: Detection and Suppression Appendix P A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

DETECTION & SUPPRESSION Event Tree End States – per original 6850/1011989

Sequence	Detection	Suppression
А	Prompt detection by	Prompt suppression
В	 Continuous fire watch 	Fire suppression by an automatically actuated fixed system
С	 Continuously occupied 	Fire suppression by a manually actuated fixed system
D	 High sensitivity detectors 	Fire suppression by the fire brigade
Е		Fire damage to target items
F	Automatic detection by	Fire suppression by an automatically actuated fixed system
G	 Heat detectors 	Fire suppression by a manually actuated fixed system
Н	 Smoke detectors 	Fire suppression by the fire brigade
Ι		Fire damage to target items
J	Delayed detection by	Fire suppression by an automatically actuated fixed system
К	 Roving fire watch 	Fire suppression by a manually actuated fixed system
L	Control room verification	Fire suppression by the fire brigade
М		Fire damage to target items
N	Fire damage to target items	

Joint Fire PRA Course, 2010, Washington DC Module III: Detection and Suppression Appendix P

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

DETECTION & SUPPRESSION End states change if using FAQ 50 solution

Sequence	Detection	Suppression
А	Prompt detection by	Prompt suppression
В	 Continuous fire watch 	Fire suppression by an automatically actuated fixed system
С	 Continuously occupied 	Not a valid end state
D	 High sensitivity detectors 	Fire suppressed manually before damage (all actors)
Е		Fire damage to target items
F	Automatic detection by	Fire suppression by an automatically actuated fixed system
G	 Heat detectors 	Not a valid end state
Н	 Smoke detectors 	Fire suppressed manually before damage (all actors)
Ι		Fire damage to target items
l	Delayed detection by	Fire suppression by an automatically actuated fixed system
К	 Roving fire watch 	Not a valid end state
L	Control room verification	Fire suppressed manually before damage (all actors)
М		Fire damage to target items
Ν	Fire damage to target items	
Fire PRA Cours	e, 2010, Washington DC A	Collaboration of U.S. NRC Office of Nuclear Regulatory 10

FAQ 08-0050: Solution How the P_{ns} curves are calculated

- Original 6850/1011989 analysis used suppression time if available
 - If no suppression time was given, fire duration was used (many such cases)
- FAQ uses the fire duration field for all events
 - Fire duration is either the same (zero detection time) or longer than suppression time
 - Result: the base P_{ns} curves are *slightly* more conservative, but...
- FAQ also assumes fire control and suppression activities start at the time of detection
 - Credits suppression by plant personnel other than fire brigade
 - Time delay for brigade arrival is no longer applied
 - More than makes up for shift in curves
- New non-suppression (P_{ns}) curves for all bins
- Includes method to adjust for above or below average fire brigade response time

Joint Fire PRA Course, 2010, Washington DC Module III: Detection and Suppression Appendix P

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 21

22

FAQ 08-0050: Solution The new P_{ns} curves

	No. of original events/revised events	Or NURE(iginal S/CR-6850	Revised Analysis	
Suppression Curve		Original Total Suppression Time	Original Mean Suppression Rate [/min]	Revised Total Duration	Revised Mean Suppression Rate [/min]
T/G fires	21/21	749	0.03	846	0.025
Control room	6/6	18	0.33	18	0.33
PWR containment	3/3	23	0.13	40	0.075
Outdoor transformers	14/14	373	0.04	390	0.036
Flammable gas	5/5	195	0.03	197	0.025
Oil fires	36/36	404	0.09	474	0.076
Cable fires	5/5	21	0.24	31	0.161
Electrical fires	114/113	942	U.12	1113	U.1U2
Welding fires	19/18	99	0.19	106	0.188
Transient fires	24/22	199	0.12	174	0.126
High-energy arcing faults	3/3	239	0.01	276	0.011
All fires	245 ²¹ /246	3113	0.08	3655	0.067

Joint Fire PRA Course, 2010, Washington DC Module III: Detection and Suppression Appendix P A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Original 6850/1011989 approach:

$$P_{ns} = e^{-\lambda [t_{damage} - (t_{detection} + t_{brigade-response})]}$$

Revised FAQ 50 approach:

$$P_{ns} = e^{-\lambda [t_{damage} - t_{detection}]}$$

Joint Fire PRA Course, 2010, Washington DC Module III: Detection and Suppression Appendix P

DETECTION & SUPPRESSION Dependencies

The following dependencies in suppression analysis could be important:

- Between automatic detection and suppression
 - Example: control panel for a gaseous suppression system
- Between actuated barriers and fire suppression systems
- Between safe shutdown capabilities and automatic suppression
 - Example: crediting fire fighting water for core injection, heat removal or secondary heat removal
- · Between manual and automatic suppression

 Joint Fire PRA Course, 2010, Washington DC
 A Collaboration of U.S. NRC Office of Nuclear Regulatory

 Module III: Detection and Suppression Appendix P
 Research (RES) & Electric Power Research Institute (EPRI)

DETECTION & SUPPRESSION Concluding Remarks

The non-suppression probability is credited in Task 11, detailed fire modeling

- Target damage is evaluated assuming no detection/suppression capabilities in the room
- The time to target damage is an input to the detection and suppression analysis.
- The recommended approach includes an event tree capturing prompt, automatic, and delayed detection and suppression capabilities
- The event tree may need to be modified depending on the scenario

Joint Fire PRA Course, 2010, Washington DCA CollabModule III: Detection and Suppression Appendix PResearch

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

General characteristics of HEAF events (from FEDB)

- Sustained fires after the initial HEAF involve combustible materials (cable insulation, for the most part) near the cabinet.
- Damage may extend to cables and cabinets in the vicinity of the high-energy electrical cabinet.
- Damage to cabinet internals and nearby equipment (if observed) appears to occur relatively early in the event.

HIGH ENERGY ARCING FAULTS (8 of 15) High-Energy Phase: The zone of influence • The initial arcing fault will cause destructive and unrecoverable failure of the faulting device, e.g., the feeder breaker cubicle, including the control and bus-bar sections. • The next upstream over-current protection device in the power feed circuit leading to the initially faulting device will trip open, causing the loss of all components fed by that electrical bus. This fault may be recoverable if the initial faulting device can be isolated from the feeder circuit. • The release of copper plasma and/or mechanical shock will cause the next directly adjoining/adjacent switchgear or load center cubicles within the same cabinet bank and in all directions (above, below, to the sides) to trip open. Fire PRA Workshop, 2010, Washington DC A Collaboration of U.S. NRC Office of Nuclear Regulatory 28 Module III: Task 11, Special Fire Models Part 1 Research (RES) & Electric Power Research Institute (EPRI)

HIGH ENERGY ARCING FAULTS (10 of 15)

High-Energy Phase: The zone of influence

- Any unprotected cables in the *first* overhead cable tray will be ignited concurrent with the initial arcing fault provided that this first tray is within 1.5 m (5') vertical distance of the top of the cabinet. The cable tray fire will propagate to additional trays consistent with the approach provided for the treatment of cable tray fires elsewhere in this document, assuming that the time to ignition of the first tray is zero rather than the normal 5 minutes.
 - This applies to any cable tray located directly above the panel.
 - This applies to any cable tray above the aisle way directly in front of, or behind, the faulting cabinet, provided some part of that tray is within 0.3 m (12") horizontally of the cabinet's front or rear face panel.
 - Cables in conduit or in a fire wrap are considered protected in this context.
 - Armored cables with an exposed plastic covering are considered unprotected in this context

Fire PRA Workshop, 2010, Washington DC Module III: Task 11, Special Fire Models Part 1 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

HIGH ENERGY ARCING FAULTS (11 of 15)

High-Energy Phase: The zone of influence

- Any vulnerable component or movable/operable structural element located within 0.9 m (3') horizontally of either the front or rear panels/doors, and at or below the top of the faulting cabinet section, will suffer physical damage and functional failure.
 - This will *include* mobile/operable structural elements like fire dampers and fire doors.
 - This will *include* potentially vulnerable electrical or electromechanical components such as cables, transformers, ventilation fans, other cabinets, etc.
 - This will *exclude* fixed structural elements such as walls, floors, ceilings, and intact penetration seals.
 - This will exclude large components and purely mechanical components such as large pumps, valves, major piping, fire sprinkler piping, or other large piping (1" diameter or greater).
 - This may *include* small oil feed lines, instrument air piping, or other small piping (less than 1" diameter).

Fire PRA Workshop, 2010, Washington DC Module III: Task 11, Special Fire Models Part 1 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

HIGH ENERGY ARCING FAULTS (15 of 15)

Example

- Consider a HEAF scenario consisting of a switchgear cabinet affecting two targets. A stack of three cable trays is above the cabinet. The first tray in the stack is 0.9 m (3') above the cabinet. It has been determined that one of the targets is in the first tray. The other target is in the third tray.
- According to the approach provided in Section M.3, the first target is assumed ignited at the time of the HEAF. The second target is damaged at time 7 minutes (4 minutes for fire propagation from the first to the second tray, and 3 minutes for fire propagation from the second to the third tray).
 - A scenario involving target in the first tray $CDF_i = \lambda_g \cdot W_L \cdot W_{is} \cdot CCDP_i$
 - A scenario involving the two targets $CDF_i = \lambda_g \cdot W_L \cdot W_{is} \cdot P_{ns} \cdot CCDP_i$

 Fire PRA Workshop, 2010, Washington DC
 A Collaboration of U.S. NRC Office of Nuclear Regulatory
 35

 Module III: Task 11, Special Fire Models Part 1
 Research (RES) & Electric Power Research Institute (EPRI)
 35

FIRE PROPAGATION TO ADJACENT ELECTRICAL CABINETS (3 of 3)

The empirical model for fire damage consists of the following rules:

- Assume loss of function in an adjacent cabinet if there is not a double wall with an air gap.
- Assume no damage in the second adjacent cabinet occurs until after the fire propagates to the adjacent cabinet. Assume damage can occur earlier if there are large openings in a wall and plenum areas in which a hot gas layer is likely to form.
- Assume no damage to an adjacent cabinet if:
 - There is a double wall with an air gap, and
 - There are no sensitive electronics in the adjacent cabinet (or the sensitive electronics have been "qualified" above 82°C).
- Assume damage to sensitive electronics occurs at 10 minutes if there is a double wall with an air gap.
- Assume damage to sensitive electronics can be prevented before 10 minutes if the fire is extinguished and the cabinet is cooled, e.g., by CO₂ extinguishers.

Fire PRA Workshop, 2010, Washington DC Module III: Task 11, Special Fire Models Part 1

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 43

PASSIVE FIRE PROTECTION FEATURES (1 of 7)

Most of the fire protection capabilities of passive fire protection features cannot be evaluated using analytical fire modeling tools.

- Empirical approaches
- Limited analytical approaches
- Probabilistic approaches

PASSIVE FIRE PROTECTION FEATURES (3 of 7)

The analytical approach for modeling the response of passive fire protection features to fire generated conditions consists of a heat transfer analysis.

- The boundary conditions are the fire generated conditions. In general, these consist of the heat flux exchanges at the surface of the passive feature.
 - Thermo-physical properties of the material are necessary. These properties are readily available for some materials like concrete or steel.
- Models can be used for estimating the temperature profile throughout the thickness of the barrier
- Effects of cracks and gaps in doors or walls should be evaluated only with the objective of analyzing smoke migration.

PASSIVE FIRE PROTECTION FEATURES (5 of 7)

• The empirical approaches consist of replicating the thermal response of fire protection features observed in fire tests in the postulated fire scenarios.

- Cable tray barriers and fire stops: SNL tests 1975-1978
- Same configuration as coating tests
- The following systems were tested:
 - Ceramic wool blanket wrap, solid tray bottom covers, solid tray top cover with no vents, solid tray bottom cover with vented top cover, one-inch insulating barrier between cable trays, and fire stops.
- Propagation of the fire to the second tray was prevented in each case.
- Again, a basis needs to be established for any credit taken
 - Tests are not definitive for all cases

Fire PRA Workshop, 2010, Washington DC Module III: Task 11, Special Fire Models Part 1 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Probabilistic modeling of passive fire suppression systems

- Dampers: Equipment unavailability obtained from inspection results
- Penetration seals: Equipment unavailability obtained from inspection results

Fire PRA Workshop, 2010, Washington DC Module III: Task 11, Special Fire Models Part 1 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Main Control Room Fire Analysis Objectives The objective of this module is: Describe the recommended approach for detailed fire modeling in the main control room. Specifically: - Differences between the main control room and other compartments - Criteria for abandonment due to fire generated environmental conditions - Description of how to analyze: · Conditional probability of damage to a target set · Forced control room abandonment time Fire PRA Workshop, 2010, Washington DC A Collaboration of U.S. NRC Office of Nuclear Regulatory 2 Task 11b - Main Control Room Fire Analysis Research (RES) & Electric Power Research Institute (EPRI)

Main Control Room Fire Analysis Step 5: Identify and Characterize Target Sets

The target sets can be identified by systematically examining combinations of control and instrumentation items found on the control panels, electrical cabinets, wireways, and cable raceways inside the MCR.

- · Examine the control panels from one end to the other
- · Groups of adjacent controls and instrumentation
- · Cursory and conservative estimation of the CCDP/CLERP as the basis
- · Elements of a set are located within the reach of a potential fire
- Exposure fire affecting multiple cabinets
- Problem Set 11.b-05 (file: 05_01_05...)
- Corresponding PRA Standard SRs: FSS-A2 through A4

Fire PRA Workshop, 2010, Washington DC Task 11b - Main Control Room Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 7

8

The final product of this step is a list of ignition sources, their relevant characteristics, and fire ignition frequencies associated with each source

- Similar to Step 3.a of single compartment analysis
- Type, quantity, dimensions and heat release rate profile of each source
- Main control board as ignition source
- Assume fire might occur at any point on a control panel
- · Other control panels, electrical cabinets, wireways, and cable raceways
- · Kitchen appliances and other electrical devices?
- Transient combustible fires
- *Problem Set 11.b-06* (file: 05_01_05...)

Fire PRA Workshop, 2010, Washington DC Task 11b - Main Control Room Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Fire PRA Workshop, 2010, Washington DC Task 11b - Main Control Room Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 11

MULTI-COMPARTMENT FIRES Objective Fire scenarios involving multiple, interconnected or adjacent fire compartments are analyzed in this part of Task 11.

- Fire propagation
- Smoke propagation
- A rare event in U.S. NPP fire experience
- Screening process

Fire PRA Workshop, 2010, Washington DC Task 11c - Multi-Compartment Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 2

MULTI-COMPARTMENT FIRES Definitions

The following two terms are specifically defined for this part of the analysis:

- Exposing Compartment. The compartment where fire ignition occurs
- Exposed Compartments: The compartments to which fire from the exposing compartment propagates

Fire PRA Workshop, 2010, Washington DC Task 11c - Multi-Compartment Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

4

MULTI-COMPARTMENT FIRES Analysis Steps

The following steps define one possible approach for multicompartment fire risk analysis:

- Step 1.c: Exposing and Exposed Compartments Matrix
- Step 2.c: First Screening-Qualitative
- Step 3.c: Second Screening-Low Fire Load Exposing Compartments

A Collaboration of U.S. NRC Office of Nuclear Regulatory

Research (RES) & Electric Power Research Institute (EPRI)

5

- Step 4.c: Third Screening-Frequency of Occurrence
- Step 5.c: Fourth Screening-CDF Based
- Step 6.c: Detailed Analysis
- Step 7.c: Document the Analysis

Fire PRA Workshop, 2010, Washington DC Task 11c - Multi-Compartment Fire Analysis

Task 11c - Multi-Compartment Fire Analysis

<section-header><section-header><text><list-item><list-item><list-item><list-item><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>

Research (RES) & Electric Power Research Institute (EPRI)

xa	mp	DIE:						
#	Exposing Compartment		#	Exposed Compartment		#	Path	Comments
1	0	SWG Access Room	1.1	10	Name Swtich Coor Room A	111	Door	The deer is 3-br rated and normally close
1	9	SWG ACCESS ROOM	1.1	10	Switch Geal ROOM A	1.1.2	Opening	Ventilation opening between rooms with fusible link activated fire dampers.
			1.2	11	Swtich Gear Room B	1.2.1	Door	The door is 3-hr rated and normally close
						1.2.2	Opening	Ventilation opening between rooms with fusible link activated fire dampers.
			1.3		Stairway	1.3.1	Door	The door is 3-hr rated and normally close
2	4A	RHR Room	2.1	4B	AFW Pump Room	2.1.1	Door	The door is 3-br rated and normally close
						2.1.2	HVAC Duct	There are two HVAC ducts with opening both compartments providing intake and discharge
			2.2		Stairway	2.2.1	Door	The door is 3-hr rated and normally close
2	48	AEW/ Pump Poom	2.1	40	PHP Room	211	Door	The deer is 2 hr rated and normally close
			0.1	-7/		3.1.2	HVAC Duct	There are two HVAC ducts with opening both compartments providing intake and discharge

Mapping HLRs & SRs for the PP Technical Element to NUREG/CR-6850, EPRI TR 1011989

Element	nent HLR SR 6850 S		6850 Sections	Comments					
SF	Α	The Fire PRA shall include a qualitative assessment of potential seismic/fire							
		intera	interaction issues in the Fire PRA						
		1	13.3.1 and 13.6.2						
		2	13.3.2, 13.3.3,						
			13.6.3, 13.6.4, and						
			13.6.5						
		3	13.3.2,						
		4	13.3.1, 13.3.2,	Although 6850/1011989 does not explicitly					
			13.3.3, 13.6.3,	reference seismic response procedures, the					
			13.6.4, and 13.6.5	suggested guidance implies review of such					
				procedures.					
		5	13.3.4 and 13.6.6						
	В	The Fire PRA shall document the results of the seismic/fire interaction							
		assessment in a manner that facilitates Fire PRA applications, upgrades, and							
		peer review							
		1	13.6.7	6850/1011989 provides minimal discussions on					
				documenting SF					
re PRA Worksl	hop. 2010.	Washingto	n DC A Collabo	pration of U.S. NRC Office of Nuclear Regulatory 14					