Planning antico mtg w cards 01,.../04

Nuclear

Braidwood Station

Groundwater Tritium Investigation

December 20, 2005

HHY

Agenda

Nuclear

- Introduction Scott Humbard
- Braidwood Site Overview John Moser
- Safety of the Public John Moser
- Status of Investigation Scott Sklenar
- Long Term Plan John Moser
- Summary John Moser

Braidwood Site Overview

Nuclear

- Approximately 4500 acre site with 2500 acre cooling lake
- Tritium generated in reactor coolant from reactor operation
- Circulating water system transfers heat to cooling lake
 - Continuous make-up and blowdown between cooling lake and Kankakee River
 - Vacuum breakers used in blowdown line to prevent damage due to water surges in pipe when flow changes

Braidwood Site Overview

Nuclear

Liquid effluent management

- No tritium (or other liquid radioactive effluents) being released into blowdown line flow until pipe confirmed to be leaktight
 - liquid effluent storage capacity being supplemented with temporary storage tanks

Safety of the Public

Nuclear

- Groundwater sampling identified elevated concentrations of tritium in the shallow groundwater
- Drilled over 100 monitoring wells onsite and offsite to determine extent of tritium migration
- Tested 14 private wells of residents north (downgradient) of the site
 - Thirteen private wells measured less than 142 picocuries per liter (pCi/L)
 - Three readings from one private well were 1151, 1524, 1367 pCi/L
- Calculated radiation associated with highest private well reading is 0.3 millirem per year
- Results of private well sample analysis have been communicated to residents

1020 Samp 1020 Samp 200 pail

Nuclear

Regional Geology

- Fine grained uniform sand ranges in thickness from 15 to 35 feet
- Regional clayey till averages 20 feet thick
- Bedrock formations comprising shales, coal, silt stones, limestone, and sandstones
- Uppermost aquifers uniform sand and bedrock sandstone

Man-made Features

- Coal mining operations
- Borrow pits

Nuclear

Hydrology

- Shallow groundwater flows toward the north
- Geologic barriers exist to vertical downward migration
- Deep bedrock groundwater also flows to the north
- Interaction of groundwater with surface water bodies

Extent of Tritium Plume

- Shallow water-bearing sand
- Surface water bodies
- Deeper water-bearing sand
- Bedrock aquifer

Nuclear

Potential Sources, Transport of Tritium

- Existing evidence indicates the source of the tritium is the blowdown line
- Further investigations focused to confirm whether source is current leak(s), historic spills, or a combination
- Potential transport mechanisms
 - Influence of pond on tritium transport

220,000 perfection where representation of the state of the second state of the second second

Nuclear

Regional Investigation

- Historical review of coal mines and local quarries
- Review of historical aerial photographs
- Survey of public and private drinking water systems north of site
- Development of regional hydrogeologic cross-sections

Nuclear

Field Investigation

- Two onsite shallow sand wells
- 21 onsite deeper sand wells
- 10 offsite shallow wells
- 12 offsite deep wells
- Synoptic round of water level measurements
- Comprehensive round of groundwater samples
- Will sample selected wells weekly
- Installing staff gauges in surface water bodies

Nuclear

Blowdown Line Integrity

- Periodic surveillance of blowdown line vacuum breaker valves to verify no leakage
 - December 9, 2005 surveillance confirmed no leakage
- Special acoustic monitoring test being performed on blowdown pipe to determine if pipe has underground leak
 - Sensor ("microphone") attached to umbilical cable inserted in pipe; water flow pulls sensor through pipe to identify location of leak
 - Test scheduled to be completed December 30, 2005

Nuclear

- Data evaluation and reporting
 - Evaluate data from field investigations and pipeline integrity test in order to:
 - Determine source or sources
 - Define lateral and vertical extent of plume
 - Evaluate risk to human health and environment
 - Develop appropriate future actions including monitoring
- Prepare summary documents of evaluations for regulatory review
- Establish periodic informational update meetings

Long Term Plan

Nuclear

- Project underway to significantly reduce overall liquid tritium discharge from Braidwood
 - Reduce tritium production through enhanced reactor core design
 - Optimize management of tritium inventory in reactor operations
 - Enhance gaseous release capability
 - Research tritium separation technology

Braidwood Generating Station

What You Will Hear

- Updated status
- What Exelon is doing to:
 - Stop the problem now
 - Prevent future releases
 - Clean up
- Eli Port, health physicist

Current Status

- 14 of 15 private wells show no sign of tritium beyond background
- 15th private well shows tritium at fraction of federal drinking water limit (1,524 picocuries per liter)
- Health and safety impact of these elevated levels is insignificant

Update

- Sampled 158 test wells
- Analyzed 211 groundwater samples
- 11 off-site sample wells tested above federal drinking limit for tritium (20,000 pCi/L)
- No additional radionuclides found in groundwater

Update

 Acoustical pipe integrity testing provided assurance of no significant leak in pipe

• Sunday, Jan. 15, 2006 leak at vacuum breaker 7

 Have not introduced tritium into the pipe since Nov. 23

- Release from blowdown line vacuum breaker
- Contained on site property
- Treated as a water spill, not as a tritiated water spill
- Inadequate response

2000

- Leak from blowdown line vacuum breaker
- Contained on site property
- Sampled and removed surface water
- Responses to water spills were inadequate due to a lack of integrated procedural guidance

Lessons Learned

- To prevent vacuum breaker failures
 - Replaced vacuum breakers
 - Increased surveillance program
 - Exploring additional leak detection devices
- Looking to take vacuum breakers out of play

How We are Stopping the Problem

 No tritiated water released into the ground since Nov. 23

• Currently storing 80,000 gallons

• Short term: Continue to store as needed

Preventing Future Releases

- Enhanced surveillance and monitoring maintenance
- Vacuum breaker inspection twice per year
- Preventative maintenance
- Alternative release path
 - Installing separate double-walled, stainless steel pipe
 - Reduce releases by recycling water
 - Evaporate water that is not recycled
- Improve response of possible future releases

Clean Up

- Site Investigation Report
- Alternatives:
 - Containment
 - slurry wall
 - vegetation
 - Collection/Treatment
 - Pump and treat
 - Freeze and remove
 - IN-SITU
 - Spray Field

- No action
 - Monitoring
 - Alternative water supply

- No additional tritium being introduced
- No future releases until pipe integrity is assured
- Drinking water levels well below federal standards; insignificant health risk
- Monitoring to ensure no additional wells affected
- Continual communication

Questions?

Radiation and Sources of Internal Dose

Eli A. Port, CHP, CIH, P.E..

What is Tritium (H-3)?

An isotope of Hydrogen with two neutrons

How much H-3 is in the environment?

- Cosmic rays produce 4,000,000 curies per year
- The total tritium in the environment is about 70,000,000 curies

Quantity of Radioactive Material

- Traditional unit curie (Ci)
- Sub-unit picocurie (pCi)
- Comparison
- -1 pCi = 10^{-12} Ci or a trillionth of a curie

Sources of Radiation

Natural

~ 292 mrem

- Radon

~ 200 mrem

- Cosmic ray

~ 27 mrem

- Rocks and Soil

~ 30 mrem

- Food and drink

~ 35 mrem

Man-made

~ 65 mrem

- x-rays

~ 40 mrem

- Nuclear med

~ 13 mrem

- Consumer products ~ 10 mrem

- Research

2 mrem

AverageTotal Background

Radiation

357 mrem/year

EPA Drinking Water Limit

- 20,000 pCi/l
- At this concentration, drinking 2 liters of water per day will result in a dose 4 mrem per year

Tritium in Well Water

 The highest concentration of tritium found in a well supplying drinking water is:

1,524 pCi/l

 At this concentration, drinking 2 liters per day will result in 0.3 mrem per year.

Other Sources of Internal Dose

Dose from C-14

- The concentration of C-14 in natural carbon is 7 pCi/g
- Human Reference Diet = 300 g carbon/day
- Resulting in 1.9 mrem per year from carbon in food

Potassium-40 (K-40) Dose

- The concentration of K-40 in natural potassium is 820 pCi/g
- Human Diet = 2 5 g/day
- Resulting in a K-40 dose between 10 mrem per year and 25 mrem per year

Annual Dose from K-40 In Specific Foods

- 1 banana per day = 2.6 mrem
- 1 8 oz. glass of orange juice per day = 2.5 mrem
- 1 medium baked potato per day = 4.3 mrem
- 1 cup Total raisin bran per day = 1.8 mrem
- 1 double burger sandwich per day = 2.9 mrem
- 1 large order of fries per day = 4.7 mrem
- 1 cup cantaloupe per week = 0.4 mrem
- 1 cup spinach per week = 0.6 mrem
- 6 oz halibut fillet per week = 0.7 mrem

Smoking

 The average annual dose from Po-210 in tobacco is 2000 mrem

 Hot spots (bronchial bifurcations) may receive up to 16,000 mrem per year

Biological Effects

- We know that radiation may cause damage in tissue
- No effects have been found from low doses, under 10,000 mrem
- To be conservative, limits are set below doses where effects are detected

Questions ??

