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PRELIMINARY STUDY OF URANIUM OXIDE DISSOLUTION IN SIMULATED LUNG FLUID*

by

R. C. Scripsick, K. C. Crist, M. I. Tillery,
S. C. Soderholm, and S. J. Rothenberg

ABSTRACT

Depleted uranium oxide aerosols prepared in the
laboratory and collected in the field were tested to
characterize their dissolution in simulated lung fluid
and to determine how dissolution is affected by
aerosol preparation histories. Respirable fraction
samples of each study material were subjected to in
vitro dissolution analysis.

Particular trends regarding the physicochemical
character of uranium oxides described by other
investigators were supported by the data generated in
this study. The data suggest that under some
conditions a rapidly dissolving uranium fraction may
be formed concurrent with the production of UO;.

This fraction may play an important role in
determining the hazard potential associated with
inhalation exposure to certain uranium aerosols.

I. INTRODUCTION

Depleted uranium (DU), a by-product of the uranium fuel cyc]e,] has been
selected by the US military for use in several types of mum'tions.2 During
development, manufacture, testing, deployment, and use of these munitions,

*This effort began November 27, 1981, and was completed on
September 30, 1983. Jimmy C. Cornette (DLOE) managed the program for the
Air Force Armament Laboratory. Portions of this work were performed as
part of the thesis work of Kevin Crist for a master's degree from Texas
A and M University, College Station, Texas.




opportunities exist for inhalation exposure to various {usually oxide) aerosol
forms of DU.°
and burning of DU penetrators has been demonstrate

The release of respirable aerosol material from test firings
d.37 Inhalation
exposures during the manufacture of the munitions have been reported.8
The hazard potential associated with such exposures is closely related to
the dynamic partitioning of the DU material deposited in lung. Material
retained in lung tissue presents a hazard because of the radiation dose to
1ung.9 As material is transported to blood, the primary hazard shifts to
chemical kidney damage.9
In general, the physicochemical form of the exposure material affects the

partitioning of deposited materia].lo

Aerodynamic aeroso]l size determines
lung deposition pattern. Material deposited in different regions of the lung
is cleared by different paths, rates, and mechanisms. Three lung clearance
pathways have been defined: (1) transport to lymph node, (2) transport to
gastrointestinal tract, and (3) transport directly to blood. The fraction of
deposited material cleared by each of these pathways is dependent on the in
vivo dissolution behavior of the deposited material.lo Consequently, the
aerosol size and the dissolution behavior are the important variables in
describing the partitioning of deposited material.

Mercer11

has derived a theoretical relation between dissolution behavior
and chemical form and specific surface area (Sp) of a lognormal distribution
of particles. He found that the mass fraction remaining (M(t)/MO) at time t

(for M(t)/MO > ~0.2) can be approximated by

M(t)/My = exp(-at) , (1)
where
M(t) = mass remaining at time t;
M0 = mass at initial time to;
A = 1.18 Sppek, which is the long-term dissolution rate
constant derived by Mercer;11
k = the chemical dissolution rate constant; and
Spy = specific surface area at t = 0.

Several investigators have experimentally studied the dissolution behavior
of uranium material under conditions simulating the dissolution environment of




12-18

the lung. Of these studies, all those that displayed dissolution data

as a function of time14—18

showed phased-dissolution behavior; that is,
dissolution starts with a relatively rapid initial dissolution phase followed
by a long-term dissolution phase, which is characterized by a slower
dissolution rate. The initial dissolution phase may include more than one
dissolution component, each having a characteristic rate, the slowest of which
is greater than the long-term dissolution rate.

16

In one study " of uranium "yellow cake," Eidson attributed the initial

dissolution phase to the ammonium diuranate component of the yellow cake.

Follow-up animal inhalation studies,19

using the same yellow-cake study
material, support this contention and, along with human excretion data cited
by Eidson,16 demonstrate the ability of in vitro dissolution analysis to
predict in vivo dissolution.

15,16,18

Some of the more recent studies have described this dissolution

behavior by a sum of exponential terms of the form

n
M(t)/MO:=ZS for exp(—xit) . (2)
i=1

where fi js the fraction of the material associated with dissolution
component i and dissolving with dissolution rate constant o and n is the
number of dissolution components. The dissolution half-times,

Ti = (]n2)/xi, for the initial dissolution phase varied from a fraction of

a day to ~12 days. The long-term phase varied from 40 days to ~800 days. 1In
a study of uranium oxide aerosols produced during test firing of DU
penetrators,6 as much as 49 per cent of the uranium material dissolved in

the initial dissolution phase.

In this investigation, DU material prepared from DU penetrators oxidized
under various controlled conditions in the laboratory and material collected
in the field from test firings of DU penetrators were studied using in vitro
dissolution analysis techniques. In addition, the sample material was
analyzed for uranium compounds using x-ray diffraction, and the Sp of certain
study material was measured before and after dissolution. These data were
interpreted to describe the dissolution behavior of these materials and to
relate this behavior to certain physical parameters of the study materials.



Inferences regarding the hazard potential associated with inhalation of the
study materials are made from the data.

II. MATERIALS AND METHODS
A. Study Materials
Five DU study materials produced in the laboratory were examined by

exposing uranium alloy penetrators to certain controlled oxidation
atmospheres.7 In addition, two DU study materials collected from an
enclosed test bunker were provided by the United States Air Force (USAF).
Table I gives a description of each of the study materials.

The five laboratory study materials were produced from XM774-type antitank
munitions penetrators. The penetrators are machined from DU metal alloy
containing 0.75 wt% titanium.zo Oxidation of the penetrators took place in
a tube furnace that permitted the control of temperature, atmosphere
composition, and gas flow. The conditions under which oxidation took place
are detailed in Table I. Material that fell off or could be brushed off the
penetrators after the oxidation treatment was collected and comprises the
laboratory study materials.

The two bunker study materials were collected by the USAF at an enclosed
test bunker used for test firings of various DU penetrator munitions (Table
I). One study material (S682-2) was collected as a core sample of the bunker
material; the other (S682-1) was collected by the bunker air-cleaning system.
These materials were described by the USAF as containing ~10 and ~20 wt%
uranium, respectively. The magnitude of these uranium concentrations is
supported by duplicate chemical analyses performed at Los Alamos. The major
component of the bunker study materials was found to be 3102.

TABLE 1
DEPLETED-URANIUM STUDY MATERIALS

Study Material No. Treatment

A774-2 600°C with airflow
A774-4 700°C with airflow
A774-5 900°C with airflow
M774-1 500°C with CO2/airflow
N774-1 700°C without airflow
S682-2 Bunker core sample
S682-1 Bunker air sample




B, Sample Generation

Each study material was generated as an aerosol, and a respirable size
fraction of the aerosol was collected (Fic. 1). Before aerosol generation,
the bulk study material was sieved, and the portion passing a 400-mesh (38-um
mesh size) screen was collected. We pressed an aliquot of the sieved material
into a specially made thimble, taking care not to disturb the particle size of
the sample. The packed thimble was mounted on a Wright dust feed21
used to generate aerosol. The dust feed operates by rotating a sample plug
against a radially positioned blade that is continually swept by a jet of
clean air, which suspends the material scraped from the plug. The output of
this generator was conducted to a horizontal elutriator operated to pass an
aerosol that meets the British Medical Research Council criterion22 as the
respirable fraction of the challenge aerosol. Sets of samples representing
each study material were collected on 25-mm-diam (5-um pore size) Millipore
membrane filters.

that was

C. Dissolution Analysis

Before subjecting the respirable fraction samples to dissolution analysis,
we determined the mass of uranium (MO) on each filter using a gross gamma
radiometric technique. The technique uses a Nal scintillation detector to
measure the gamma activity associated with the sample. Standards to relate
activity to M0 were prepared using the laboratory study materials.

Once MO was determined, the filter containing the respirable fraction
uranium sample was sandwiched between two 25-mm~-diam (0.l-um pore size)
Nucleopore membrane filters and placed in a dissolution chamber. The chamber
(Fig. 2) used was a one-sided flow system described by AHen17

and designed
by Moss.23

FILTERED
NLINE DILUENT
SAMPLE AR AT
HOLDER ATMOSFHERIC
PREifURE FILTERED
HORIZONTAL WRIGHT
lll ELUTRIATOR DUST FEED % COM’:\R!ESSED

PUMP

Fig. 1. Respirable aerosol generation system.
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Fig. 2. The dissolution chamber.

The solvent used in the study was a Tung-fluid simulant described by
Moss.24 The components of the solution are shown in Table II. A comparison
completed by Ka]kwarf15 showed that the simulant and the lung interstitial
fluid are almost identical. The protein components in actual lung fluid were
represented by equivalent amounts of citrate as suggested by Moss.24 The
lung-fluid simulant was prepared in 156-L batches using dejonized water. To

TABLE II
COMPONENTS OF THE SIMULATED LUNG SOLUTION

Concentration

Component (g/L)
Magnesium chloride, hexahydrate 0.203
Sodium chloride 6.019
Potassium chloride 0.298
Sodium phosphate, dibasic, anhydrous 0.142
Sodium sulfate, anhydrous 0.071
Calcium chloride, dihydrate 0.368
Sodium acetate, trihydrate 0.953
Sodium bicarbonate 2.604
Sodium citrate, dihydrate 0.097




increase the rate of solution, 95 per cent of the final volume of water was
preheated to 37°C. The salts were separately premixed using the remainder of
the water volume to aid in their dissolution. The salt solutions were then
transferred to the preheated water in the order listed in Table II. During
this procedure, the pH of the solution would increase (pH 8-9), causing a
precipitate. This precipitate formation was controlled by lowering the pH to
approximately 7 with dilute HCL.

The lung-fluid simulant was delivered to the dissolution chamber by a
peristaltic pump at a flow rate of ~1 mL/min. According to A]]en,17 if the
rate of flow through the dissolution chamber is kept above 0.7 mL/min, then
dissolution rate will be independent of the flow rate. The pH of the simulant
was maintained at 7.4 + 0.1 by slowly bubbling 95 per cent 02 and 5 per cent
CO2 through the simulant, as suggested by Moss.24 The temperature of the
simulant was maintained at 37°C + 0.5°C in a water bath. The pH and
temperature of the simulant were monitored during the experiments, which were
operated for at least 30 days.

Simulant passing out of the dissolution chamber was sampled at known
times. The samples were collected in polyetaylene bags, which were heat
sealed and placed in pneumatic "rabbits" for delayed-neutron activation (DNA)
analysis. This DNA technique was selected over fluorometric methods normally
used in uranium dissolution studies because (1) the simpler sample handling
reduced potential errors in sample analysis, (2) the automated system at Los
Alamos permitted the analysis of many more samples for a given effort, and (3)
the sensitivity of the DNA technique allowed direct measurement of the
dissolved uranium.

Standards for the DNA analysis were prepared using National Bureau of
Standards uranium standard reference material 950a, which is natural-abundance
U,0,. The difference in 23°

378
and the study materials was accounted for in the calculation of uranium mass

U abundance between the standard material

from DNA results.

Blank samples (samples with no added uranium) for the DNA analysis were
obtained using a dissolution sandwich containing a middle filter on which no
uranium material had been collected. Dissolution of this sandwich was carried
out simultaneously with the dissolution of the respirable-fraction samples
using simulant from the same reservoir. These samples were collected and
analyzed in the same manner as the samples from the other dissolution system.



D. X-ray Diffraction Analysis

The composition of bulk and respirable fraction samples was determined
using x-ray diffraction. The method, which followed the procedure outlined by

K]ug,25

used a standard vertical diffractometer with a graphite

monochrometer and a proportional detector. This technique permits the
determination of species and quantity of crystalline materials and can detect
the presence of amorphous materials at levels >10-20 wt%. To ascertain the
percentage of uranium oxide present as the dioxide, standards were prepared
from well-characterized, selected UO2 and U308 powders. A calibration

curve was then drawn from which the results were obtained. The analysis was
performed by the Physical Metallurgy Group at Los Alamos.

E. Specific Surface Area Analysis

The Sp of certain respirable fraction samples was measured using a 85y

radiometric technique developed by Rothenberg.26 This technique compares

the amount of radioactivity adsorbed on a sample with the amount adsorbed on a
sample of standard Sp material. The analysis was performed at Lovelace
Inhalation Toxicology Research Institute. The samples selected for Sp
analysis included respirable fraction samples of study materials A774-4 and
M774-1 and others of these same samples that had undergone dissolution
analysis.

IIT. DATA ANALYSIS AND RESULTS
From the DNA data and values of MO’ estimates of the fraction of
remaining uranium dissolved per day (fd) were calculated as follows:

fq 5 = 3 e I (3)
T ) (m * mk—l)z'.(z )
k=1

where

mj and m = the mass of uranium in the jth and kth samples,

respectively;
t, = elapsed time, in days, to the midpoint of the sample
collection period; and
d = duration of sample collection, in days.




The results of these calculations were plotted against time for each of the
study materials. Curves were fit to these data using a nonlinear least-

27

squares fitting routine™ with the variance of each fd value weighting the

fit. The plots with the fitted curves are shown in Figs. 3-6. These plots
demonstrate the multiple phase behavior described earlier. These data were
fit with a model of the form

M(t - d/2) - M(t +d/2
g oMb e v 0D ()

Substituting for M(t) from Eq. 2 yields

. ﬁi [sinh(dxi)-fi-exp(—xit)]

where n is the number of dissolution components included in the fit.

The fitting routine would not converge for n > 2 even though a
three-component (n = 3) fit seemed appropriate from inspection of the plots.
Fitting of all the data in any given data set with n = 2 resulted in large
systematic residuals between data points predicted from the fitted curve and
actual data points. A large negative bias was displayed by each of the data
sets in the region corresponding to the first of the three observed
dissolution components. Consequently, data corresponding to the latter two of
the three observed dissolution components were fit with n = 2, which resulted
in improved fits to the data including substantial reduction of the large
systematic bias. The values of the regression coefficients for these fits are
listed in Table III. Characterization of the earliest observed dissolution
component was limited to estimates of fl (see Table III) and a lower limit
on iq. The value of Xy Was used as the Tower limit of 1.

For sufficiently large t, fd becomes time independent and takes on the
value of xj. Conservative estimates were made when the contribution of the
first two dissolution components to the overall dissolution rate became
insignificant. The average value of fd corresponding to times beyond this
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TABLE III

DISSOLUTION PARAMETERS DERIVED FROM EXPONENTIAL
LEAST-SQUARES FITS

Initial Dissolution Phase

Long-Term Dissolution Phase

First
Component Second Component Third Component

Study
Material Na f1 fo 22 4 T2 f3 A3 3 T3

No. (days™ ") (days) (days™') (days)
A774—2 73 0.02 * 0.001Pb 0.05 + 0.006 0.65 + 0.1 1.1 * 0.2 0.94 + 0.006 1.9x10-3 = 3.8x10-4 370 = 70
A774-4 71 0.01 # 0.0008 0.05 * 0.007 0.35 # 0.04 2.0 + 0.03  0.94 * 0.007 2.1x10-3 # 3.8x10-4 320 % 60
A776-5 61 0.03 + 0.003 0.07 # 0.003 3.5 # 0.2  0.20 # 0.01  0.90 * 0.004 2.3x10~3 * 1.6x10~% 300 * 20
M774-1 61 0.04 # 0.002 0.04 + 0.002 4.8 * 0.5  0.14 # 0,01  0.92 # 0.003 1.7x10-3 + 1,5x10~% 410 # 40
M774-1 55 0.05 £ 0.003 0.02 # 0.002 6.6 * 0.8  0.10 # 0.01  0.93 # 0.003 1.7x10-3 # 1.6x10~% 420 + 40
N774-1 60 0.05 + 0.002 0.04 *# 0.003 9.6 * 0.8 0.07 *+ 0.006 0.92 # 0.002 3.4x10-3 # 1.9x10-4 202 # 10
56822 61 0.02 # 0.0006 0.02 + 0.002 1.7 + 0.2 0.41 + 0.06 0.95 * 0.002 1.4x10-3 = 2.0x10-% 490 * 70
s682-1 56 0.12 # 0.04 0.13 # 0.01 4.7 £ 0.5  0.14 # 0.02 0.75 = 0.03 4.0x10-3 = 4.7x10-4 170 * 20

ANumber of data points associated with the analysis.
byalue + standard deviation.




point was computed as an estimate of Ag. This value of Ag was considered

to be free of influence from earlier fy values that affect the estimation of
Ag by the least-squares method mentioned above. Table IV gives the values
of Ag obtained by this analytical method. Multiple-comparisons analysis
performed using these results indicated a significant difference (at the 95
per cent confidence interval) between the A3 values associated with study
materials 5682-2 and S682-1 and between the values associated with study
materials A774-2 and N774-1.

The results of x-ray diffraction analysis of the bulk and respirable
fraction samples indicated that the crystalline uranium in the samples was
U308 and U02. Table V shows the percentage of the sample that was
UOZ; the balance of the crystalline uranium material was U308'

Amorphous material was detected in the respirable fraction sample of the
bunker air sample material (S682-1). The fraction of the sample associated
with amorphous material was estimated to be ~20 wty.

Results of the Sp analysis are displayed in Table VI. The Sp associated
with the samples ranged from 0.64 m2/g to 3.85 m2/g. For both study
materials, the Sp of the post-dissolution samples was lower than the Sp of the
pre-dissolution samples. The average fractional decrease in Sp was 52 per
cent.

TABLE IV

LONG-TERM PHASE DISSOLUTION PARAMETERS CALCULATED USING
AVERAGING TECHNIQUE

Study N T
Material 3 -1 3
__No. NT (Days™ ™) {(Days)
— b PP
A778-2 16 2.1 x 10“3 £92 % 10‘2 330 + 30
A774_4 15 2.6 x 1073 + 2 x 10™ | 260 + 20
A774-5 18 3.0 x 1073 + 3 x 1074 230 % 20
M774-1€ 22 2.9 x 1073 5 x 1074 240 + 45
N774-1 27 3.8 x 1073 % 4 x 107% 180 # 21
$682-2 22 1.5 x 1073 = 3 x 1074 480 + 85
$682-1 25 3.8x 103 =4 x 107% 180 + 20

“Number of data points associated with analysis.

bvalue # standard deviation.

COnly one of the replicate sets of data for this material was
analyzed by this technique.
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TABLE V

RESULTS OF X-RAY DIFFRACTION ANALYSIS

Study uo,
Material (wt% in sample)?®
___No. Respirable Fraction Bulk
A774-2 <0.2° 0.6
A774-4 <0.2 1.6
AT78-5 1.3 18P
M774-1 <0.2 <0.2
N774-1 0.2 6
S$682-2 54 97
S682-1 18 60

dRemainders are U30g.

bThe error in this estimate is <#20 per cent of this value. The
error in the other estimates is <#10 per cent of the respective
values.

TABLE VI
RESULTS OF SPECIFIC SURFACE AREA (Sp) ANALYSIS

Specific Surface Area
Pre-Dissolution Post-Dissolution

Study Material 5 2 Decrease
No. (m“/q) (m"/q) (%)
A774-4 1.84a 0.64 65
M774-1 3.85 2.36 39

dError in Sp estimate is <#5 per cent of the respective value.

IV. DISCUSSION AND CONCLUSIONS
In all of the previously cited uranium dissolution studies, an initial
dissolution phase was eviden‘c.13’14’6’15’16’18 Review of Steckle's

studies13

of laboratory-produced mixtures of U308 and UO2 and
Kalkwarf's studyl® of U;04 “pure reference material" show that, at most,
only a few per cent of the material dissolve in the initial phase. The

respirable fraction of the laboratory study materials examined had between 6

14




and 10 per cent of the material dominating dissolution during the initial
phase. Only ~4 per cent of the respirable fraction of the bunker core sample
material (S682-2) was associated with initial phase dissolution. The
respirable fraction of the bunker air-sample material (S682-1) studied and

6 had from 11 to 49 per cent of the
material associated with initial phase dissolution. These data suggest that a

similar samples studied by Glissmeyer

larger fraction of material suspended during DU penetrator test firings may be
readily available for systemic contamination than would be indicated by the

g and UOZ 10,14,15
in vitro studies of laboratory-prepared U308 and UO2 material.

or the results of

clearance classifications of U30
13,15

The initial phase dissolution rates observed in this study ranged from
less than 0.07 days to 2 days. These rates are of such a magnitude that if
they were observed in vivo as clearance rates from lung to blood, this
clearance pathway would compete with other clearance pathways for material
deposited in lung. This competition would result in a larger portion of the
deposited material being transported from lung to blood than would be expected
for class "Y" materials. In addition, clearance of material from lung to
blood at such rates could result in accumulation of material in organs such as
kidney that have slower clearance rates to urine (kidney half-time clearance
to urine is six days or greater) than the rate at which material would be
transported to blood.

The long-term dissolution half-times observed here (from 180 days to 480
days) fall in the range of long-term half-times found by Eidson16 for
similar materials (from 140 days to 500 days). These half-times also agree

with the "Y" clearance classifications assigned to U308 and
10,14,15
UOZ‘
The range of long--term dissolution half-times relating to Tong-term lung

clearance half-times may not be sufficiently large to warrant the assignment
of the long-term component to different hazard classifications. For example,
the Tong-term components would qualify for a "Y" classification under the Task

Group on Lung Dynamics classification schemea10

However, the range of
material fractions dissolving in the initial dissolution phase is probably
large enough to warrant assigning significantly different hazard potentials to
the various study materials for many exposure scenarios.

The trend of uranium-to-oxygen ratio increasing with preparation

13

temperature described by Steckle™™ and Elder7 was corroborated by the
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results of the x-ray diffraction analysis on both bulk and respirable fraction
of the laboratory study materials. The increased UO2 content in material,
prepared under no-gas-flow conditions (N774-1) with respect to material
produced in airflow (A774-4) reported by E]der,7 was also observed.

A significant difference in the U02 content between bulk and respirable
fraction samples was observed in all study materials. Gh’ssmeyer6 noticed a
similar size segregation. The direction of this segregation, namely, that
U3O8 is associated wigh the sma]]ir particle sizes, agrees with data
presented by Steckle™™ and Elder.

This finding points out the importance of performing dissolution analysis
and other analyses on appropriate size-selected samples. Analysis of bulk
material or even total particulate samples may result in inaccurate
predictions of lung clearance rates and/or incorrect associations between
dissolution half-times and physicochemical character of study material. These
inaccurate predictions and incorrect associations, in addition to being
related to differences in the physical character of deposited and study
materials, may also be related to chemical differences in these materials.

The bunker study materials (5682-2 and S682-1) had a higher UO2 content
than did the laboratory materials. A relativeiy high UO2 content was also
evident in the material studied by Gh’ssmeyer.6 In Tight of the thermal
history effect on composition described above, the elevated UO2 levels
indicate that the bunker study materials may have been produced at higher
temperatures than were the laboratory samples. The higher UO2 content may
also have been a result of rapid quenching of the material after heating.

Eidson16 attributed the initial phase seen in the dissolution of
yellow-cake samples to the presence of ammonium diuranate, a rapidly
dissolving uranium material. The relatively large amount of material
dissolved in the initial dissolution phase of bunker air sample material
(S682-1) may be related to the production of a rapidly dissolving fraction in
the test firing of penetrators. Because the rapidly dissolving fraction was
observed to a lesser degree in the bunker core sample material (S682-2), the
fraction may include particles with relatively low settling velocities,
which as a consequence for a given specific gravity, would have a relatively
high Sp. The fact that ~20 wt% of the respirable fraction sample of study
material $S682-1 was found to be amorphous and that this amorphous material may
contain uranium suggests that at least a portion of the rapidly dissolving
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fraction may be rapidly dissolving amorphous uranium compounds. Therefore,
rather than chemical character of the material alone accounting for initial
phase dissolution as Eidson found for yellow cake, initial phase dissolution
for material S682-1 may be a consequence of the physical character of the
material as well as of the chemical composition of the material.

The initial dissolution phase observed for the bunker core sample material
(S682-2) and the Tlaboratory study materials may also result from the physical
and chemical character of these study materials. Pre- and post-dissolution Sp
analysis of the respirable fraction of two laboratory study materials (A774-4
and M774-1) showed Sp at the end of the dissolution experiment to be Tower
than the initial Sp of the materials. Such behavior is predicted for
single—component materials, which are lognormally distributed in diameter with
geometric standard deviations greater than ~1.135 (see Appendix). However,
the multiple-phase dissolution behavior observed here indicates that the
materials studied were not single-component. Decrease in Sp of
multiple—component material is possibly the result of relatively rapid
dissolution of one or more of the material components that have relative high
Sp. The rapid dissolution would be the result of the high Sp and also
possibly the presence in the component of rapidly dissolving amorphous or
crystalline uranium compounds that exist at concentrations below the detection
1imit of the x-ray diffraction technique used.

An additional important factor is the change of surface roughness with
time. Thibau]t28 demonstrated that even carefully polished metal surfaces
are not perfectly smooth. He was able to show a correlation between initial
dissolution rates and the surface roughness of materials cut from a single
block and polished or machined by different methods. After a few days, the
prominences and channels produced by most mechanical treatments had
disappeared, and both the surface roughness and dissolution rates tended to
have common values, independent of the method of polishing. Because the
particles produced by combustion are not smoocth spheres, the surface roughness
may decrease as dissolution proceeds, with prominences on the particle
suffering rapid initial attack.

The long-term dissolution half-time associated with the respirable
fraction of study material S682-1 (bunker air sample) was significantly higher
(at the 95 per cent confidence level) than was the long-term dissolution
half-time associated with the respirable fraction of study material $682-2
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(bunker core sample). Because the major difference between these materials
may be the result of elutriation, study material S682-1 may consist of
particles with lower settling velocities than study material $682-2.
Consequently, for a given specific gfavity, the Sp of study material S682-1
would be greater than the Sp of material S682-2. This greater Sp couid at
least partially account for the difference observed in the long-term
dissolution half-times associated with the respirable fraction of these study
materials.

The long-term dissolution half-time associated with respirable fraction of
study material A774-2 was significantly higher (at the 95 per cent confidence
level) than was the long-term half-time associated with the respirable
fraction material N774-1. This difference is in conflict with the trend of
preparation temperature and "solubility" described by Steck]e13 and
Cooke.14 The conflict may be because the temperature range for which the
Steckle and Cooke trend is described is greater than the range of temperatures
studied here. The long-term half-time difference seen in this study may be
related to the different airflow conditions under which materials were
produced. As mentioned earlier, the no-airflow condition seems to produce
material with a relatively greater U02 abundance. A relatively high UO2
abundance was also noticed in the bunker air sample material (S682-1) that was
associated with a relatively low, long-term dissolution half-time. This
finding suggests that there may be some relation between the depression of
U308 production and the long-term dissolution half-time.

Another partial explanation for the conflict may involve the variety of
crystalline phases and the range of stoichiometries associated with each phase
possible for uranium oxides between UO2 and U03. Each of these phases,
and perhaps the different stoichiometries within a phase, may dissolve at
different rates.

V. SUMMARY

The amount of material dissolving in the initial dissolution phase and the
rate at which material dissolved in this phase were the determining factors in
assessing the hazard potential associated with sample materials. The "Y”
clearance classification normally associated with U308 and UO2 does not
adequately describe the clearance of deposited material indicated by in vitro
dissolution analysis. This discrepancy is especially true for the bunker air
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sample material (S682-1) of which ~25 per cent dissolved with a half-time
<6 h.

The size segreg;fion of composition between bulk and respirable samples
points out a potential pitfall in the evaluation of the dissolution of
U308 and U02. Study of size fractions other than that which deposits in
the lungs can lead to incorrect conclusions regarding the effects of the
material's physical and chemical characteristics upon dissolution.
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APPENDIX
DERIVATION OF SPECIFIC SURFACE AREA BEHAVIOR AS A FUNCTION OF TIME:
AUGMENTING MERCER'S CALCULATIONS

11

According to Mercer, "~ the rate at which the mass of a particle

dissolves is given by

d(m)/dt = ks , (A-1)

where m = the mass of the particle at time t, and s = the surface area of the
particle at time t. Using the relationships

m = ava3 (A-2)
and
s =abD’, (A-3)
S
where
@, = the diameter volume-shape factor,
@y = the diameter surface-shape factor,
p = the specific gravity of the material being dissolved, and
D = the particle diameter at time t.

Integrating,we find that

s = soll - (kagt/3a,0Dy)1° (A-4)

where Sg =S at t = 0, and DO =Datt =0.

For a lognormal distribution of aerosol particles having a mass median
diameter Dm and geometric standard deviation og at t = 0, the total
surface area remaining after dissolving for a time t, S(t), is given by

5(t) = [syla(2m) /2] [(stsglexp - [(x-x, + 62?2620k, (A-5)

X
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where

SO = the total surface area at t = 0,

6 = ]ncg,

X = ]nDO,

Xy = 1n(Dm),

Xt = 1nDt, and

Dt = the diameter of the particles that completely dissolve in time

t.

The relation between the surface median diameter DS and the mass median
diameter has been used: D, = Dme"z. Substituting with Eq. A-4 and

expanding yields

(=}

S/SO = jg Ki j’ fly)dy , (A-6)

i=0 ¥;

where

<
|

= (Zﬂ)_llzeXp(—YZ/Z), Ko =1, Ky = —(2/3)Bexp(l.502),
82exp (462)/9, 8 = akt/a,o0 , and

(In(8/3)/s) + (1+i)o.

< R —h
nNO
] fl

S/S0 is shown in Fig. A-1 as a function of 8 for ¢ = 0.85. Also shown in
Fig. A-1 is M/M0 and Sp/Spy = (S/SO)/(M/MO) for ¢ = 0.85. M/My was
calculated according to Mercer.

In Fig. A-2, Sp/Sp0 is plotted as a function of 8 for ¢ = 0, 0.1, 0.3,
0.5, and 0.85. For o < ~0.028, Sp/Sp0 increases uniformly, with Sp/SpO
going to infinity at 8 = 3. For ~0.028 < ¢ < ~0.13, Sp/Sp0 increases to a
maximum and then decreases, but never goes below 1. For ~0.13 < o < ~0.49,
Sp/Sp0 increases to a maximum and then decreases below 1. Finally, for o >
~0.49, Sp/Sp0 decreases uniformly.
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Fig. A-l1. Plot of S/SO, M/Mo,and Sp/SpO as a function
of 8 for ¢ = 0.85.

0.011 T T T
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<
~ -

Fig. A-2. Plot of Sp/Sp0 as a function of g8 for ¢ = 0, 0.1, 0.3, 0.5,
and 0.85.

REFERENCES

1. S. Gladstone, "Energy Deskbook," Department of Energy report
DOE/IR/05114-1 (June 1982).

2. R. L. Gilchrist, "The Safe Use of Depleted Uranium in Munitions," Health
Physics 38, 1010-1011 (1980).

3. W. C. Hanson, J. C. Elder, H. J. Ettinger, L. W. Hantel, and J. W. Owen,
"Particle Size Distribution of Fragments from Depleted Uranium Penetrators
Fired Against Armor Plate Targets," Los Alamos Scientific Laboratory
report LA-5654 (October 1974).

4, J. C. Elder, M. I. Tillery, and H. J. Ettinger, "Hazard Classification
Test of GAU-8 Ammunition by Bonfire Cookoff with Limited Air Sampling,"
Los Alamos Scientific Laboratory report LA-6210-MS (February 1976).

22




15,

16.

17.

18.

J. €. Elder, M. I. Tillery, and H. J. tinger, “Hazard Classification
Test of Mixed-Load 30mm GAU-8 Ammunition by Bonfire Cookoff and
Sympathetic Detonation Testing,” Los Alamos Scientific Laboratory report

LA-6711-MS (February 1977).

J. A. Glissmeyer and J. Mishima, “Charicterization of Airborne Uranium
from Test Firings of XM774 Ammunition," Pacific Northwest Laboratory

report PNL-2944 (1979).

J. C. Elder and M. C. Tinkle, "Oxidation of Depleted Uranium Penetrators
and Aerosol Dispersal at High Temperatures,” Los Alamos Scientific
Laboratory report LA-8610-MS (December 1980).

S. Carpnell, "Radioactive Dust Fuels 3 Bitter 10-month Strike,"
Occupational Hazards 44, 99-103 (1987).

International Commission on Radiologi-ai “rotection, "Report of Committee
IV on Evaluation of Radiation Doses t> Bocay Tissues from Internal
Contamination due to Occupational Exposure,” ICRP Publication 10
(Pergamon Press, Oxford, 1966).

. Task Group on Lung Dynamics, "Deposition and Retention Models for Internal

Dosimetry of the Human Respiratory Tract," Health Physics 12, 173-207
(1966).

. T. T. Mercer, "On the Role of Particle Size in the Dissolution of Lung

Burdens", Health Physics 13, 1211-12:] (1967).

. P. E. Morrow, F. R. Gibb, and L. Johr<un, “Clearance of Insolubile Dust

from the Lower Respiratory Tract ' Heelth Physics 10, 543-555 (1964).

L. M, Steckle, C. M, West, "Character zation of Y-12 Uranium Process
Materials Correlated with In Vivo Zxperience," US Atomic Energy Commission

report Y-1544-A (1966).

N. Cooke and F. B. kold, "The Soluni 1y of Some Uranium Compounds in
Simulated Lung Fluid," Health Physic: (7. 69-77 (1974).

0. R. Kalkwarf, "Solubility Classifi ition of Airborne Uranium Products
from LWR-Fuel Plants," Pacific Northwe:t Laboratory report PNL-3411 (1980).

A. F. Eidson and J. A. Mewhinney, *“ itro Solubility of Yellow-Cake
Samples from Four Uranium Mills and » Implications for Bioassay
Interpretation,” Health Physics 39, $93-902 (1980).

M. D. Allen, J. K. Briant, 0. R. Moss, £. J. Rossignol, D. D. Mahbum, L.
G. Morgan, J. L. Ryan, and R. P. Turcotte, "Dissolution Characteristics ot

LMFBR Fuel-Sodium Aerosols,” Health Physics 40, 183 (1981).

N. A. Dennis, H. M. Blauer, and J. E. Kent, "Dissolution Fractions and
Half Times of Single Source Yellowcake in Simulated Lung Fluids," Health

Physics 42, 469-477 (1982).



20.

21.

22.

Z3.

24,

25.

4

Z7.

24

E. G. Damon, A. F. Eidson, F. F. Hati, a. C. Griffith, Jr., and R. A,
Guimatte, “Comparison of Early Luny Clearance of Yellow Cake in Rats with
In Vitro Dissolution and IR Analysi.," Health Physics 46, 859-866 (1984).

W. 7. Barlett, R. L. Gilchrist, W. <. Endres, and J. L. Baer, "Radiation
Characterization, and Exposure Rate Measurements from Cartridge 105-mm,
APFSDS-T, XM774," Pacific Northwest _aporatory report PNL-2947 (1979).

B. M. Wright, "A New-Feed Mechanism,"” Journal of Scientific Instruments
27, 12 (1975).

Aerosol Technology Committee, “Guide for Respirable Mass Sampling,"
American Industrial Hygienists Association Journal 33, 133 (1970).

0. R. Moss, and G. M. Kanapilly, "Dissolution of Inhaled Aerosols,” 1in

Generation of Aerosols, Klaus Willeke, Ed. (Ann Arbor Science, Ann Arbor,
Michigan, 1980).

0. R. Moss, "Simulants of Lung Interstitial fFluid,” Health Physics 36, 44/
(1979).

H. P. Klug and L. E. Alexander, X-Ray Diffraction Procedures (Wiley, New
York, 1974).

S. J. Rothenberg, P. B. Denee, Y. :. [heng, K. L. Hanson, H. C. Yeh, and

A. F. Eidson, "Methods for the Measurement of surface Areas of Aerosols by
Adsorption," Advances in Colloid and [nterface Science 15, 223-249 (1982).

J. H. Trussel, "Generalized Least Square Package," Los Alamos Program
Library Write-up, GFAA, Los Alamos National Laboratory (1979).

S. Thibault, J. M. Godot, J. Pagetti, and J. Talbot, "Exemples de
1'Influence de 1'Etat de Surface des Metaux sur leur Aptitude a la
Corrosion et sur 1'Action de Inhibiteurs,” in "Proceedings of the 4th
International Congress on Metal Corrosion, National Association of

Corrosion Engineering” (1969).




DTIC-DDAC
Cameron Station

Alexandria, VA 22314
AUL-LSE
Maxwell AFB, AL 36112

EXTERNAL DISTRIBUTION

ASD/ENSZ (Mr. W. E. Hartley)

Wright-Patterson AFB, OH

AFATL/DLODL

Eglin AFB, FL 32542
AFATL/CC

Eglin AFB, FL 32542
HQ USAF/SAMI
Washington, DC 20330
00-ALC /MMWMC

Hi1l AFB, UT 84406
HQ AFIS/INT
Washington, DC 20332

ASD/ENESS (Uncl. Only)
Wright-Patterson AFB, OH

HQ TAC/DRA

Langley AFB, VA 23665
HQ USAFE/DOQ

APO New York 09012

45433

45433

No. of

Copies

2

No. of
Copies
HQ PACAF/D00Q 2
Hickam AFB, HI = 96861
TAC/INAT 1
Langley AFB, VA 23665
ASD/XRX 1
Wright-Patterson AFB, OH 45433
US Army TRADOC Systems 1
Analysis ACTY/ATTA-SL
(Library)
White Sands Missile Range,
NM 88002
COMIPAC/PT-2 1
Box 38
Camp H.M. Smith, HI 96861
HQ 2ACAF/OA 1
Hickam AFB, HI 96853
USA Ballistics Research 1

Laboratory
ARRADCOM/DRDAR-TSB-S

Aberdeen Proving Ground, MD 21005
AFATL/CCN 1
AFATL/DLODA 1
FTD/SDNF 1

Wright-Patterson AFB, OH 45433

25



Vw‘};:u th\-ﬂ md\r"- A g
es

';“ = St s B

‘ Wﬁ%m«w ;w»\rwar;::-yswu‘."" .:m» : Wl B
& 1/'5\\' 5 ‘. i' g aghiiesy e ,%‘ o

TR R mﬁmw i

! X o '.-5.... % "

b0 AT B
T 43S

'I)GI 0“‘ e
SONCIN u.‘, &

. P N

S Pt e e





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /UseDeviceIndependentColor
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 450
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for compliance with 10CFR1, Appendix A.  Created PDF documents can be opened with Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


