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NRC Values

Principles of good regulation:

• Independence

• Openness

• Efficiency

• Clarity

• Reliability

Regulatory actions are

• Effective

• Realistic

• Timely 
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Probabilistic Risk Assessment

PRA Results:

• Ranking of accident sequences according to 
frequency of occurrence

• Ranking of structures, systems, and components 
according to risk contributions (importance 
measures)

Benefits of using risk information

• Effectiveness by focusing on what is risk 
significant

• Openness

Unknown uncertainties (and tradition) lead to 
defense in depth.
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ASME BPVC Section XI Requirements

• Class 1 piping systems: 25% welds examined every 10-year interval 

• Class 2 piping systems: 7.5% welds examined every 10-year 

interval 

• Class 3 piping systems: Only pressure test for leakage every 10-

year interval 

• Failures are not occurring at the design-based locations.

• Failures are occurring at locations where unanticipated and unusual 

operating conditions have developed, such as, thermal stratification 

in sloping pipe systems (e.g., the pressurizer surge line), flow-

assisted corrosion, and stress corrosion cracking.
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Risk Evaluation Matrix
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Plant X: Number of Inspections Before and 

After
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Front Face is # of RI-ISI Inspections

Rear Face is # of Section XI Inspections

V. Dimitrijevic, MIT Lecture, 2008
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Cost and Man-Rem Savings

$0

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

Before After

In
s

p
e

c
ti

o
n

 C
o

s
ts

0

10

20

30

40

50

60

70

80

90

M
a

n
-R

E
M

Class 1 Insp.Costs Class 2/3 Insp.Costs Man-REM

$1,183,000

$851,900

Before

$2,034,900

$417,000

$196,000

After

$613,000

84.0

8.1

V. Dimitrijevic, MIT Lecture, 2008



9

Break 
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Transition Break Size (50.46a)

• A break of area equal to the cross-sectional area of the 
inside diameter of specified piping of a specific reactor.

• PWRs
 Expert judgment:  4 to 7 inches.

 The largest piping attached to the reactor coolant system (10-13 
inches).

• BWRs
 Expert judgment:  6 to 14 inches.

 The larger of the feedwater line inside containment or the 
residual heat removal line inside containment (about 20 inches).


