Summary of Environmental Fatigue Analysis Results for the US-APWR Class 1 Components

Non-Proprietary Version

July 2010

©2010 Mitsubishi Heavy Industries, Ltd.

All Rights Reserved

Mitsubishi Heavy Industries, LTD.

Revision History

Revision	Page	Description
0	All	Original Issue

© 2010

MITSUBISHI HEAVY INDUSTRIES, LTD.

All Rights Reserved

This document has been prepared by Mitsubishi Heavy Industries, Ltd. ("MHI") in connection with the U.S. Nuclear Regulatory Commission's ("NRC") licensing review of MHI's US-APWR nuclear power plant design. No right to disclose, use or copy any of the information in this document, other than by the NRC and its contractors in support of the licensing review of the US-APWR, is authorized without the express written permission of MHI.

This document contains technology information and intellectual property relating to the US-APWR and it is delivered to the NRC on the express condition that it not be disclosed, copied or reproduced in whole or in part, or used for the benefit of anyone other than MHI without the express written permission of MHI, except as set forth in the previous paragraph.

This document is protected by the laws of Japan, U.S. copyright law, international treaties and conventions, and the applicable laws of any country where it is being used.

MITSUBISHI HEAVY INDUSTRIES, LTD. 16-5, Konan 2-chome, Minato-ku Tokyo 108-8215 Japan

Abstract

This report complies with the USNRC Regulatory Guide 1.207 for environmental fatigue analysis of ASME Class 1 components and has been prepared in support of the US-APWR DCD Review process.

The environmental fatigue analysis method used in this report is based on the method authorized in NUREG/CR-6909 which is consistent with the requirement of Regulatory Guide 1.207.

This report provides the environmental fatigue results for the US-APWR Class 1 components, including the Reactor Vessel (RV), Control Rod Drive Mechanism (CDRM), Steam Generator (SG), Pressurizer (PZR), Reactor Coolant Loop (RCL) Piping, and the Reactor Coolant Pump (RCP).

The environmental fatigue analyses for other Class 1 piping systems are documented in a separate report.

Table of Contents

1		INT	RODUCTION	1-1
2		SEL	LECTION OF COMPONENTS AND PARTS FOR ANALYSES	2-1
	2.1	L	OW ALLOY STEEL EVALUATION	2-3
	2.2	A	USTENITIC STAINLESS STEELS & NI-CR-FE ALLOY EVALUATION	2-3
3		SUI	MMARY OF RESULTS AND CONCLUSION	3-1
4		NO	MENCLATURE	4-1
5		ASS	SUMPTION AND OPEN ITEMS	5-1
	5.1	A	SSUMPTION	5-1
	5.2	С	DPEN ITEMS	5-1
6		AC	CEPTANCE CRITERIA	6-1
7		CAI	LCULATION	7-1
	7.1	G	GENERAL METHODOLOGY	7-1
		7.1.1	F _{EN} Calculation	7-3
		7.1.2	2 Fatigue Evaluation By Elastic-Plastic Analysis	7-5
	7.2	11	NPUT	7-7
		7.2.1	Input for Environmental Fatigue Analysis based on Elastic Analysis	7-7
		7.2.2	2 Input for Environmental Fatigue Analysis based on Elastic-Plastic Anal	ysis
				7-7
8		CO	MPUTER PROGRAMS USED	8-1
9		EN	VIRONMENTAL FATIGUE ANALYSIS RESULTS	9-1
	9.1	R	۲۷	9-2
		9.1.1	DVI Nozzle of the RV	9-2
	9.2	Ρ	2R	9-3

9.2.1	Spray Line Nozzle of the PZR	9-3
9.2.2	Surge Nozzle of the PZR	9-5
9.3 R(CL PIPING	9-8
9.3.1	Charging Nozzle of the RCL Piping	9-8
9.3.2	Accumulator Tank Nozzle of the RCL Piping	9-9
9.4 R0	CP	9-10
9.4.1	Pump Casing Lug of the RCP	9-10
9.4.2	Discharge Nozzle of the RCP	9-11
9.4	.3 Diffuser Flange of the RCP	9-12

APPENDIX A : REVISED POINTS FROM TECHNICAL REPORTS A-1
APPENDIX B : CORRESPONDENCE TABLES BETWEEN TRANSIENT NAMES AND
MARKS B-1
APPENDIX C : ANALYSIS METHOD SUMMARYC-1

List of Tables

Table 2-1	Fatigue Results for the Limiting Locations exposed to Primary Coolant
Table 3-1	Summary of Environmental Fatigue Results at the most Limiting Locations
Table 8-1	Computer Program Description8-1
Table 9.1.1-1	Fatigue Usage based on ASME Design Fatigue Curve for RV DVI Nozzle (SS) at Location SCL-12-IN (see Fig. 2.1-1)9-12
Table 9.1.1-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RV DVI Nozzle (SS) at Location D-SCL-12-IN9-12
Table 9.2.1-1	Fatigue Usage based on ASME Design Fatigue Curve for PZR Spray Line Nozzle (SS) at Location SCL-13-IN (see Fig. 2.1-2)
Table 9.2.1-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for PZR Spray Line Nozzle (SS) at Location SCL-13-IN9-4
Table 9.2.2-1	Fatigue Usage based on ASME Design Fatigue Curve for PZR Surge Nozzle (SS) at Location SCL-12-IN (see Fig. 2.1-3)
Table 9.2.2-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for PZR Surge Nozzle (SS) at Location SCL-12-IN
Table 9.3.1-1	Fatigue Usage based on ASME Design Fatigue Curve for RCL Piping Charging Nozzle (SS) at Location SCL-01-A-IN (see Fig. 2.1-4)9-8
Table 9.3.1-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RCL Piping Charging Nozzle (SS) at Location: SCL-01-A-IN
Table 9.3.2-1	Fatigue Usage based on ASME Design Fatigue Curve for RCL Piping Accumulator Tank Nozzle (SS) at Location SCL-08-B-IN (see Fig. 2.1-5)
Table 9.3.2-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RCL Piping Accumulator Tank Nozzle (SS) at Location SCL-08-B-IN
Table 9.4.1-1	Fatigue Usage based on ASME Design Fatigue Curve for RCP Pump Casing Lug No.3 (SS) at Location A05F-IN (see Fig. 2.1-6)9-10

Table 9.4.1-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RCP Pump Casing Lug No.3 (SS) at Location A05F-IN 9-10
Table 9.4.2-1	Fatigue Usage based on ASME Design Fatigue Curve for RCP Discharge Nozzle (SS) at Location H09B-IN (see Fig. 2.1-7)9-11
Table 9.4.2-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RCP Discharge Nozzle (SS) at Location H09B-IN9-11
Table 9.4.3-1	Fatigue Usage based on ASME Design Fatigue Curve for RCP Diffuser Flange at Location DF08-IN (see Fig. 2.1-8)9-12
Table 9.4.3-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RCP Diffuser Flange (SS) at Location DF08-IN9-13

List of Figures

Figure 2.1-1	Location for Environmental Fatigue Evaluation for DVI Nozzle of RV 2-7
Figure 2.1-2	Location for Environmental Fatigue Evaluation for Spray Nozzle of PZR
Figure 2.1-3	Location for Environmental Fatigue Evaluation for Surge Nozzle of PZR
Figure 2.1-4	Location for Environmental Fatigue Evaluation for Charging Nozzle of RCL Piping2-10
Figure 2.1-5	Location for Environmental Fatigue Evaluation for Accumulator Tank Nozzle of RCL Piping2-11
Figure 2.1-6	Location for Environmental Fatigue Evaluation for Pump Casing Lugs of RCP2-12
Figure 2.1-7	Location for Environmental Fatigue Evaluation for Discharge Nozzle of RCP
Figure 2.1-8	Location for Environmental Fatigue Evaluation for Diffuser Flange of RCP2-14
Figure 7.1-1	Environmental Fatigue Analysis Flow7-2

List of Acronyms

The following list defines the acronyms used in this document.

ANL	Argonne National Laboratory
ASME	American Society of Mechanical Engineers
CRDM	Control Rod Drive Mechanism
CUF	Cumulative Usage Factor
CVCS	Chemical and Volume Control System
DCD	Design Control Document
DO	Dissolved oxygen
DVI	Direct Vessel Injection
FEA	Finite Element Ánalysis
JSME	Japan Society of Mechanical Engineering
LAS	Low Alloy Steel
LH	Latch Housing
LWR	Light Water Reactor
PZR	Pressurizer
PWR	Pressurized Water Reactor
RCL	Reactor Coolant Loop
RCP	Reactor Coolant Pump
RCS	Reactor Coolant System
RHRS	Residual Heat Removal System
R.G or RG	Regulatory Guide
RT	Room Temperature
RTH	Rod Travel Housing
RV	Reactor Vessel
RVCH	Reactor Vessel Closure Head
SIS	Safety Injection System
SG	Steam Generator
SS	Stainless Steel
USNRC	U.S. Nuclear Regulatory Commission

1 INTRODUCTION

This report complies with the USNRC Regulatory Guide 1.207 (Reference 1) for environmental fatigue analysis of ASME Class 1 components (Reference 2) and has been prepared in support of the US-APWR DCD Review process.

The pressure boundary parts in contact with the primary coolant are evaluated for fatigue incorporating the life reduction effects of the light-water reactor (LWR) environment, particularly the water environment of the Pressurized Water Reactor (PWR).

The environmental fatigue analysis method used in this report determines fatigue usage factors using the ASME Code fatigue analysis procedure along with the new fatigue curves developed by the Argonne National Laboratory (ANL) and the environmental correction factor (F_{en}) described in NUREG/CR-6909 (References 1 and 3).

This report provides the environmental fatigue results for the US-APWR Class 1 components, including the Reactor Vessel (RV), Control Rod Drive Mechanisms (CRDM), Steam Generators (SG), Pressurizer (PZR), Reactor Coolant Loop (RCL) Piping, and the Reactor Coolant Pumps (RCP). The environmental fatigue analyses for other Class 1 piping systems are documented in a separate report (Reference 17).

2 SELECTION OF COMPONENTS AND PARTS FOR ANALYSES

The pressure boundary locations in contact with the primary coolant including regions protected by cladding are listed in Table 2-1 along with the cumulative usage factors in air derived from the stress analysis results for the US-APWR Class1 components (See Reference 11 to Reference 16). By using the results of the ASME fatigue analysis with new fatigue curve developed by ANL (hereafter referred to as NUREG design fatigue curve) it is possible to demonstrate that many areas in contact with the primary coolant easily meet the environmental fatigue limits. That is the purpose of this section.

Table 2-1 identifies the parts, their material, maximum alternating stress intensity used to enter design fatigue curve, Ke multiplier per NB-3228.5, maximum cumulative usage factor based on the ASME design fatigue curve in air, and cumulative usage factor based on the NUREG design fatigue curve in air (Reference 3) at the limiting locations exposed to the primary coolant.

Per Reference 4, parts with cladding are evaluated for environmental effects by applying the analytical method to the underlying low alloy steel material. Neglecting the cladding is consistent with the ASME Code fatigue procedure.

NUREG/CR-6909, Appendix A (Reference 3) specifies an environmental correction factor F_{en} .

The nominal environmental correction factor $F_{en,nom}$ is defined as follows:

$$\ln(F_{en,nom}) = \ln(N_{air,RT}) - \ln(N_{water})$$

Where:

 $N_{air,RT}$ = Fatigue life (number of cycles) in air, at room temperature

 N_{water} = Fatigue life (number of cycles) in water, at the service temperature

The factor ($F_{en,nom}$) for Carbon and Low-Alloy Steels, Austenitic Stainless Steels, and Ni-Cr-Fe Alloys are given in the following equations respectively from Reference 3:

For Low-Alloy Steels

$$F_{en,nom} = \exp(0.702 - 0.101 \, S^* \, T^* \, O^* \, \dot{\varepsilon}^*)$$

A threshold value of 0.07% for strain amplitude for the Low-Alloy steel is defined. Thus,

$$F_{en,nom}$$
=1.0 for $\varepsilon_a \leq 0.07\%$

For Austenitic Stainless Steels

$$F_{en_{nom}} = \exp(0.734 - T^* O^* \dot{\varepsilon}^*)$$

For Ni-Cr-Fe Alloys

$$F_{ennom} = \exp\left(-T^* \dot{\varepsilon}^* O^*\right)$$

For austenitic stainless steels and Ni-Cr-Fe alloys, a threshold value of 0.1% for strain amplitude is defined. Thus,

 $F_{en,nom}$ =1 for $\varepsilon_a \leq 0.10\%$

Where transformed sulfur content (S^*), transformed temperature (T^*), transformed dissolved oxygen (O^*) and transformed strain rate ($\dot{\varepsilon}^*$) are:

For low alloy steels

S <u><</u> 0.001 Wt.%
S <u><</u> 0.015 Wt.%
S > 0.015 Wt.%
T < 150°C
T=150 - 350 °C
DO <u><</u> 0.04 ppm
0.04 < DO <u><</u> 0.5 ppm
DO > 0.5 ppm
<i>ἑ</i> > 1.0 %/s
0.001 <u>≤</u>
<i>ἑ</i> <0.001 %/s

For austenitic stainless steels

<i>T</i> * = 0	T < 150°C
T*=(T-150)/175	150 <u><</u> T < 325 °C
<i>T</i> * =1	T <u>></u> 325 °C
<i>ċ</i> *=0	<i>ἑ</i> > 0.4 %/s
$\dot{\varepsilon}^* = \ln(\dot{\varepsilon}/0.4)$	0.0004 <u><</u>
$\dot{\varepsilon}^* = \ln(0.0004/0.4)$	$\dot{\varepsilon}$ < 0.0004 %/s
<i>O</i> *=0.281	All DO levels

For Ni-Cr-Fe alloys

<i>T</i> * = T/325	T < 325°C
<i>T</i> * =1	T <u>≥</u> 325 °C
<i>ċ</i> *=0	<i>ἑ</i> > 5.0 %/s
<i>ἑ</i> * =ln(<i>ἑ</i> /5.0)	0.0004 <u><</u> <i>ἑ</i> <u><</u> 5.0 %/s
$\dot{\varepsilon}^* = \ln(0.0004/5.0)$	$\dot{\varepsilon}$ < 0.0004 %/s
<i>O</i> * = 0.16	PWR water

2.1 LOW ALLOY STEEL EVALUATION

2.2 AUSTENITIC STAINLESS STEELS & NI-CR-FE ALLOY EVALUATION

Table 2-1 Fatigue Results for the Limiting Locations exposed to Primary Coolant

Component & Part		Material Type	Max Salť (ksi)	Ke	ASME (air) Max U ¹⁾	NUREG (air) Max U ²⁾	Upper Bound F _{en} U ³⁾	Detailed Analysis Needed ⁴⁾	
		I							
RV									
CRDM									
PZR									

Component & Part		Material Type	Max Salť (ksi)	Ke	ASME (air) Max U ¹⁾	NUREG (air) Max U ²⁾	Upper Bound F _{en} U ³⁾	Detailed Analysis Needed ⁴⁾
SG								
RCL								
Piping								
RCP								

 Table 2-1
 Fatigue Results for the Limiting Locations exposed to Primary Coolant

Figure 2.1-1 Location for Environmental Fatigue Evaluation for DVI Nozzle of RV

Figure 2.1-2 Location for Environmental Fatigue Evaluation for Spray Nozzle of PZR (109 degrees sector model)

Figure 2.1-3 Location for Environmental Fatigue Evaluation for Surge Nozzle of PZR (30 degrees sector model)

Figure 2.1-4 Location for Environmental Fatigue Evaluation for Charging Nozzle of RCL Piping

Figure 2.1-5 Location for Environmental Fatigue Evaluation for Accumulator Tank Nozzle of RCL Piping

Figure 2.1-6 Location for Environmental Fatigue Evaluation for Pump Casing Lugs of RCP

Figure 2.1-7 Location for Environmental Fatigue Evaluation for Discharge Nozzle of RCP

Figure 2.1-8 Location for Environmental Fatigue Evaluation for Diffuser Flange of RCP

3 SUMMARY OF RESULTS AND CONCLUSION

The fatigue evaluation is based on the US-APWR operating transients defined in the component design specifications for a plant-operating period of 60 years. The most limiting results for environmental fatigue for each component are listed in Table 3-1. None of the cumulative usage factors exceeds the allowable limit of 1.0.

From the results summarized in this report, it is concluded that the US-APWR Class 1 components satisfy the USNRC Regulatory Guide 1.207 requirements for environmental fatigue as well as the ASME Section III requirements for fatigue.

Table 3-1	Summary of Environmental Fatigue Results at the most Limiting
	Locations

Compo nent	Location	Material	ASME Fatigue Usage in air U ¹⁾	NUREG (LWR) Environmental Fatigue U _{en}
RV				
CRDM				
PZR				
SG				
RCL				
Piping				
RCP				

4 NOMENCLATURE

\mathcal{E}_{a}	Strain amplitude
Ė	Strain rate
$\dot{arepsilon}^{*}$	Transformed strain rate
${\cal E}_R$	Strain range
$\mathcal{E}_x, \mathcal{E}_y, \mathcal{E}_z$	Strain components
γ_{xy} , γ_{yz} , γ_{zx}	Shear strain components
E	Modulus of elasticity of the material
$F_{\text{en,nom}}$	Nominal environmental fatigue correction factor
F _{en i}	Environmental fatigue correction factor for "i" th stress cycle
K _e	S _a multiplier for fatigue (per ASME NB-3228.5)
ni	Specified number of cycle
Ni	Allowable number of stress cycles
O^*	Transformed dissolved oxygen
RT	Room temperature
S^*	Transformed sulfur content
T^*	Transformed temperature
Sa	Stress amplitude or Alternating stress that is used to enter design fatigue curve
S.I. or SI	Stress Intensity
Salt	Alternating stress intensity adjusted by an appropriate K_{e} multiplier
Salt'	Alternating stress intensity (Salt) adjusted by the modulus of elasticity ratio that is used to enter design fatigue curve.
Sp	Peak stress intensity range
U	Cumulative usage factor in air
U _i	Usage factor in air
U_{en}	Cumulative usage factor in LWR environment
U _{en i}	Usage factor in LWR environment

5 ASSUMPTION AND OPEN ITEMS

5.1 ASSUMPTION

When the cumulative environmental usage factor based on Equation A.20 of NUREG/CR-6909 exceeds the allowable, usage factors were re-calculated based on total strain by elastic-plastic analysis and added to the remaining elastically calculated usage factors. This assumption is reasonable, since in all cases, such plasticity is a local condition that does not produce a significant change in the load path during plastic behavior. Elastic-plastic analysis is permitted for fatigue evaluations in ASME NB-3228.4.This assumption was applied for the RCL Piping Charging Nozzle and the RCP Diffuser Flange environmental fatigue evaluations.

5.2 OPEN ITEMS

There are no open items.

6 ACCEPTANCE CRITERIA

The usage factors are calculated based on the ASME procedure with the NUREG design fatigue curves, provided in NUREG/CR-6909, Appendix A, Figures A.1, A.2, and A.3 (Reference 3). Theses usage factors are multiplied by F_{en} to obtain the cumulative usage factor in the LWR environment. The cumulative usage factor in the LWR environment U_{en} is not permitted to exceed the limit of 1.0.

 $U_{en} = U_1 \cdot F_{en,1} + U_2 \cdot F_{en,2} + U_3 \cdot F_{en,3} + U_i \cdot F_{en,i} \dots + U_n \cdot F_{en,n} \le 1.0$

7 CALCULATION

7.1 GENERAL METHODOLOGY

Figure 7.1-1 Environmental Fatigue Analysis Flow

7.1.1 F_{EN} Calculation

1) The modified rate approach is expressed in the following formula.

Because environmental effects on fatigue life occur primarily during the tensile loading cycle (i.e., increasing strain portion), these calculations are performed only for the increasing strain portion of the paired strain range.

Where

n	:	Total number of strain increments
k	:	Subscript for the k-th increment
$F_{en,nom,k} \begin{pmatrix} \bullet \\ \varepsilon_k, T_k \end{pmatrix}$:	Nominal correction factor for the k-th increment
• <i>E</i> k	:	Strain rate for the k-th increment
T_k	:	Temperature for the k-th increment
$\Delta oldsymbol{arepsilon}_k$:	Increment of strain (%) for the k-th increment
\mathcal{E}_{\max} \mathcal{E}_{\min}	:	Maximum, minimum strain (%) for the integration range

2) F_{en} for transient pair A-B (Reference 9)

$$F_{en,i} = \frac{F_{en}^{A} \left(\varepsilon_{\max}^{A} - \varepsilon_{\min}^{A} \right) + F_{en}^{B} \left(\varepsilon_{\max}^{B} - \varepsilon_{\min}^{B} \right)}{\left(\varepsilon_{\max}^{A} - \varepsilon_{\min}^{A} \right) + \left(\varepsilon_{\max}^{B} - \varepsilon_{\min}^{B} \right)}$$

Where

 $F_{en,i}$: Environmental correction factor for i-th stress cycle or transient pair F_{en}^{A} : Fen for Transient A calculated by Eq. (30) of NUREG/CR-6909 F_{en}^{B} : Fen for Transient B calculated by Eq. (30) of NUREG/CR-6909 ε_{max}^{A} ε_{min}^{A} : Maximum, minimum strain (%) for the integration range for transient A ε_{max}^{B} ε_{min}^{B} : Maximum, minimum strain (%) for the integration range for transient B

3) Calculate the environmental usage factor using Equation A.20 of NUREG/CR-6909:

$$U_{en} = \sum_{1}^{n} U_{i} \cdot F_{en,i}$$
 [Eq. A.20 of NUREG/CR-6909]

Where

*U*_{en}: Cumulative usage factor in LWR environment.

 U_i : Usage factors in air with the NUREG design fatigue curve for i-th stress cycle or transient pair.

7.1.2 Fatigue Evaluation by Elastic-Plastic Analysis

The ASME Code NB-3228.3 and NB-3228.4 (c) state how to analyze fatigue using a total strain by plastic analysis.

NB-3228.3: "Plastic analysis is a method of a structural analysis by which the structural behavior under given loads is computed by considering the actual material stress-strain relationship and stress redistribution, and it may include either strain hardening or change in geometry, or both."

NB-3228.4 (c): "In evaluating stresses for comparison with fatigue allowables, the numerically maximum principal total strain range shall be multiplied by one-half the modulus of elasticity of the material (Section II, Part D, Subpart 2, Tables TM) at the mean value of the temperature of the cycle."

7.1.2.1 Principal Total Strain range

NB-3228.4 (c) defines the alternating stress (S_a) in terms of the numerically maximum principal total strain range (ε_R) for comparison with fatigue allowables:

$$S_a = \frac{1}{2} E \varepsilon_R$$

The principal strain ranges are derived from the difference in the components of strains for the stress cycle (transient pairings: A-B);

$$(\varepsilon_{x})_{R} = (\varepsilon_{x})_{A} - (\varepsilon_{x})_{B} \qquad (\varepsilon_{y})_{R} = (\varepsilon_{y})_{A} - (\varepsilon_{y})_{B} \qquad (\varepsilon_{z})_{R} = (\varepsilon_{z})_{A} - (\varepsilon_{z})_{B}$$
$$(\gamma_{xy})_{R} = (\gamma_{xy})_{A} - (\gamma_{xy})_{B} \qquad (\gamma_{yz})_{R} = (\gamma_{yz})_{A} - (\gamma_{yz})_{B} \qquad (\gamma_{zx})_{R} = (\gamma_{zx})_{A} - (\gamma_{zx})_{B}$$
$$\begin{pmatrix} \varepsilon_{R1} \\ \varepsilon_{R2} \\ \varepsilon_{R3} \end{pmatrix} \Leftarrow \begin{pmatrix} (\varepsilon_{x})_{R} & \frac{1}{2}(\gamma_{xy})_{R} & \frac{1}{2}(\gamma_{zx})_{R} \\ \frac{1}{2}(\gamma_{xy})_{R} & (\varepsilon_{y})_{R} & \frac{1}{2}(\gamma_{yz})_{R} \\ \frac{1}{2}(\gamma_{zx})_{R} & \frac{1}{2}(\gamma_{yz})_{R} & (\varepsilon_{z})_{R} \end{pmatrix}$$

The principal total strain range used for fatigue is the largest of the three principal strain ranges ($\varepsilon_{R1}, \varepsilon_{R2}, \varepsilon_{R3}$).

$$\varepsilon_{R} = \max(|\varepsilon_{R1}|, |\varepsilon_{R2}|, |\varepsilon_{R3}|)$$

7.1.2.2 Elastic-Plastic Analysis by Finite Element Code

The elastic-plastic analysis was performed using the ABAQUS finite element code which is capable of modeling elastic-plastic material behavior and geometric nonlinearities. Since the fatigue phenomenon is due to cyclic operation with stabilized local strain, the analysis was performed with no geometric nonlinearities. A linear kinematic hardening model with the bi-linear strain–stress relationship was used.

The elastic-plastic analysis for a full stress cycle consisted of analyzing two different transients that were combined by inserting appropriate load steps between the end of the first transient and the beginning of the second transient.

Since the structural action for fatigue requires shakedown, the elastic-plastic analysis was continued until shakedown was evident, then the total strain used in the fatigue calculation was taken from the last cycle of the analysis.

Reference10 indicates that a stabilized cyclic stress strain curve is appropriate for the material model in the elastic-plastic analysis and that a linear kinematic hardening model, which ABQUS supports, can be used for cyclic loading.

7.2 INPUT

7.2.1 Input for Environmental Fatigue Analysis based on Elastic Analysis

The stress and the temperature time histories at each location evaluated for environmental fatigue were taken from the outputs for Technical Reports of Stress Analysis Results (See References 11, 13, 14 and 16).

7.2.2 Input for Environmental Fatigue Analysis based on Elastic-Plastic Analysis

7.2.2.1 Material Properties

The material properties documented in Technical Reports for Stress Analysis Results were used in the calculations (See References 14 and 16).

7.2.2.2 Stress-Strain Curve for Elastic-Plastic Analysis

The bi-linear stress-strain curves are developed for Type 316 and Type 304 stainless steels and used for the elastic-plastic analyses.
8 COMPUTER PROGRAMS USED

Table 8-1 provides a brief description of each of the computer programs used.

No.	Program Name	Version	Description
1	ABAQUS	6.7-1	ABAQUS is a general purpose finite element computer program that performs a wide range of linear and nonlinear engineering simulations
2	CLASS2D, CLASS3D	4	CLASS2D and CLASS3D are MHI programs for classifying the stresses for axisymmetric and 3D solid models and for coordinate transformation
3	EDITSTRS	4	EDITSTRS is an MHI program that creates input file for the stress evaluation programs
4	EVALSECO	5	EVALSECO is an MHI program that performs the primary plus secondary stress evaluation, the ASME fatigue evaluation, and creates an input file based on elastic analysis for the EVALIRAMJ program.
5	EVALSEFAV	5	EVALSEFAV is an MHI program that performs the primary plus secondary stress evaluation, the ASME fatigue evaluation, and creates an input file based on plastic analysis for the EVALIRAMJ program.
6	EVALIRAMJ	3	MHI program that performs the environmental fatigue evaluation

 Table 8-1
 Computer Program Description

All these computer programs were verified and validated in compliance with the MHI quality assurance program. The computer programs were validated using one of the methods described below. Verification tests demonstrate the capability of the computer programs to produce valid results for test problems encompassing the range of permitted usage defined by the program documentation.

- Hand calculations
- Known solution for similar or standard problem
- Acceptable experimental test results
- Published analytical results
- Results from other similar verified programs

9 ENVIRONMENTAL FATIGUE ANALYSIS RESULTS

9.1 RV

9.1.1 DVI Nozzle of the RV

Table 9.1.1-1 Fatigue Usage based on ASME Design Fatigue Curve for RV DVI Nozzle (SS) at Location SCL-12-IN (see Fig. 2.1-1)

	Transier	nt Pair ¹⁾	S _P ksi	K _e	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air) Ui	
$\left(\right. \right.$										$\left[\right]$
C										`

Table 9.1.1-2 Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RV DVI Nozzle (SS) at Location SCL-12-IN

	Trans	ient ¹⁾	Salť ksi	ni	NUREG (air) Ni	NUREG (air) Ui	F _{eni}	NUREG (LWR) U _{eni}
\langle	~	D						
C								

9.2 PZR

9.2.1 Spray Line Nozzle of the PZR

Table 9.2.1-1	Fatigue Usage based on ASME Design Fatigue Curve for PZR Spray
	Line Nozzle (SS) at Location SCL-13-IN (see Fig. 2.1-2)

	Transie	nt Pair ¹⁾	S _P ksi	K _e	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air) Ui
									•
ſ									

Table 9.2.1-2 Fatigue Usage based on NUREG/CR-6909 and Environmental FatigueUsage for PZR Spray Line Nozzle (SS) at Location SCL-13-IN

Trans	ient ¹⁾	Salť	ni	NUREG	NUREG (air)	E	NUREG
A	В	ksi	[]]	(air) Ni	Ui	⊢ eni	(LWR) U _{eni}
	1						

9.2.2 Surge Nozzle of the PZR

Table 9.2.2-1Fatigue Usage based on ASME Design Fatigue Curve for PZR SurgeNozzle (SS) at Location SCL-12-IN (see Fig. 2.1-3)

	Transien	it Pair ¹⁾	S _P ksi	K _e	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air) Ui
-									
									<u> </u>

Table 9.2.2-2Fatigue Usage based on NUREG/CR-6909 and Environmental FatigueUsage for PZR Surge Nozzle (SS) at Location SCL-12-IN

Trans	Transient ¹⁾			NUREG (air)			NUREG
А	В	ksi	ni	Ni	(air) Ui	F _{eni}	(LWR) U _{eni}
	,	μ	L				۔۔۔۔۔۔۔ ر

Table 9.2.2-2Fatigue Usage based on NUREG/CR-6909 and Environmental FatigueUsage for PZR Surge Nozzle (SS) at Location SCL-12-IN

Transient ¹⁾		Salt'		NUREG (air)	NUREG		NUREG
А	В	ksi	ni	Ni	(air) Ui	F _{eni}	(LWR) U _{eni}
					L		L

9.3 RCL PIPING

9.3.1 Charging Nozzle of the RCL Piping

Table 9.3.1-1 Fatigue Usage based on ASME Design Fatigue Curve for RCL Piping Charging Nozzle (SS) at Location SCL-01-A-IN (see Fig. 2.1-4)

\mathcal{C}	Transier	nt Pair ¹⁾	S _P ksi	K _e	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air) Ui
C									~

Table 9.3.1-2Fatigue Usage based on NUREG/CR-6909 and Environmental FatigueUsage for RCL Piping Charging Nozzle (SS) at Location: SCL-01-A-IN

	Transi	ient 1)	Salť n ⁱ		NUREG (air) Ni	NUREG (air) Ui	F _{eni}	NUREG
	Α	В						
Γ								
				1	1			

9.3.2 Accumulator Tank Nozzle of the RCL Piping

Table 9.3.2-1 Fatigue Usage based on ASME Design Fatigue Curve for RCL Piping Accumulator Tank Nozzle (SS) at Location SCL-08-B-IN (see Fig. 2.1-5)

	Transient Pair ¹⁾		S _P ksi	K _e	Salt ksi	Salt' ksi	ni	ASME (air) Ni	ASME (air) Ui
$\left(\right)$									
-									
-									
									L]

Table 9.3.2-2Fatigue Usage based on NUREG/CR-6909 and Environmental FatigueUsage for RCL Piping Accumulator Tank Nozzle (SS) at Location SCL-08-B-IN

	Trans A	Bient ¹⁾ B	Salt' ksi	ni	NUREG (air) Ni	NUREG (air) Ui	F _{eni}	NUREG (LWR) U _{eni}
$\left(\right)$								

9.4 RCP

9.4.1 Pump Casing Lug of the RCP

Table 9.4.1-1 Fatigue Usage based on ASME Design Fatigue Curve for RCP Pump Casing Lug No.3 (SS) at Location A05F-IN (see Fig. 2.1-6)

Transient Pair ¹⁾		S _P ksi	K_{e}	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air)Ui

Table 9.4.1-2 Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue Usage for RCP Pump Casing Lug No.3 (SS) at Location A05F-IN

Tran	Transient 1)		ni	NUREG	NUREG	Fani	NUREG
Α	В	ksi	•••	(air) Ni	(air) Ui	• eni	(LWR) U _{eni}
L		1	1	1			
<u> </u>							_

9.4.2 Discharge Nozzle of the RCP

Table 9.4.2-1 Fatigue Usage based on ASME Design Fatigue Curve for RCP Discharge Nozzle (SS) at Location H09B-IN (see Fig. 2.1-7)

	Transient Pair ¹⁾	S _P ksi	K _e	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air)Ui
								`
-								
F								
_								
F								
C								

Table 9.4.2-2Fatigue Usage based on NUREG/CR-6909 and Environmental FatigueUsage for RCP Discharge Nozzle (SS) at Location H09B-IN

Transient ¹⁾		Salť ksi	ni	NUREG (air) Ni	NUREG (air) Ui	F _{eni}	NUREG (LWR) Ueni
A	В	_		()	(-) -		(
							ر ر

9.4.3 DIFFUSER FLANGE OF THE RCP

Table 9.4.3-1	Fatigue Usage based on ASME Design Fatigue Curve for RCP Diffuser
	Flange at Location DF08-IN (see Fig. 2.1-8)

	Transien	t Pair ¹⁾	S _P ksi	K _e	Salt ksi	Salť ksi	ni	ASME (air) Ni	ASME (air)Ui
$\left(\right[$									
╞									
╞									
╞									
╞									
╞									
╞									
L					<u> </u>		<u> </u>		

Table 9.4.3-2	Fatigue Usage based on NUREG/CR-6909 and Environmental Fatigue
	Jsage for RCP Diffuser Flange (SS) at Location DF08-IN

Trans	sient ¹⁾	Salt' ksi	ni	NUREG (air) Ni	NUREG (air) Ui	F _{eni}	NUREG (LWR) U _{eni}
A	В						

10 REFERENCES

- 1. U.S. Nuclear Regulatory Commission Regulatory Guide 1.207, "Guidelines for Evaluating Fatigue Analyses Incorporating the Life Reduction of Metal Components due to the Effects of the Light-Water Reactor Environment for New Reactors", March 2007.
- 2. ASME Boiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components, 2001 Edition through 2003 Addenda.
- NUREG/CR-6909, "Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials" (Final Report), ANL-06/08, U.S. Nuclear Regulatory Commission, Washington, DC, February 2007.
- 4. Staff Responses to Public Comments on Draft Regulatory Guide DG-1144 (proposed new Regulatory Guide 1.207), "Guidelines for Evaluating Fatigue Analyses Incorporating the Life Reduction of Metal Components Due to the Effects of the Light-Water Reactor Environment for New Reactors," and Draft NUREG/CR-6909, "Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials (Draft Report for Comment)".
- 5. ASME Boiler and Pressure Vessel Code, Section II, Part D, 2001 Edition through 2003 Addenda.
- 6. Design Control Document for US-APWR Chapter 5 Rector Coolant and Connecting System MUAP-DC005 Rev.1, August 2008.
- 7. "ABAQUS Analysis User's manual", Version 6.7, Hibbitt, Karlsson, and Sorensen, 2007.
- Materials Reliability Program: Guidelines for Addressing Fatigue Environmental Effects in a license Renewal Application (MRP-47, Revision 1) 1012017, Final Report, September 2005.
- 9. "Code for Nuclear Power Generating Facilities, Environmental Fatigue Evaluation Method for Nuclear Power Plants", JSME S NF1, 2006, March 2006.
- 10. "Fatigue Analysis in Pressure Vessel Design by Local Strain Approach: Methods and Software Requirements", Arturs Kalnins, PVP2004-2668, PVP-vol.480 Pressure Vessel and Piping Codes and Standards, 2004.
- 11. "Summary of Stress Analysis Results for the US-APWR Reactor Vessel", MUAP-09005 Rev.0 March 2009.
- 12. "Summary of Stress Analysis Results for the US-APWR Steam Generator", MUAP-09006 Rev.0 March 2009.
- 13. "Summary of Stress Analysis Results for the US-APWR Pressurizer", MUAP-09007 Rev.0 March 2009.
- 14. "Summary of Stress Analysis Results for the US-APWR Reactor Coolant Pump", MUAP-09008 Rev.0 March 2009.

- 15. "Summary of Stress Analysis Results for the US-APWR Control Rod Drive Mechanism", MUAP-09009 Rev.0 March 2009.
- 16. "Summary of Stress Analysis Results for the US-APWR Reactor Coolant Loop Piping", MUAP-09010 Rev.1 May 2009.
- 17. "Summary of Environmental Fatigue Analysis Results for the US-APWR Reactor Coolant Loop Branch Piping", MUAP-10016 Rev.0 July 2010.

APPENDIX A: REVISED POINTS FROM TECHNICAL REPORTS

The environmental fatigue analysis is based on the fatigue analysis results which are shown in Technical Reports (Reference 11 to 16). However, in several parts, the fatigue analysis results are revised from Technical Reports. This appendix shows the revised results.

A.1 RV DVI nozzle

	ndition Part		Stress-to-	Allowable F	Ratio		
Condition		Pr	imary Stre	ess	Primary plus Secondary Stress	Fatigue	Thermal Ratchet
		P _m	P∟or P∟+P₀	Triaxial Stress	P _L +P _b +Q	Usage Factor	
Design							
Level A / Level B							
Level C							
Level D							

Table A1-1 DVI Nozzle Result Summary

			Stress-to-	Allowable F	Ratio		
Condition	Part	Primary Stress			Primary plus Secondary Stress	Fatigue	Thermal Ratchet
	-	P _m	P _L or P _L +P _b	Triaxial Stress	P _L +P _b +Q	Usage Factor	
Test							
L							

Table A1-1 DVI Nozzle Result Summary

A.2 RCL Piping Surge Nozzle

	n Part		Stress-to-	Allowable F	Ratio			
Condition		Pi	rimary Stro	ess	Primary plus Secondary Stress	Fatigue Usage Factor	Thermal Ratchet	
(-	P _m	P_L or $P_L + P_b$	Triaxial Stress	$P_L + P_b + Q$			
Design								
Level A/B								
Level C								
Level D								
(-							

Table A2-1 Surge Nozzle Result Summary

A.3 RCP

CASING LUGS, DISCHARGE NOZZLE AND SUCTION NOZZLE

MAIN FLANGE AND No.1 & No.2 SEAL HOUSING

RESULTS FOR DIFFUSER FLANGE

HEAT EXCHANGER TUBING SEAL WATER INJECTION NOZZLE

A.3.1 RESUNLTS FOR CASING LUGS

Condition Part	Stress-to-Allowable Ratio	
	PL	P _L +P _b
	Part	Part PL Stress-to-All PL PL

Table A3-1-1 Summary of Primary Stress evaluations

 Table A3-1-2
 Summary of Primary plus Secondary
 Stress evaluations

Condition	Part	Stress-to-Allowable Ratio	
Condition		P _L +P _b +Q'	
Level A/B			

Condition	Part	Usage Factor
Level A/B		

Table A3-1-3 Summary of Fatigue evaluations

Table A3-1-4 Summary of Triaxial Stress evaluations

Condition	Part	Stress-to-Allowable Ratio	
	-	Triaxial Stress	
Design			
Test			

Table A3-1-5 Summary of Thermal Ratchet evaluations

	Part	Stress-to-Allowable Ratio	
Condition		Thermal Stress	
Level A			
	,		

A.3.2 RESULTS FOR DISCHARGE NOZZLE

Condition Part	Dort	Stress-to-Allowable Ratio	
	P_m or P_L	P _m +P _b	
Design			
Level D			
Test			

Table A3-2-1 Summary of Primary Stress evaluations

Condition	Condition Part	Stress-to-Allowable Ratio	
Condition		P _m +P _b +Q	
Level A/B			
		~	

Part	Usage Factor
	Part

Table A3-2-3 Summary of Fatigue evaluations

Table A3-2-4 Summary of Triaxial Stress evaluations

Condition	Part	Stress-to-Allowable Ratio	
Condition	i ait	Triaxial Stress	
ĺ			
Design			
Test			

Table A3-2-5 Summary of Thermal Ratchet evaluations

Condition	Condition Part	Stress-to-Allowable Ratio	
Condition		Thermal Stress	
Level A			

A.3.3 RESULTS FOR SUCTION NOZZLE

Condition	Dort	Stress-to-A	Stress-to-Allowable Ratio	
Condition	Γαιι	P_m or P_L	P _m +P _b	
Design				
Level D				
Test				
[7	1	<u> </u>	

Table A3-3-1 Summary of Primary Stress evaluations

 Table A3-3-2
 Summary of Primary plus Secondary Stress evaluations

Condition	Part	Stress-to-Allowable Ratio
		P _m +P _b +Q
Level A/B		
	-	

Condition	Part	Usage Factor
Level A/B		

Table A3-3-3 Summary of Fatigue evaluations

Table A3-3-4 Summary of Triaxial Stress evaluations

Condition	Part	Stress-to-Allowable Ratio
Condition	i uit	Triaxial Stress
(
Design		
Test		

Table A3-3-5 Summary of Thermal Ratchet evaluations

Condition	Part	Stress-to-Allowable Ratio
Condition		Thermal Stress
Level A		

A.3.4 RESULTS FOR MAIN FLANGE

Condition	Det	Stress-to-Allowable Ratio		
Condition	Pan	$P_m \text{ or } P_L$	P _m +P _b	
Design				
Level D				
Test				

Table A3-4-1 Summary of Primary Stress evaluations

Table A3-4-2	Summary of	of Primary	/ plus Secondary	y Stress	evaluations
--------------	------------	------------	------------------	----------	-------------

Condition	Part	Stress-to-Allowable Ratio
Condition		P _m +P _b +Q

Table A3-4-3 Summary of Fatigue evaluations

Condition	Part	Usage Factor

Condition	Part	Stress-to-Allowable Ratio
		Triaxial Stress
Design		
Test		

Table A3-4-4 Summary of Triaxial Stress evaluations

Table A3-4-5 Summary of Bearing Stress evaluations

Condition	Dort	Stress-to-Allowable Ratio
Condition	Fait	Bearing Stress
Design		
Level A/B		
Level C		
Test		

A.3.5 RESULTS FOR No.1 & No.2 SEAL HOUSING

Condition Part -	Dort	Stress-to-Allowable Ratio		
	P _m	P _m +P _b		
Design				
Level D				
Test				

Table A3-5-1 Summary of Primary Stress evaluations

Table A3-5-2 Summary of Primary plus Secondary Stress evaluations

Condition	Condition Part	Stress-to-Allowable Ratio
Condition		P _m +P _b +Q
Level A/B		

Table A3-5-3 Summary of Fatigue evaluations

Condition	Part	Usage Factor
Level A/B		

Table A3-5-4 Summary of Triaxial Stress evaluations

Condition	Part	Stress-to-Allowable Ratio
		Triaxial Stress
Design		
Test		

Condition	Part	Stress-to-Allowable Ratio
		Bearing Stress
Design		
Level A/B		
Level C		
Test		

 Table A3-5-5
 Summary of Bearing Stress evaluations

A.3.6 RESULTS FOR DIFFUSER FLANGE

Condition Part -	Dart	Stress-to-Allowable Ratio	
	P _m	P _m +P _b	
Design			
Level D			
Test			

Table A3-6-1 Summary of Primary Stress evaluations

Table A3-6-2 Summary of Primary plus Secondary Stress evaluations

Condition	Part	Stress-to-Allowable Ratio
		P _m +P _b +Q'
Level A/B		

Table A3-6-3 Summary of Fatigue evaluations

Condition	Part	Usage Factor
Level A/B		

Table A3-6-4 Summary of Triaxial Stress evaluations

Condition	Part	Stress-to-Allowable Ratio
		Triaxial Stress
Design		
Test		

	1	
Condition	Part	Stress-to-Allowable Ratio
		Bearing Stress
Design		
Level A		
Level B		
Test		

Table A3-6-5 Summary of Bearing Stress evaluations

Table A3-6-6 Summary of Thermal Ratchet evaluations

Condition	Condition Part	Stress-to-Allowable Ratio
Condition		Thermal Stress
Level A		

A.3.7 RESULTS FOR HEAT EXCHANGER TUBING

Condition	Part	Stress-to-Allowable Ratio		
		$P_m \text{ or } P_L$	P _m +P _b	
Design				
Level D				
Test				

Table A3-7-1 Summary of Primary Stress evaluations

Table A3-7-2 Summary of Primary plus Secondary Stress evaluations

Condition Part	Dort	Stress-to-Allowable Ratio
	P _m +P _b +Q	

Table A3-7-3 Summary of Fatigue evaluations

Condition	Part	Usage Factor
Level A/B		

Condition	Part	Stress-to-Allowable Ratio
		Triaxial Stress
Design		
Test		

Table A3-7-4 Summary of Triaxial Stress evaluations

A.3.8 RESULTS FOR SEAL WATER INJECTION NOZZLE

Condition	Part .	Stress-to-Allowable Ratio		
		$P_m \text{ or } P_L$	P _m +P _b	
Design				
Level D				
Test				
	-			

 Table A3-8-1
 Summary of Primary Stress evaluations

 Table A3-8-2
 Summary of Primary plus Secondary Stress evaluations

Condition	Part	Stress-to-Allowable Ratio
		P _m +P _b +Q
Level A/B		

Table A3-8-3 Summary of Fatigue evaluations

Condition	Part	Usage Factor
Level A/B		

(

Condition	Part	Stress-to-Allowable Ratio
		Triaxial Stress
Design	ſ	
Test		

Table A3-8-4 Summary of Triaxial Stress evaluations
APPENDIX B: CORRESPONDENCE TABLES BETWEEN TRANSIENT NAMES AND MARKS

This appendix shows the correspondence between transient names and marks for each part which the environmental fatigue evaluations are shown in chapter 9.

B.1 RV

Mark	Transient	Remark
1A1	Plant heat-up (50°F/h)	
1B1	Plant cooldown (100°F/h)	Includes Transient for Loss of offsite power with natural circulation cooldown (10 times) and Safe shutdown (1 time)
1C1	Ramp load increase between 15% and 100% of full power (5% or full power per minute)	
1C2	Ramp load increase between 50% and 100% of full power (5% or full power per minute)	
1D1	Ramp load decrease between 15% and 100% of full power (5% or full power per minute)	
1D2	Ramp load decrease between 50% and 100% of full power (5% or full power per minute)	
1E1	Step load increase of 10% of full power	
1F1	Step load decrease of 10% of full power	•
1G1	Large step load decrease with turbine bypass	
1H1, 1H2	Steady-state i) Steady state fluctuations fluctuations and load ii) Load regulation regulation	
111	Main feedwater cycling	
1J1	Refueling	
1K1	Ramp load increase between 0% and 15% of full power	
1L1	Ramp load decrease between 0% and 15% of full power	
1M1	RCP startup	
1N1	RCP shutdown	[
101	Core lifetime extension	
1P1	Primary leakage test	
1Q1	Turbine roll test	[
OBE	Operating-basis earthquake	
0ST	Flange opening / closing	

Table B1-1 Reactor Vessel Design Transients (1/2)

Mark		Transient	Remark
2A1	Loss of load		
2B1	Loss of offsite pow	er	
2C1	Partial loss of react	tor coolant flow	
		i) With no inadvertent cooldown	
2D1 to	2D1 to full power	ii) With cooldown and no safety injection	
2D4		iii) With cooldown and safety injection	
2E1	Inadvertent RCS de	epressurization	
2F1	Control rod drop		
2G1	Inadvertent safegu	ards actuation	
2H1	Emergency feedwa	iter cycling	
211	Cold over-pressure		
2J1	Excessive feedwater flow		Covered by Transient for reactor trip from full power ii)
2K1	Loss of offsite power with natural circulation cooldown		Covered by Transient for plant cooldown
2L1	Partial loss of emer	rgency feedwater	
2M1	Safe Shutdown		

 Table B1-1
 Reactor Vessel Design Transients (2/2)

B.2 PZR

Mark	Trans	Remark	
1A1 to 1A6	Plant heat-up		
1B1 to 1B9, 1BA to 1BC	Plant cooldown		
1C1	Ramp load increase between (5% of full power per minute)	15% and 100% of full power	
1C2	Ramp load increase between (5% of full power per minute)	50% and 100% of full power	
1D1	Ramp load decrease betwee power (5% of full power per r	n 15% and 100% of full minute)	
1D2	Ramp load decrease betwee power (5% of full power per r	n 50% and 100% of full minute)	
1E1	Step load increase of 10% of	f full power	
1F1	Step load decrease of 10% c	of full power	
1G1	Large step load decrease wit	th turbine bypass	
1H1,	Steady-state fluctuation and	i)Steady-state fluctuation	
1H2	load regulation	ii)Load regulation	
111	Main feedwater cycling		
1M1	Reactor Coolant Pump startu	ıp	
1N1	Reactor Coolant Pump shutc		
1P1	Primary leakage test		
1Q1	Turbine roll test		
1R1	Boron Concentration		

Table B2-1 Pressurizer Design Transients (1/2)

Mark	Transient	t	Remark
2A1	Loss of load		
2B1	Loss of offsite power		
2C1	Partial loss of reactor coolant fl	ow	
2D1 to 2D4	RT from full power	i) With no inadvertent cooldown ii) With cooldown and no safety injection iii) With cooldown and safety injection	
2E1, 2E2	Inadvertent RCS depressurization	i) Umbrella case ii) Inadvertent auxiliary spray	
2F1	Control rod drop	trol rod drop	
2G1	Inadvertent safeguards actuation	on	
2H1	Emergency feedwater cycling		
2l1 to 2l3	Cold over-pressure	i) mass input ii) heat input	
2J1	Excessive feedwater flow		Be covered with the transient of Reactor trip from full power ii)
2K1	Loss of offsite power with natural circulation cooldown		Be covered with the transient of Plant cooldown
2L1	Partial loss of emergency feed	vater	Use the figure of the transient of loss of offsite power.
2M1	Safe shutdown		Be covered with the transient of Plant cooldown

Table B2-1 Pressurizer Design Transients (2/2)

B.3 RCL Piping

Level	Mark	Ti	ransient			
	2U1	Plant heat-up				
	2V1	Plant cooldown				
	101	Ramp load increase between 15% and 100% of full power				
		(5% of full power per minute)				
	102	Ramp load increase between 50	% and 100% of full power			
	102	(5% of full power per minute)				
1D1	Ramp load decrease between 1	5% and 100% of full power				
		(5% of full power per minute)				
1D2	Ramp load decrease between 50% and 100% of full power					
	102	(5% of full power per minute)				
	1E1	Step load increase of 10% of ful	l power			
Δ	1F1	Step load decrease of 10% of fu	ll power			
A	1G1	Large step load decrease with turbine bypass				
	1H1	Steady state fluctuation and	Steady-state fluctuation			
	1H2	load regulation	Load regulation			
	1 1	Main feedwater cycling				
	1J1	Refueling				
	1K1	Ramp load increase between 0	and 15% of full power			
	1L1	Ramp load decrease between 0	and 15% of full power			
	1M1	Reactor Coolant Pump startup				
	1N1	Reactor Coolant Pump shutdow	n			
	101	Core lifetime extension				
	1P1	Primary leakage test				
	1Q1	Turbine roll test				

Table B3-1 RCL Piping Accumulator Tank Nozzle (1/2)

Level	Mark	Transient							
	2A1	Loss of load							
	2B1	Loss of offsite	w/o er	v/o emergency feedwater					
	2B2	power	with e	mergency fee	dwate	r			
	2C1	Partial loss of read	Partial loss of reactor inactive loop						
	2C2	coolant flow		active loop					
	2D1	RT (reactor trip)	i) with	no inadverten	t coold	lowr	۱		
	2D2	from full power	ii) wit	h cooldown	and	no	faulted loop		
	2D3		safety	injection		1	intact loop		
	2D4	2D4 iii) with cooldown and safety injec							
	2E1	Inadvertent RCS depressurization							
D	2F1	Control rod drop	case A						
D	2F2		case B						
	2G1	Inadvertent safeguards actuation							
	2H1	Emergency feedwater cycling							
	211			mass input					
	212	Cold over-pressur	e	heat innut			active loop		
	213			neat input			inactive loop		
	2J1	Excessive feedwa	ter flow						
	2K1	Loss of offsite pov	ver with n	atural circulat	ion co	oldo	wn		
	2L1	Partial loss of eme	ergency fe	eedwater					
	2M1	Safe shutdown							
	2T1 Inadvertent operation of accumulator								

 Table B3-1 RCL Piping Accumulator Tank Nozzle (2/2)

Level	Mark	Т	ransient				
	1A1	Plant heat-up					
	1B1	Plant cooldown					
	101	Ramp load increase between 15% and 100% of full power					
		(5% of full power per minute)					
	102	Ramp load increase between 50	0% and 100% of full power				
		(5% of full power per minute)					
	1D1	Ramp load decrease between 1	5% and 100% of full power				
		(5% of full power per minute)					
	102	Ramp load decrease between 5	0% and 100% of full power				
		(5% of full power per minute)					
	1E1	Step load increase of 10% of full power					
Δ	1F1	Step load decrease of 10% of full power					
	1G1	Large step load decrease with turbine bypass					
	1H1	Steady state fluctuation and	Steady-state fluctuation				
	1H2	load regulation	Load regulation				
	1 1	Main feedwater cycling					
	1J1	Refueling					
	1K1	Ramp load increase between 0	and 15% of full power				
	1L1	Ramp load decrease between 0	and 15% of full power				
	1M1	Reactor Coolant Pump startup					
	1N1	Reactor Coolant Pump shutdow	'n				
	101	Core lifetime extension					
	1P1	Primary leakage test					
	1Q1	Turbine roll test					

Table B3-2	Transients	of RCL	Piping	Charging	Nozzle(1/2)
------------	------------	--------	--------	----------	---------	-----	---

Level	Mark	Transient					
	2A1	Loss of load					
	2B1	Loss of offsite	w/o	emergency feedwater			
	2B2	power	with	n emergency feedwater			
	2C1	Partial loss of rea	actor	inactive loop			
	2C2	coolant flow active loop					
	2D1	RT (reactor trip)	i) wi	th no inadvertent coold	own		
	2D2	from full power	ii) w	vith cooldown and no	faulted loop		
	2D3		safe	ty injection	intact loop		
	2D4		iii) w	ith cooldown and safet	y injection		
	2E1	Inadvertent RCS	depres	ssurization			
	2F1	Control rod drop		case A			
	2F2		case B				
	2G1	Inadvertent safeguards actuation					
	2H1	Emergency feed	water c	ycling			
B	211			mass input			
	212	Cold over-pressu	ire	heat input	active loop		
	213				inactive loop		
	2J1	Excessive feedw	ater flo	W			
	2K1	Loss of offsite po	wer wi	th natural circulation co	oldown		
	2L1	Partial loss of em	nergeno	cy feedwater			
	2M1	Safe shutdown					
	2N1 to 2N5	Letdown shut off	and re	-initiated			
	201 20A	Charging shut off and re-initiated					
	,,	(Maintenance of a regenerating heat exchanger)					
	2O2 to 2O4	Charging shut off and re-initiated					
		(Safety injection)					
	2Q1 to 2Q9, 2QA to 2QJ	Charging flow 50% step increase and return					
	2R1	Letdown flow 50°	% step	decrease and return			
	2S1	Letdown flow 100% step increase and return					

Table B3-2	Transients of	RCL	Piping	Charging	Nozzle(2/2)
------------	---------------	-----	--------	----------	-------------

B.4 RCP

Mark	Transient
1A1	Plant heat-up (50°F/Hr)
1B1	Plant cooldown (100°F/Hr)
1F1	Step load decrease of 10% of full power
1G1	Large step load decrease with turbine bypass
1J1	Refueling
1P1	Primary leakage test
1P2	Primary leakage test
1Q1	Turbine roll test
2A1	Loss of load
2B1	Loss of offsite power (with emergency feed water)
2B2	Loss of offsite power (without emergency feed water)
2D4	Reactor trip from full power (with cooldown and safety injection)
2E1	Inadvertent RCS depressurization
2F2	Control rod drop (with emergency feed water and ECCS)

Table B4-1 Transients of Casing Lugs

Table B4-2 Transients of Discharge Nozzle

Mark	Transient
1A1	Plant heat-up (50°F/Hr)
1B1	Plant cooldown (100°F/Hr)
1G1	Large step load decrease with turbine bypass
1J1	Refueling
1P1	Primary leakage test
1P2	Primary leakage test
1Q1	Turbine roll test
2A1	Loss of load
2B1	Loss of offsite power (with emergency feed water)
2B2	Loss of offsite power (without emergency feed water)
2D4	Reactor trip from full power (with cooldown and safety injection)
2E1	Inadvertent RCS depressurization
2F2	Control rod drop (with emergency feed water and ECCS)
2G1	Inadvertent safeguard actuation
0ST1	Zero stress

Mark	Transient
1A1	Plant heat-up (50°F/Hr)
1B1	Plant cooldown (100°F/Hr)
1D1	Ramp load decrease between 15% and 100% of full power (5% of full power
	per minute)
1F1	Step load decrease of 10% of full power
1G1	Large step load decrease with turbine bypass
1J1	Refueling
1P1	Primary leakage test
1P2	Primary leakage test
1Q1	Turbine roll test
2A1	Loss of load
2B1	Loss of offsite power (with emergency feed water)
2B2	Loss of offsite power (without emergency feed water)
2D4	Reactor trip from full power (with cooldown and safety injection)
2E1	Inadvertent RCS depressurization
2F2	Control rod drop (with emergency feed water and ECCS)
2G1	Inadvertent safeguard actuation
211	Cold over pressure (mass input case)
212	Cold over pressure (heat input case in active loop)
213	Cold over pressure (heat input case in non-active loop)
0ST1	Zero stress
HYD001	Hydro test (3107 psig)
PRE001	Pre-load

 Table B4-3 Transients of Diffuser Flange

APPENDIX C Environmental Fatigue Analysis Method Summary