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Culmination of several years of 

Hanford BarrierHanford Barrier
y

research using lysimeters, 
analog studies, and numerical 
modeling
Constructed over the 216-B-57 
waste disposal crib in 1994 as 
part of CERCLA treatability p y
test
Primary objectives were to

Assess constructabilityAssess constructability
Establish construction costs
Performance data

Verification of remedy
Refine conceptual model 
Model calibrationModel calibration 



Monitored almost continuously for 

Testing and MonitoringTesting and Monitoring
y

last 16 years
stability, erosion, water balance, 
and ecological processesand ecological processes

CERLCA Treatability Test 
1994 through 1998 
Two precipitation treatments

Ambient (160 mm/yr)
Irrigation at 3 x ambient
1000-yr return storm in March 

Monitoring
Routine monitoring since 1998 withRoutine monitoring since 1998 with 
2 data gaps

Simulated range fire in Sep 2008



Important Processes and ComponentsImportant Processes and Components

See Figure 2.2 for Detail See Figure 2.3 for Detail 
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Governing PDEs (water,energy,air):

Upper B.C. (z=L, t > 0): 
Shuttleworth-Wallace

Soil Heat Flux

Sensible 
Heat Flux Heat Flux

Nodes

Tightly coupled soil-vegetation-
atmosphere continuum 
Both biotic and abiotic processes  
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influence the dynamics of water, air, 
and energy in the system
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Lower B.C. (z=L, t  0):

Percolation
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Lower B.C. (z=L, t  0):

Percolation
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Lower B.C. (z=L, t  0):

Percolation



Initial increase in species post-

Surface: Ecological ChangesSurface: Ecological Changes
Initial increase in species post
revegetation
Steady decline after 1997 to 

i i i 2008minimum in 2008 
■ increase after 2008 due to fire

15 yrs after revegetation surface15 yrs after revegetation surface 
is dominated by sagebrush
■ species richness and ground cover 

same as analog site

Pre-burn Cover on North Side

same as analog site
■ Differences between soil cover and 

gravel slope

►Shrub density is 0.77 ± 0.0121 
plants/m2 compared to 0.437 ±
0.0331 plants/m2 at analog site
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E id f id d f

Surface: Animal UseSurface: Animal Use
Evidence of widespread use of 
the barrier by animals 

Cottontail rabbit  prevalent in 
th t hnortheast corner where grass cover 

highest
Evidence of Coyote (feces)
Gall formation A  tridentata plantsGall formation A. tridentata plants

70% of the surface had animal 
burrows

Random holes by insects and small 
mammals throughout the surface
average hole diameter was 3.9 ± 0.8 
cm depth was 12 ± 2 6 cmcm, depth was 12 ± 2.6 cm

► No obvious impact on soil-water 
patterns 
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Over the last 15 years, annual 70
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PrecipitationPrecipitation
y ,

precipitation has ranged from a 
low of 119.89 mm (68% of 
normal) in 2005 to 289.31 mm 
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(64% above normal) in 1997.
highest winter precipitation for the 
monitoring period was 138.4 mm, 
obser ed in FY 1997
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observed in FY 1997
Total precipitation has shown a 
general decrease from 1994 
through 2009

*Simulated 1,000-yr. storm (68 mm in 8 hrs.)*Simulated 1,000-yr. storm (68 mm in 8 hrs.)
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)through 2009
From October 1994 through 
September 30, 2009 barrier 
received a total of 3312 9 mm

1500

2000

2500

la
tiv

e 
Pr

ec
ip

ita
tio

n 
(m

received a total of 3312.9 mm
2640 mm natural precipitation 
672.87 mm irrigation

E i ll ll l d f il
0

500

1000
C

um
ul

Essentially all recycled from silt 
loam plots

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Date



Maximum penetration depends 
12/31/9610/23/96

Water Content (m3 m‐3) Water Content (m3 m‐3)

Runoff and InfiltrationRunoff and Infiltration

on seasonal distribution of 
precipitation 
Unirrigated plots show wetting 
f t h 2
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mm (soil loss decreased from 7 
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Jan 1997, 36.3 mm of runoff  
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Well-defined annual cycle in

Near Surface: Water StorageNear Surface: Water Storage
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Irrigation of 480 mm/yr
Natural precip. 64% > normal

Max dependent on location

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Date

0

500

600

700

Design Storage Capacity

r)

S510
S511
S512Max. dependent on location

highest at edge, lowest at 
crown

Min dependent on irrigation
200

300

400

500

W
at

er
 S

to
ra

ge
 (m

m
 W

at
er 3E Average

Min. dependent on irrigation
Plants reduced storage to 100 
mm (0.1 m3m-3)

600

700

Design Storage Capacity

South (Previously Ambient)
North (Previously Irrigated)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Date

0

100

Evidence of stress due to high 
irrigation

300

400

500

W
at

er
 S

to
ra

ge
 (m

m
 W

at
er

)

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Date

0

100

200W



Textural transitions

(a)InterflowInterflow

Textural transitions
Fine soil to side slope
Fine soil to graded filter

Transition zone wetter, larger 
shrubs
Capillary break decreased 0.20
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Curbed asphalt forms large 600

700
4W- Gravel

4E- Riprap

1W- Gravel

i

PercolationPercolation
Curbed asphalt forms large 
lysimeters

Main plot: D = 3.52 × 10-5 mm
Trans plot: D=7 04 × 10-5 mm 300
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Trans plot: D 7.04 10 mm
Seasonal dependence 

drainage related to winter precip.
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Riprap vs. gravel
Irrigated treatments the same in 
long-term (18% of ppt)
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Year
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the design drainage criterion of 
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Calculated by difference in 

EvapotranspirationEvapotranspiration
600

700

800
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3E- South

the water balance equation
During treatability test, no 
differences within 300
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differences within 
precipitation treatments but 
between treatments
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■ Some differences in ET 
rates possibly due to stress

■ 3 yrs for difference to 
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Fine Soil Portion- z within

0.10
DSG1.WEST
DSG2.EAST

Settlement on Functional PortionStabilityStability
Fine Soil Portion z within 
range of measurement error

first measurements in Dec. 
1994 after the placement of
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1994, after the placement of 
barrier materials
no apparent trend after 15 yrs

Riprap Slope movement 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10
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0.00E

Riprap Slope- movement 
appears random

Easterly with x ranging from 
0 031 to 0 098 m mean
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Riprap Creep Gauges

0.031 to 0.098 m; mean 
orientation of 6.84 ± 1.29 rads
z ranged from -0.06 m to 
0 010 m
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0.010 m
no indication of slope failure 
but suggest some settlement 
of the riprap slope
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Fluid Saturation
Tools, Techniques, Methodologies AvailableTools, Techniques, Methodologies Available

Nuclear methods (NP, Gamma)
Capillary Pressure/Matric Potential

Tensiometers
Resistance blocks
Heat dissipation
Thermocouple psychrometersThermocouple psychrometers

Fluid Transmission Capability (Permeability)
Surface/borehole permeameters (water, air)
Fl metersFlux meters
Capillary pressure 

Temperature
Stability

Creep/settlement gauges
Aerial photogrammetrye a p otog a et y
Surface geophysics
LIDAR14



Barrier and waste zone 0) 

[NO ] in Pore Water (mg/L)3
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Tc99 in Pore Water (pCi/L)

Surface/Crosshole GeophysicsSurface/Crosshole Geophysics
Barrier and waste zone 
Electrical and electromagnetic 
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Lith l (Cl t t)
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Lithology (Clay content)
Moisture content
Pore fluid conductivity

GPR TDR it NMR
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Vertical profiles of porewater chemistry and 2DGPR, TDR, capacitance, NMR
limited by high clay, high salt

Seismic 

Vertical profiles of porewater chemistry and 2D 
ERT inversions for borehole C5923.

Reflection
Refraction

VZ Hydrology/Soil physicsVZ Hydrology/Soil physics
Permeability, water retention, 
thermal, electrical Variation of skin depth  as function of resistivity 

in ohm-m for εr= 8 (crosses) and  εr= 40 (circles)
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March 2001 May 2001

Field-scale Moisture from GPRField-scale Moisture from GPR
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Spatial Correlation of MoistureSpatial Correlation of Moisture
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Flow of Electrical Current Through a Landfill 
with Defect in a Low-permeability Layer
Flow of Electrical Current Through a Landfill 
with Defect in a Low-permeability Layer
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Concept of ‘living” conceptual

Long-term Insights from Short-term MonitoringLong-term Insights from Short-term Monitoring
Concept of living  conceptual 
model

Couple modeling with 
monitoring to understandmonitoring to understand 
processes

Examples
Ad ti i fl i iAdvective air flow in rip rap 
side slope
Runoff/erosion of toe after 
10 18010 yrs
Change in storage dynamics 
immediately after range fire
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Depends on variable and 05/21/9702/20/97

How Important are Gaps in Monitoring?How Important are Gaps in Monitoring?

intended use of data
Overall water balance

Short-term changes can be ignored
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Model Development/Calibration

0.60

0.80

1.00

1.20

1.40

1.60

D
ep

th
 (m

)

0.60

0.80

1.00

1.20

1.40

1.60

D
ep

th
 (m

)

Short-term and episodic changes 
essential
Capillary Pressure or Saturation
Percolation
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Design Current side slope designs and lateral diversion

Outstanding IssuesOutstanding Issues

Design - Current side slope designs and lateral diversion 
layers increase deep drainage at the barrier edges

how does this water impact the waste?
Can the impact be minimized to acceptable levels?

Performance –
What measurements and measurement frequencies are needed to 
satisfy performance requirements? 
Intermediate to large-scale non-invasive geophysical and remoteIntermediate to large scale non invasive geophysical and remote 
sensing methods for cost effective autonomous acquisition

Impacts - Can predictions of long-term impacts be 
e al ated acceptabl in the short term (e g fire pestsevaluated acceptably in the short term (e.g., fire, pests, 
erosion, climate, eco succession)?
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Summary
Barrier technology has been tested for nearly 30 years atBarrier technology has been tested for nearly 30 years at 
Hanford

tightly coupled a soil-vegetation-atmosphere continuum
Water, air, energy

Current Monitoring Approaches
Vadose zone approachesVadose zone approaches
Mostly manual and point measurements

Needed Monitoring Approachesg pp
Integrate cost effective autonomous acquisition
Airborne and satellite-based methods

i t t f h d l i d bi ti i blpoint measurements of hydrologic and biotic variables
Intermediate scale non-invasive geophysical measurements

Culminated in a prototype Hanford barrier constructed over 

22
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