Attachment 1

GEH Report 0000-0105-6621-SRLR, Revision 0 Hope Creek Cycle 17 Supplemental Reload Licensing Report (SRLR)

.

.

0000-0105-6621-SRLR Revision 0 Class I July 2010 Supplemental Reload Licensing Report for

Hope Creek Unit 1 Reload 16 Cycle 17

Important Notice Regarding Contents of This Report

×11 .

2

Please Read Carefully

This report was prepared by Global Nuclear Fuel - Americas, LLC (GNF-A) solely for use by PSEG ("Recipient") in support of the operating license for Hope Creek (the "Nuclear Plant"). The information contained in this report (the "Information") is believed by GNF-A to be an accurate and true representation of the facts known by, obtained by or provided to GNF-A at the time this report was prepared.

The only undertakings of GNF-A respecting the Information are contained in the contract between Recipient and GNF-A for nuclear fuel and related services for the Nuclear Plant (the "Fuel Contract") and nothing contained in this document shall be construed as amending or modifying the Fuel Contract. The use of the Information for any purpose other than that for which it was intended under the Fuel Contract, is not authorized by GNF-A. In the event of any such unauthorized use, GNF-A neither (a) makes any representation or warranty (either expressed or implied) as to the completeness, accuracy or usefulness of the Information or that such unauthorized use may not infringe privately owned rights, nor (b) assumes any responsibility for liability or damage of any kind which may result from such use of such information.

• .

Acknowledgement

The engineering and reload licensing analyses, which form the technical basis of this Supplemental Reload Licensing Report, were performed by GNF-A/GEH Nuclear Analysis personnel. The Supplemental Reload Licensing Report was prepared by J. Su. This document has been verified by George Baka.

• . .

• •

. .

;

Table of Contents

1.	Plant Unique Items	5
2.	Reload Fuel Bundles	5
3.	Reference Core Loading Pattern	6
4.	Core Reactivity and Control System Worth - No Voids, 20°C	6
5.	Standby Liquid Control System Shutdown Capability	6
6.	Reload Unique GETAB AOO Analysis - Initial Condition Parameters	7
7.	Selected Margin Improvement Options	12
8.	Operating Flexibility Options	13
9.	Core-wide AOO Analysis Results	14
10.	Rod Withdrawal Error AOO Summary	19
11.	Cycle SLMCPR and OLMCPR Summary	20
12.	Overpressurization Analysis Summary	26
13.	Fuel Loading Error Results	26
14.	Control Rod Drop Analysis Results	27
15.	Stability Analysis Results	27
16.	Loss-of-Coolant Accident Results	31
Ap	pendix A Analysis Conditions	86
Ap	pendix B Thermal-Mechanical Compliance	87
Ap	pendix C Decrease in Core Coolant Temperature Event	88
Apj	pendix D Off-Rated Limits	89
Ap	pendix E Scram Speed Licensing Basis	92
Apj	pendix F Feedwater Temperature and Operating Dome Pressure Range	93
Apj	pendix G NEDC-33173P-A Supplementary Information	94
Ap	pendix H Reduced Feedwater Temperature BSP Regions	95
Ap	pendix I Calculated BSP Region End Points	98
Ap	pendix J GE14I Fuel Introduction	99
Apj	pendix K List of Acronyms	100

The basis for this report is *General Electric Standard Application for Reactor Fuel*, NEDE-24011-P-A-16, October 2007; and the U.S. Supplement, NEDE-24011-P-A-16-US, October 2007.

1. Plant Unique Items

- Appendix A: Analysis Conditions
- Appendix B: Thermal-Mechanical Compliance
- Appendix C: Decrease in Core Coolant Temperature Event
- Appendix D: Off-Rated Limits
- Appendix E: Scram Speed Licensing Basis
- Appendix F: Feedwater Temperature and Operating Dome Pressure Range
- Appendix G: NEDC-33173P-A Supplementary Information
- Appendix H: Reduced Feedwater Temperature BSP Regions
- Appendix I: Calculated BSP Region End Points
- Appendix J: GE14I Fuel Introduction
- Appendix K: List of Acronyms

2. Reload Fuel Bundles

Fuel Type	Cycle Loaded	Number
Irradiated:		
GE14-P10CNAB402-5G6.0/14G4.0-100T-150-T6-2758 (GE14C)	· 13	4
GE14-P10CNAB393-18G4.0-100T-150-T6-2885 (GE14C)	14	80
GE14-P10CNAB393-18GZ-100T-150-T6-2884 (GE14C)	14	16
GE14-P10CNAB396-17GZ-100T-150-T6-3007 (GE14C)	15	48
GE14-P10CNAB405-15GZ-100T-150-T6-3009 (GE14C)	15	56
GE14-P10CNAB398-17GZ-100T-150-T6-3008 (GE14C)	15	96
GE14-P10CNAB400-14GZ-100T-150-T6-3006 (GE14C)	. 15	28
GE14-P10CNAB400-9G6.0/6G4.0-100T-150-T6-3176 (GE14C)	16	176
GE14-P10CNAB400-14GZ-100T-150-T6-3006 (GE14C)	16	52
New:		
GE14I-P10CCOB379-13GZ-100T-150-T6-3309 (GE14I)	17	12
GE14-P10CNAB405-6G6.0/11G4.0-100T-150-T6-3313 (GE14C)	17	72
GE14-P10CNAB402-12G6.0/2G4.0-100T-150-T6-3312 (GE14C)	17	124
Total:		764

3. Reference Core Loading Pattern

	Core Average Exposure	Cycle Exposure
Nominal previous end-of-cycle exposure:	33432 MWd/MT (30329 MWd/ST)	14467 MWd/MT (13124 MWd/ST)
Minimum previous end-of-cycle exposure (for cold shutdown considerations):	33101 MWd/MT (30029 MWd/ST)	14136 MWd/MT (12824 MWd/ST)
Assumed reload beginning-of-cycle exposure:	20404 MWd/MT (18510 MWd/ST)	0 MWd/MT (0 MWd/ST)
Assumed reload end-of-cycle exposure (rated conditions):	33069 MWd/MT (30000 MWd/ST)	12666 MWd/MT (11490 MWd/ST)
Reference core loading pattern:	Fig	ure 1

4. Core Reactivity and Control System Worth - No Voids, 20°C

Beginning of Cycle, k _{effective}	
Uncontrolled	1.112
Fully controlled	0.954
Strongest control rod out	0.989
R, Maximum increase in strongest rod out reactivity during the cycle (Δk)	0.001
Cycle exposure at which R occurs	11574 MWd/MT (10500 MWd/ST)

5. Standby Liquid Control System Shutdown Capability

	· · · · · · · · · · · · · · · · · · ·					
Boron (ppm)	Shutdown Margin (Δk) (at 160°C, Xenon Free)					
(at 20°C)	Analytical Requirement	Achieved				
660	≥0.010	0.021				

6. Reload Unique GETAB AOO Analysis - Initial Condition Parameters ¹

Operating do Exposure ran		F (HBB) C to MO	C (A _I	oplication Cor	dition: 1, 2)	
	Pea	king Fac	tors		· .		
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.42	1.27	1.040	6.939	104.0	1.35

Operating do Exposure ran		F (HBB) OC to EO	C. (Ap	oplication Con	dition: 1,2)	
	Pea	aking Fact	tors			•	
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.34	1.34	1.040	, 6.560	108.5	1.37

Operating do Exposure ran		F (UB) DC to EO	C (Ap	oplication Cor	dition: 1, 2	;) · · · ·	
	Pea	aking Fact	tors	•	ι.	•	
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.42	1.28	1.040	6.964	103.8	1.35

á

.

.

Operating do Exposure ran		ELLLA (U) C to EO		pplication Con	dition: 1, 2)	
	Pea	aking Fac	tors	· . · · · · · · ·	1		
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.39	1.27	1.040	6.805	93.5	1.34

¹ Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11.

Į.,

. . .

.

Operating domain: ICF & FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)											
	Peaking Factors						· .				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR				
GE1 ['] 4C	1.45	1.52	1.31	1.040	7.422	100.2	1.30				

Operating don Exposure rang				oplication Cor	dition: 1, 2		
Fuel Design	Pea Local	king Fac	tors Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.44	• 1.33	1.040	7.026	105.9	1.32

Operating do Exposure ran		F & FWT OC to EO	. ,	oplication Con	dition: 1, 2)	
	Pea	king Fact	tors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.49	1.31	1.040	7.297	101.8	1.33
	,	· ·					

Operating do Exposure ran		ELLLA & OC to EO		UB) oplication Con	dition: 1, 2)	
	Pea	king Fact	tors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.47	1.29	: 1.040	7.150	91.4	1.31
	• · · · · · · · · · · · · · · · · · · ·				· · ·	• · · · · · · · · · · · ·	

Operating do Exposure ran		F with RP C to MO	•	IBB) oplication Con	dition: 2)		
	Pea	aking Fact	tors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.39	1.27	1.040	6.809	104.8	1.38

Operating do Exposure ran		F with RP DC to EO	•	IBB) plication Con	dition: 2)	:	
	Pea	aking Fact	tors	· -		x	-
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.32	1.34	1.040	6.483	108.9	1.39

Operating do Exposure ran		F with RP DC to EO(•	B) plication Con	dition: 2)		
	Pea	aking Fact	ors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.40	1.28	1.040	6.840	104.6	1.38

Operating do Exposure ran		ELLLA with the EC of EC		OOS (UB) pplication Cor	dition: 2)		
	Pea	aking Fact	tors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.37	1.27	1.040	6.715	· 94.0	1.36
GE14C	1.45	1.37	1.27	1.040	0.715	94.0	1

Operating don Exposure rang		F & FWT C to MO		PTOOS (HBB oplication Cor			
	Pea	king Fact	tors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.50	1.31	1.040	7.330	100.9	1.32

;

1

Operating do Exposure ran		F & FWT DC to EO		PTOOS (HBB oplication Cor	•		
· .	Pea	aking Fac	tors		. 1		:
Fuel Design	Local	Radial	Axial	R-Factor	Bundle ³ Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.42	1.33	1.040	6.921	. 106.6	1.35
	•	• •				· · · · · · · · · · · · · · · · · · ·	

Operating don Exposure rang		F & FWT DC to EO		PTOOS (UB) pplication Cor	dition: 2)		
	Pea	king Fac	tors			· .	
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	. 1.45	1.48	1.31	1.040	7.202	. 102.5	1.35
۰.					, , , , , , , , , , , , , , , , , , ,	· · · · · ·	

Operating don Exposure rang		ELLLA & DC to EO		with RPTOOS oplication Con		,	
	Pea	aking Fact	tors				ł
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.45	1.29	1.040	7.050	92.1	1.33
;	· .			• :			

Operating do Exposure ran		CLLLA (F C to MO	•	oplication Con	dition: 1, 2)				
Peaking Factors										
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR			
GE14C	1.45	1.37	1.26	1.040	6.727	94.2	. 1.34			
ŧ	•				· · · · · ·	• • • • • • • • • • • • • • • • • • •				

Operating don Exposure rang		ELLLA (H DC to EO		plication Con	dition: 1,2)	
	Pea	king Fact	tors				
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.31	1.33	1.040	6.399	97.8	1.36

• • • • •

Operating do Exposure ran		ELLLA & C to MO		HBB) plication Con	dition: 1,2)	
	Pea	king Fact	tors	ì			
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.48	1.30	1.040	7.241	90.4	1.29

Operating domain: MELLLA & FWTR (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2)									
	Peaking Factors								
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR		
GE14C	1.45	1.40	1.32	1.040	6.855	95.4	1.31		

Operating dor Exposure rang		ELLLA w		OOS (HBB) oplication Con	dition: 2)		
	Peaking Factors						
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.36	1.26	1.040	6.638	94.7	1.37

Operating domain: MELLLA with RPTOOS (HBB) Exposure range : MOC to EOC (Application Condition: 2)									
	Peaking Factors								
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR		
GE14C	1.45	1.29	1.33	1.040	6.339	98.2	1.38		

Operating dor Exposure rang		C to MO		vith RPTOOS oplication Cor	• •	· :	; · ·
	Pea	king Fac	tors			· ·	• .
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial MCPR
GE14C	1.45	1.46	1.30	1.040	7.126	91.1	1.31

Exposure rang		OC to EO		vith RPTOOS plication Con			
	Pea	king Fact	tors			1 	•••
Fuel Design	Local	Radial	Axial	R-Factor	Bundle Power (MWt)	Bundle Flow (1000 lb/hr)	Initial `MCPR
GE14C	1.45	1.39	1.32	1.040	6.765	96.0	1.34

7. Selected Margin Improvement Options²

Recirculation pump trip:			Yes
Rod withdrawal limiter:		,	No
Thermal power monitor:	·· ·		Yes
Improved scram time:			Yes (ODYN Option B)
Measured scram time:			No
Exposure dependent limits:			Yes
Exposure points analyzed:			2
n an			

 $^{^{2}}$ Refer to the GESTAR basis document identified at the beginning of this report for the margin improvement options currently supported therein.

.

Table 7-1	Cycle l	Exposure	Range	Designation
-----------	---------	----------	-------	-------------

Name	Exposure Range ³	
BOC to MOC	BOC17 to EOR17-3216 MWd/MT (2917 MWd/ST)	
MOC to EOC	EOR17-3216 MWd/MT (2917 MWd/ST) to EOC17	4 ·
BOC to EOC	BOC17 to EOC17	

8. Operating Flexibility Options⁴

The following information presents the operational domains and flexibility options which are supported by the reload licensing analysis.

Extended Operating Domain (EOD):	Yes
EOD type: Maximum Extended Load Line Limit (MELLLA)	
Minimum core flow at rated power:	94.8 %
Increased Core Flow:	Yes
Flow point analyzed throughout cycle:	105.0 %
Feedwater Temperature Reduction:	Yes
Feedwater temperature reduction during cycle:	60.0°F
Final feedwater temperature reduction:	102.0°F
ARTS Program:	Yes
Single Loop Operation:	Yes
Equipment Out of Service:	
Safety/relief valves Out of Service: (credit taken for 13 valves)	Yes
RPTOOS	Yes

. . .

³ End of Rated (EOR) is defined as the cycle exposure corresponding to all rods out, 100% power/100% flow, and normal feedwater temperature. For plants without mid-cycle OLMCPR points, EOR is not applicable.

⁴ Refer to the GESTAR basis document identified at the beginning of this report for the operating flexibility options currently supported therein.

9. Core-wide AOO Analysis Results ⁵

Methods used: GEMINI, GEXL-PLUS

Operating domain: ICF (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)								
			Uncorrected △CPR					
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.				
FW Controller Failure	210	110	0.20	2				
Load Rejection w/o Bypass	319	115	0.27	3				
Turbine Trip w/o Bypass	292	112	0.26	4				

Operating domain: ICF (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2)								
			Uncorrected △CPR					
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.				
FW Controller Failure	307	119	0.23	5				
Load Rejection w/o Bypass	442	123	0.28	6				
Turbine Trip w/o Bypass	397	120	0.28	7				

Operating domain: ICF (UB) Exposure range : MOC to EOC (Application Condition: 1, 2)							
. 1			Uncorrected △CPR				
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.			
FW Controller Failure	218	111	0.21	8			
Load Rejection w/o Bypass	332	115	0.27	9			
Turbine Trip w/o Bypass	307	113	0.26	10			

⁵ Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11.

.

e tube

Operating domain: MELLLA (UB) Exposure range : MOC to EOC (Application Condition: 1, 2)					
· . ·			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	192	108	0.19	11	
Load Rejection w/o Bypass	273 -	112	0.26	12 .	
Turbine Trip w/o Bypass	263	110	0.24	13	

Operating domain: ICF & FWTR (Exposure range : BOC to MOC		ion Condition	: 1,2)	
t.			Uncorrected ∆CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	214	114	0.22	14

Operating domain: ICF & FWT Exposure range : MOC to EO		ion Conditio	n: 1, 2)	
			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	321	123	0.24	15

Operating domain: ICF & FWTR (Exposure range : MOC to EOC		ion Condition	: 1,2)	
		· .	Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	249	117	0.24	16

Operating domain: MELLLA & FWTR (UB) Exposure range : MOC to EOC (Application Condition: 1, 2)					
			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	224	114	0.22	17	

Operating domain: ICF with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2)					
			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	238	113	0.24	18	
Load Rejection w/o Bypass	. 351	118	0.30	19	
Turbine Trip w/o Bypass	335	116	0.29	20	

			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	338	121	0.26	21
Load Rejection w/o Bypass	479	125	0.30	22
Turbine Trip w/o Bypass	440	124	0.30	23

Operating domain: ICF with RPTO Exposure range : MOC to EOC		ion Condition:	2)	
· · · · · · · · · · · · · · · · · · ·			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	250	114	0.24	24
Load Rejection w/o Bypass	365	118	0.30	25
Turbine Trip w/o Bypass	352	116	0.29	26

Operating domain: MELLLA with Exposure range : MOC to EOC			2)	
			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	210	111	0.22	27
Load Rejection w/o Bypass	291	115	0.28	28
Turbine Trip w/o Bypass	295	Ĩ1Ì3	0.27	29

Operating domain: ICF & FWTR with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2)				
			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	241	117	0.25	30

Operating domain: ICF & FWTR w Exposure range : MOC to EOC		· ·	on: 2)	
· · ·			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	351	126	0.27	31

Operating domain: ICF & FWTR v Exposure range : MOC to EOC			: 2)		
	,	•	Uncorrected △CPR	;	÷.,
Event	Flux (% rated)	Q/A (% rated)	GE14C	1	Fig.
FW Controller Failure	278	120	0.27		32 *
· · · · · · · · · · · · · · · · · · ·	•		1		·

Operating domain: MELLLA & F Exposure range : MOC to EOC			:2)	<i>.</i> .
			Uncorrected △CPR	•
Event	F!ux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	244	116	0.24	33

Operating domain: MELLLA (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)					
			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	194	109	0.20	34	
Load Rejection w/o Bypass	280	112	0.26	35	
Turbine Trip w/o Bypass	264	110	0.25	36	

Operating domain: MELLLA (I Exposure range : MOC to EO		ion Condition:	1,2)	· ·
			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	28.1.	117	0.23	. 37
Load Rejection w/o Bypass	402	120	0.28	38
Turbine Trip w/o Bypass	357	118	0.27	39

Operating domain: MELLLA & FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)					
			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	198	112	0.21	40	

Operating domain: MELLLA & FWTR (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2)					
			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	304	121	0.24	. 41	

Operating domain: MELLLA with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2)						
	· · · · ·	s (,	Uncorrected △CPR			
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.		
FW Controller Failure	212	112	0.22	42		
Load Rejection w/o Bypass	299 ·	115	0.28	- 43		
Turbine Trip w/o Bypass	295	113	0.27	44		

. .

Operating domain: MELLLA with RPTOOS (HBB) Exposure range : MOC to EOC (Application Condition: 2)					
			Uncorrected △CPR		
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.	
FW Controller Failure	300	119	0.25	45	
Load Rejection w/o Bypass	429	123	0.30	46	
Turbine Trip w/o Bypass	387	121	0.29	47	

Operating domain: MELLLA & FV Exposure range : BOC to MOC				
			Uncorrected △CPR	
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.
FW Controller Failure	217	114	0.23	48 ,

Operating domain: MELLLA & FWTR with RPTOOS (HBB) Exposure range : MOC to EOC (Application Condition: 2)						
			Uncorrected △CPR			
Event	Flux (% rated)	Q/A (% rated)	GE14C	Fig.		
FW Controller Failure	326	123	0.25	49		

10. Rod Withdrawal Error AOO Summary

The ARTS based rod withdrawal error is an unblocked basis. The unblocked rod withdrawal error results are summarized below.

RWE Results:

RBM Setpoint (%)	ΔCPR
Unblocked	0.19

11. Cycle SLMCPR and OLMCPR Summary 6789

Two Loop Operation (TLO) safety limit:	1.08
Single Loop Operation (SLO) safety limit:	1.10
Stability MCPR Design Basis:	See Section 15
ECCS MCPR Design Basis:	See Section 16 (Initial MCPR)

Non-pressurization Events:

Exposure range: BOC to EOC				
	All Fuel Types			
Rod Withdrawal Error (Unblocked)	1.27			
Loss of Feedwater Heating	1.23			
Fuel Loading Error (Mislocated)	Not Limiting			
Fuel Loading Error (Misoriented)	1.24			
Rated Equivalent SLO Pump Seizure ¹⁰	1.29			

⁶ Exposure range designation is defined in Table 7-1.
⁷ For SLO, the MCPR operating limit is 0.02 greater than the two loop value.

⁸ The safety limit values presented include a 0.02 adder in accordance with extended operating domain licensing commitments. ;

⁹ The OLMCPR values presented in the Limiting Pressurization Events summary table have been adjusted to include a 0.01 adder in accordance with extended operating domain licensing commitments. OLMCPR values presented in the detailed Pressurization Event tables do NOT include this adjustment.

¹⁰ The cycle-independent OLMCPR for the recirculation pump seizure event for GE14C is 1.48 based on the cyclespecific SLO SLMCPR. When adjusted for the off-rated power/flow conditions of SLO, this limit corresponds to a rated OLMCPR of 1.29. This limit does not require an adjustment for the SLO SLMCPR.

Appl. Cond.	Exposure Range	Option A	Option B
-		GE14C	GE14C
1	Equipment In Service	· · · · · · · · · · · · · · · · · · ·	
	BOC to MOC	1.49	1.38
	MOC to EOC	1.60	1.43
2	RPTOOS	۰ <u>۰</u> ۰,	
	BOC to MOC	1.51	1.40
	MOC to EOC	1.62	1.45

Pressurization Events: 12

Operating domain: ICF (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)			
	•; Option:A	Option B	
	GE14C	GE14C	
FW Controller Failure	1.41	1.30	
Load Rejection w/o Bypass	1.48	1.37	
Turbine Trip w/o Bypass	1.47	1.36	

Operating domain: ICF (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2)		
	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.53	1.36
Load Rejection w/o Bypass	1.59	1.42
Turbine Trip w/o Bypass	1.58	1.41

¹¹ Each application condition (Appl. Cond.) covers the entire range of licensed flow and feedwater temperature unless specified otherwise. The OLMCPR values presented apply to rated power operation based on the two loop operation safety limit MCPR.¹² Application condition numbers shown for each of the following pressurization events represent the application

conditions for which this event contributed in the determination of the limiting OLMCPR value.

Operating domain: ICF (UB) Exposure range : MOC to EOC (Application Condition: 1, 2)			
·	Option A	Option B	
	GE14C	GE14C	
FW Controller Failure	1.51	1.34	
Load Rejection w/o Bypass	1.58	1.41	
Turbine Trip w/o Bypass	1.57	1.40	

Operating domain: MELLLA (UB) Exposure range : MOC to EOC (Application Condition: 1, 2)		
	Option A	Option B GE14C
	GE14C	
FW Controller Failure	1.49	1.32
Load Rejection w/o Bypass	1.56	1.39
Turbine Trip w/o Bypass	1.55	1.38

Operating domain: ICF & FWTR (HBB)				
Exposure range : BOC to MOC (Application Condition: 1, 2)				
		Option A	Option B	
	· · · · · · · · · · · · · · · · · · ·	GE14C	GE14C	
FW Controller Failure		1.43	1.32	

Operating domain: ICF & FWTR (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2)			
· · ·		Option A	Option B
ê	ĺ	GE14C	GE14C
FW Controller Failure		1.55	1.38
			•

Operating domain: ICF & FWTR (UB) Exposure range : MOC to EOC (Application Condition: 1, 2)			
	Option A	Option B	
	GE14C	GE14C	
FW Controller Failure	1.55	1.38	

 $^{(1, 2, 2, 3) = \}frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{$

Operating domain: MELLLA & FW Exposure range : MOC to EOC	/TR (UB) (Application Condition: 1, 2)		· · ·
· ·	Optio	n A	Option B
	GE1	4C	GE14C
FW Controller Failure	1.5	3	1.36

Operating domain: ICF with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition:	2)	
: :	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.44	1.33
Load Rejection w/o Bypass	· 1.50	1.39 -
Turbine Trip w/o Bypass	1.50	1.39

Operating domain: ICF with RPTOOS (HBB) Exposure range : MOC to EOC (Application Condition: 2)		
	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.56	1.39
Load Rejection w/o Bypass	1.61	1.44
Turbine Trip w/o Bypass	1.61	1.44

Exposure range : MOC to E	xposure range : MOC to EOC (Application Condition: 2) Option A Option 1			
	G -	GE14C	GE14C	
FW Controller Failure	· · · · · · · · · · · · · · · · · · ·	1.55	1.38	
Load Rejection w/o Bypass		1.61	1.44	
Turbine Trip w/o Bypass		1.60	1.43	

Operating domain: MELLLA with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 2)		
	Option A GE14C	Option B GE14C
FW Controller Failure	1.52	1.35
Load Rejection w/o Bypass	1.59	1.42
Turbine Trip w/o Bypass	1.58	1.41

Operating domain: ICF & FWTR with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition	:2)	
	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.46	1.35

Operating domain: ICF & FWTR with RPTOOS (HBB) Exposure range : MOC to EOC (Application Condition: 2)		
	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.57	1.40

Operating domain: ICF & FWTR with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 2)			
1	Option A	Option B	
	GE14C	GE14C	
FW Controller Failure	1.57	1.40	

Operating domain: MELLLA & FWTR with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 2)			
	Option A	Option B	
· · ·	GE14C	GE14C	
FW Controller Failure	1.55	1.38	

Operating domain: MELLLA (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)			
		Option A	Option B
	- ·	GE14C	GE14C
FW Controller Failure		1.40	1.29
Load Rejection w/o Bypass	· · · ·	1.47	1.36
Turbine Trip w/o Bypass	n n n n n n Marine Maria	1.46	1.35

.

and the second second

;

· · · · · · · · · · · · · · · · · · ·	Option A	Option B GE14C
	GE14C	
FW Controller Failure	1.53	1.36
Load Rejection w/o Bypass	1.58	1.41
Turbine Trip w/o Bypass	1.58	1.41

Operating domain: MELLLA & FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2)		
	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.42	1.31

Operating domain: MELLLA & FWTR (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2)		
Option A	Option B	
GE14C	GE14C	
1.54	1.37	
	1.54	

Operating domain: MELLLA with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2)			
	Option A	Option B	
	GE14C	GE14C	
FW Controller Failure	1.43	1.32	
Load Rejection w/o Bypass	1.49	1.38	
Turbine Trip w/o Bypass	1.48	1.37	
		•	

Operating domain: MELLLA with RPTOOS (HBB) Exposure range : MOC to EOC (Application Condition: 2)		
	Option A	Option B GE14C
	GE14C	
FW Controller Failure	1.55	1.38
Load Rejection w/o Bypass	1.60	1.43
Turbine Trip w/o Bypass	1.60	1.43

Operating domain: MELLLA & FWTR with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition:		
	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.44	1.33

	Option A	Option B
	GE14C	GE14C
FW Controller Failure	1.55	1.38

12. Overpressurization Analysis Summary

Event	Psl (psig)	Pdome (psig)	Pv (psig)	Plant Response
MSIV Closure (Flux Scram) - ICF (HBB)	1261	1267	1288	Figure 50
MSIV Closure (Flux Scram) - MELLLA (HBB)	1263	1268	1288	Figure 51

-

· · · · ·

13. Fuel Loading Error Results

Variable water gap misoriented bundle analysis: Yes¹³

Misoriented Fuel Bundle	ΔCPR
GE14-P10CNAB400-9G6.0/6G4.0-100T-150-T6-3176 (GE14C)	0.14
GE14-P10CNAB400-14GZ-100T-150-T6-3006 (GE14C)	0.15
GE14-P10CNAB402-12G6.0/2G4.0-100T-150-T6-3312 (GE14C)	0.14
GE14-P10CNAB405-6G6.0/11G4.0-100T-150-T6-3313 (GE14C)	0.16
GE14I-P10CCOB379-13GZ-100T-150-T6-3309 (GE14I)	0.11

. . .

¹³ Includes a 0.02 penalty due to variable water gap R-factor uncertainty.

14. Control Rod Drop Analysis Results

Banked Position Withdrawal Sequence is utilized at Hope Creek Generating Station Unit 1; therefore, the control rod drop accident analysis is not required. NRC approval is documented in NEDE-24011-P-A-US.

15. Stability Analysis Results

15.1 Stability Option III Solution

Hope Creek has implemented BWROG Long Term Stability Solution Option III using the Oscillation Power Range Monitor (OPRM) as described in Reference 1 in Section 15.4. The plant specific Hot Channel Oscillation Magnitude (HCOM) (Reference 2 in Section 15.4) and other cycle specific stability parameters are used in the Cycle 17 Option III stability evaluation. Backup Stability Protection (BSP) regions are used by the plant in the event that the Option III OPRM system is declared inoperable.

The following Option III OPRM stability setpoint determination described in Section 15.2 and the implementation of the associated BSP Regions described in Section 15.3 provide the stability licensing bases for Hope Creek Cycle 17.

15.2 Detect and Suppress Evaluation

A reload Option III evaluation has been performed in accordance with the licensing methodology described in Reference 3 in Section 15.4. The stability based OLMCPR is determined for two conditions as a function of OPRM amplitude setpoint. The two conditions evaluated are: (1) a postulated oscillation at 45% rated core flow quasi steady-state operation (SS), and (2) a postulated oscillation following a two recirculation pump trip (2PT) from the limiting rated power operation state point.

The OPRM-setpoint-dependent OLMCPR(SS) and OLMCPR(2PT) values are calculated for Cycle 17 in accordance with the BWROG regional mode DIVOM guidelines described in Reference 4 in Section 15.4. The Cycle 17 Option III evaluation provides adequate protection against violation of the SLMCPR for the two postulated reactor instability events as long as the plant OLMCPR is equal to or greater than OLMCPR(SS) and OLMCPR(2PT) for the selected OPRM setpoint in Table 15-2.

The relationship between the OPRM Successive Confirmation Count Setpoint and the OPRM Amplitude Setpoint is provided in Reference 3 in Section 15.4 and Table 15-1. For intermediate OPRM Amplitude Setpoints, the corresponding OPRM Successive Confirmation Count Setpoints have been obtained by using linear interpolation.

The OPRM setpoints for TLO are conservative relative to SLO and are, therefore, bounding.

· · ·

1

. ·

·. ·

--

· ·

4 . 4 4

Successive Confirmation Count Setpoint	OPRM Amplitude Setpoint
6	≥1.04
8	≥1.05
9	≥1.06
10	≥1.07
11	≥1.08
12	≥1.09
13	≥1.10
14	≥1.11
-15	≥1.13
16	≥1.14
17	≥1.16
18	≥1.18
19	≥1.21
20	≥1.24

Table 15-1 Relationship between OPRM Successive Confirmation Count Setpoint and OPRM Amplitude Setpoint

 $\hat{\boldsymbol{C}} = \left\{ \begin{array}{ccc} \hat{\boldsymbol{C}} & \hat{\boldsymbol{$

(a) A set of the set of the

OPRM Amplitude Setpoint	OLMCPR(SS)	OLMCPR(2PT)
1.05	1.281	1.235
1.06	1.307	1.261
1.07	1.337	1.290
1.08	1.369	1.321
1.09	1.394	1.345
1.10	1.410	1.360
1.11	1.427	1.376
1.12	1.444	1.393
1.13	1.461	1.410
1.14	1.479	1.427
OLMCPR Acceptance Criteria	Off-rated OLMCPR @45% flow	Rated Power OLMCPR (see Section 11)

Table 15-2 OPRM Setpoint Versus OLMCPR¹⁴

ı.

11.

. .

15.3 Backup Stability Protection

. •

18

ł

The BSP region boundaries were calculated for Hope Creek Cycle 17 for normal and reduced feedwater temperature operation. The endpoints of the regions are defined in Table 15-3. The region boundaries, shown in Figure 52, are defined using the Generic Shape Function (GSF). See Reference 5 in Section 15.4.

: . . .

. . .

. .

¹⁴ The OLMCPR values presented in the OPRM Setpoint Versus OLMCPR table have been adjusted to include a 0.01 adder in accordance with extended operating domain licensing commitments in Reference 6 (in Section 15.4) to prevent a setpoint credit as described by MFN08-693.

Region Boundary Intercept	Power (%)	Flow: (%)	Core DR	Highest Channel DR
A1	58.2	40.0	< 0.799	< 0.437
B1	44.7	35.0	< 0.798	< 0.447
A2	66.4	50.0	< 0.799	< 0.404
B2	32.2	36.3	< 0.790	< 0.391

Table 15-3 BSP Region Intercepts for Normal Feedwater Temperature

Appendix H contains the BSP region boundaries for reduced feedwater temperature operation. Appendix I contains the calculated BSP region end points and decay ratios for Nominal Feedwater Temperature.

The OPRM Trip-Enabled Region for Nominal Feedwater Temperature and FWHOOS is confirmed to be less than or equal to 60% rated core flow and greater than or equal to 26.1% rated power. Also, the OPRM Trip-Enabled region for up to 88°F FFWTR is confirmed to be less than or equal to 60% rated core flow and greater than or equal to 26.1% rated power.

. . . .

15.4 References

- 1. BWR Owners' Group Long-term Stability Solutions Licensing Methodology, NEDO-31960-A, November 1995 (including Supplement 1).
- 2. Reactor Long-Term Stability Solution Option III: Licensing Basis Hot Channel Oscillation Magnitude for Hope Creek, GENE-A13-00381-04, R1, September 2004.
 - 3. Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications, Licensing Topical Report, NEDO-32465-A, August 1996.
 - 4. *Plant-Specific Regional Mode DIVOM Procedure Guideline*, GE-NE-0000-0028-9714-R1, June 2005.
 - 5. Backup Stability Protection (BSP) for Inoperable Option III Solution, OG-02-0119-260, July 2002.
 - 6. Final Safety Evaluation by the Office of Nuclear Reactor Regulation, Licensing Topical Report NEDC-33173P, Applicability of GE Methods to Expanded Operating Domains, July 2009.

16. Loss-of-Coolant Accident Results

16.1 10CFR50.46 Licensing Results

The ECCS-LOCA analysis is based on the SAFER/GESTR-LOCA methodology. The licensing results applicable to each fuel type in the new cycle are summarized in the following table.

Fuel Type	Licensing Basis PCT (°F)	Local Oxidation (%)	Core-Wide Metal-Water Reaction (%)
GE14C	1380	< 1.00	< 0.10
GE14I	1380	< 1.00	< 0.10

Table 16.1-1 Licensing Results

The SAFER/GESTR-LOCA analysis results are documented in Section 5 of Reference 1 for GE14C in Section 16.4.

This core contains GE14I Isotope Test Assemblies (ITAs), and the GE14C Licensing Results are applicable to these ITAs as described in the Technical Evaluation documented by Reference 1 for GE14I in Section 16.4.

16.2 10CFR50.46 Error Evaluation

The 10CFR50.46 errors applicable to the Licensing Basis PCT are shown in the following table.

. . .

Table 16.2-1 Impact on Licensing Basis PeakCladding Temperature for GE14C

10CFR50.46 Error Notifications		
Number	Subject	PCT Impact (°F)
2006-01	Impact of Top Peaked Power Shape on Small Break LOCA Analysis	0
	Total PCT Adder (°F)	0

The GE14C Licensing Basis PCT remains below the 10CFR50.46 limit of 2200 °F.

1 1 1

The GE14C 10CFR50.46 errors are applicable to the GE14I ITAs as described in the Technical Evaluation documented by Reference 1 for GE14I in Section 16.4, and the GE14I Licensing Basis PCT remains below 2200 °F.

16.3 ECCS-LOCA Operating Limits

12

The ECCS-LOCA MAPLHGR operating limits for the fuel bundles in this cycle are shown in the tables below.

Table 16.3-1 MAPLHGR Limits

Bundle Type(s): GE14-P10CNAB400-9G6.0/6G4.0-100T-150-T6-3176 (GE14C) GE14-P10CNAB400-14GZ-100T-150-T6-3006 (GE14C) GE14-P10CNAB402-12G6.0/2G4.0-100T-150-T6-3312 (GE14C) GE14-P10CNAB405-6G6.0/11G4.0-100T-150-T6-3313 (GE14C) GE14-P10CCOB379-13GZ-100T-150-T6-3309 (GE14I) GE14-P10CNAB402-5G6.0/14G4.0-100T-150-T6-2758 (GE14C) GE14-P10CNAB396-17GZ-100T-150-T6-3007 (GE14C) GE14-P10CNAB393-18G4.0-100T-150-T6-2885 (GE14C) GE14-P10CNAB393-18GZ-100T-150-T6-2885 (GE14C) GE14-P10CNAB393-18GZ-100T-150-T6-2884 (GE14C) GE14-P10CNAB393-18GZ-100T-150-T6-2884 (GE14C) GE14-P10CNAB398-17GZ-100T-150-T6-3008 (GE14C)

Average F	Average Planar Exposure	
GWd/MT	GWd/ST	s kW/ft
0.00	0.00	12.82
16.00	14.51	12.82
21.09	19.13	12.82
63.50	57.61	. 8.00
70.00	63.50	

The single loop operation multiplier on LHGR and MAPLHGR, and the ECCS-LOCA analytical initial MCPR value, applicable to each fuel type in the new cycle core are shown in the table below.

and the second second

Table 16.3-2 Initial MCPR and Single Loop Operation Multiplier on LHGR and MAPLHGR

Fuel Type	Initial MCPR	Single Loop Operation Multiplier on LHGR and MAPLHGR
GE14C	1.250	0.80
GE14I	1.250	0.80

The ECCS-LOCA MAPLHGR limits bound a feedwater temperature reduction of 102 °F for both the GE14C and GE14I fuel types.

The GE14C 10CFR50.46 initial MCPR and single loop operation multiplier on LHGR and MAPLHGR are applicable to the GE14I ITAs as described in the Technical Evaluation documented by Reference 1 for GE14I in Section 16.4.

16.4 References

The SAFER/GESTR-LOCA analysis base reports applicable to the new cycle core are listed below.

-

References for GE14C

1. SAFER/GESTR-LOCA Loss of Coolant Accident Analysis for Hope Creek Generating Station at Power Uprate NEDC-33172P, Revision 0, March 2005.

References for GE14I

1. Safety Analysis Report to Support Introduction of GE14i Isotope Test Assemblies (ITAs) in Hope Creek Generating Station, NEDC-33529P, Rev. 0, December 2009; and Errata and Addenda Number 1, June 10, 2010.

	60	
	58	비민 나만 비민 비민 비민 비난 비민 다 다间 제지 지폐 지지 하다 다
	56	
	50 54	<u> 그는 그는 그는 그는 그는 그는 그는 그는 그</u>
	52	
	52 50	키스 그스 이것 이용 이용 기기 위해 의죄 이명 이기 위해 제품 패패패 제품 기기 위해 제가 기기 위해 이제 이명 이기 키시 배
	48	H H AIE LID BIO AIC KIC LIL CIK CIA DB DL EA HH HIA LIL BIK DIA GIA CIK AIA KIC AIG AD KIB LIL AHH
	46	
	44	비 지정 지정 지정 그것 가장 그것 지정 기를 하는 지 것이 제에 되어 있다.
	42	
	,40	UIA LIB DIA GIL CIA GIG CIA KIK AIC GIG AIC LIG AID BIL AIU
	38	프로그램 전에 위해 전에 위해 가는 것이 가지 것이 가지 않는 것이 이야 같다.
	36	
	34	비용 것이 되는 것이 나는 것이 것이 있는 것이 있는 것이 있는 것이 있는 것이 되는 것이 되는 것이 되는 것이 있는 것이 없는 것이 있는 것이 없는 않이 않이 않을
	32	
	30	
	28	H B K D B C K C I C A C A C G G C A C A C C K C B D K B H
	26	피스 이즈 이것 그것 그야 그것 것도 그는 어떤 것은 한 것은 것이 어떤 것이 되어 주면
	24	
	22	JA IB DA GL CA GG CA KK AC GG AC LG AD BI AJ
	20	HE AE KD AC LC AC GC KK CG CA CL CA DK EA BH
	18	
· `i:	16 14	H <u>A B A D K A L C L K K C L C C K K L C L A K D A B A H</u>
	12	
	10	
	8	
	6 4	
ì	2	
		تصابها تعالها تهاتها تواتها تعاتها تعاتها تعاتها

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Fuel Type				
C=GE14-P10CNAB402-12G6.0/2G4.0-100T-150-T6-3312 (Cycle 17) D=GE14-P10CNAB405-6G6.0/11G4.0-100T-150-T6-3313 (Cycle 17)	H=GE14-P10CNAB393-18G4.0-100T-150-T6-2885 (Cycle 14) I=GE14-P10CNAB405-15GZ-100T-150-T6-3009 (Cycle 15) J=GE14-P10CNAB393-18GZ-100T-150-T6-2884 (Cycle 14) K=GE14-P10CNAB398-17GZ-100T-150-T6-3008 (Cycle 15)			

Figure 1 Reference Core Loading Pattern

Hope Creek Reload 16

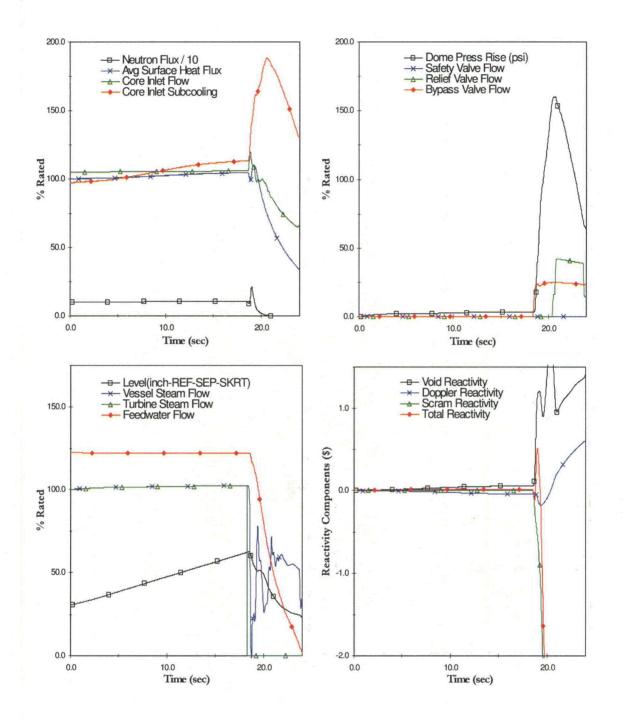


Figure 2 Plant Response to FW Controller Failure (MOC ICF (HBB))

Hope Creek Reload 16

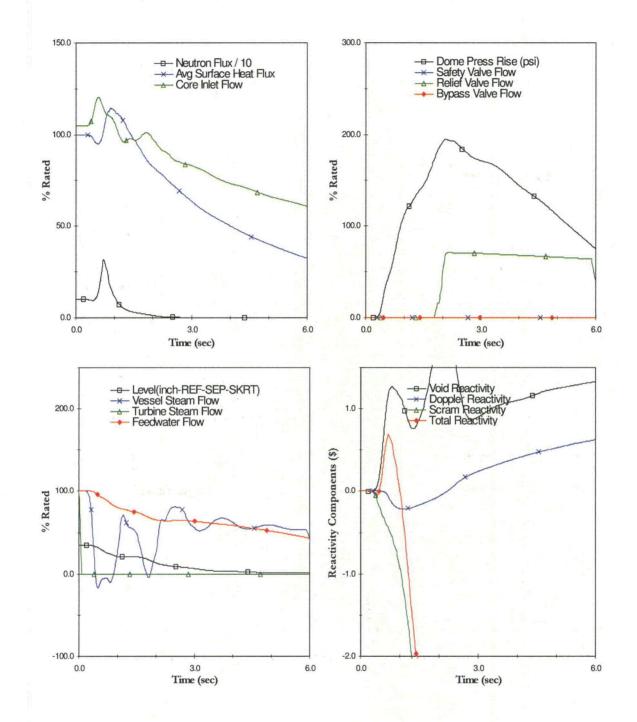


Figure 3 Plant Response to Load Rejection w/o Bypass (MOC ICF (HBB))

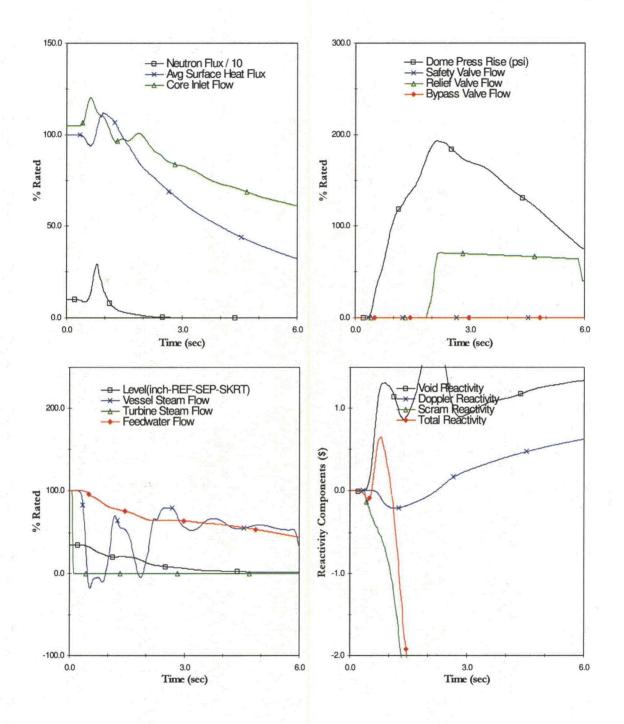


Figure 4 Plant Response to Turbine Trip w/o Bypass (MOC ICF (HBB))

Hope Creek Reload 16

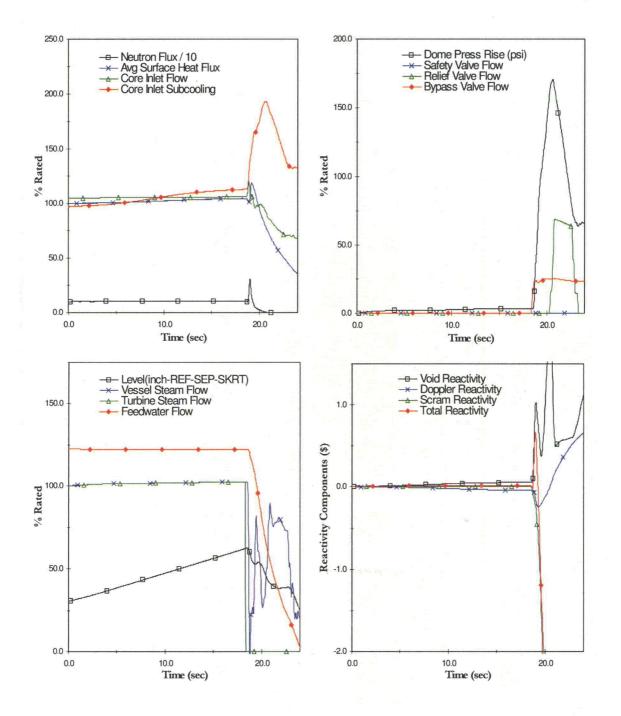


Figure 5 Plant Response to FW Controller Failure (EOC ICF (HBB))

Hope Creek Reload 16

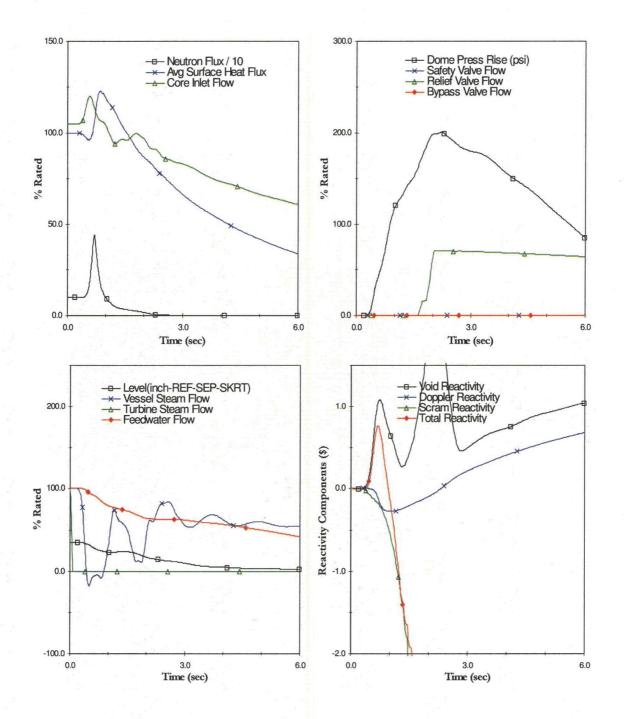


Figure 6 Plant Response to Load Rejection w/o Bypass (EOC ICF (HBB))

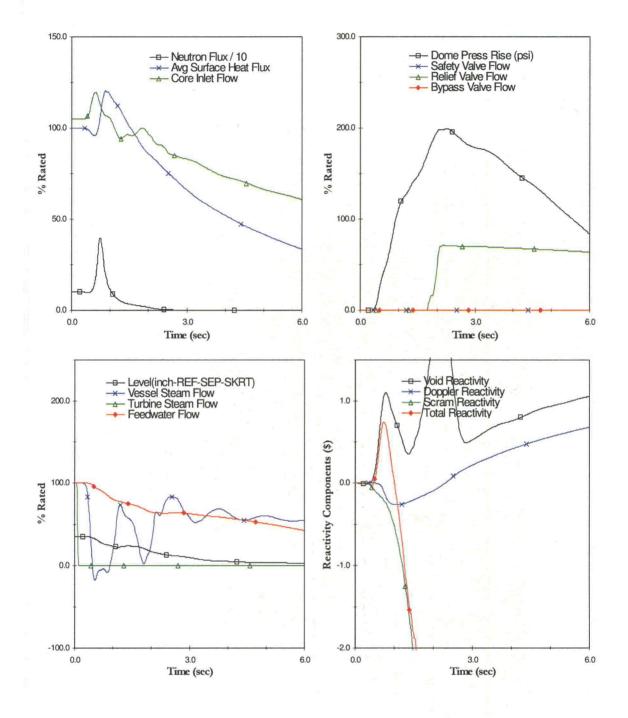


Figure 7 Plant Response to Turbine Trip w/o Bypass (EOC ICF (HBB))

Hope Creek Reload 16

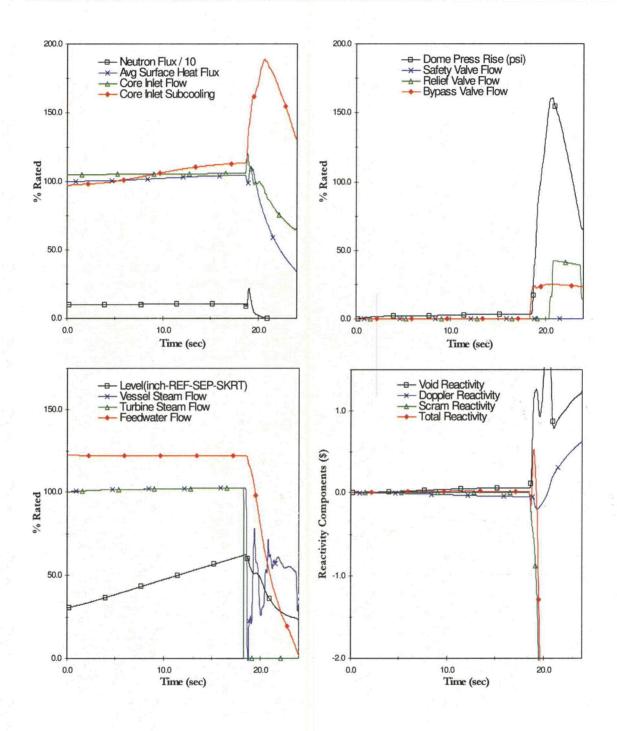


Figure 8 Plant Response to FW Controller Failure (EOC ICF (UB))

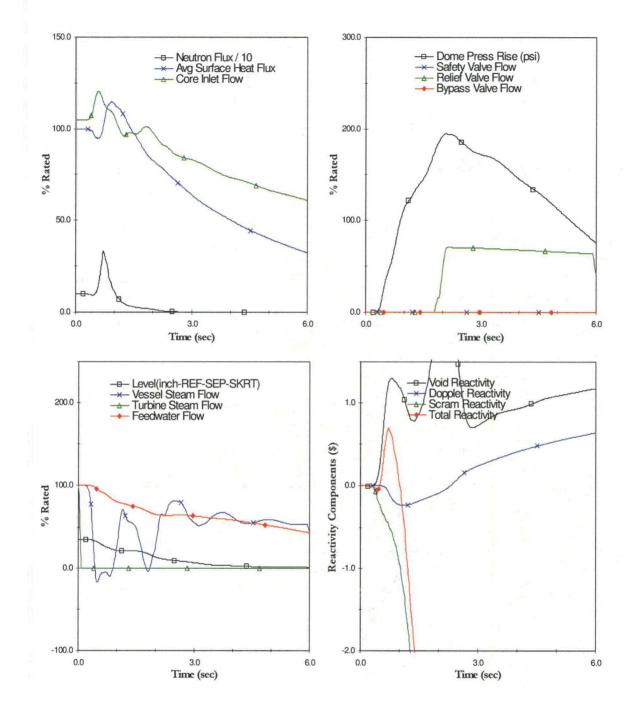


Figure 9 Plant Response to Load Rejection w/o Bypass (EOC ICF (UB))

Hope Creek Reload 16

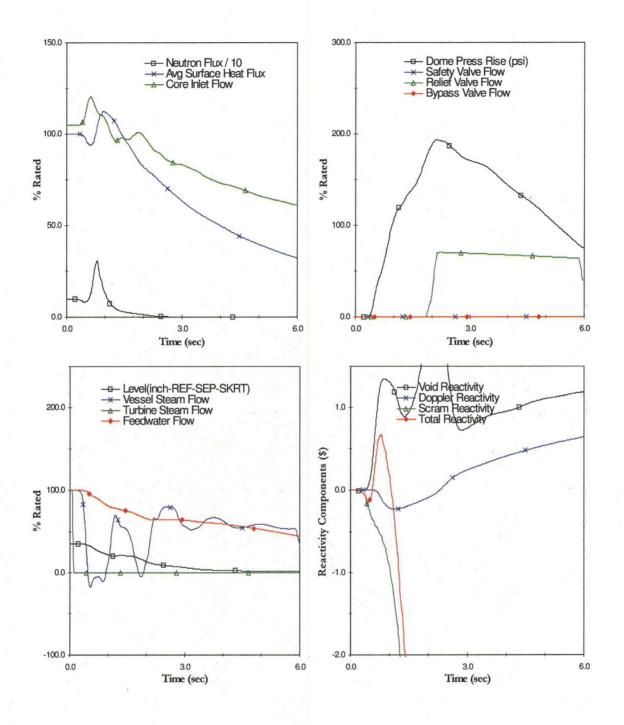


Figure 10 Plant Response to Turbine Trip w/o Bypass (EOC ICF (UB))

Hope Creek Reload 16

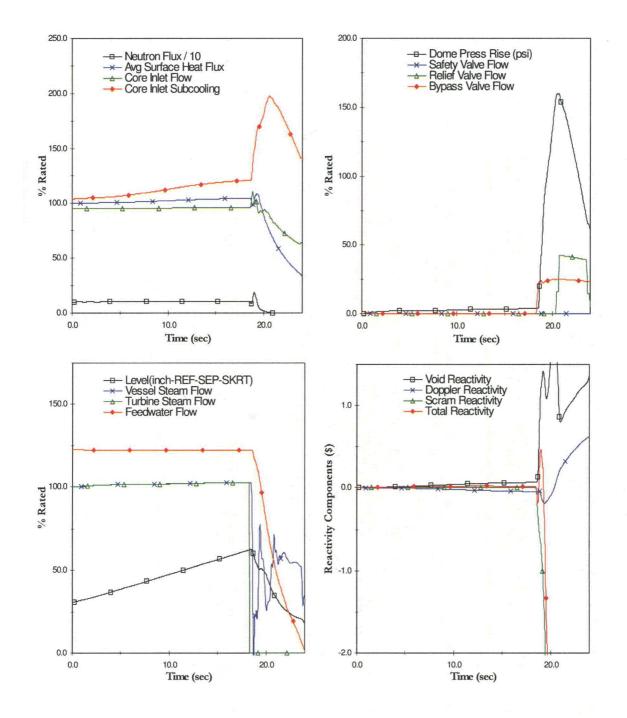


Figure 11 Plant Response to FW Controller Failure (EOC MELLLA (UB))

Hope Creek Reload 16

0000-0105-6621-SRLR Revision 0

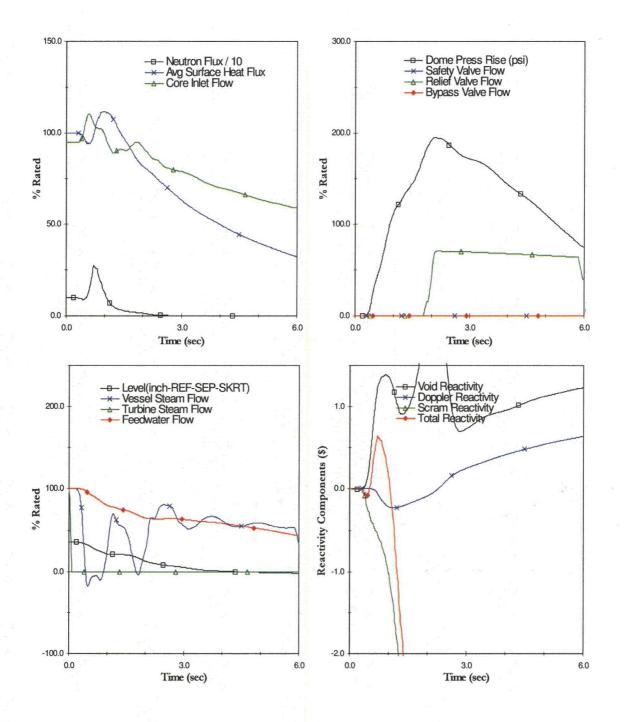


Figure 12 Plant Response to Load Rejection w/o Bypass (EOC MELLLA (UB))

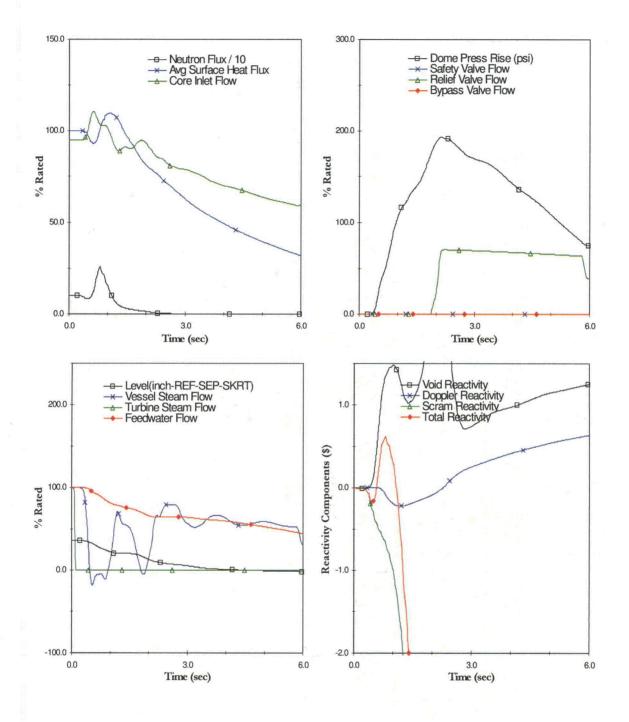


Figure 13 Plant Response to Turbine Trip w/o Bypass (EOC MELLLA (UB))

Hope Creek Reload 16

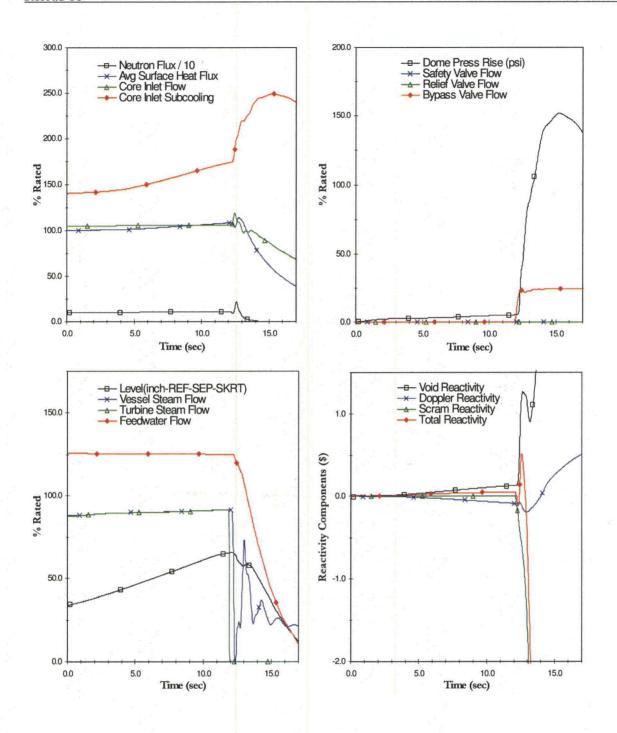


Figure 14 Plant Response to FW Controller Failure (MOC ICF & FWTR (HBB))

Hope Creek Reload 16

0000-0105-6621-SRLR Revision 0

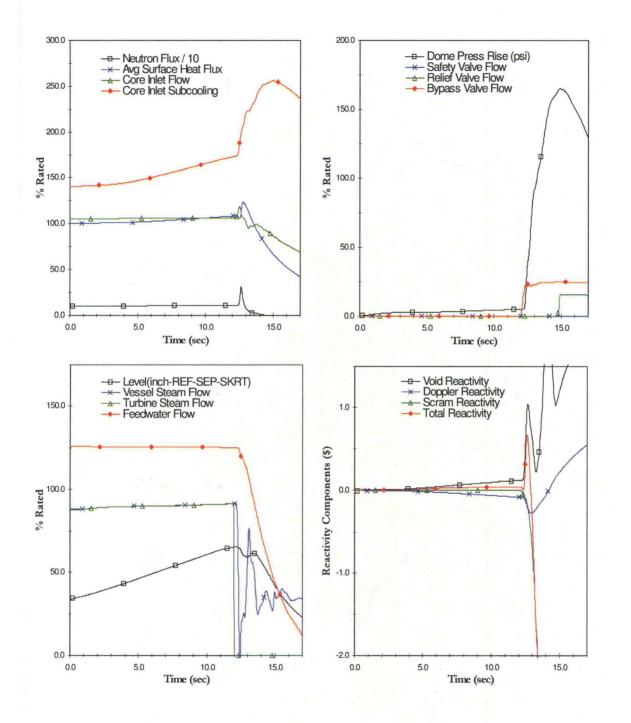


Figure 15 Plant Response to FW Controller Failure (EOC ICF & FWTR (HBB))

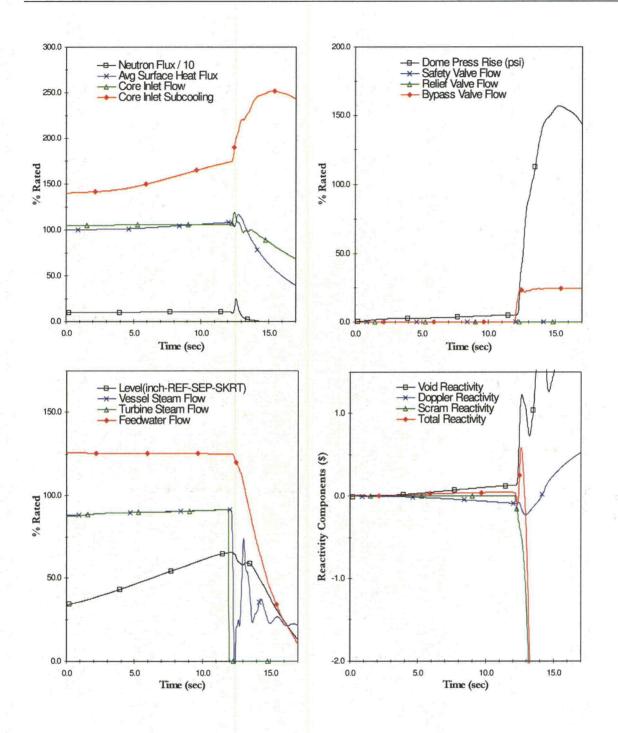


Figure 16 Plant Response to FW Controller Failure (EOC ICF & FWTR (UB))

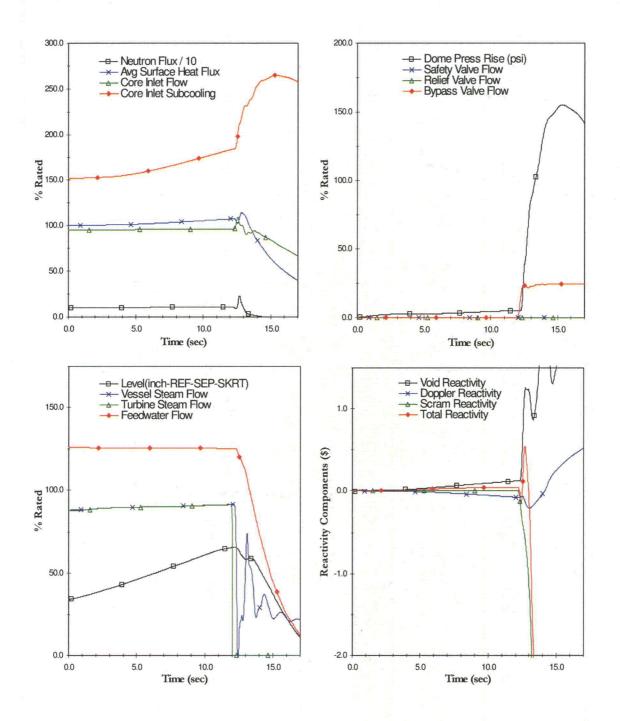


Figure 17 Plant Response to FW Controller Failure (EOC MELLLA & FWTR (UB))

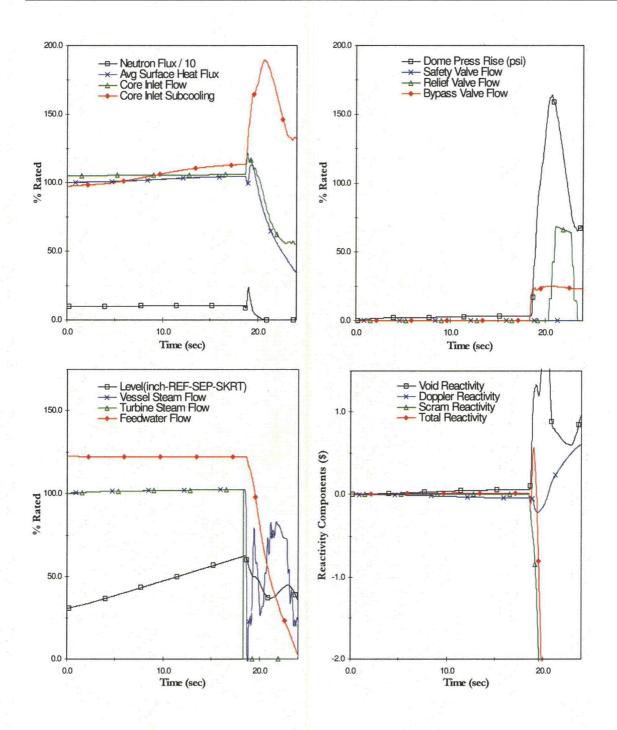
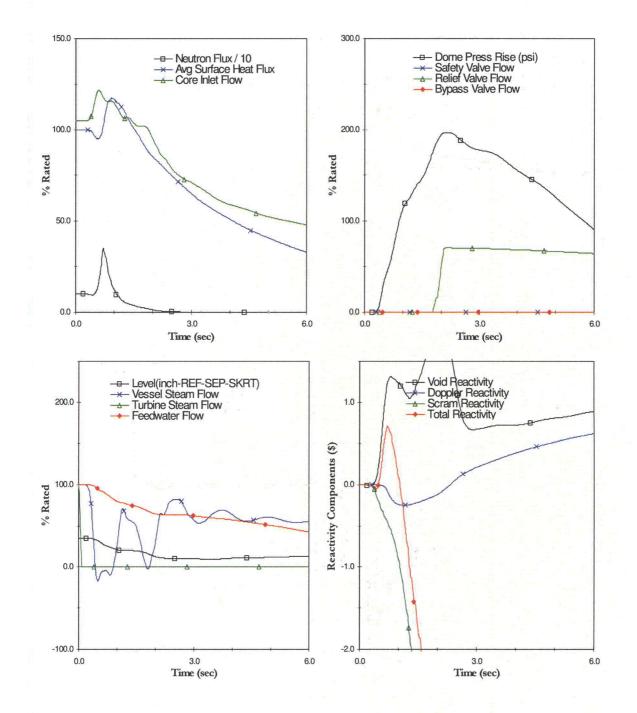
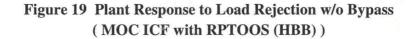




Figure 18 Plant Response to FW Controller Failure (MOC ICF with RPTOOS (HBB))

Hope Creek Reload 16

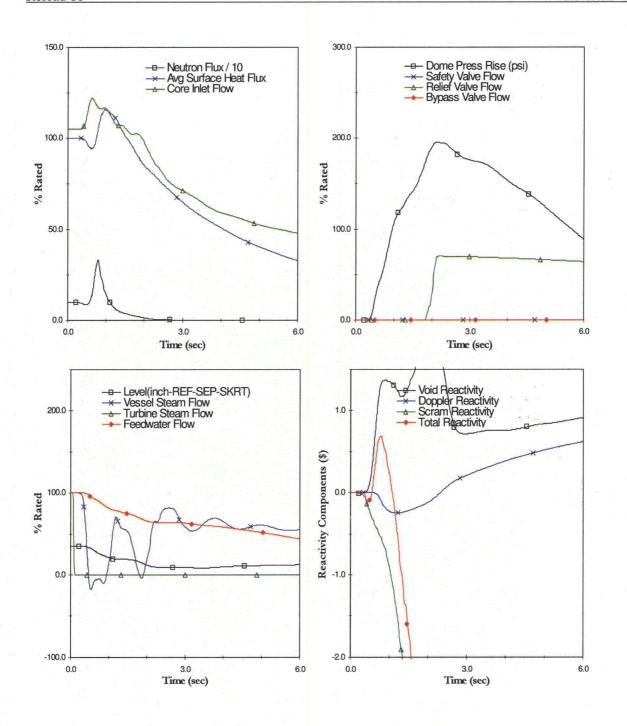


Figure 20 Plant Response to Turbine Trip w/o Bypass (MOC ICF with RPTOOS (HBB))

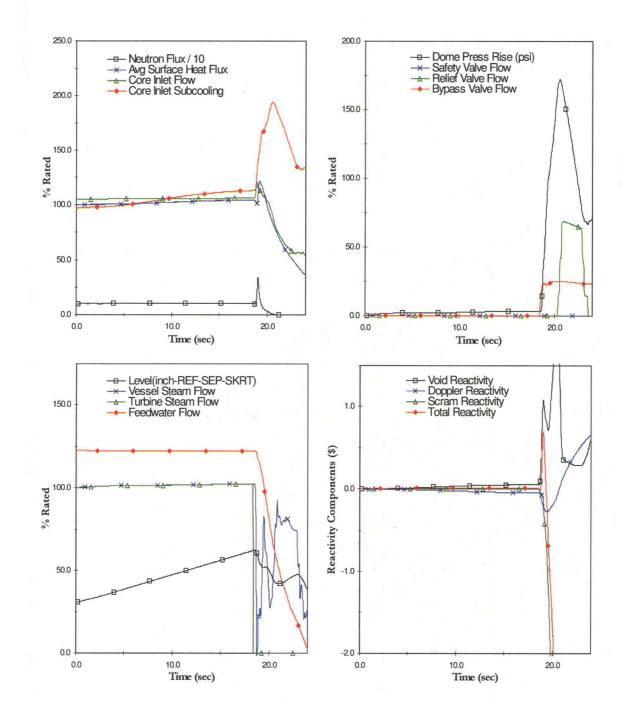


Figure 21 Plant Response to FW Controller Failure (EOC ICF with RPTOOS (HBB))

Hope Creek Reload 16

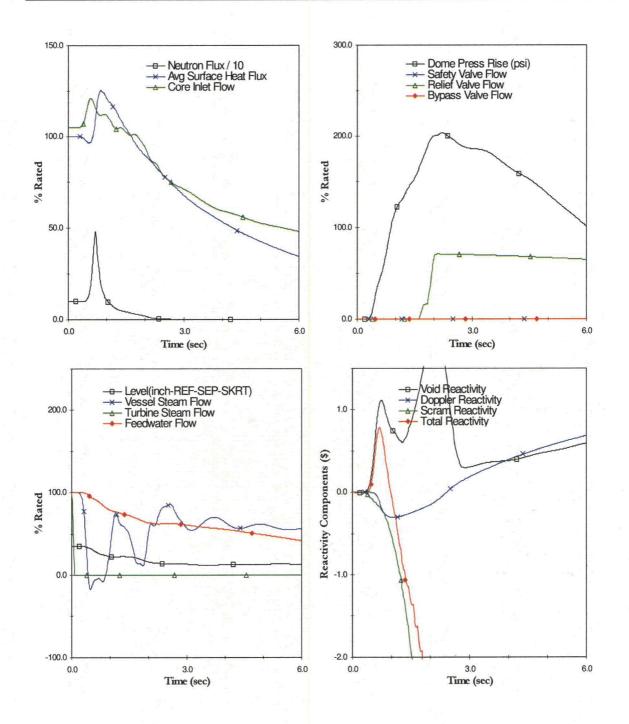


Figure 22 Plant Response to Load Rejection w/o Bypass (EOC ICF with RPTOOS (HBB))

Hope Creek Reload 16

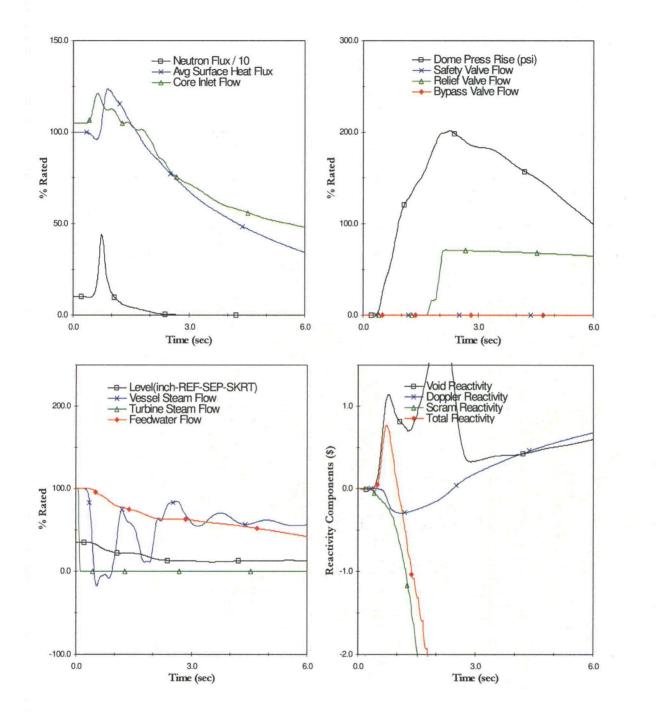


Figure 23 Plant Response to Turbine Trip w/o Bypass (EOC ICF with RPTOOS (HBB))

Hope Creek Reload 16

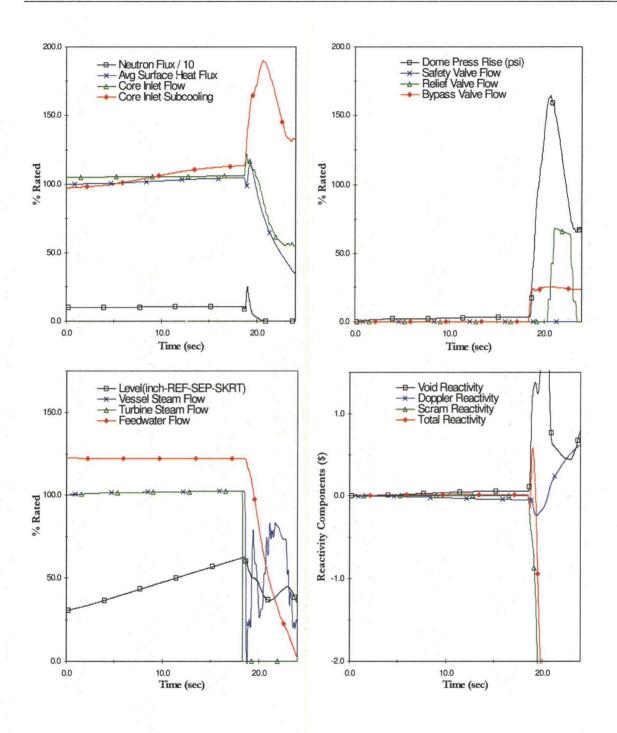


Figure 24 Plant Response to FW Controller Failure (EOC ICF with RPTOOS (UB))

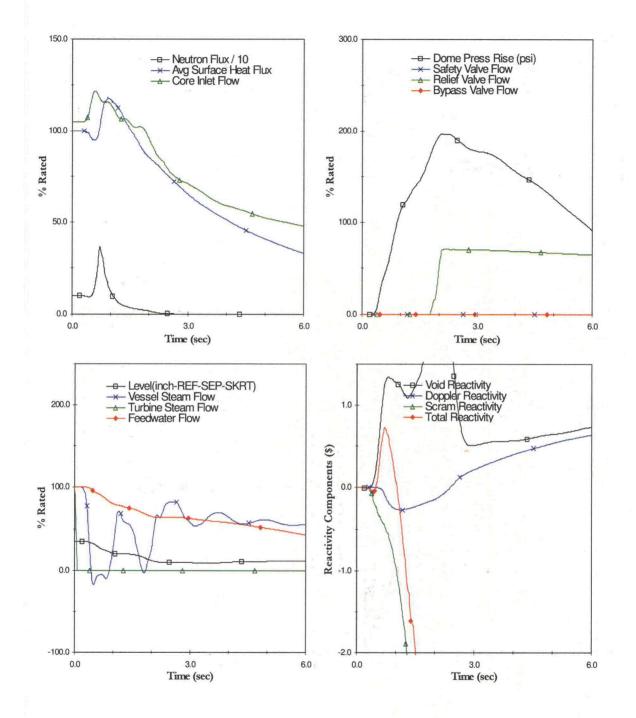


Figure 25 Plant Response to Load Rejection w/o Bypass (EOC ICF with RPTOOS (UB))

Hope Creek Reload 16

Figure 26 Plant Response to Turbine Trip w/o Bypass (EOC ICF with RPTOOS (UB))

Hope Creek Reload 16

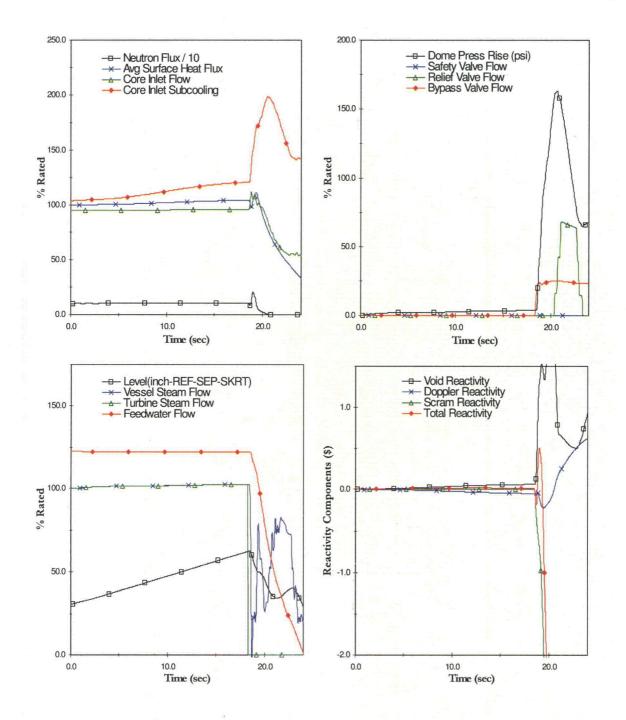


Figure 27 Plant Response to FW Controller Failure (EOC MELLLA with RPTOOS (UB))

Hope Creek Reload 16

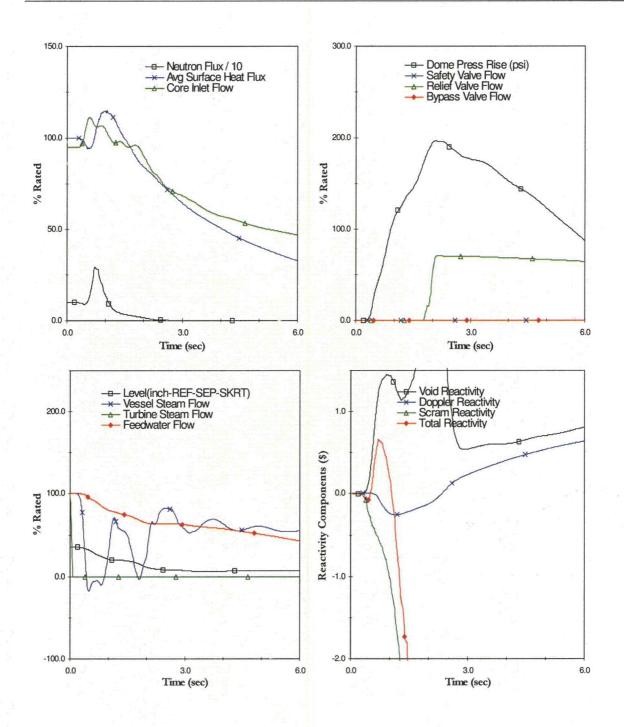


Figure 28 Plant Response to Load Rejection w/o Bypass (EOC MELLLA with RPTOOS (UB))

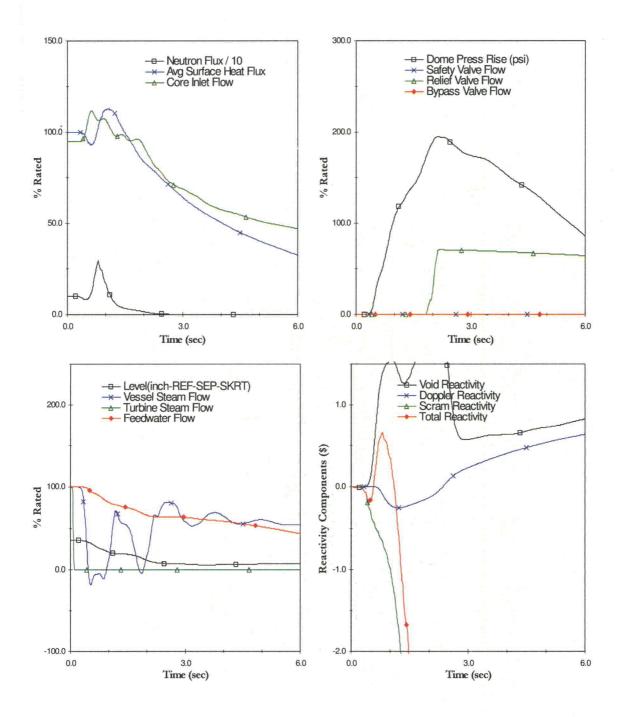


Figure 29 Plant Response to Turbine Trip w/o Bypass (EOC MELLLA with RPTOOS (UB))

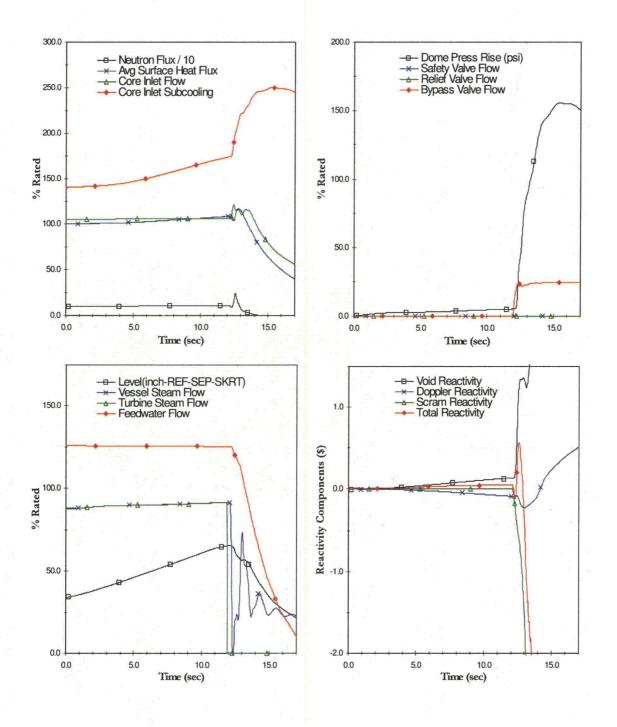


Figure 30 Plant Response to FW Controller Failure (MOC ICF & FWTR with RPTOOS (HBB))

Hope Creek Reload 16

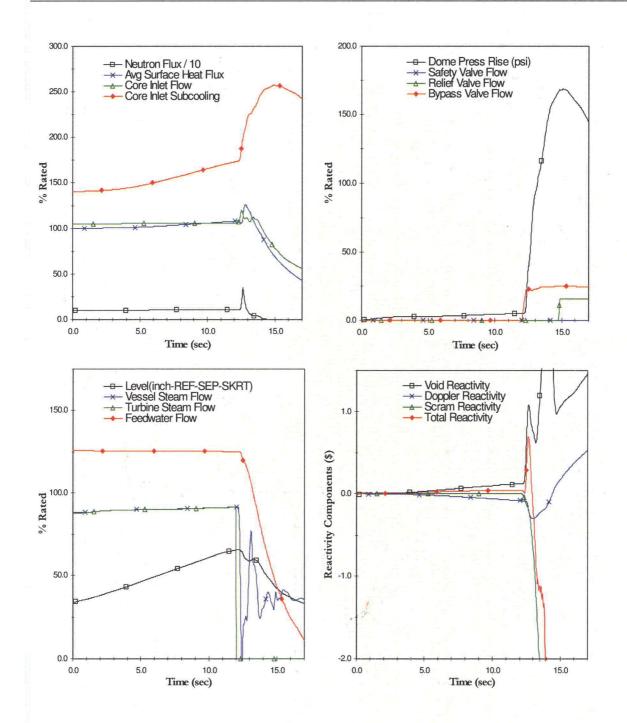


Figure 31 Plant Response to FW Controller Failure (EOC ICF & FWTR with RPTOOS (HBB))

Hope Creek Reload 16

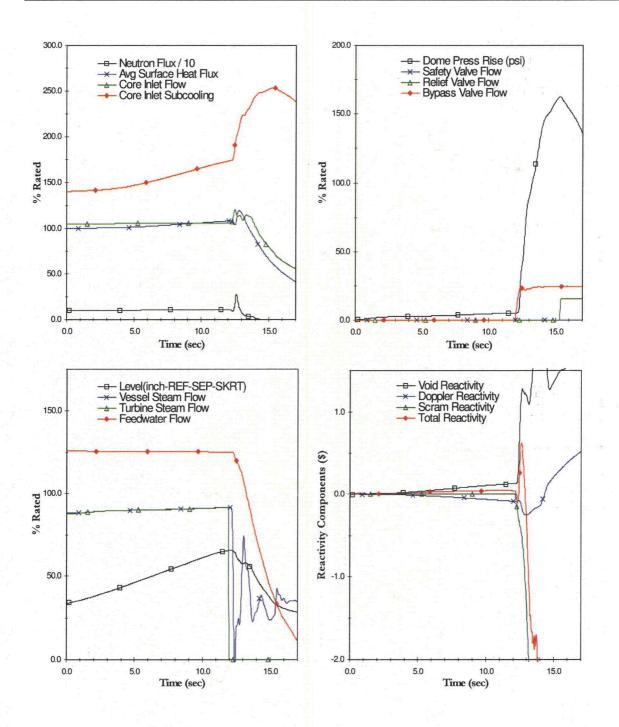


Figure 32 Plant Response to FW Controller Failure (EOC ICF & FWTR with RPTOOS (UB))

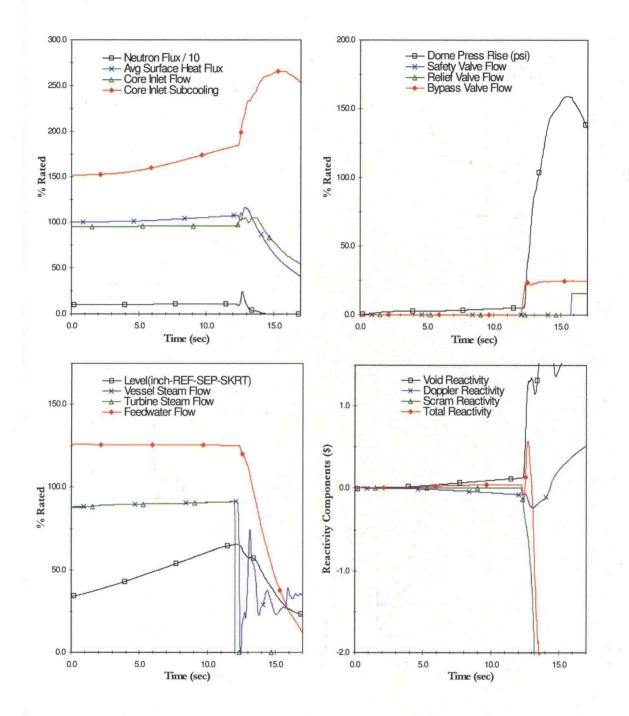


Figure 33 Plant Response to FW Controller Failure (EOC MELLLA & FWTR with RPTOOS (UB))

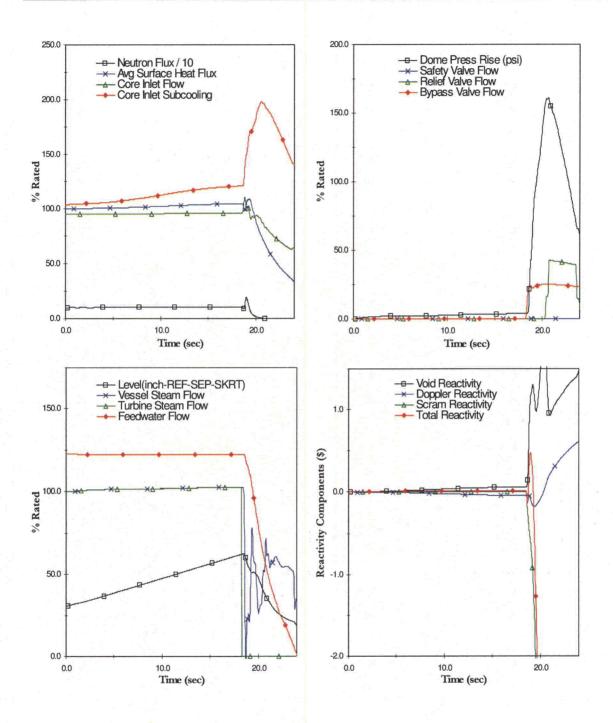


Figure 34 Plant Response to FW Controller Failure (MOC MELLLA (HBB))

0000-0105-6621-SRLR Revision 0

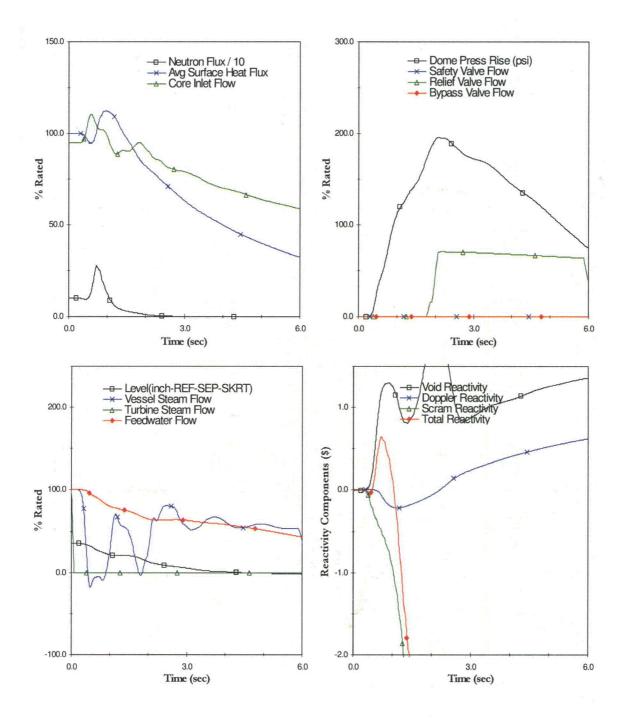


Figure 35 Plant Response to Load Rejection w/o Bypass (MOC MELLLA (HBB))

Hope Creek Reload 16

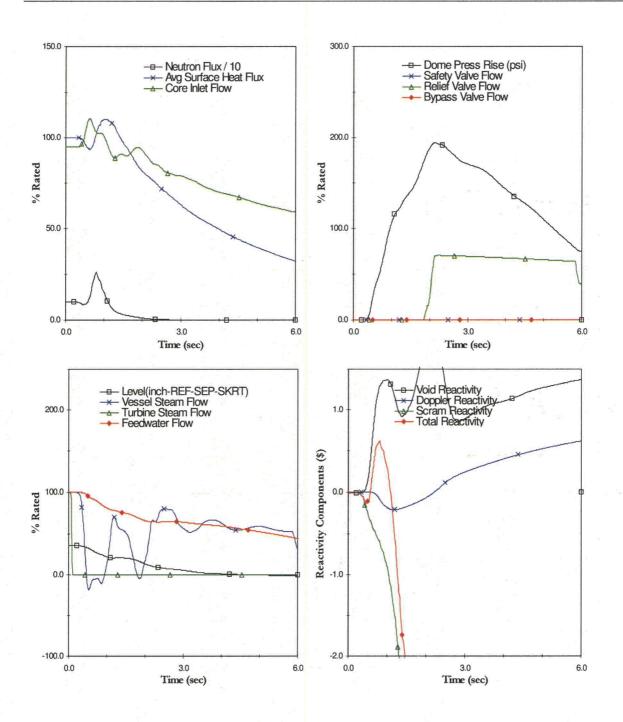


Figure 36 Plant Response to Turbine Trip w/o Bypass (MOC MELLLA (HBB))

0000-0105-6621-SRLR Revision 0

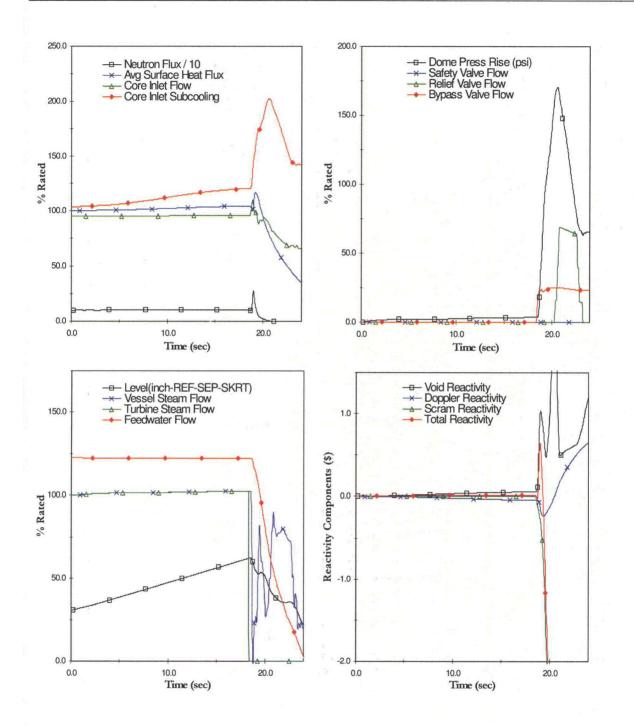


Figure 37 Plant Response to FW Controller Failure (EOC MELLLA (HBB))

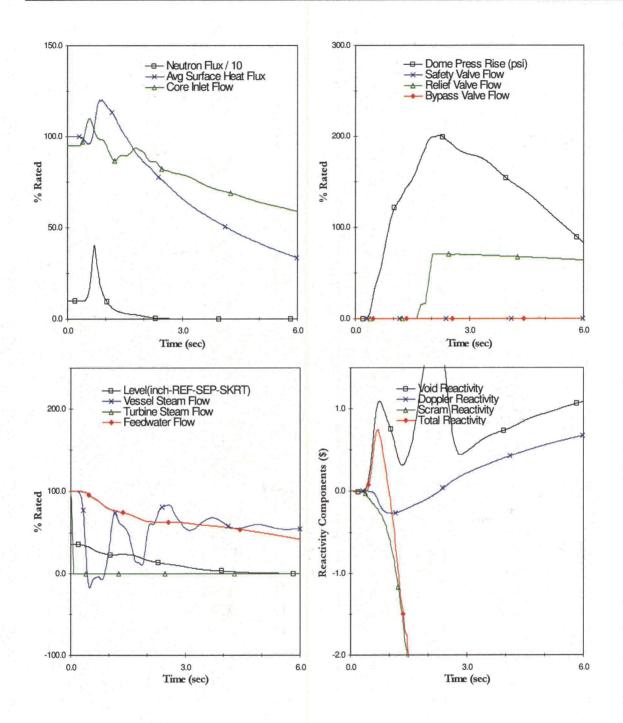


Figure 38 Plant Response to Load Rejection w/o Bypass (EOC MELLLA (HBB))

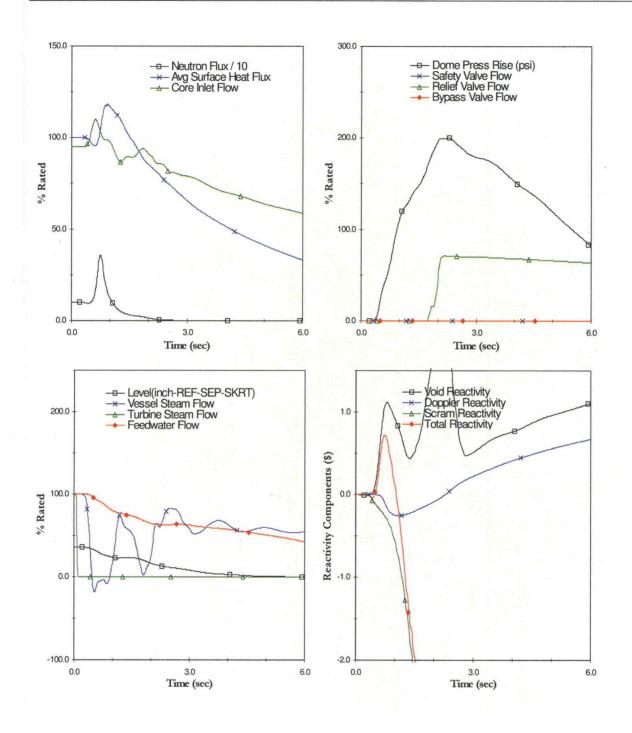


Figure 39 Plant Response to Turbine Trip w/o Bypass (EOC MELLLA (HBB))

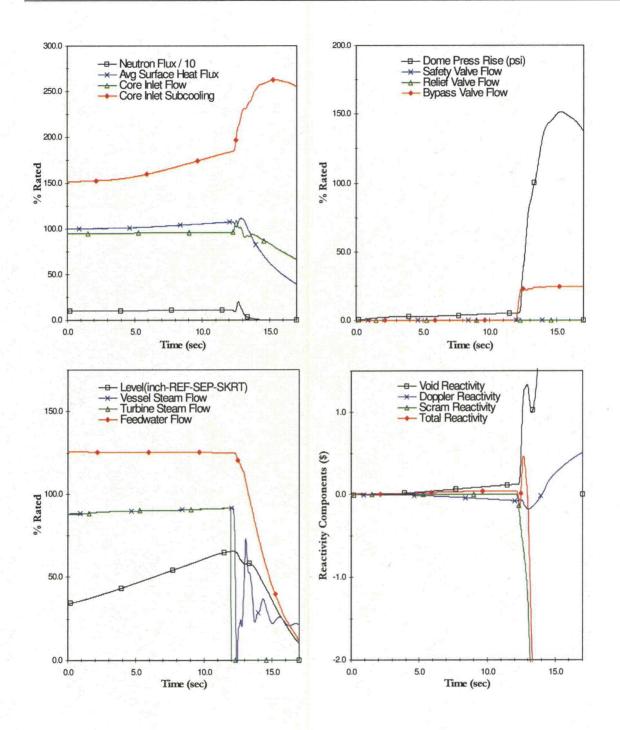


Figure 40 Plant Response to FW Controller Failure (MOC MELLLA & FWTR (HBB))

Hope Creek Reload 16

0000-0105-6621-SRLR Revision 0

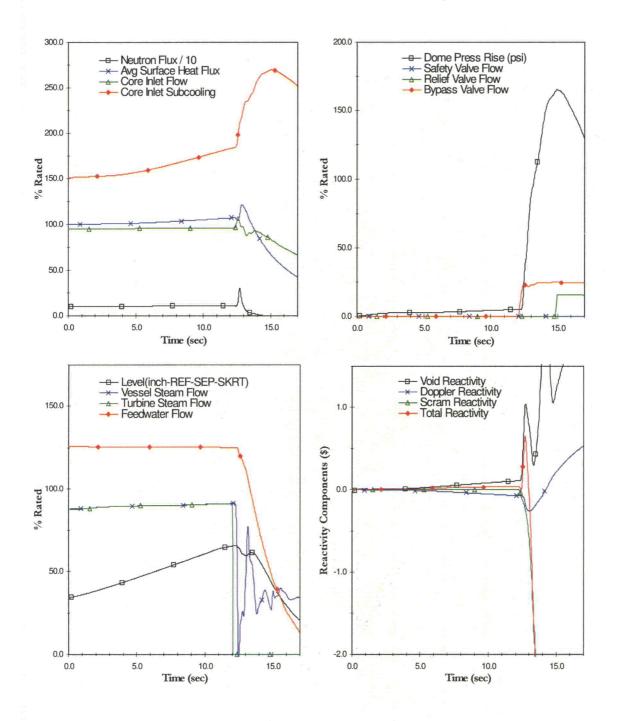


Figure 41 Plant Response to FW Controller Failure (EOC MELLLA & FWTR (HBB))

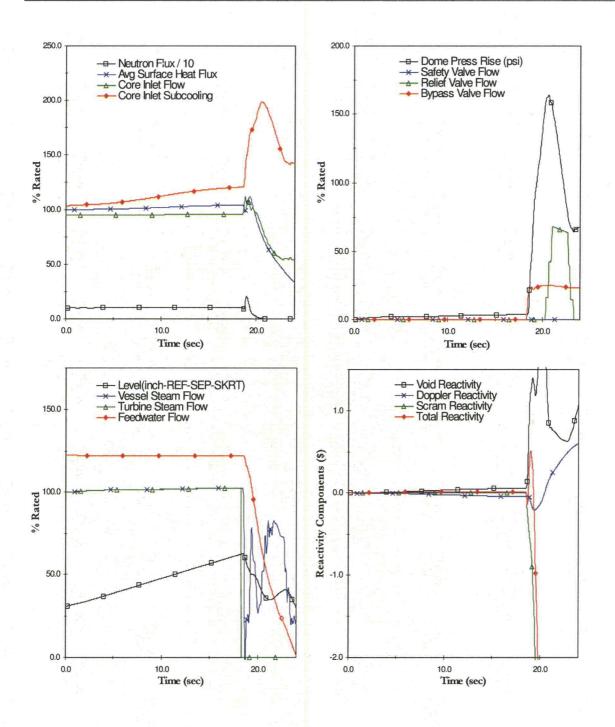


Figure 42 Plant Response to FW Controller Failure (MOC MELLLA with RPTOOS (HBB))

Hope Creek Reload 16 0000-0105-6621-SRLR Revision 0

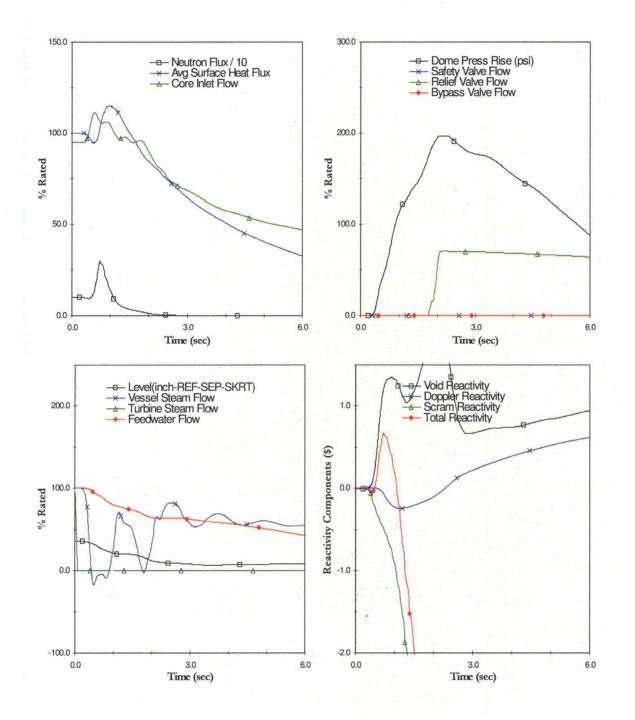


Figure 43 Plant Response to Load Rejection w/o Bypass (MOC MELLLA with RPTOOS (HBB))

Page 76

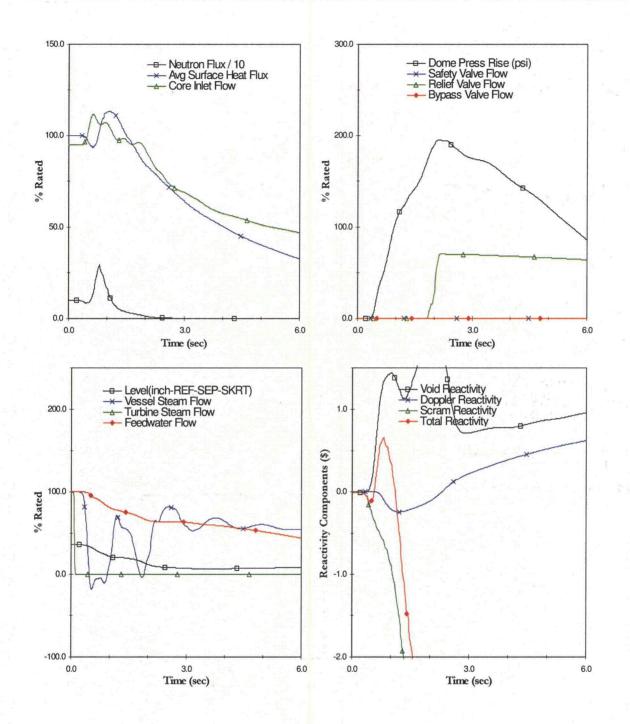


Figure 44 Plant Response to Turbine Trip w/o Bypass (MOC MELLLA with RPTOOS (HBB))

Hope Creek Reload 16

0000-0105-6621-SRLR Revision 0

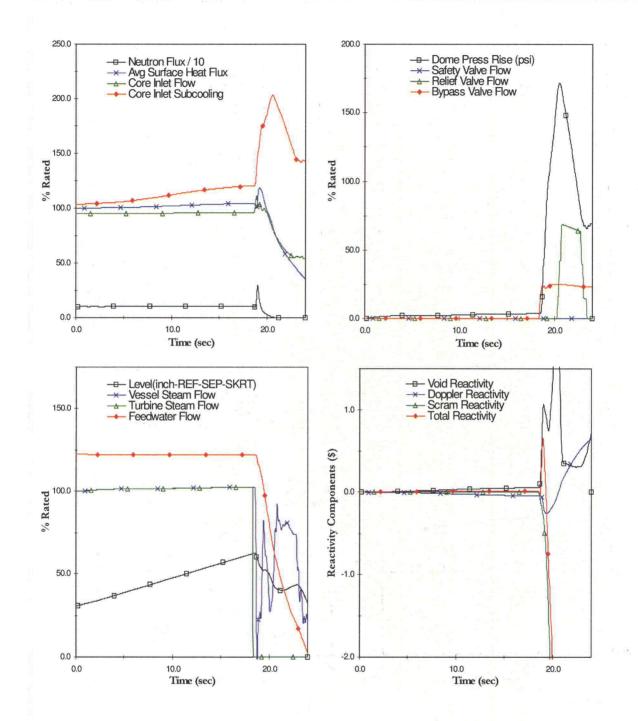


Figure 45 Plant Response to FW Controller Failure (EOC MELLLA with RPTOOS (HBB))

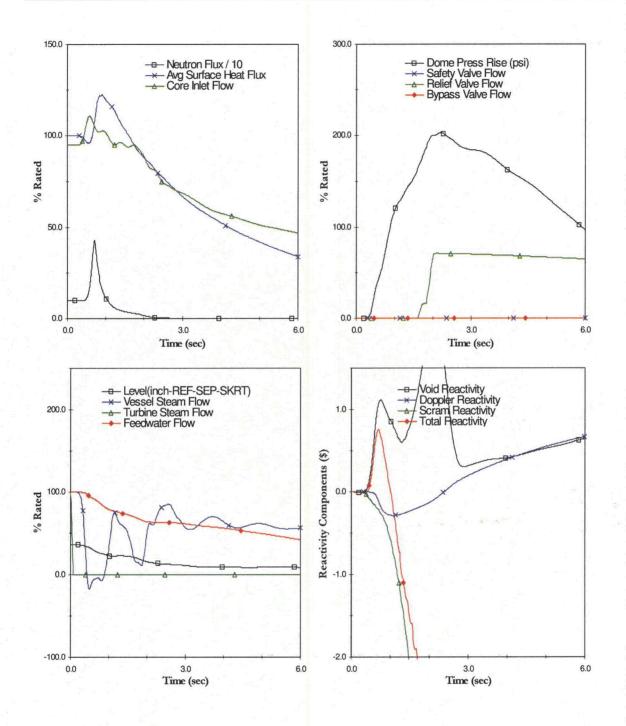


Figure 46 Plant Response to Load Rejection w/o Bypass (EOC MELLLA with RPTOOS (HBB)) Hope Creek Reload 16 0000-0105-6621-SRLR Revision 0

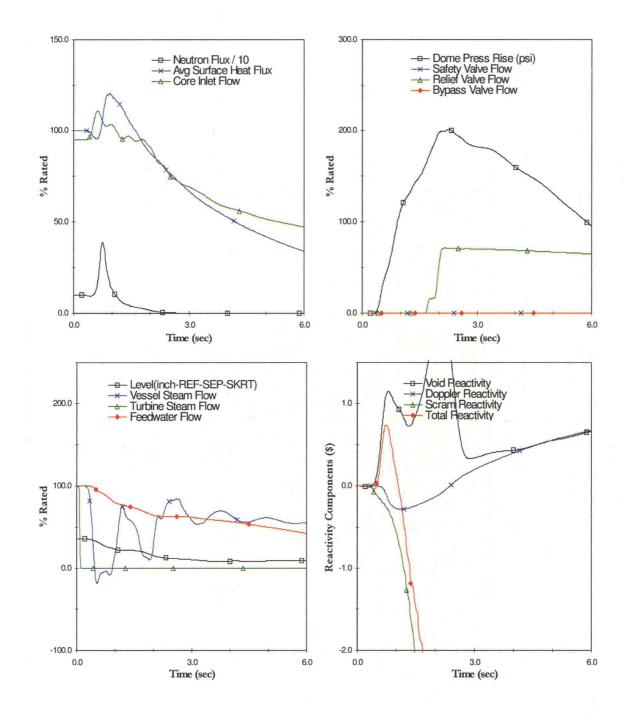


Figure 47 Plant Response to Turbine Trip w/o Bypass (EOC MELLLA with RPTOOS (HBB))

Page 80

Hope Creek Reload 16 0000-0105-6621-SRLR Revision 0

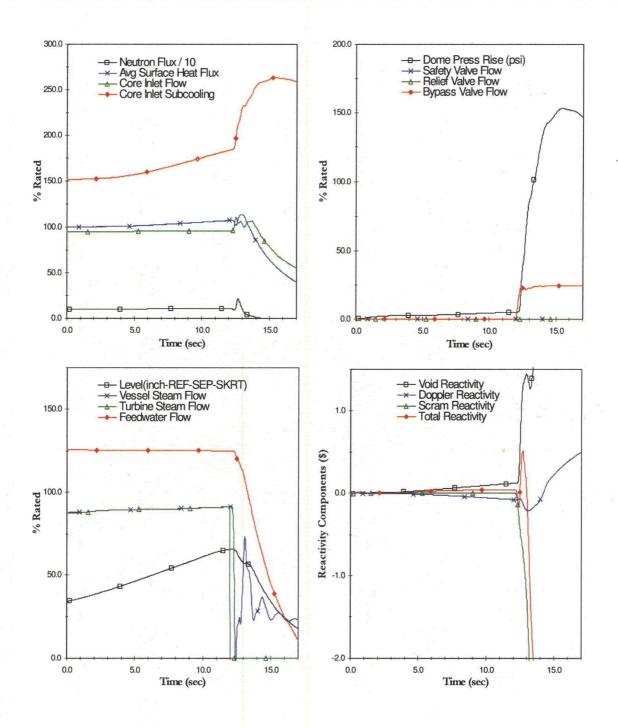


Figure 48 Plant Response to FW Controller Failure (MOC MELLLA & FWTR with RPTOOS (HBB))

0000-0105-6621-SRLR Revision 0

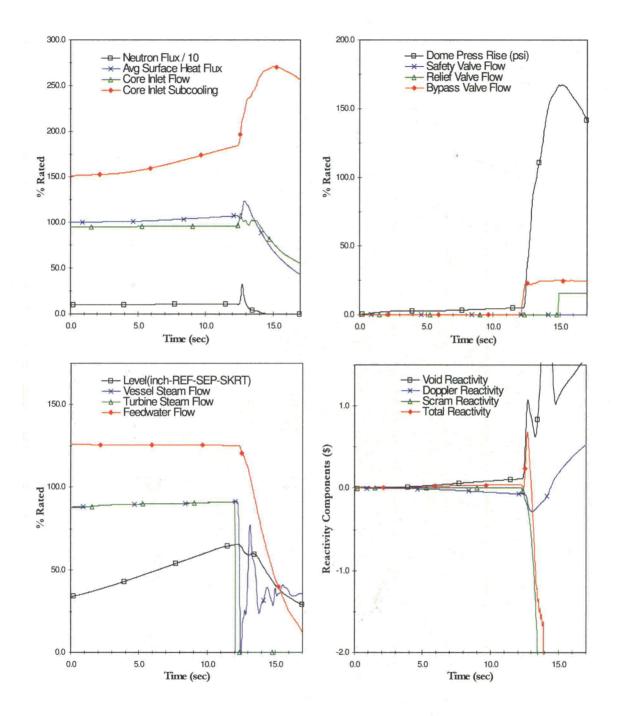


Figure 49 Plant Response to FW Controller Failure (EOC MELLLA & FWTR with RPTOOS (HBB))

Hope Creek Reload 16

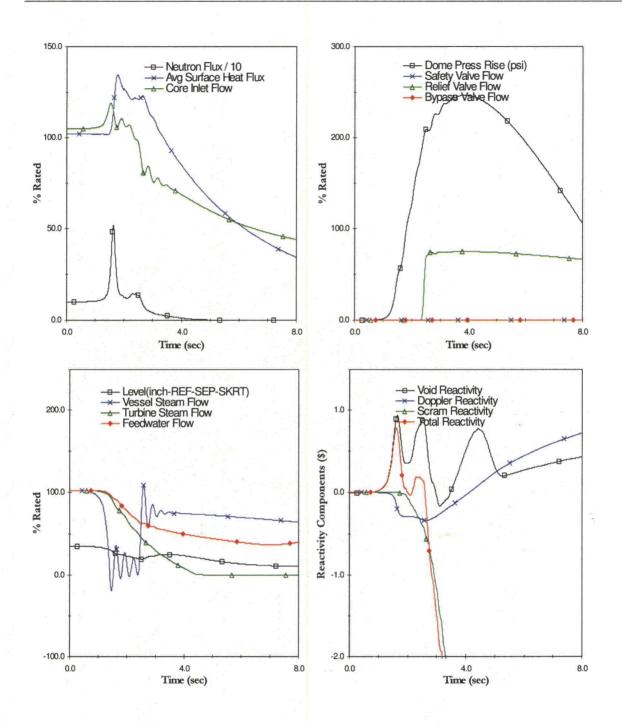


Figure 50 Plant Response to MSIV Closure (Flux Scram) - ICF (HBB)

Hope Creek Reload 16

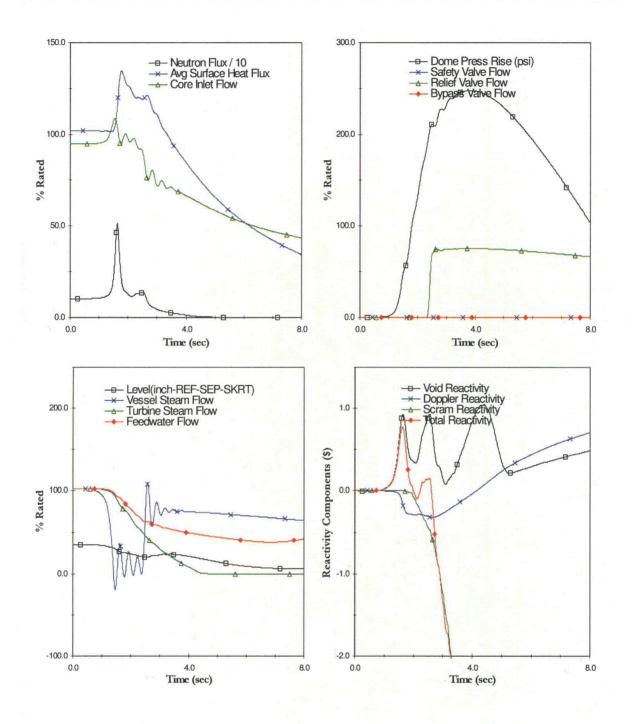
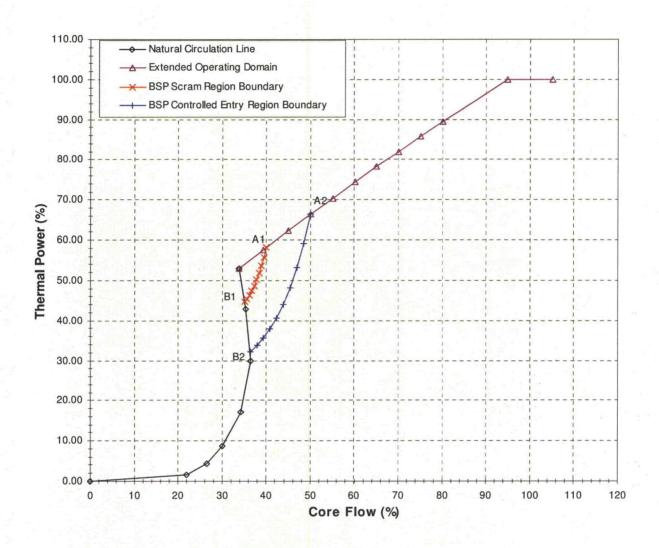



Figure 51 Plant Response to MSIV Closure (Flux Scram) - MELLLA (HBB)

6 1

÷ .

.

Appendix A Analysis Conditions

The reactor operating conditions used in the reload licensing analysis for this plant and cycle are presented in Table A-1. The pressure relief and safety valve configuration for this plant are presented in Table A-2. Additionally, the operating flexibility options listed in Section 8 are supported by the reload licensing analysis.

		Analysis Value			
Parameter	ICF NFWT	LCF NFWT	ICF RFWT	LCF RFWT	
Thermal power, MWt	3840.0	3840.0	3840.0	3840.0	
Core flow, Mlb/hr	105.0	94.8	105.0	94.8	
Reactor pressure (core mid-plane), psia	1036.0	1034.0	1013.4	1011.6	
Inlet enthalpy, Btu/lb	526.3	523.8	511.0	507.3	
Non-fuel power fraction	0.036	0.036	0.036	0.036	
Steam flow, Mlb/hr	16.80	16.78	14.75	14.73	
Dome pressure, psig	1005.0	1005.0	983.6	983.6	
Turbine pressure, psig	945.8	945.9	937.3	937.4	

Table A-1 Reactor Operating Conditions

140

Table A-2 Pressure Relief and Safety Valve Configuration

Valve Type	Number of Valves	Lowest Setpoint (psig)
Safety/Relief Valve	14	1141.2

Appendix B Thermal-Mechanical Compliance

A thermal-mechanical compliance check is performed for all analyzed transients to assure that the fuel will operate without violating the thermal-mechanical design limits. These limits are designed such that reactor operation within these limits provides assurance that the fuel will not exceed any thermal-mechanical design or licensing limits during all modes of operation. The fuel thermal-mechanical limits are met for the current cycle.

Page 87

Appendix C Decrease in Core Coolant Temperature Event

The Loss-of-Feedwater Heating event was analyzed at 100% rated power using the BWR Simulator Code. The use of this code is consistent with the approved methodology. The transient plots, neutron flux and heat flux values normally reported in Section 9 are not an output of the BWR Simulator Code; therefore, those items are not included in this document. The OLMCPR result is shown in Section 11.

In addition, the Inadvertent HPCI start-up event was determined to be non-limiting.

1. . .

. .

.

1

1

Appendix D Off-Rated Limits

Off-Rated Power Dependent Limits

The cycle-independent power dependent limits are documented in Reference D-1. The power dependent limits provided in Reference D-1 have been validated for this cycle. Above Pbypass (24% rated power), the power dependent limits consist of Kp and LHGRFACp multipliers. The Kp and LHGRFACp multipliers are applied as follows:

Operating Limit MCPRp = Kp * Operating Limit MCPR(100%P)

LHGRp = LHGRFACp * LHGRstd

Analyses performed in support of Reference D-1 confirmed that the Kp and LHGRFACp multipliers bound the range between Pbypass and the PLU enabling power level. No thermal limits are required for below Pbypass.

Kp Limits for: Equipment In Service	· · · · · · · · · · · · · · · · · · ·
Limits for Power $\geq 24.0\%$	· · · · · · · · · · · · · · · · · · ·
Power (%)	Limit, <i>Kp</i>
24.0	1.561
45.0	1.280
60.0	1.150
100.0	1.000

Kp Limits for: RPTOOS	· · · · · · · · · · · · · · · · · · ·	
Limits for Power $\geq 24.0\%$	ч н г с	1 200 - 200 1 3
Power (%)	· · · · · · ·	Limit, Kp
24.0	· · · ·	1.561
45.0	a, e, ^e .	1.280
60.0		1.150
100.0		1.000
· · · · •	· · · · ·	

LHGRFACp Limits for: Equipment In	Service		
Limits for Power $\geq 24.0\%$	· · · · · · ·	• •	
Power (%)		Limit	
24.0		0.603	
100.0		1.000	

. ;-

LHGRFACp Limits for: RPTOOS	
Limits for Power $\geq 24.0\%$	
Power (%)	Limit
24.0	0.603
100.0	1.000

;

Off-Rated Flow Dependent Limits

The cycle-independent flow dependent limits are documented in Reference D-1. The flow dependent limits provided in Reference D-1 have been validated for this cycle. The flow dependent limits consist of an absolute MCPRf limit and LHGRFACf multiplier.

12:54

The MCPRf limits provided in Reference D-1 are based on a SLMCPR of 1.07; therefore, the MCPRf limits are adjusted for the cycle-specific SLMCPR in Section 11. The MCPRf limits do not include the +0.01 OLMCPR adder (extended operating domain licensing commitments) because the existing off-rated limits are confirmed to be sufficiently conservative.

MCPRf Limits for:	
Equipment In Service	· · ·
Limits for a Maximum Runout Flow of 109.0%	
Flow (%)	Limit
••• • •	MCPRf
30.0	1.55
89.2	1.20
109.0	1.20

MCPRf Limits for: RPTOOS			·	
Limits for a Maximum Runout Flow	of 109.0%			· .
Flow (%)	•		Limit .	
· · · ·		· • • • •	MCPRf	•
			1.55	
	· ‡		1.20	
109.0	• • • • • •	: 1 4	1.20	
LHGRFACf Limits for:				· · ·
Equipment In Service	· • •			
Limits for a Maximum Runout Flow	of 109.0%		*	
Flow (%)	• • • •		Limit	
30.0			0.500	1
50.0		····	0.782	
82.2		11 July 1	1.000	
109.0			1.000)

LHGRFACf Limits for: RPTOOS	
Limits for a Maximum Runout Flow of 109.0%	•
Flow (%)	Limit
30.0	0.500
50.0	0.782
82.2	1.000
109.0	1.000

References for Appendix D

D-1 Fuel Transition Report for Hope Creek Generating Station, NEDC-33158P, Supplement 1, Revision 1, April 2005.

4.1

Appendix E Scram Speed Licensing Basis

Hope Creek Generating Station plans to implement the Technical Specification Improvement Program (TSIP) Option A scram speed in Cycle 17. The reload transient analyses provided in this report support both the 67B and TSIP scram speeds.

. :

Appendix F

Feedwater Temperature and Operating Dome Pressure Range

The reload transient analyses provided in this report are performed using a FFWTR/FWHOOS of 102°F/60°F. FFWTR/FWHOOS of 102°F/60°F is not currently licensed for Hope Creek Generating. Station and shall not be implemented until licensed. The reload transient analyses do not by themselves, allow plant operation with FFWTR/FWHOOS of 102°F/60°F.

The reload transient analyses performed with a FFWTR/FWHOOS of 102°F/60°F bound normal operational variation in feedwater heating capacity such that the feedwater temperature is at least 409°F at 100% rated power.

Normal operational variation in dome pressure (defined as ± 10 psi) is acceptable as this variation has a negligible effect on the OLMCPR.

Appendix G NEDC-33173P-A Supplementary Information

The safety evaluation for licensing topical report NEDC-33173P-A (*Applicability of GE Methods to Expanded Operating Domains*) concluded that the application of GE methods to expanded operating domains was acceptable subject to certain limitations and conditions. Several of these conditions request that additional, application-specific information be provided. The information provided below responds to these requests for the identified items.

Limitation/Condition 6 (R-factor)

The plant specific R-factor calculation at a bundle level was performed consistent with lattice axial void conditions expected for the hot channel operating state applicable to this cycle of operation. For Hope Creek Cycle 17 at the EPU licensed power level, a 60% void profile was used for the calculation of bundle R-factors.

Limitations/Conditions 10 and 11 (Thermal/Mechanical Overpower)

As required by Limitation 10 the plant limiting Thermal and Mechanical Overpower results are provided in Table G-1. The results are summarized as a percent margin to both of these limits.

Criteria	GE14C
Thermal Overpower Margin	39%
Mechanical Overpower Margin	39%

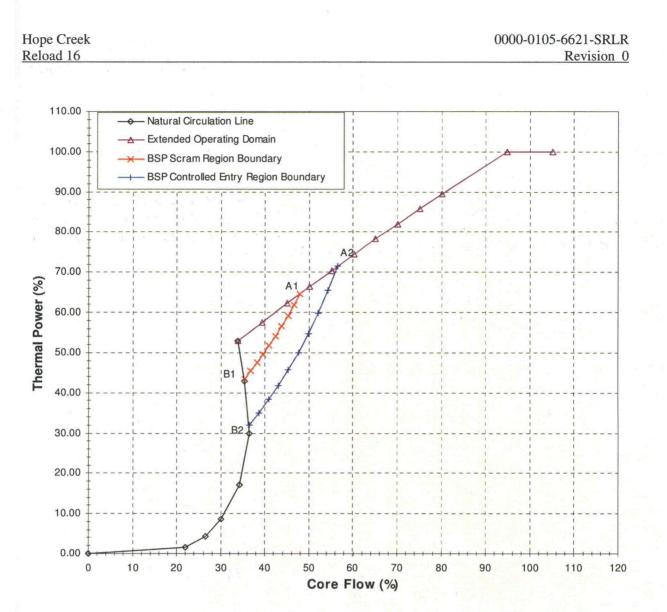
These results have been confirmed to meet the required 10% margin to the design limits for all fuel types as can be observed.

Limitation/Condition 17 (Steady State 5 Percent Bypass Voiding)

The bypass voiding condition was evaluated for the licensed core loading and confirmed that the bypass void fraction remained below 5 percent at all LPRM levels when operating at steady-state conditions within the licensed upper boundary. For a power/flow condition that conservatively bounded the licensed power/flow upper boundary, the bypass void fraction at the D level LPRM location was calculated to be 0.0%.

Appendix H Reduced Feedwater Temperature BSP Regions

۰.


The endpoints of the BSP regions for Reduced Feedwater Temperature operation are defined in Tables H-1 and H-2. Per PSEG's request, FFWTR BSP region boundaries are based on 343.6°F, which is 88°F reduction from the rated feedwater temperature 431.6°F. The region boundaries, shown in Figures H-1 and H-2, are defined using the Modified Shape Function (MSF). See Reference H-1.

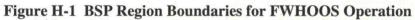

Region Boundary Intercept	Power (%)	Flow (%)	Core DR	Highest Channel DR
A1	64.7	47.9	0.800	0.416
B1	43.4	35.3	0.799	0.422
A2	71.5	56.5	0.799	0.374
B2	32.2	36.3	< 0.790	< 0.391

Table H-1BSP Region Intercepts for FWHOOS(Feedwater Temperature above 371.6°F)

Table H-2BSP Region Intercepts for FFWTR(Feedwater Temperature above 343.6°F)

Region Boundary Intercept	Power (%)	Flow (%)	Core DR	Highest Channel DR
A1	70.2	54.7	0.800	0.390
B1	41.0	35.6	0.800	0.375
A2	73.6	59.0	0.798	0.403
B2	32.2	36.3	< 0.772	< 0.395

Page 96

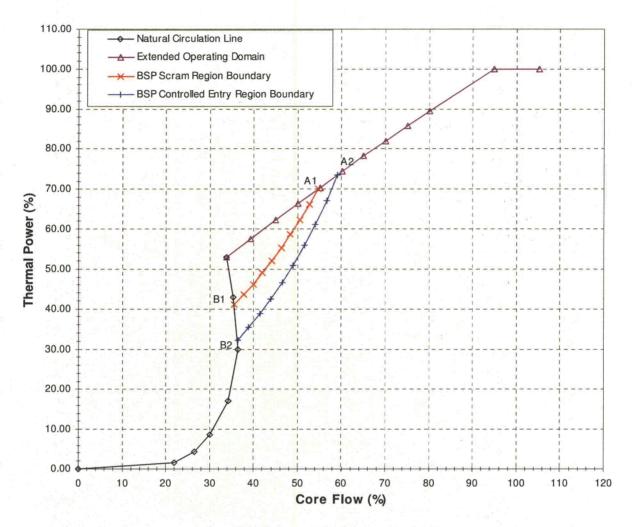


Figure H-2 BSP Region Boundaries for FFWTR Operation

References for Appendix H

H-1. ODYSY Application for Stability Licensing Calculations Including Option I-D and II Long Term Solutions, NEDE-33213P-A, Revision 0, GE Hitachi Nuclear Energy (Proprietary), April 2009.

Appendix I Calculated BSP Region End Points

The BSP region end points reported in Section 15 represent the proposed BSP region. The proposed BSP region is conservative and bounds the calculated BSP region end points.

To support the initial introduction of GE14I Isotope Test Assemblies (ITAs), this appendix provides the calculated BSP region end points and decay ratios. These calculated power/flow points and decay ratios represent typical calculations for Hope Creek. The plant- and cycle-specific calculations provide reasonable assurance that the thermal hydraulic stability as prescribed by Option III with respect to the size of the BSP regions is maintained with ITAs in the Hope Creek core.

Region Boundary Intercept	Power (%)	Flow (%)	Core DR	Highest Channel DR
A1	58.1	39.9	0.799	0.437
B1	47.7	34.6	0.798	0.447
A2	66.1	49.7	0.799	0.404
B2	39.2	35.7	0.790	0.391

والأجور الأحاد المحمولات

Appendix J GE14I Fuel Introduction

Reference J-1 provided the results of the cycle-independent evaluations supporting the introduction of GE14I fuel in subject plant. These GE14I bundles, also referred to as GE14I Isotope Test Assemblies (ITAs), were designed for mechanical, nuclear and thermal-hydraulic compatibility with the GE14C fuel designs. The subject core was designed such that the ITAs would be placed in non-limiting locations with respect to thermal limit margins and shutdown margins. The analysis results reported in this report are applicable to GE14I unless otherwise specified. Section 11 of this report presents the GE14C cycle-dependent MCPR limits; an adder of 0.07 should be applied to these results for the GE14I ITAs.

References for Appendix J

J-1. Safety Analysis Report to Support Introduction of GE14i Isotope Test Assemblies (ITAs) in Hope Creek Generating Station, NEDC-33529P, Revision 0, GE Hitachi Nuclear Energy (Proprietary), December 2009; and Errata and Addenda Number 1, June 10, 2010.

:

Appendix K

List of Acronyms

Acronym	Description
ΔCPR	Delta Critical Power Ratio
Δk Δk	Delta k-effective
2PT	Two Recirculation Pump Trip
ADS	Automatic Depressurization System
ADSOOS	Automatic Depressurization System Out of Service
AOO **	Anticipated Operational Occurrence
APRM	Average Power Range Monitor
ARTS	APRM, Rod Block and Technical Specification Improvement Program
BOC	Beginning of Cycle
BSP	Backup Stability Protection
Btu	British thermal unit
BWROG	Boiling Water Reactor Owners Group
COLR	Core Operating Limits Report
CPR	Critical Power Ratio
DIVOM	Delta CPR over Initial MCPR vs. Oscillation Magnitude
DR	Decay Ratio
DS/RV	Dual Mode Safety/Relief Valve
ECCS	Emergency Core Cooling System
ELLLA	Extended Load Line Limit Analysis
EOC	End of Cycle (including all planned cycle extensions)
EOR	End of Rated (All Rods Out 100%Power / 100%Flow / NFWT)
EPU	Extended Power Uprate
ER	Exclusion Region
FFWTR	Final Feedwater Temperature Reduction
FMCPR	Final MCPR
FOM	Figure of Merit
FWCF	Feedwater Controller Failure
FWHOOS	Feedwater Heaters Out of Service
FWTR	Feedwater Temperature Reduction
GDC	General Design Criterion
GESTAR	General Electric Standard Application for Reactor Fuel
GETAB	General Electric Thermal Analysis Basis
GSF	Generic Shape Function
HAL	Haling Burn
HBB	Hard Bottom Burn
НВОМ	Hot Bundle Oscillation Magnitude
НСОМ	Hot Channel Oscillation Magnitude
HFCL	High Flow Control Line
HPCI	High Pressure Coolant Injection
ICA	Interim Corrective Action

Acronym	Description	**
ICF	Increased Core Flow	
IMCPR	Initial MCPR	
IVM	Initial Validation Matrix	
Kf	Off-rated flow dependent OLMCPR multiplier	- 2 C
Кр	Off-rated power dependent OLMCPR multiplier	* * * * *
L8	Turbine Trip on high water level (Level ¹ 8)) ÷
LCF	Low Core Flow	-
LHGR	Linear Heat Generation Rate	,
LHGRFACf	Off-rated flow dependent LHGR multiplier	41 Y
LHGRFACp	Off-rated power dependent LHGR multiplier	
LOCA	Loss of Coolant Accident	۲۰
LPRM	Local Power Range Monitor	
LRHBP	Load Rejection with Half Bypass	
LRNBP	Load Rejection without Bypass	
LTR	Licensing Topical Report	
MAPFACf	Off-rated flow dependent MAPLHGR multiplier	
MAPFACp	Off-rated power dependent MAPLHGR multiplier	
MAPLHGR	Maximum Average Planar Linear Heat Generation Rate	
MCPR	Minimum Critical Power Ratio	
MCPRf	Off-rated flow dependent OLMCPR	
MCPRp	Off-rated power dependent OLMCPR	
MELLLA	Maximum Extended Load Line Limit Analysis	
MELLLA+	MELLLA Plus	
MOC	Middle of Cycle	, , ,
MRB	Maximal Region Boundaries	
MSIV	Main Steam Isolation Valve	·`
MSIVOOS	Main Steam Isolation Valve Out of Service	
MSR	Moisture Separator Reheater	• • •
MSROOS	Moisture Separator Reheater Out of Service	
MTU	Metric Ton Uranium	· · ·
MWd .	Megawatt day	
MWd/ST	Megawatt days per Standard Ton	• • •
MWd/MT	Megawatt days per Metric Ton	
MWt	Megawatt Thermal	•
N/A	Not Applicable	•
NBP	No Bypass	····.
NCL	Natural Circulation Line	
NFWT	Normal Feedwater Temperature	
NOM	Nominal Burn	
NTR	Normal Trip Reference	-
OLMCPR	Operating Limit MCPR	···
OLMCPR	Out of Service	
OPRM	Oscillation Power Range Monitor	۲,
	Reactor power level below which the TSV position and the	TCV
Pbypass	closure scrams are bypassed	

Acronym	Description	
Pdome	Peak Dome Pressure	
Psl	Peak Steam Line Pressure	· .
Pv	Peak Vessel Pressure	۰ _. ۴.
РСТ	Peak Vessel Pressure Peak Clad Temperature	· · · · · · · · · · · · · · · · · · ·
PHE	Peak Hot Excess	
PLHGR	Peak Linear Heat Generation Rate	
PLU	Power Load Unbalance	
PLUOOS	Power Load Unbalance Out of Service	
PRFDS	Pressure Regulator Failure Downscale	
PROOS	Pressure Regulator Out of Service	
Q/A	Heat Flux	
RBM	Rod Block Monitor	
RC	Reference Cycle	· · · · · · · · · · · · · · · · · · ·
RCF	Rated Core Flow	· · ·
RFWT	Reduced Feedwater Temperature	
RPS	Reactor Protection System	
RPT	Recirculation Pump Trip	· · · · · · · · · · · · · · · · · · ·
RPTOOS	Recirculation Pump Trip Out of Service	
RV	Relief Valve	· .
RVM	Reload Validation Matrix	····
RWE	Reford Valuation Watth	· · · · · · · · · · · · · · · · · · ·
SC	Standard Cycle	
SL	Safety Limit	
SLMCPR	Safety Limit Minimum Critical Power Ratio	
SLO		
SRLR	Single Loop Operation Supplemental Reload Licensing Report	······
		· · · ·
S/RV	Safety/Relief Valve	
SRVOOS SS	Safety/Relief Valve(s) Out of Service	r
	Steady State	
SSV	Spring Safety Valve	1
STU TBV	Short Tons (or Standard Tons) of Uranium	
	Turbine Bypass Valves and A	· · · ·
TBVOOS	Turbine Bypass Valves Out of Service	•
TCV	Turbine Control Valve	
TCVOOS	Turbine Control Valve Out of Service	
TCVSC	Turbine Control Valve Slow Closure	· · · ·
TLO	Two Loop Operation	· · · · · · · · · · · · · · · · · · ·
TRF	Trip Reference Function	/
TSIP	Technical Specifications Improvement Program	• • • • • • • • • • • • • • • • • • •
TSV	Turbine Stop Valve	
TSVOOS	Turbine Stop Valve Out of Service	
TT	Turbine Trip	
TTHBP	Turbine Trip Turbine Trip with Half Bypass	· · · · · · · · · · · · · · · · · · ·
TTNBP	Turbine Trip without Bypass	• •
UB	Under Burn	

1