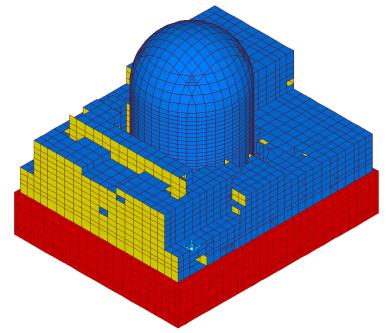
Pre-Application Review Meeting

- 1. Seismic Analysis of APR1400
- 2. Seismic Design of RCS, RI and Core
- 3. Plan for New CSDRS


Pre-Application Review Meeting Seismic Analysis of APR1400

Introduction Design Ground Motion Site Soil Condition Seismic Analysis Method Conclusions

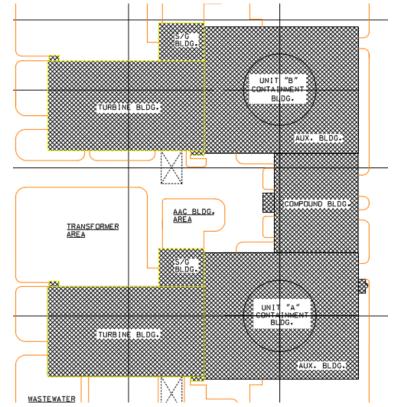
Introduction

Overview

Scope and Classification Regulatory Requirements Computer Programs Analysis and Design Flow

Overview

- Purpose
 - Introduce seismic analysis procedures performed for APR1400 (received DC from Korean Regulatory Agency in 2002)
 - Examine proposed seismic analysis update plan for APR1400 to meet new information and updated regulatory requirements
 - CEUS seismic source study
 - SSI methodology including incoherent input motion effects


Overview (cont'd)

- Standard design
 - Design ground response spectra (DGRS) reinforced over RG1.60 design response spectra are defined
 - Various soil conditions cover most of potential site characteristics
- Seismic design requirements
 - SSE PGA: 0.3g
 - OBE elimination in design base
 - OBE = $1/3 \cdot SSE$

Scope and Classification

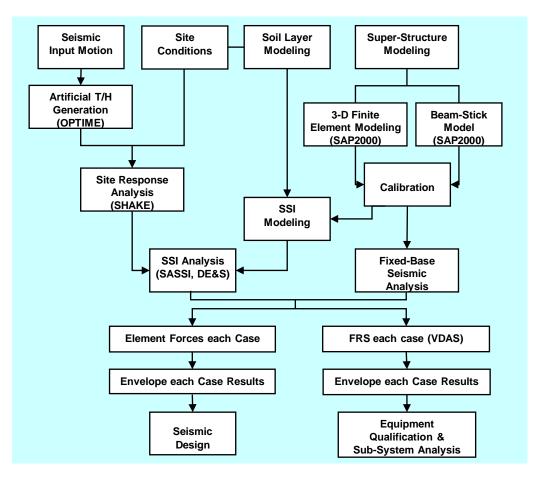
- Design scope : Nuclear Island structures (Containment and Auxiliary Buildings), Turbine Building, Compound Building, and Switchgear Building
- Seismic classification in scope
 - Seismic Category I
 - Containment Building
 - Auxiliary Building
 - Seismic Category II
 - Turbine Building
 - Compound Building
 - Switchgear Building

Regulatory Requirements

- <u>10 CFR Part 50, App. S:</u> Earthquake Engineering Criteria for Nuclear Power Plants
- <u>10 CFR Part 100, App. A:</u> Seismic and Geologic Siting Criteria for Nuclear Power Plants
- <u>Reg. Guide 1.60</u>: Design Response Spectra for Seismic Design of Nuclear Power Plants
- <u>Reg. Guide 1.61 (Rev.1)</u>: Damping Values for Seismic Design of Nuclear Power Plants
- <u>Reg. Guide 1.92 (Rev.2)</u>: Combining Modal Responses and Spatial Components in Seismic Response Analysis

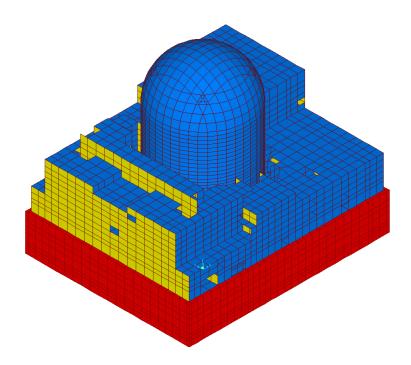
6

- <u>SRP 3.7.1 (Rev.3)</u>: Seismic Design Parameters
- <u>SRP 3.7.2 (Rev.3)</u>: Seismic System Analysis



Computer Programs

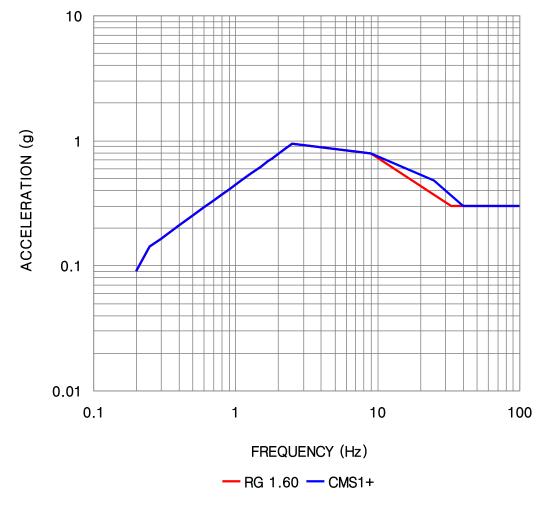
- Design ground motion
 - OPTIME: artificial time history generation
- Modal analysis
 - SAP2000: modeling and modal analysis of super-structures
- Soil/Structure Interaction
 - SHAKE: site response analysis
 - SASSI(Rev. 4.0, DE&S): SSI analysis used for SYSTEM 80+ design
- Response spectrum generation
 - VDAS (Rev. 1): FRS calculation and plot


Analysis and Design Flow

2nd Pre-application Meeting

Design Ground Motion

Design Ground Motion Response Spectra Design Ground Motion Time History



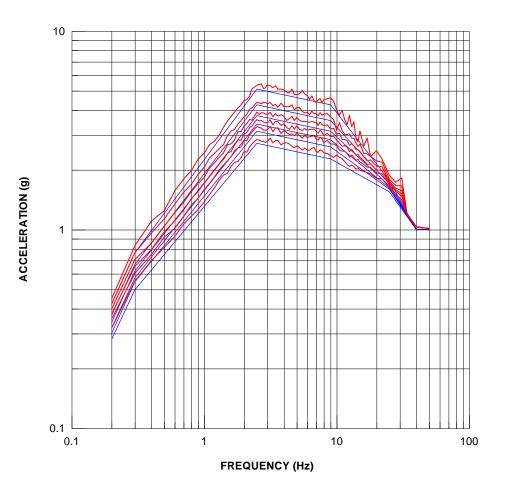
Design Ground Motion Response Spectra

- CMS1+ was used for APR1400 design
 - 30% higher at 25 Hz than RG 1.60
 - LLNL & EPRI research results on the seismic hazard analysis of CEUS
 - "Revised Livermore Seismic Hazard Estimates for Sixty-Nine Nuclear Power Plant Sites East of Rocky Mountains," NUREG-1488, April 1994.
 - "Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountain," NUREG/CR-5250, January 1989.
 - "Seismic Hazard Methodology for the Central and Eastern United States," EPRI Report NP-4726, November 1988.
- We are aware of CEUS source characterization ongoing study

Design Ground Motion Response Spectra (cont'd)

Horizontal Spectral Amplifications for CMS1+ and RG 1.60 Spectrum (5% Damping)

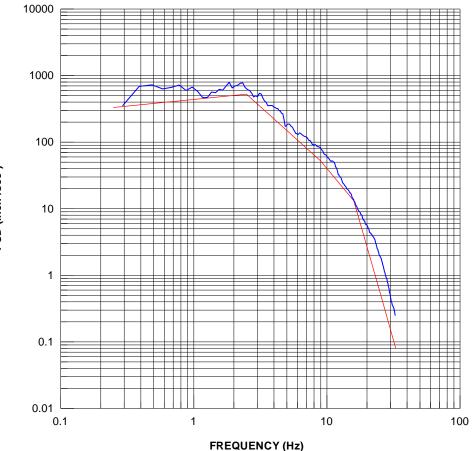
2nd Pre-application Meeting


Design Ground Motion Time History

- Three orthogonal design acceleration time histories were used.
 - Artificial earthquake motion using random vibration theory
 - Enveloping multi-damping design response spectra of TH's responses
 - Satisfying PSD requirements of SRP 3.7.1, Appendix A.
 - Cross-correlation coefficients: less than 0.3 (ASCE 4-98)
- We will generate new design ground motion time history to meet revised SRP 3.7.1
 - The recorded earthquake motion instead of artificial TH will be used in accordance with SRP 3.7.1(Rev. 3)
 - Cross-correlation coefficients: less than 0.16 (SRP 3.7.1, Rev. 3)

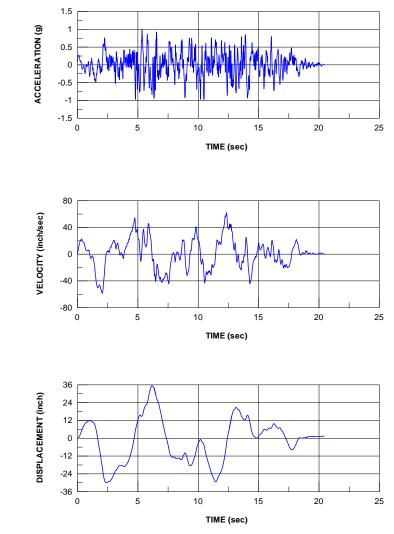
12

Design Ground Motion Time History (cont'd)



Comparison of Response Spectra for N-S Component and DGRS (Anchored to 1.0g, 1, 2, 3, 4, 5 and 7% Damping)

Design Ground Motion Time History (cont'd)

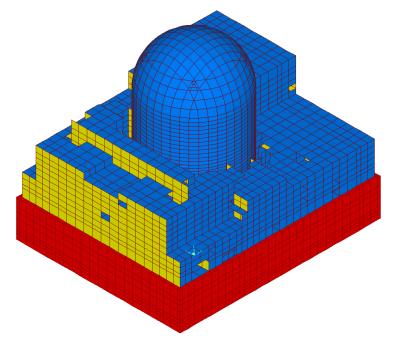


Comparison of PSD Function (N-S Component)

PSD (inch²/sec³)

Design Ground Motion Time History (cont'd)

Time History Plots for N-S Component (Anchored to 1.0g)



Site Soil Condition

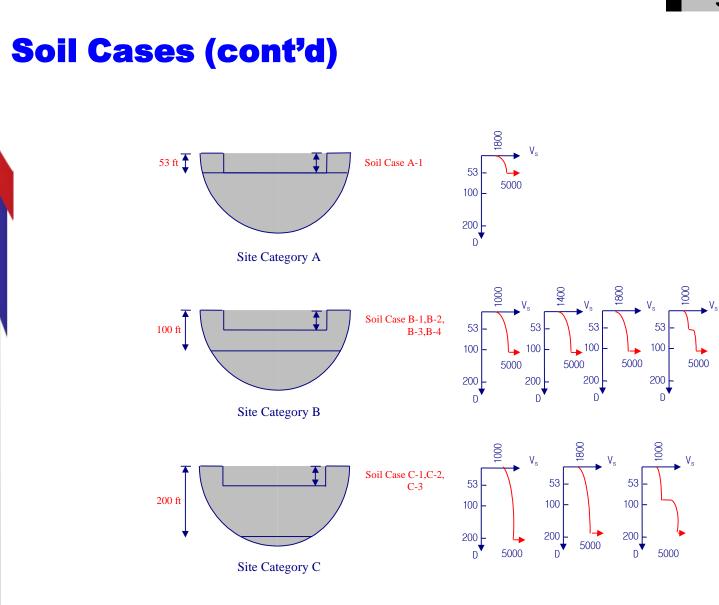
Site Soil Condition

Soil Cases

Generic Soil Profiles

Site Soil Condition

- Generic sub-surface profile: one hard rock case & 8 soil cases (9 cases)
- Based on bed rock depth, divided into 3 categories
 - 53 ft (to foundation bottom)
 - 100 ft
 - 200 ft
- For each category, soil cases are defined based on shear wave velocity distribution


Site Soil Condition

CATEGORY A	CATEGORY B	CATEGORY C
Ground Surface		
Soil	Soil	Soil
Rock @ Embedment Depth of 53 ft	Embedment Depth	Embedment Depth
	Rock @ 100 ft	
		Rock @ 200 ft

Soil Cases

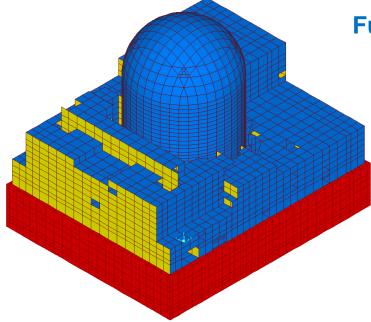
- Category A: bed rock depth 53 ft below ground surface
 - Vs = 1,800 fps at GS: A1 (stiff)
- Category B: bed rock depth 100 ft below ground surface
 - Vs = 1,000 fps at GS : B1 (soft)
 - Vs = 1,400 fps : B2 (medium)
 - Vs = 1,800 fps : B3 (stiff)
 - Vs = 1,000 fps + 1800 fps: B4 (stepwise)
- Category C: bed rock depth 200 ft below ground surface
 - Vs = 1,000 fps at GS : C1 (soft)
 - Vs = 1,800 fps : C2 (stiff)
 - Vs = 1,000 fps + 1800 fps: C3 (stepwise)

2nd Pre-application Meeting

KEDCO

Generic Soil Profiles

- Criterion for fixed base assumption has been changed from 3,500 fps to 8,000 fps (SRP 3.7.2, Rev.3).
 - Will be incorporated in new soil profiles
- After reviewing CEUS information, we will revise generic soil profile.

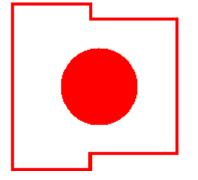

Seismic Analysis Method

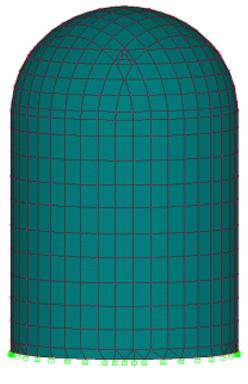
Modeling

Soil/Structure Interaction Analysis

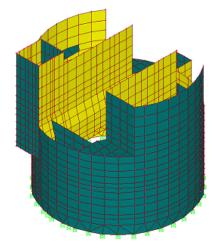
SSI Analysis Results (Design Parameters)

Future Plan for SSI evaluation



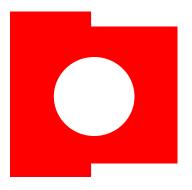

Modeling

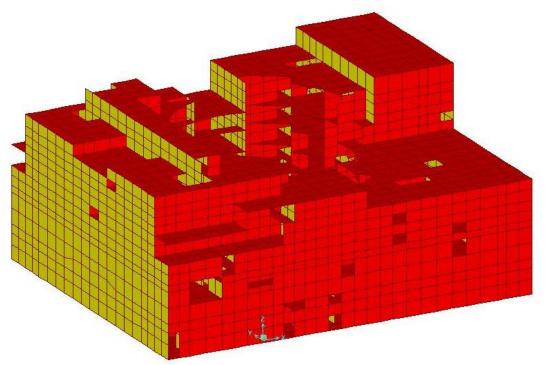
- Super-structure model
 - Common basemat: shared by Containment and Auxiliary Buildings
 - Containment and Auxiliary Buildings are separated above basemat
- Three-dimensional finite element model
 - Verification for lumped mass beam-stick model
 - Mode shapes, frequencies, mass participation factors
 - Structural analysis
- Lumped mass beam-stick model
 - Containment Building: Containment, Internal Structure (PSW,SSW), RCS, etc
 - Auxiliary Building: four areas are converted independently to beamstick model and linked with beams representing wall stiffness.
- Damping ratio in SSE: RG 1.61



Modeling (cont'd)

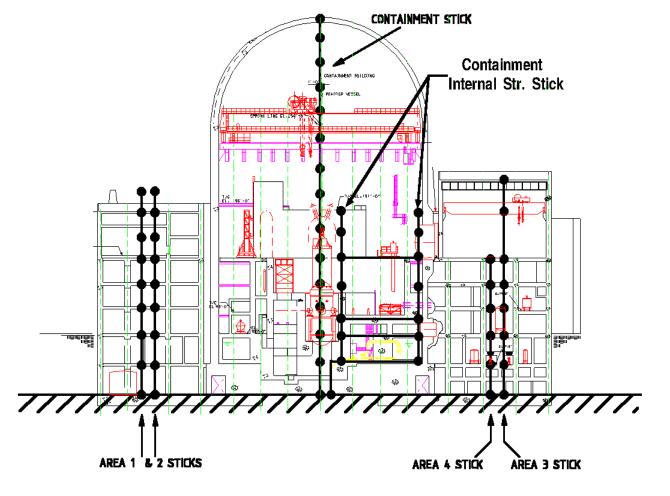
(a) Containment Shell


(b) Internal Structure


Model of Reactor Containment Building

Seismic Analysis

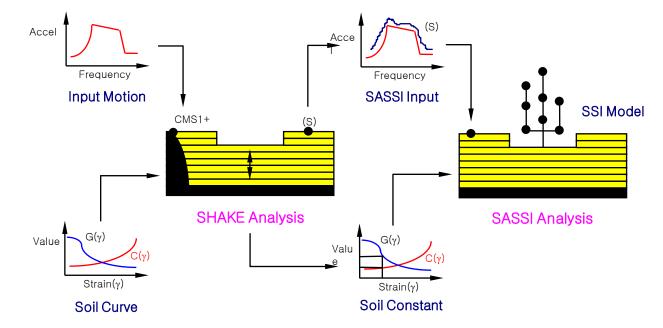
Modeling (cont'd)



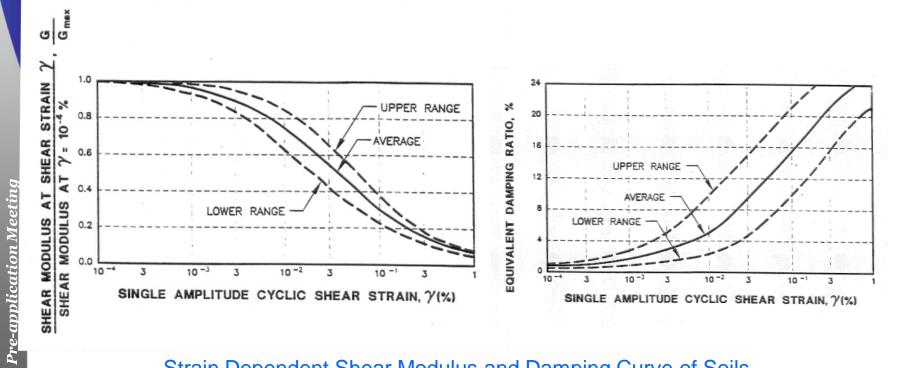
FE Model of Auxiliary Building

2nd Pre-application Meeting

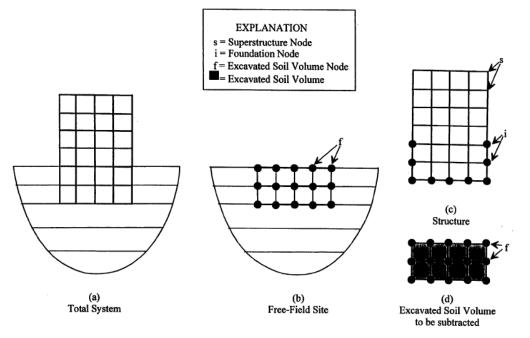
Modeling (cont'd)


Beam-Stick Model of NI

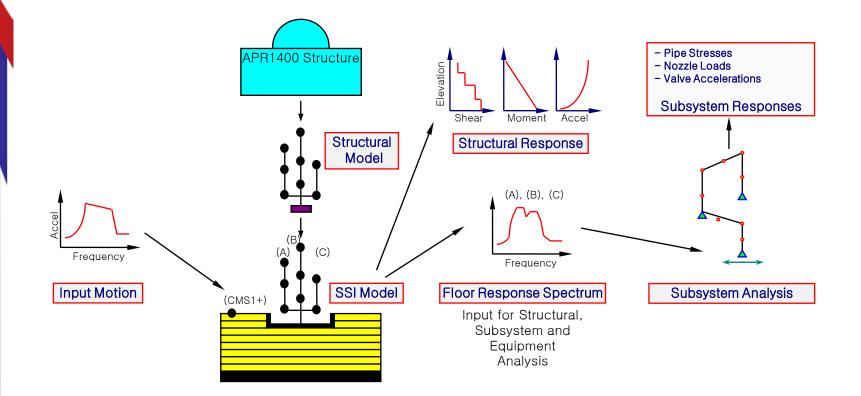
Soil/Structure Interaction


- Site response analysis
 - Input CMS1+ at free field ground surface
 - Eight soil cases
 - One-dimensional wave propagation analysis using SHAKE91

Site Response Analysis Flow

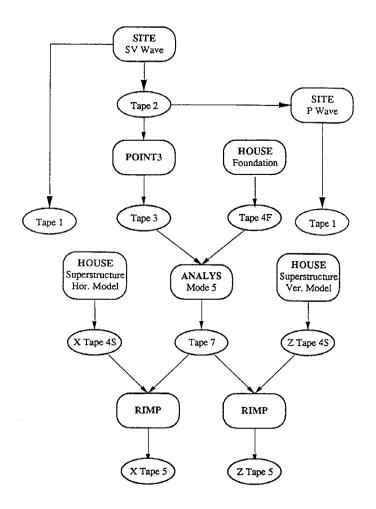

- Site response analysis (cont'd)
 - "Guidelines for determining design basis ground motions." EPRI, vol. 1 5, EPRI TR-102293, 1993.

Strain Dependent Shear Modulus and Damping Curve of Soils


2nd

- SASSI(DE & S): sub-structure method
- Eight SSI analysis system: combining super-structure model with each different soil model
- SASSI analyses of each SSI System

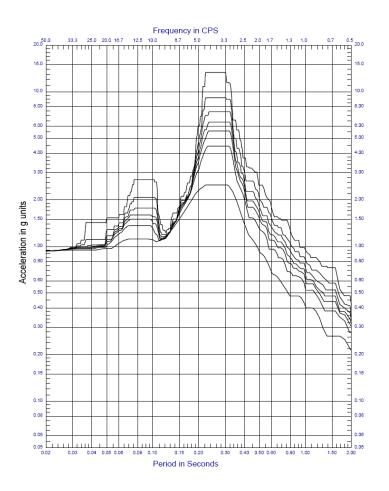
SASSI Flexible Volume Sub-Structuring Method



SSI Analysis Procedure

2nd Pre-application Meeting

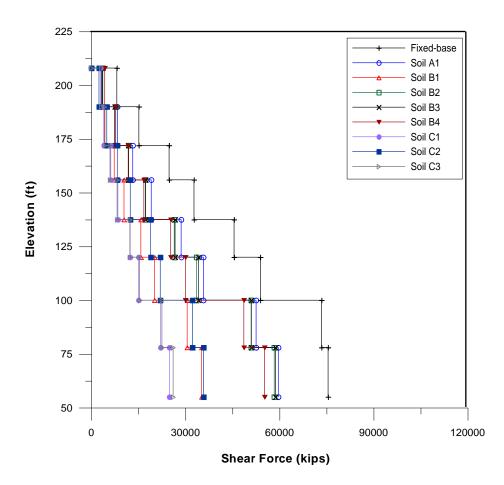
- RIMP module
 - An alternative method to obtain impedance matrix on the large size foundation model is used for APR1400 SSI analysis
 - Using SASSI module RIMP, foundation can be treated as a rigid body
 - In SASSI module ANALYS, flexibility matrix of all interaction nodes can be transformed into the flexibility matrix of a single point


SSI Analysis Flow using RIMP module

2nd Pre-application Meeting

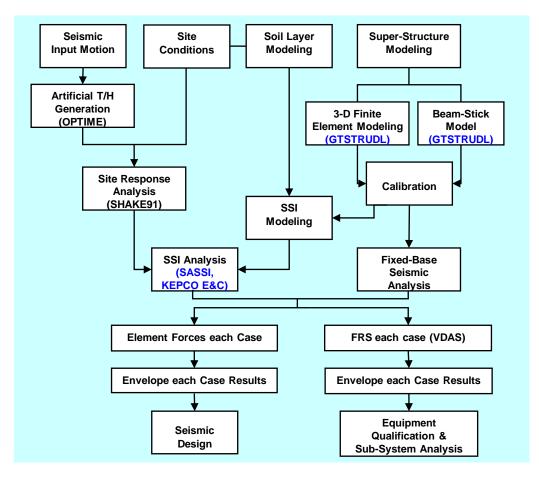
SSI Analysis Results (Design Parameters)

32


- All seismic design parameters such as forces, displacement and instructure response spectra are obtained from SSI analyses using SASSI program.
 - Member forces: axial and shear forces, moments, displacements, etc.
 - Broadened In-Structure FRS calculation
 - Envelope of all soil cases
 - FRS peak: 15% widening

SSI Analysis Results (Design Parameters)

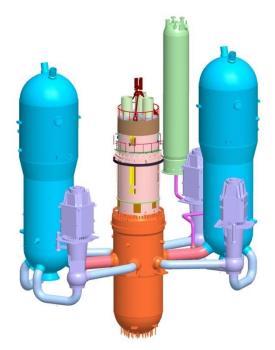
Shear Force Diagram of Auxiliary Building


2nd Pre-application Meeting

Future Plan for SSI evaluation

- KEPCO E&C's Experiences of SASSI evaluation
 - We adopted SASSI, UC-Berkeley V. since 1994.
 - Joint efforts with KEPCO E&C and DE&S on modeling and analysis
 - SASSI program has been used for SSI analysis for various nuclear power plant structures by KEPCO E&C engineers.
 - KEPCO E&C has participated in international research projects.
 - Hualien LSST by EPRI
 - IAEA CRP: Safety Significance of Near Field Earthquakes
 - IAEA-EBP: Seismic Safety of Existing Nuclear Power Plants

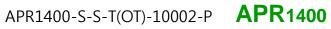
Future Plan for SSI evaluation (cont'd)


Conclusions

- Seismic analysis of APR1400 was performed for standard NPP development in accordance with the regulatory requirements in effects as of 2002.
- We reviewed revised regulatory requirements
 - Recorded earthquake will be used for design time history and modified to satisfy all codified requirements.
 - New site soil conditions will be extended to stiffer site according to the recently revised rigid base assumption.
- An approach to incorporate new CEUS source information will be discussed in upcoming session

Seismic Design of RCS, RI and Core

Overview of Seismic Design Seismic Analysis for RCS, RI and Core Revised Regulatory Guides Summary



Overview of Seismic Design

Regulations and Guides Codes and Standards Seismic Classification

1

Regulations And Guides

- Regulations
 - 10 CFR Part 50 Appendix A, General Design Criteria 2,
 "Design Bases for Protection against Natural Phenomena"
 - 10 CFR Part 50 Appendix S,
 - "Earthquake Engineering Criteria for Nuclear Power Plants"
 - OBE elimination

•

- Safe Shutdown Earthquake (SSE) : 0.3g
- Operating Basis Earthquake (OBE) : 1/3 SSE

Regulations And Guides

- Regulatory Guides
 - R.G. 1.29, Seismic Design Classification, Rev.04
 - R.G. 1.61, Damping Values for Seismic Design, Rev.01
 - R.G. 1.92, Combining Modal Responses and Spatial Components in Seismic Response Analysis, Rev.02
 - R.G. 1.122, Development of Floor Design Response Spectra for Seismic Design of Floor-Supported Equipment or Components, Rev.01
- Standard Review Plan
 - SRP 3.2.1, Seismic Classification
 - SRP 3.7.2, Seismic System Analysis
 - SRP 3.7.3, Seismic Subsystem Analysis

Codes and Standards

- ASME Code Section III, Division 1 Appendices Nonmandatory Appendix N, "Dynamic Analysis Methods"
- ASCE Standard 4-98, "Seismic Analysis of Safety-Related Nuclear Structures"

Seismic Classification

- Seismic classification : R.G. 1.29 Rev.04
 - Seismic Category I
 - SSCs which are important to safety and designed to remain functional in the event of SSE
 - Non-Seismic Category I
 - Seismic Category II

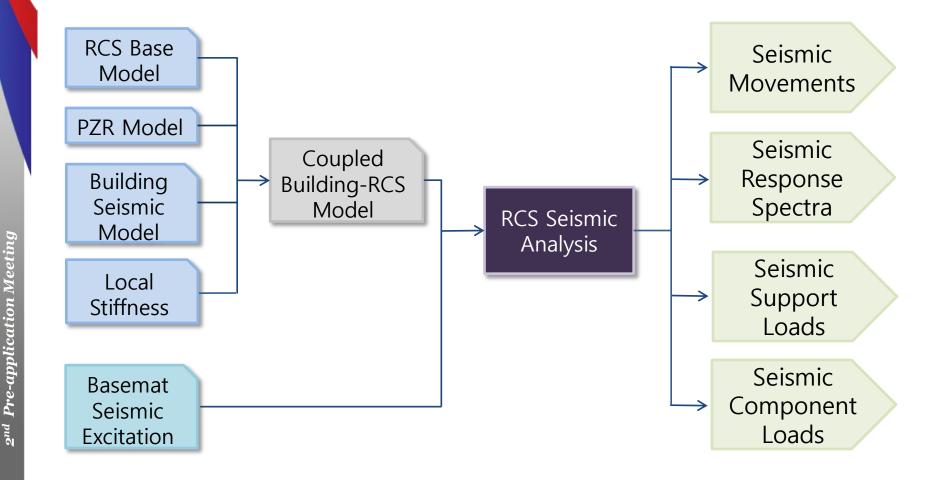
SSCs whose continued function is not required but whose failure could reduce the function of a Seismic Category I structures, systems, and components to an unacceptable safety level or could result in incapacitating injury to occupants of the control room

Non-Seismic Category

Structures, systems and components classified as neither Seismic Category I nor II.

Seismic Analysis for RCS, RI and Core

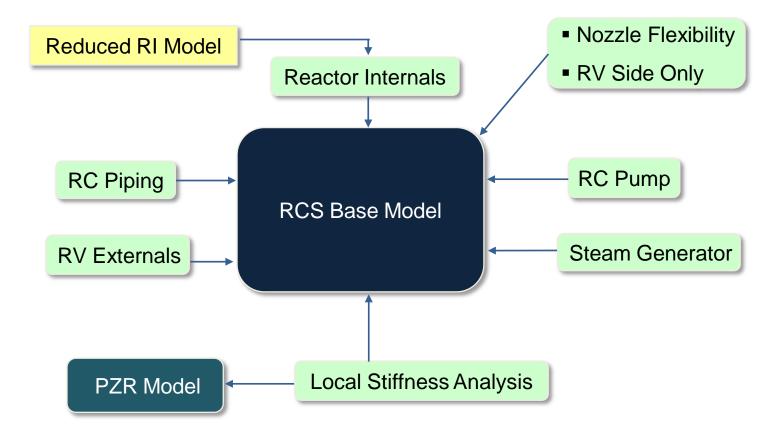
Seismic Analysis for RCS Seismic Analysis for RI Seismic Analysis for Core


Seismic Analysis for RCS

- Procedure of RCS Seismic Analysis
- RCS Seismic Analysis Methods
- Analytical Modeling of RCS
- Damping of RCS Seismic Analysis
- Outputs of RCS Seismic Analysis

Procedure of RCS Seismic Analysis

8

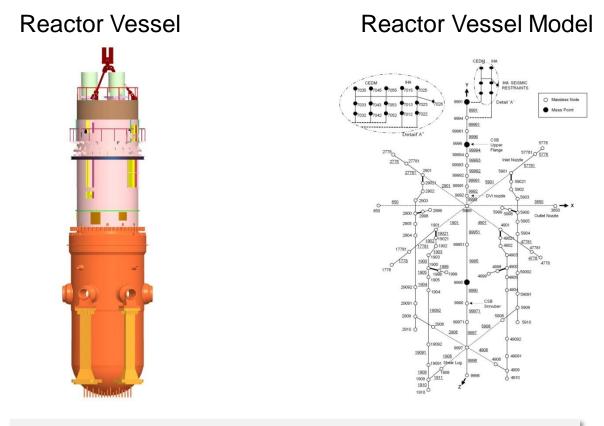


RCS Seismic Analysis Methods

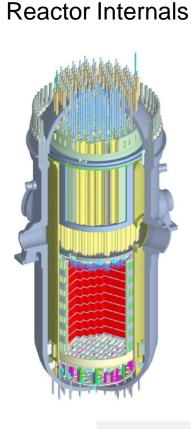
- Model
 - Coupled Building-RCS model
- Excitation
 - Acceleration time histories at basemat
 - Time step : 0.005 sec
 - Duration : 20.48 sec
- Analysis Code : ANSYS
- Linear time history analysis
 - Mode superposition method

Components of RCS Base Model

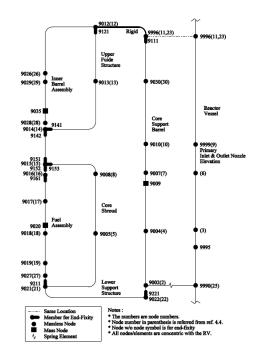
- RCS Modeling
 - 3D Lumped Mass Beam Model
 - RCS Base model includes
 - · RV with RI, IHA and CEDM
 - Two SGs with Internals
 - Four RCPs with Motors
 - Two Hot Legs
 - · Four Cold Legs
 - Pressurizer
 - RCS supports are modeled as linear supports
 - Local stiffness at the junctions of nozzles and lugs


- RCS Modeling
 - Modeling Criteria
 - Maintain total mass
 - · Maintain center of gravity
 - Maintain second moment of inertia
 - · Maintain fundamental frequency

RCS Modeling

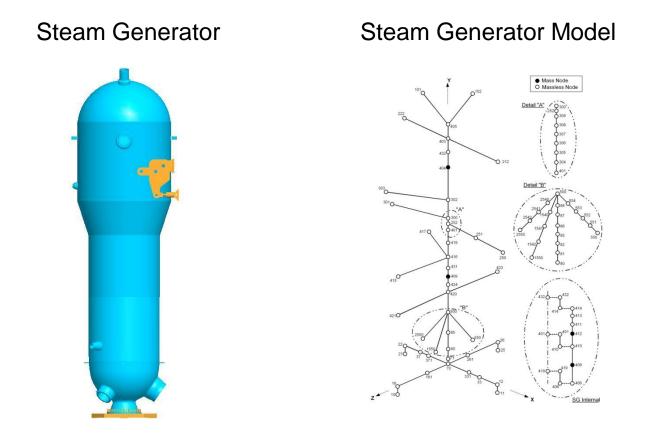

RV with RI, IHA and CEDM : 21 MPs, 61 DDOFs

13



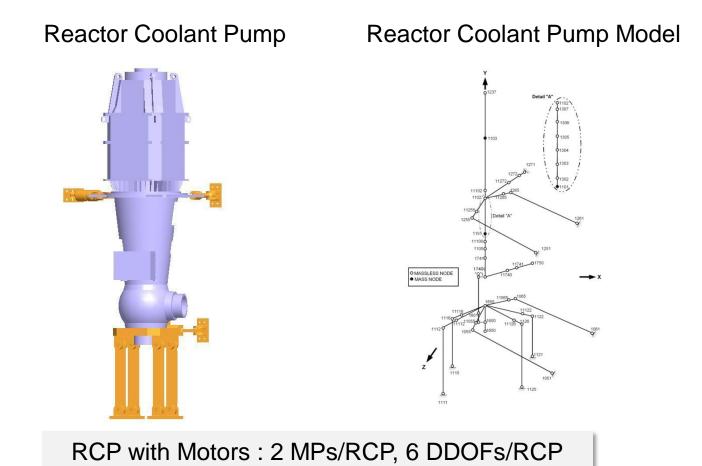
RCS Modeling

Reduced Reactor Internals Model



Reduced RI: 3 MPs, 9 DDOFs

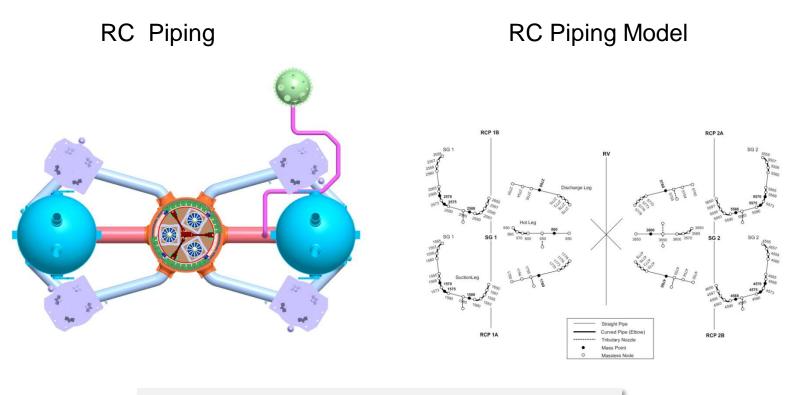
RCS Modeling


APR1400-S-S-T(OT)-10002-P

CEPCO

SG with Internals : 4 MPs/SG, 10 DDOFs/SG

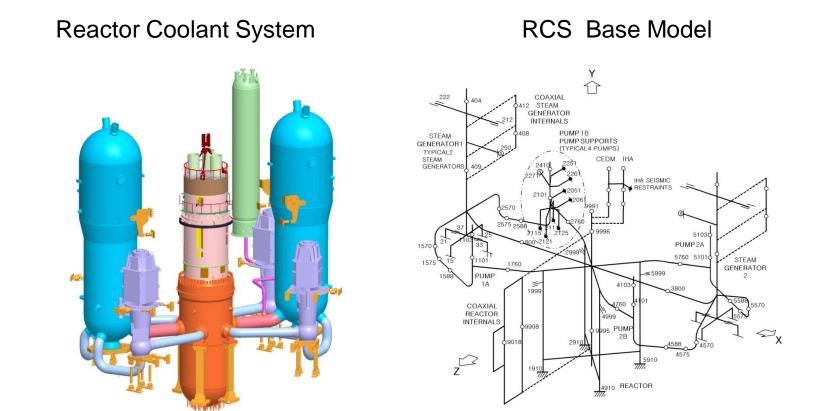
RCS Modeling



ŒŊ

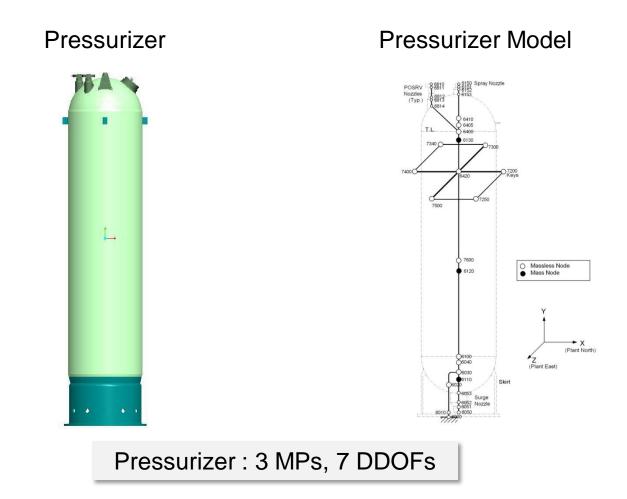
APR1400-S-S-T(OT)-10002-P

RCS Modeling


Hot Legs : 1 MP/HL, 2 DDOFs/HL

Cold Legs : 4 MPs/CL, 12 DDOFs/CL

RCS Modeling



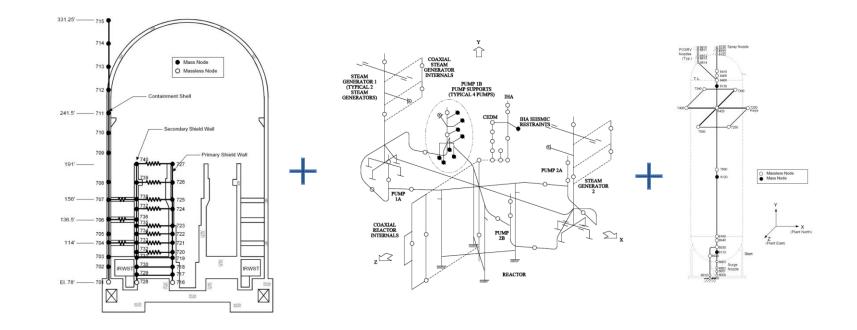
RCS Model : 55 MPs, 157 DDOFs

RCS Modeling

- Coupled Building-RCS Model
 - Building model compatible with RCS model
 - · 3-D beam model with lumped mass
 - · 37 MPs and 222 DDOFs
 - Primary and Secondary Shield Wall
 - Containment Shell
 - Connect RCS supports members to building model using local stiffnesses
 - Maintain boundary conditions at support locations

20

• Perform modal analysis to confirm coupling



Coupled Building-RCS Model

Containment Building Model RCS Base Model

PZR Model

Damping for RCS Seismic Analysis

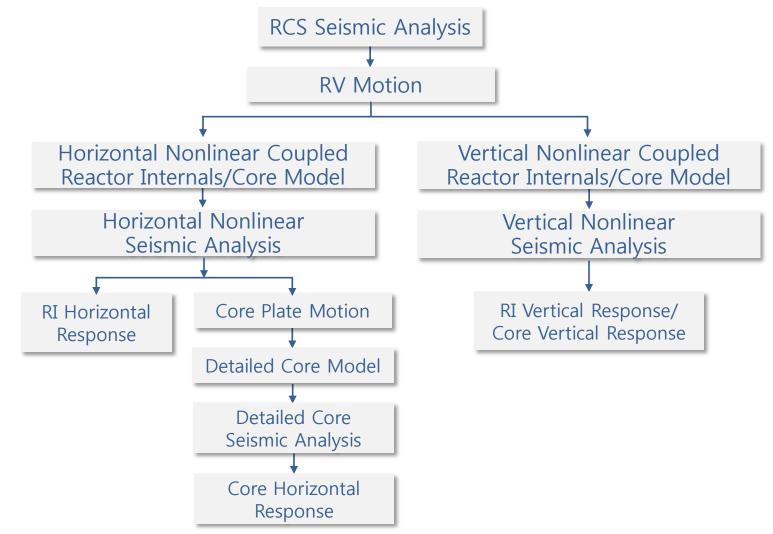
- Damping values consistent with R.G. 1.61 to each member
- Composite modal damping based on the stiffness of each member

Outputs of RCS Seismic Analysis

- Forces and moments for RCS component supports and structural components
- Forces and moments for RCS piping & nozzle
- Max. displacements at branch nozzles
- Design response spectra for RCS components

23

- Response time histories and spectra for
 - RI analysis
 - CEDM, IHA & ICI analysis
 - Surge line analysis
 - Branch piping analysis


Seismic Analysis for RI

- Procedure of RI Seismic Analysis
- RI Seismic Analysis Methods
- Analytical Modeling of RI
- Damping of RI Seismic Analysis
- Outputs of RI Seismic Analysis

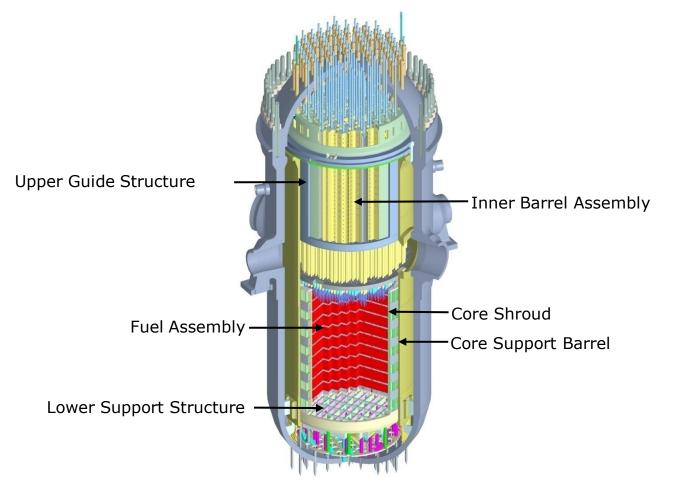
Procedure of RI Seismic Analysis

RI Seismic Analysis Methods

- Model
 - Coupled Reactor Internals and reduced Core model
- Excitation
 - Horizontal acceleration time histories at RV Flange and Core Stabilizing Lug
 - Vertical acceleration time history at RV Flange

26

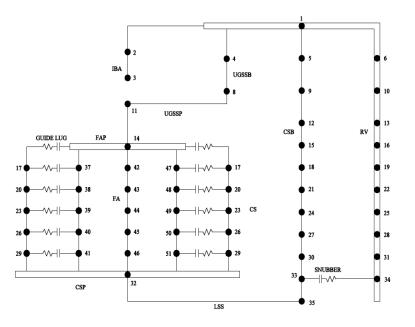
- Analysis Code : CESHOCK
- Non-linear time history analysis
 - Direct integration method



- Reactor Internals Model includes
 - Core Support Barrel
 - Upper Guide Structure
 - Lower Support Structure
 - Inner Barrel Assembly
 - Core Shroud
 - Fuel Assemblies

Reactor Internals

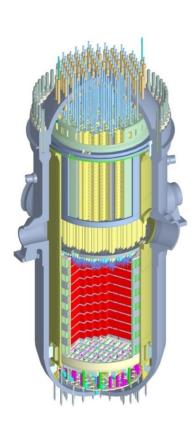
- Reactor Internals Model
 - 2-D lumped mass-spring model
 - · Reactor Internals Horizontal Mass-Spring Model
 - Reactor Internals Vertical Mass-Spring Model
 - Coupled Reactor Internals and reduced Core model



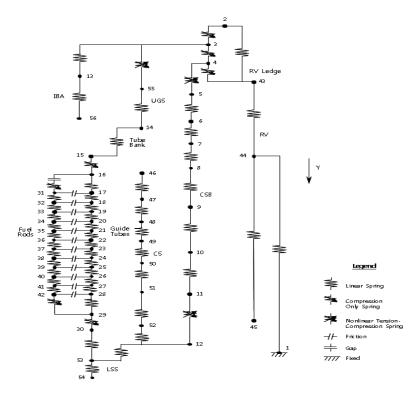
Modeling of Reactor Internals

Reactor Internals

Reactor Internals Horizontal Mass-Spring Model



🏈 κερсο



Modeling of Reactor Internals

Reactor Internals

Reactor Internals Vertical Mass-Spring Model

🏈 κερсο

2nd Pre-application Meeting

31

APR1400-S-S-T(OT)-10002-P

APR1400

Damping of RI Seismic Analysis

- Reactor internal components for SSE : 4%
- Fuel assembly for SSE : based upon the results of full scale forced vibration tests for fuel assembly
- Composite mass damping and stiffness damping

Outputs of RI Seismic Analysis

- Forces and moments for Reactor Internal components
- Response spectra for subcomponent analyses
- Core Plate motions for the analysis of detailed Core

Seismic Analysis for Core

- Detailed Core Seismic Analysis Methods
- Analytical Modeling of Detailed Core
- Damping of Detailed Core Seismic Analysis
- Outputs of Detailed Core Seismic Analysis

Detailed Core Seismic Analysis Methods

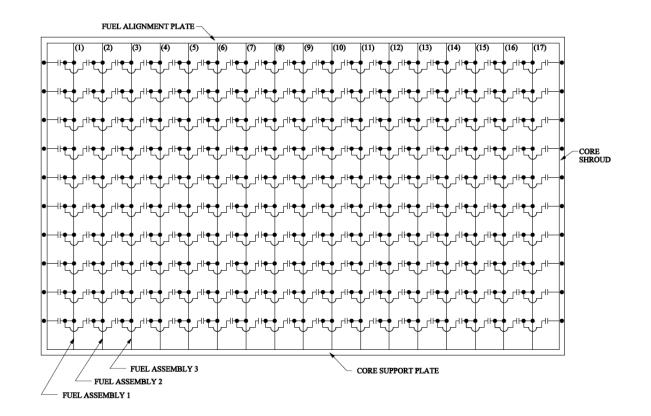
- Model
 - Detailed core model
- Excitation
 - Horizontal displacement time histories at fuel alignment plate, core support plate and core shroud
- Analysis Code : CESHOCK
- Non-linear time history analysis
 - Direct integration method

2nd Pre-application Meeting

Analytical Modeling of Detailed Core

- Detailed Core Modeling
 - Non-linear core model for various numbers of fuel assemblies per row across the core
 - Nonlinear spring coupling for the gap
 - Energy dissipation during grid impact
 - Incorporated into the model by use of the coefficient of restitution
 - All fuel assembly properties are based upon test data for PLUS7 fuel

36



Analytical Modeling of Detailed Core

Detailed Core Modeling

17 Row Core Model

KEDCO

Damping of Detailed Core Seismic Analysis

- Fuel assembly for SSE : based upon the results of full scale forced vibration tests for fuel assembly
- Mass and stiffness damping

Outputs of Detailed Core Seismic Analysis

- Peak spacer grid impact loads
- Maximum axial loads of fuel assembly
- Deflected shapes of fuel assembly at the time of peak displacement, shear force and moment

Revised Regulatory Guides

R.G. 1.61 : Damping Values for Seismic Design of Nuclear Power Plants R.G. 1.92 : Combining Modal Responses and Spatial Components in Seismic Response Analysis

Regulatory Guide 1.61 Rev. 1

- Title
 - Damping Values for Seismic Design of Nuclear Power Plants
- Issue date : March, 2007
- Major Change of Regulatory Guide from Rev. 0
 - More realistic damping values for seismic design and analysis of SSCs
 - Structural Damping
 - \checkmark To use the damping-compatible structural response for instructure response spectra generation
- Plan
 - R.G. 1.61 Rev.1 will be applied to seismic analysis for RCS, RI and Core of the APR1400.

2nd Pre-application Meeting

Regulatory Guide 1.92 Rev. 2

Title

Combining Modal Responses and Spatial Components in Seismic Response Analysis

- Issue Date : July, 2006
- Major Change of Regulatory Guide from Rev. 1
 - Combination of Individual Modal Responses
 - The residual rigid response of the missing mass mode should be addressed.
 - Combination of Spatial Components
 - 100-40-40 percent combination rule can be used as an alternative to the SRSS method.
- Plan
 - R.G. 1.92 Rev.2 will be applied to seismic analysis for RCS, RI and Core of the APR1400.

2nd Pre-application Meeting

Summary

- The seismic analyses for RCS,RI and Core of the APR1400 are performed according to the regulations and guides, and codes and standards of U.S.
- Regulatory guides issued after the current design of the APR1400 regarding the seismic analysis will be implemented.
 - We do not expect any substantial change in the seismic analyses for RCS,RI and Core of the APR1400

^{2nd} Pre-application Meeting

Pre-Application Review Meeting Plan for New CSDRS

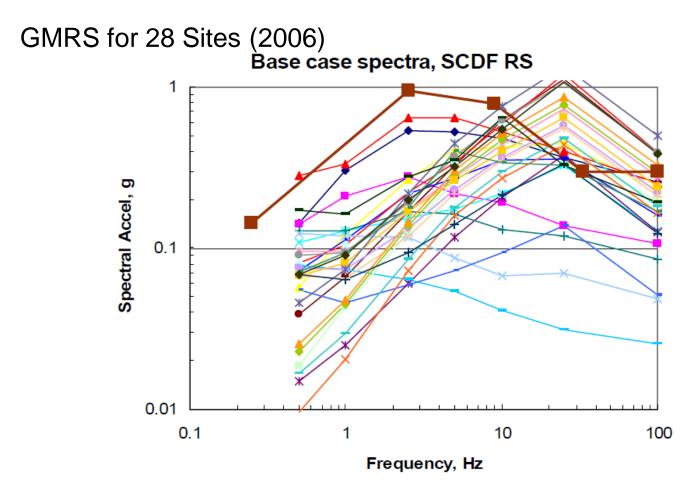
Background

ISG-01 Review

Approach for Incoherent Input Motion Effects

KEPCO E&C's Experience with Incoherent Input Motion Techniques

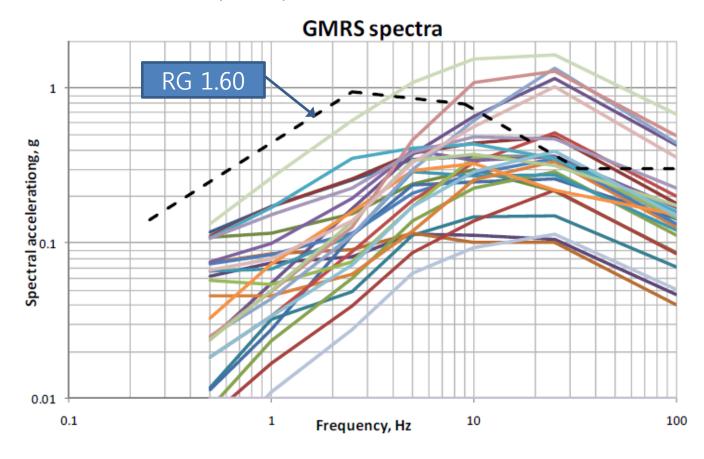
Incoherent Input Motion Effects


Considerations on Incorporating Incoherent Input Motion Effects

Points of Discussion

Background

- Recent studies on CEUS seismic hazard show an increase in the high frequency motion, particularly for rock sites.
 - Program on Technology Innovation: Sensitivity of Performance-Based Approaches for Determining the Safe Shutdown Earthquake Ground Motion for New Plant Sites(EPRI, 2006)
 - Assessment of Seismic Hazard at 34 U.S. Nuclear Plant Sites(EPRI, 2008)
- Ongoing EPRI/DOE CEUS project will generate an updated seismic source characterization in the near future.
- KEPCO is examining its impact on the APR1400 design to define a new CSDRS.
- We would like to better understand NRC staff position on incoherent input motion consideration during DC/COL stage.
 - COL-DC-ISG01 states NRC's position on the incoherent input motion effects in SSI analysis.



Program on Technology Innovation: Sensitivity of Performance-Based Approaches for Determining the Safe Shutdown Earthquake (SSE) Ground Motion for New Plant Sites(2006)

2nd Pre-application Meeting

• GMRS for 34 Sites (2008)

Assessment of Seismic Hazard at 34 U.S. Nuclear Plant Sites(2008)

2nd Pre-application Meeting

APR1400-S-S-T(OT)-10003-P **APR1400**

- In collaboration with EPRI, we are planning to generate GMRS early next year
 - EPRI program "Site-Specific Hazard Using New CEUS Seismic Source Model"
- CSDRS will be generated from the GMRS information.
- Options for CSDRS
 - Single CSDRS based on RG 1.60 DGRS with high frequency content reinforced
 - Multiple CSDRS representing different soil profiles
- KEPCO expects high frequency content of new CSDRS would be higher than that of CMS1+.
 - We need credit for the application of incoherency input motion technique.

KEDCO

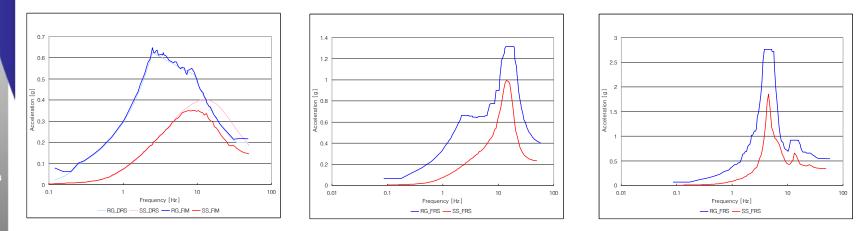
APR1400-S-S-T(OT)-10003-P **APR1400**

ISG-01 Review

- Crediting incoherent input motion technique at COL stage
- Use of computer codes for incoherency analysis
 - SASSI-SRSS, SASSI-SIMULATION, CLASSIinco-SRSS
- Coherency function
 - Hard-rock coherency functions based on the Pinyon Flat Array data
- Evaluation of SSCs
 - Structural modeling including incoherency
 - Show enveloping FRS
- Identification and evaluation of HF sensitive mechanical & electrical equipment/components
 - Screening procedure and justification of HF sensitive equipment/components
 - Justification for screened-out equipment/components
 - Evaluation of screened-in equipment/components

Approach for Incoherent Input Motion Effects

- Response spectrum ratio method
 - Newmark Tau-filtering factor (Newmark, 1976)
 - Reduction factors to ground response spectra (ASCE 4-98, 1999)
 - Ratios of response spectrum (FEMA 440, 2005)
 - Cross-correlation method
 - Long Term Seismic Program of Diablo Canyon NPP (PG&E, 1988; U.S. NRC, 1991)
 - EPRI's studies from 1997 through 2007(EPRI TR-102631; EPRI and U.S. DOE 1015110 & 1015111, 2007)
 - US NRC Regulation (SRP3.7.2, Rev. 3)


KEPCO E&C's Experiences on Incoherent Input Motion Technique

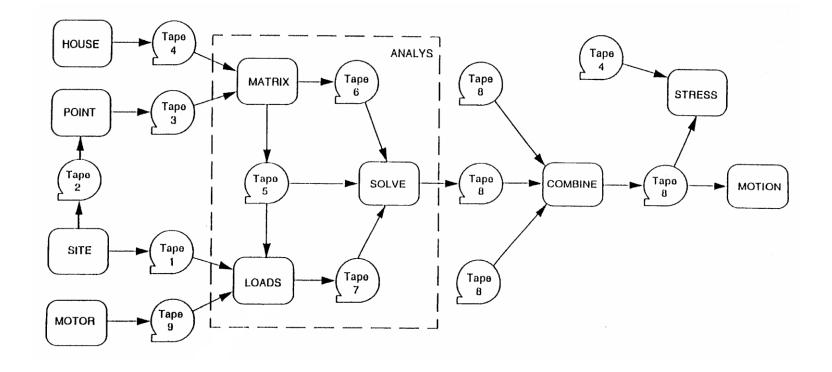
- Parametric studies were carried out in research project.
 - V&V of computer program (ACS-SASSI, SASSI-INCOH)
 - Sensitivity analysis for embedment, basemat dimension, etc
- Evaluation experiences at Wolsong site
 - Seven safety-related PWR structures including Reactor and Auxiliary buildings
 - Fourteen safety-related CANDU type structures including Reactor and Service buildings
 - Under review with Korean nuclear regulatory agency

KEPCO E&C's experiences on incoherent input motion technique (cont'd)

• FRS comparison of w/o incoherency effects to the containment building (FIM, Middle level, and Top level, N-S component)

Incoherent Input Motion Effects

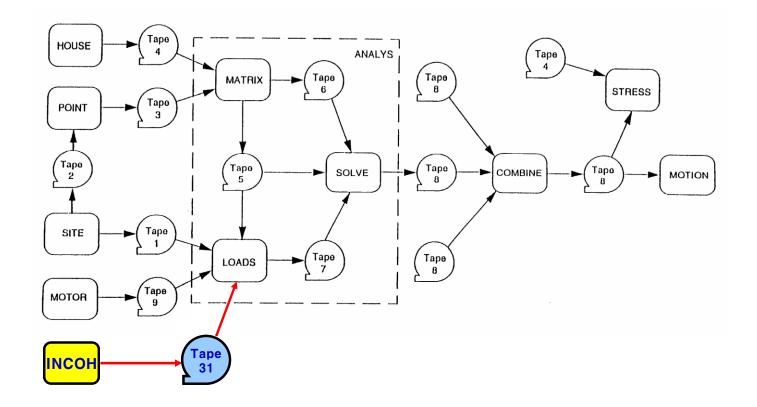
- Implementation of incoherent input motion via SASSI.
- We chose SASSI, UC Berkeley version.
- Methodology
 - Coherency function
 - Empirical coherency function developed by Abrahamson (2007) •
 - Hard rock site
 - Soil site


$$|\gamma(f,\xi)| = \left[1 + \left(\frac{f}{a_1 f_c(\xi)} \tanh(a_3 \xi)\right)^{n_1}\right]^{-1/2} \left[1 + \left(\frac{f}{a_2 f_c(\xi)} \tanh(a_3 \xi)\right)^{n_2(\xi)}\right]^{-1/2}$$

- SASSI-INCOH (KEPCO E&C version, 2009)
 - Recent coherency functions for hard rock and soil sites were implemented
 - INCOH module has been verified for all coherency functions and methodologies by comparing with Abrahamson's coherency models and EPRI verification problems.
 - EPRI and U.S. DOE (2007) Program on Technology Innovation: Effects of Spatial Incoherence on Seismic Ground Motions, 1015110.
 - Tseng, W. S. and Lilhanand, K. (1997). Soil-Structure Interaction Analysis Incorporating Spatial Incoherence of Ground Motion, EPRI, TR-102631. 10 APR1400-S-S-T(OT)-10003-P APR1400

^{2nd} Pre-application Meeting

Incoherent Input Motion Effects (cont'd)

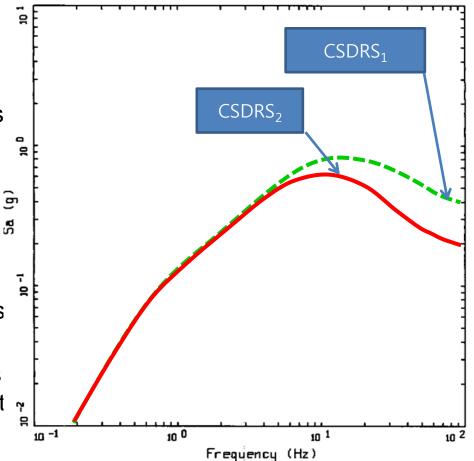

SASSI (UC, Berkeley version)

KEDCO

APR1400-S-S-T(OT)-10003-P **APR1400**

Incoherent Input Motion Effects (cont'd)

SSI Analysis Flow using SASSI-INCOH


Considerations on Incorporating Incoherent Input Motion Effects

- Option 1: Incoherency at the DC stage
 - Coherency model proposed by Abrahamson (2007) will be used.
 - Target high percent CEUS sites to be covered by CSDRS.
 - CSDRS response calculated incorporating incoherency effects
 - Since this would be the first application incorporating incoherency in DC stage, KEPCO is evaluating potential challenges.
 - $CSDRS_1$ = takes into account incoherency effects
 - CSDRS₂ = does not take into account incoherency at the DC stage

Considerations on Incorporating Incoherent Input Motion Effects (cont'd)

- Option 2: Incoherency at the COL stage
 - CSDRS₂ will be defined to cover most CEUS sites once incoherent input motion effects are credited
 - Decrease due to incoherent input motion effects will be calculated from preliminary study(matching FRS from Option 1)
 - Incoherent input motion effects will be applied at COL stage.
 - CSDRS would cover less sites than those of DC stage without taking specific credit for incoherency.

Points of Discussion

- Validation of Incoherency effect analysis considering generic soil profiles in DC stage
- Applicability of coherency function for soil
- Coverage level of APR1400 CSDRS to CEUS in DC stage
- Cutoff frequency above 50 Hz in SSI analysis

