

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Definitions <u>Zone-of-Influence (ZOI)</u> – The area around a fire where radiative and convective heat transfer is sufficiently strong to damage equipment or cables and/or heatup other materials to the point of auto-ignition.

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

20

Typical Flame Spread Rates

 It is very difficult to compute flame spread rate because formulas are not completely available, rates may not be steady, and fuel properties are not generally available. Nevertheless, we can estimate approximate magnitudes for spread rates based on the type of system. These estimates are listed below:

Spread	Rate (cm/s)
Smoldering solids	0.001 to 0.01
Lateral or downward spread thick solids	on 0.1
Upward spread on thick soli	ds 1.0 to 100. (0.022 to 2.2 mph)
Horizontal spread on liquids	1.0 to 100.
Premixed flames (gaseous)	10. to 100.(laminar)
	$\approx 10^5$ (detonations)
Fire PRA Workshop, 2010, Washington DC A Introduction to Fire Analysis Re	Collaboration of U.S. NRC Office of Nuclear Regulatory 11 search (RES) & Electric Power Research Institute (EPRI)

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis

• See NUREG-1824

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 15

Parameter				Fire Model		
		FDT ^S	FIVE-Rev1	CFAST	MAGIC	FDS
Hot gas layer temperature ("upper layer temperature")	Room of Origin	YELLOW+	YELLOW+	GREEN	GREEN	GREEN
	Adjacent Room	N/A	N/A	YELLOW	YELLOW+	GREEN
Hot gas layer height ("layer interface height")		N/A	N/A	GREEN	GREEN	GREEN
Ceiling jet temperature ("target/gas temperature")		N/A	YELLOW+	YELLOW+	GREEN	GREEN
Plume temperature		YELLOW-	YELLOW+	N/A	GREEN	YELLOW
Flame height		GREEN	GREEN	GREEN	GREEN	YELLOW
Oxygen concentration		N/A	N/A	GREEN	YELLOW	GREEN
Smoke concentration		N/A	N/A	YELLOW	YELLOW	YELLOW
Room pressure		N/A	N/A	GREEN	GREEN	GREEN
Target temperature		N/A	N/A	YELLOW	YELLOW	YELLOW
Radiant heat flux		YELLOW	YELLOW	YELLOW	YELLOW	YELLOW
Total heat flux		N/A	N/A	YELLOW	YELLOW	YELLOW
Wall temperature		N/A	N/A	YELLOW	YELLOW	YELLOW
Total heat flux to walls		N/A	N/A	YELLOW	YELLOW	YELLOW

8

Fire Scenario Time Line

- 1. Starts with a specific ignition source
- 2. Fire growth involving the affected fuel,
- 3. Heat transfer from the fire to other items within the zone of influence,
- 4. Damage of the affected items (e.g., cables and equipment items),
- 5. Propagation of the fire to other materials,
- Detection of the fire (Note: this step could occur right after #2, or even #1 if there is very early warning smoke detection present)
- 7. Automatic initiation of suppression systems of the area,
- 8. Fire brigade response,
- 9. Successful fire extinguishment.

Fire PRA Workshop, 2010, Washington DC Introduction to Fire Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) 3

