

NUREG/CR-6976

Protecting People and the Environment

Rod Bundle Heat Transfer Test Facility Description

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material	Non-NRC Reference Material	
As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html.</u> Publicly released records include, to name a few, NUREG-series publications; <i>Federal Register</i> notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and <i>Title 10, Energy</i> , in the Code of <i>Federal Regulations</i> may also be purchased from one of these two sources. 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000	Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, <i>Federal Register</i> notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at— The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738 These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from— American National Standards Institute 11 West 42 nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900	
A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows: Address: Office of Administration Reproduction and Mail Services Branch U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301-415-2289 Some publications in the NUREG series that are posted at NRC's Web site address <u>http://www.nrc.gov/reading-rm/doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.	Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC. The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/IA-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).	

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

Errata

NUREG/CR-6976 "Rod Bundle Heat Transfer Test Facility Description", ML102290227 published July 2010

In several places of the report, the inner dimensions of the test section were incorrectly shown as 91.3 mm x 91.3 mm (3.595 in). The correct dimension should be 90.17 x 90.17 mm (3.55 in). This correction should apply to the EXECUTIVE SUMMARY on page xiii, on page 8 and, in Figure 3.2 on page 14 and Figure 3.7 on page 19.

On page 10 of Section 3.4 the descriptions should be corrected as follow:

Small Carryover Tank is 50.8 mm (2 in) sch80 pipe section 0.914 m (36 in) long.

Large Carryover Tank is 101.6 mm (4 in) sch40 pipe section 1.829 m (72 in) long.

On page 36 Table 3.1, the overall rod sheath length should be 4.369 m, not 7.36 m

NUREG/CR-6976

Protecting People and the Environment

Rod Bundle Heat Transfer Test Facility Description

Manuscript Completed: April 2008 Date Published: July 2010

Prepared by E.R. Rosal, T.F. Lin, I.S. McClellan, R.C. Brewer

The Pennsylvania State University University Park, PA 16802

K. Tien, NRC Project Manager

NRC Job Code W6855

Office of Nuclear Regulatory Research

NUREG/CR-6976, has been reproduced from the best available copy.

.

.

ABSTRACT

This report describes the Rod Bundle Heat Transfer (RBHT) Test Facility which is designed to conduct systematic separate effects tests under well-controlled laboratory conditions in order to generate fundamental rod bundle heat transfer data from single phase cooling tests, low flow boiling tests, steam flow tests with and without droplets injection, inverted annular film boiling tests, and dispersed flow film boiling heat transfer tests in rod bundles. The facility is capable of operating in steady state forced and variable reflood modes covering a wide range of flow and heat transfer conditions at pressures from 0.134 to 0.402 MPa (20 to 60 psia). The RBHT Test Facility is a unique facility which will provide new data for the fundamental development of best-estimate computer codes to enhance our understanding of the complex two-phase phenomena, which are modeled for the reflood transient.

· ·

FOREWORD

Reflood thermal-hydraulics represents an important set of phenomena during a hypothetical loss-of-coolant-accident (LOCA). These phenomena must be accurately simulated by systems codes in determining plant response to a LOCA. In spite of significant research into reflood thermal-hydraulics, there still exists uncertainty in these calculations. As a result, the Nuclear Regulatory Commission (NRC) conducts experimental investigations of reflood thermal-hydraulics in order to provide data for model development and to validate its systems codes, which are used to provide independent confirmation of the validity of licensees' submittals.

The NRC is currently assessing and improving the TRAC/RELAP Computational Engine (TRACE) code for best estimate analysis of light water reactors. While calculation of reflood by TRACE appears to be reasonable, higher accuracy is needed as the code is applied to power uprates and new plant designs to ensure acceptable margin between expected plant performance and the regulatory limits. Accurate prediction of the consequences of a LOCA is important because it is one of the postulated accident scenarios that determine the licensed core power and several other operational parameters.

To acquire detailed, fundamental data for use in developing models for reflood during a LOCA, the NRC sponsored the design and construction of a Rod Bundle Heat Transfer (RBHT) Test Facility. Some of these detailed data have only recently become possible because of recent advances in instrumentation technology for two-phase flow measurements.

This report describes the RBHT Test Facility components and instrumentation. It also presents the results of the facility characterization tests, including pressure loss coefficients of the spacer grids, heat loss from the bundle housing, and flow areas of the bundle and other tanks as a function of height. In addition, it provides an estimate of measurement uncertainties. As such, this report will prove useful in understanding and utilizing the data to be obtained from the facility.

With improved data and code models for simulating LOCAs, we can more accurately predict the consequences of these scenarios and provide better technical bases for regulations associated with such accidents. As a result, this study will help to ensure the agency's regulations are effective and efficient.

.

.

	Page
ABSTRACT	111
FOREWORD	v
EXECUTIVE SUMMARY	xiii
ABBREVIATIONS	xv
NOMENCLATURE	xvii
ACKNOWLEDGEMENTS	xix
1. INTRODUCTION	1
2. GENERAL DESIGN DESCRIPTION	
 3. DETAILED COMPONENT DESIGN DESCRIPTION 3.1 Test Section 3.2 Lower Plenum 3.3 Upper Plenum 3.4 Large and Small Carryover Tanks 3.5 Steam Separator and Drain Collection Tanks 3.6 Pressure Oscillation Damping Tank 	
 3.7 Exhaust Piping	
 4. TEST FACILITY INSTRUMENTATION	37 37 38 42
5. TEST FACILITY IMPROVEMENTS	67
 6. SUMMARY OF CHARACTERIZATION TESTS	
6.4 Calculation of Insulation Thickness for the Rod Bundle	73
7. CONCLUSIONS	87

1.2

8. REFERENCES	. 89
APPENDIX A. RBHT TEST FACILITY COMPONENTS DETAILED MECHANICAL DRAWINGS	A-1
APPENDIX B. RBHT TEST FACILITY COMPONENTS MEASURED VOLUMES OF FLOW AREAS	B-1
APPENDIX C. RBHT TEST FACILITY PHOTOGRAPHS DESCRIPTION	C-1
APPENDIX D. EXPERIMENTAL VERIFICATION OF THE PERFORMANCE OF THE DROPLET INJECTION SYSTEM USED IN THE RBHT TEST FACILITY	D-1
APPENDIX E. DETAILED ENGINEERING DRAWINGS FOR THE FLOW HOUSING AND ROD BUNDLE INSTRUMENTATION	E-1
APPENDIX F. INSTRUMENTATION ERROR ANALYSIS	F-1
APPENDIX G. RBHT TEST FACILITY ENGINEERING DRAWING LIST	G-1
APPENDIX H. THERMOPHYSICAL PROPERTIES OF ONE BORON NITRIDE SAMPLE AND THREE ROD SAMPLES	H-1

· · 3

•

N.

FIGURES

	<u>P</u>	age
2.1	RBHT Test Facility Schematic	4
2.2	RBHT Test Facility Isometric View	5
3.1	Test Section Isometric View	13
3.2	Rod Bundle Cross Sectional View	14
3.3	Heater Rod	15
3.4	Heater Rod Axial Power Profile	16
3.5	Mixing Vane Grid	17
3.6	Low-Melt Reservoir	18
3.7	Flow Housing Cross Sectional View	19
3.8	Low Mass Flow Housing	20
3.9	Housing Window	21
3.10	Lower Plenum	22
3.11	Lower Plenum Flow Baffle	23
3.12	Upper Plenum	24
3.13	Exhaust Line Baffle	25
3.14	Large Carryover Tank	26
3.15	Small Carryover Tank	27
3.16	Steam Separator	28
3.17	Steam Separator Drain Tank	29
3.18	Pressure Oscillation Damping Tank	30
3.19	Exhaust Piping	31
3.20	Injection Water Supply Tank	32
3.21	Water Injection Line	33
3.22	Droplet Injection Schematic	34
3.23	Droplet Injection System Schematic	35
4.1	Loop Instrumentation Schematic	43
4.2	Rod Bundle and Housing Instrumentation Axial Locations	44
4.3	Mixing Vane Grid Instrumentation	45
4.4	Grid No. 2 Instrumentation	46
4.5	Grid No. 3 Instrumentation	47
4.6	Grid No. 4 Instrumentation	48
4.7	Grid No. 5 Instrumentation	49
4.8	Grid No. 6 Instrumentation	50
4.9	Grid No. 7 Instrumentation	51
4.10	Instrumented Heater Rod Radial Locations	52
4.11	Grid Steam Probe Thermocouple Axial Location Schematic	53
4.12	Traversing Steam Probe Rake Schematic	54
4.13	Steam Probe Rake Automatic Traversing Mechanism	55
4.14	Densitometer Schematic	56
4.15	Laser Illuminating Digital Camera System	57
6.1	RBHT Differential Pressure Cell Lavout. Single Phase Flow	76
6.2	Grid Loss Coefficients vs. Revnolds Number - Experiment 276	77
6.3	Comparison of Experimental Data with Rehme's Method	78
6.4	Differential Pressure Cell Layout for Pressure Drop Tests	79
6.5	Friction Factor as a Function of Reynolds Number	80
6.6	Comparison of Friction Factors for Various Experiments	81
	iv	

•

6.7	Thermal Conductivity of Insulation Materials as a Function of Temperature	82
6.8	Heat Flux vs. Axial Length for Experiment 607	83
B.1	Volume and Flow Area Measuring Test Schedule	B-9
B.2	Water Supply Tank Volume Measurements	B-10
B.3	Water Supply Tank Flow Areas	B-10
B.4	Flow Housing Volumes Between Pressure Taps	B-11
B.5	Flow Housing Areas Between Pressure Taps	B-11
B.6	Upper Plenum Volume Measurements	B-12
B.7	Upper Plenum Flow Areas	B-12
B.8	Lower Plenum Volume Measurements	B-13
B.9	Lower Plenum Flow Areas	B-13
B.10	Large Carryover Tank Volume Measurements	B-14
B.11	Large Carryover Tank Flow Areas	B-14
B.12	Small Carryover Tank Volume Measurements	B-15
B.13	Small Carryover Tank Flow Areas	B-15
B.14	Pressure Oscillation Damping Tank Volume Measurements	B-16
B.15	Pressure Oscillation Damping Tank Flow Areas	B-16
C.1	Flow Housing with the Heater Rod Bundle and the Ground Nickel Plate	C-1
C.2	Ground Nickel Plate and Heater Rods Connection	C-1
C.3	Flow Housing Bottom Extension Flow Baffle, Heater Rod Bottom Extensions.	
•.•	and Grid and Support Rod Thermocouple Extensions	C-2
C.4	Lower Plenum Heater Rod Sealing Plate. Heater Rod Bottom Extensions	
•••	and Thermocouples Extension Wires	C-2
C 5	Installation of the Test Facility Components from Right to Left: Flow Housing	
0.0	and Support Fixture. Steam Separator. Pressure Oscillation Damping Tank.	
	Water Injection Supply Tank, and the Mezzanine Structure	C-3
C 6	Ton View of the Flow Housing, Upper Plenum, Small and Large Carryover	
0.0	Tanks Steam Separator Pressure Oscillation Damping Tank and the Ton	
	of the Water Injection Tank	C-3
C 7	Unner Plenum, Steam Separator, and Pressure Oscillation Damping Tank	0 0
0.7	Installation	C-4
6.8	Steam Exhaust Pining with the Vortex Flowmeter and the Pressure Control	0-4
0.0	V-Ball Valve	C-4
6.9	Test Section Flow Housing Showing the Heater Rods and Grids Through	• • •
0.0	the Window Openings	C-5
C 10	Bottom of the Flow Housing with the Lower Plenum and the Water Injection	0 0
0.10	Tank	C-6
C 11	Installation of the Test Section	0 0 C-7
C 12	Differential Pressure Cells Installation on the Flow Housing	0-7 C-8
C 13	Differential Pressure Cells Installation Showing Connections of the Pressure	0-0
0.15	Tap Lines to the Differential Pressure Cell Manifolds	C_9
C 14	PRHT Test Eacility Ruilding View Through the Poll up Door Showing the	0-9
0.14	Test Section Water Injection Tank Circulating Pump, and the Mezzanine	
	Structure	C 10
C 15	Incide View of the PRUT Test Eacility Through the Poll up Dear Showing the	0-10
0.15	Test Section Water Injection Tank Circulating Pump, and the Mazzanina	
	Structure	C_11
C 16	Data Acquisition Components: V/XI Mainframe and Terminal Panels	
0.10	Data Aequisition Componente. VA mainhame and Terminar Fancis	U-12

C.17	Electric AC Power Supply Showing the High Voltage Transformers, the Main	
	Breaker, and the Phase Shift Transformer	C-12
C.18	DC Power Supply Units Rated at 60 Volts DC, 12000 Amps and 750 KW	C-13

•stra

TABLES

		<u>Page</u>
3.1	Heater Rod General Specifications	
3.2	Thermocouple Specifications	36
3.3	Flow Housing Window Viewing Areas Below and Above Mixing Vane Grids	36
4.1	Instrumentation and Data Acquisition Channel List	58
6.1	Differential Pressure Cell Layout Description	
6.2	Calculation for Experiment 607	
6.3	Current and Voltage Readings for Power Calculation	
6.4	Elevation 1.419 m (55 in) - Heating Surface Temperature 348 degrees C	
	(659 degrees F)	85
6.5	Elevation 2.0 m (78.78 in) - Housing Surface Temperature 297 degrees C	
	(566 degrees F)	85
6.6	Elevation 2.75 m (108.43 in) - Housing Surfaces Temperature 239 degrees C	;
	(463 degrees F)	86
B.1	Component Volumes and Flow Areas	B-2
B.2	Water Supply Tank Volumes and Flow Areas	B-3
B.3	Flow Housing Volumes and Flow Areas Among Pressure Taps	B-4
B.4	Upper Plenum Volumes and Flow Areas	B-5
B.5	Lower Plenum Volumes and Flow Areas	B-5
B.6	Large Carryover Tank Volumes and Flow Areas	B-6
B.7	Small Carryover Tank Volumes and Flow Areas	B-6
B.8	Pressure Oscillation Damping Tank Volumes and Flow Areas	B-7
B.9	Grid and Bare Heater Rod Bundle Volumes and Flow Areas	B-8
B.10	Steam Separator Drain Tank Volumes and Flow Areas	B-8
F.1	Temperature Measurements	F-4
F.2	Pressure Measurements	F-5
F.3	Flow Measurements	F-6
F.4	Position Measurements	F-6
F.5	Power Supply Measurements	F-7

ester de la companya Ester de la companya d

EXECUTIVE SUMMARY

The NRC-sponsored Rod Bundle Heat Transfer (RBHT) Test Facility, designed to conduct systematic separate effects tests under well-controlled laboratory conditions, has been successfully developed and made operational at the Pennsylvania State University (PSU). The facility can be used to generate fundamental rod bundle heat transfer data from single phase cooling tests, low flow boiling tests, steam flow tests with and without droplets injection, inverted annular film boiling tests, and dispersed flow film boiling heat transfer tests in rod bundles.

The facility is heavily instrumented and meets all the instrumentation requirements developed in the RBHT Program. The facility includes a test section consisting of a lower plenum, a low-mass housing containing the heater rod bundle, and an upper plenum, coolant injection and steam injection systems, phase separation and liquid collection systems, a liquid droplets injection system, and a pressure fluctuation damping tank and steam exhaust piping.

The heater rod bundle in the test section of the facility simulates a small portion of a 17x17 reactor fuel assembly. The heater rods are electrically heated and have a diameter of 9.5 mm arranged in a 7x7 array with a 12.6 mm pitch. The bundle has 45 heater rods and four unheated corner rods. The latter are used to support the bundle grids and the instrumentation lines. Each rod is rated for 10 kW and designed to operate at 1.38 MPa at a maximum temperature of 1204 degrees C. Each rod is instrumented with eight 0.508 mm diameter ungrounded thermocouples. The rod bundle has seven mixing vane grids similar in design of a pressurized water reactor (PWR) 17x17 fuel assembly.

The flow housing provides the pressure and flow boundary for the heater rod bundle. It has a square geometry and is 91.3 x 91.3 mm in size, with the wall thickness of 6.35 mm. The flow housing has six pairs of windows, each providing 50.8 x 292.1 mm of viewing area. Each pair of windows is placed 180 degrees apart and located axially at elevations overlapping rod bundle spacer grids, thus providing a viewing area about 88.9 mm below and 152.4 mm above the corresponding spacer grid. The flow housing has 23 pressure taps located at various elevations. The pressure taps are connected to sensitive differential pressure cells providing measurements to calculate single-phase friction losses for determining bare rod bundle and grid loss coefficients.

The lower plenum is attached to the bottom of the flow housing. It is used as a reservoir of the coolant prior to injection into the rod bundle during reflood. The upper plenum serves as the first stage for phase separation and liquid collection of the two-phase effluent exiting the rod bundle. The de-entrained liquid is collected around the flow housing extension in the upper plenum and is subsequently drained into the top of a tube which extends inside a small carryover tank. Meanwhile, the wet steam exhausted from the upper plenum flows through a steam separator where carryover liquid droplets are further separated form the steam and collected in a small collection tank.

The dry steam from the steam separator flows into a pressure oscillation-damping tank. The latter is used to dampen pressure oscillations at the upper plenum caused by rapidly oscillating steam generation in the heater rod bundle during reflood. The steam flowing out of the pressure oscillation-damping tank is exhausted through a stainless steel pipe. The latter has a Vortex flow meter, a V-Bal pressure control valve and a muffler at the exit to minimize the noise caused by steam blowing into the atmosphere.

The injection water system consists of a water supply tank, a circulating pump and interconnecting lines to the test section lower plenum. The water injection is rated for 0.402 MPa and 154.4 degrees C. A boiler is used to provide steam for the single phase steam cooling tests with and without liquid droplet injection. The liquid droplets injection system consists of four stainless steel tubes entering through the test section at the 1.295 m elevation. The tubes run perpendicular to the heater rods and penetrate through both sides of the housing.

The test facility instrumentation is designed to measure temperatures, power, flow rates, liquid levels, pressures, void fractions, droplet sizes and distribution, and drop velocities. There are 123 instrumentation channels assigned to the collection of electrical power, fluid and wall temperatures, levels, flows, differential pressures, and static pressure measurements. The water injection line is equipped with a Coriolis flow meter that directly measures mass flow rates up to 454 kg/min. The exhaust line is equipped with a Vortex flow meter which, in conjunction with a static pressure transmitter and a fluid thermocouple measurement, is used to calculate the steam volumetric flow rates.

The test section instrumentation consists of the heater rod bundle and flow housing, the lower plenum and the upper plenum groups. Six grids have thermocouples attached to their surfaces in order to determine quenching behavior during reflood. The vapor (i.e., steam) temperatures are measured using miniature thermocouples that are attached to the spacer grids, and the traversing steam probe rakes having very small thermal time constants. A droplet imaging system known as VisiSizer has been developed in conjunction with Oxford Lasers to measure the sizes and velocities of water droplets entrained in the steam flow in various elevations along the bundle.

The control and data acquisition system employed in the facility provides control functions and data collection functions. This system consists of two parts: the computer and display terminals residing in the control room, and the VXI mainframe terminal panels residing in the test facility. The two parts are connected via an industry standard IEEE 1394 serial control and data interface. There are more than 500 channels available for scanning the data.

Various characterization tests have been performed on the RBHT facility. These characterization tests include single phase pressure drop tests, rod bundle friction factor measurements, radiation heat loss measurements, and fuel rod surface roughness, oxide thickness and emissivity measurements. Results of these characterization tests, which are presented in this report, appear to be satisfactory.

In summary, the RBHT Test Facility is capable of operating in steady-state forced and variable reflood modes covering a wide range of flow and heat transfer conditions at pressures from 0.134 - 0.402 MPa (20 - 60 psia). The facility with its robust instrumentation represents a unique experimental tool for obtaining new data for the fundamental development of best-estimate computer codes used by the NRC in review of applicants' licensing requests.

ABBREVIATIONS

.

BN COBRA-TF DP FLECHT FM GR LIDCS NRC OD PC PSU PSU	Boron Nitride Coolant Boiling Rods Arrays - Two Fluids Differential Pressure Full Length Emergency Cooling Heat Transfer Flow Transmitter Spacer Grid Laser Illuminating Digital Camera System Nuclear Regulatory Commission Outer Diameter Personal Computer Pennsylvania State University Pad Pundle Heat Transfer
PSU	Pennsylvania State University
RBHT	Rod Bundle Heat Transfer
SEASET	Systems Effects and Separate Effects Tests
TC	Thermocouple

NOMENCLATURE

Δ	Total Surface Area of the Rod Bundle
Ċ	Modified Spacer Form Loss Coefficient
Сv П.	Dronlet Diameter
Da D.	Hydraulic Diameter
D D	Droplet Injector Hole Diameter
L _o f	Eriotion Easter
/ 	
9	Gravitational Acceleration
n	
ĸ	Thermal Conductivity
K _{grid}	Grid Loss Coefficient
L	Length of the Span Over Which Frictional Losses are Measured; Insulation Thickness
L _{bare}	Bare Bundle Length
L _{grid}	Bundle Length Occupied by Each Spacer Grid
q"	Local Heat Flux
Re	Reynolds Number
Т	Local Temperature
Ts	Insulation Surface Temperature
T,	Wall Temperature
Τ	Ambient Temperature
V.	Gas Velocity
V	Liquid Velocity
x	Local Position in the Insulation Laver

Greek Letters

- ΔP_{bare} Pressure Drop Associated with the Bare Length of the Span
- ΔP_{grids} Pressure Drop Associated with the Grid Losses
- ΔP_{Total} Total Pressure Drop Accounting for Both the Bare Length of the Span and the Grids Ratio of the Projected Grid Cross-Sectional Area to the Undisturbed Flow Area
- $\mu_{\rm f}$ Liquid Viscosity
- N Number of Grids in Span
- R_o Radius of the Orifice
- ρ_f Liquid Density
- ρ_g Gas Density
- σ Surface Tension

,

•

ACKNOWLEDGMENTS

The authors wish to acknowledge Dr. L.E. Hochreiter and Dr. F.B. Cheung, Project Principal and Co-Principal Investigators, of the Mechanical and Nuclear Engineering Department, for their technical advice and guidance. C. Jones, R. Peters, J. Bennett, and especially D. Adams, from the ARL-Test Site, for their help in the instrumentation and installation of the heater rod bundle, test section, and test facility components. J. Anderson, College of Engineering Shop Service Manager, and his staff for fabrication most of the test facility components, and especially J. Anderson for designing the steam probe rake traversing mechanism, and C. Jones and R. Peters for automating it. The authors also wish to acknowledge the continuing guidance and support of the U.S. Nuclear Regulatory Commission, Office of Research in this effort, and in particular W.A. Macon, S. Bajorek, J.M. Kelly, G. Rhee, and D. Bassette.

. а.

.

.

. .

.

1. INTRODUCTION

The Rod Bundle Heat Transfer (RBHT) Test Facility is designed to conduct systematic separateeffects tests under well-controlled conditions in order to generate fundamental rod bundle heat transfer data from single phase steam cooling tests, low flow boiling tests, steam flow tests with and without injected droplets, inverted annular film boiling tests, and dispersed flow film boiling heat transfer tests. The facility is capable of operating in both forced and variable reflood modes covering wide ranges of flow and heat transfer conditions at pressures from 0.134 to 0.402 MPa (20 to 60 psia). This report provides a detailed description of the test facility design with the test components' detailed mechanical drawings given in Appendix A, the measured volume and flow areas in Appendix B, the facility photographs description in Appendix C, and the description of the droplet injection system in Appendix D.

.

·

2. GENERAL DESIGN DESCRIPTION

The test facility consists of the following major components shown schematically in Figure 2.1 and in an isometric view in Figure 2.2:

- A test section consisting of a lower plenum, a low-mass housing containing the heater rod bundle, and an upper plenum.
- Coolant injection and steam injection systems.
- Closely coupled phase separation and liquid collection systems.
- An injection system.
- A pressure fluctuation damping tank and steam exhaust piping.

Figure 2.1 RBHT Test Facility Schematic.

TEST FACILITY

Figure 2.2 RBHT Test Facility Isometric View.

.

3. DETAILED COMPONENT DESIGN DESCRIPTION

The various components of the RBHT Test Facility are described in Sections 3.1 to 3.11. All components are well insulated to minimize heat losses to the environment.

Detailed mechanical drawings of the RBHT Test Facility are listed in Appendix A.

Volumes and flow areas for each component were experimentally determined by weighing the water drained from each isolated component as described in Appendix B.

3.1 Test Section

The test section consists of the heater rod bundle, the flow housing, and the lower and upper plenums, as shown in Figure 3.1. The heater rod bundle simulates a small portion of a 17x17 reactor fuel assembly. The electrically powered heater rods have a diameter of 9.5 mm (0.374 in) arranged in a 7x7 array with a 12.6 mm (0.496 in) pitch, as shown in Figure 3.2. The heater rod specifications are listed in Table 3.1. The bundle has 45 heater rods and four unheated corner rods. The corner rods are used to support the bundle grids and the grid and fluid thermocouple leads. The support rods are made from Inconel 600 tubing having a diameter of 9.525 mm (0.375 in), a wall thickness of 2.108 mm (0.083 in), and a length of 3.96 m (156 in). The heater rods are single-ended and consist of a Monel 500 electrical resistance elements filled and surrounded by hot pressed boron nitride (BN) insulation, and enclosed in an Inconel 600 cladding, as shown in Figure 3.3. This material was chosen for its high strength and low thermal expansion coefficient at high temperatures, which minimizes rod bowing and failure at high temperature operating conditions since it was desired to reuse the heater rods for a second bundle build. The heater rods have a 3.657 m (12 ft) heated length with a skewed axial power profile, as shown in Figure 3.4, with the peak power located at the 2.74 m (9 ft) elevation. The maximum-to-average power ratio (P_{max}/P_{avo}) is 1.5 and the minimum-to-average power (P_{min}/P_{avo}) is 0.5 at both ends of the heated length. The bundle has a uniform radial power distribution. Detailed engineering drawings showing the elevation information of the windows, differential pressure (DP) tap points, spacer grid instrumentation, and traversing steam probes are given in Appendix E.

Power to each rod is provided by a 60 volt, 12,600 amp, 750 kW DC power supply. Each rod is rated for 10 kW, and designed to operate at 1.38 MPa (200 psig) at a maximum temperature of 1204 degrees C (2200 degrees F), but because of its solid construction it can be operated at up to 10.34 MPa (1500 psig). Each rod is instrumented with eight 0.508 mm (20 mil) diameter ungrounded thermocouples attached to the inside surface of the Inconel sheath at various locations. All of the thermocouple leads exit at the heater rod bottom end. Thermocouple specifications are shown in Table 3.2. The Inconel 600 thermocouple sheath is compatible with the heater rod cladding and housing material to reduce thermal expansion and minimize the possibility of missing thermocouple failure during the thermocycling operations.

There were three prototype heater rod experiments performed on the final heater rod design used for the RBHT facility. The purpose of these experiments was to verify that the rod design could meet the rigorous temperature and lifetime requirements required of the rods for the high temperature tests without rod or internal thermocouple failures. The third heater rod from these experiments was cut into one-foot lengths, labeled and sent to Purdue University to measure the surface emmissivity of the Inconel cladding as well as the material properties for both the 1.1

The surface of the test rod was oxidized from the high temperature tests. The same heater rod surface oxidation would occur for the heater rods put into the rod bundle since the temperature ranges were the same. Therefore, the emmissivity values measured on the test rod are applicable to the heater rods used in the RBHT Test Facility bundle build. It was observed that the Inconel oxidation was a very thin and tight oxide layer on the surface of the cladding. The roughness of the heater rod surface was also measured and was found to be between 20 - 30 µin which is consistent with smooth drawn tubing.

The rod bundle has seven mixing vane grids shown in Figure 3.5. These grids are similar in design of a PWR 17x17 fuel assembly, but instead of having dimples and springs, these grids have all dimples which provide a 0.127 mm (0.005 in) around each heater rod in order to prevent bowing when the heater rods are linearly expanding at high temperatures. The spacer grids are made out of Inconel 600 alloy sheets which are 0.508 mm (0.020 in) thick and are 44.45 mm (1.75 in) in height including the mixing vanes. The grids are located 522 mm (20.55 in) apart except for the spacing between the first and second grid, which are 588.26 mm (23.16 in) apart. The first grid is located 101.854 mm (4.01 in) above the bottom of the heater length. The grids in conjunction with the corner rods form the heater rod bundle support structure. The grid locations are similar to the ones found in a 17x17 PWR fuel assembly. The heater rod top extensions are attached to the 2.54 cm (1 in) thick nickel ground plate by means of a Morse taper that provides a good electrical contact. The heater rod bottom extension and copper electrode extend through the lower plenum O-ring pressure seal plate. The copper electrodes, which are 5.842 mm (0.230 in) in diameter and 203 mm (8 in) long, extend through holes drilled in the low-melt reservoir shown in Figure 3.6. This reservoir serves as the electrical power supply positive side connection. It contains a low temperature melting alloy at about 71.11 degrees C (160 degrees F) which is an excellent conductor, thus providing a good electrical contact and mechanical cushion allowing for rod thermal expansion to each heater rod.

The flow housing provides the pressure and flow boundary for the heater rod bundle. It has a square geometry. Its as-built inside dimensions are 91.3 x 91.3 mm (3.595 x 3.595 in), and wall thickness 6.35 mm (0.25 in), as shown in Figure 3.7. The housing is made out of Inconel 600 the same material used for the heater rod cladding and thermocouple sheaths. As pointed out previously, the high strength of Inconel 600 at elevated temperatures will minimize housing distortion during testing. The 6.35 mm (0.25 in) wall thickness is the minimum allowable for operating at 0.402 MPa (60 psig) and 537.8 degrees C (1000 degrees F), taking into consideration the cutouts to accommodate the large windows and the numerous pressure and temperature penetrations through the walls, as shown in Figure 3.8. The empty housing has a flow area of 83.4 cm² (12.9 in²). With the rod bundle in place the flow area is 48.63 cm² (7.5 in²). This area is 7.21 percent larger than the ideal flow area of a 7x7 rod bundle configuration. The excess flow area is due to the flow housing inside dimensional tolerance and the space needed to insert the rod bundle in the housing. The gap between the outer rods and the flow housing inner wall is 3.12 mm (0.123 in) wide. More detailed information is given in Appendix E.

The flow housing has six pairs of windows. Each window provides a 50.8 x 292.1 mm (2 x 11.5 in) viewing area as listed in Table 3.3. Each pair of windows is placed 180 degrees apart and located axially at elevations overlapping rod bundle spacer grids, thus providing a viewing area

about 88.9 mm (3.5 in) below and 152.4 mm (6 in) above the corresponding spacer grids. The windows will facilitate the measurement of droplet size and velocity using a Laser Illuminated Digital Camera System (LIDCS). The two-phase void fraction will be measured using sensitive DP cells. In addition, high speed movies using diffused back lighting can be taken during the experiments for visualization and flow regime information. The windows are made out of optical grade fused quartz and are mounted on the housing by means of a bolted flange and Kemprofile high temperature gasketing material, as shown in Figure 3.9.

The flow housing has 23 pressure taps located at various elevations, as shown schematically in Figure 3.8. The pressure taps locations are shown in the Engineering Drawings E115073 and E118338. The pressure taps are connected to sensitive DP cells providing measurements to calculate single-phase friction losses for determining bare rod bundle and grid loss coefficients. Sixteen of these pressure taps are located about 76.2 - 127 mm (3 - 5 in.) apart to provide detailed void fraction measurements in the froth region above the quench front. The DP cells connections and axial location are shown schematically in the Engineering Drawing E118338. The flow housing is supported from the nickel plate and upper plenum, allowing it to freely expand downward, thus minimizing thermal buckling and distortion.

The flow housing also has 13 stand-offs at various elevations, as shown in Figure 3.9, for the traversing steam probe rakes which measure the superheated steam temperatures in the dispersed flow regime.

3.2 Lower Plenum

The lower plenum is attached to the bottom of the flow housing. The lower plenum is made out of nominal 203.2 mm (8 in) schedule 40, 304SS pipe with an inside diameter of 201.6 mm (7.937 in), a height of 203.2 mm (8 in), and a volume of 6569.5 cm³ (0.232 ft³), as shown in Figure 3.10. The lower plenum is used as a reservoir for the coolant prior to injection into the rod bundle during reflood. It connects to the injection water line and steam cooling line. It has two penetrations for thermocouples monitoring the coolant temperature prior and during reflood, and pressure taps for static and differential pressure measurements.

The lower plenum also has four Conax fittings with multiple probes sealing glands for the bundle grid, steam probes, and support rod wall thermocouple extensions that are routed through the bottom of the rod bundle. It contains a flow baffle, which is attached to the flow housing bottom flange. The flow baffle has a square geometry, similar to the flow housing, as shown in Figure 3.11. The flow baffle wall has numerous small diameter holes that act as a flow distributor and flow straightener to provide an even flow distribution into the rod bundle.

3.3 Upper Plenum

The upper plenum serves as the first stage for phase separation and liquid collection of the twophase effluent exiting the rod bundle. The liquid phase separates due to the sudden expansion from the bundle to the larger plenum flow area. The de-entrained liquid is collected around the flow housing extension in the upper plenum. The extension acts as a weir preventing the separated liquid from falling back into the heater rod bundle. The upper plenum vessel configuration is shown in Figure 3.12. The vessel is made from a 203.2 mm (8 in) 304SS pipe with an inside diameter of 201.6 mm (7.937 in) and a height of 304.8 mm (12 in). It has a volume of 9827.5 cm³ (0.347 ft³). The plenum has a 76.2 mm (3 in) pipe flange connection to the steam separator and two penetrations for fluid thermocouples. It is covered with a 203.2 mm (8 in) 304SS blind flange. This flange has a 25.4 mm (1 in) penetration for steam injection, venting and connecting the safety relief valve and rupture disc assembly. It also has a pressure tap penetration for static and differential pressure measurements. In addition, the upper plenum contains an exhaust line baffle shown in Figure 3.13. The baffle is used to further de-entrain water from the steam and prevents water dripping from the upper plenum cover flange to be carried out by the exhaust steam. The baffle has a 76.2 mm (3 in) flange connection at one end. It is inserted through the upper plenum exit nozzle, and it is bolted between the nozzle flange and the flange of the pipe going to the steam separator.

3.4 Large and Small Carryover Tanks

The de-entrained liquid from the upper plenum drains into the top of a 25.6 mm (1 in) tube which extends inside a small carryover tank to detect and measure the carryover liquid as soon as possible. This tank, shown in Figure 3.15, is connected close coupled in series with a larger carryover tank, shown in Figure 3.14, which collects and measures the amount of liquid overflow from the smaller carryover tank. The small carryover tank has a volume of about 1387.8 cm³ (0.049 ft³) to more accurately measure the water being collected as a function of time. This tank is made from a 76.2 mm (3 in) schedule 40 pipes having an overall length of 0.9144 m (36 in) including the end caps. The large carryover tank is made from a 101.6 mm (4 in) schedule 40 pipes with a bottom end cap and top flanges having an overall length of 19.7 m (6 ft) and a capacity of 15916.9 cm³ (0.562 ft³). Each tank is connected with one 25.4 mm (1 in) flexible hose, one 25.4 mm (1 in) drain tube, and 9.5 mm (3/8 in) tubes with wall penetrations for installing fluid and level meters.

3.5 Steam Separator and Collection Tanks

The wet steam exhausted from the upper plenum flows through a steam separator (or dryer), shown in Figure 3.16, where carryover liquid droplets are further separated from the steam and collected in a small collection tank, shown in Figure 3.17 attached to the bottom of the steam separator. The steam separator relies on centrifugal force action to provide 99 percent dry steam. The separated liquid is drained into a collection tank where a differential pressure cell is used as a level meter to measure liquid accumulation. The steam separator is fabricated from a 355.6 mm (14 in) diameter 316SS pipes and is 914.4 mm (36 in) long. It has 50.8 mm (2 in) connecting nozzles, a 25.4 mm (1 in) drain, and a 12.7 mm (0.5 in) top vent. It also has two pressure taps for liquid level measurements and two 38.1 mm (1.5 in) side nozzle connections. The drain tank is a small vessel with a capacity of 11328.77 cm³ (0.4 ft³). It is made from a 101.6 mm (4 in) schedule 10, 304SS pipe with an overall length of 121.9 mm (48 in), including both end caps. It has a 25.4 mm (1 in) drain nozzle, a 25.4 mm (1 in) pipe top connection to the steam separator, pressure taps and fluid thermocouple connections.

3.6 Pressure Oscillation Damping Tank

The dry steam from the steam separator flows into a pressure oscillation-damping tank. As its name implies, it is used to dampen pressure oscillations at the upper plenum caused by rapidly oscillating steam generation in the heater rod bundle during reflood. This effect is coupled to the characteristics of the pressure control valve, which is located downstream in the steam exhaust line. It is desirable to have a smooth pressure control in order to minimize uncertainties when calculating mass balances, steam generation rates, and heat transfer coefficients in the heater

rod bundle, and avoid the pressure control valve causing oscillations in the bundle as it cycles. The tank has a volume of 0.209 cm^3 (7.38 ft³), which is approximately equal to the total volume of the rest of the test facility. This design criterion was used successfully in the ACHILLES reflood test facility (Ref. 6). The pressure tank is fabricated from a 355.6 mm (14 in), 304SS standard schedule pipe by 2.59 m (102 in) long, as shown in Figure 3.18. Inside the tank is a 76.2 mm (3 in), schedule 40, 304SS pipe that provides a tortuous path for the steam flow to expand into a large volume, thus damping pressure oscillations. The inlet and outlet nozzles are 76.2 mm (3 in) in diameter with flanges. The vent and drain lines are made of 25.4 mm (1 in) pipe. There are 9.53 mm (3/8 in) tube penetrations for a fluid thermocouple and two static pressure taps. The tank walls are heated with clamp-on strip heaters up to about 5.55 degrees C (10 degrees F) above saturation temperatures to prevent steam condensation.

3.7 Exhaust Piping

The steam flowing out of the pressure oscillation-damping tank is exhausted through a 76.2 mm (3 in) schedule 40, 304SS pipes, shown schematically in Figure 3.19. The exhaust line has a Vortex flowmeter, a 76.2 mm (3 in) V-Ball pressure control valve, and a muffler at the exit to minimize the noise caused by steam blowing into the atmosphere. The pressure control valve is activated by a signal from a static pressure transmitter located on the upper plenum. The line is also instrumented with a static pressure transmitter, fluid thermocouples, and outer wall thermocouples. The 76.2 mm (3 in) line has flow-straightening vanes which reduce the pipe length requirements upstream of the Vortex flowmeter in order to obtain accurate flow measurements. This line has strapped-on electrical heaters to keep the wall temperature about 11.11 degrees C (20 degrees F) above saturation to insure that single-phase steam flow measurements are made by the Vortex flowmeter.

3.8 Injection Water Supply Tank

The injection water system consists of a water supply tank, a circulating pump, and interconnecting lines to the test section lower plenum. The water supply tank shown in Figure 3.20 has a capacity of 0.953 cm³ (251.75 gal). It is designed for 0.402 MPa (60 psig) and 154.44 degrees C (310 degrees F). The tank is equipped with a submersible electrical heater to heat the injection water to specified test temperatures. The tank is pressurized by a nitrogen supply system, which regulates the over-pressure needed for the forced flooding injection tests. The tank has inlet and outlet nozzles, pressure taps for level measurements, fluid and wall thermocouples. Water from the tank can be circulated through the test section by a centrifugal pump with a capacity up to 0.946 cm³ per minute (250 gpm) which are needed to perform liquid single-phase flow tests.

3.9 Water Injection Line

The water injection line shown schematically on Figure 3.21 consists of a 50.8 mm (2 in) diameter 304SS tubing with a 2.77 mm (0.109 in) wall. It is rated for 0.402 MPa (60 psi) and 154.4 degrees C (310 degrees F) service. This line has a Coriolis Effect type flowmeter, a V-ball control valve, a quick opening solenoid valve, and appropriate shut-off and drain valves. It also has penetrations for static pressure and fluid thermocouples, and outside wall thermocouples. The line has tracer electrical cable type heater to maintain the water being injected at the proper test inlet temperatures.

3.10 Steam Supply

A boiler with a capacity of 2613 kg/hr (5760 lbs/hr) at 1.03 MPa (150 psig) provides steam for the single phase steam cooling, pressure drop and water droplet injection tests. It also provides steam for preheating the test components prior to testing. The boiler is connected to the lower plenum by means of a 50.8 mm (2 in) 304SS tube. It is equipped with a Vortex flowmeter to measure steam flows, fluid and wall thermocouples, a V-ball control valve, and a quick acting solenoid valve. The boiler is also connected to the upper plenum to provide steam for preheating the test components prior to testing.

3.11 Droplet Injection System

A system to inject water droplets into the test section has been included in the RBHT Test Facility design. The droplet injection system consists of six 2.38 mm (3/32 in) OD stainless steel tubes entering through the test section at the 1.295 m (51 in) elevation. The tubes run perpendicular to the heater rods and penetrate through both sides of the housing as seen in Figure 3.22, and the injection flow schematic is shown in Figure 3.23. The tubes can be easily removed when not needed so they do not interfere with other types of tests. Water is supplied to the injector tubes from the injection water supply tank as described in Section 3.8 and a cluster of 0.33 mm (0.013 in) diameter holes which are drilled on the downstream side of the tubes to inject water directly into each of the 36 rod bundle sub-channels. Three injection tubes with different hole arrangements were tested as reported in Appendix D. The results showed that the triangular pitch configuration provided the desired water droplet diameter of about 0.660 mm (0.026 in).

Figure 3.1 Test Section Isometric View.

Figure 3.2 Rod Bundle Cross Section View.

ĥ

<u>NOTES</u> -1. Al dimensions in inches.

PENN STATE HEATER ROD SCHEMATIC

Figure 3.3 Heater Rod.

Penn State University RBHT - Test Facility

Figure 3.4 Heater Rod Axial Power Profile.

Figure 3.5 Mixing Vane Grid.

PENN STATE UNIVERSITY REMT-TEST FACILITY LOW-MELT RESERVOIR AND CLAMP

٠Ĺ

Figure 3.6 Low-Melt Reservoir.

1

Figure 3.7 Flow Housing Cross Section View.

Figure 3.8 Low Mass Flow Housing.

Figure 3.9 Housing Window.

Figure 3.10 Lower Plenum.

PENN STATE UNIVERSITY RBHT-TEST FACILITY LOWER PLENUM FLOW BAFFLE

Figure 3.11 Lower Plenum Flow Baffle.

Figure 3.12 Upper Plenum.

PENN STATE UNIVERSITY RBHT-TEST FACILITY EXHAUST LINE BAFFLE

Figure 3.13 Exhaust Line Baffle.

Figure 3.14 Large Carryover Tank.

•

Figure 3.15 Small Carryover Tank.

Figure 3.16 Steam Separator.

Figure 3.17 Steam Separator Drain Tank.

,

Figure 3.18 Pressure Oscillation Damping Tank.

Figure 3.19 Exhaust Piping.

,

Figure 3.20 Injection Water Supply Tank.

Figure 3.21 Water Injection Line.

,

34

•

-

Operating Pressure	1.38 MPa (200 psig)
Maximum Sheath Temperature	1204 degrees C (2200 degrees F)
Design Power	10.0kW
Design Voltage	57 V
Design Current	175.4 A
Design Resistance @ 537.8 degrees C	0.325 Ω
Electrical Resistance @ 31.11 degrees C	0.306 Ω ± 5%
Axial Power Profile	Linear 0.5/1.5/0.5
	(See Figure 3.4)
Heated Length	3.657 m (144 in)
Average Linear Power	0.83 kW/ft
Peak Linear Power	1.25 kW/ft
Outside Diameter	9.5 mm (0.374 ± 0.002 in)
Overall Sheath Length	7.368 m (172 in)
Electrode Length	203 mm (8 in)
Electrode Diameter	5.84 mm (0.230 ± 0.002 in)
Extension Length - Top	203 mm (8 ± 0.25 in)
Sheath Surface Finish	As Swaged
	(63 µin or better)

Table 3.1 Heater Rod General Specifications

Table 3.2 Thermocouple Specifications

Туре	Premium grade ANSI Type K
Diameter	0.508 mm (0.020 in)
Sheath	Inconel 600
Insulation	MgO
Junction	Undergrounded, BN Backfilled
Length	Up to 5.485 m (216 in)
Resistance, Lead to Sheath	1 x 10 ¹¹ Ω @ 50 volts
Length Beyond Heater Sheath	1.219 m (48 in)

Table 3.3 Flow Housing Window Viewing Areas Below and Above Mixing Vane Grids

Window	Grid No.	Height of Viewing Areas		
		Below mm (in)	Above mm (in)	
А	2	101.6 (4)	152.4 (6)	
В	3	108.0 (4.25)	146.1 (5.75)	
С	4	108.0 (4.25)	146.1 (5.75)	
D	5	108.0 (4.25)	146.1 (5.75)	
Е	6	98.4 (3.873)	155.6 (6.125)	
F	., 7	108.0 (4.25)	146.1 (5.75)	

•

4. TEST FACILITY INSTRUMENTATION

The test facility instrumentation is designed to measure temperatures, power, flows, liquid levels, pressures, void fractions, and droplet sizes, distribution, and drop velocities. The vapor velocity cannot be directly measured in a two-phase dispersed flow, but it can be calculated at different axial positions from the data. Overall and transient mass and energy balances, mass inventories, carryover liquid and steam flows as a function of time can be calculated. Heater rod power, temperature, and fluid temperature are used to calculate heat fluxes and heat transfer coefficients, quench times, rod bundle energy losses, convective and radiation heat transfer to steam, droplets, grids, support rods, and housing. Effects of grids, support rods and housing behavior during reflood can be determined. Void fraction measurements below the quench front and in the froth level above the quench front, in conjunction with the laser illuminated digital camera measurements are used to determine droplet entrainment behavior, droplet effects on heat transfer, and steam desuperheating. The Laser Illuminated Digital Camera System (LIDCS) measurements provide droplet size distribution and velocities during reflood.

4.1 Loop Instrumentation and Controls

Loop instrumentation is shown schematically in Figure 4.1, and listed in the instrumentation and data acquisition channels shown in Table 4. There are 123 instrumentation channels are assigned to the collection of electrical power, fluid and wall temperatures, levels, flows, differential pressures, and static pressure measurements. The injection water supply tank has three fluid and three wall thermocouples to monitor water and wall temperatures during heat-up prior to testing. It has a differential pressure transmitter used as a level meter to determine water mass in the tank and mass depletion during reflood testing. It also has a static pressure transmitter which monitors the nitrogen overpressure and controls the nitrogen flow needed to maintain a constant pressure during forced injection reflood tests.

The water injection line is equipped with a Coriolis Effect Micromotion flowmeter that directly measures mass flows up to 454 kg/min (1000 lbs/min) with an accuracy of plus or minus eleven hundredths of a percent (±0.11 percent) of rate. The steam line has a Rosemount Vortex shedding flowmeter to measure flow up to 7.08 m³/min (250 ft³/min) with an accuracy of plus or minus 65 hundredths of a percent (±0.65 percent) of rate. Each flowmeter is connected through a pneumatic controller to a V-ball flow control valve. Each line has a fluid thermocouple to measure water or steam temperature during heat-up and forced injection testing. They also have a static pressure transmitter which in conjunction with the thermocouples can determine the thermodynamic properties of the fluids. The injection line has three wall thermocouples to monitor wall temperatures during heat-up and during testing. One of these thermocouples in conjunction with a temperature controller regulates the power to an electrical heating cable wrapped around the injection line. The heating cable is used to heat-up the injection line wall and to maintain the injection water at the required injection temperature.

The small carryover tank has one fluid and two wall thermocouples. The large carryover tank instrumentation consists of one fluid thermocouple and three wall thermocouples. Both tanks have a liquid level meter which measures the amount of carryover liquid being collected during testing. In addition, a differential pressure transmitter is connected from the top of the carryover tank to the upper plenum to determine the static pressure in the carryover tank.

The steam separator is instrumented with one fluid and two wall thermocouples. The drain tank

is instrumented with two fluid and two wall thermocouples. The fluid thermocouple measures the water temperature de-entrained during testing. The wall thermocouples monitor wall temperatures during heat-up. The volume of de-entrained water is measured with a level meter connected across the drain tank.

The pressure oscillation damping tank has two fluid and three wall thermocouples which are used to monitor vessel walls during heat-up, and to insure that the vessel wall is at a temperature above saturation to prevent condensation. One wall thermocouple in conjunction with a temperature controller monitors the power applied to clamp-on heaters that heat up the tank to the desired wall temperature.

The exhaust line is equipped with a Vortex flowmeter which, in conjunction with a static pressure transmitter and fluid thermocouple measurements are used to calculate steam volumetric flows up to 7.08 m³/min (250 ft³/min). The flowmeter has an accuracy of plus or minus 65 hundredths of a percent (±0.65 percent) of the rate. The exhaust line also has three wall thermocouples to measure pipe wall temperatures. One wall thermocouple in conjunction with a temperature control regulates the power going to clamp-on heaters which are used for heating the pipe walls up to a temperature about 11 degrees C (20 degrees F) above saturation to prevent steam condensation and to insure accurate single phase steam flow measurements. The exhaust line has a V-ball pressure control valve. This valve is controlled by a static pressure transmitter through a pneumatic controller connected to the top of the upper plenum in order to maintain constant test section pressure during testing.

4.2 Test Section Instrumentation

The test section is heavily instrumented to obtain the data described at the beginning of this section.

The test section instrumentation consists of the heater rod bundle and flow housing, the lower plenum, and the upper plenum groups. The heater rod bundle and flow housing instrumentation is shown schematically in Figure 4.2 and listed in Table 4. A more detailed drawing is given in Figure E.5 of Appendix E. This figure shows the instrumentation axial locations in relation to heater rod heated length, heater axial power profile, grids, steam probes and steam probe rakes, housing pressure taps, and windows.

Six grids have thermocouples attached to their surfaces in order to determine quenching behavior during reflood shown in Figures 4.3 though 4.9. Grid and steam probes axial locations are shown schematically in Figure 3.8 with the detailed elevation information given in Figures E.3 and E.4 of Appendix E. Eight groups of heater rods have thermocouples at different elevations to cover, as much as possible, the entire rod bundle heated length. The radial location of each heater rod group is shown in Figure 4.10. The radial locations of instrumentation rods were chosen in order to be able to characterize heat transfer of hot rods simulated by the center rods, rod-to-rod and rod-to-housing radiation heat transfer. For this purpose, heater rod thermocouples, steam probes, and housing wall thermocouples are located at the same elevations. In addition, symmetrical location of the same group of instrumented heater rods will help in the data analysis and will determine any anomalies in the radial flow distribution through the heater rod bundle. Heater rod thermocouples are also placed at varying distances downstream from a grid to determine the decreasing heat transfer gradient between grid spans. The steam probe or fluid thermocouples are located at short distances upstream

and downstream of a grid to determine the effect of water droplets being shattered by the grids on droplet size and distribution, and the de-superheating effect on steam temperatures in the disperse flow regime.

The vapor or steam temperature will be measured using miniature thermocouples having a diameter of 0.813 mm (0.032 in) which are attached to the spacer grids, and the traversing steam probe rakes having a diameter of 0.381 mm (0.015 in). These are very small diameter thermocouples that have a fast response time such that they can follow the vapor temperature accurately in a dispersed, non-equilibrium, two-phase flow. As the froth front approaches, the number and sizes of the droplets increase which can lead to wetting of these thermocouples. Experiments performed as part of the FLECHT-SEASET program indicated that very small thermocouples would provide reliable vapor superheat ready for the longest time period until they quench as the froth region approached. While the Lehigh vapor probe was considered, it is too large and causes a flow distribution effect which is not typical of the bundle. The Lehigh probe would block 68 percent of the gap between adjacent heat rods. The effect of the probe would be to distort the data downstream of the sensing location. Such flow distribution effects were observed in the Lehigh data as well as the INEL single tube data which used these probes.

The traversing steam probe rakes are located at the spans among the grids at the upper heater rod bundle elevations, as shown schematically in Figure 4.11. The traversing steam probes rakes will measure steam temperatures in the heater rod bundle flow subchannels and the gap between the heater rods during the dispersed flow regime. The traversing steam probe rake is shown in Figure 4.12. Each rake consists of three 0.381 mm (0.015 in) diameter ungrounded thermocouples mounted on a 0.356 mm (0.014 in) thick by 6.35 mm (0.25 in) wide Inconel strip. The thermocouples are spaced 12.6 mm (0.496 in) apart which correspond to the heater rod spacing in the bundle. The thermocouple tips are located facing the steam flow. A 2.39 mm (0.094 in) diameter tube attached to the strip is used to traverse the steam probe rake across the rod bundle. This tube also carries the thermocouples leads outside the flow housing through an extension tube and a pressure seal arrangement. The tube is attached to an automated sliding mechanism shown in Figure 4.13. It consists of a sliding bar, a 24 DCV motor with a ball drive shaft, and a linear potentiometer provides a voltage input to the Data Acquisition which determines the rake thermocouple location and travel distances across the heater rod bundle.

Two fluid thermocouples are placed 24.5 mm (1 in) below the bottom of the bundle heated length such that injection water temperatures are monitored prior to and when reflood is started. There are 23 DP transmitters connected to the housing wall pressure taps providing measurements to calculate single phase flow heater rod bundle and grid friction losses, bundle mass inventory, and void fraction during reflood. Nine DP cells are connected to pressure taps located 76.2 - 127 mm (3 - 5 in) apart to provide detail mass inventory, and void fraction data in the froth region above the quench front, as shown in Figure E.2 of Appendix E. In addition, heater rod and housing wall thermocouples are placed at these pressure tap mid spans locations to determine convective and radiant heat transfer coefficients in the froth region where the differential pressure cells will give the average void fraction.

As described previously in Section 3.1, the flow housing has six pairs of windows at the following elevations: 61.39 cm (27.17 in), 113.58 cm (44.72 in), 165.8 cm (65.27 in), 217.98 cm (85.82 in), 270.18 cm (106.37 in), and 322.4 cm (126.92 in). Each pair of windows is 180 degrees apart. The window lenses are made from optical grade fused quartz and provide a viewing area of about 10.16 cm (4 in) below and 15.24 cm (6 in) above grid numbers two through seven. The

windows will be preheated to prevent wetting during the time when dispersed flow is occurring and LIDCS measurements are being made. The windows will be heated using infrared heaters on each window and by pulsing the heater rod bundle when preheating the flow housing walls. The infrared heaters will be removed just before a test is started. Two significant measurements above and below the grid can be made through the windows.

A droplet imaging system known as VisiSizer has been developed in conjunction with Oxford Lasers of Acton, Massachusetts, to measure the size and velocity of water droplets entrained in the steam flow of the RBHT test section shown schematically in Figure 4.14. VisiSizer uses a pulsed infrared laser to image water droplets on a 1000x1000 pixel high-resolution black and white digital camera through a set of windows in the bundle housing as shown in Figure 4.15. A digital system such as VisiSizer was chosen over conventional high-speed cameras because of issues with reliability and speed of data acquisition. A high-speed camera is capable of only a few seconds of imaging and is a tedious process that does not give instantaneous results. Each frame of a standard imaging technique would need to be analyzed by hand. The VisiSizer system is capable of analyzing 12 - 13 frames per second for an indefinite period of time. Film from the FLECHT-SEASET tests show much less image quality than images taken with VisiSizer in the experiments performed so far. However, VisiSizer is incapable of measuring anything other than complete droplets. This makes it an inadequate tool for gathering information about the entrainment front where there are ligaments and other unusual water behavior. Therefore, it is still a possibility that a high-speed camera will be used in tandem with VisiSizer for the RBHT tests.

An infrared laser is used with the system because it is capable of passing through the quartz viewing windows and being absorbed by the water droplets entrained in the steam flow. Because the infrared rays are absorbed by the water droplets, the resulting droplet shadows can be recorded by the digital camera. So far, there has been no effect of laser light scattering from rods to droplets. Pictures taken in and out of the rod bundle have the same imaging characteristics, droplet analyzing capability, and clarity. A band pass laser light filter is placed in front of the digital camera to eliminate non-infrared light from other sources and an anti-glare attachment is used to eliminate any illumination interference from outside the viewing area. In addition, rod bundle geometry has little effect in the measurement of droplet distributions and velocities.

The frames captured by the camera are fed back to a computer at approximately 12 - 13 frames per second. The software can analyze each frame for droplet size and velocity and write the recorded data to a size and velocity data array. The software program determines droplet sizes by determining the area of black vs. white pixels in each droplet image. Once the droplet area is determined, the program calculates the perimeter of the droplet image to determine the sphereosity of the droplet. The VisiSizer system is capable of determining the surface area based on diameter of any and all droplets. At any droplet concentration that is measurable with the system, an accurate measure of the total droplet surface area can be obtained. So far, number fluxes of up to six droplets per frame in velocity mode (12 droplet images) have been analyzed successfully with the droplets in a very narrow viewing area. There is the capability to increase this droplet number flux by several times using larger and multiple viewing areas.

Operating the laser in a double pulse mode enables the VisiSizer system to measure both droplet diameter and velocity for a particular probe volume. The laser pulses twice with a known pulse delay (on the order of one millisecond) while the camera shutter remains open, creating

two images in the same frame of each droplet. The distance between images is then determined and the velocity calculated. These velocity characteristics are enough to characterize the behavior of the flow despite the fact that the droplets are only captured in a single frame.

The local distribution of droplets will be determined for a known probe volume governed by the software settings. Droplets that lie out of this probe volume on either side of the line of sight will be rejected based on focus. The opposite sides of the probe volume will be set by the spacing of the rods in the bundle. Each droplet is recorded in a two-dimensional array according to size and velocity. The droplet sizes are recorded in log-normal bins while the velocity bin size is user defined. Data for the transient reflood experiments is recorded in user defined quasi-steady state time periods. At the end of each time period the data is saved and a new array is opened. Arrays characterized by similar droplets populations can then be combined for better statistical results.

The VisiSizer will enable the experimenters to collect a vast amount of information about the droplet flow in the test section. The information will be collected in an easy to handle data array and all information will be written to a CD-ROM to ensure the information will be available for later use.

The droplet injection system described in Section 3.11 has been constructed so that RBHT can collect steady-state information on droplet behavior. The injection system creates droplets of a known size and flow rate in the test section. The injection tubes are easily removed and replaced. This enables multiple injection sizes to be used as needed. The flow rate of the injection is controlled through a series of valves and flow meters. These factors should allow for the production of various droplet sizes. VisiSizer can study the droplet flow and distribution before a grid and then the system can be moved to image droplets immediately after the grid with the same conditions. In this way the effects of a spacer grid on the droplet diameter distribution can be determined.

The four corner support rods are unheated. They are used to support the bundle grids and to support grid and steam probes thermocouple leads going out of the bundle. These rods are instrumented with eight thermocouples attached at various elevations corresponding to heater rods and housing wall thermocouples. The purpose of this arrangement is to quantify radiation heat transfer losses to unheated surfaces and determine their behavior during reflood.

The DC power supply can be controlled by regulating the voltage, current, or total power output. The voltage drop across the heater rod bundle is measured by a voltmeter connected to voltage taps at the Low-Melt pot and the Nickel Ground Plate. The electrical current is measured by a copper shunt calibrated for 15,000 amps proportional to an output signal of 0-50 mV.

The Lower Plenum is instrumented with two fluid and two wall thermocouples. The fluid thermocouples monitor the injection water temperature prior and during testing. The wall thermocouples measure the vessel wall during heat-up and testing. One of the wall thermocouples in conjunction with a temperature controller regulates electrical power to clampon heater rods to maintain the vessel wall at inlet temperatures.

The Upper Plenum is also instrumented with two fluid thermocouples and two wall thermocouples. The fluid thermocouples measure steam and carryover liquid during testing.

The wall thermocouples monitor vessel wall temperatures during heat-up and testing. The Upper Plenum is also instrumented with a static pressure transmitter which measures and controls the test section pressure during testing.

4.3 Data Acquisition System

The control and data acquisition system provides control functions and data collection functions for the RBHT Test Facility. This system consists of two parts, the computer and display terminals residing in the control room, and the VXI mainframe and terminal panels residing in the test facility. The two parts are connected via an industry standard IEEE 1394 (Firewire) serial control and data interface.

The computer provides the display, control, and data storage functions. It has the capability of displaying control function setpoints and process variables, and critical operating parameters during tests, along with selected variables such as various rod temperatures displayed in real-time during the experiment. This system will provide dial, meter, and strip-chart functions as required. The computer collects and saves data from the various instruments, such as voltage, current, pressure, level, flow, and temperature. This provides control functions such as heater rod power, injection water pressure, upper and lower plenum temperature, etc.

The instrumentation part of this system, residing in the test facility, consists of an industry standard VXI mainframe (Vme bus with extensions for instrumentation) from Hewlett-Packard (HP E8401A), and a set of terminal panels (HP E1586A). The VXI mainframe contains a Firewire controller card (HP E8491A) and several (currently seven) state-of-the-art data acquisition and control cards (HP E1419A). The terminal panels provide the isothermal reference junctions needed for the thermocouples, as well as the voltage and current-loop input/output (I/O) interface to the RBHT facility. These terminal panels are connected to the HP E1419A cards with SCSI cables. Seven cards yield a capability of 448 I/0. The VXI mainframe can hold up to twelve cards, and the Firewire interface can support up to 16 mainframes. Each E1419A card can support up to eight signal conditioning plug-ons (scp's), conditioning eight channels each. Each E1509A scp contains low-pass anti-aliasing filters, fixed at 7 Hz. Because of this, the scan rate for each channel must be greater than or equal to the Nyquist rate of 14 Hz. The maximum a/d conversion rate on each HP E1419A card is nominally 100kHz, but is controlled to the rate the user requires. The seven cards can be synchronized to perform the scans simultaneously. The theoretical maximum scan rate for each channel (on any individual card) is 100,000/64 = 1,562.5 Hz, if all 64 channels are scanned. (Note that the actual scan rate would be less because of multiplexer switching, amplifier settling times due to gain changes, etc. There are different scp's available from HP providing different filter values to scan at these rates.) The normal data-scanning rate will be 2 Hz during the majority of the tests, but this rate can be increased to 10 Hz for specific times during testing.

An instrumentation error analysis showing the instrument uncertanity based essentially of FLECHT SEASET tests is given in Appendix F at the end of this report.

Figure 4.1 Loop Instrumentation Schematic.

Figure 4.3 Mixing Vane Grid Instrumentation.

Figure 4.4 Grid No. 2 Instrumentation.

• .

Figure 4.5 Grid No.3 Instrumentation.

ł

Figure 4.6 Grid No.4 Instrumentation.

Figure 4.7 Grid No.5 Instrumentation.

Figure 4.8 Grid No. 6 Instrumentation.

•

Figure 4.9 Grid No.7 Instrumentation.

Figure 4.10 Instrumentation Heater Rod Radial Locations.

RBHT - Test Facility Instrumented Heater Rod Locations

EAST

	А	В	C	D	E	F	G
1	Al	B1	Cl	DI	El	FI	GL
1	- Gr-9 -	Gt-7	Gr-0	Gr-7	Gr-0	- Gr-9	
2	Α2	B2	C2	D2	E2	F2	62
4	Gr-0	Gr-1	Gr-2	Gr-6	Gr-8	Gr-1	Gr-0
2	A3	B3	C3	D3	E3	F3	G3
ſ	Gr-0	Gr-8	Gr-5	Gr-3	Gr-4	Gr-8	Gr-0
<u>,</u>	A4	B4	C4	D4	E4	F4	G4
4	Gr-7	Gr-3	Gr-3	Gr-3	Gr-3	Gr-5	Gr-0
ξ	A5	B5	C5	D5	E5	F.5	G5
J	Gr 0	Gr-2	Gr-4	Gr-8	Gr-4	Gr-2	<u>Gr-0</u>
4	A6	B6	C6	D6	E6	F6	G6
D	Gr-7	Gr-1	Gr-2	Gr-6	Gr-8	Gr-1	Gr-0
-	A7	B7	C7	D7	E7	F-7	G7
1		Gr-0	Gr-0	Gr-7	Gr-0	Gr-7	Gr-9

SOUTH

NORTH

WEST

Figure 4.11 Grid and Steam Probe Thermocouple Axial Location Schematic.

1 --

415

53

Figure 4.12 Traversing Steam Probe Rake Schematic.

Figure 4.13 Steam Probe Rake Automatic Traversing Mechanism.

Figure 4.14 Densitometer Schematic.

Diagram I Laser Illuminated Digital Camera System Setup Pigare 11-23

Figure 4.15 Laser Illuminated Digital Camera System.

57

 Table 4.1 Instrumentation and Data Acquisition Channel List

1100 57050	2 5:18 PM	instante	d Cizia As						
Channel	Hame	Location	HR	Group	Data I	Longo	Ceta	Vendor	instrumen
No.		Q 285X	Name	No	(tow)	(high)	Unite		
~1 	FREEDER FLOGT				1 33 1				
	19(31-47.8	1210.7		-	283	1644	<u>K</u>	Stern Lab	TC Type
	177 01-94.9 US NY 25 1	1013.4		· · · · · · · · · · · · · · · · · · ·	403	1094	<u>_</u>	SIRTI LAD	TC TYPE
	UB B1.95 7	2004.4	8	·	28-3	104	K	SARTA LED	TC Type I
		- C.I.C.			453	1544	<u>K</u>	Sdorn Lab	IC Type I
	1201 04 444 10	2400.3	01		43.4	1044	<u>\$</u>	Starn Lab	C ypa
	TOK (51+114.0)	2313.19	81		25.1	1844	<u> </u>	Sham Leo	IC Type
	100 01-120.7	3410 4	01		423 888	1044	<u>K</u>	104077 LED	IC Type
·····	PDP 31-139.4	3040 0			283	1544		Stern Lap	TC Typa
		ARAA B			203	1044	<u> </u>	Seem Lap	IC IYPO
<u> </u>		1040.3	- NI		283	1044		Ston Lip	Ciypel
	DE A4 98 A					1000	×	300071 L200	10 1700
		- CV29.3		<u> </u>		1044	<u> </u>	Storn Lab	IC Type
		44/1.4	01 7		403	1044	<u>K</u>	OWSTILED	IL INDE!
		4341.0	Kl		203	1944	<u> </u>	SIBITI LOD	TC Type
	US NI CHAZ	1 0619-0 1844 P			403	1044	<u>.</u>	GALINES	IC IVES
	LUI 29 29 8	1912 9		÷	 323	1044	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Start Lab	
	TUR 7 1-41.0	1410.1			- 450	1044	 	JARTA LED	
	NN 71-03.0	1620.3	P1	i - 6 - ∔	- 683	1044		Second Lab	TU Type
	IN FICES	1/30.1	P/		643	1844	<u>A</u>	SOBUTI LAD	IC TYPE
	US \$7.67 1	9.124 0			- 463	1094		Diem Lap	IC IVDO
	THE FIGH &	2400.9		·	- 28-3	1644	- 10 m	Stern Lab	IC Type
	US 17-11-2	4910.0				1044		SERTI LAD	IC IVP8
	100 EV 150 4	1218 8				1044		SEITLED	IC IVE
	107 11 10	1714 9			448		<u>-</u>	OTHIT LED	IC IYDE I
	LIN NY AT 8	1410.7			403	1044		GIOTO LEO	
	DE H4 43 5	44.44	- A			1044	**************************************	Selen Lass	IC IVPa
		141.2	89		- 203	1044		200309 (202)	L YPS
	U2 57 774	2428 4	- 69			1044		003911 640	10 1978
	NO BY TILE	16/1 6	RY			1044	<u> </u>	CHARTER LIND	10 1900
		1110 1	ŇV			1977	<u> </u>	GASTH LON	10 1990
	Da NY 156 A	1 34 1-5.4			403			Alorn Lao	IL IYPE
		3643.0			444	1049		JUST IN LORD	- VIP
	US 77 148 A	ABOU.V			203	1044 7		Com Lab	- type
	100 07 494 4	4001.0					<u>\$</u>	DOGUN LEG	TC TYPE
		4443			- 200		<u> </u>	Citerin Law	
	FIL C 1*120.*	3406		9	404	1044 1		Googe Lat	IC IVE
	MP1 /40-47.7	1412.00	A0		603	4044		Busser Lab	IL Type I
	IN ADAL	1013.9	14		46-3	1044	····· · · · · · · · · ·	Starry Lab	C YPe
	Let Le se d	1548 6	18		824			Sum Lao	IC ITPE
		2474 1	AL C					Share Lab	The second
	La la mar	4654 8	- TA		441			Cham I ab	
		1211.6			303	1844	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 Stern Late	
	LØ 64,145 0		54			1444		Charm I sta	TO Turne
	HE AL IN	13103		· · · · ·	-	TRAL		Store Lat	Tr Yuna
-1-1-	HR ALLTS	Linco s	22	· · · · · ·		TALL		Stars Lan	TC
-1-1-	HR ALEII	1747.5	AA	· · · · ·	781	144		Stern Lah	TCYUM
- <u>i</u>	HR ALTO G	2029 8	A4	÷ ÷	281	1111		Starn L an	TCT
45	HR 44-07.1	2448.5	ĂĂ		83	1644		Storn Lab	TC Twee
48	HR A4-115	2921.0	- H			1544	- <u>ÿ</u>	Starn Lab	TC Tree
47	HA 44-128.8	3217	A		711	THAT	X	Storn Led	TC Tuna
	HA 44-138.4	1 3540.8	M		283	1844	- R	Stern Lab	TC Tune I
49	HR 12-41	104.1	82		283	1844	Ŕ	Siam Len	TC Yune I
- <u>50</u> t	HR 12.112	284.5	62	1	785		iż	Stern Lab	TC Type
- 51 - 1	HA 12-14 2	4115	82	1	781	1844	- ii	Shorn Lab	YC Turne I
	HAT 12-213	501.8	67		283	1644	ĸ	Stem Lab	TCTVD
	MR 12361	7442	82		243	TALL -	<u> </u>	Shorn Lah	YY
- 1	HR 62.11	845.8	82	Ť.	783	1644	****¥```	Stem Lab	TCTUC
65	100 07-18 1	AGA A	83	1	281	IAAA	X	Shorn I at	YC TIME
1								A CARLES AND A COMPANY AND A CARLES	110

RC Table x	ia, Version 7.0, ISM		Pare	State University				Page 2 c
posted 4/19	3402 3:22 PM		R6 7	(T - Test Facility				
rinted 6/23/	02 5:18 PM	horization	assion an	d Cata Acquisition (Channel List			
47 T	HR (241	1041 4	67	5 784	T IRLA		Stern Labi	TC Tune K
	HR COALL	11417	73	2 281	1844	- ŵ	Starn Lab	TC Type K
- 46	HR (2.48	1127 0	73	2 281	1844		Starn Lab	TC Type K
- 60	HR COATS	1455 1	77	7 787	144		Signiahi	TC Turna K
		6677 4	7.7	191	1421		Stemleh	TC Turne M
		1974 6	73	797	1644		Charn Lab	TC Turne M
		1014.3		4 403			Charm Lab	THE TOTAL
		1923.3		<u>400</u>			Stern Lab	- The second second
- A6	40 03.103	1930.7	- V4	4 605	10.44		Stern Lab	
	LID 75 100.2	4021-3		2 384	1211		Cham Lab	
- 23	LID POLICE	2084.4		6 400	1844		Stern Lab	
- 44	US 53.14.0	2000.0		6 484	10.14		Storn Lab	W W
		2310.0	<u> </u>	203			Shown Lab	WAY WAY
	LIN NA INA S	£964.0		0 <u>20</u> -		<u></u>		- OFA
		3000.3	02	9 253	1094	<u></u>	South Lab	LC IYPS K
		JIGH.M		0 203	1044	<u> </u>	30877 1.30	YP9 A
	MR_02-128.8	3266 4	<u> </u>	6 283	1044		Stern Cap	IC IYEEK
- 13	MM 62-50.1	12/2.5		8 203	1044	<u></u>	COSTI LOD	IC IVPOK
-74	PRC E2-54	1371.6	EZ	8 783	1844	<u></u>	Stern LAD	TC Type K
75	HR E2-66.9	1445.3	EZ	8 283	1044	<u> </u>	Storn Lab	TC Type K
	HR_E2-59.9	1521.5	E2	8 253	1644	<u> </u>	Stern Lab	TC Type K
77	HR_E2-66	1676.4	E2	8 283	1644	K	Shem Lab	TC Type K
78	HR E2-69.8	1772 8	E2	8 283	1544	K	Stern Lob	TC Type K
79	HR E2-72.9	1851.7	E2	8 203	1644	ĸ	Stem Lab	TC Type K
60	HR 61-74.9	1902.5	2	8 283	1844	K	Shern Lab	TC Type K
81	HR_F2-4.1	104.1	F2	283	1644	K	Stern Lab	TC Type K
82	HR F2-11.2	284.8	12	1 283	1044	X	Sham Late	TC Type K
83	PRC F2-16.2	411.5	F2	1 283	1644	K	Stom Lab	TC Type K
84	HR F2-23.3	591.8	F2	223	1644	K	Stem Lab	TC TYPE K
88	HR F2-29.2	741.7	F2	283	1844	K	Storn Leb	TC Type K
88	HA P2-55.3	845.8	FZ	1 281	1644	X	Stom Lab	TC Type K
87	HR #2-35.3	650.6	FŽ	283	1644	X	Stern Lab	TC Type K
88	HR F2.38.3	072.6	FZ	1 293	1844	-X	Storn Lab	TC Type K
	HR PL.SOI	1272 5	FI	8 783	1844	- R	Slam Lab	TC Tune K
60	RI FLA	1371A	FI	281	1644		Sharn Lab	TC Twee K
- AT	HA FLAT	1217 8		3 581			Shern Lab	YC Tune K
69	Harta	1894 0		341	1847		Stern Lop	YC Tune K
- 51		1872 B		781			Sam Lah	TOTION
- 84		1994 6					Slom Lab	The second
	Da tes ys	1081 3			+	···· 🖓 ····	Clam (ab	TOTION
		1027.2		40-3			Elera Lab	TOTYPER
		1903 0	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u>.</u>	Jaiom Cod	WA WERE
	PRC P4-00.0	21/4/2		5 203	1000	ana Bura	349171 L.90	TC TYPE K
	PHR P			3 433	1044	an a	Seem LBD	TU IVDO K
	PSK +4-52.4	23470		5 253	1044	NA THE A HALLOW	Seen Lab	ТС Туре К
101	MR F4-94.]	Z395 Z		5 283	1044		238m Lab	IC Type K
102	FIR F4-97.2	2468.9	F4	5 283	1644	K	Siem Leb	TC Type K
103	HR F4-108.8	2761.5	F4	5 283	1844	<u> </u>	Stern Leb	TC Type K
104	HR F4-111	2519.4	F4	5 283	1644	K	Stern Leb	TC Type K
105	HR_F5-41	1041.4	F5	2 253	1644	K	Stern Lab	ТС Туре К
108	HR_F5-53.T	1348.7	F5	2 283	1844	K	Stern Lab	TC Type K
107	HR F5-65	1397.0	F5	2 283	1644	K	Starn Lab	TC Type K
108	HR_F5-57.8	468.1	F5	2 263	1844	K	i Ştern Labi	TC Type K
109	HR_F5-84	1623.6	F3	2 233	1844	K	Stam Lab	TC Type K
110	HR F5-73.8	1874.5	F8	2 233	1844	K	Stern Lab	TC Type K
111	HR_F6-75.8	1925.3	F5	2 289	1844	K	Stern Lab	TC Type K
112	HR_F5-78.8	1998.7	F5	2 283	1844	K	Stern Lab	TC Type K
113	HR F8-4.1	1041	F8	1 283	1844	K	Stern Lab	TC Type K
114 1-	HR F8-11.2	284.5	F6	1 283	1644	R	Stern Lab	TC Type X
115	HR F8-16.3	4140	Fð	1 283	1844	K	Stern Lab	TC Type K
118	HR F8-23.3	591.8	8	1 281	1844	K	Stem Lab	TC Type K
117-1-	HR FA.20 1	7213	- 24	1 271	1644	- <u>¥</u> -	Stern Lab	TC Tune
116 +	HE FALSE	1 8/21	- <u>-</u>	1 747	- IRAA		Shorn Lan	TC Turne W
118-1-	HO 54.84 9	ACH A			1644	<u>-</u>	Clarge I als	W THE P
	111 ro-53.3	0.00.0		4653	1044		SUBIII LAID	IC INDA V
120	MR_P0-36.3	1 9/2.0	- HO		1 1044	<u> </u>	Stern Lab	IU IYPEK

ated ana	02 3 22 PM		ר ועיביי הערכי	- Tour Surviv				rage 3 c
bed 5/23/0	2 5:18 PM	instrume	nana i Statice and i	 Less racesy Laza Accussion C 	hannei List			
104						- 24 Marga ga ana		· · · · · · · · · · · · · · · · · · ·
135	HR F6.54 1	1210.7	EQ E2	8 205	1044	<u></u>	Stem Lab	TC Type K
123	HR F6-57	1447 8	E4	2 243	1744		Stern Lab	TUTUTAK
124	HR E6-60.2	1529.1	F6	A ' 283	1644		Stern Lab	TC Type K
125	HR E5-66.1	1578.9	ĒE	8 231	1644	ĸ	Stern Lab	TC Type K
126	HR_E6-70	1778.0	ES	8 293	1644	X.	Stern Lab	TC Type K
127	HR E6-73.1	1856.7	Eð	8 283	1544	K	Stern Lab	TC Type K
128	HR_E6-75	1905,0	E6	8 28.3	1644	ĸ	Stern Lab	TC Type K
129	HR_D6-103.1	2618.7	D6	5 i 291	1644	ĸ	Stern Lab	TC Type K
130	HR_06-106	2692.4	D6	6 283	1644	ĸ	Stem Lab	TC Type K
	HR 06-112.9	2867.7	<u>D6</u>	5 283	1644	<u>K</u>	Stern Lab	ТС Туре К
132	HR 05-114.9	2918.5	<u>D6</u>	6 283	1644	<u>K</u>	Stern Lab	TC Type K
133	MM_00-110.8	2956./	05	§ 283	1644	<u> </u>	Stern Lab	TC Type K
416	HA 00-120 8	3464.5		e 253	1544		Stem Lab	TC Type K
114	UC 04 121.0	1000 9	05	0 253	1944		Stem Lao	IC Type K
iii - I-	HR CR.LIG	1018 0	· · · · · · · · · · · · · · · · · · ·	7 403		<u>-</u>	Clarge Lab	
138	HR C6.42.8	1411		2 203		`	Steen Lab	
139	HA CR-54.8	1701 0		311	1644		Stern Lab	TC Type C
40	HR C6-57 6	1468 1	Că -	3 341	1644		Starn Lab	TC Tupe K
41	HR C6-63.8	1620.5	Č6	2 241	16.44	ann an the second s	Stern Lab	IC Tune K
142	HR C6-73 7	1872.0	CE	2 283	644	 K	Stern Lab	TC Type K
43	HR C6-75.8	1925.3	C6	2 243	1644	ĸ	Stern Lab	TC Type K
44	HR_C6-76 6	1950 7	C6	2 285	1544	K	Stern Lab	TC Type K
145	HR_86-4.1	104.1	86	1 283	1644	K	Stern Lab	TC Type K
148	HR_B6-11.2	284 5	88	1 283	1644	K	Stern Lab	TC Type K
47	HR_B6-16.2	411.5	ÊA	1 233	1644	ĸ	Siern Lab	TC Type K
48	HR 88-23.3	591.8	66	1 283	1644	K	Stern Lab	TC Type K
149 (97,4497) 789	MR_88-29.3	3 744.2	66	1 283	1844	K.	Stern Lab	ТС Туре К
30	MR 86-33.3	545.5	86	1 283 c	1 644	K	Stem Lab	TC Typa K
23	HR_85-33,3	896.6	80 ····	253	1644	X Na na ng iyan na	Stern Lab	IC Type K
2	HO DE A1	212.4 1/11 A	- 80 6	203	1044	<u> </u>	Stem Lab	IC Type K
		1417	82 81	203	1044		Stern Lab	TOTOP
KK	H9 84.44	1167.0	66	4 433		~~ <u>}</u> ~	Stern Lab	- YA YUNA P
a	HR REATA	1448 1	ne			D	Storn Lab	
57	HE 85-54	1625 A	67	7			Sign Lab	TC Turne K
5.8	HR 85-73.9	1677.1	E S T	2 221	TRAL	- <u>k</u>	Slern Lab	TC TUNA K
59	HR 85-75.9	1927.9	85	3 20	1644	rora 🕅	Stern Stern	TC Tune K
60	HR 85-76.9	1953.3	85	2 283	1644	^{NANN} K	Stern Lan	TC Type K
61	HR 84-88.4	2245.4	64	3 283	1844	ĸ	Stern Lab	TC Type K
62	HR_84-91.3	2319.0	64	3 253	1644	K	Stern Lab	TC Type K
63	HR_84-93.3	2369.8	64	3 283	1644	ĸ	Stern Labi	TC Type K
64	HR_84-95.1	2415.5	B4	3 283	1644	ĸ	Stern Lab	TC Type K
65	HR 84-100	2540.0	84	3 283	1644	ĸ	Stern Labi	TC Type K
66	HR 84-106	2692.4	B4 1	3 283	1644	K	Stern Lab	YC Type K
67	HR 84-109.9	2791.5	64	3 283	1644	K	Stern Lab	TC Type K
68	HR 84-142.3	3014.4	64	3 283	1844 (<u></u> K	Stern Lab	TC Type K
27	MR 83-50.2	12/3.1	83	8 283	1644	<u></u>	Stern Lab	TC Type K
	HR 53-34.1	13/4.1	53 }	233	1544	<u>K</u>	Stern Lab	TC Type K
		1676.6	<u></u>	8 <u>233</u>	1044	B	Siem Lab	IC Type K
73	HR RILEE I	1679 0	- 63	6 <u>233</u> 6 797	1044	~~ <u>}</u> ~~	Stern Lab	TC Type K
74	POLES RH	1775 6	<u></u>	6 200 8 721		<u></u>	Stern Lab	TC THERE
75	HR 8171	1854.2		8 721	164	<u> </u>	Stern Lab	TC TIPE C
76	HR 83-75	1505.0	63	3 281	1644	- <u>x</u>	Stern 3h	TC Type K
77	HR C3-79.8	2026.9	C3	5 281	1644	- <u>x</u> -	Stern Lab	Tit Type K
78	HR C3-85.6	2174.2	C3	5 233	1644	- R	Stern Lab	TC Type K
79	HR C3-88.5	2247.9	<u>Č3</u>	5 283	1644	ĸ	Stern Lab	TC Type K
80	HR C3-92.4	2347.0	C3	5 233	1844	ĸ	Stern Lab	TC**Type K
81	HR_C3-94.4	2397.8	Č.	5 283	1644	ĸ	Stern Lab	TC Type K
82	ER_C3-97.2	2463.9	<u>C3</u>	5 233	1544	ĸ	Stem Lab	TC Type K
83	HR CLIDER	27614	<u> </u>	5 223	1544	V	Storn Lat	TOTAK

NRC Table.xls.	Version 7.0, ISM	
Docated 4/19/0	2 3 22 FM	

Parts State University REHT - Test Facility

Page 4 of 9

	1111 00 00 0	2747.6			1844	×	Stern I ah	TC Type K
185	HR 03-86.3	2242.6	 	3 203	1544		Stern Lab	TC TYDE K
186	HR 00-91.3	2379.0		3 203	1544		Stern Lab	TC Type K
187	HR_03-93.1	2394		3 243	1044		Steen Lab.	Ti Type K
188	HR 03-95.3	2420.6	03	1 400	1044		Stern Lab	TO TUDA K
189	HR D3-100.1	2542.5	03	3 283	1044	- <u></u>	Sten Las	TOTION
190	HR_C3-106.1	2694.9	D3	3 233	1844	<u></u>	Stern Lab	TOTOON
191	HR_D3-110	2794.0	03	3 283	1044	<u> </u>	Stern Lab	TC Type C
192	HR_03-142.1	3609.3	D3	3 783	1644		Stern Lao:	TC Type A
193	HR_E3-63.4	1610.4	<u>E3</u>	4 233	1544		SiernLab	IC IVER
194	HR_E3-113.6	2885.4	E3	4 283	1544		Stern Lao	TO THE K
195	HR_E3-115.5	2933.7	E3 .	4 253	1544	<u> </u>	Stem Lab	IC Type K
196	HR_E3-118.5	3009.9	E3 ;	4 283	1644		Stern Lab	TC Type K
197	HR_E3-122.7	3116.0	£3	4 283	1544	K.	Stern Lab	тс туре к
198	HR E3-126.5	3213.1	E3	4 293	1544	K	Stem Lab	TC Type K
199	HR E3-131.7	\$345.2	EJ	4 283	1644	K	Stern Lab	TC Type K
200	HR E3-1356	3444.2	E3	4 283	1544	ĸ	Stern Lab	TC Type K
201	HR E4-88.4	2245.4	E4	3 283	1644	K	Stern Lab	TC Type X
305	HR E4-91 2	2316.5	EA	3 283	1644	ĸ	Stern Lab	TC Type K
201	HR F4.93 2	2367.3	E4	3 283	1644	ĸ	Stern Lab	TC Type K
	HR F4951	2420.6	F4	3 253	1644	ĸ	Stern Labi	TC Type K
	HR FAIMA	2447 0	F4	\$ 241	1644	K	Stern Lab	TC Type K
		7604 0	EA	781	1444	K	Stern Lab	TC Type K
200		5764 0		446	1644	- H	Stern Lah	TC Type K
201			- 27		1644		Stern Lab	TC Type K
			a server and the server server and the server s		TRAC		Shern Lab	TC Type K
209	HM ED-010	10134	saat Franking	4 203	1411	Q	Slem ob	TO Turke N
210	HR 5-1110	2653.4	. 5 7	i ang	an a	- « - 🖸 × ×		
211	HH_60+110.4	and some states and some		● · <u>《</u> 6 -2	1 Classifier and a second	·····	Charles Labo	TA THE A
212	HR_E5-118.7	3015.0	(4	1044	·	Stern Lab	THE PLACE
213	HR_E5-122.6	3114.0	1. ES	4 483	1644			TO THE P
214	HR_E5-128.6	3215.6	Ε.5	4 263	1644 :	R	Diem Lap	C DE P
215	HR E5-131.6	3342.6	E\$	4 283	1544	K	Stern Lab:	IC IVPO K
216	HR_E5-135 6	3444.2	E5	4 283	1644	K.	Stern Lab	TC TYPE K
217	HR 05-50	1270.0	05	8 283	1644	×	Stern Lab	TC Type K
218	HR D5-54.1	1374.1	05	8 283	1644	K	Stern Lab	TC Type K
219	HR 05-58.9	1445.3	05	8 293	1544	K	Stern Lab	TC Type K
220	HA 05-60	1524.0	65	8 283	1844	K	Stern Lab	ТС Туре К
221	HR 05-66.1	1876.9	05	283	1644	K	Stern Lab	TC Type K
322	HR 05-69.9	1775.5	DS	8 283	1644	K	Stem Lab	TC Type K
	HR D5-72.9	1851.7	DS	8 283	1544	K	Stern Lab	TC Type K
- 224	HR DS 74 9	1602 4	65	8 283	1644	K	Stern Lab	TC Type K
		1613.0	75	4 241	1644	Ξ.K.	Stem Lab	TC Type K
	HP CALLING	5484 4	75	283	1644	K	Stern Lab	TC Type K
-449		3018 8	- Xini-	2 281			Stern Lab	TC Type K
	LID CE 1937	1116 6	Ž	3 341	1444	*	Shern Lab	TC Type K
- 229	HD 74 1247	1111	76		1444	····	Stern Lab	TC Type K
2.30	10 CO 120.1	7947.6	· · · · · · · · · · · · · · · · · · ·		1644	*****	Stern Lah	TC Type K
- 231		3,44,0		403	IALL		Stern Lan	TC Type K
232	HR C2-132/	3440 0		3 400	1644		Stern Law	TC Tuna W
233	HH U4-68.4	2245,4			1644		Starr Lab	TC Time V
234	HK_C4-91.1	2313.9			1044		Change Later	
235	HR_C4-93.4	2372.4	C4		1044		Stern Lab	TO THE K
236	HR C4-95.3	2420.6	C4	J : 283	1044	<u>K</u>	atern LBD	IL IVER K
237	HR_C4-100.1	2542.5	<u>C4</u>	3 283	1044	K	SKEIT LED	TO THE K
238	HR_C4-108.1	2694 9	C4	3 283	1644	K	Siern Lab	IC TYPEK
239	HR_C4-110	2794.0	C4 5	3 283	1644	K	Stern Lab	TC Type K
240	HR_C4-142.2	3611.9	C4 /	3 233	1844	<u> </u>	Stern Lab	TC Type K
241	HR_04-88.3	2242.8	04	3 283	1644	x	Stern Lab	TC Type K
242	HR D4-91.3	2319 0	D4	3 283	1644	ĸ	Stern Lab	TC Type K
243	HR D4-93.2	2367 3	D4 1	3 283	1544	K	Stern Lab	TC Type K
- 512-	NR D4-95.2	2418.1	D4 1	3 283	1544	K	Stern Lab	TC Type K
- 516	HR D4-100 1	2542.5	D4	3 283	1644	ĸ	Stem Lab	TC Type K
					1014		Chorn I at	TC Type K
248	HR DL106 1	. 2694.9	·	263 <i>;</i> 263	. 100000 7	n.	A CONTRACTOR	and the second
246	HR D4-106.1	2694.9	D4	3 203	1644	<u>k</u> -	Stern Lab	TC Type K

RC Table Idated 4/ Inted 5/2	28. Version 7 C, ISM 19/02 3:22 PM 3/02 5:18 PM	Instrum	Per RE Muccin a	vi State U HT - Test nd Data A	roversity Facility cquisition (Channel List			Page 5 di
A2	Grids	6 255K	Num	Type	·				
249	GRD2-0-0-4/d2-t2	639 3	1 2	÷ 🛱 :	283	1644	K	Delta M	TC Type K
250	GRD2-wal-D-4/a-2	715.5	<u> </u>	W20	253	1644	K	, Delta M 👔	TC Type K
251	GED3-8-0-4/32-62	1138.7			283	1644	<u> </u>	<u>: Oelta M (</u>	TC Type K
252	GRU3-5-0-2/31-62	1155			233	1544	K	Delta M	TC Type K
- 253	CBD2 coll 5 2/2 t	1125.1	<u> </u>	1	283	1544	<u>K</u>	Uerta M	IC TYPE K
234	GRU3-W34-E-3-C-1	1244.0	÷	W DE	28.1	1044	<u></u>	Uella M	ТС Туре К.
755	GPOLucill.C.Sdd3			and i	281	1644		Delta M	YC Look
257	GROA A DA/c2.42	1487 A	-		281	1644	Ŷ.	Detta	TC Type K
258	GR04-8-F-4/c2-b3	1682 8	4		281	1644	R R	Deta M	TC Tune K
259	GRD4-6-8-4/c2-31	1682.8	4		283	1544	ĸ	Deta M	TC Type K
260	GRD4-wall-E-3/c-1	1768.5	4	a wal	283	1544	K	Deta M	TC Type K
261	GRD4-wall-D-4:a-2	1759 0	: 4	wal	283	19-44	CONTRACTOR OF A	DeRa M	TC Type K
262	Spare3	1225.4	3	wał	and an	and a second	noue	Detta M	TC Type K
263	GR05-8-0-4/d2-b2	2202.7	1 5	1	283	1644	K	Delta M	ТС Туре К
264	GRD5-6-0-2/d1-62	2202.7	5	<u> </u>	283	1644	K	Dena M	ТС Туре К
265	GRD5-1-D-5/c3-02	ZZDZ.7	1 5		283	1644	K	Oella M	TC Type K
200	GRUD-WAIFE-3-C-1	2268.4	<u> </u>	wad	283		ĸ	Uera M	то туре К
20/	GRU3-W28-U-4/8-2	2210.9		w26	283	c. 1544		Ueita M	TC Type K
200	CD04 80 4/2 53				*****	in my grana	ncine	Ueita M	IC Type K
203	CROCERCE	5754				1244		Delta M	TC Type C
271	GROMAFACIAS		ala ang sar	· · · · · · · · · · · · · · · · · · ·	203				TC Turne M
272	GRD6-wal-E-3/c-1	2610.4	сі — Б		283			Conta M	TC Tuna K
273	GROS-wall-D-4-a-2	2500.9	ŧ	**	283	1644	X	Delta M	TC Type K
274	GR00-wal-G-5-5-3	2800.9	6 6	wat	283	1644	K K	Detta M	TC Type K
275	GRO8-wall B-S/d-3	2791.3	Č.	wai	283	1644	K	Delta M	TC Type K
276	GRD7-4-D-4/d2-b2	3247.6	1		263	1644	K	Dena M	TC Type K
278	GRD7-11-D-6/c3-62	3247.6	7	1	283	1544	ĸ	: Defia M	TC Type K
279	GRD7-wai-0-4/a-2	3323.8	1 7	* waii (283	1644	K	Cetta M	TC Type K
-	Support Hods	CP 295K	Fill?3	Group					
	SPH_A1-37,2	¥44.9	A)	¥ .	253	1244	<u>F</u>	Cena M	TC Type K
	500 A1 74 8	1001.1			1-3.5			Cellis M	TO TYEE D
281	SPA ALCO 7	2303.8			241	1944	in the second	Data N	TC Tune
284	SPR ALSE	2453 6	- Al-	-	283	1044		Cetta M	TC Ture K
285	SPR A1-102.5	2603.5	AI		283	1844	an come in the second	Delta M	TC Type K
286	SPR A1-114.4	2905.8	AI	9	283	1644	K	Oolta M	TC Type K
287	SPR_A1-138.2	3510 3	A1	9	283	1844	K	Delta M	TC Type K
288	SPR_G7-37.2	944 9	G?	9	283	1544	X	Dolta M	TC Type X
289	SPR_G7-59.1	1501.1	G7	9	283	1644	×	Delta M	TC Type X
290	SPR_G7-76.8	1950.7	G7	3 9 1	283	1644	×	Deita M	ТС Туре К
291	SPR_G7-90.7	2303.8	67	9	283	1644	K	Delta M	TC Type K
292	SPR_G7-98.6	2453.6	<u>. 67</u>) 9	283	1644	K	Delta M	ТС Туре К
293	SPR G7-102.5	2603.5	G7	<u> </u>	283	1644	<u> </u>	Delta M	TC Type K
264	5PK 6/-114.4	2505.8	1.0/			1644	<u>K</u>	Dega M	ГС Туре К
<u></u>	Elow Housipo	25 7954	- U/		281	1044	<u> </u>	I Dega MI	то туре к
38 1	ST PR.R1.18 2.4	A11.5	1	;	241	1644		Celes II	TC Type K
267	ST PR-R1.16 2.8	4115	- 22.00.00.000	; 	241	1844		Cata U	TC Type K
298	ST. PR-R1-18.2-C	411.5		; ; ;	28.3	1644	••••••••••••••••••••••••••••••••••••••	Cotta M	TC Ture K
299	ST. FR-R2-37-A	939.8	2	1 7	283	1844	ĸ	Oeita M	TC Type K
300	ST. PR-R2-37-B	\$39.8	2	1 1	283	1644	K	Deita M	TC Type K
301	ST. PR-R2-37-C	939.8	2	1 1	283	1644	K	Delta M	TC Type K
302	ST. PR-R3-55-A	1397.0	3	1	283	1644	K	Oelta M	TC Type K
	ST PR.RLAKA	1397.0	3	2	283	1644	K	Deita M	TC Type K
303		A A COORDINATION OF A CASE			767	1214		· []	TOTION
303 304	ST. PR-R3-55-C	1397.0	3	<u>} </u>		1044			IC Typen
303 304 305	ST. PR-R3-55-C ST. PR-R4-60-A	1397.0 1524.0	3	1 1	283	1544	K	Deita M	ТС Туре К
303 304 305 306	ST. PR-R3-55-C ST. PR-R4-60-A ST. PR-R4-60-B	1397.0 1524.0 1524.0	4	1	283 283 283	1544 1544	<u> </u>	Deta M Deta M	TC Type K TC Type K
303 304 305 306 307	ST. PR-R3-55-C ST. PR-R4-60-A ST. PR-R4-60-B ST. PR-R4-60-B ST. PR-R4-60-C	1397.0 1524.0 1524.0 1524.0	3 4 4 4		283 283 283 283	1644 1644 1644	K K	Delta M Delta M Delta M	ТС Туре К ТС Туре К ТС Туре К ТС Туре К

310 314 315 316 317 318 319 320 321 322 322 323 322 323 324 325 326 327 328 329 330 331 333 333 333 333	ST. PR.R5-73.81-C ST. PR.R6-79.7.A ST. PR.R6-79.7.B ST. PR.R6-79.7.C ST. PR.R7-93.53-A ST. PR.R7-93.53-C ST. PR.R3-66-A ST. PR.R3-66-A ST. PR.R3-66-A ST. PR.R3-66-A ST. PR.R9-100-A ST. PR.R9-100-B ST. PR.R9-100-B ST. PR.R9-100-C ST. PR.R9-100-C ST. PR.R10-115.39-A ST. PR.R10-115.39-A ST. PR.R11-120-A ST. PR.R11-120-B ST. PR.R11-120-C ST. PR.R11-120-C ST. PR.R11-136-B	1874.8 2024.4 2024.4 2024.4 2375.7 2375.7 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.0 2540.0 2540.0 2550.9 2530.9 2530.9 2530.9 2530.9 3048.0 3048.0	5 6 6 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10		283 283 283 283 283 283 283 283 283 283	1844 1644 1644 1644 1644 1644 1644 1644	K K K K K K K K K K K K K K K K K	Ceita M Geita M Ceita M Ceita M Deita M Deita M Oeita M Deita M Deita M Deita M Deita M Deita M Deita M	TC Type K TC Type K
314 315 316 317 318 319 321 322 322 323 324 325 326 327 328 329 330 331 332 333 334	ST. PR. R6-79 7.A ST. PR. R6-79 7.B ST. PR. R6-79 7.B ST. PR. R7-93 53-A ST. PR. R7-93 53-B ST. PR. R7-93 53-C ST. PR. R8-66-A ST. PR. R8-66-A ST. PR. R8-66-A ST. PR. R8-100-A ST. PR. R9-100-A ST. PR. R9-100-C ST. PR. R9-100-C ST. PR. R9-100-C ST. PR. R10-115 39-C ST. PR. R10-115 39-C ST. PR. R10-115 39-C ST. PR. R11-120-A ST. PR. R11-120-B ST. PR. R11-120-C ST. PR. R11-120-C ST. PR. R11-126-B ST. PR. R12-136-B	2024.4 2024.4 2024.4 2375.7 2375.7 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2438.4 2540.0 2540.0 2550.9 2530.9 2500.9 2500.9 2500.9 2500.9 2500.9 2500.9 2500.9 2500.9 2500.9 2500.9 20	6 6 7 7 7 8 8 8 8 9 9 9 9 9 9 10 10 10 10		283 283 283 283 283 283 283 283 283 283	1544 1644 1644 1644 1544 1544 1644 1644	X K K K K K K K K K K K K K K K K K K K	Deita M Certa M Certa M Deita M	TC Type K TC Type K
315 316 317 318 319 321 322 323 324 325 326 327 328 329 330 331 332 333 333 334	ST. PR. R6.79.7.8 ST. PR. R6.79.7.6 ST. PR. R7.53.53-A ST. PR. R7.53.53-A ST. PR. R7.53.53-C ST. PR. R8.566-A ST. PR. R8.566-A ST. PR. R8.566-C ST. PR. R8.5100-A ST. PR. R9.5100-B ST. PR. R9.5100-B ST. PR. R10-115.39-A ST. PR. R10-115.39-A ST. PR. R10-115.39-A ST. PR. R11-120-A ST. PR. R11-120-A ST. PR. R11-120-B ST. PR. R11-120-C ST. PR. R12-136-A ST. PR. R12-136-B	2024 4 2074 4 2375 7 2375 7 2375 7 2438 4 2438 4 2438 4 2540 0 2540 0 2540 0 2540 0 2540 0 2550 9 2930 9 2930 9 2930 9 2930 9 2930 9 2930 9 3048 0 3048 0	6 7 7 8 8 8 9 9 9 10 10 10 11		283 283 283 283 283 283 283 283 283 283	1644 1644 1644 1644 1644 1644 1644 1644	K K K K K K K K K K K	Ceta M Ceta M Detta M Detta M Oetta M Oetta M Detta M Detta M Detta M Detta M Detta M	TC Type K TC Type K
316 317 318 319 320 321 322 323 324 325 325 326 327 328 327 328 329 333 331 332 333 334	ST PR-R6-79.7 C ST PR-R7-93 53-A ST PR-R7-93 53-B ST PR-R7-93 53-C ST PR-R8-96-C ST PR-R8-96-C ST PR-R9-100-A ST PR-R9-100-A ST PR-R9-100-B ST PR-R9-100-B ST PR-R9-100-B ST PR-R9-100-B ST PR-R9-100-B ST PR-R10-115 39-C ST PR-R10-115 39-C ST PR-R11-120-B ST PR-R11-120-B ST PR-R11-120-C ST PR-R11-120-C ST PR-R11-120-C	2024 4 2375 7 2375 7 2375 7 2438 4 2438 4 2438 4 2540 0 2540 0 2540 0 2540 0 2550 9 2930 9 2930 9 2930 9 2930 9 3048 0 3048 0	6 7 7 8 8 9 9 9 9 10 10 10 10 11		283 283 283 283 283 283 283 283 283 283	1644 1644 1644 1644 1644 1644 1644 1644	K K K K K K K K K K K K K	Ceita M Ceita M Deita M Ceita M Ceita M Ceita M Deita M Oeta M Deita M Deita M	TC Type K TC Type K
317 318 320 321 322 322 322 322 324 325 325 326 327 328 329 3330 331 332 333 333	ST PR.R7.93 53-A ST PR.R7.93 53-B ST PR.R7.93 53-C ST PR.R8-96-C ST PR.R8-96-C ST PR.R9-100-A ST PR.R9-100-A ST PR.R9-100-B ST PR.R9-100-C ST PR.R10-115.39-A ST PR.R10-115.39-A ST PR.R10-115.39-6 ST PR.R11-120-B ST PR.R11-120-B ST PR.R11-120-C ST PR.R11-120-C ST PR.R12-136-B	23757 23757 24384 24384 24384 24384 24384 25400 25400 25400 25400 29309 29309 29309 29309 29309 30480 30480	7 7 8 8 8 9 9 9 10 10 10 10		283 283 283 283 283 283 283 283 283 283	1644 1644 1644 1644 1644 1644 1644 1644	K K K K K K K	Ceita M Deita M Ceita M Ceita M Ceita M Ceita M Deita M Deita M Deita M	TC Type K TC Type K YC Type K TC Type K
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	ST. PR.R7.93 53-8 ST. PR.R7.93 53-8 ST. PR.R8-96-A ST. PR.R8-96-A ST. PR.R9-100-A ST. PR.R9-100-A ST. PR.R9-100-B ST. PR.R9-100-B ST. PR.R9-100-C ST. PR.R10-115.39-A ST. PR.R10-115.39-A ST. PR.R10-115.39-C ST. PR.R11-120-B ST. PR.R11-120-B ST. PR.R11-120-C ST. PR.R12-136-B	2375.7 2375.7 2438.4 2438.4 2438.4 2438.4 2540.0 2540.0 2540.0 2550.9 2530.9 2540.0 2540.0 2540.0 2540.0 2540.0 2540.0 2530.9 2500.9 20	7 7 8 8 9 9 9 10 10 10 10 11		283 283 283 283 283 283 283 283 283 283	1644 1644 1644 1644 1644 1644 1644 1644	K K K K K	Delta M Delta M Cetta M Delta M Delta M Delta M Delta M Delta M Delta M	TC Type K YC Type K TC Type K
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	ST. PR.R7.93.53-C ST. PR.R8.96-A ST. PR.R8.96-C ST. PR.R8.96-C ST. PR.R9.100-A ST. PR.R9.100-B ST. PR.R9.100-C ST. PR.R10-115.39-A ST. PR.R10-115.39-A ST. PR.R11-120-A ST. PR.R11-120-B ST. PR.R11-120-C ST. PR.R12-136-A ST. PR.R12-136-B	2375.7 2438.4 2438.4 2438.4 2540.0 2540.0 2540.0 2530.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 2550.9 25	7 8 8 9 9 9 10 10 10 10 11		283 283 283 283 283 283 283 283 283 283	1544 1644 1644 1644 1644 1644 1644 1644	K K K K K K K K K K K K K K K	Cella M Cella M Cella M Della M Della M Della M Della M Della M	TC Type K TC Type K
320 321 322 323 324 325 326 327 326 327 328 329 330 331 332 333 333	ST. PR.R8-96-A ST. PR.R8-96-C ST. PR.R8-96-C ST. PR.R9-100-A ST. PR.R9-100-B ST. PR.R9-100-B ST. PR.R9-100-C ST. PR.R10-115.39-A ST. PR.R10-115.39-A ST. PR.R10-115.39-C ST. PR.R11-120-A ST. PR.R11-120-A ST. PR.R11-120-C ST. PR.R11-126-A ST. PR.R12-136-A	2438 4 2438 4 2438 4 2540 0 2540 0 2930 9 2930 9 2930 9 2930 9 2930 9 3048 0 3048 0	8 8 9 9 10 10 10 10 11		283 283 283 283 283 283 283 283 283 283	1644 1844 1844 1644 1644 1644 1644	K K K K K	Ceta M Ceta M Deta M Oeta M Deta M Deta M Deta M	TC Type K TC Type K
321 322 323 324 325 326 327 328 329 330 331 332 333 333 334	ST. PR-R5-56-6 ST. PR-R5-100-A ST. PR-R5-100-A ST. PR-R5-100-B ST. PR-R5-100-C ST. PR-R10-115-39-A ST. PR-R10-115-39-6 ST. PR-R10-115-39-6 ST. PR-R11-120-A ST. PR-R11-120-C ST. PR-R11-120-C ST. PR-R12-136-A ST. PR-R12-136-B	2438.4 2438.4 2540.0 2540.0 2930.9 2930.9 2930.9 2930.9 2930.9 3048.0 3048.0	8 9 9 10 10 10 11		283 283 283 283 283 283 283 283 283	1644 1644 1644 1644 1644 1644	K K K K K	Ceta M Deta M Deta M Deta M Deta M Deta M	TC Type K TC Type K TC Type K TC Type K TC Type K TC Type K TC Type K
323 324 325 326 327 328 329 330 331 332 333 333	ST. PR-R9-100-A ST. PR-R9-100-A ST. PR-R9-100-B ST. PR-R9-100-C ST. PR-R10-115.39-A ST. PR-R10-115.39-6 ST. PR-R10-115.39-6 ST. PR-R11-120-A ST. PR-R11-120-B ST. PR-R11-120-C ST. PR-R12-136-A ST. PR-R12-136-B	2438,4 2540,0 2540,0 2930,9 2930,9 2930,9 2930,9 3048,0 3048,0 3048,0	8 9 9 10 10 10 10		263 283 283 283 283 283 283 283	1644 1644 1644 1644 1644	K K K K	Deta M Deta M Deta M Deta M	ТС Турек ТС Турек ТС Турек ТС Турек ТС Турек ТС Турек
323 324 325 326 327 328 329 330 330 331 332 333 333 334	51. PR-R9-100-A ST. PR-R9-100-C ST. PR-R10-115.39-A SY. PR-R10-115.39-A ST. PR-R10-115.39-C ST. PR-R11-120-A ST. PR-R11-120-B ST. PR-R11-120-C ST. PR-R12-136-B ST. PR-R12-136-B	2540.0 2540.0 2930.9 2930.9 2930.9 2930.9 3048.0 3048.0 3048.0	9 10 10 10 10 11		263 263 283 283 283 283 283	1644 1644 1644 1644	K K K	Deta M Deta M Deta M	ТС Туре К ТС Туре К ТС Туре К ТС Туре К ТС Туре К
325 326 327 328 327 328 329 330 330 331 331 332 333 333 333	51, PR. R9-100-5 ST. PR. R9-100-C ST. PR. R10-115, 39-A SY. PR. R10-115, 39-A SY. PR. R10-115, 39-C ST. PR. R11-120-A ST. PR. R11-120-B ST. PR. R11-120-C ST. PR. R12-136-B ST. PR. R12-136-B	2540.0 2540.0 2930.9 2930.9 2930.9 2930.9 3048.0 3048.0 3048.0	9 10 10 10 11	- 110- 54ER 01-1	283 283 283 283 283	1644 1644 1644	K K	Deža M Deža M Deža M	TC Type K TC Type K TC Type K
325 326 327 328 329 330 331 332 333 333 334	ST. PR.R10-115.39-A ST. PR.R10-115.39-A ST. PR.R10-115.39-A ST. PR.R10-115.39-C ST. PR.R11-120-A ST. PR.R11-120-B ST. PR.R11-120-C ST. PR.R12-136-A ST. PR.R12-136-B	2340.0 2930.9 2930.9 2930.9 3048.0 3048.0 3048.0	10 10 10 10 11		283 283 283 283	1644 1644	<u>k</u>	Detta M	TC Type K
327 328 329 330 131 332 333 333 334	SY. PR. R10-115.39-8 SY. PR. R10-115.39-C ST. PR. R11-120-A ST. PR. R11-120-B ST. PR. R11-120-C ST. PR. R11-120-C ST. PR. R12-136-B ST. PR. R12-136-B	2930.9 2930.9 2930.9 3048.0 3048.0 3048.0	10 10 10 11		283 283	1644	K	DetaM	TC Type K
328 329 330 331 332 333 333 334	ST. PR.R10-115 39-C ST. PR.R11-120-A ST. PR.R11-120-B ST. PR.R11-120-C ST. PR.R12-136-A ST. PR.R12-136-B	2930.9 3048.0 3048.0 3048.0	10 11		281		- x - x - x - x - x - x - x - x - x - x		112 3 10 10 11
329 330 331 332 333 333 334	ST. PR-R11-120-A ST. PR-R11-120-B ST. PR-R11-120-C ST. PR-R12-136-A ST. PR-R12-136-B	3048.0 3048.0 3048.0	11	<u> </u>		1844	a na sa	Datta M	TO TURA K
330 331 332 333 334	ST. PR-R11-120-B ST. PR-R11-120-B ST. PR-R11-120-C ST. PR-R12-136-A ST. PR-R12-136-B	3048.0			283	1644		Delta M	TC Turne K
331 332 333 334	ST. PR-R11-120-C ST. PR-R12-136-A ST. PR-R12-136-B	3048.0	11		283	1644	K	DetaM	TC Type K
332 333 334	ST. PR-R12-136-A ST. PR-R12-136-B	·····	-ii-	ł	283	1644	ĸ	Delta M	TC Tyne K
<u>333</u> <u>334</u>	ST. PR-R12-136-8	3444	12		283	1644	K N	Detta M	TC Type K
334	G1. 11. 11. 12. 13. 0	1454 4	12		283	1644	K	Della M	TC Type K
	5T PR-R12-136-C	3454 4	12		283	1644	ĸ	Deita M	TC Type K
493	ST. PR-R13-144-A	3657.6	13	1	283	1644	K	Della M	TC Type K
494	ST PR-R13-144-8	3857.6	13	anne a trainin	283	1644	K	Delta M	TC Type K
495	ST. PR-R13-144-C	3657.6	13		283	1644	×K	Deta M	TC Type K
335	FH1-wall-10.1	256.5	1	waii	283	1644	K	Ceita M	TC Type K
336	FH2-wat-22	558.8	2	Bew	283	1644	K	Delta M	TC Type K
337	FH3-was-37	939.B	3	wall	283	1644	<u>, K</u>	Delta M	TC Type K
338	FH4-wai-42.95	1050.9	4	waa	283	1644	<u>κ</u>	Detta M	TC Type K
339	FH5-wad-46.93	1192.0	5	wall	283	1644	K	Deka M	TC Type K
340	FH6-wal-52.9	1343.7	6	wall	283	1644	<u>K</u>	Deta M	TC Type K
341	FH7-wol-55.87	1419.1	7	Walt	283	1644	<u>. K</u>	DetaM	TC Type K
342	FH8-wal-61.85	1571.0	8	Wall	283	1644	<u>: K</u>	Della M	IC Type K
343	FH9-wa#-67.83	1722.9	9	walt	283	1644	<u> </u>	Ueta M	IC Type K
344	FH10-wal-70.82	1758.8	10	walt	283	1644	<u> </u>	Defta M	TC Type K
345	FH11-wai-73.81	1874.8][wall	283	1644	<u>K</u>	DetaM	TC Type K.
346	FH12-wal-78.78	2001.0	12	Mau	283	1644	4	Deraw	IC Type K
34/	FH13-W38-54.7	2151,4	13	Wall	283	1544	<u> </u>	Della M	TOTUDOK
340	FH14-W28-67.63	2220.3	14	WEIH	203	1644	<u> </u>	Della M	YC York
349 AZA	PM13-W84-90.33	2300.0	13	WEIH	20-3	1044 1975 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985	÷	Cross M	TO THE C
350	FH10-Wat-33.03	23/3/	10	Well	203	18.44		Date M	TOTION
357	EH18-401-107-49	2603.0	19	weath t	283	1644	· K	Deta M	TC Type K
361	F410-wat 102.40	2754 1	10	wall	283	1644	t R	Ceta M	TOTUNER
154	EM21-1043	2804 0	- 20	walf	241	1444		Onta M	TC Tune K
355	EH21-mail.111.42	2830 1	21	wall	283	1644	×	Detakt	TC Type K
356	FH22-wal-116.38	2956 1	22	wali	283	1644	K	Detta M	TC Type K
357	FH23-wal-120.3	3055.6	23	wall	283	1644	K	DetaM	TC Type K
358	FH24-wat-129 25	3283.0	24	wall	283	1644	K	Detta M	TC Type K
359	FH25-wal-135.18	3433.6	25	wall	283	1644	X	Deta M	TC Type K
496	FH25-wal-144.1	3660.1	26	wall	283	1644	K	Deita M	TC Type K
360	R8-IF1-I-(-1)-W	-25.4	1	1	283	1644	ĸ	Deta M	TC Type K
361	RB-4F2-8-(-1)-E	-25.4	2	A	283	1644	K	Cetta M	TC Type K
362	FH DP (0-144)	;	1	OP	Ō	3657.6	i mm H2O	Rosemout	DP
363	FH DP (0-13)		2	DP	0	330.2	mm H2O	Rosemou	DP
364	FH DP (13-25)		3	DP	0	304.8	imm H2O	Rosemou	DP
365	FH DP (25-37)		4	OP	0	304.8	mm H2O	Rosemou	OP
366	FH DP (37-43)		5	OP	đ	152.4	mm H2O	Rosemcu	<u>OP</u>
367	FH DP (43-48)		6	DP	0	76.2	mm H2O	Rosemcu	DP
368	FH DP (46-53)		7	DP	Q	177.8	mm H2O	Rosemou	09
369	FH OP (53-57)		6	DP	0	101.6	imm H2O	Rosemou	OP
370	FH DP (57-60)		9	OP	0	76,2	mm H2O	Rosemou.	DP

63

,

Table 4.1	Instrumentation	and Data	Acquisition	Channel	List	(Continued)

Ipdated 4/ minted 5/2	19402 3:22 PM 3/02 5:18 PM	RBI Instrumentation an	HT - Tesi Id Cata A	Facility equisition	Channel Lis	4		ra8a 1
372	FH DP (63-87)	11	OP	0	101.6	mm H2O	Rosemou	ne
373	FH DP (67-72)	12	DP	Ō	127 0	mm H:O	Rosemou	ne ne
374	FH DP (72-75)		90	0	76.2	mm HtO	Rotema	ňp
375	FH DP (75-78)	14	DP	0	76.2	mm HAD	Enema	ne
375	FH DP (78-81)	15	DP	0	762	mm HaO	Rosemcu	
377	FH DP (51-85)	15	DP	0	101 6	mm H2O	Rosemcu	 CP
378	FH OF (85-93)	17	CP	D	203.2	mm H2O	Poserrou	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
379	FH DP (93-97)	18	OP	Ō	ICI A	mm H2O	Rotemou	Ce
380	FH CP (97-100)	19	100	ð	76.2	mm H.O	Rosemou	Če –
3.81	FH OP (100-108)	20	1 00	ō	2C3.2	mm HrO	Rosemou	DP .
382	FH DP (108-120)	21	TOP T	Ū	304.8	mm HXQ	Rosemou	DP
383	FH DP (120-133)	22	DP	ō	330.2	mm H2O	Reservou	DP
394	FH DP (133-144)	23	DP	0	2794	mm H2O	Rosemou	DP
A4	Lower Flon	um				. 2. کر نے دینے دینے	•	
386	L Pien B-b		1	283	1644	K	Detta M	IC Type X
387	L Pien wal-t	NATE OF FOUND IN ANY A DRIVE BY AND	wall	283	1644	ĸ	Detta M	TC Type K
388 .	L Plen was.b	···	wall	283	1544	K	Desta M	C TYPE K
A5	Upper Flen	um						
389	U Pien 5-m		1 1	293	1644	K	Oetta M	IC Ivoé K
390	FH DP (144-158 25)		DP	0	311.2	mm HCO	Rosemou	CP
425	U Plen-Acc DP	د به دو د در د	DP	Ó	34.5	Pa	Ô,	
391	U Pien wal-t		wall	283	1644	K	Ceta LI	TI Tuna K
392	U Plen wad-b		wall	283	1644	K	Delta M	TC Type K
393 •	UP Ext Fr	· · · · · · · · · · · · · · · · · · ·	Pr	0	413.7	kP3	Reservou	PI
A6	Electrical Sys	ntem						
394	PAT SUD VI		W	0	500000	· W	Lem	Voltage Isolate
395	Pwr Sup V	en ar estrans e proposition e	V	0	60	VIX	Lem	Voltage Isolate
395	Pwr Sup Cur	haaraa ahaaraa minin minin ahaaraa ahaa	Cur	Ö	12600	ADC	Lem	Voltage Isolati
397	Test Sect V	······································	V 1	0	60	VDC	Lem	Voltage Isolate
398	Test Sect Cur		Cur	0	15000	ADC	Emore	Voltage Isolate
BI	Water Supply	Tark						
399 ·	Sup Thic 84		1	283	1644	. K	Oeta M	TC' Type K
401	Sup Trik 6-b		1	283	1644	K	Oeta M	TC Type K
402	UP OP (156.25-162.38)		OP .	Ō	155.7	mm H:O	Rosemou.	DP
433 •	UP-EX PIPE OP	1	OP	0	34.5	kPa	Rosemou	PT*
405	Sup Trik Ly!		LVI	0	3022.6	: mm H2O	Rosemou	L
406 ·	Sup Trik Pr	1	Pr	0	413.7	kPa	Rosemcu	۲۱ ۰
53	Sucpty Lin	ie .						
407	Sup Ln #		A	283	1844	ĸ	Delta M	TC* Type K
408	Sup Ln wall	1	wall	283	1644	ĸ	Deita M	TC Type K
409	Sup Ln wail		wall	283	1644	K	Detta M	TC Type K
410	Sup Ln wait		wall	283	1644	K	Deta M	TC Type K
411 •	Sup Ln Pr		Pr	0	344.7	kPa	Rosemou	PT.
412	Sup Ln FM		FM	0	4.9	kovsec	Abcromoti	FM'
84	Dreplet Injec	uon						
413	Drop Ing FIA	1	FM	0	0.0454	kg sec	0	FM
<u> </u>	Siesm Supply	Sys.						
414	SI Sup 8			283	1644	<u> </u>	Deita M	TC Type K
413	SI Şup waa		waa	283	1644	K .	Deita M	TC Type K
410	SI Sup Pr		<u>Pr</u>	Q	413.7	kPa	Rosemcu	PT ⁺
41/ +	ST SUD FM		FM	0	7.1	m"/min	Rosemcu.	FM*
	Carryover Ta	nks						
418	LgCTB-b		11	283	1644	K ·	Deta M	TC Type K
419	LCCT walk	- 	wall	283	1644	K	Deta M	TC Type K
420	LgCTTH		<u> </u>	283	1644	κ	Detta M	TC Type K
421	Lg CT was-o		wall	283	1644	K .	Delta M	TC Type K
422	Sm CT fl-	and an and the set of the set of the second set of	. (]	283	1644	K	Detta M	TC Type K
423	Sm CT waf-I		wall	283	1644	. <u>K</u> . [Deta M	TC Type K
424	Sm CT wall-b		Wal	283	1644	<u> </u>	Detta M	TC Type K
426	LgCTLV	;]	LVI	0	1574.8	mm H2O	Rosemou	Ĺ
1					0.054		Passa	
427	SmCLLY	;	LVI	0	030.4	mm R20	A CLEASE COLOR	<u> </u>
427 T	Steam Separa	Ner	<u>Evi</u>	0	833.4	men R2O	Kosenxou	L
427 U2 428	Steam Separa Steam Separa St Sep fl	iter	<u>Lvi</u>	283	1644	K K	Detta M	TC Type R

.

RC Table.) pdated 4/1 rinted 5/23	th: Version 7.0, 15% 9/02 3 22 PM /02 5 18 PM	Instrumer	Poni 1831 1800-181	n Slave Un HT - Test Id Data Ac	ilversky Facility coulstion (Channel List			Page 8 o
		مدینہ بھرسی مربی چ			· · · · ·	NAME AND AND ADDRESS OF			· · · · · · · · · · · · · · · · · · ·
429	St Sep wail			wall	283	1644	K	Oeta M	TC Type K
430	St Sec wall-b			wall	283	1644	K	0eta M	TC Type K
431	St Sep Dr B-t			ß	283	1644	K	Deda M	TC Type K
432	St Sep Dr A-c	1		1	283	1644	ĸ	Dena M	TC Type K
403	St Sep Cr Trik wail	And the second second second	1	Wall	283	1644	K	Cella M	TC Type K
434	St Sep Dr Trik Lvl	** • • • • • • • • • • • • • • • • • •		Lul	G	1663.7	min HX	Rosencu	Ĺ
03	Fressure Oscalallo	n Damping	Tank JA	scumula	tor)				······································
404 (Acc walk		;	wall	283	1644	K	Oeta M	TC Type K
437	Acc wal-m	· ·		wall	283	1644	K	Ceta M	TC Tree K
385	Acc wal-b	**************************************	······································	Vrat	283	1644	K	Coza M	TC Type K
416	Art 14				281	1644	K	Links II	TC Type K
114	Arr Bo			1 4	283	1844	K	Ceda M	TC Type K
-700	St Sun Are De			- no -		14.6		Owner with	
410			1		x		201	Bereman	
4.15	ALL PT	Line	·	1 171	<u> </u>	4131	AP d	ROSETTED	P1
		Cille			200				
440	EX PIPE T		*	<u></u>	403	1044	K	Lieta M	IC IYPE X
441	Ex Pipe wal			Wall	283	1044	K	Uela M	IC IYPEK
442	Ex Pipe wal		مەسىيەسەر مەر ۋا	wat	283	1644	K	Ceta M	TC Type K
443	Ex Pipe wall			haw	283	1644	ĸ	Deita M	TC Type K
444	Ex Pipe Pr			Pr	0	413.7	k₽a	Rosemou	PT
445	Ex Pice FM	·		FM	0	12.7	TT YMIT	Rosemou	FAI
	Outre Pil	ndows							
44E	Che Win 24.17-E	613.9		. 0 .	263	1644	K	Ceta M	TC Type K
447	Otz Wn 24.17-W	613.9	1	0	283	1644	K	Oeta M	TC Type K
448	Ott Win 44 72-E	1135.9	2	0	283	1644	K	Orta M	TC Type K
- 446	CH: WA 44 72.W	1135.9	1.5.45 C 2.000	1 8	283	1644	×	Gera M	TC Type K
100-	CH+ 14/10 64 77-5	1657 0	1	1-2-1	283	1644		Catal	TC Tune K
- 461	Cur U.Sr 65 27.3M	1657 6	1	1 N N	281	1644	- N	Dura U	TC Turn K
		4194.0	- 10 House			1 101			TC TYPE
	011 VVI 65 62-E	21/3.0			203	1044		Contra Int	
403	02 991 63.62-17	21/3.0	<u> </u>		203	1044	<u>.</u>	Cend MI	IC Type N
434	012 W/m 106 37-C	2/01.8	·		203	1044	· ••••••	Oeta M	IC IYDOR
455	002 Win 108 37 W	2701.8	5	<u> </u>	28.1	1644	<u>K</u>	Unta M	TC Type K
456	Citz Vsim_126 92-E	3223.8	6	0	283	1644	<u> </u>	Ceta M	тс туре К
457	Otz Win 126.52-Vi	3223 8	6	10 3	283	: 1644	<u> </u>	Deita M	TC Type K
	Control O	utputs							
458	Rem Close			1	Ū.	1	State		Relay
459	Rem Start/Stop				Ç	1	State		Rolay
460	IF Fast Valve		5 5		0	1 - 1	State	ALL OF POLICY ALL Y	Relay
461	RELAY J . NO	-	••••••••••••••••••••••••••••••••••••••		0	1	State		Reiav
462	1/O Disc					1	State		Relay
443	Pull-1 10+4/O Dase	 B. Antonio construction of the second second	An family a sugar agent, t		I brows many	and the state state of the stat	State	2	Relay
2.54	front diversitance	· · · · · · · · · · · · · · · · · · ·	†	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	0.309		Patav
	Not Assessing	· · · · · · · · · · · · · · · · · · ·				·	0000	<u></u>	Qaiou
700	DC DUP CHITI		i			1144600	Company of Color		C. mandt Aubrud
100	AP MAD AVITS		<u></u>		<u> </u>	12,000		· · · · · · · · · · · · · · · · · · ·	Current autput
407	PSPYIR OUID	· · · · · · · · · · · · · · · · · · ·	<u> </u>	÷	<u> </u>	125000	YV		Cument output
408	IF RAIEA	juun eesti ees	<u></u>	+	<u> </u>	6	19.560	n der eine Sterner an eine st	
469	IF KAIES	·			¥	2,2	AS SHC		Current output
470	UP PressA	· · · · · · · · · · · · · · · · · · ·	A	- 	0	206.8	KPa		Current output
471	UP Press8		<u>B</u>		0	206.8	KP8	بدر ۲۰۰۰ و ۲۰۰۰ میکند استان استان و ر	Current output
472	CNTLAA	2 	A			1	9009	:	Current output
473	CHTL48	1	9	: 1			none		Current output
474	Rake CratA	1	A		Ő	88.9	ា៣		Current output
475	Rake CntB		8	. T	0	88.9	តារា		Current output
476	Rake_CnttC		¢		0	88.9	61¥13		Current output
477	Rake Cnto		D		0	88.9	mm.		Current output
478	CNTL7A	a deserve and an all second	A	1		· • • · · · · · · · · · · · · · · · · ·	none		Current output
470	CNTL78	• • • • • • • • • • • • • • • • •	B	1			none		Current cutcut
480	CNTLEA		Ā				DOD:		Current autnut
421	CND IA	1	A			·····	0000		Current outrest
-141	Baba Des	ution	<u> </u>						Carren Galpar
100	Data Dard			, , , , , , , , , , , , , , , , , , , 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	66.0		····	Linase Ord
476	Rate Pasa		<u> </u>	+	<u>x</u>	00.7	FIET	و بو ۳۰ بر ۲۰ بوده وسو معروفه و در و	Cincar POR
40.1	NALE NUTA	، د	<u> </u>	·	<u>v</u>	13	ករុកា		DOCM JOIERSON
454	Hake Poss	:	В	<u> </u>	<u> </u>	68.9	ការពា		Linear Pot

RC Table.x pdated 4/11 inted 5/23/	ra, Version 7.0, ISM 1702 3.22 PM 172 5.18 PM	Penn Stat RBHT + T Instrumentation and Dat	Page 9 of			
485	Rake Norta	8	0	13	num	Resistor Natio
486	Rake PosC	C	Ŭ	88.9	្រាព	Linear Pct
487	Rake NumC	5	0	13	. Aum	Resistor Ratio
488	Rate PcsD	0	0	88.9	៣ខោ	Linear Pot
489	Rake Nurto	0	Q	13	num	Resistor Ratio
	SPARES		an a			
490	Spare 1	1		ļ	none	urused
491	Spare2	2			none	unuted
492	Bad SCP2	2			none	unused
400	FH Insul-1CEN	-108N	283	1644	K .	TC Type K
97	FH Insul-55XI	-55N	283	1644	K	TC Type K
184	FH Insul 1085	-1085	283	1644	K	TC Type K
277	FH Insul-80N	-80N	283	1644	K	TC Type K
	Terminal Panel Reference	a Tharmistors			<u> </u>	
497	Phil-Therm25		278	322	K	Thermistor
498	Pni2-Therm2S		278	322	K	Thermistor
499	Phi3-Therm2S	**************************************	278	322	K	Thermistor
500	PnI4-Therm2S	** * *** 1 * * *** *******************	278	322	K	Thermistor
501	Pni5-Therm2S		278	322	K	Thermistor
502	Phile-Therm2S		278	322	K	Thermistor
503	Pril7-Therm2S		278	322	K	Thermistor
504	Phil8-Therm2S		278	322	ι K	Thermistor
505	Pnip-Therm25	angan atamanya na atam ginana na angan yinak yinak yina na ata angan yang A	278	322	K	Thermistor
506	Pal10-Therm2S	· · · · · · · · · · · · · · · · · · ·	278	322	K	Thermistor
507	Prilli-Therm25		278	322	K	Thermistor
508	Pril12-Therm25	·····	278	322	K K	Thermislor
509	Pnl13-Therm25	1	278	322	K	Thermistor
510	Pril14-Therm25	ay namen ay an	278	322	X	Thermistor
511	Phil5-Therm2S	and a second s	278	322	K	Thermeter
512	Phile-Them2S	******	278	322	K	Thermistor

5. TEST FACILITY IMPROVEMENTS

Significant improvements related to other heater rod bundle testing programs, listed in Section 3, Literature Review, of the RBHT Test Plan and Design Report have been incorporated into the RBHT Test Facility. These improvements are:

- A low mass square flow housing design which better fits a square rod bundle array and minimizes the housing mass and the excess rod bundle flow area.
- The six pairs of windows which provide large viewing areas below and above grid locations, making it possible to observe and make void fraction and droplet measurements during reflood testing.
- The use of a Laser illuminated Digital Camera System to measure entrained water droplets sizes, distribution, and velocities in the transition and disperse flow regions.
- The use of a traversing steam probe rake to measure simultaneously steam temperatures in the flow subchannel and in the rod-to-rod gap.
- Differential pressure transmitter axially located 76.2-127 mm (3-5 in) apart in conjunction with heater rod and flow housing wall thermocouples to obtain detailed void fraction and heat transfer information.
- Addition of a water droplets injection system in conjunction with steam injection to study the droplet-steam cooling effects on heat transfer and grids.
- Addition of a large pressure oscillation-damping tank to minimize test section oscillations observed in the FLECHT and FLECHT-SEASET tests.
- The incorporation of closely coupled entrained liquid collection tanks and piping to reduce delay times for liquid collection.

.

6. SUMMARY OF CHARACTERIZATION TESTS

6.1 Single Phase Pressure Drop Tests

The data from the single phase pressure drop tests performed under the RBHT Program were analyzed to calculate the grid loss coefficient that are needed to characterize the spacer grids used in the RBHT test bundle.

Figure 6.1 shows the schematic layout of the rod bundle for the RBHT Test Facility with the location of the DP cells used for the single-phase pressure drop tests.

Following are the specifications of the rod bundle:

Number of rods: 49 Diameter of rods: 9.4996 mm (0.374 in) Housing dimension: 91.313 mm (3.595 in) square Flow area: 4863.73 mm² (7.5388 in²) Hydraulic diameter: 10.6426 mm (0.419 in) Length (width or thickness) of spacer grid: 57.15 mm (2.25 in)

The experiments recorded volumetric flow rate (channel 412) as well as DP cell readings. Table 6.1 gives the detail of the DP cell location, channel number corresponding to the DP cell data, and number of grids within the DP cell span. The maximum Reynolds number achieved in the tests is about 30000.

As seen from Table 6.1, the experiments were designed such that the there were many DP cell measurements (six channels, except channels 369 and 379) that included spacer grids in their span. In other words, the pressure drop measured by such DP cells spanning spacer grid(s) would be composed of two components: frictional loss for the bare portion of the bundle, and the loss associated with the spacer grid(s) in the span. DP cells for channels 369 and 379 measure bare bundle pressure drop; i.e., they measure the single-phase frictional pressure drop within the span within the spacer grids. It should be noted that this frictional pressure drop will include the developing flow and the increased mixing effects which occur downstream of a spacer grid.

6.1.1 Procedure for Calculation of Grid Loss Coefficient, kgrid

The following are the steps used to calculate the grid loss coefficient.

1. Based on the volumetric flow rate measurement (channel 412) and the flow area of the bundle, the fluid velocity in the rod bundle is calculated.

2. Reynolds number of flow is calculated using fluid properties, evaluated at 2.758 bar (40 psia) and 23.88 degrees C (75 degrees F).

 $\rho_f = 997.27 \text{ kg/m}^3 (62.258 \text{ lbm/ft}^3)$

 $\mu_f = 9.1377 \times 10^{-4}$ Pa-s (6.133 x 10⁻⁴ lbm/ft -sec)

3. The pressure drop measured by any DP cell is the sum of the single-phase frictional pressure

drop associated with the bare length of the span and the grid losses.

$$\Delta P_{Total} = \Delta P_{bare} + \Delta P_{grid}$$

4. Knowing the grid length and the number of grids in the span, the bare bundle length is calculated as L_{span} - N (number of grids in span) x L_{grid} = L_{bare} . Using the bare bundle pressure drop data from channel 369 or 379, the frictional pressure drop for the bar portion of the span under consideration is obtained as:

$$\Delta P_{bare} = \frac{L_{bare} inspanconsideration}{Spanlength for channel 369 or 379} \times \Delta P (from channel 369 or 379)$$
(6-1)

5. The pressure drop due to the grids is then obtained by subtracting the frictional pressure drop for the bare portion of the span from the measured DP value.

6. The grid loss is given by:

$$\Delta P_{grids} = N \frac{k \rho_f V^2}{2g} \tag{6-2}$$

where

N number of grids in the DP cell span under consideration,

V velocity

k_{grid} grid loss coefficient, which is to be calculated.

From the above equation the grid loss coefficient k_{grid} can be determined. Figure 6.2 shows the plot of grid loss coefficient as a function of Reynolds number for all the DP cells with spacer grids in their span. As expected, the grid loss coefficient decreases with Reynolds number. The scatter in the data is minimal.

This data is consistent with other experimental work, where a grid loss coefficient of about 1 is obtained for Reynolds number of about 100,000.

6.1.2 Comparison of Data With Prediction Using Rehme's Method

Pressure drop at a spacer grid is given as:

$$\Delta P = C_v \varepsilon^2 \frac{\rho_f V^2}{2}$$
(6-3)

where

C_v modified spacer form loss coefficient (a function of Reynolds number)
 ε ratio of the projected grid cross-section area in the rod bundle to the undisturbed flow area (equal to 0.362 for the RBHT Test Facility)

p_f fluid density

V average fluid velocity in the rod bundle

The modified spacer form loss coefficient is obtained from Rehme's paper (Ref. 7) as a function of Reynolds number. For the Reynolds number range of interest, the C_v value is between 6 and 11.

The pressure drop is calculated from the Rehme's equation. The grid loss coefficient is obtained from:

$$\Delta P_{grid} = N \frac{k_{grid} \rho V^2}{2}$$
(6-4)

where

N number of grids in the DP cell span under consideration V velocity

karid grid loss coefficient, which is to be calculated

Figure 6.3 shows the comparison of grid loss coefficient from experiment with that calculated by Rehme's method. It is seen that Rehme's method underpredicts the coefficient significantly by almost a factor of 2. This is similar to what was obtained in the FLECHT-SEASET experiments.

6.2 Calculation of Friction Factor for the Rod Bundle

The data from the single-phase pressure drop tests performed under the RBHT Program was analyzed to calculate the friction factor, needed to characterize the rod bundle.

Following are the specifications of the rod bundle:

Number of rods: 49 Diameter of rods: 9.4996 mm (0.374 in) Housing dimension: 91.313 mm (3.595 in) square Flow area: 4863.73 mm² (7.5388 in²) Hydraulic diameter: 10.6426 mm (0.419 in) Length (width or thickness of spacer grid: 57.15 mm (2.25 in)

The experiments recorded volumetric flow rate (channel 412) as well as DP cell readings. Channel 369 records the DP cells for a span of 14 inches (between 53 and 67 in elevation) without any spacer grids. Hence, all the pressure losses over this span are due to friction only. The maximum Reynolds number achieved in the test is about 30000.

In addition to this, a second experiment was performed to measure the pressure drop over a short span of eight in (between 100 and 108 in elevation). A schematic of the layout along with the DP cells is shown in Figure 6.4.

6.2.1 Procedure for Calculating Friction Factor, f

1. Based on the volumetric flow rate measurement (channel 412) and the flow area of the bundle, the fluid velocity in the rod bundle is calculated.

2. The Reynolds number of flow is calculated using fluid properties, evaluated at 2.758 bar (40

psia) and 23.88 degrees C (75 degrees F):

```
\rho_{\rm f} = 997.27 \text{ kg/m}^3 (62.258 \text{ lbm/ft}^3)
```

 $\mu_{f} = 9.1377 \times 10^{-4} \text{ Pa-s} (6.133 \times 10^{-4} \text{ lbm/ft-sec})$

3. The head equation for pressure drop is given by:

$$\Delta P = \frac{fL\rho_f V^2}{2g_c D_h} \tag{6-5}$$

where

f friction factor, which is to be calculated

- L length of the span over which frictional losses are measured (e.g., for channel 369, this is 14 in)
- D_n hydraulic diameter

V velocity

Using equation 6-5 and the data from channel 369 for the pressure drop, the unknown friction factor is calculated. A plot of friction factor as a function of Reynolds number is shown in Figure 6.5.

Figure 6.6 shows the comparison of friction factors calculated during the three experiments. The value of the friction factor calculated for the short span experiment is lower than the value for the other two tests. This is because of the increased turbulence downstream of the spacer grid. The spacer grid acts to disrupt the boundary layer on the heater rods such that the flow must redevelop downstream of the grid, resulting in higher effective frictional losses. As seen from Figure 6.4, the short span test DP cell was located far away from the downstream of the nearest spacer grid (grid no. 5), while the DP cell for the other experiments was much closer to the downstream of the spacer grid (grid no. 3).

Based on Figure 6.5, the friction factor can be correlated to the Reynolds number by the following equation:

$$f = \frac{0.279}{\text{Re}^{0.198}}$$

(6-6)

The values of friction factor obtained from the experiments are higher than the values from Moody chart for the same Reynolds number.

6.3 Radiation Heat Loss Measurements

Radiation only experiments were conducted as apart of the RBHT Program to characterize the radiation heat loss, as a part of the separate effect tests. These experiments were conducted under vacuum. The following tests were conducted:

• Experiment #605: Heat up rod bundle to 426.66 degrees C (800 degrees F), to help

remove all water vapor. Manual control was used and 650.24 mm (25.6 in) vacuum was maintained.

- Experiment #606: Two hours heating, manual power control. Peak temperature of 426.66 454.44 degrees C (800 850 degrees F) was achieved.
- Experiment #607: Little over one hour, manual power control, peak temperature of 537.77 - 565.55 degrees C (1000 - 1050 degrees F) was achieved. Some cooling down was done.
- Experiment #608: Cooling down of the bundle.

For conducting this experiment, the outside of the insulation was instrumented with thermocouples, to record the temperature and hence calculate the heat loss. The locations (elevation, slot number, etc.) are given below:

- Channel 97S2-33, FH Insulation 55 N
- Channel 277S4-62, FH Insulation 80 N
- Channel 400S6-40 FH Insulation 108 N
- Channel 438S7-48 FH Insulation 108 S (not functional)

Thickness of the WR-1200 Modeled Perlite Insulation was 101.6 mm (4 in). The outer dimension of the housing was 102.87 mm (4.05 in) square.

Temperature measurements on the flow housing, at approximately the same elevation as the housing insulation thermocouples were used to calculate the temperature difference driving the heat transfer. The following housing thermocouples were used:

- Channel 341 S6-4, at 1.419 m (55.87 in) elevation
- Channel 346 S6-9, at 2.0 m (78.78 in) elevation
- Channel 353 S6-16, at 2.754 m (108.43 in) elevation

Table 6.2 summarizes the calculations for Experiment #607.

To calculate the heat loss as a fraction of the total power, the power supplied needs to be calculated. This is the product of the test section voltage and the test section current readings. Table 6.3 summarizes the current and voltage readings and the offsets.

At steady-state, the power supplied was 3345.69 W. All the power supplied corresponds to heat loss by radiation, since the facility was operated at steady-state. Based on a total power of 114 kW, the heat loss during a typical reflood test would be around 2.32 percent of the total value. This is a small fraction of the total power supplied to the RBHT facility.

6.4 Calculation of Insulation Thickness for the RBHT Test Bundle

In order to quantify the heat loss from the RBHT test bundle, it was necessary to do a heat transfer analysis using various thickness of insulation. With this analysis it will be possible to decide on the appropriate amount of insulation for the bundle. The analysis consists of a simple 1-D conduction and convection problem and is as follows:

Beginning with the most simple conduction equation:

$$q'' = k \frac{dT}{dx}$$
(6-7)

And considering the basic convection equation:

$$q'' = h(T_S - T_{\infty}) \tag{6-8}$$

The heat flux will be the same at all locations, so the two equations can be combined:

$$k\frac{dr}{dx} = h(T_s - T_{\infty})$$
(6-9)

Now, the equation can be simplified and integrated over the width of the insulation:

$$-dT = \frac{h}{k} (T_s - T_{\infty}) dx \tag{6-10}$$

$$-\int_{T_{w}}^{T_{s}} dT = \frac{h}{k} (T_{s} - T_{\infty}) \int_{0}^{L} dx$$
(6-11)

$$T_w - T_s = \frac{hL}{k} (T_s - T_w)$$
(6-12)

where

- T_W bundle wall temperature
- T_S insulation surface temperature
- T_{∞} bulk air temperature
- *L* insulation thickness

Now the equation can be solved for the insulation surface temperature and this result can be used to find the heat flux using the convection equation. Note that from this point forward, the temperatures must be in **absolute** units.

$$T_{s} = \frac{T_{w} + \frac{hL}{k}T_{\infty}}{1 + \frac{hL}{k}}$$

$$q'' = h\left[\left(\frac{T_{w} + \frac{hL}{k}T_{\infty}}{1 + \frac{hL}{k}}\right) - T_{\infty}\right]$$
(6-13)
(6-14)

The next issue is how to deal with the convective heat transfer coefficient and the thermal conductivity of the insulation. The convective heat transfer coefficient must be calculated using

•

a natural convection correlation, based on the dimensions of the bundle. The thermal conductivity of the insulation will be assumed constant and equal to the thermal conductivity of the material at about 343.33 degrees C (650 degrees F). For this analysis, a range of convective heat transfer coefficients were used, but the calculated value was about 3.69 W/m²-K (0.65 Btu/hr-ft²-F) and this value will be used in the sample calculation that follows. The value of the thermal conductivity of the insulation was taken from the manufacturer's specification sheet to be about 0.1003 W/m-K (0.058 Btu/hr-ft-F).

In addition to the thermal constants, the temperatures of the bundle wall and the bulk air must be estimated. Values of 537.77 degrees C (1000 degrees F) and 23.88 degrees C (75 degrees F) were used respectively. An example calculation using 50.8 mm (2 in) of insulation is as follows:

Insulation surface temperature:

$$T = \frac{hL}{1 + \frac{k}{k}} = \frac{1460 R + \frac{\left(\frac{0.65 \frac{Btu}{hr \cdot ft \cdot R}}{hr \cdot ft \cdot R}\right) \left(\frac{2}{12} ft\right)}{Btu}}{0.058 \frac{hr \cdot ft \cdot R}{hr \cdot ft \cdot R}} = 857.5 R = 397.5 F$$

$$1 + \frac{\left(\frac{0.65 \frac{Btu}{hr \cdot ft \cdot R}}{hr \cdot ft \cdot R}\right) \left(\frac{2}{12} ft\right)}{1 + \frac{Btu}{0.058 \frac{Btu}{hr \cdot ft \cdot R}}}$$

$$(6-15)$$

where $T_s = 203.05$ degrees C (397.5 degrees F)

Heat Flux:

$$q'' = h[T_s - T_{\infty}] = 0.65 \frac{Btu}{hr \cdot ft^2 \cdot R} (397.5F - 75F) = 209.6 \frac{Btu}{hr \cdot ft^2} = 0.061 \frac{kW}{ft^2}$$
(6-16)

Multiplying this result by the surface area of the rod bundle (19.5 ft^2) will yield the total power loss from the bundle:

$$q = q''A = 0.061 \frac{kW}{ft^2} \cdot 19.5 ft^2 = 1.2 kW$$
(6-17)

Based on a total bundle power of 144kW, this gives a power loss of about 0.8 percent.

Tables 6.4 through 6,6 show a summary of these calculations for an insulation thickness of 4 in and housing temperatures corresponding to three axial locations.

Figure 6.1 RBHT Differential Pressure Cell Layout, Single Phase Flow.

Figure 6.3 Comparison of Experimental Data With Rehme's Method.

Figure 6.5 Friction Factor as a Function of the Reynolds Number.

Figure 6.6 Comparison of the Friction Factors for Various Experiments.

Figure 6.7 Thermal Conductivity of Insulation Materials as a Function of Temperature.

Heat Flux Vs. Axial Length

Figure 6.8 Heat Flux vs. Axial Length for Experiment 607.

ŀ

7

DP/Channel Number	Taps	Number of	Spán		Calibration DP range	
	connection	grids	inch	mm	inch H ₂ O	mm H ₂ O
362	1-23	7	144	3657.6	0-250	0-6350
363	1-3		25	635	0-35	0-889
364	3-6	-	21	533.4	0-35	0-889
365	3-20	4	83	2018.2	0-120	0-3048
369	7-11	0 (Bare bundle)	14	355.6	0-25	0-635
373	41-16	1	18	457.2	0-30	0-762
379	17-20	0 (Bare bundle)	15	381	0-25	0-635
382	20-23	2	36	914.4	0-60	0-1524

 Table 6.1 Differential Pressure Cell Layout Description

 Table 6.2 Calculation for Experiment 607

Elevation		Housing Temperature		Insulation Temperature		k invitation		Heat Flux	
in	M.	٩	*C	T	°C	Btu/br-ft-F	W/m-K	Btu/hr-ft	W/m ¹
- 55	1.397	658	347.77	138	58.88	0.045	0.07788	70.2	221.43
78.78	2	566	296.66	139	59.44	0.0433	0.0749	55.47	17.585
108.43	2.754	463	239.44	103	39.44	0.0408	0.0706	44.063	13.968

 Table 6.3 Current and Voltage Readings for Power Calculations

Test Section	Offset	Actual	Test Section	Offset (A)	Actual	
Voltage (V)		Voltage (V)	Current (A)		Current (A)	
3.84	48	3.792	650.6	118.7	531.9	
4.92	50	4.87	792.6	118.2	674.4	
5.01	40	4.97	804.12	118.9	685.22	

•

•
	h	Surface T	emperature	Hea	t Flux	Percent Heat
(Btu/(hr-ft ² -R	()) [W/(m ² -K)]	· (F)	(C)	(kW/ft ²)	$[kW/m^2]$	Loss (%)
0.1	[0.6]	446.0	[230.0]	0.0109	[0.1169]	6.34
0.2	{1.1]	347.1	[175.0]	0.0159	[0.1715]	9.29
0.3	[1.7]	289.8	[143.2]	0.0189	[0.2031]	11.00
0.4	[2.3]	252.4	[122.5]	0.0208	[0.2237]	12.12
0.5	[2.8]	226.1	[107.9]	0.0221	[0.2382]	12.91
0.6	[3.4]	205.6	[97.0]	0.0231	[0.2490]	13.49
6.7	[4.0]	191.6	[88,7]	0.0239	[0.2573]	13.94
Q. B	[4.5]	179.6	[82.0]	0.0245	[0.2639]	14.30
0.9	[5.1]	169.9	[76.6]	0.0250	[0.2693]	14.59
1.0	[5.7]	161.8	[72.1]	0.0254	[0.2737]	14.83
1.1	[6.2]	155.0	[68.3]	0.0258	[0.2775]	15.03
1.2	[6.8]	149.2	[65.1]	0.0261	(0.2807)	15.21
1.3	[7.4]	144.2	[62.3]	0.0263	[0.2834]	15.36
1.4	[7.9]	139.8	[59.9]	0.0266	0.28591	15.49
1.5	[8.5]	135.9	[57.7]	0.0268	[0.2880]	15.60
1.6	[9.1]	132.5	[55.8]	0.0269	0.28991	15.71
1.7	[9,7]	129.4	[54.1]	0.0271	[0.2916]	15.80
1.8	[10.2]	126.7	[52.6]	0.0272	(0.29311	15.8B
1.9	[10.8]	124.2	[5].2]	0.0274	10.29451	15.95
2.0	[11.4]	121.9	[49.9]	0.0275	[0.2957]	16.02

Table 6.4 Elevation 1.419 m (55 in) - Heating Surface Temperature348 degrees C (659 degrees F)

Table 6.5 Elevation 2.0 m (78.78 in) - Housing Surface Temperature297 degrees C (566 degrees F)

l	h	Surface T	emperature	Hea	t Flux	Percent Heat
(Btu/(hr-ft ² -R	()) [W/(m ² -K)]	(F)	[C]	(kW/ft ²)	[kW/m ²]	Loss (%)
0.1	[0.6]	387.5	[197.5]	0.0092	[0.0985]	5.34
0.2	[1.1]	304.1	[151.2]	0.0134	[0.1445]	7.83
0.3	[1.7]	255.9	[124.4]	0.0159	[0.1711]	9.27
0.4	[2.3]	224.4	[106.9]	0.0175	[0.1884]	10.21
0.5	[2.8]	202.3	[94.6]	0.0186	[0.2006]	10.87
0.6	[3.4]	185.9	[85.5]	0.0195	[0.2097]	11.36
0.7	[4.0]	173.2	[78.4]	0.0201	[0.2167]	11.74
0.8	[4.5]	163.1	[72.8]	0.0207	[0.2222]	12.04
0.9	[5.1]	154.9	[68.3]	0.0211	[0.2268]	12.28
1.0	[5.7]	148.1	[64.5]	0.0214	[0.2305]	12.49
1.1	[6.2]	142.4	[61.3]	0.0217	[0.2337]	12.66
1.2	[6.8]	137.5	[58.6]	0.0220	[0.2364]	12.81
1.3	[7.4]	133.3	[56.3]	0.0222	[0.2387]	12.93
1.4	[7.9]	129.6	[54.2]	0.0224	[0.2408]	13.04
1.5	[8.5]	126.3	[52.4]	0.0225	[0.2426]	13.14
1.6	[9.1]	123.4	[50.8]	0.0227	[0.2441]	13.23
1.7	[9.7]	120.8	[49.3]	0.0228	[0.2456]	13.30
1.8	[10.2]	118.5	[48.1]	0.0229	[0.2469]	13.37
1.9	[10.8]	116.4	[46.9]	0.0231	[0.2480]	13.44
2.0	[11.4]	114.5	[45.8]	0.0232	[0.2491]	13.49

ن. د ي

:

,

b b		Surface To	Surface Temperature		t Flax	Percent Heat
(Btu/(br-ft ³ -R	()) $[W/(m^2-K)]$	(F)	i ci	(kW/fr ²)	[kW/m ²]	Loss (%)
0.1	[0.6]	321,9	[161.1]	0.0072	[0.0778]	4.22
0.2	[1.1]	256.1	[124.5]	0.0106	[0.1142]	6.18
0.3	[1.7]	217.9	[103.3]	0.0126	[0.1352]	7.32
0.4	[2.3]	193.1	[89.5]	0.0138	[0.1489]	8.07
0.5	[2.8]	175.6	[79.8]	0.0147	[0.1585]	8.59
0.6	[3.4]	162.6	[72.6]	0.0154	[0.1657]	8.98
0.7	[4.0]	152.6	[67.0]	0.0159	[0.1712]	9.28
0.8	[4.5]	144.6	[62.6]	0.0163	[0.1756]	9.51
0.9	[5.1]	138.2	[59.0]	0.0167	[0.1792]	9.71
1.0	[5.7]	132,8	[56.0]	0.0169	[0.1822]	9.87
1.1	[6.2]	128.3	[53.5]	0.0172	[0.1847]	10.00
1.2	[6.8]	124.4	[51.3]	0.0174	[0.1868]	10.12
1.3	[7.4]	121.0	[49.5]	0.0175	[0.1886]	10.22
1.4	[7.9]	118.1	[47.8]	0.0177	[0.1903]	10.31
1.5	[8.5]	115.5	[46.4]	0.0178	[0.1917]	10.38
1.6	[9.1]	113.3	[45.1]	0.0179	[0.1929]	10.45
1.7	[9.7]	111.2	[44.0]	0.0180	[0.1941]	10.51
1.8	[10.2]	109.4	[43.0]	0.0181	[0.1951]	10.57
1.9	[10.8]	107.7	[42.1]	0.0182	[0.1960]	10.62
2.0	[11.4]	106.2	[41,2]	0.0183	[0.1968]	10.66

· ...

Table 6.6 Elevation 2.75 m (108.43 in) - Housing Surfaces Temperature239 degrees C (463 degrees F)

7. CONCLUSIONS

The RBHT Test Facility has been designed as a flexible rod bundle separate-effects test facility which can be used to perform single-phase and two-phase experiments under well-controlled laboratory conditions to generate fundamental reflood heat transfer data. The facility is capable of operating in both forced and variable reflood modes covering wide ranges of flow and heat transfer conditions at pressures up to 0.402 MPa (60 psia). It is heavily instrumented that meets all the instrumentation requirements developed in the RBHT Program. It can be used to conduct all types of the planned experiments according to the test matrix developed under Task 9 of the RBHT Test Plan and Design Report. It is considered that the RBHT Test Facility with its robust instrumentation represents a unique NRC facility for the in-depth studies of the highly ranked reflood phenomena identified in the RBHT Program's Phenomena Identification and Ranking Table (PIRT) and will produce the data and analysis needed to refine reflood heat transfer models in the current safety analysis computer codes.

<u>д</u>г,

.

.

.

.

.

.

· · · · ·

8. REFERENCES

- 1. Denham, M.K., D. Jowitt, and K.G. Pearson, "ACHILLES Unballooned Cluster Experiments, Part 1: Description of the ACHILLES Rig, Test Section, and Experimental Procedures," AEEW- R2336, Winfrith Technology Centre (Commercial in Confidence), Nov. 1989.
- Denham, M.K. and K.G. Pearson, "ACHILLES Unballooned Cluster Experiments, Part 2: Single Phase Flow Experiments," AEEW-R2337, Winfrith Technology Centre (Commercial in Confidence), May 1989.
- 3. Pearson, K.G. and M.K. Denham, "ACHILLES Unballooned Cluster Experiments, Part 3: Low Flooding Rate Reflood Experiments," AEEW- R2339, Winfrith Technology Centre (Commercial in Confidence), June 1989.
- 4. Pearson, K.G. and M.K. Denham, "ACHILLES Unballooned Cluster Experiments, Part 4: Low Pressure Level Swell Experiments," AEEW- R2339, Winfrith Technology Centre Commercial in Confidence), July 1989.
- 5. Dore, P. and M.K. Denham, "ACHILLES Unballooned Cluster Experiments, Part 5: Best Estimate Experiments," AEEW-R2412, Winfrith Technology Centre (Commercial in Confidence), July 1990.
- 6. Dore, P. and D.S. Dhuga, "ACHILLES Unballooned ClusterExperiments, Part 6: Flow Distribution Experiments," AEA-RS-1064, Winfrith Technology Centre (Commercial in Confidence), December 1991.
- 7. Rehme, K., "Pressure Drop Correlations for Fuel Element Spacers", Nuclear Technology, Vol. 17, pp 15-23, January 1973.

.

١

APPENDIX A. RBHT TEST FACILITY COMPONENTS DETAILED MECHANICAL DRAWINGS

NOTE: Electronic copies of these drawings are included in a CD listed in Appendix G.

DRAWING NUMBER (CD File No.)	TITLE
B114306	Bellvile Washer
C114245	Pressure Gasket
C114246	Window Flange
C114247	Window
C114248	Window Stud Fixture
C114255	Cushion Gasket
C114282	Flange Modification - Upper Plenum
C114295	Lower Plenum Seal Sleeve Retaining Plate
C114296	Heater Rod Seal Sleeve
C114298	Low Melt Reservoir
C114318	Grip Strap -A-
C114319	Grid Strap -B-
C115077	Steam Probe Rake Mounting Flange
C115132	Drain Tube
C118336	Traversing Steam Probe
D114249	Flange Modification Bottom - Housing Assembly
D114279	Flange Modification Top - Housing Assembly
D114290	Housing Extension
D114291	Exhaust Baffle
D114293	Lower Plenum Flow Baffle A-1

D114294	Seal Plate Lower Plenum
D114297	G-10 Isolation Plate
D114299	Reservoir Connector Assembly
D114301	Unheated Rod (Support Rod)
D114320	Grid Matrix
D114345	Schematic Test Facility
D114366	Seal Sleeve Extractor
D114369	Stem Separator Drain Tank
D114371	Small Carry-over Tank
D115075	Steam Probe Rake Assembly
D115076	Steam Probe Rake Tube
D1150261, L115260	Grid Assembly, List of Drawings and Parts
D115262	Outer Grid -A-
D115263	Outer Grid - B-
D115264	Outer Grid - C-
D115265	Outer Grid - D-
D115266	Inner Grid - A-
D115267	Inner Grid - B-
D115268	Inner Grid - C-
D115269	Inner Grid - D-
D115346	Drawing Tree
D115347	Skirt Steam Separator
D115587	Water Inlet Piping - sht. 1
D115587 - sht. 2	Water Inlet Piping - sht. 2
D115597	Exhaust Line Piping - sht. 1 A-2

+

D115597 - sht. 2	Exhaust Lint Piping - sht. 1
D115640	Steam By-pass Line Piping - sht. 1
D115640 - sht. 2	Steam By-pass Line Piping - sht. 2
D118337	Automatic Traverse Mechanism (Steam Probe Rake)
D118339	Droplet Injection System
E114243, L114242	Assembly (Housing), List of Drawings and Parts
E114244	Weldment Test Section - sht. 1
E114244 - sht. 2	Weldment Test Section - sht. 2
E114281	Upper Plenum Assembly
E114278	Nickel Ground Plate
E114292	Lower Plenum Assembly
E114302	Heater Rod
E114343	Pressure Oscillation Damping Tank
E114346	Window Test Fixture
E114370	Large Carryover Tank
E114372	Strong back Assembly
E115002	Water Supply Tank
E115016	Steam Separator Tank
E115073	Test Section Instrumentation
E115348, L115345	Building Arrangement - sht. 1, List of Drawings and Parts
E115348 - sht. 2	Building Arrangement - sht. 2
E115615	Mezzanine Frame Work - sht. 1
E115615 - sht. 2	Mezzanine Frame Work - sht. 2
E115615 - sht. 3	Mezzanine Frame Work - sht. 3

,

E115615 - sht. 4	Mezzanine Frame Work - sht. 4
E118338	Flow Housing Differential Pressure Instrumentation
E118340	Heater Road Bundle Grip Temperature Instrumentation
E114287, L114280	Upper Plenum, List of Drawings and Parts
L114287	Flow Housing, List of Drawings and Parts
L115260	Rod Grid Assembly, List of Drawings and Parts
R114288	Flow Housing Assembly, Reference Drawing
E118341	Heater Rod Bundle Temperature Instrumentation

.

APPENDIX B. RBHT TEST FACILITY COMPONENTS MEASURED VOLUMES AND FLOW AREAS

The volumes and flow areas were measured for the following components and summarized in Table B.1:

- 1. Water Supply Tank
- 2. Flow Housing
- 3. Upper Plenum
- 4. Lower Plenum
- 5. Large Carryover Tank
- 6. Small Carryover Tank
- 7. Pressure Oscillation Damping Tank
- 8. Steam Separator Drain Tank
- 9. Grids and Bare Heater Rod Bundle

The Steam Separator volume measurements are not reported because the results were not reliable and should be repeated.

The components volumes and flow areas are essential for calculating the Mass and Energy Balances around each component and consequently the validation of the test results.

The volumes and flow areas were determined by weighing the water drained from each component at various elevation increments into a weight tank placed on a weighing scale platform as shown schematically in Figure B.1.

Each water weight was converted into a water volume as follows:

 $V_i = W_i \times v_i \oplus T_i \times 1728 \text{ in}^3/\text{ft}^3$

where

- V_i water volume, in³
- W_i water weight, lbs
- v_i specific volume at T_i
- T_i water temperature, degrees F

The corresponding flow areas were calculated as follows:

 $A_i = V_i \times 1/\Delta L_i$

where

- A_i
- flow area, in² water volume, in³ V_i
- change in elevation, in ΔL_i

The results are presented in table and graphic forms as listed in Table B.1.

Except for the Flow Housing all the components are cylindrical and should have uniform flow area. However, most of them have internal parts and inlet/outlet nozzles which contribute to less or additional water volumes resulting in Flow Areas variations.

Table B.1 Compone	nt volumes and Flow Are	eas
Component	Table No.	Figure No.
Water Supply Tank	B.2	B.2, B.3
Flow Housing	B.3	B.4, B.5
Upper Plenum	B.4	B.6, B.7
Lower Plenum	B.5	B.8, B.9
Large Carryover Tank	B.6	B.10, B.11
Small Carryover Tank	B.7	B.12, B.13
Pressure Oscillation Damping Tank	B.8	B.14, B.15
Steam Separator Drain Tank	B.9	
Grids and Bare Heater Rod Bundle	B.10	

able B.1. Component Volumes and Eleve

1

Elevation	ΔL	Water	Cumulative	Flow
		Volume	Volumes	Area
m	m	m³	m ³	m ²
0	0	0	0	0
0.149352	0.149352	0.00931	0.00930671	0.062368
0.255778	0.106426	0.0286	0.03790787	0.268903
0.484378	0.2286	0.02134	0.05924399	0.093342
0.67818	0.18542	0.05448	0.10635418	0.281316
0.87503	0.19685	0.05446	0.16819109	0.27667
1.068832	0.193802	0.05448	0.22266956	0.28129
1.262634	0.193802	0.05448	0.27714802	0.28129
1.45796	0.195326	0.05448	0.33162649	0.278999
1.653286	0.195326	0.05448	0.3861102	0.278999
1.843786	0.1905	0.05443	0.4405418	0.285728
2.039112	0.195326	0.05443	0.4949734	0.278761
2.232914	0.193802	0.05447	0.549444	0.281245
2.426716	0.193802	0.05447	0.6039146	0.281245
2.61874	0.192024	0.05447	0.6583852	0.283574
2.812542	0.193802	0.05447	0.7128558	0.281245
2.909316	0.096774	0.02724	0.7400911	0.276709
3.00609	0.096774	0.02724	0.7673264	0.276709
3.102864	0.096774	0.02724	0.7945617	0.281432
3.198114	0.09525	0.02724	0.821797	0.285935
3.293364	0.096774	0.02724	0.8490323	0.281245
3.390138	0.096774	0.02724	0.8762676	0.281245
3.486912	0.096774	0.02724	0.9035029	0.281245
3.586988	0.100076	0.02724	0.9307382	0.270206
3.696462	0.109474	0.02224	0.95297545	0.203187

Table B.2 Water Supply Tank Volumes and Flow Areas

Total Volume = 251.75 Gallons (0.95297545m³)

Span	Height	Volume	Flow Area	Cumulative	Elevation	Grid
Press Tap - Press Tap	(m)	(m²)	(m³)	Volumes (m³)	(m)	Location
Bottom Flange-No.1	0.1588	0.000729978	0.459741	0.0007292	0.15875	
1-2	0.3302	0.001600951	0.484838	0.0023302	0.48895	No. 1
2-3	0.3048	0.00150235	0.492902	0.0038329	0.79375	
3-4	0.3048	0.001431902	0.469935	0.0052652	1.09855	No. 2
4.5	0.1524	0.000746955	0.490128	0.0060124	1.25095	
5-6	0.0762	0.00039891	0.523483	0.0064106	1.32715	
6-7	0.1778	0.000910056	0.51187	0.0073201	1.50495	No. 3
7-8	0.0953	0.000441549	0.463547	0.0077609	1.6002	
8-9	0.0826	0.000404302	0.489741	0.0081657	1.68275	
9-10	0.0762	0.000370298	0.485935	0.008536	1.75895	
10-11	0.1016	0.000517864	0.509676	0.0090539	1.86055	
11-12	0.127	0.000563289	0.443548	0.0096176	1.98755	No. 4
12-13	0.0762	0.000340703	0.447096	0.0099584	2.06375	
13-14	0.0762	0.000342064	0.448902	0.0103009	2.13995	
14-15	0.0762	0.000392945	0.515676	0.0106942	2.21615	
15-16	0.1016	0.000532285	0.52387	0.0112268	2.31775	
16-17	0.2032	0.001012786	0.498451	0.0122395	2.52095	No. 5
17-18	0.108	0.000511047	0.473418	0.0127508	2.6289	
18-19	0.0635	0.000250296	0.394193	0.0130015	2.7051	
19-20	0.2271	0.001254676	0.552709	0.0142567	2.91998	,
20-21	0.3096	0.001362339	0.440064	0.0156185	3.2291	No. 6
21-22	0.3145	0.001583564	0.503805	0.0172015	3.54355	No. 7
22-23	0.2111	0.000915349	0.433418	0.0181175	3.75463	
23-TopFlange	0.2002	0.000983945	0.491935	0.0191008	3.95478	

 Table B.3 Flow Housing Volumes and Flow Areas Among Pressure Taps

Total Volume = 5.05 gallons (0.0191008 m³)

* The elevation was measured from the bottom of the rod bundle corresponding to a lower tap location. An elevation where a grid is placed in the table does not mean that the grid is located at that elevation. It means that a grid is located within that DP span.

٠

Elevation	ΔL	Volume	Cumulative	Flow Area
(m)	(m)	(m ³)	(m ³)	(m²)
0.0826	0.083	1.728	1.7281798	2.0935
0.1323	0.05	0.888	2.6165225	1.0761
0.1483	0.016	0.834	3.4607879	5.2555
0.1626	0.014	0.996	4.4467937	6.971
0.2055	0.043	1.017	5.463611	2.3723
0.2372	0.032	1.08	5.5604586	3.4019
0.2832	0.046	1.005	7.5483733	2.1819
0.3449	0.062	1.016	8.5648629	1.6472
0.38	0.035	1.001	9.5662764	2.8677

Table B.4 Upper Plenum Volumes and Flow Areas

Table B.5 Lower Plenum Volumes and Flow Areas

Elevation	ΔL	Volume	Cumulative Volumes	Flow Area
(m)	(m)	(m ³)	(m ³)	(m²)
0	0	0	0	0
0.0508	0.508	0	0.001	0.01957
0.22225	0.17145	0.005	0.0058	0.02823
0.381	0.15875	0	0.0066	0.0046

Elevation	ΔL	Volume	Cumulative	Flow Area
(m)	(m)	(m ³)	(m ³)	(m²)
0	0	0	0	0
0.2159	0.2159	0.002	0.0023	0.0036
0.47777	0.26187	0.002	0.0045	0.0085
0.74778	0.27026	0.002	0.0068	0.0083
1.02235	0.27457	0.002	0.0091	0.0083
1.2954	0.2771	0.002	0.01137	0.0084
1.56362	0.26822	0.002	0.01365	0.0087
2.19227	0.62865	0.002	0.01592	0.01053

Table B.6 Large Carryover Tank Volumes and Flow Areas

Water Temperature 24.44 degrees C (76 degrees F) Total Volume = 0.0159213 m^3 (4.206 gallons) (0.562 ft³)

Table B.7	Small Carr	yover Tank	Volumes	and Flow	/ Areas

Elevation	ΔL	Volume	Cumulative	Flow Area
(m)	(m)	(m ³)	(m ³)	(m²)
0	0	0	0	0
0.20955	0.20955	0	0	0.00041 ^(*)
0.28423	0.0747	0.0002	0.0002	0.00152
0.40005	0.11582	0.0002	0.0004	0.00161
0.49682	0.0968	0.0002	0.0006	0.00178
0.59995	0.10312	0.0001	0.0007	0.00167
0.72847	0.12852	0.0003	0.001	0.00169
0.8476	0.11913	0.00015	0.00115	0.00168
0.97155	0.12395	0.00023	0.00138	0.00183 ^(**)

Water Temperature 24.44 degrees C (76 degrees F) Total Volume = 0.001379 m³ (0.364 gallons), (0.049 ft³)

includes 1 in drain and shut-off valve includes water drain from 1 in inlet tube

Elevation	ΔL	Volume	Cumulative	Flow Area
(m)	(m)	(m ³)	(m ³)	(m²)
0	0	0	0	0
0.1651	0.1651	0.0136	0.01364	0.08587
0.42393	0.25883	0.025	0.03864	0.09432
0.7112	0.45237	0.0273	0.06589	0.09484
0.79223	0.33985	0.007	0.07316	0.08981
1.09703	0.32283	0.0273	0.400422	0.08942
1.40818	0.31115	0.0273	0.12768	0.08761
1.70358	0.2954	0.0272	0.154914	0.09226
2.0193	0.31572	0.0272	0.182147	0.08619
2.0955	0.0762	0.009	0.191452	0.12213
2.1369	0.0414	0.004	0.195309	0.09348
2.2098	0.0729	0.007	0.202118	0.09323
2.302	0.0922	0.007	0.208925	0.04468

Table B.8 Pressure Oscillation Damping Tank Volumes and Flow Areas

Water Temperature 17.77 degrees C (64 degrees F) Average Room Temperature 18.33 degrees C (65 degrees F) Total Volume = 0.289252 m³ (55.2 gallons) (7.38 ft³)

I I I

Location	ΔL*	Volume	Cumulative	Flow Area**
	(m)	(m ³)	(m ³)	(m ²)
Grid No. 4	0.04775	0.0002	0.0002	0.00419
Bare Rod Bundle	0.48108	0.00234	0.00254	0.00487
Grid No. 3	0.04775	0.00019	0.00273	0.00408
Bare Rod Bundle	0.47142	0.00233	0.00506	0.00495
Grid No. 2	0.04445	0.0002	0.00526	0.00451
Bare Rod Bundle	0.55575	0.00265	0.00821	0.00477

Table B.9 Grid and Bare Heater Rod Bundle Volumes and Flow Areas

Water Temperature 17.22 degrees C (63 degrees F) Average Grid Flow Area⁺ = 4264.5 mm² (6.61 in²) (including the mixing vanes) Average Bundle Flow Area = 4864.5 mm² (7.54 in²)

* This is the width of each grid.

** This refers to the cross-sectional flow area through the bundle.

⁺ Grids No. 5 to 7 are identical to Grids No. 2 to 4, respectively, whereas Grid No. 1 has a flow area very close to the average grid flow area. Grids No. 2 to 4 were used as an example to show the average grid flow area as compared to the average bundle flow area.

Elevation (m)	ΔL (m)	Volume (m ³)	Cumulative Volumes (m ³)	Flow Area
(,	(,	(,	()	(/
0	0	0	0	0
0.61925	0.61925	0.00182 ⁽¹⁾	0.00182	0.0029
1.21107	0.59182	0.0045	0.00635	0.0077
1.80645	0.59538	0.0045	0.010888	0.0076
2.10007	0.29362	0.0023	0.013156	0.0077

 Table B.10
 Steam Separator Drain Tank Volumes and Flow Areas

Room Temperature 22.77 degrees C (73 degrees F) Water Temperature 23.88 degrees C (75 degrees F)

⁽¹⁾ includes the drain line

Figure B.1. Volume and Flow Area Measuring Test Schedule.

Figure B.4. Flow Housing Volumes Between Pressure Taps.

Figure B.5. Flow Housing Areas Between Pressure Taps.

B-11

Figure B.6. Upper Plenum Volume Measurements.

Figure B.9. Lower Plenum Flow Areas.

Figure B.11. Large Carryover Tank Flow Areas.

•

Figure B.12. Small Carryover Tank Volume Measurements.

Figure B.13. Small Carryover Tank Flow Areas.

B-15

Figure B.14. Pressure Oscillation Damping Tank Volume Measurements.

Figure B.15. Pressure Oscillation Damping Tank Flow Areas.

APPENDIX C. RBHT TEST FACILITY PHOTOGRAPHS

Photograph C.1 Flow Housing with the Heater Rod Bundle and the Ground Nickel Plate.

Photograph C.2 Ground Nickel Plate and Heater Rods Connection. $$\rm C\mathchar`{C-1}$$

Photograph C.3 Flow Housing Bottom Extension Flow Baffle, Heater Rod Bottom Extensions, and Grid and Support Rod Thermocouple Extensions.

Photograph C.4 Lower Plenum Heater Rod Sealing Plate, Heater Rod Bottom Extensions and Thermocouples Extension Wires.

Photograph C.5 Installation of the Test Facility Components from Right to Left: Flow Housing and Support Fixture, Steam Separator, Pressure Oscillation Damping Tank, Water Injection Supply Tank, and the Mezzanine Structure.

Photograph C.6 Top View of the Flow Housing, Upper Plenum, Small and Large Carryover Tanks, Steam Separator, Pressure Oscillation Damping Tank, and the Top of the Water Injection Tank.

Photograph C.7 Upper Plenum, Steam Separator, and Pressure Oscillation Damping Tank Installation.

Photograph C.8 Steam Exhaust Piping with the Vortex Flowmeter and the Pressure Control V-Ball Valve.

Photograph C.9 Test Section Flow Housing Showing the Heater Rods and Grids Through the Window Openings.

Photograph C.10 Bottom of the Flow Housing with the Lower Plenum and the Water Injection Tank.

Photograph C.11 Installation of the Test Section.

Photograph C.12 Differential Pressure Cells Installation on the Flow Housing.

Photograph C.13 Differential Pressure Cells Installation Showing Connections of the Pressure Tap Lines to the Differential Pressure Cell Manifolds.

Photograph C.14 RBHT Test Facility Building View Through the Roll-up Door Showing the Test Section, Water Injection Tank, Circulating Pump, and the Mezzanine Structure.

Photograph C.15 Inside View of the RBHT Test Facility Through the Roll-up Door Showing the Test Section, Water Injection Tank, Circulating Pump, and the Mezzanine Structure.

Photograph C.16 Data Acquisition Components: VXI Mainframe and Terminal Panels.

Photograph C.17 Electric AC Power Supply Showing the High Voltage Transformers, the Main Breaker, and the Phase Shift Transformer.

Photograph C.18 DC Power Supply Units Rated at 60 Volts DC, 12000 Amps and 750 KW.

APPENDIX D. EXPERIMENTAL VERIFICATION OF THE PERFORMANCE OF A DROPLET INJECTION SYSTEM FOR USE IN A ROD BUNDLE TEST FACILITY

IMECE 2001 Session 2-13-4

A. J. Ireland, E. Rosal, L. E. Hochreiter, F. B. Cheung

Pennsylvania State University Department of Mechanical and Nuclear Engineering University Park, PA 16802

ABSTRACT

A droplet injection system has been developed for use in a rod bundle heat transfer test facility designed specifically for the study of dispersed flow film boiling during reflood transients in a nuclear reactor. Three different injectors having various pitch configurations and hole patterns were tested. The drop field produced by each was characterized using a laser-assisted size measurement technique. Appropriate mean diameter and drop size distributions that closely simulate the drop field encountered in a reactor bundle assembly under reflood conditions were obtained. The droplet injection system so developed can readily be employed in the rod bundle test facility to investigate the droplet heat transfer in the dispersed flow films boiling regime.

INTRODUCTION

A RBHT (Rod Bundle Heat Transfer) test facility has recently been constructed to investigate reflood heat transfer in electrically heated rod bundles which simulate nuclear fuel assemblies. The objective is to obtain basic two-phase flow and heat transfer data in the dispersed flow film boiling regimes where the peak fuel rod temperatures are calculated to occur for a postulated reactor design basis accident. The information and data required includes; the entrained liquid droplet sizes and velocity, vapor temperature, steam flow rate, and the interfacial heat and mass transfer.

The dispersed flow film boiling region is extremely complex since the dispersed droplets act as heat sinks and alter the vapor super-heat temperature such that the film boiling is a two-step process, that is heat is transferred to the continuous vapor phase from the heated walls, then heat is transferred to the entrained water droplets by interfacial heat and mass transfer⁽¹⁻³⁾. As a result, the vapor temperature is a dependent parameter which is a function of both the wall heat transfer and the interfacial heat transfer. In addition to being a source of interfacial heat transfer, the entrained droplets can also affect the continuous vapor heat transfer from the heated wall by increasing the turbulence level in the flow, due to the additional interfacial drag in the flow, as well as acting as distributed heat sinks within the vapor flow.

Best estimate safety analysis computer codes are widely used to predict nuclear fuel rod

temperatures for postulated accidents. The most limiting accident is the Loss of Coolant Accident in which the calculated peak cladding temperatures for the reactor occur in the dispersed flow film boiling region⁽²⁾. These codes rely on models to accurately describe the physical processes in the dispersed two-phase flow heat transfer regime as described above. To date, the existing models have large uncertainties and do not capture all the physical phenomena which have been observed in various experiments. As a result the safety analysis calculations and associated method logics have large uncertainties and conservative calculations have to be performed to insure that the calculated peak cladding temperatures are within the licensing limits for the reactor⁽³⁾.

One of the key features of the RBHT study is to provide improved data and analysis such that the analytical models which are used to represent the physical phenomena for the two-phase dispersed flow film boiling region can be improved such that the calculated uncertainty is reduced. The experimental approach in the RBHT work is to separate the different phenomena, as best as possible, such that it is easier to develop component models for the more complex dispersed flow film boiling region. Toward this end, a RBHT test facility has been constructed to study reflood heat transfer in rod bundles to obtain data for improving the heat transfer model for Best-Estimate computer codes. A series of steady state droplet injection tests are to be conducted with liquid injection into a steady steam flow in the bundle. The droplet injection tests simulate the dispersed flow film boiling region above the quench front and can be performed without the additional complexities of the guench front behavior. The purpose of the droplet injectors is to introduce into a rod bundle a narrow spectrum of droplet sizes in a controlled manner to study the effects of droplets on the dispersed flow film boiling heat transfer. In order to determine the effectiveness of the injection system, a method of testing the injectors was developed. The method involves forcing water through the injection tubes and analyzing, both qualitatively and quantitatively, the ability of the injector to produce droplets of uniform size. This is done with the use of a laser-illuminated digital camera system known as VisiSizer.

Steam cooling tests will be performed to obtain the single-phase convective heat transfer within the rod bundle and to examine the single phase behavior of the spacer grids on the downstream heat transfer. Once the single phase heat transfer tests are complete, droplets will be injected into the steam flow using the injectors which are being tested and presented in this paper. The injectors are designed to provide a narrow droplet size distribution and velocity distribution such that the data will be easier to analyze and characterize. The objective will be to inject droplets of similar size to that observed in forced reflood experiments. The injected droplets will evaporate, shatter on spacer grids, increase the turbulence in the flow and de-superheat the vapor such that the wall heat flux will increase. The droplets will be injected over a range of sizes and mass flow rates in to steam flow at different Reynolds numbers. Data will be obtained on the drop size and distributions are different axial positions to determine the droplet shattering effects as well as evaporation. A mass and energy balance will be performed on the test bundle to obtain the droplet evaporation and the total interfacial heat transfer.

This paper described the design of the droplet injection system and the resulting drop sizes that are to be simulated in the RBHT experiments.

ROD BUNDLE HEAT TRANSFER FACILITY

The droplet injections system will be implemented in the RBHT facility having a 7 x 7 rod bundle as shown in Figure 1. The rod bundle consists of full electrically powered heater rods with a

diameter of 9.5 mm and a pitch of 12.60 mm. The bundle has 45 heater rods and four unheated corner rods, which are used to support the bundle grids as well as carry various thermocouples leads.

Figure 1 - An Overview and a Cross-section of the RBHT Rod Bundle

Six droplet injection tubes will be inserted into the bundle assembly as show in Figure 2, with the tube perpendicular to the heater rods. The tubes will penetrate both sides of the housing and will be supplied with water from both ends. The groupings of small holes in the tubes will be positioned such that droplets are injected into each of the 36 subchannels.

Figure 2 - A Schematic of the RBHT Droplet Injection System

The droplet injection system that was developed for use in the RBHT facility consists of small diameter tubes (2.36 mm) in which holes are drilled on one side. The holes can vary in size, pitch, and number. Three different injectors were employed in this study. Injector A incorporated 23 holes in a square pitch, as shown in Figure 3. The other two injectors, Injector B and Injector C, were both triangular pitch injectors with 22 and 23 holes, respectively. Injectors B and C are shown in Figures 4 and 5.

Figure 4. Hole Pattern and Pitch Configuration for Injector B (not to scale).

Figure 5. Hole Pattern and Pitch Configuration for Injector C (not to scale).

The droplet injectors were oriented in a horizontal manner, as they would be in the rod bundle, and water was pumped into the injector. The water exited the droplet holes as liquid jets which then broke up into a drop field who's size was characterized by the holes and spacing in the injector tube.

The method of analyzing the performance of the different droplet injection tubes involves the use of a system known as VisiSizer^(4,5), which is capable of real-time analysis of droplet size and velocity distributions. The system consists of a high-resolution digital camera, infrared laser, data analysis software, and associated computer and control equipment.

The camera, a Kodak Megaplus[™] digital camera, has a resolution of over 1.0 megapixels. The laser system incorporates an infrared beam of wavelength 805 nm and is capable of pulsing at frequencies up to 1000 Hz. The laser can also pulse twice during a single camera frame to produce a double image used in determining velocity information. The beam of the laser is scattered with an opaque sheet of plastic to produce uniform background lighting for imaging. The system captures high-resolution images of the injection streams and analyzes the images at a rate of about 7 frames per second, identifying droplets as dark images in front of the laser-illuminated scattering sheet. The diameter of each droplet is determined automatically by referencing the number of dark pixels in the droplet image to the pixel area of a calibration circle. A general setup of the system is shown in Figure 6.

Figure 6. General Setup of the VisiSizer System for Drop Size and Velocity Measurement

A variety of user-defined parameters control the counting of the droplets, including focus rejection and sphericity criteria. Focus rejection is determined by considering the sharpness of a droplet image, done by quantifying the intensity gradient at the out edge of the droplet⁽⁵⁾. In addition to this, the droplet analysis duration can be controlled by elapsed time, number of frames, or number of droplets counted. The software also calculates real-time statistics such as mean and sauter-mean diameters as well as displays the diameter distribution and, if applicable, the velocity distribution. Velocity is determined by double-pulsing the laser to capture the motion of a droplet. Analysis of the velocity is done automatically using criteria such as angle of motion, velocity range, and size matching. The VisiSizer System has been thoroughly tested to characterize the system uncertainties and biases and is highly reliable and simple to set up and calibrate.

RESULTS AND DISCUSSION

Liquid jet breakup and drop formation were studied in the injection systems using the VisiSizer system. Qualitative and quantitative data for the drop size distribution were obtained. Images of the injector were taken with the digital camera to show the details of the breakup of the water jets and droplet diameter distributions were taken about 0.127 m above the point of injection at a liquid volumetric flowrate of about 10 cm³/sec.

The results show that the Injector A, with the square pitch, does not provide uniform water jets. The streams from the injectors combine and cause much larger jets to emerge, as show in Figure 7. The result is large droplets shown in Figure 8 and a size distribution which is spread over a wide range of drop sizes as shown in Figure 9. The distribution shows clearly the result of the combined streams seen in Figure 7. The mean diameter for the droplets from Injector A is 1.6 mm. This was not the desired droplet size spectrum for use in the RBHT facility.

Injectors B and C behave in a very different way, as can be seen in Figures 10 through 15. Both injectors were able to produce streams that did not combine (or combined very little) and created a much more uniform distribution of size as seen qualitatively in Injectors B and C are 0.619 mm and 0.711 mm respectively. The mean diameters from these two injectors support the assumption that droplets formed from the injectors are about twice the size of the holes from which they are ejected.

Drop formation from an orifice has been discussed by Wallis (6) and is similar to bubble formation. The radius of a bubble formed by blowing through a small orifice at low flow rates was given by Kutateladze and Strukovich⁽⁷⁾ as

$$R_b = 1.0 \left[\frac{\sigma R_o}{g \left(\rho_f - \rho_8 \right)} \right]^{1/3} \tag{1}$$

where R_o is the radius of the orifice, g the gravitational acceleration, σ the surface tension, ρ_f the liquid density, and ρ_g the gas density. The above expression was obtained from experimental data. As the gas velocity is increased, individual bubbles are no longer formed and the gas leaves the orifice as a jet which then breaks into individual bubbles further down stream of the orifice⁽⁷⁾. The condition given for the formation of the gas jet is

$$v_{g} > \frac{1.25 \left[g \sigma (\rho_{f} - \rho_{f}) \right]^{1/4}}{\sqrt{\rho_{g}}} \left[\frac{\sigma}{g (\rho_{f} - \rho_{g}) R_{o}^{2}} \right]^{1/2}$$
(2)

where v_{p} is the gas velocity through the orifice, of size R_{p} .

A similar analogy can be made for liquid droplets formed from orifices. As the liquid velocity through the orifice is increased, liquid jets issue from the orifice as seen in Figure 10 which then break into individual droplets which have a diameter of approximately

$$D_d \cong 1.9 D_o$$

If the jet velocity would be increased further, the large relative velocity of the liquid jet (relative to

(3)

its surroundings) leads to severe instability and the liquid is atomized into very fine droplets. The drop size for the flow through an orifice of size 0.343 mm diameter should be approximately 0.650 mm as given by Wallis. The much larger size seen is due to the merging of the liquid stream such that the drop size is not indicative of the orifice opening in the injector tube.

The drop sizes for the different injectors, predicted by Equation 3, is shown on the distribution plots in Figures 9, 12, and 15. As Figures 12 and 15 indicate, the drop size from Equation 3 represents approximately the mean size of the drip distribution; however, there is still a significant spread of the drop diameters.

Note that during a reflood transient, the entrained droplets not only provide a major source of interfacial heat transfer, but also may enhance the turbulence level in the vapor flow, thus directly affecting the wall heat transfer. Thus in the droplet injection experiments to be performed in the RBHT facility, it is important to simulate the mean drop size and the drop distribution. In view of this, the drop field produced by Injector A is not acceptable not only because of the fact that the mean drop size is much too large, but also due to the peculiar drop size distribution. As can be seen from Figure 9, there are two unequal peaks in the drop field that does not simulate the drop field observed in the bundle of a reactor assembly. On the other hand, the drop fields produced by Injectors B and C are much better approximations to the actual one.

The droplet size distributions from Injectors B and C can be compared with the drop size distributions taken from the FLECHT-SEASET⁽⁸⁾ series of tests for reflood conditions in a 17x17 rod bundle assembly. Droplet images were captured using high-speed black-and-white motion picture film taken through the housing windows for some test runs. An example of the droplet distribution obtained can be seen in Figure 16.

It can be seen from Figure 15 and 16 that the distributions are very similar in that they have a maximum that occurs between 0.6 and 0.8 mm and have similar distributions except that the FLECHT-SEASET distribution has a longer tail at larger drop sizes.

The drop distributions in Figures 15 and 16 can be normalized on their peak frequency values and compared. Figure 17 shows the comparison of the two normalized distributions. As this figure indicates, the droplet injector will provide a more uniform distribution of drops over the range from 1.75 D_0 to 2.25 D_0 with the ideal value being about 1.9 D_0 . The FLECHT-SEASET distribution shows that a wider range of drops exist for the true reflood process.

CONCLUSIONS

The drop field produced by the injector tubes developed in this study can be used in the RBHT facility to investigate the effects of liquid droplets on the steam flow and the resulting dispersed flow film boiling heat transfer in a rod bundle under reflood conditions. By performing experiments over a range of liquid flows and vapor flows, and using the measurements on the RBHT facility⁽⁹⁾, the amount of evaporation can be measured such that the interfacial heat transfer can be calculated. Also, the laser illuminated camera system can be used at different elevations to obtain the drop size, velocities, and distributions. This data can lead to determining the interfacial heat transfer and the effects of droplet shattering caused by the spacer grids. In addition, the droplet injection experiments can also be modeled using COBRA-TF⁽¹⁰⁾, in which the drops can be simulated as a source of liquid.

ACKNOWLEDGEMENTS

This work was supported by the U.S. Nuclear Regulatory Commission under Contract No. NRC-04-98-041.

REFERENCES

- 1. Clare, A. J., et al., "Droplet Dynamics and Heat Transfer in Dispersed Two-Phase Flow," CONF-8410331, pp 51-62, 1985.
- 2. Hochreiter, L. E., et al., "Application of PWR LOCA Margin with the Revised Appendix K Rule," Nuclear Engineering and Design, Vol. 132, pp 437-447, 1992.
- 3. Andreani, M. and G. Yadigaroglu, "Prediction Methods for Dispersed Flow Film Boiling," Int. J. Multiphase Flow, Vol. 20, pp. 1-51, 1994.
- 4. Oxford Lasers, "HSI1000 Fast Illumination System," Operation Manual, Issue 2, Rev. 1, Oxford Lasers, Ltd., 1997.
- 5. Todd, Donald R., "Characterization of the VisiSizer Particle/Drop Sizing System," MS Thesis, Pennsylvania State University, Aug. 1999.
- 6. Wallis, G. B., "One Dimensional Two-Phase Flow," McGraw Hill Book Co., pg 376, 1969.
- 7. Kutateladge, S. S., and M. A.Styrikovich, "Hydraulics of Gas-Liquid Systems," Moscow, Wright Field Trans. F-TS-9814/V, 1958.
- 8. Lee, N., et. Al., "PWR FLECHT SEASET Unblocked Bundle, Forced and Gravity Reflood Task Data Evaluation and Analysis Report," NUREG/CR-2256, Feb. 1982.
- Hochreiter, L. E., et. Al., "Dispersed Flow Heat Transfer Under Reflood Conditions in a 49 Rod Bundle: Test Plan and Design - Results from Tasks 1-1 0," NRC-04-98-041 Contract Report 1, Sept. 1998.
- 10. Park, C. Y., Hochreiter, L. E., Kelly, J. M., and Kohrt, R. J., "Analysis of FLECHT- SEASET 163 Rod Bundle Data using COBRA-TF," NUREG-CR-4166, Jan. 1986.

Figure 8. Droplets from Injector A.

Figure 9. Diameter Distribution of Droplets from Injector A.

Figure 12. Diameter Distribution of Droplets from Injector B.

Figure 17. Comparison of Injector Distribution to FLECHT-SEASET Distribution.

APPENDIX E. DETAILED ENGINEERING DRAWINGS FOR THE FLOW HOUSING AND ROD BUNDLE INSTRUMENTATION

- E.1 Flow Housing detailed mechanical drawing. Drawing E114244
- E.2 Test Section detailed schematic showing the DP cell elevations. Drawing E118338
- E.3 Test Section detailed schematic showing the Spacer Grid Instrumentation. Drawing E118340
- E.4 Test Section detailed schematic showing the Traverse Steam Probe Rake and Flow Housing Wall Thermocouple locations. Drawing E118341
- E.5 Overview schematic showing all the Test Section Instrumentation. Drawing E115073
- NOTE: Electronic images of these drawings are included in the CD listed in Appendix G.

,

APPENDIX F. INSTRUMENTATION ERROR ANALYSIS

The instrumentation error associated with the data from RBHT test series can be derived either from equipment manufacturers' specifications or system calibration data. Component calibrations are performed to verify that the manufacturers' specifications are met, and these manufacturers' specifications are used to compute the error estimate for the data path. System calibrations are performed when component calibrations are not expedient or when an accuracy improvement could be accomplished with a system calibration. The system calibration data are used to compute an estimate of error for the system response, and calibration data points. The total system error from a system calibration is a function of both system response error and calibration data error.

In all cases of error estimate, the standard deviation has been computed and presented as the most probable error. The manufacturer-specified error is the maximum possible error. The standard deviation error is calculated from the maximum error by the following:

$$\rho^2 = \sum_{i=1}^n \left(\frac{E_i^2}{n}\right) \tag{F-1}$$

where

data path standard deviation ρ

 E_i component i maximum error

number of sources of error n

When a system calibration is performed, the standard deviation from the calibration data and that from the calibration equipment can be combined by the following equation to produce the best estimate of error:

$$\rho = \sqrt{E_d^2 + E_c^2} \tag{F-2}$$

where

 E_d calibration data standard deviation E_c calibration equipment standard deviation

The calibration data standard deviation is a measure of the error involved in fitting the calibration data. That is.

$$E_{d} = \left(\frac{\sum_{i=1}^{n} (Y_{i} - Y_{f})^{2}}{n}\right)^{1/2}$$

where

calibration point Y

Yf predicted output from the calibration curve (F-3)

n number of calibration points

The calibration equipment standard deviation is a measure of the absolute error of the calibration point. If the calibration point in the above equation is calculated from an equation of the form

$$Y = x_1 \cdot x_2 \cdot x_3 \tag{F-4}$$

then

$$\left(\frac{\sigma_y}{y}\right)^2 = \sum_{i=1}^n \left(\frac{\sigma_{x_i}}{x_i}\right)^2 \tag{F-5}$$

and

$$E_c = \sqrt{\sigma_y^2} \tag{F-6}$$

The data path has been broken down into three parts called sensor, conditioner, and readout. The sensor is the device whose electrical output is proportional to a physical quantity (temperature, pressure, flow, power). The conditioner is a device which matches the electrical output of the sensor to the input requirements of the readout device. The readout device measures and records the electrical value of the signal from the conditioner. This recorded electrical value is subsequently used to compute the physical quantity it represents. The errors due to the transmission wire errors are very small (± 0.001 percent) in comparison to the element errors and are considered negligible.

The error values for sensor, conditioning, and readout are the manufacturers' specifications in engineering units. These numbers are used to compute the most probable error, as previously described. Where systems calibrations are performed, the equipment calibration data provide the standard deviation and maximum error as computed from the calibration data points in fitting the points to a first-order polynomial. The calibration point standard deviation is computed using the method described above. The calibration point maximum error occurs simultaneously in each component of the calibration equation. The overall system standard deviation may then be calculated using equation F-2.

The calculated Total Probable errors using equation F-2 for each instrumentation channel are shown in the following tables:

- Table F.1Temperature measurements including the heater rods, grid fluid, grid walls,
support rods, steam probe rakes, flow housing walls, flow housing insulation,
vessel and piping walls, and quartz windows thermocouples.
- Table F.2Differential pressure cells (DP's), static pressure transducers (P's), and vesselliquid label transducers.
- Table F.3
 Inlet Mass and exhaust steam flows transmitters (FM).

- Table F.4
 Steam probe rakes linear position transmitter.
- Table F.5Heater Rod Bundle input voltage (V), amperage (Amps), and power (W)
measurements.

		HISTRUMENT			DATA ACQUISITION SYSTEM					TOTAL
	BIFUT SENSOR	rwor .	EARCA 1 LIIC		:0	AUTO- RANGLAS 10525 TEMPERATU REINANCE	REF JCIN MEAS	ISO REP GRADELIT	tenp range Por eeror Inmeers	TOTAL PROBABLE LINBOR
CHURDEL NO.	TYPEKTC						±°C		*	1.0
			÷		8.20	0.08	061	0 233	0 YO 375	1.15
140, 90, 102, 192 148 111,111	HEATER ROD'S	10 - 1871 °C	1 11	1	0.25	0.16	0.01	0.79	375 TO 600	1.17
249, 211-213				1	0.40	0.27	0.01	0 20	600 TO 1371	1 23
at the upper protocold and middless			•	1	0 20	0.09	0.01	010	0 TO 375	1.18
249-276.278-279	GRID WALL & FLUID	10 - 1371 °C	- 1,11	2	0.75	0,18	0.01	018	375 YO 600	1,17
			: • • • • • • • • • • • • • • • • • • •		0.40	0,27	0.01	0.20	603 70 1371	1.23
		-			8,20	0.01	0.01	029	0 TO 375	1,15
280 THRU 295	SUPPORT RODS	10-1371 °C	1.11		0.25	0.18	0.01	020	375 TO 60	1.17
· · · · · · · · · · · · · · · · · · ·		-		Anna in the Westman W. South and Mill	0.40	0.27	0.01	029	600 TO 1371	123
306 316 114.994					8.20	0.03	6.01	0.29	010375	114
400 9 49, 914 944, 400 405	ST. PROBE RAKES	10-1371 °C	1.11	4	0.25	0.18	0.81	0.29	175 TO 800	1.17
		n Navislana i scrada Handaisan - a sa		1	0.40	0.27	0.61	0.29	600 TO 1371	1 23
		a second a s			0.20	0.08	0.01	0 20	0 TO 375	1.15
333 11550 435 6	FLOW HOUSING VIALL	10 - 1971 °C	1.11		0.25	0.18	0.01	0.29	375 10 600	1.17
\$250					0.40	0.27	0,01	0.29	520 TO 1371	1 29
97, 184, 277, 450	INSULATION	10 - 1371 *C	1.11	Contraction of the second second second	0 20	8,03	0,81	0.20	010 315	1.15
385 THRU 363	L. FLEN, FLA WALL	10 - 1971 °C	1.11		\$ 20	0.06	0.01	0.20	0 TO 375	1.15
389 291 399	U. FLEN FLAVEALL	10 - 1371 °C	1.11	1	0 20	0,08	0.01	0.20	0 TO 375	1.15
359 401	SUPPLY TANK FLED	10 - 1971 °C	1.11	and the second sec	0 20	0.68	0.01	0.20	010375	1.15
407 THRU 410	SUP LINE FL & WALL	10 - 1371 °C	1.11	A A A A A A A A A A A A A A A A A A A	0 20	0.08	0.01	0,20	0 TO 375	1.15
418 THRU 424	ISM LO) CARRYOVER TANKS FL. & WALL	10 - 1371 °C	T.11		0 20	0.08	0.01	0.80	6 TO 375	1.15
385, 404, 435, 418, 437	PRESS. OSC DALIP TANK FL. & WALL	10 - 1371 °C	1.11 1.11	an a	0 20	8 6 8	001	0.20	0 TO 175	1,15
410 THRU 443	ELHAUSTLINE	10 · 1371 'C	1.11		0 20	0.06	0.01	0.10	0 TO 375	1.15
146, 161	ROD BUNDLE INLEY	10 - 1371 °C	1.11		Q 20	008	001	0 20	410 375	1.15
414-415	STUSUP FL & WALL	10 - 1971 °C	1.11		0 20	909	0 ČI	029	010375	1.15
403 471-432	STEAN SEP	10 - 1371 °C	1.11		0 20	60.08	0Q1	020	010115	1.1\$
· Allen Birahli (Berana)	ALLENT WALLSTAND	10 - 1371 *C	• • • •		0.20	0.08	061	0 263	010375	1.15
449-497	COMIC WOUVERS	10 - 1371 *C		[8.28	0.100	001	0 100	375 TO 600	1.17
		THE REPORT) 19. – 2. – 19. gadara	and the states of the		appeared and appeared	11 2 4 3	Procession and	antest manage	189 - 18 6 - 1 99
CHANGLEL HO.	THE BLASTOR TYPE 5000		1.0			图。如 4. G 编译	t V			57. 8. 1 4 (
491.517	TEAM FILL REF THEREISTORS	.10.65°C	601	i	1			Į .	-101045	

Table F.1 Temperature Measurements

 \sim

F-4

۰.

Table F.2 Pressure Measurements

					DAYLAGEDERI			TATEN.	LOT H	
	SIRVIT SUNION		Account addition to the Di	TOTAL PREFORMATCE LOISE COM	LINEAATTY AGATTA NE THERE TUNIDE	AUTO RANACIAS A B.CTN VCL. TAOKS RANACE	RCPORTUET EREICH	kons	Martané Bangar Kar Garan Mangaran	TOTAL Incomale Incomale
CONSTRACT ISS	(C) DEFERRING FUERSUME	antid	1 101164	A ROUTER	A AMPILO	C Hause	Aces 16	LANSING	A YANK	e maalt.o
307, 310, 374 374, 378, 374, 383	A CON HOURNO	STO 182 00 1920	0.05	011		6.005 6.001	100	6 001	0 24 1 00	610
144. 272, 377, 379	FLOW HOUSING	4 TO 101 8-100 100	6.06	d. 18	4.014	0.007	4.641	6.001		017
and a first street of	A.ON HOUST	470 127 mm HQ2	Q 10	8.19	0.054 0.011	100		84004 6.8011	021 104	11
305	R.OW HOLENO	8 TO UE 4 per 120	0.11	6.0	2000 2001	9 V/9 9 541	0.001 0.000	4055 101)	-12	0 10 0 10
365	FLOW HOUSING	6 TO 177.8 mm 103	0.13	6.27	0.024	0.011	0.002	0.000 0.0016	0.18 150	0.20 0.30
378, 381	HOW HOUSE	10 200 2 mm 1/20	0.15	1.30	0.007	0.0M	0.000	8.404 8.4018	100	
385	PLOW HOUSING	10 173 279 4 mm H20	1231	9.42	0,036	0475	0.012	0.024	1,00	<u></u>
3054 3033 3552	FLOW HOLERAS	-0 TO 304 % mm #(20	423	BL48	Don	0.017 0.017	0:013	6129 6129	1.00	0.52
383, 383	FLOW HOUSING	-9 TO 300.2 mm 700	0.25	9.50	0.048	Ct.089	0.014	0 029	1.00	0.95
362	PLOW HOUSING	0 TO 3657.0 mm H20	2.54	8.4	0 123	0.247 0.987	0.153 0.153	0.194	0.25 1.00	6.24
220	UPPER NORM	0 TO \$11.15 mm H20-	633	0 <i>A</i> 7	0.041	0.021 2.024	0.003 0.043	0.000 0.027	025	05
425	U PLEM-ACC BP	0 TO 127 maters	0.10	0.19	0.004 9.017	0.009 0.034	0.001 8.005	8 204 Guni	0.25 1.00	0.71 61.22
	UP 09	001 ann 813,515 ma 100	0.12	6.33	-0.004 -0.021	0.0m 0.0m	6.002 5.007	6.005 6.013	1 24	671
(1)	ACC-DOLPPHE OP	9 TO 1020 mm. 120	4.20	8.55	0 214 0 597	1,74	8.000 0.254	6 197 6 562	0:25 1990	10.68 10.44
4/25	BLP THKLML	0 TC 342 \$ 1000 ADD	2.27	453		0.6HL	000	9.251	027 6 00	6.19
4478	LOCTLVA	0 TO 1574.5 mm 129	1.158	12.345	0515	0,120	0.017	0.124	0 20 1 00	109
427	BMICT LVA	0 10 440 30 mm 100	0.67	12.34 	041	9.54	1010 ,0431		110	150
ć i	SY SEP OR TICLUL	0 TO NEELT ##> HOD	125	7.60	6236	14				
CHANGER HO.	PP PRESSURE TRUSCALCER	Research Research				e CPa	a ipu			
202 405, 652 444	UP 2557 #A	0 TO 411.7 10%	9.31	962	0114 0136	0.112	9017		1.02	0.61 0.7
408	BUP THE PRESS	6 TO 983.5 APa	e 4	134	6027 9992	0.047 0.109	0.057 0.019	0.011 0.050	- 10	14
411	aup Long Oracos	0 12 344.7 MPs	0.128	6.51	0.012 0.047	6447 0.045	0.004 0.014		109	014 019
430	BT SUMACC DP	0 TO 34549+	8408	0.05	0.501	0.002	600.0	6,001	100	0.06

(1) FORMORE Representative, and Stability (2) Includes: Accourtecy, Temperature, and Line Provision affacts

Table F.3 Flow Measurements

APUT BLACK APUT BL	chuise ko sti	VELIGE HEAV TEASEBUCH The Server Pu	eftets 8107.1 artitum	8 10 ⁷ 8 200	IN INCON	VOLTACE HUNCE KOTACIE \$500 6.001	Yarust ersat refnit 400 Lac	epitre 970 850	10000 1000 1000 1000	1721 1721 123 120	():52A
Information Matrix Construct (i) Matrix Construct (inita idi	VELAN FOR TAXABLES	- das	1177 0	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	HOLINGE RUKZE	ration Brist	an tra	1970		CHISCA I NAME
Image: Constraint state Image: Constate Image: Constraint state Im			100 - 173			NO TRUE	A state				HSA
NUMBER NO.000000000000000000000000000000000000	2	NYR BACK	CH.BIATION	1151571	机的新新能	资 本中的 教育	-1000 m	ELGOD -	Hate	Sec.	PORT
MARCINE MARCINE <t< td=""><td></td><td></td><td>67.11</td><td>ANTERNA</td><td>FIFCAWARD</td><td>ANC-HUTY</td><td>AUT. RUKRO</td><td></td><td></td><td>WATARE .</td><td>701%</td></t<>			67.11	ANTERNA	FIFCAWARD	ANC-HUTY	AUT. RUKRO			WATARE .	701 %
IPULI ISABOR IPULI CALIFICITI CALIFIC					A A A A A A A A A A A A A A A A A A A	I ALLENCH!	24-33 1 11	Lossian.			- TATAL
MOLE MOLE <th< td=""><td>41</td><td>ORCPINIFI</td><td>0 TO 45 gium</td><td>6,00036</td><td></td><td>102 1014</td><td>9400 9912</td><td>- 6492 6492</td><td>9.301 6.004</td><td>025 1/30</td><td>1004 4.54</td></th<>	41	ORCPINIFI	0 TO 45 gium	6,00036		102 1014	9400 9912	- 6492 6492	9.301 6.004	025 1/30	1004 4.54
ACCUENCY ALGO- NACESCA CONSTRUCT ALGO- RACESCA CONSTRUCT ALGO- ACCUENCY ALGO- RACESCA CONSTRUCT ALGO- ACCUENCY ALGO- ALG	41	SURLY LIE FN	0 10 1247 gass	\$303¥		0.159	Ţ.	N/2	414	100	1.105
ACUERCY LACAGET LACAGE	CHURE NO.	WARSTOON TRUCK WARS		2 tom		174m	Carline (*)	2 Class		ENERS.	2 (341
		erut isika r				SCF LINEAGITE LINEAGITE SUBJECTION FOR COLOR	AUGO RUGISO LAIPH VOLINGE RVGE	ich offait Lince		E CE	TUTA Produli Gran

4

1

includes effects of Repeatebility, Linuxity, and Hystorian.
 Includes effects of Repeatebility, Society, Antoent Temperature, EtilRPI, Mixin Moine Repoten, and the Power Supply.

Table	F.4	Position	Measurements

	Q1-114	ANE RUSIN		4 6 64	1	副	61 34	1(0)		109	all
	MALCHAUM			8 / 55.		國	124	1001	<u> 1441</u>	12	049
	AUDICED									1 HA	
1							\mathbb{R}^{+}				
						W.M.	WW			MANERS	
			PACKACT		÷e					BAXA	FROM
				Mm2194.		UERIL			HUISE	Neat	A PURE
							A LLA			调构	
				FACTOR						alla spine References Prices and sta	
				Street Press States	12. 12. 14 4. 24.	St. 4. 14. 18. 3	CARDING CO. S.	Section States			

ταία **F-6** τοτα.

Table F.5 Power Supply Measurements

		NS IN	miller f	机关于法则			oblet out			INTAL
		CALIFATICA)	SOLATOR KODSLOT LURESHIT		sce UAE/RTM ALSINA VOLTUGE RANGE	NIO HAGIA HAGIA HAGIA HAGIA HAGI	KOP GEFREST BRICOR	wa	VOLTAGE Range for Brech Numbers	TOTAL PROBABLE ERROR
CINNIE NO.	VOLTAGE TRANSDUCER	-lla			iel	ent.	14	102	e Vide	and a
397	ELECTRICAL SYSTEM	0 10 10 10	981		0.21 1,59	0.67 270	118/19 118/1	110,49 661,63	0.15	10,63 10,49
							COT LINK			I INTA
	HPUT COISCA	ana Carannan	SIGNT ACCENCT ACTIVITY		ISP LIKE AS IT ADDIN KOLINGE INVISE	NUTCH NUTCH NULTROS NULTROS NULTROS	SCP OFFICE IREOR	.	VOLTAGE Range Pole United Numbera	TOTAL PROBABLE EPIRCE
CHANDEL HO.	CLARE OF TRANSPACEA	Actes	14		••	6 8		14	1/001	5.5 1 1
398	CLECTRICAL OVETEM	e to 1999 Anya	· B	• 14	0.00 1.62		6.18 0.83	0.47 1.30	0.24	
			si u en es							
	HPVT CENSOR	STAN (SALASTATION)	GARYOLTS ACCURACT (RUNARA)	-MANAPS ACUPACY ACUPACY ACUPACY						TOTAL PROBABLE EIRROR
OWNER HO.	DEPTED POWER (PA)	lines -	. in	in in			ana sa			in
567 * 588	ELECTRICAL SYSTEM	0 TO 750 Without	133	1200						1290.35

F-7

.

•

APPENDIX G. RBHT TEST FACILITY COMPONENTS ENGINEERING DRAWINGS LIST

DRAWING NUMBER

TITLE

D115346	Drawing Tree
E115348 & L115345	Building Arrangement
D114345	Test Facility Schematic
E115073	Test Section Instrumentation
D114369	Steam Separator Drain Tank
D1144371	Small Carryover Tank
E114370	Large Carryover Tank
E115016	Steam Separator Tank
D114369	Steam Separator Drain Tank
D115347	Skirt, Steam Separator Tank
E115002	Water Supply Tank
E114343	Pressure Oscillation Damping Tank
E115815	Mezzanine Framework
D115587	Water Inlet Piping
D115597	Exhaust Line Piping
D115640	Steam By-pass Line
R114288 & L114287	Flow Housing Assembly
E114243	Housing Assembly
E114244	Weldment, Test Section
C114245	Pressure Gasket
C114246	Window Flange
C114247	Window

G-1

C114248	Window Stud Fixture
D114249	Flange Mod. Bottom
D114279	Flange Mod. Top
C114255	Cushion Gasket
B114306	Belleville Washer
E114346	Window Test Fixture
E114281 & L114280	Upper Plenum Assembly
C114282	Flange Mod.
E114289	Ground Plate
D114290	Housing Extension
D114291	Exhaust Baffle
E114292	Lower Plenum Assembly
D114293	Lower Plenum Flow Baffle
D114294	Seal Plate, Lower Plenum
C114295	Seal Sleeve Retaining Plate
C114296	Seal Sleeve
D114297	G10 Isolation Plate
C114298	Low Melt Reservoir
D114299	Reservoir Connector Plate
D114366	Seal Sleeve Extractor
E115073	Test Section Instrumentation
D118339	Droplet Injection System
E118338	Flow Housing Differential Pressure Instrumentation
E118340	Heater Rod Bundle Grid Temperature Instrumentation
D118337	Automatic Traverse, Mechanism
	G-2

·

4

C115132	Drain Tube
D114301	Unheated Rod
E114302	Heater Rod
D115075	Steam Probe Rake Assembly
D115076	Steam Probe Rake Tube
C115077	Steam Probe Rake Mounting
C118336	Traversing Steam Probe
D115261 & L115260	Grid Assembly
D115262	Outer Grid "A"
D115263	Outer Grid "B"
D115264	Outer Grid "C"
D115265	Outer Grid "D"
D115266	Inner Grid "A"
D115267	Inner Grid "B"
D115268	Inner Grid "C"
D115269	Inner Grid "D"

.

.

APPENDIX H. THERMOPHYSICAL PROPERTIES OF ONE BORON NITRIDE SAMPLE AND THREE ROD SAMPLES

TPRL 2237

Thermophysical Properties of One Boron Nitride Sample and Three Rod Samples

A Report to Penn State University

by.

J. Gembarovic, H. Groot, J. Ferrier and D.L. Taylor

August 1999

TPRL, Inc. 2595 Yeager Road West Lafayette, IN 47906 Phone: 765-463-1581 Fax: 765-463-5235 WWW.TPRL.COM

TPRL 2237

Thermophysical Properties of One Boron Nitride Sample and Three Rod Samples

A Report to Penn State University

þy

J. Gembarovic, H. Groot, J. Ferrier and DL. Taylor

August 1999

H-2

•

TABLE OF CONTENTS

n	NTRODUCTION 1
R	ESULTS AND DISCUSSION
	List of Tables
L	Sample Dimensions, Masses and Density Values
2	Specific Heat Results
3	Thermal Diffusivity Results
4	Thermal Conductivity Calculations
5.	Thermal Expansion Results
6.	Mean Coefficient of Expansion
7.	Density Results
8	Hemispherical Total Emissivity
	List of Figures
1.	Specific Heat
2	Thermal Diffusivity
3	Thermal Conductivity
4	Thermal Expansion
5.	Mean CTE
6	Density vs. Temperature
7.	Hemispherical Total Emissivity

Thermophysical Properties of One Boron Nitride Sample and Three Rod Samples

INTRODUCTION

A sample of AXOS Grade Boron Nitride sample (identified as BN) was submitted for thermophysical property testing. Three rod samples, identified as 0-12, 36-48, and 72-84, were also submitted for the hemispherical total emissivity measurement. Thermal diffusivity (α) was measured using the laser flash technique. Bulk density (d) values were calculated from the sample's geometries and masses. Specific heat (C_p) was measured using differential scanning calorimeters and thermal conductivity (λ) values were calculated as a product of the above quantities, i.e. $\lambda = \alpha C_p d$. Thermal expansion was measured using a dual push-rod dilatometer. Hemispherical total emissivity (ϵ_H) was measured using the heat balance method.

Thermal diffusivity is determined using the laser flash diffusivity method. In the flash method, the front face of a small disc-shaped sample is subjected to a short laser burst and the resulting rear face temperature rise is recorded and analyzed. A highly developed apparatus exists at TPRL and we have been involved in an extensive program to evaluate the technique and broaden its uses. The apparatus consists of a Korad K2 laser, a high vacuum system including a bell jar with windows for viewing the sample, a tantalum or stainless steel tube heater surrounding a sample holding assembly, a thermocouple or an i.r. detector, appropriate biasing circuits, amplifiers, A/D converters, crystal clocks and a microcomputer based digital data acquisition system capable of accurately taking data in the 40 microsecond and longer time domain. The computer controls the experiment, collects the data, calculates the results and compares the raw data with the theoretical model.

Specific heat is measured using a standard Perkin-Elmer Model DSC-2 Differential Scanning Calorimeter with sapphire as the reference material. The standard and sample were subjected to the same heat flux as a blank and the differential powers required to heat the sample and standard at the same rate were determined using the digital data acquisition system. From the masses of the sapphire standard and sample, the differential power, and the known specific heat of sapphire, the specific heat of the sample is computed. The experimental data are visually displayed as the experiment progresses. All measured quantities are directly traceable to NIST standards. A Netzsch model 404 differential scanning calorimeter (DSC) is used to measure specific heats from 323 to 1673°K.

A dual push-rod dilatometer (Theta Dilatronics II), is used to measure linear thermal expansion

from 100 to 1800K. The differential expansion between the sample and a known standard reference material is measured as a function of temperature. The expansion of the sample is computed from this differential expansion and the expansion of the standard. The measurements are made under computer control and linear expansion is calculated at preselected temperature intervals. The expansion can be monitored with the graphics terminal during the measurement process. Six standard reference materials for expansion were obtained from NBS and these include materials with low, moderate and large expansions. For the purposes of calibration and checkout, one NBS standard is measured against another NBS standard.

The mean CTE at a temperature T is calculated by dividing the change in length in the sample by the change in the temperature, i.e.

$$\alpha_{max} = \frac{L_T - L_0}{T - T_0}$$

with T_o being the reference temperature (normally 20°C or 70°F).

The hemispherical total emissivity is measured using a heat balance method (ASTM 835.04.06). The sample, in the form of a long rod or strip, is mounted between two electrodes. This assembly is contained in a high vacuum system equipped with long vertical optical windows. The sample is heated directly by passing DC current through it. The power supplies are highly regulated and the selected equilibrium temperatures are easily attained.

The sample's ends may be notched to compensate for heat losses to the end clamps. The power dissipated over a small central region of the specimen is determined as the voltage times current (F) and the temperature (T) of the central region of the specimen is measured. When measurements are made at relativity low temperatures, the samples are surrounded by a liquid nitrogen cooled copper shield, the interior of which is painted black. Using the Stefan-Boltzmann equation, the power generated in the central region is equated to the radiative heat transfer to the surroundings and the hemispherical total emissivity (e_n) calculated:

$$\epsilon_{H} = \frac{VI}{PL \sigma \left(T^{4} - T_{o}^{4}\right)}$$

2

where P is the perimeter, L is the distance between voltage probes, σ is the Stefan-Boltzmann constant and T_{α} is the is the temperature of the surroundings.

RESULTS AND DISCUSSION

Thermal diffusivity Boron Nitride (BN) sample geometry, mass and bulk density value at room temperature are given in Table 1. Specific heat results for the sample are given in Table 2 and are plotted in Figure 1. Specific heat values increase with increasing temperature in the usual fashion for ceramics.

Thermal diffusivity results are given in Table 3 and Figure 2. Thermal conductivity values are calculated in Table 4 and the results are plotted in Figure 3. Density values were assumed to be constant in the calculations, in accordance with usual practice.

The thermal expansion results for the BN sample are plotted in Figure 4 and listed in Table 5. The mean CTE was calculated from the data and the results are given in Figure 5 and Table 6. The density as a function of temperature was calculated from the thermal expansion (we have assumed that the sample is isotropic and its thermal expansion in all three directions is the same) and the results are shown in Figure 6 and listed in Table 7.

Hemispherical total emissivity results for the three rod samples are given in Table 8 and Figure 7. The samples were measured in heating and cooling cycle. Sample 72-84 has the highest emissivity and the differences between heating (H) and cooling (C) part are relatively smallest. Sample 0-12 has relatively lowest emissivity values (only about 2/3 of 72-84 value at 550 °C for the heating part) and the cooling part, which remains relatively high, shows that irreversible changes of the sample surface take place within the measured temperature range.

3
Sample Dimensions, Masses and Density Values

Sample	Thickness	Diameter	Mass	Density
(No.)	(cm)	(cm)	(gm)	(gns cn)
BN	0.2154	1.3044	0.55204	1.919

TABLE 2

Specific Heat Results

Sampla	Temperature	Specific Heat
Description	(C)	(W-s/gm-X)
BN	23.0	0.8530
	50.0	3.9220
	100.0	1.0340
	153.9	1.1350
	200.0	1.2260
	250.0	1.3050
	300.0	1.3773
	350.0	1.4410
	430.0	1.5000
	450.0	1.5510
	500.0	1.5940
	550.0	1.5370
	500.0	1,6700
	650.0	1.7020
	769.0	1.7310
	750.0	1.7590
	800.0	1.7860
	650.0	1,8090
	900.0	1.8300
	950.0	1.8510
	1000.0	1.8590
	1050.0	1.8380
	1100.0	1,9030

,

Thermal Diffusivity Results

Sample	Temperature	Diffusivity
Description	(C)	$(cm^2 sec^{-1})$
BN	23.0	0.78294
BN	100.0	0.50900
BN	200.0	0.37924
BN	300.0	0.29111
BN	400.0	0.24651
BN	500.0	0.21795
BN	600.0	0.19102
BN	700.0	0.16955
BN	800.0	0.15035
BN	900.0	0.13588
BN	1000.0	0.12716
BN	1100.0	0.11805

Thermal Conductivity Calculations

Ś

Samp 1 e	Tamp.	Density	Specific Heat	Diffusivity	Conduct.	Conduct	Temp
(No.)	(C)	(gua cm ^{- 3}) (w-a-gm ⁻¹ K ⁻¹)	(cm ² sec ⁻¹)	(W-cm ⁻¹ K	1) (BTU +)	(2)
BN	23.0 100.0 200.0 300.0 400.0	1,918 1,918 1,918 1,918 1,918 1,918	0.8530 1.0340 1.2260 1.3770 1.5000	0.79294 Ú.50900 D.37924 0.29111 D.24651	1.25083 1.00937 0.89170 0.76879 0.70914	888.65 700.31 618.67 533.39 492.01	73,4 212.0 392.0 572.0 752.0
	500.0 600.0 700.0 800.0 900.0 1000.0 1100.0	1.918 1.918 1.918 1.918 1.918 1.918 1.918 1.918	1.5940 1.6700 1.7310 1.7860 1.6300 1.8690 1.9630	0.21795 0.19102 0.16955 0.15035 0.13588 0.12716 0.11805	0.66628 0.61180 0.56287 0.51498 0.47688 0.45581 0.43085	462.27 424.47 390.53 357.23 330.86 316.25 298.93	932.0 1112.0 1292.0 1472.0 1652.0 1832.0 2012.0

* (BTU in h= 1 ft 2 F⁻¹)

H-9

Table 5

Thermal Expansion Results

Temp. (₽) BN (in/in) 70.0 90.0 0.00000 100.0 -.000007 110.1 -.000012 120.0 -.000020 -.000030 130.0 140.0 -.000039 150.1 -.000049 - 000059 160.0 170.0 -.000069 -.000079 180.0 190.0 -.000087 • 200.0 -.000102 210.1 220.0 -.000111 -.000120 230.1 240.0 -.000130 -.000140 250.0 260.0 -.000149 270.0 -.000159 -.000165 280.0 290.0 -.000172 -.000178 300.0 310.0 -.000184 320.0 -.000192 -.000198 330.0 340.2 -.000205 350.0 -.000212 360.0 370.0 -.000219 - .000224 -.000228 380.1 390.0 ~.000232 400,0 -.000234 410.0 -.000235 420.0 -.000236 -.000237

.

Thermal Expansion Results

Temp.	BN
(F)	(in/in)
430.1	000237
440.0	000237
450.0	000236
460.0	000233
470.0	000233
480.0	000228
490.0	000225
500.1	000222
510.0	000220
520.0	000220
530.0	000212
540.0	000206
550.0	000200
560.0	000193
570.1	000193
580.0	000173
590.0	000157
600.1	000142
610.0	000125
620.0	000113
530.0	000103
540.0	000091
650.0	000077
660.0	000062
670.0	000033
680.0	0.000009
690.0	0.000039
700.1	0.000077
710.0	0.000102
720.0	0.000133
730.0	0.000163
740.0	0.000182
750.0	0.000196
760.0	0.000243
771.9	0.000281

H-11

Thermal Expansion Results

Temp.	BM
(F)	(in/in)
780.0	0.000311
790.1	0.000376
800.0	0.000396
810.0	0.000407
820.0	0.000418
830.0	0.000430
840.0	0.000441
850.0	0.000454
860.0	0.000464
870.0	0.000464
880.0 890.0 900.0 910.1 920.0	0.000472 0,000471 0.000472 0.000472 0.000471 0.000473
930.0	0.000430
940.0	0.000428
950.0	0.000429
960.0	0.000433
970.0	0.000433
980.0	0.000498
990.0	0.000521
1000.0	0.000565
1010.0	0.000614
1020.0	0.000661
1030.0 1040.0 1050.0 1060.0 1070.0	0.000708 0.000756 0.000804 0.000851 0.000851 0.000899
1080.0	D.000948
1090.1	C.000997
1100.0	O.001045
1110.0	O.001092
1120.0	O.001141

ì

l

.

Thermal Expansion Results

Temp.	BN
(F)	(in/in)
1130.0	0.001188
1140.0	0.001235
1150.1	0.001284
1160.0	9.001332
1170.0	0.001381
1180.1	0.001430
1190.0	0.001479
1200.0	0.001528
1210.0	0.001576
1220.0	0.001526
1230.0	0.001674
1240.0	0.001723
1250.0	0.001772
1260.0	0.001820
1270.0	0.001869
1280.0 1290.0 1300.0 1310.0 1320.0	0.001918 0.001967 0.002016 0.002065 0.002065 0.002114
1330.0	0.002164
1340.0	0.002212
1350.0	0.002267
1360.0	0.002322
1370.1	0.002322
1380.0	0.002432
1390.0	0.002459
1400.0	0.002544
1410.0	0.002599
1420.0	0.002654
1430.0	0.002709
1440.0	0.002761
1450.0	0.002813
1460.0	0.002864
1470.0	0.002916

H-13

Thermal Expansion Results

Temp.	BN
(F)	(in/in)
1480.0	0.002968
1490.0	0.003020
1500.0	0.003071
1510.1	0.003123
1520.0	0.003174
1530.1	0.003227
1540.0	0.003279
1550.0	0.003332
1560.0	0.003384
1570.0	0.003437
1580.0	0.003490
1590.0	0.003542
1600.0	0.003593
1610.0	0.003645
1620.0	0.003698
1630.0	0.003750
1640.0	0.003803
1650.0	0.003856
1660.0	0.003908
1670.0	0.003962
1680.0	0.004014
1690.0	0.004067
1700.0	0.004119
1710.1	0.004173
1720.0	0.004226
1730.0	0.004279
1740.0	0.004332
1750.0	0.004386
1760.0	0.004439
1770.0	0.004439
1780.0	0.004546
1790.0	0.004599
1800.0	0.004652
1810.0	0.004705
1920.0	0.004760

.

Thermal Expansion Results

Temp.	BN (dm (dm)
(#)	(1n/1n)
1830.0	0.004813
1840.1	0.004868
1850.0	0.004922
1860.0	0.004977
1870.0	0.005030
1880.1	0.005083
1890.0	0.005138
1900.0	0.005194
1910.0	0.005248
1920.0	0.005302
1930.0	0.005359
1940.0	0.005414
1950.0	0.005469
1960.0	0.005524
1970.0	0.005579
1980.1	0.005633
1990.0	0.005686
2000.0	0.005741

Table 6

ì

Mean Coefficient of Expansion

Temperature	BN		
- (F)	(micro in/in F)		
200.0	-0.788092		
210.0	-0.792864		
220.0	-0.801010		
230.0	-0.809621		
240.0	-0.821503		
250.0	-0.827904		
260.0	-0.834822		
270.0	-0.824328		
280.0	-0.817458		
290.0	-0.809436		
300.0	-0.800619		
310.0	-0.797999		
320.0	-0,790565		
330.0	-0,786720		
340.0	-0.784413		
350.0	-0.783764		
360.0	-0.771687		
379.9	-0.761137		
380.0	-0.748095		
390.0	-0.731874		
400.0	-0.713439		
410.0	-0.694134		
420.0	-0.675810		
430.0	-0.658661		
440.0	-0.641407		
450 0	-0 619795		
460.0	-0 597606		
470.0	-0.575923		
480 0	-0.555561		
490.0	-0.535728		
124.4	مېنىن دەرىپىرىن دىپ مېنىن		
500.0	-0.516936		
510.0	~0,498883		
520.0	-0.479825		
530.0	-0.460487		
540.0	-0.439040		

,

H-16

Mean Coefficient of Expansion

Temperature	BN		
(F)	(micro in/in	F)	
550.0	-0.417173		
560.0	-0.393945		
570.0	-0.365356		
580.0	-0.339984		
590.0	-0.301524		
600.0	-0.268769		
610.0	-0.230657		
620.0	-0.205255		
630.0	-0.183171		
540.0	-0.159022		
650.0	-0.133492		
660.0	-0.105407		
670.0	-0.055747		
680.0	0.014413		
690.0	0.063317		
700.0	0.122062		
710.0	0.159972		
720.0	0.204191		
730.0	0.246995		
740.0	0.271130		
750.0	0.288726		
760.0	0.351524		
770.0	0.392538		
780.0	0.438233		
790.0	0.521316		
800.0	0.542999		
810.0	0.550659		
820.0	0.556648		
830.0	0.565160		
840.0	0.572248		
850.0	0.582417		
860.0)	0.586821		
870.0	0.586895		
880.0	0.582234		
890.0	0.574603		

.14

Mean Coefficient of Expansion

Temperature	BN		
(F)	(micro	in/in	F)
900 Ö	0 56	8362	
910.0	0.56	1005	
920.0	0.55	6269	
930.0	0.49	9535	
940.0	0.49	2379	
950.0	0.48	7253	
960.0	0.48	6329	
970.0	0.54	0837	
980.0	0.54	7101	
990,0	0.56	6110	
1000.0	0.60	7569	
1010.0	0.65	2955	
1020.0	0.69	5510	
1030.0	0.73	1010	
1040.0	0.77	3013	
1050.0	0.92	0159	
1060.0	0.85	9779	
1070.0	0.99	9142	
1080.0	0.93	8909	
1090.0	0.97	6780	
1100.0	1.01	4010	
1110.0	1.05	0400	
1120.0	1.08	6/04	
1140 0	1 16	N913 Agac	
1140.0	1.13	4040	
1150.0	1.18	8924	
1160.0	1.22	1713	
1170.0	1.25	5138	
1180.0	1.28	8214	
1190.0	1.32	0270	
1200.0	1.35	1875	
1210.0	1.38	2682	
1220.0	1.41	3650	
1230.0	1.44	3237	
1240.0	1.47	2635	

.

Mean Coefficient of Expansion

Temperature	BN	
(F)	(micro in/in F)	
1250.0	1.501374	
1260.0	1.529806	
1270.0	1.557755	
1280.0	1.585220	
1290.0	1.612363	
1300.0	1.639413	
1310.0	1.665640	
1320.0	1.691638	
1330.0	1.717315	
1340.0	1.742071	
1350.0	1.771108	
1360.0	1.800229	
1370.0	1.828393	
1380.0	1.856477	
1390.0	1.884910	
1400.0	1.912725	
1410.0	1.939469	
1420.0	1.965787	
1430.0	1.991790	
1440.0	2.015028	
1450.0	2.038211	
1460.0	2.060707	
1470.0	2.082955	
1480.0	2.105083	
1490.0	2.126539	
1500.0	2.147513	
1510.0	2.168813	
1520.0	2.159194	
1530.0	2.210117	
1540.0	2.230587	
1550.0	2.251157	
1560.0	2.270980	
1570.0	2.291503	
1580.0	2.311257	
1590.0	2.330100	

Mean Coefficient of Expansion

Temperature	BN		
(7)	(micro in/in F)		
1600.0	2.348580		
1610.0	2.366878		
1620.0	2.385597		
2630.0	2.404099		
1640.0	2.422299		
1650.0	2.440183		
1660.0	2.458020		
1670.0	2.475815		
1680.0	2.493312		
1690.0	2.510603		
1700.0	2.527068		
1710.0	2.544075		
1720.0	2.561302		
1730.0	2.577913		
1740.0	4.594144		
1750.0	2.610920		
1760.0	2.626725		
1770.0	2.642242		
1780.0	2.658219		
1790.0	2.673736		
1800.0	2.689040		
1810.0	2.704705		
1820.0	2.719784		
1830.0	2.734959		
1840.0	2.750023		
1850.0	2.764937		
1860.0	2.780317		
1870.0	2.794589		
1880.0	2.808225		
1890.0	2.823061		
1900.0	2.838242		
1910.0	2.852241		
1920.0	2.866132		
1930.0	2.880931		
1940.0	2.895353		

17

ſ

Mean Coefficient of Expansion

Temperature	BN	
(7)	(micro in/in ?)	
1950.0	2.908752	
1960.0	2.922494	
1970.0	2.936095	
1980.0	2.949221	
1990.0	2.961660	
2000.0	2.974405	

Density Results

Sample Description	Temperature (C)	Density (gm cm ³)
BN	23.0	1.918
	100.0	1.918
	200.0	1.918
	300.0	1.919
	400.0	1.919
	500.0	1.919
	600.0	1,919
	700.0	1.917
	800.0	1.916
	900.0	1,915
	1000.0	1,915
	1100.0	1 912
	1200.0	1.909

Sample No .	Temp (C)	TEMP (P)	EMISSIVITY
0 J 2H	510	950	0.482
	619	1146	0.483
•	728	1343	0.501
	816	1501	0.526
	872	1502	0.549
	929	1705	0.582
	992	.1817	0.632
	1033	1891	0.672
	1048	1918	0.693
	1083	1981	0.719
0-13C	1083	1981	0.719
	856	1590	0.668
	734	1353	0.642
	552	1025	0.634
36-48H	543	1010	0.631
	588	1091	0.645
	559	1236	0.654
	722	1331	0.663
	786	1447	0.678
	842	1547	0.675
	868	1595	0.685
	907	1565	0.699
	234	1/41	0.720
	1036	1970 1970	0,730
	1054	1930	0.768
			1
30-480	1054	1930	0.768
	233	1711	0.739
•	934	1710	0.741
	030	1955	0.713
	500	1112	0.655
12-3411	220	1022	0.749
	510	1129	0.755
	717	1236	0.703
	767	1404	0,777
	447	1550	0,750
	930	1705	0,000
	964	1767	0.841
	1031	1888	0 860
	1078	1972	0.581
77-840	010	1 6 7 10	6 516
1 6 T 11 11 12	710	1745	0,010
	(373	1 A G D	9. IB3

an a comprovement

TABLE 8

HEMISPHERICAL TOTAL EMISSIVITY

H-24

H-25

-

H-27

3

H-28

H-29

2

H-30

Boron Nitride

Thermal Conductivity - English RBHT vs Purdue

Boron Nitride

H-34

Boron Nitride Density - Si RBHT vs. Purdue

Boron Nitride Density - English RBHT vs. Purdue

H-36

NRC FORM 335 (9-2004) NRCMD 3.7	U.S. NUCLEAR REGULATORY COMMISSION	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.)			
BIBLIOGRAPHIC I	DATA SHEET				
(See instructions on the reverse)			NUREG/CR-6976		
2. TITLE AND SUBTITLE		3. C	ATE REPOR	RT PUBLISHED	
Rod Bundle Heat Transfer Test Facility Description		МО	NTH	YEAR	
		JL	July 2010		
		4. FIN OR GRANT NUMBER			
			W6855		
. AUTHOR(S) 6. TYPE (OF REPORT		
E.R. Rosal, T.F. Lin, I.S. McClellan, R.C. Brewer			Technical		
		7. PERIOD COVERED (Inclusive Dates)			
		N	Nov 1997 - Feb 2003		
provide name and mailing address.) The Pennsylvania State University University Park, PA 16802					
9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC and mailing address)	, type "Same as above"; if contractor, provide NRC Division, Office or	Region, U.S.	Nuclear Regul	latory Commission,	
and mailing address.) Division of Systems Analysis Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001					
10. SUPPLEMENTARY NOTES					
N. Hen, NRC Project Manager 11. ABSTRACT (200 words or less)					
11. ABSTRACT (200 words or less) This report describes the Rod Bundle Heat Transfer (RBHT) Test Facility which is designed to conduct systematic separate effects tests under well-controlled laboratory conditions in order to generate fundamental rod bundle heat transfer data from single phase cooling tests, low flow boiling tests, steam flow tests with and w ithout droplets injection, inverted annular film boiling tests, and dispersed flow film boiling tests in rod bundles. The facil ity is capable of operating in steady state forced and variable reflood modes covering a wide range of flow and heat transfer condition as at pressures from 0.134 to 0.402 MPa (20 to 60 psia). The RBHT Test Facility is a unique facility which will provide new data for the fundamental development of best-estimate computer codes to enhance our understanding of the complex two-ph ase phenomena, which are modeled for the reflood transient.					
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist in	esearchers in locating the report.)		13. AVAILABILITY STATEMENT		
dispersed flow film boiling, heat transfer enhancer	nent, mixing vane, quench fro nt progression, r	reactor			
satety, reactor systems codes, retiood heat transfer, rod bundle, spacer grid, thermal hydraulics			(This Page)		
			unclassified		
			(This Report)	classified	
			15. NUMBEI	R OF PAGES	
			16. PRICE		

.

.

.

.

`

1

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS