Calculation Cover Sheet

<table>
<thead>
<tr>
<th>Project/Task</th>
<th>Calculation No.</th>
<th>Project/Task No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Area Saltstone Storage Tanks</td>
<td>T-CLC-Z-00022</td>
<td>PO # WB00001K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Functional Classification</th>
<th>Sheet 1 of 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of Selected Values from CROM's Calculation for the Z-Area Saltstone Storage Tanks (Vault 2)</td>
<td>PS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Type</th>
<th>Type 1 Calc Status</th>
<th>Version/Release No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Type 1</td>
<td>☑ Confirmed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Program No.</th>
<th>Purpose and Objective</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Generate an alternate calculation to verify selected values for the wall in CROM's proprietary computer program output file [1] for Vault 2.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summary of Conclusion</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Since the alternate calculated values (see Section 4.0) herein are approximately equal to selected values from CROM's proprietary computer program output, the calculation is considered to be acceptable (calculation filed under PO # WB00001K, Sheet 6). See Section 3.0 for evaluation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revisions

<table>
<thead>
<tr>
<th>Rev #</th>
<th>Revision Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>See sheet 2</td>
</tr>
</tbody>
</table>

Sign Off

<table>
<thead>
<tr>
<th>Rev #</th>
<th>Originator (Print) Sign/Date</th>
<th>Verification/Checking Method</th>
<th>Verifier/Checker (Print) Sign/Date</th>
<th>Manager (Print) Sign/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ramesh Patel</td>
<td>Design Check (GS/PS only)</td>
<td>Wade Faires,</td>
<td>Wade Faires</td>
</tr>
<tr>
<td></td>
<td>9/28/09</td>
<td>Document Review</td>
<td>9/28/09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Qualification Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alternative Calculation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operational Testing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Reviewer (Print)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Authority (Print)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coleman Miles</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release to Outside Agency (Print)</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Classification of the Calculation</th>
<th>Unclassified</th>
</tr>
</thead>
</table>

ENGINEERING DOC. CONTROL - SAS

00904233
RECORD OF REVISIONS

<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Pages Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Original Issue --</td>
<td>All</td>
</tr>
</tbody>
</table>
OPEN ITEMS

None
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover Sheet</td>
<td>1</td>
</tr>
<tr>
<td>Record of revision</td>
<td>2</td>
</tr>
<tr>
<td>Open Items</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>1.0 Purpose and Scope</td>
<td>5</td>
</tr>
<tr>
<td>2.0 Methodology/Input/Assumptions</td>
<td>6</td>
</tr>
<tr>
<td>3.0 Calculation</td>
<td>10</td>
</tr>
<tr>
<td>4.0 Results and Conclusions</td>
<td>22</td>
</tr>
<tr>
<td>5.0 References</td>
<td>24</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>Appendix A – Selected Pages from CROM’s Calculation</td>
<td>A1 – A5</td>
</tr>
<tr>
<td>Appendix B – Selected Pages from References</td>
<td>B1 – B8</td>
</tr>
</tbody>
</table>
1.0 Purpose and Scope

CROM Corporation has a proprietary computer program that analyzes the two 2,900,000-Gallon Saltstone Storage Tanks (Vaults 2A and 2B), which are currently being built in Z-Area at the Savannah River Site (SRS). This program was used to generate a tank design calculation, which is filed as Purchase Order No. WB00001K, sheet 6B [1]. This calculation contains input and output files, but no detailed calculations with equations, that a Non-CROM Engineer could sit down and readily compute the output values shown in the output file. CROM did have calculations with equations that designed/evaluated the bottom slab, columns, column supported roof slab, settlement, and openings.

The tanks are Production Support (PS) and Performance Category 2 (PC2), which requires they be designed to the IBC Code [2].

The Department of Energy (DOE) has asked Savannah River Remediation (SRR) Project Team for Vaults 2A and 2B how the output portion of the proprietary program was verified. SRR raised the same question during its review process. CROM stated that the program was proprietary; therefore, SRR verified the input and accepted the calculation as is for several reasons cited below.

1) CROM, which has been in business since 1953, is one of the leading Companies in the design and construction of these type tanks.

2) CROM’s Senior Vice-President and Area Manager for North and South Carolina performed an alternate calculation using an EXCEL spread sheet. A portion of this alternate spread sheet calculation is included in Section 3.1 to this calculation to verify selected values in the output file (Appendix A). Section 4.1 compares values from Appendix A to those from the alternate calculation in Section 3.0. The results are reasonably close.

3) CROM was involved in the design and construction of the current Type IV Tanks (17 through 24), which have a singe wall with a steel liner, prestressed wires and shotcrete.

4) Prior to CROM designing the Vault 2 tanks, SRR generated a structural performance assessment calculation [3], which performed a long-term assessment of the structural behavior of the proposed configuration for Vault 2.

Therefore, since CROM is considered one of the leading Companies in the design of this type of tank and they were contracted to design the SRR Vault 2 tanks, the calculation was originated/verified by two PEs, and an independent CROM calculation was generated, SRR did not feel that a line-by-line list of equations showing computation of output values was necessary. The output values presented in CROM’s calc were judged to be reasonable based on the input values provided; input values were verified as correct based on requirements provided.

However, to address DOE’s concerns, an alternate calculation is performed herein to verify selected values for the wall from the program output file (Appendix A).
In addition to the computer files, CROM used MATHCAD for the design of the columns, bottom slab, roof slab, and allowable settlement of the base slab based on ACI 372. Therefore, verification of these calculations is not required, as well as the seismic loads for reasons cited in the methodology section.

2.0 Methodology/Input/Assumptions

2.1 Methodology

CROM's calculation in Appendix A used ACI 372R, 350 & 318 [4, 5 & 6] to design the single wall Vault 2 tanks. The alternate calculation in Section 3.1 references AWWA D110 [7], ACI Committee Report No. 344R [8], and Timoshenko's Theory of Plates and Shells [9]. The codes and reports used in Appendix A are equivalent to the codes, reports and references used in Section 3.1. In fact, AWWA D110 cites ACI 372R, 350 & 318 to be used for certain tank attributes. Either is acceptable and will produce equivalent results as shown herein. Appendix A used a proprietary computer program to design the tanks. The CROM Senior Vice-President and Area Manager used an alternate Excel spread sheet calculation to verify the results in the main calculation, of which, some portions are included in Section 3.1. In Reference 1 various input parameters for the tank are listed, some of which are listed in Section 2.2. Based on this input, the program provides various tank parameters (wall thickness, number and size of wires, number and size of rebar, their placement, prestress requirements, shotcrete requirements, etc.) for developing a tank drawing used to fabricate the tanks.

As stated above some of the key output values from the program are verified using the equations below. Some key values are number of prestress wires, thickness of concrete, stress in the wall, and required steel.

\[
T = \rho R = Nw \cdot A_w \cdot f_s \quad (\text{equ 1})
\]

\[
Nw = \rho R / A_w \cdot f_s \quad (\text{equ 2})
\]

\[
Nw \cdot A_w \cdot f_s = t_c \cdot f_c \quad (\text{equ 3})
\]

\[
t_c = Nw \cdot A_w \cdot f_s / t_c \quad (\text{equ 4})
\]

\[
f_c = Nw \cdot A_w \cdot f_s / t_c \quad (\text{equ 5})
\]

Where:

\[T = \text{tension in wall, } \rho = \text{pressure, } R = \text{tank radius, } Nw = \text{number of wires, } A_w = \text{area of wire, } f_s = \text{wire yield strength, } t_c = \text{thickness of concrete, } f_c = \text{compressive strength of concrete.}\]
As explained by CROM’s Area Manager, several key calculations are made to determine the wall details. They are:

1. Determine the internal outward force caused by hydraulic pressure.
2. Determine the number of wires needed to balance the outward force. In calculating the number of wires, the wire stress is reduced to account for losses due to shrinkage, creep, and relaxation of the wires. Also, calculate the number of wire needed to place the wall in compression. The total of both is used to calculate the wall thickness.
3. Calculate the wall thickness at the top and bottom needed to resist the stress caused by the number of wires calculated in step 2. In addition, calculate the additional wall thickness needed to resist the soil backfill load.
4. Calculate the bending in the wall due to temperature differences between the interior and the exterior and provide vertical reinforcement to resist bending.
5. Calculate the bending in the wall due to partial restraint at the bottom of the wall and provide vertical reinforcement to resist the bending.
6. Determine the loads due to seismic. Wind is shown in Section 3.9 not to control.
7. Combine the appropriate prestress, stress, and/or loads [(initial stress in wall + soil backfill stress with tank empty) and (internal load/stress + seismic loads/stresses with tank full)]
8. Determine size, number and spacing of vertical rebar (two rows) to take (initial prestress + soil backfill), (initial prestress + seismic), and (initial prestress + thermal)

CROM adds extra circumferential reinforcement at the top and bottom of the tank wall to control cracking. This is usually 1% of the wall area encompassing the reinforcement.

CROM’s calculation evaluated the tank for three load cases, which are described below and supplemented with sketches. A fourth load case is with the tank grouted, which was evaluated in this calculation, but not in Appendix A.

1. Tank full of liquid, walls prestressed, and no soil backfill,
2. Tank full of liquid, walls prestressed, no soil backfill, and seismic,
3. Tank empty, walls prestressed, and soil backfill,
4. Tank grouted, walls prestressed, soil backfill, and soil overburden.
CALCULATION CONTINUATION SHEET

Calculation No. T-CLC-Z-00022
Evaluation of Selected Values from CROM’s Calculation for the Z-Area Saltstone Storage Tanks

Rev. 0 Sheet No. 8

Load Case Diagrams

CROM did not evaluate the load case with tank full of grout, walls prestressed, soil backfill, and 13 feet of soil overburdened, since the tank behaves as a rigid body. See seismic evaluation for this case below.

Of the four load cases evaluated, Load Case 3 controlled.

CROM was asked to design the tank for seismic loads using PS, PC2 seismic requirements. CROM’s seismic load includes the prestressed walls, static water pressure load plus seismic hydrodynamic sloshing loads from water inside the tank (due to hydrostatic testing of tank for leaks). See pages 4 through 8 of their calculation. Also, when saltstone is added in lifts that solidify in approximately 1 feet increments, liquid sloshing is not an issue. Therefore, since it’s judged that the real seismic load on the tank is the solidified grout, verification of CROM’s seismic analysis will not be done herein. Rather, a justification why seismic is not the critical load case will be provided here. As stated, the grout is a solid mass, which is considered to be rigid (> 33Hz). From T-CLC-G-00261 [10], Table 3.1.1, the seismic acceleration is 0.33gs. From DOE/EH-0545 (Seismic Evaluation Procedure), [11], Section 9.1.1.4, uses a coefficient of friction of 0.55 for a steel tank resting on a concrete foundation. Since 0.33gs is less than 0.55, the solid grout content will not slide and induce loads on the tank wall. Therefore, the analysis that CROM did for the tank wall is conservative. If ever required, credit for the columns doweled into the roof slab and floor slab could be used to resist lateral seismic loads. Also, the tank walls have a lateral seismic restraint system.

The wall of the tank uses working stress methodology, which doesn’t require load factors on various loads. The roof, columns, and slab use strength design, which requires load factors on various loads.
2.2 Input

Some key input parameters for the tank and the proprietary program are listed below:

1. Tank size and Content = 150 ft diameter, 22 ft height, Water specific gravity = 62.4 pcf, Sp Gravity = 1.32, \(t_{\text{diff}} \) = thru wall temperature differential = 100 °F (conservatively assumed).
2. The tank is constructed of prefab concrete wall panels with prestressed wires, reinforced concrete roof supported by wall and reinforced concrete interior columns, and reinforced concrete slab.
3. \(t_{\text{f}} \) = floor slab thickness = 8 inches and rise in floor at edge (wall) is 3 inches.
4. \(f'c \) = floor slab compressive strength = 5 ksi.
5. \(f'g \) = shotcrete compressive strength = 4.5 ksi. This is the average of wall concrete compressive strength (5 ksi) and shotcrete (4 ksi).
6. \(f'c-r \) = residual compression in the concrete wall = res = 0.2 ksi. (Per ACI 372R, Section 2.3.5.2).
7. \(E_g \) = shotcrete modulus of elasticity = 4500 ksi
8. \(E_t \) = shotcrete modulus of elasticity for temperature = 2000 ksi
9. \(f'g-i \) = initial prestress = \((0.55)(f'g) = 2.475 ksi \) (ACI 372, section 2.3.3.2.1).
10. \(f'g-f \) = final prestress = \((0.45)(f'g) = 2.025 ksi \)
11. \(f_s \) = allowable stress in mild steel = 18 ksi (ACI 372, section 2.3.7.1)
12. Prestress wire gauge = #8, \(d = 0.162" \), \(A = 0.0206 \text{ in}^2 \), \(F_u \) = ultimate strength = 231 ksi, \(F_i \) = initial prestress = 145.6 ksi, \(F_{f,w} \) = wall final prestress = 121 ksi (145.6 – 24.6)
13. \(f_{s-\text{loss}} \) = prestess loss = 24.6 ksi (ACI 372, section 2.3.5.3)
14. \(V \) = wind speed = 150 mph, \(I = 1.15 \) is listed in Appendix A. Per CROM, the wind demand force is not checked, since wind never controls. See Section 3.9 for quantitative justification.
15. \(\varepsilon \) = average shrinkage = 0.00080 in/in
16. \(C_{cr} \) = average creep = 0.0000003 in/in/psi
17. \(\alpha \) = Coefficient of thermal expansion = 0.0000065 in/in/°F
18. Wall details are in PO # WB00001K, Sheet 4E (sheet 6 of 15).

To understand the design philosophy and criteria with respect to these types of tanks and to help formulate this calculation, the originator & checker from Design Engineering has had several meetings (8/11/09, 9/3/09 and 9/24/09) and telecoms (8/27/09, 8/31/09 & 9/1/09) with CROM's VP and Area Manager. He and Ryan Harvey prepared the alternate calculation in Section 3.1.

2.3 Assumptions

As noted in the calculation.
3.0 Calculations

This section verifies selected values of the output file on pages 2, 3, and 4 of CROM’s calculation [1], which have been included in Appendix A (pages A3, A4, & A5). Arrows are annotated in the margin for those values that are evaluated in this calculation. To help perform this verification, CROM provided an alternate excel spread sheet calculation with appropriate equations, which computes/validates most of the values (selected to be verified) from Reference 1. This calculation is provided in section 3.1, since it closely follows the design steps outlined in the methodology section. Section 3.2 shows detailed computations for some of the values in Section 3.1. The correlation between the two sections is either the section number or number in brackets in the right margin of CROM’s calculation. To verify some other values in Reference 1, SRR Design Engineering generated the calculations in Sections 3.3 through 3.10.

A comparison of the results is presented in Section 4.1, Table 1.
3.1 CROM Alternate Calculation

This section contains the alternate calculation (4 pages) by CROM, which verifies selected values from pages 2, 3, and 4 of Reference 1, which are included in Appendix A (pages A2, A3, A4, & A5). This calculation, which was transmitted by an email on 9/9/09, was originated by Lars Balck and checked by Ryan Harvey of CROM Corporation. The format follows the methodology discussed above for evaluating critical attributes of the tank. Input values highlighted in yellow are input from Section 2.2, the tank drawings, specification, and/or assumption. Equations for computing some of the values are annotated to the right of the computed value. Section 3.2 shows detailed computations for some of the values in Section 3.1. The correlation between the two sections is either the section number or the number in brackets in the right margin of CROM’s calculation (pages 12 – 15). This number is shown in bold in Section 3.2 (pages 16 – 18). Section 3.2 shows the equations with computations used to compute the value in Section 3.1.
Calculation Continuation Sheet

Calculation No. T-CLC-Z-00022
Evaluation of Selected Values from CROR's Calculation for the Z-Area Saltstone Storage Tanks

--- PRESTRESSED TANK DESIGN ---

9/24/2009

Prepared by: Lars Balck

Project name: SRS

Tank description: 3.0-MG Vaults

Engineer: SRS

Job No.: 5059

--- SUPERSTOP DESIGN OF PANEL TANK ---

The design of the circular wall is based on ACI Committee Report No. ACI 344-70, AWWA D110 Type II, or more stringent Crom criteria. Wall stresses and bending moments are calculated from Timoshenko's Theory of Plates and Shells equations.

TANK DIMENSIONS:

<table>
<thead>
<tr>
<th>Inside Diameter, ID</th>
<th>150.00 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewall Depth, SWD</td>
<td>22.00 ft</td>
</tr>
<tr>
<td>Flr-Fig Diff</td>
<td>3.00 in</td>
</tr>
<tr>
<td>Sp gr</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Capacity = 2,908,194 gal
Wall Height, H = 21.75 ft

Unit wt of liquid = 82.57 pcf
lateral pressure = 112.00 pcf

SHOTCRETE, STEEL & P/S STRESSES & MISC:

<table>
<thead>
<tr>
<th>fg</th>
<th>4,500 psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max fg</td>
<td>0.45</td>
</tr>
<tr>
<td>Max fgi</td>
<td>0.55</td>
</tr>
<tr>
<td>fs</td>
<td>18,000 psi</td>
</tr>
<tr>
<td>Wire gauge, GA</td>
<td>8 dwg</td>
</tr>
<tr>
<td>Cover Coat Thk., TCC</td>
<td>1.00 in dwg</td>
</tr>
<tr>
<td>Thickness Bettn. Layers</td>
<td>0.125 in</td>
</tr>
<tr>
<td>Top Core Thk., TCT</td>
<td>9.00 in dwg</td>
</tr>
</tbody>
</table>

ADDITIONAL INPUT:

Delta T, TC	100 degrees
Height of Backfill, HB	21.75 ft dwg
Unit wt	125.00
factor	0.75
Backfill Unit Weight, den	93.75 pcf spec
Residual compression, res	200 psi
wt of roof/sf	100.00
Dist to columns	20.00
Roof load per ft on top of wall =	1,340 psf

WIRR & COREWALL CALCULATIONS:

| Wire fsi = | 145,000 psi dwg |
| Wire Dia, dw = | 0.162 in dwg |
| Wire Area, Awi = 0.0206 in² dwg |
| Wall Losses = | 24,000 psi |
| Wire fsi Wall, fs = | 121,000 psi fsi-wall loss |

Total t top, wt = 11,000 in
Number wire ps = 53.00 wires
Wires to resist hydraulic force unit wt*(H)*F/Awi*fs

Number wire res = 11.79 wires
Wires for residual compression t(w)*12*res/Awi*fs

Total number wires, N = 85.7 wires
Wires needed to resist hydraulic force + residual

H²/2Df = 3.09
[1]
PRESTRESSED TANK DESIGN
SUPERSTOP FLOOR-WALL JOINT

Maximum f_g = 2,025 psi
Maximum f_g = 2,475 psi
f_g Used = 2,025 psi
Initial t_{ow} = 12.25 inch

<table>
<thead>
<tr>
<th>psf</th>
<th>Final Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,341</td>
<td>8.11 in</td>
</tr>
<tr>
<td>1,114</td>
<td>4.21 in</td>
</tr>
</tbody>
</table>

Total f_g = 2,007 psi
Allowable f_g = 2,025 psi

WEIGHT & WALL THICKNESS CALCULATIONS:
- Cover Coat @ Bot, tlc = 1.99 in
- t_{full} @ Bot, tb = 14.24 in
- Average "t", full, tavg = 12.62 in
- Wall weight = 3,430 lb
- Roof weight, Dwgt = 1,340 lb
- Total Wall Weight = 4,770 lb
- Bearing pad width = 6 inch
- Unit Load on Pad = 66 psi, o.k.

RADIOAL DEFLECTION & SHEAR CALCULATIONS:
- f_g = 2,007 psi
- P/S "w" = 96.11 pcf
- Backfill "w" = 93.75 pcf
- Res. Stress "w" = 18.45 pcf
- Equiv. "w" = 211.31 psf
- Friction Coef., VCF = 8.70

<table>
<thead>
<tr>
<th>Total V</th>
<th>vsdwall weight = (0.7)(4770)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.339 lb</td>
<td>fg"R"/Eg"12</td>
</tr>
<tr>
<td>0.40 in</td>
<td>0.008*12"R</td>
</tr>
<tr>
<td>0.72 in</td>
<td>0.0000036</td>
</tr>
<tr>
<td>0.54 in</td>
<td>(0.4+0.72+0.54)</td>
</tr>
</tbody>
</table>

CALCULATE MOMENTS AND STEEL REQUIREMENTS:
- Inside Moment = 7,217 ft-lb
- Occurs at = 6.25 ft
- Inside "d" = 10.25 in
- Provided spacing Resteel = 0.536 sq in

Outside temperature cold, inside warm.
- avg "t" = 12.62 in
- T Coeff. = 7.36
- Outside Moment = 10,573 ft-lb
- Provided spacing diaphram #5 = 4.50

<table>
<thead>
<tr>
<th>Bottom Circ.</th>
<th>Top Circ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.77 sq in</td>
<td>2.46 sq in</td>
</tr>
</tbody>
</table>

Section 2.1
Calculation Continuation Sheet

Calculation No.
T-CLC-Z-00022

Evaluation of Selected Values from CROM's Calculation for the Z-Area Saltstone Storage Tanks

<table>
<thead>
<tr>
<th>PRESTRESSED TANK DESIGN</th>
<th>-3-</th>
</tr>
</thead>
</table>

SUPERSTOP FLOOR-WALL JOINT

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete strength</td>
<td>5,000</td>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>Edge of slab thickness, Edge_t</td>
<td>11.00</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>Typical slab thickness, tfl</td>
<td>8.00</td>
<td>in</td>
<td></td>
</tr>
<tr>
<td>Dist fr ID to inside end of flat edge</td>
<td>1.16</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Grout + Slab Pressure</td>
<td>2,564</td>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>Wall Weight</td>
<td>4,770</td>
<td>psf</td>
<td></td>
</tr>
<tr>
<td>Slab Edge Wt. Pressure</td>
<td>1.38</td>
<td>psf</td>
<td></td>
</tr>
<tr>
<td>Net Pressure Allowed</td>
<td>2,427</td>
<td>psi</td>
<td></td>
</tr>
<tr>
<td>Required Bearing Width</td>
<td>1.97</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Width from ID to Outside Edge of Slab</td>
<td>2.26</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Width fr ID to Outside Edge, 14' min =</td>
<td>2.26</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Length of Flat Edge</td>
<td>3.44</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Selected Length of Flat Edge</td>
<td>3.76</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Resulting Width from ID to Outside Edge</td>
<td>2.90</td>
<td>ft</td>
<td></td>
</tr>
<tr>
<td>Resulting Pressure</td>
<td>1,208</td>
<td>lb/ft</td>
<td></td>
</tr>
<tr>
<td>Shear on Footing</td>
<td>3,140</td>
<td>lb</td>
<td></td>
</tr>
<tr>
<td>Shear Stress</td>
<td>23.79</td>
<td>< 70 psi, o.k.</td>
<td></td>
</tr>
<tr>
<td>Moment on Footing</td>
<td>4,082</td>
<td>ft-lb</td>
<td></td>
</tr>
<tr>
<td>Required Floor Steel</td>
<td>0.37</td>
<td>in²/ft</td>
<td></td>
</tr>
<tr>
<td>Steel Provided</td>
<td>0.99</td>
<td>in²/ft, o.k.</td>
<td>#</td>
</tr>
</tbody>
</table>

SEISMIC

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit wt</td>
<td>113.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>328,625,956</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friction factor</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. columns</td>
<td>48.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>14.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allowable shear</td>
<td>70.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsive shear</td>
<td>0.26</td>
<td>From seismic calculations</td>
<td></td>
</tr>
<tr>
<td>Base shear</td>
<td>85,442,749</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THE CROM CORPORATION

9-24-09
DATA TABLES:

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>db</th>
<th>Ab</th>
<th>wlb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.375</td>
<td>0.110</td>
<td>0.376</td>
</tr>
<tr>
<td>4</td>
<td>0.500</td>
<td>0.200</td>
<td>0.666</td>
</tr>
<tr>
<td>5</td>
<td>0.625</td>
<td>0.340</td>
<td>1.043</td>
</tr>
<tr>
<td>6</td>
<td>0.750</td>
<td>0.440</td>
<td>1.502</td>
</tr>
<tr>
<td>7</td>
<td>0.875</td>
<td>0.800</td>
<td>2.044</td>
</tr>
</tbody>
</table>

Wire Data:

<table>
<thead>
<tr>
<th>fsi</th>
<th>dw =</th>
<th>Aw =</th>
<th>Guage</th>
<th>Wires/ft</th>
<th>Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>140,000</td>
<td>0.192</td>
<td>0.020</td>
<td>6</td>
<td>20</td>
<td>25,000</td>
</tr>
<tr>
<td>145,600</td>
<td>0.162</td>
<td>0.021</td>
<td>8</td>
<td>24</td>
<td>30,600</td>
</tr>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

fc | 4,500.00 psi/deg
Ec | 3,823,678 psi/deg
age adjust | 0.50
E age adj | 1.911,838

t coeff | 0.0000058
v | 0.17

E alpha V | 0.10
delta t | 100.00 deg
tave | 13.00 in

1,690.00 psi*in^2
3.2 Detailed Computations for Values in Section 3.1

The calculation in Section 3.1 was generated using an excel spread sheet. The spreadsheet provided some equations just to the right of the value, but not all. Thus, the equations and computations for some of the values are provided in this section. The numbers in brackets correspond to those in the right margin of CROM’s calc in Section 3.1.

(1) Justification for 81 wires at the Bottom of the Wall

Per the calculations in Section 3.1, the total number of wires required is 65.7 for a 12 inch high section of wall. Sheet 7 of CROM’s tank drawing shows 81 wires are required for a 15 inch (12 inch + 3 inches) high section of wall. The 81 is determined by multiplying 65 by 1.25 (ratio of 81/65).

(2) Trial Thickness

An initial trial thickness of 12.25 inches is used. This was determined from the equation below, which is a modification to the equation in AWWA D110, page 22. CROM uses fgi = 2169 psi in lieu of 0.45f’c = 2025 psi.

\[
\text{fgi} = 2169 \text{ psi} = 1250 + 75(\text{tcw}) \quad \text{tcw} = (2169 - 1250)/75 = 12.25 \text{ in}
\]

(3), (4) & (6) Initial and Final Prestress for 65.7 Wires (for hydro load and residual wall stresses)

The initial prestress for 65.7 wires is computed below using fsi = 145,600 psi and Equ 5 from Section 2.1

\[
\text{psi} = (Nw)(Aw)(fsi) + (12)(\text{tcw}) = (65.7)(0.0206 \text{ in}^2)(145,600 \text{ psi}) + (12)(12.25") = 1341 \text{ psi}
\]

The final prestress for 65.7 wires is computed using fsi = 121,000 psi and Equ 5 from Section 2.1

\[
\text{psf} = (Nw)(Aw)(fs) + (12)(\text{tcw}) = (65.7)(0.0206 \text{ in}^2)(121,000 \text{ psi}) + (12)(12.25") = 1114 \text{ psi}
\]

\[
\text{bff} = \rho^*H^*R + (12)(\text{tbf + tcc}) = (93.75 \text{ pcf})(21.75'')(75') + (12)(12.25 + 2) = 895 \text{ psi}
\]

(5) & (7) Trial Thicknesses for ps and and bf

This is an independent check by CROM to determine, out of the total thickness, the thickness required for prestressing and for backfill.
tps = (Nw)(Aw)(fsi) ÷ 12(fg) = (65.7)(0.0206)(145600) ÷ 12(2025) = 8.11

fg = ρ*H*R ÷ (12)(tbf + tcc) Solve for tbf, using tcc = 2" and H = 21.75' − 1'/2 = 21.25'

\[
tbf = [\rho*H*R ÷ (12)(fg)] - tcc = (93.75 \text{pcf})(21.25')(75') ÷ (12)(2025 \text{ psi})] - 2 = 4.15''
\]

(8) Cover Coat at Bottom

Per sheets 6 & 7 of CROM drawing 08084SD, Rev B & excluding thickness of seismic restraint;

tfc = 1" + (3 wire layers)(.162) + (3 spacing between wires)(.125) = 1.9 in

(9) Unit Load on Pad at Base of Wall

Per sheets 6 & 7 of CROM drawing 08084SD, Rev B, the pad that the wall rests on is 6 in effective width.

\[
fbw = \text{wall bearing pressure on pad} = 4770 \text{ plf} ÷ (6')(12 "/ length of wall) = 67 \text{ psi}
\]

(10) “w”, Equivalent Density Checks

In Section 3.1, CROM generated an equivalent density check, “w”, for Prestress, backfill, and Residual stress for comparison. These values are not used, so they are not verified herein. If they were to be verified, the equation below could be used, using the appropriate thickness and pressure.

\[
tbf = [\rho*H*R ÷ (12)(fg)] \quad \text{(from check [5] above)}
\]

\[
\rho = (tbf)(12)(fg) ÷ (H*R)
\]

(11) Deflection Check

The deflections computed using the equations in Section 3.1 are 0.4 in (prestress & backfill), 0.72 in (shrinkage), and 0.54 in (creep). The total deflection is 1.66 in. Based on the water stop used at the base of the wall and experience, CROM said this was acceptable.

(12) Friction Coefficient, VCF

CROM uses a friction coefficient of 0.7 at the base of the wall based on the SuperStop material being used. This is multiplied by the total wall weight, 4770 lbs to obtain the shear, V = 3339 lbs, at the base of the wall. This shear is used in computing the moment to size the vertical reinforcement. See Check (13) below.
(13) & (14) Moment and Reinforcement Requirements for Prestress and Backfill

Using V from above, the moment is computed using the equation, \((0.247)(V)(R^*t)^{0.5}\), which comes from a Portland Cement Association (PCA) document, "Circular Concrete Tanks Without Prestressing", [12]. The publication states the maximum moment occurs approximately 76% from the top of the tank, which is approximately 5.25 ft from the bottom (76% & 5.25' come from Appendix A, page A5). The development length for the vertical inside steel is given by the equations, \((1.4(Rt)^{0.5}\) and \((1.8)(Rt)^{0.5}\), 12.25 ft and 15.75 ft.

\[
M = (0.247)(V)(R^*tcw)^{0.5} = (0.247)(3339 \text{ lbs}) [75 \text{ ft } \times (12.25'' + 12''/')]^{0.5} = 7217 \text{ ft-lbs}
\]

Using the moment, the required steel area is computed using the equation below, which is based on working strength.

\[
As = \frac{M}{(j)(Fs)(d)} = \frac{(7.217)(12.25'' + 12''/')}{(0.875)(18 \text{ ksi})(10.25 \text{ in})} = 0.54 \text{ in}^2
\]

This requires #6s at 4.5 in spacing

The equation \(H^2/D*t\) is used in combination with the moment equation above. This values is \((21.75)^2/(150)(12.25/12) = 3.09\)

(15) Moment and Reinforcement Requirements for Temperature

The differential temperature, DeltaT, was taken as 100 °F, which puts the outside vertical bars in tension. To compute this moment, the equation below is used. Using \((H^2/D*t) = 3.09\) and table on Page B8, T Coeff = 7.36. \(\%t\) and Et are defined in Section 2.2.

\[
M = (T \text{ Coeff})(\%t)(Et)(\text{avg})^2(DeltaT) = (12)^2
\]

\[
= (7.36)(0.00000065 \text{ in/in}°F)(2,000,000 \text{ psi})(12.62 \text{ in})^2 (100 °F)(12) = 10,582 \text{ ft-lbs}
\]

As is computed using the above equation, \((M)(12 ''/') + (j)(Fs)(d)\). The required steel is comprised of rebar and the vertical 26 gage steel liner.

(16) & (17) Grout + Slab Pressure and Net Pressure

Grout + Slab Pressure = \((150 \text{ pcf})(8''/12''/') + (113 \text{ pcf})(21.75'') = 100 \text{ psf} + 2458 \text{ psf} = 2558 \text{ psf}

The Slab Edge Wt Pressure = \((150 \text{ pcf})(11''/12''/') = 138 \text{ psf}\)

The Net Pressure Allowed = \(\text{Grout} + \text{Slab Pressure} - \text{Slab Edge Wt Pressure}\)

\[
= 2558 - 138 = 2420 \text{ psf}
\]
(18) Shear on Outer Footing

The shear on the outer footing is based on the distribution of the wall load at the bottom of grade. The wall width is 14.24 in and the slab thickness is 11 in.

The effective slab width for computing soil bearing pressure = \((14.22''/12''/'' + (2)(11''/12''/'')) = 3.02 \text{ ft.}\)

The resulting pressure = \(4770/3.02 = 1560 \text{ psf,}\)

The distance from the outer edge of the tank wall to the outer edge of the footer = \([3.75' - (1.16' - (14.24''/12''/'')(1/2)) = 2.0 \text{ ft}\)

The shear at the outer edge of the wall = \((1560)(2')(1' \text{ width}) = 3120 \text{ lbs}\)

The shear on the footing = \((3120 \text{ lbs})/(11'')(12'') = 23.7 \text{ psi} \text{ vs 23.79 psi}\)

The Moment at the edge of the wall = \((3120 \text{ lbs})(2'/2) = 3120 \text{ ft-lbs vs 4082 ft-lbs}\)

Therefore, the moment in Section 3.1 is conservative.

Based on the computations in this section (3.2), the values in Section 3.1 are acceptable, and these values will be compared to CROM’s computerized values in Section 4.1, which were obtained from Appendix A.

3.3 Total Bottom Slab Thickness = 8 inches and 11 inches \((8 + 3 \text{ rise})\) at the walls.

3.4 Wall thickness = 11 inches \((8 + 3 \text{ for wires & cover})\) at top and 15 inches \((8 + 7 \text{ for wires & cover})\) at the bottom.

3.5 Wall Weight \((5240 \text{ plf})\)

\[tw_{avg} = (11 + 15)(1/2) = 13''\]

\[Ww = \text{weight of wall} = (0.15 \text{ kcf})(13''/12''/'')(22') = 3.56 \text{ klf}\]

\[Wr = \text{weight of roof on wall} = (0.15)(8''/12''/'')(20' \text{ span} ÷ 2) = 1.0 \text{ klf}\]

\[Wt = \text{total wall weight at bottom slab} = 4.56 \text{ klf vs 5.24 klf}\]

3.6 Net Wall Pressure at Floor \((1.768 \text{ klf})\)

The calculated bearing width is 2.964 ft at the wall (from CROM’s output)

Therefore, \(Wpt = \text{bearing pressure} = Wt ÷ 2.964 = (5.24 ÷ 2.964) = 1.768 \text{ klf}\)
3.7 Unit Weight of Content (82.056 pcf and 112.3 pcf)

\[W_{uw} = \text{unit weight of content} = (1.32)(62.4) = 82.4 \text{ pcf} \]

\[W_g = \text{unit weight of grout} = (1.8)(62.4) = 112.3 \text{ pcf} \]

3.8 Unit Weight of Soil Backfill (93.7 pcf)

From the SOW, the unit weight of soil is 125 pcf, the active earth pressure coefficient, \(K_a = 0.33 \), and the at-rest earth pressure coefficient, \(K_o = 0.5 \). To check the wall, \(K_a \) is to be used. However, CROM has arbitrarily used \(K_a = 0.75 \), which gives a soil pressure of 93.7 pcf. This is conservative and accounts for construction dynamic loads.

3.9 Wind Evaluation (150 mph)

Per Section 2.2, Item 14, \(V = \) wind speed = 150 mph, \(I = 1.15 \) is listed in Appendix A. Per CROM, the wind demand force is not evaluated, since wind never controls on any of their tank designs. This is primarily due to the mass of the tank and its contents. A quantitative justification is provided below, since the North side of these tanks could be exposed for up to 2 years.

The wind forces are computed using ASCE-7 [13]. CROM's calculation in Appendix A lists a 150 mph wind speed; however, for these tanks a PC2 107 mph wind speed is used. To simplify this calculation and to be conservative, \(qz = 37 \text{ psf} \) will be taken from T-CLC-H-00897 [14], which is for a component on top of a hill (includes hill top affects). The Vault 2 tanks are recessed, but have an open side (to the North).

\[F_w = \text{wind force} = qz(\text{Cf})(G)(A) = (37)(0.5)(0.85)(3300)/1000 = 52 \text{ kips} \]

Where:

\[G = \text{Gust factor} = 0.85 \text{ (wind exposure C)} \]

\[\text{From Table 6-10, } D^* (qz)^{0.5} = (150 \text{ ft})* (37)^{0.5} = 912 > 2.5 \text{ and } h/D = 22/150 = 0.15 \]

\[\therefore \text{Cf} = 0.5 \text{ (surface moderately smooth)} \]

\[A = (22)(150) = 3300 \text{ sq ft} \]

\[F_e = \text{maximum earthquake base shear for wall & roof (without liquid or grout)} \]

\[= (0.26 \text{ from CROM's seismic calc})(\text{wall and roof weight}) \]

\[= (0.26)(4770 \text{ lbs per ft of circumference})(3.14)(\text{Diameter})/1000 \]

\[= (0.26)(4770 \text{ lbs per ft})(3.14)(150 \text{ ft})/1000 \]

\[= 585 \text{ kips} \]

\[F_w < F_e \] Therefore Seismic controls.
3.10 Discussion of Loads Used to Evaluate Columns (page 11/36 of Reference 1)

Page 11/36 of Reference 1 lists critical axial and moment forces \((P_{\text{dead}} = 19.86 \text{ kips and } M_{\text{dead}} = 13.25 \text{ ft-kip}) \) on the column. The column capacity is \(P_c = 177.14 \text{ kips and } M_c = 356.655 \text{ ft-kips} \). DOE asked why a higher axial force (due to a larger tributary area – 20’ by 20’) was not used. CROM’s engineer stated that it was because he wanted to check a column with an unequal tributary area. This case, which gives unbalanced moments on the slab, will result in a moment and axial load on the column. Page 21/36 gives a maximum punching shear value of 66.8 kips, \(V_{u2} \). This value appears to be based on a 20’ by 20’ tributary area. Based on the above capacities, the column is acceptable.
4.0 Results and Conclusions

4.1 Results

| Table 1 - Comparison of Selected CROM Program Output Values with Section 3.0 Results |
|---|----------------------|----------------------|
| Selected CROM Program Output Description | CROM Program Results | Alternate Calculation Results |
| **Floor (Bottom Slab)** | | |
| Bottom slab thickness at wall | 11 in | 11 in |
| Bottom slab thickness away from wall | 8 in | 8 in |
| Water + Slab Pressure | 1905 psf | 2564 psf |
| Grout + Slab Pressure | 138 psf | 138 psf |
| Edge of Slab Weight Pressure | 3404 lbs | 3140 lbs |
| Shear on Footing edge | 34 psi | 23.79 psi |
| Moment on Footing | 4396 ft-lbs/ft | 4082 ft-lbs/ft |
| Required Steel | 0.35 in² (0.99 in² provided) | 0.37 in² (0.99 in² provided) |
| **Wall** | | |
| Required wall thickness at top | 9.66 in | 9 in |
| Required wall thickness at bottom | 14.27 in | 14.24 in |
| Wall weight at bottom slab | 5240 lbs | 4770 lbs (Section 3.1) |
| Number of wires required to resist the outward hydraulic force | | 53.9 |
| Number of wires to resist residual stress | | 11.79 |
| Total wires | 65 | 65.7 |
| Initial Prestress (Internal Hydro + Backfil)| 1326 psi | 1341 psi |
| Final prestress (Internal Hydro) | | 1114 psi |
| Final prestess (Backfill) | 896 psi | 893 psi |
| Total Prestress | 2222 psi | 2007 psi |
| Total Deflection | 1.765 in | 1.66 in |
| Wall Base Shear | 3668 plf | 3339 plf |
| Moment – Inside Steel | 7928 ft-lbs/ft | 7217 ft-lbs/ft |
| Required steel | 0.678 in²/ft (0.88 in² provided) | 0.536 in²/ft (0.88 in² provided) |
| Moment – Outside steel | 9511 ft-lbs/ft | 10573 ft-lbs/ft |
| Required Steel | 0.722 in²/ft (0.88 in² provided) | 0.827 in²/ft (0.88 in² provided) |
| Bottom Circumferential Rebar (1%) | 4.77 in²/ft | 4.77 in²/ft |
| Top Circumferential Rebar (1%) | 2.52 in²/ft | 2.52 in²/ft |
4.1 Conclusions

The manual computations of selected computer program output values for the wall in Section 3.0, which are summarized in Table 1, produced results comparable to the results from CROM’s proprietary computer program. Therefore, the results from CROM’s computer program are considered acceptable.

Also, the computerized results were also validated by CROM’s Senior Vice-President and Area Manager using an excel spread sheet. A portion of this excel spread sheet is included in Section 3.1.

The calculations in Reference 1 for the roof slab, columns, bottom slab, settlement, and openings were not verified in this calculation, since these computations used MATHCAD and were previously reviewed and accepted. Also, the seismic computations were not verified, but a qualitative assessment was performed for a fully grouted tank.

Of the four load cases evaluated, Load Case 3 controls (Tank empty, walls prestressed, and soil backfill). From Table 1, the wall compression demand is 2007 psi and the Capacity is 2025 psi. Therefore, the Demand to Capacity (D/C) ratio is 0.99 (2007/2025). For the thermal load case, the As required is 0.827 in2 and the As provided 0.88 in2. Therefore, the D/C = 0.94.
5.0 References

2. IBC, International Building Code

5. ACI 350.3-06, “Seismic Design of Liquid-Containing Concrete Structures and Commentary”.

6. ACI 318-05, Building Code Requirements for Structural Concrete and Commentary.

8. ACI Committee Report No. 344R-70, Design and Construction of Circular Wire- and Strand-Wrapped Prestressed Concrete Structures”. (Per SRS HIS System, this report has been withdrawn.)

9. Timoshenko’s Theory of Plates and Shells.

10. T-CLC-G-00261, Rev 0, “Determination of PC1 and Equivalent PC2 Horizontal Design Response Spectra at SRS”.

Appendix A

Selected Pages from CROM’s Calculation
Calculation Continuation Sheet

Calculation No. T-CLC-Z-00022
Evaluation of Selected Values from CROM's Calculation for the Z-Area Saltstone Storage Tanks
Rev. 0
Sheet No. A2

--- INPUT SECTION ---

PROJECT DESCRIPTION:
- **Floor-wall joint type:** SuperStop
- **Project name:** Saltstone Storage Tanks
- **Tank description:** Two 2.9-MG Saltstone Storage Tanks
- **Engineer / Office:** Bechtel Savannah River, Inc. / Aiken, SC, 08084
- **Location of project:** Aiken, South Carolina

TANK DIMENSIONS:
- **Inside diameter, ID:** 150.000 ft.
- **Sidewall depth, SWD:** 22.000 ft.

FLOOR DEFINITION:
- **Floor thickness, tfl:** 8.000 in.
- **Floor concrete specified compressive strength, fc:** 5000 psi
- **Rise in floor at edge:** 3 in.
- **Drop in floor at edge:** 0 in.
- **Distance to floor slope from ID:** 1.167 ft.
- **Length of floor slope at edge:** 0.5 ft.
- **Minimum floor edge flat width beyond ID:** 2.580 ft.

SHOTCRETE & WALL REINFORCEMENT:
- **Shotcrete specified compressive strength, fg:** 4000 psi
- **Shotcrete modulus of elasticity, Eg:** 4500 ksi
- **Specified cover over diaphragm:** 2 in.
- **Specified cover coat thickness:** 1 in.
- **Specified shotcrete thickness between layers:** 0.125 in.
- **Poisson's ratio for shotcrete:** 0.15
- **Allowable stress in mild reinforcement, fs:** 18 ksi

PRESTRESSING WIRE INPUT:
- **Wire gauge, ga:** 8
- **Wire losses in wall:** 25 ksi
- **Wire losses in roof:** 25.6 ksi
- **Residual compression:** 200 psi

COREWALL PARAMETERS:
- **Maximum allowable concrete compression stress:**
 - **From initial prestress:** 2500 psi
 - **From final prestress:** 2200 psi
- **Allowable concrete compression stress factor:**
 - **From initial prestress:** 0.55
 - **From final prestress:** 0.45

APPLIED LOADS & CONDITIONS:
- **Additional head above top of wall:** 0.000 ft.
- **Specific gravity of tank contents:** 1.32
- **Combined thru-wall temperature differential:** 100°F
- **Shotcrete modulus of elasticity for temperature, Et:** 2000 ksi
- **Coefficient of thermal expansion, ot:** 0.0000065 in./in./°F

SHEAR & MOMENT FACTORS:
- **SuperStop friction coefficient:** 0.70

GEOTECHNICAL & BACKFILL INPUT:
- **Backfill height:** 22 ft
- **Backfill moisture condition:** Wet
- **Backfill equivalent hydrostatic unit weight:** 93.7 pcf
- **Allowable uniform soil bearing pressure:** 3.5 ksf
SEISMIC WITH RESTRAINT CABLES INPUT:
Seismic code basis: IBC - International Building Code
Acceleration at short period, Sa: 0.600 (as fraction of g)
Acceleration at 1 sec period, S1: 0.200 (as fraction of g)
Site class definition: D
Importance factor definition: Cat3
Seismic cables as single strand or paired strands: Pair
Maximum cable spacing: 16 ft.

WIND INPUT:
Basic wind speed, V: 150 mph
Importance factor, I: 1.15
Exposure category: C

TANK SIZE & CAPACITY OUTPUT:
Inside radius: 75 ft.
Tank capacity: 2,908-MG
Actual wall height: 21,750 ft.

FLOOR RESULTS:
Total floor thickness at edge: 11 in.
Floor concrete modulus of elasticity: 3605 ksi
Typical water plus slab pressure: 1905 psf
Wall weight: 5,240 psf
Edge of slab weight pressure: 138 psf
Calculated net pressure: 1,768 psf
Calculated bearing width: 2,964 ft.
Calc'd width - inside face of wall to edge of slab: 2,077 ft.
Add'd width - inside face of wall to edge of slab: 2,583 ft.
Width of full flat edge: 3.750 ft.
Resulting pressure: 1318 psf
Shear on floor edge: 3,404 klf
Shear stress on floor edge: 34 psi < 42 psi, o.k.
Bending moment on floor edge: 4,396 kip-ft
Required floor edge radial reinforcement: 0.348 sq.in./ft.
Provided floor edge reinforcement w/ double mat: 0.992 sq.in./ft.

PRESTRESSING WIRE OUTPUT:
Prestressing wire ultimate strength: 231 ksi
Prestressing wire initial stress: 145.6 ksi
Prestressing wire diameter: 0.162 in.
Prestressing wire area: 0.0206 sq.in.
Prestressing final stress - wall: 121 ksi
Prestressing final stress - roof: 120 ksi
Required wires at base of wall: 65

MISCELLANEOUS LOADS OUTPUT:
Unit weight of tank contents: 82,056 psf
Total temperature difference for design: 100°F

BASIC WALL RESULTS OUTPUT:
Required core wall thickness at base, tcb: 12.25 in.
Required corewall thickness at top, tct: 8.5 in.
Allowable stress from initial prestress w/overstress: 2475 psi
Calculated stress from initial prestress: 1326 psi
Calculated stress from backfill: 900 psi
Total stress from initial prestress + backfill: 2227 psi
Allowable stress from final prestress w/overstress: 2052 psi
<table>
<thead>
<tr>
<th>Calculation Continuation Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation No.</td>
</tr>
<tr>
<td>Rev.</td>
</tr>
</tbody>
</table>

--- OUTPUT SECTION ---

- **Calculated stress from final prestress:** 1099 psi
- **Total stress from final prestress + backfill:** 1099 psi
- **H2/Dt:** 3.088
- **Lower bound within H^2/Dt tables:** 3.0
- **Upper bound within H^2/Dt tables:** 4.0

WALL THICKNESSES OUTPUT:

<table>
<thead>
<tr>
<th>Base of wall:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of wire layers:</td>
<td>4</td>
</tr>
<tr>
<td>Full covercoat thickness:</td>
<td>2.023</td>
</tr>
<tr>
<td>Full wall thickness:</td>
<td>14.273</td>
</tr>
<tr>
<td>Full wall thickness including boss:</td>
<td>15.273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top of wall:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of wire layers:</td>
<td>1</td>
</tr>
<tr>
<td>Full covercoat thickness:</td>
<td>1.162</td>
</tr>
<tr>
<td>Full wall thickness:</td>
<td>9.662</td>
</tr>
<tr>
<td>Full wall thickness including boss:</td>
<td>11.662</td>
</tr>
<tr>
<td>Average full wall thickness:</td>
<td>11.958 in.</td>
</tr>
</tbody>
</table>

WALL WEIGHTS OUTPUT:

Unadjusted wall weight:	3,254 lbf
Base of wall boss weight:	38 lbf
Top of wall boss weight:	63 lbf
Roof bend weight:	75 lbf
Total wall weight adjusted for bosses & bands:	3,429 lbf
Total dome dead weight:	1,812 lbf
Dead load surcharge on wall:	0 lbf
Total dead load on wall:	5,240 lbf

SHEAR & MOMENT PARAMETERS OUTPUT:

<table>
<thead>
<tr>
<th>Deflection calculations:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumferential wall stresses:</td>
<td></td>
</tr>
<tr>
<td>Applied stress due to initial prestress:</td>
<td>1326 psi</td>
</tr>
<tr>
<td>Applied stress due to backfill:</td>
<td>896 psi</td>
</tr>
<tr>
<td>Total applied stress:</td>
<td>2222 psi</td>
</tr>
<tr>
<td>Coefficients:</td>
<td></td>
</tr>
<tr>
<td>Average shrinkage, C:</td>
<td>0.000080 in/in</td>
</tr>
<tr>
<td>Average creep, Ccr:</td>
<td>0.0000003 in/in/psi</td>
</tr>
<tr>
<td>Deflections:</td>
<td></td>
</tr>
<tr>
<td>From prestressing & backfill, Δpb:</td>
<td>0.444 in</td>
</tr>
<tr>
<td>From shrinkage, Δs:</td>
<td>0.720 in</td>
</tr>
<tr>
<td>From creep, Δcr:</td>
<td>0.600 in</td>
</tr>
<tr>
<td>Total deflection, ΔT:</td>
<td>1.765 in</td>
</tr>
</tbody>
</table>

Hinged base shears calculations:	
Supporting data:	
Equiv fluid weight from initial ps & bkt:	217.104 lbf
Coefficient from shear table:	0.1561
Shears on hinged base:	
From prestressing & backfill, Vpb:	16.034 lbf
From shrinkage, Vs:	25.974 lbf
From creep, Vcr:	21.646 lbf
Total shear, VT:	63.655 lbf

Interpolation factors & results:	
Chart plotted deflection at 13 kips:	1.404 in
Total wall design load:	5,240 lbf
Dead load per bearing pad:	5,240 lbf
BearStop calculated shear per pad:	2,682 lbf
Total BearStop calculated shear:	2,682 lbf
BearStop calculated deflection:	1.690
BearStop calculated coefficient of friction:	0.512
OUTPUT SECTION

Multiplier based on input friction factor: 1.368
Resulting design base of wall shear: 3,668 kif
Resulting coefficient of friction: 0.700

DESIGN SHEAR & MOMENTS:
Shears at base of wall:
Final coefficient of friction: 0.70
Final shear at base of wall: 3,668 kif

Design vertical inside moment:
Maximum inside bending moment: 9,511kip-ft/ft
Moment location as % wall height from top: 76%
Moment location from base of wall: 5,250 ft.

Design vertical outside moment:
Temperature coefficient from table: 7,356
Maximum outside bending moment: 9,511kip-ft/ft

MILD STEEL REINFORCEMENT RESULTS:

Insid e vertical reinforcement:
Area of diaphragm per foot of circumference: 0.255 sq.in./ft.
Corewall thickness at maximum moment: 11.345 in.
Effective depth: 8.907 in.
Total area of steel required: 0.678 sq.in./ft.
Area of rebar required: 0.423 sq.in./ft.
Calculated longest cut-off distance: 15,750 ft.
Calculated shortest cut-off distance: 12,250 ft.

Outside vertical reinforcement:
Corewall thickness at maximum moment: 10.375 in.
Effective depth: 9.938 in.
Area of rebar required: 0.722 sq.in./ft.
Bar size:
Calculated spacing: 5.153 in.
Calculated longest bar length: 29,000 ft.
Calculated shortest bar length: 27,000 ft.

Bottom circumferential reinforcement:
Height of wall encompassing reinforcement: 3 ft.
Thickness of wall encompassing reinforcement: 13.250 in.
Area of wall encompassing reinforcement: 477 sq.in./ft.
Area of rebar required: 4,770 sq.in./ft.
Bar size:
Total number of bottom circumferential bars: 16

Top circumferential reinforcement:
Thickness of wall encompassing reinforcement: 10.500 in.
Area of wall encompassing reinforcement: 252 sq.in./ft.
Area of rebar required: 2,520 sq.in./ft.
Bar size:
Total number of top circumferential bars: 13

SEISMIC RESULTS PER IBC & ACI 350.3:
Basic parameters:
Importance factor, I: 1.50
Impulsive structure coefficient, Rc: 3.00
Convective structure coefficient, Re: 1.00
Site coeff for short period acceleration, Fa: 1.320
Site coeff for 1 sec period acceleration, Fp: 3.200
Total weight of tank wall, Ws: 1,161 kip
Total weight of tank roof, Wr: 854 kip
Effective mass of tank contents:
Total weight of tank contents, Wt: 31,901 kip
Appendix B

Selected References

1. email from Brent Gutierrez to Fred Schultz, dated 8/18/09 (1 page)

2. Pages from SOW, C-SOW-Z-00001, Rev 1 (4 pages)

3. Documentation of a Telecon with Ryan Harvey and Jim Kelley (1 page)

4. "Temperature Moments in Circular Tanks". This table was developed for CROM Corporation by the University of Florida. (1 page)
Fred:
In our technical review of the Vault 2A & 2B design we cannot explicitly determine if all of the relevant design loads have been adequately assessed and accounted for in the structural design of the tanks. While we have determined what national consensus codes and standards were used in the design, the structural calculations as we have them do not lend themselves to independent verification and thus we cannot ensure the appropriate design loads have been addressed. Of particular concern are pages 1 through 8 of the CROM calculation provided under WB00001K-006-B-MDM, June 29, 2008. These pages consist only of "input" and "output" information and thus we cannot readily assess if all of the appropriate design load cases have been addressed as required by the applicable national consensus codes and standards and those load cases applicable due the construction and operation sequence as identified in the WSP-SSF-2005-00023, Revision 2, Section 4.18, page 22 of 37. This design load (Section 4.17) may be the controlling loading for the tank design, which is contrary to the assumption made on page 33 of 37 of that same document (first line of the second paragraph of the Executive Summary). Therefore, to complete our technical review of the tank design, we need to be provided with a copy(ies) of the calculational document CROM used that resulted in the "output" sections of pages 1 through 8 of WB00001K-006-B-MDM, June 29, 2008. It is preferable to have a readable/searchable, electronic copy that is not password protected in any manner to facilitate our review.

Let me know if you need more or clarification....Thanks!

Brent J. Gutierrez, PhD, PE, CEM
NPH Engineering Manager
US Dept. of Energy - SR
ph 803.208.2969
cell 803.507.5512
fax 803.208.1959
txt/pager 803.726.7243 ID#16188
Storage Tanks (U) C-SOW-Z-00001
None

3.0 WORK REQUIREMENTS

3.1 Task #1: Tank Design
3.1.1 Tank is required to contain the saltstone grout, without leakage, during the saltstone grout fill operation stages and after the saltstone grout has solidified. (See Attachments 5.3 through 5.8)

3.1.2 Design Parameters
3.1.2.1 Nominal Size: 150 feet inside diameter (fixed) by 22 feet high (minimum inside height at top of wall) for a total capacity of 2.9 million gallons per tank

3.1.2.2 Minimum Design Life:
 A. Operating: 10 years with a water tight seal
 B. Structural: 25 years

3.1.2.3 Design, construction, examination and testing in accordance with one of the following: AWWA D110 or AWWA D115.
 A. Use of AWWA D110 is limited to concrete panels incorporated into structure as follows:
 1. Type I, Cast-in-place concrete with vertical pre-stressed reinforcement
 2. Type III, Pre-cast concrete without steel diaphragm but with vertical pre-stressed reinforcement
 B. Foundation – Cast-in-place concrete
 C. Walls
 1. Cast-in-place or pre-cast concrete
 2. Pre-stressed or post-tensioned in the circumferential direction
 a. Additional vertical tensioning is acceptable.
 D. Roof – Cast-in-place or pre-cast concrete
 1. Pre-stressing or post-tensioning may be used.

3.1.2.4 Special Design Conditions
 A. Lateral forces will be present due to the empty tank being buried to the roof line using dynamic compaction equipment.
 1. Prepare Specifications for Back Filling.
 B. The tank will not be filled with water for purposes of leak testing or backfill.
 1. Do not consider sloshing.
 2. Do not provide drainage for the tank.
 3. Do not provide a leachate collection system.
 C. Filling of the tank with liquid saltstone grout will be done with incremental lifts over a period of several months. For design purposes, each incremental lift will not exceed 12 inches. Individual lifts will undergo initial curing prior to placement of the next lift.
3.1.2.5 Tank top – capable of supporting 30 pounds per square foot live load and the equipment loads in accordance with Attachment 5.7.

3.1.2.6 Design roof interior columns and any required intermediate supports with structural pipes to minimize obstruction / resistance to saltstone grout flow to perimeter walls.

3.1.2.7 Minimum thickness of concrete components:
 A. Foundation Slab: 12 inches with a minimum of 3 inch cover for reinforcing steel (top / inside face)
 B. Walls: 8 inches with a minimum 3 inch cover of reinforcing steel (inside face)
 C. Roof: 8 inches

3.1.2.8 Design the roof assembly of each tank in accordance with Attachment 5.7 including:
 A. Penetration sleeves
 B. Embed plates, including supported loads
 C. Penetration covers and plugs

3.1.2.9 To allow membrane installation by Others at later date:
 A. Provide the tank exterior surfaces with a smooth finish (sides and top)
 B. Reinforcing ribs and projections on exterior walls of the tank are not permitted
 C. Post tensioning buttresses are permitted

3.1.2.10 Saltstone Grout Material Characteristics:
 A. Weight of grout while fluid: 110 pounds per cubic foot
 B. Temperature Range during placement (based on heat of hydration during curing): 50°F to 185°F

3.1.2.11 Soil Properties
 A. Average groundwater table elevation is 225 feet mean sea level with seasonal fluctuation of ± 5 feet.
 B. Wet density of the backfill is 125 pounds per cubic foot.
 C. Lateral earth pressure coefficients for the backfill are:
 1. Active earth pressure coefficient, Ka = 0.33
 2. Passive earth pressure coefficient, Kp = 3.0
 3. At-rest earth pressure coefficient, Ko = 0.5
 D. Allowable soil bearing pressure: 3500 pounds per square foot at elevation 288 feet.
 E. Subgrade modulus, in pci (pounds per square inch per inch of deformation)
 1. 10 to 20 for a 150 foot diameter foundation
 2. 100 to 130 for a 30 inch diameter plate

3.1.3 Structural Requirements:
3.1.3.1 Design for seismic loads in combination with other concurrent service and environmental loads in accordance with ICC IBC, Chapter 16, "Structural Design" and ASCE 7-02 using the following parameters:
 A. S_s, 0.2 sec spectral response acceleration = 0.6g
 B. S_1, 1.0 sec spectral response acceleration = 0.2g
 C. Site Class for SRS (Seismic Design Category) : D
 D. Importance factor $I_p = 1.5$
Storage Tanks (U)

E. Service loads concurrent with seismic loads shall include operating temperature and pressure.

F. Design to prevent damage to the structure from a seismic event. The associated tank equipment (by others) does not need to function during or after the seismic event.

3.1.3.2 Design tank to withstand the full hydrostatic head of water without leaks in the unburied condition.

3.1.3.3 Construction Loads
A. Design empty tank to withstand backfill static and dynamic loads during backfilling.
B. Design components and lifting lugs for hoisting into position.
C. Design of lifting lugs to consider post-installation surface condition to allow for exterior liner installation.

3.1.4 Service Conditions
3.1.4.1 Environmental Conditions
A. Operational Environment Conditions (i.e., while Tank is being filled):
 1. Pressure: Atmospheric plus hydrostatic head
 2. Temperature:
 a. Minimum: 50°F (10°C)
 b. Maximum: 195°F (90°C) (at the center of the tank)
 3. Relative Humidity: 20% to 100% (Condensing)
B. Ambient Outdoor Environmental Conditions
 1. Temperature:
 a. Minimum: 20°F (-6°C)
 b. Maximum: 110°F (40°C)
 2. Relative Humidity range: 5% to 100% (Condensing)

3.1.5 Design Submittals
3.1.5.1 Submit a Design Package including the following, as a minimum
A. Drawings Index Sheet with project title and list of drawings.
B. General Arrangement Drawing: Includes layout and dimensions including roof openings.
C. Structural Drawings: Provide drawings for tank structure (complete tank).
D. Structural Design Calculations:
 1. Provide supporting calculations including any internal roof supports
 2. Load cases to include:
 a. Dead loads, live loads, and seismic loads
 b. Construction loads
 c. Operating loads during the filling of tank with saltstone grout

CC 1/11/2006
10.2.2 Drawings
A. Prepare drawings using Intergraph Microstation version SE (or later – version J preferred) or Autocad Version 14 (or later).
 1. Where electronic media is required for design submittals, provide in Microstation or Autocad format.
 2. Confirm electronic media and files are virus free.
 3. Identify on label of electronic media – Virus application used and the date of virus definition update used.
B. Drawing and lettering shall be of such size and density that, after reduction to half scale, information is clearly legible.
C. Drawings, including reproducibles, electronic media, and prints will become the property of WSRC.
D. The Reference Drawing block on each drawing shall list drawings referenced on that sheet plus the Index Sheet drawing (at a minimum).

3.10.2.3 Calculations
A. Combine calculations in a Design Manual which includes a Table of Contents.
B. Prepare calculations in sufficient detail to ensure that allowable criteria and proper factors of safety have been followed. Provide each calculation with a statement of its problem, the codes and standards governing its design, and a conclusion. Evaluate accepted calculations and revise accordingly to reflect as-built configurations.
C. Provide sufficient detail to allow an individual competent in that discipline to understand the methodology, inputs and results without discussion with originator.
D. For any calculations performed using software, provide copies of the database and/or calculation on CD ROM or equivalent. Include source Mathcad files, if used.

3.10.4 Specifications
A. Provide specifications in sufficient detail for the performance of all the construction tasks for tank construction.
B. Prepare in a commercially accepted format (e.g., CSI) to provide well defined activities for the completion of all the construction tasks, unless noted otherwise.
C. Specifications should be divided in sections by types of construction activities.
D. Include construction tolerances.

3.10.3 Inspection / Testing Laboratory Reports
3.10.3.1 Develop and complete written reports, of required testing and inspections specified within this specification, and include the following, at a minimum:
A. Date issued
B. Project title and Specification number
C. Name of inspector or laboratory technician
D. Date, time and location of inspection or testing
E. Identification of product, type of activity performed and applicable code or standard used

CC 1/11/2006
Wade,

I spoke with Ryan Harvey of the Crom Corporation today about the 2.9 million gallon Salt Tank Design calculation summary.

Specifically I had the following questions:

1. How does the design account for crack control in the 150 foot diameter monolithically poured concrete roof? Ryan answered the design uses enough reinforcing such that any cracking would be hair line at best. The Crom Corp. has recently poured a 280 foot diameter concrete roof monolithically and did not have any concerns with cracking.

2. A 100 degree F differential temperature was used in the design of the tank. If this delta T increased to 150 degrees some yielding of pretensioned wires could occur and some micro cracking could be formed however this would be self limiting and would not jeopardize the integrity of the tank walls. Furthermore the calculation uses 18 ksi steel in its design when in reality 60 ksi steel would be used during construction. Therefore there is a 60/18 = 3.33 factor of safety built into the initial design. Any change in the delta T should not affect the wall design.

3. Did Crom consider a seismic load case where the tank was empty with earth pressure against the tank wall? The calculation summary I reviewed did not specify this load case. Ryan replied that load case was considered in the design but was not specifically mentioned since it was not the governing seismic load case.

4. I asked about the use if a 1.8 Specific Gravity on the Base Mat deign. Ryan answered that the base mat would transfer any loads directly to the underlying soils and that the 1.8 Specific Gravity does not affect the design of the base mat.

5. I asked about differential settlement issues in the design. Ryan stated their design is based on ACI 372 and that the tank design accounts for a differential settlement of Dia. x 12 /300. He was not given an opportunity to review the soils reports (specifically omitted from his scope of work), but did say that differential settlement should not be a concern.

6. I asked about the qualification of the interior columns since his calculation summary did not specifically mention this. Ryan stated the design of the columns (both static and seismic load cases) were covered in the previous calculation summary and there was no change from the previous submittal.

In summary, I have no outstanding concerns for the design of this tank from Crom. If you have any questions please contact me at 2-9720.

Jim Kelley
PRESTRESSED TANK DESIGN

THE CROM CORPORATION

TEMPERATURE MOMENTS IN CIRCULAR TANKS:

Moment = Temp. Coef. \times T_c \times E \times t^2 \times (T_i - T_o)

- E' = Modulus of Elasticity of Shotcrete = 2,000,000 psi
- T_c = Coef. of Thermal Expansion = 0.0000065"/"^\circ\text{F}
- t' = Thickness of Wall at Midheight, in feet
- T_i = Temperature of Inside Wall Face, ^\circ\text{F}
- T_o = Temperature of Outside Wall Face, ^\circ\text{F}

MAXIMUM TEMPERATURE COEFFICIENTS FOR MIDHEIGHT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td>0.236</td>
<td>14.00</td>
<td>12.941</td>
</tr>
<tr>
<td>0.80</td>
<td>0.902</td>
<td>16.00</td>
<td>12.804</td>
</tr>
<tr>
<td>1.20</td>
<td>1.891</td>
<td>18.00</td>
<td>12.656</td>
</tr>
<tr>
<td>1.60</td>
<td>3.068</td>
<td>20.00</td>
<td>12.516</td>
</tr>
<tr>
<td>2.00</td>
<td>4.309</td>
<td>24.00</td>
<td>12.288</td>
</tr>
<tr>
<td>3.00</td>
<td>7.165</td>
<td>28.00</td>
<td>12.135</td>
</tr>
<tr>
<td>4.00</td>
<td>9.299</td>
<td>32.00</td>
<td>12.041</td>
</tr>
<tr>
<td>5.00</td>
<td>10.744</td>
<td>36.00</td>
<td>11.956</td>
</tr>
<tr>
<td>6.00</td>
<td>11.685</td>
<td>40.00</td>
<td>11.956</td>
</tr>
<tr>
<td>8.00</td>
<td>12.656</td>
<td>44.00</td>
<td>11.956</td>
</tr>
<tr>
<td>10.00</td>
<td>12.987</td>
<td>48.00</td>
<td>11.956</td>
</tr>
<tr>
<td>12.00</td>
<td>13.029</td>
<td>56.00</td>
<td>11.967</td>
</tr>
</tbody>
</table>

These coefficients are for a material which is:

1. Isoelastic, homogeneous, linear stress-strain characteristics.
2. Time independent.
3. Temperature changes are axisymmetric.
4. Shell walls are uncracked and of constant thickness.

* E', Modulus of Elasticity - because shotcrete meets none of the above four "material" criteria, it is customary to use a more realistic value of "E," for Temperature computations.