FINAL DATA REPORT Revision 0 GEOTECHNICAL EXPLORATION AND TESTING SUPPLEMENT 1 DOMINION POWER NORTH ANNA NUCLEAR POWER STATION NORTH ANNA 3 PROJECT MINERAL, LOUISA COUNTY, VIRGINIA

December 10, 2009

VOLUME 1

APPENDIX B.2 SPT Energy Measurement Reports

Prepared By:

MACTEC ENGINEERING AND CONSULTING, INC. RALEIGH, NORTH CAROLINA

MACTEC PROJECT No. 6468-09-2473

Prepared For:

Bechtel Power Corporation Subcontractor No. 25161-500-HC4-CY00-00001

North Anna 3 Project

MACTEC Project: 6468-09-2473

SPT Energy Report Nov 16, 09

Engineering and constructing a better tomorrow

November 16, 2009

For With Per

From: Jon Honeycutt, Staff Professional 2 (

Reviewed By: Steve Kiser, Principal Professional

Subject:

Report of SPT Energy - MACTEC CME-550x ATV Hammer Serial No. MEC-05 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 2, 2009, during drilling of Boring M-9 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 8:30 AM to 10:00 AM on September 2 under clear skies with a temperature of about 65 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Atlanta office. The drilling equipment consisted of a CME-550x model ATV drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. Ruben Landeros. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the automatic SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod was two feet below the hammer impact point and had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

18 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357.8600

www.mactec.com

Page 2 of 55 DCN#NAP299

DCN NAP306

Calibration Records

The calibration records for all the above are filed in DCN NAP-223.

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 280 foot-pounds to 298 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 80.0% to 85.1% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 291.2 foot-pounds, with an average ETR of 83.2%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Pages 5 – 6 Work Instruction No. 8 DCN:NAP 077 – 2 Pages (without attachments)

Page 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 17 PDIPLOT Output – 10 Pages Page 18 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
						15.4 - 16.9	4 - 5 - 4	16	290	82.9%
MEC-05	MAGTEG	Duhan				17.9 - 19.4	5 - 6 - 6	17	295	84.3%
(CME-550x	MACTEC	Ruben Landeros	M-9	9/2/2009	AW-J	22.9 - 24.4	5 - 6 - 6	19	295	84.3%
ATV)	Atlanta	Landeros				27.8 - 29.3	5 - 7 - 7	19	298	85.1%
	·					32.8 - 34.3	5 - 8 - 8	22	280	80.0%
							Ave	rage for Rig:	291.2	83.2%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet). The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

					And in case of the last of the
			0 1/1	11 16 00	
Prepared By: +	Date: 11-16-09	Checke	ed By: SCL	Date: ((-(6~0°)	

For With Permission

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc. Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Steve	e Kiser	
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09	Date:August 31, 2009
Valid From:	August 31, 2009		To: <u>August 31, 2010</u>

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

Specific Quality Assurance Procedures Applicable: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Page 1 of 15 DCN NAP077 Page 6 of 55 DCN#NAP299

Reviewed and Approved By (Note: Only one si	ignature required for issuance	e):		
Project Manager:	Date:	***************************************		
Principal Professional: D. Hour	Copley	Date:	8-31-09	
Site Manager:	Date:			
No. of Pages:15		DCN:	NAP077	
QA Form 24-1 Revised 8/12/2009				

2801 YORKMONT ROAD, SUITE 100 ☐ CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

RECORD OF SPT ENERGY MEASUREMENT

	GENERAL INFORMATION		DRILL RIG I	DATA	
PROJECT:	North Anna 3 Project	MAKE:	CME		
OCATION:	Virginia	MODEL:	550	X H+V	
PROJECT NO.:	6468-09-2473	SERIAL NO.:	MEC - C	5	
DATE:	6468-09-24/3 9/2/2009 650F SUNNY JUH	HAMMER TYPE:	Auto		
VEATHER:	650F SUNNY	ROPE CONDITION:	N/A		
NSPECTOR:	Tut	ROD SIZE:	AW-J		
ORILLING COMPANY:	MACTEC -	NO. OF SHEAVES:	N/A		
DRILLING COMPANT.		DING DATA			
		RING DATA			
BORING NUMBER:	M-9				
DEPTH DRILLED:	Various				
TIME DRIVEN:	8:30 Am - 10:00 Am				
RIG OPERATOR:	R. LANDERIUS	· · · · · · · · · · · · · · · · · · ·			
HAMMER OPERATOR:	N/A				
PDA PAK SERIAL NO.:	3622L				
NSTR. ROD AREA:	1.22 ;N2				
ACCEL, SERIAL NOS.:	A1- K983 A2- K0686				
STRAIN SERIAL NOS.:	75 AW # 1/2				1
	SAMPLE SPT	-			
	DEPTH N-VALUE				
	(feet) (bpf)				
	15.4-16.9 4-5-4			4	
17	13:7:13				
					+
	17.9-19,4 5-6-6				_
	22.9-24,4 5-6-6	· .			-
	222 (-211) 5 6 - 0				
					1.
	27.8-29.3 6-7-7				<u> </u>
	32.8-34.3 5-8-8				
	34.8-34.2 3.0-0				
					-
					-
					-
	RKS: Testing performed in accordance with				
REWAR	ASTM D 4633-05				
	AS 11VI U 4033-U3				
	Davis and Davis			D. T.	. 0
	Reviewed By:	namen and the Standard and a more survey that I would be a table and the last standard and the standard and a s	PARAMETER OF THE PROPERTY OF THE PARAMETER OF THE PARAMET	- Page 8 of 55	1

MACTEC Engil Case Method F		onsulting, Inc.				PDIPLO	OT Ver. 2008.		age 1 of 1 -Oct-2009
NORTH ANNA OP: JNH	3 Project - BC	ORING M9 (15	i.4' - 16.9' sam	nple)		Rig Serial No.	MEC-05; CM	E 550 X (R.La Test date: 2-	
AR: 1.22 i LE: 21.00 f WS: 16,807.9 f	t								0.492 k/ft3 0,000 ksi 0.70
CSX: Max Mex TSX: Tension VMX: Maximul FMX: Maximul	asured Compr Stress Maxim m Velocity	um					EF2: E ETR: E	lows per Minu nergy of F^2 nergy Transfe lax Transferre	ute er Ratio
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	21.1	8.2	14.7	26	0.8	1.9	0.219	86.2	0.302
3	21.6	9.2	14.3	26	0.8	55.9	0.199	82.6	0.289
4	19.8	10.9	14.0	24	0.8	52.9	0.206	87.6	0.307
5	21.6	9.1	14.3	26	0.8	53.5	0.203	84.8	0.297
6	18.8	9.6	13.3	23	8.0	54.0	0.204	84.1	0.294
7	20.1	8.2	14.1	25	0.8	53.4	0.199	81.6	0.286
8	21.1	9.7	13.7	26	0.9	54.7	0.194	82.0	0.287
9	18.9	8.3	13.1	23	0.8	53.5	0.196	80.2	0.281
10	18.8	7.8	13.2	23	0.8	54.2	0.196	78.3	0.274
11	20.0	7.5	13.9	24	0.8	53.2	0.196	77.3	0.270
12	18.8	9.0	13.9	23	0.8	52.7	0.200	81.8	0.286
13	21.3	9.4	14.2	26	0.8	53.1	0.199	81.1	0.284
14	20.6	8.7	14.2	25	0.8	53.2	0.198	83.2	0.291
15	19.4	8.8	13.7	24	0.8	53.2	0.198	81.7	0.286
16	21.2	7.6	14.3	26	0.8	53.1	0.201	86.3	0.302
17	21.4	7.7	13.8	26	0.9	53.9	0.200	85.6	0.300
Average	20.3	8.7	13.9	25	0.8	50.4	0.200	82.8	0.290
				Total nur	nber of blow	s analyzed: 16			

Drive 42 seconds

8:49:27 AM - 8:50:09 AM (9/2/2009) BN 1 - 17

NORTH ANNA 3 Project - BORING M9 (17.9' - 19.4' sample)

Page 11 of 55 DCN#NAP299

MACTEC Engir Case Method R		onsulting, Inc.				PDIPL	OT Ver. 2008.		age 1 of 1 Oct-2009
NORTH ANNA OP: JNH AR: 1.22 ir		RING M9 (17	′.9' - 19.4' sam	nple)	F	Rig Serial No.	MEC-425; CMI	Test date: 2-9	
LE: 23.40 ft WS: 16,807.9 f	t			`				EM: 30	,000 ksi 0.70
CSX: Max Mea TSX: Tension VMX: Maximur FMX: Maximur FVP: Force/Ve	Stress Maximon Velocity	um					EF2: E ETR: E	lows per Minu nergy of F^2 nergy Transfe lax Transferre	er Ratio
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	20.0	8.1	14.4	24	0.5	1.9	0.198	83.6	0.293
3	18.6	7.7	15.3	23	0.7	53.0	0.190	85.4	0.299
4	16.3	8.5	15.4	20	0.6	53.3	0.189	81.7	0.286
5	17.7	8.0	15.1	22	0.5	53.4	0.198	86.7	0.304
6	17.1	8.0	15.4	21	0.5	53.6	0.194	83.0	0.291
7	16.1	8.2	16.2	20	0.6	53.5	0.190	80.6	0.282
8	17.6	8.1	15.1	21	0.7	54.1	0.184	81.9	0.286
9	18.5	6.9	15.3	23	0.5	54.0	0.191	82.8	0.290
10	17.5	7.5	15.8	21	0.5	53.7	0.187	81.5	0.285
11	17.6	7.3	15.6	22	0.5	52.8	0.190	83.3	0.292
12	16.3	8.1	16.3	20	0.6	53.2	0.184	83.1	0.291
13	18.9	7.2	14.2	23	0.7	53.3	0.191	84.9	0.297
14	18.6	6.9	15.2	23	0.5	52.6	0.195	88.4	0.310
15	16.1	7.5	16.4	20	0.5	53.8	0.190	84.9	0.297
16	18.5	7.1	15.0	23	0.5	53.1	0.193	84.5	0.296
17	18.5	7.5	15.2	23	0.7	53.3	0.189	88.3	0.309
18	18.4	6.3	14.9	22	0.5	53.5	0.188	86.9	0.304
Average	17.8	7.6	15.3	22 Total nur	0.6 nber of blows	50.4 analyzed: 17	0.191	84.2	0.295

Drive 26 seconds

9:04:01 AM - 9:04:27 AM (9/2/2009) BN 1 - 18

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

NORTH ANNA 3 Project - BORING M9 (22.9' - 24.4' sample)

Page 13 of 55 DCN#NAP299

MACTEC Engir Case Method F		onsulting, Inc.				PDIPL	OT Ver. 2008.		age 1 of 1 -Oct-2009
NORTH ANNA OP: JNH	3 Project - BC	ORING M9 (22	2.9' - 24.4' san	nple)		Rig Serial No	. MEC-05; CM	E 550 X (R.La Test date: 2-	
AR: 1.22 ii LE: 28.40 f WS: 16,807.9 f.	t			`					0.492 k/ft3 0,000 ksi 0.70
CSX: Max Mex TSX: Tension VMX: Maximul FMX: Maximul FVP: Force/Ve	Stress Maxim m Velocity m Force	um					EF2: E ETR: E	lows per Minu nergy of F^2 nergy Transfe lax Transferre	er Ratio
BL#	CSX	TSX	VMX	FMX	FVP	BPM **	EF2	ETR	EMX
	ksi	ksi	f/s	kips			k-ft	(%)	k-ft
2	18.8	10.5	14.8	23	0.6	1.9	0.218	86.1	0.301
3		10.5	15.6	23	0.7	53.7	0.214	87.5	0.306
4	17.7	8.8	14.6	22	0.6	53.8	0.214	86.4	0.302
5	18.1	9.7	15.7	22	0.6	53.5	0.208	86.6	0.303
6	17.7	9.4	14.5	22	0.6	53.4	0.215	84.7	0.296
7	18.9	10.5	15.2	23	0.7	54.0	0.210	83.8	0.293
8	18.5	10.5	15.0	23	0.7	54.0	0.203	82.8	0.290
9	16.3	9.9	15.4	20	0.6	52.6	0.214	85.5	0.299
10	18.2	8.7	14.2	22	0.6	54.0	0.210	84.8	0.297
11	16.8	9.1	14.8	20	0.6	54.3	0.197	77.8	0.272
12	17.8	7.9	15.1	22	0.7	53.2	0.199	83.8	0.293
13	18.3	8.3	13.5	22	0.6	53.9	0.202	82.3	0.288
14	18.2	7.6	14.5	22	0.7	52.9	0.199	84.3	0.295
15	17.6	7.7	15.6	21	0.6	53.9	0.199	83.0	0.291
16	16.4	7.4	14.8	20	0.6	53.0	0.205	84.1	0.294
17	18.1	7.2	14.7	22	0.7	53.1	0.201	85.1	0.298
18	17.9	6.7	13.7	22	0.6	53.4	0.205	84.6	0.296
19	17.6	7.7	15.1	21	0.5	53.0	0.211	86.7	0.303
20	15.9	7.2	15.4	19	0.6	53.8	0.200	83.4	0.292
Average	17.8	8.7	14.9	22 Total nui	0.6 mber of blows	50.8 s analyzed: 19	0.207	84.4	0.295

Drive 31 seconds

9:20:31 AM - 9:21:02 AM (9/2/2009) BN 1 - 20

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.2 - Printed: 5-Oct-2009

NORTH ANNA 3 Project - BORING M9 (27.8' - 29.3' sample)

Page 15 of 55 DCN#NAP299

MACTEC Engir Case Method F		onsulting, Inc.				PDIPL	OT Ver. 2008.		age 1 of 1 Oct-2009
NORTH ANNA OP: JNH	3 Project - BC	ORING M9 (27	'.8' - 29.3' san	nple)		Rig Serial No	. MEC-05; CM	E 550 X (R.La Test date: 2-	
AR: 1.22 ii LE: 34.40 f WS: 16,807.9 f	t			`					0.492 k/ft3 0,000 ksi 0.70
CSX: Max Mex TSX: Tension VMX: Maximul FMX: Maximul FVP: Force/Ve	Stress Maxim m Velocity m Force	ium					EF2: E ETR: E	lows per Minu nergy of F^2 nergy Transfe lax Transferre	er Ratio
BL#	CSX	TSX	VMX	FMX	FVP	BPM **	EF2	ETR	EMX
0	ksi	ksi	f/s	kips			k-ft	(%)	k-ft
2	18.7	12.4	16.0	23	0.6	1.9	0.224	84.7	0.297
3		11.5	14.6	24	0.8	53.8	0.222	83.9	0.294
4	19.7	11.6	14.8	24 21	0.7	53.1	0.218	83.5	0.292
5	17.1	10.5	15.3		0.6	54.3	0.209	82.2	0.288
6 7	19.8	10.5	13.5	24	8.0	53.3	0.217	82.3	0.288
	16.2	10.5	15.3	20	0.6	53.4	0.213	89.4	0.313
8	19.8	9.9	14.2	24	0.5	52.8	0.223	86.8	0.304
9	19.9	9.3	13.8	24	0.8	53.8	0.218	84.4	0.296
10	17.5	10.1	15.5	21	0.6	52.3	0.221	86.0	0.301
11	19.1	10.7	14.4	23	0.5	54.3	0.218	85.9	0.301
12	18.9	10.5	15.3	23	0.7	53.4	0.215	87.9	0.308
13	19.3	10.1	14.6	24	0.5	53.4	0.217	88.4	0.309
14	16.5	9.6	15.4	20	0.6	53.6	0.212	83.6	0.293
15	16.4	8.9	15.4	20	0.6	53.1	0.213	82.6	0.289
16	19.0	9.6	14.9	23	0.7	54.1	0.210	84.3	0.295
17	16.9	9.7	15.1	21	0.6	53.7	0.212	83.8	0.293
18	16.6	9.1	15.5	20	0.6	52.9	0.213	86.8	0.304
19	19.3	9.3	14.7	24	0.7	53.2	0.213	88.3	0.309
20	17.9	9.4	15.6	22	0.6	52.7	0.214	84.6	0.296
Average	18.4	10.2	14.9	22 Total nur	0.6 mber of blows	50.7 analyzed: 19	0.216	85.2	0.298

Drive 44 seconds 9:36:26 AM - 9:37:10 AM (9/2/2009) BN 1 - 21

Page 17 of 55 DCN#NAP299

2-Sep-200 0.492 k/ft 30,000 ksi 0.70 Minute ^2 nsfer Ratio		BPM: E EF2: E ETR: E	Rig Serial No.		iple)	2.8' - 34.3' sam	DRING M9 (32	n^2	NORTH ANNA OP: JNH AR: 1.22 i LE: 38.30 f
30,000 ksi 0.70 //inute ^2 nsfer Ratio	EM: 30 JC: Blows per Minu Energy of F^2 Energy Transfe	EF2: E ETR: E			`			t	LE: 38.30 f
Minute ^2 nsfer Ratio	Blows per Minu Energy of F^2 Energy Transfe	EF2: E ETR: E							WS: 16,807.9 f
sired Lilery							um	Stress Maxim m Velocity m Force	CSX: Max Me TSX: Tension VMX: Maximul FMX: Maximul FVP: Force/Ve
EM	ETR	EF2	BPM	FVP	FMX	VMX	TSX	CSX	BL#
k-	(%)	k-ft	**	П	kips	f/s	ksi	ksi	
0.27	79.0	0.222	1.9	0.8	22	14.3	10.9	18.0	2
0.27	79.2	0.231	53.0	0.8	22	14.5	11.7	18.3	3
0.27	79.6	0.230	54.0	1.0	24	14.3	11.3	19.9	4
0.28	82.4	0.238	52.2	0.9	25	13.6	11.6	20.5	5
0.28	82.7	0.241	53.2	0.9	24	13.5	11.9	19.9	6
0.28	80.1	0.234	54.0	0.9	24	15.5	11.4	20.0	7
0.28	80.9	0.240	53.1	0.9	22	14.7	11.3	18.3	8
0.28	81.1	0.236	53.6	0.9	24	15.2	11.2	19.8	9
0.27	78.2	0.235	54.2	1.0	25	14.0	10.9	20.3	10
0.27	77.9	0.231	54.0	0.9	22	14.3	9.9	17.8	11
0.28	80.9	0.235	53.0	1.0	24	14.5	10.0	19.9	12
0.27	78.6	0.236	53.7	8.0	22	14.5	10.2	18.2	13
0.27	79.2	0.231	53.0	0.9	24	13.9	10.6	19.4	14
0.27	79.8	0.228	53.5	8.0	22	13.9	10.2	17.9	15
0.28	81.7	0.238	52.6	1.0	24	14.2	10.8	20.0	16
0.29	83.6	0.235	52.9°	0.9	22	14.0	10.5	18.4	17
0.27	78.8	0.231	54.3	0.8	22	13.4	9.6	17.7	18
0.28	80.0	0.230	53.2	1.0	24	13.0	10.0	19.5	19
0.27	78.5	0.229	53.6	8.0	23	12.9	8.9	18.7	20
0.27	79.3	0.232	52.9	1.0	24	12.8	8.9	19.4	21
0.27	79.2	0.228	53.4	8.0	22	13.0	9.8	18.4	22
0.28	82.3	0.232	52.3	0.9	24	13.2	10.3	19.5	23
0.28	80.1	0.233	51.0 analyzed: 22	0.9	23	14.0	10.5	19.1	Average

Drive 36 seconds

9:50:03 AM - 9:50:39 AM (9/2/2009) BN 1 - 23

BN 13	3				
9/2/20	009 9:	04:21 AM			
LP	0.00	ft	LE	23.40	ft
CSX	18.9	ksi	AR	1.22	in^2
CSI	19.5	ksi	EM	30,000.0	ksi
TSX	7.2	ksi	SP	0.492	k/ft3
EMX	0.3	k-ft	WS	16,807.9	
STK	4.80	ft	WC	16,807.9	f/s
FVP	0.75		JC	0.70	
SFR	3	kips	2L/c	2.78	ms
RX5	8	kips	EA/c	2.2	ksec/ft
RMX	6	kips	FR	5.000	kHz

MACTEC Engineering and Consulting, Inc.

PDI-CURVES - Printed: 11/16/2009

Engineering and constructing a better tomorrow

November 16, 2009

From: Jon Honeycutt, Staff Professional 2.C

Reviewed By: Steve Kiser, Principal Professional

Subject:

Report of SPT Energy - MACTEC CME-45c Track Hammer Serial No. MEC-12 Automatic Hammer WORK INSTRUCTION No. 8 (DCN:NAP-077)

North Anna 3 Project Louisa County, Virginia

MACTEC Project No. 6468-09-2473

Jonathan Honeycutt, of MACTEC Engineering and Consulting, Inc. (MACTEC), performed energy measurements on the drill rig at the subject site per the referenced Work Instructions. This memorandum summarizes the field testing activities and presents the results of the energy measurements.

SPT Energy Field Measurements

SPT energy measurements were made on September 2, 2009, during drilling of Boring M-8 at the referenced site. The testing was performed by Jonathan Honeycutt from approximately 11:20 AM to 12:50 PM on September 2 under clear skies with a temperature of about 65 degrees Fahrenheit. The boring was drilled by MACTEC personnel using equipment from the MACTEC Raleigh office. The drilling equipment consisted of a CME 45c model track drill rig with an SPT automatic hammer. The drilling tools consisted of AW-J-sized drilling rods and a 2-foot long split-barrel sampler. Mud rotary drilling techniques were used to advance the boring at the time of energy testing. The drill rig operator during sampling was Mr. Donnie Rhodes. Energy measurements were recorded during sampling at the depth intervals shown in Table 1.

The energy measurements were performed with a Pile Driving Analyzer (PDA) model PAX (Serial No. 3622L), and calibrated accelerometers (Serial Nos. K983 and K0686) and strain gages (Serial Nos. AW#75/1 and AW#75/2). A steel drill rod, 2 feet long and instrumented with dedicated strain gages, was inserted at the top of the drill rod string immediately below the SPT hammer. The inserted rod was also instrumented with two piezoresistive accelerometers that were bolted to the outside of the rod. The instrumented rod was two feet below the hammer impact point and had a cross-sectional area of approximately 1.22 square inches and an outside diameter of approximately 1.75 inches at the gage location. The drill rods included in the drill rod string were hollow rods in 5 to 10 foot long sections, with an outside and inside diameter of approximately 1.75 and 1.375 inches, respectively. The recommended operation rate of the hammer is not known. Due to the closed hammer system, the hammer lubrication condition and anvil dimensions could not be observed.

18 Pages Total

MACTEC Engineering and Consulting, Inc.

2801 Yorkmont Road, Suite 100 • Charlotte, NC 28208 • Phone: 704.357,8600

www.mactec.com

Page 20 of 55 DCN#NAP299

DCN NAP306

Calibration Records

The calibration records for all the above are filed in DCN NAP-223.

Calculations for EFV

The work was done in accordance with ASTM D 4633-05. The strain and acceleration signals were converted to force and velocity by the PDA. The maximum energy transmitted to the drill rod string (EFV), as measured at the location of the strain gages and accelerometers, was calculated by the PDA using the equation shown below:

$$EFV = \int F(t) * V(t) * dt$$

Where: EFV = Transferred energy (EFV equation), or Energy of FV F(t) = Calculated force at time t V(t) = Calculated velocity at time t

As recommended by ASTM D4633-05, the force-velocity method of energy calculation was used. The equation shown above for calculating EFV, integrated over the complete wave event, measures the total energy content of the event using both force and velocity measurements. The EFV values associated with each blow analyzed are tabulated in the attached PDIPLOT tables and are also shown graphically in the PDIPLOT charts.

Calculations for ETR

The ratio of the measured transferred energy (EFV) to the theoretical potential energy of the SPT system (140 lb weight with the specified 30 inch fall) is the ETR. The ETR values (as percent of the theoretical value) are shown in Table 1.

Comparison of ETR to Typical Energy Transfer Ratio Range

Based on a research report published by the Florida Department of Transportation (FDOT) (Report WPI No. 0510859, 1999), the average ETR measured for automatic hammers is 79.6%. The standard deviation was 7.9%; therefore, the range of ETRs within one standard deviation of the average was reported to be 71.7% to 87.5%. This range of ETRs was also consistent with other research that was cited in the FDOT research paper; however, maximum and minimum ETR values of up to 98% and 56%, respectively, were reported in the literature. The ETR values shown in Table 1 are generally within the range of typical values for automatic hammers as reported in the literature.

Discussion

Based on the field testing results, observations from the SPT energy measurements are summarized below:

• The data obtained by the PDA are generally consistent between individual hammer blows and between the sample depths tested. In general, the first and last one (and sometimes two or more) hammer blow records recorded by the PDA produced poor quality data (which is relatively common) and, as such, the record(s) was(were) not

used in the data reduction. This may result in more or less hammer blows evaluated for ETR than what is shown on the boring logs.

- The average energy transferred from the hammer to the drill rods for each individual depth interval using the EFV method ranged from 292 foot-pounds to 305 foot-pounds. These average energy transfers correspond to energy transfer ratios (ETR) of 83.4% to 87.1% of the theoretical energy (350 foot-pounds) of the SPT hammer.
- The average at each depth interval was calculated as the transferred energy for each analyzed blow of the depth intervals divided by the total number of hammer blows analyzed. The overall average energy transfer of the SPT system (for all the depth intervals tested) was 297.1 foot-pounds, with an average ETR of 84.9%.

Attachments: Page 4 Table 1 - Summary of SPT Energy Measurements – 1 Page

Pages 5 - 6 Work Instruction No. 8 DCN:NAP 077–2 Pages (without attachments)

Page 7 Record of SPT Energy Measurement – 1 Page

Pages 8 – 17 PDIPLOT Output – 10 Pages Page 18 Force-Velocity Plot – 1 Page

TABLE 1 SUMMARY OF SPT ENERGY MEASUREMENTS (ASTM D4633-05)

North Anna 3 Project Louisa County, Virginia MACTEC Project No. 6468-09-2473

Automatic Hammer Serial Number and Rig Model	Rig Owner	Rig Operator	Boring No. Tested	Date Tested	Drill Rod Size	Sample Depth (feet)	SPT Blow Count (blows per six inches)	No. of Blows Analyzed	Average Measured Energy (Average EFV) (ft-lbs) ^a	Energy Transfer Ratio (%) ^b (Average ETR)
						23.7 - 25.2	19 - 17 - 16	52	293	83.7%
MEC-12	MACTEC	Donnie				28.7 - 30.2	4 - 6 - 11	21	292	83.4%
(CME-45c	MACTEC Raleigh	Donnie Rhodes	M-8	9/2/2009	AW-J	33.7 - 35.2	4 - 7 - 7	18	. 293	83.7%
Track)	Kaitigii	1/1100022				38.7 - 40.2	5 - 8 - 11	24	300	85.7%
			·			43.7 - 45.2	13 - 14 - 15	41	305	87.1%
							Ave	rage for Rig:	297.1	84.9%

^aMeasured Energy is energy based on the EFV method, as outlined in ASTM D4633-05, for each blow recorded by the PDA. In some cases, the initial and final one to two blows produced poor quality data, and were not used to calculate the Average Measured Energy. This may result in more or less blows evaluated for ETR than what is shown on the boring logs.

EFV = EMX * 1000 lbs/kip, where EMX equals the maximum transferred energy measured by the PDA (see attached PDA data).

^bEnergy Transfer Ratio is the Measured Energy divided by the theoretical SPT energy of 350 foot-pounds (140 pound hammer falling 2.5 feet).

The average EFV and ETR values may differ slightly and insignificantly from those in the PDIPLOT tables due to roundoff.

Prepared By: £ C. Date: 11-16-09	Checked By:	Date: 11-16-09

For With Permission

Work Instruction No. 8 North Anna 3 Project

MACTEC Engineering and Consulting, Inc.
Project Number: 6468-09-2473

Issued To:	Jonathan Honeycutt, Steve		
Issued By:	D. Steven Copley, P.E.	DSC 8-31-09	Date:August 31, 2009
Valid From:	August 31, 2009		To: <u>August 31, 2010</u>

Task Description: Perform SPT Energy Measurements

Applicable Technical Procedures or Plans, or other reference:

1. Geotechnical Work Plan (complete copy of current revision available at Field Office), Section 4.2 and Attachment 2 – Drilling and Sampling Procedures (attached)

2. Engineering Specification for Subsurface Investigation and Laboratory Testing, No. 25161-500-3PS-CY00-Q0001, Rev. 000, Issued for use August 21, 2009, Section 3.3 Drilling Equipment (attached)

3. ASTM D 4633-05 (attached)

Specific Instructions (note attachments where necessary): Perform energy measurements for each drill rig on site in general accordance with ASTM D 4633-05. Consult with Site Manager as to schedule for performing the measurements. Hammer weights have been checked, and records will be available on site. All rigs are using automatic hammer systems. Confirm that automatic hammer system is being operated within manufacturer's recommendations or in a typical operating fashion as observed from watching one or two SPT measurements prior to measuring energy. Check each drill rig using all hammer/rod combinations that it will be using. Depths for measurements should be coordinated with the Site Manager. See Site Manager for current boring logs of holes drilled, if available, and use these to plan most effective field measurement program. Submit copies of calibration records for equipment to Principal Professional for review prior to beginning work on site.

Confirm with Site Manager that approval of equipment calibration records have been received prior to beginning field testing. If unexpected conditions are encountered that affect measurements, contact Site Manager or Principal Professional immediately.

Report Format: Prepare standard report in accordance with ASTM D 4633-05 requirements.

Specific Quality Assurance Procedures Applicable: 10CFR21; NQAP 16-01 Procedure For Conforming To Federal Regulation 10CFR21; QAP 20-1; QAP 25-1; Section 306 of the Energy Reorganization Act of 1974. Current revisions apply; copies available in Field Office.

Hold Points or Witness Points: None

Records: All records generated shall be considered QA Records.

Page 1 of 15 DCN NAP077 Page 24 of 55 DCN#NAP299

Reviewed and Approved By (Note: Only one signature req	uired for issuance):
Project Manager:	Date:
Principal Professional: D. Hown Coylog	Date: 8-31-09
Site Manager:	Date:
No. of Pages:15	DCN: NAP077
QA Form 24-1 Revised 8/12/2009	

2801 YORKMONT ROAD, SUITE 100 ☐ CHARLOTTE, NC 28208 Telephone: (704) 357-8600 / Facsimile: (704) 357-8638

RECORD OF SPT ENERGY MEASUREMENT

	GENERAL INFORMA	ATION		DRILL RIG DATA						distant	
PROJECT:	North Anna 3 Project			MAKE:		CME					
LOCATION:	Virginia			MODEL:			450	TRACK			
PROJECT NO.:	6468-09-2473			SERIAL NO).:		MEC -	+3.12	SIL	11-16-0	0,
DATE:	9/2/2009			HAMMER T			Auto			11-16-0	1
WEATHER:	Survey 6	SOF		ROPE CON		N/A	10.10				
INSPECTOR:	JUNY 6			ROD SIZE:		AW-J					-
DRILLING COMPANY:	MACTEC - RALE			NO. OF SH		N/A					
						71.417.4					-
			BORING	DATA					-		
BORING NUMBER:	M-8					-					
DEPTH DRILLED:	Vari										
TIME DRIVEN:	11:20 pm -	12:50 Pm									
RIG OPERATOR:	D. RHODE										
HAMMER OPERATOR:	N.							***************************************			
PDA PAK SERIAL NO.:	362										
INSTR. ROD AREA:	1.22 in2										
ACCEL. SERIAL NOS.:	A1-K983	42-40686		·							
STRAIN SERIAL NOS.:	75 AW #1	12						***************************************			
	SAMPLE	SPT									
	DEPTH	N-VALUE									
	(feet)	(bpf)									
	23.7-25.2	19-12-16				1			1		
			·	† ·			-		-		_
	20 3: 7. 12	- 1	,	-	-						
	28.7-30.2	4-6-11				-					
						-					
	33.7-35.2	4-7-7						•			
	73.2			 		-	_				
wi.	207 4. 7			-			_				
	38.7-40.2	5-8-11									
	43.7-45.2	13-14-15									
	13.7 73.2	12 11 13		<u> </u>	-						
			· · · · · · · · · · · · · · · · · · ·					-			
•											
					1	1	-				
					<u> </u>	-			_		
				-	-	-					
								_			
										,	
						1					-
				-							
REMARKS:	Testing performed in	accordance with			***************************************						
	ASTM D 4633-05						i i				
	P. Carriero						er de la companya de				
	Reviewed By:								REV	. 2	

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (23.7' - 25.2' sample)

	PDIPLOT Ver. 2008.1 - Printed: 16-Nov					071 07 0	DINIO 11 A III	Results	
Sep-200	-45c Track (D. R Test date: 2-9	nple)	3.7' - 25.2' sar	RING M-8 (23		P: JNH			
	SP: 0				`				R: 1.22 ii
	EM: 30								E: 29.20 f
0.70		2014					0.		/S: 16,807.9 f
te	Blows per Minu								SX: Max Me
» Datia	Energy of F^2						uIII	Stress Maxim	MX: Maximui
d Enor	Energy Transfe Max Transferre	EIK. E							MX: Maximui
u Lilei	Wax Transiene	LIVIX. IX					onality		VP: Force/Ve
ΕN	ETR	EF2	BPM	FVP	FMX	VMX	TSX	CSX	BL#
k	(%)	k-ft	**		kips	f/s	ksi	ksi	
0.3	94.2	0.291	1.9	0.8	23	14.0	12.6	19.2	2
0.2	82.2	0.277	58.1	0.8	25	14.0	12.6	20.8 .	3
0.2	83.3	0.273	56.8	0.8	23	12.6	10.1	19.0	4
0.2	81.1	0.267	56.7	0.8	24	14.0	11.4	19.6	5
0.2	80.8	0.267	56.3	8.0	24	14.3	11.6	20.0	6
0.2	82.8	0.272	56.2	0.9	25	13.4	10.5	20.3	7
0.2	83.0	0.272	56.3	0.8	24	13.5	9.8	20.0	8
0.2	81.5	0.268	56.3	0.8	23	12.6	8.9	18.8	9
0.2	80.9	0.270	56.3	0.8	24	13.3	9.3	19.6	10
0.2	82.0 80.9	0.266 0.267	56.2 56.4	0.8 0.8	24 23	14.2 13.6	11.0 10.6	19.6 18.7	11 12
0.2	81.1	0.267	56.4	0.8	23	13.7	8.7	19.7	13
0.2	82.1	0.264	56.4	0.7	22	13.7	9.7	18.2	14
0.2	79.8	0.267	56.3	0.8	24	13.7	8.6	19.9	15
0.2	81.4	0.270	56.4	0.8	24	14.0	8.6	20.0	16
0.3	86.4	0.266	56.3	0.8	24	14.2	8.3	19.8	17
0.2	82.4	0.266	56.5	0.8	22	12.5	8.0	18.4	18
0.2	81.5	0.270	56.3	0.8	21	12.6	8.3	17.5	19
0.2	82.6	0.264	56.4	8.0	22	12.9	8.4	17.9	20
0.2	80.5	0.268	56.3	8.0	23	13.9	8.7	18.9	21
0.2	85.4	0.265	56.4	0.8	24	13.9	9.0	19.7	22
0.2	83.5	0.263	56.5	0.8	24	14.4	9.0	19.9	23
0.2	81.7	0.266	56.4	0.8	24	14.6	9.4	20.1	24
0.2	82.3 80.4	0.269 0.263	56.4 56.5	0.8 0.8	24 24	13.3 14.0	8.6 8.8	19.4 19.4	25 26
0.2 0.2	81.5	0.272	56.1	0.8	22	12.8	8.5	17.7	27
0.2	82.7	0.268	56.5	0.8	24	14.1	8.4	19.9	28
0.2	83.9	0.267	56.2	0.8	24	14.1	8.7	19.8	29
0.2	84.6	0.266	56.5	0.8	24	14.4	8.4	19.9	30
0.2	83.0	0.270	56.4	0.8	24	14.2	8.2	20.0	31
0.2	83.4	0.265	56.5	8.0	22	13.4	8.4	18.3	32
0.3	86.5	0.267	56.3	8.0	25	14.7	8.3	20.2	33
0.2	83.1	0.268	56.4	8.0	23	13.0	8.1	19.2	34
0.3	87.1	0.266	56.3	0.8	24	13.9	7.8	19.5	35
0.3	85.8	0.268	56.4	0.8	25	14.7	8.3	20.3	36
0.2	84.6	0.272	56.4	0.8	24	13.9	7.6	19.9	37
0.3	86.8	0.265	56.3	0.8	24	14.9	7.3 8.9	19.9 19.1	38 39
0.2 0.2	84.0 82.4	0.271 0.268	56.4 56.5	0.8 0.8	23 23	14.1 13.9	8.0	19.1	40
0.2	85.7	0.268	56.2	0.8	23 24	14.2	8.7	19.0	41
0.3	87.2	0.200	56.5	0.8	25	14.7	8.4	20.3	42
0.2	85.5	0.274	56.4	0.8	25	14.3	8.2	20.1	43
0.2	85.2	0.264	56.4	0.7	22	13.8	7.4	18.0	44
0.2	85.5	0.277	56.3	0.8	23	13.4	7.0	18.9	45
0.2	84.2	0.272	56.4	8.0	24	14.0	7.1	19.3	46
0.2	84.1	0.271	56.2	8.0	23	13.7	7.1	19.0	47
0.2	83.9	0.268	56.3	0.7	21	13.4	6.8	17.6	48
0.3	86.4	0.267	56.2	0.7	23	14.8	7.2	19.1	49
0.3	86.8	0.273	56.4	0.8	22	12.8	6.2	17.9	50
0.3	86.9	0.273	56.6	0.8	23	13.5	6.9	19.0	51
0.3	88.5	0.272	56.4	0.8	24	14.5	7.6	20.0	52
0.3	86.2	0.268	56.6	0.8	22	13.3	6.4	18.2	53
0.2	83.8	0.269	55.4	0.8 nber of blows	24	13.8	8.7	19.3	/erage

Drive 1 minute 25 seconds

11:23:35 AM - 11:25:00 AM (9/2/2009) BN 1 - 53

MACTEC Engin Case Method R		onsulting, Inc.			Page 1 o PDIPLOT Ver. 2008.1 - Printed: 16-Nov-200						
NORTH ANNA OP: JNH	3 Project - BC	ORING M-8 (2	8.7' - 30.2' sar	mple)	Rig Serial No. MEC-12; CME-45c Track (D.Rh Test date: 2-Sep						
AR: 1.22 ir LE: 34.20 ft WS: 16,807.9 f/								EM: 30	0.492 k/ft3 0,000 ksi 0.70		
CSX: Max Mea TSX: Tension VMX: Maximun FMX: Maximun FVP: Force/Ve	Stress Maxim n Velocity n Force	um					EF2: E ETR: E	lows per Minu nergy of F^2 nergy Transfe lax Transferre	er Ratio		
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX		
	ksi	ksi	f/s	kips	0	**	k-ft	(%)	k-ft		
2	18.9	16.2	14.3	23	0.8	1.9	0.274	82.9	0.290		
3	18.8	14.3	14.1	23	0.8	56.2	0.273	86.0	0.301		
4	20.1	13.3	15.7	25	0.7	56.6	0.272	84.8	0.297		
5	19.5	14.2	15.7	24	0.7	56.5	0.263	84.2	0.295		
6	17.4	12.3	13.9	21	0.7	56.1	0.263	84.4	0.295		
7	17.1	11.9	13.8	21	0.7	56.5	0.259	85.3	0.299		
8	19.7	13.3	15.2	24	0.7	56.5	0.267	84.3	0.295		
9	19.8	12.7	15.4	24	0.7	56.3	0.268	84.1	0.295		
10	19.3	12.4	15.1	24	0.7	56.4	0.258	82.4	0.288		
11	17.2	11.2	12.9	21	0.8	56.2	0.259	83.4	0.292		
12	17.9	10.7	13.8	22	0.7	56.3	0.261	81.0	0.284		
13	18.3	10.7	13.7	22	0.7	56.2	0.260	80.8	0.283		
14	19.0	8.7	14.7	23	0.7	56.0	0.256	82.2	0.288		
15	18.7	9.8	14.8	23	0.7	56.3	0.258	81.2	0.284		
16	18.9	9.6	13.9	23	0.8	56.2	0.255	83.3	0.292		
17	18.4	9.4	14.3	22	0.7	56.2	0.256	82.5	0.289		
18	17.3	9.1	13.9	21	0.7	56.4	0.254	80.9	0.283		
19	16.6	9.0	13.4	20	0.7	56.4	0.255	82.8	0.290		
20	18.2	9.4	13.6	22	0.8	56.2	0.256	84.4	0.295		
21	17.3	7.7	12.8	21	0.7	56.3	0.259	84.8	0.297		
22	19.2	7.3	15.6	23	0.7	56.1	0.254	82.9	0.290		
Average	18.5	11.1	14.3	23 Total nur	0.7 mber of blows	53.7 analyzed: 21	0.261	83.3	0.292		

Drive 35 seconds

11:47:18 AM - 11:47:53 AM (9/2/2009) BN 1 - 22

MACTEC Engineering and Consulting, Inc. - Case Method Results

PDIPLOT Ver. 2008.1 - Printed: 16-Nov-2009

NORTH ANNA 3 Project - BORING M-8 (33.7' - 35.2' sample)

Page 31 of 55 DCN#NAP299

	MACTEC Engineering and Consulting, Inc. Case Method Results						Page 1 of PDIPLOT Ver. 2008.1 - Printed: 16-Nov-200					
NORTH ANNA OP: JNH	F	Rig Serial No. MEC-12; CME-45c Track (D.Rhodes) Test date: 2-Sep-2009										
AR: 1.22 in LE: 39.20 ft WS: 16,807.9 ft								EM: 30	0.492 k/ft3 0,000 ksi 0.70			
CSX: Max Mea TSX: Tension VMX: Maximur FMX: Maximur FVP: Force/Ve	Stress Maxim n Velocity n Force	um					EF2: E ETR: E	lows per Minu nergy of F^2 nergy Transfe lax Transferre	ute er Ratio			
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX			
	ksi	ksi	f/s	kips	П	**	k-ft	(%)	k-ft			
2	20.2	15.8	15.8	25	0.7	1.9	0.262	84.7	0.296			
3	19.8 .	15.4	14.5	24	0.8	56.2	0.267	83.9	0.294			
4	18.1	14.7	13.7	22	0.8	56.4	0.268	85.2	0.298			
5	19.0	13.2	13.6	23	0.8	56.1	0.266	83.8	0.293			
6	19.2	12.8	14.2	23	0.8	56.2	0.261	82.6	0.289			
7	18.9	12.0	13.5	23	0.8	56.7	0.260	83.2	0.291			
8	19.7	13.1	15.0	24	0.7	56.6	0.262	84.5	0.296			
9	19.6	13.2	15.1	24	0.7	56.2	0.260	83.6	0.293			
10	18.4	11.7	13.6	23	0.8	56.2	0.257	83.9	0.294			
11	19.0	12.9	14.7	23	0.7	56.1	0.260	83.4	0.292			
12	19.2	12.8	14.9	23	0.7	56.3	0.259	83.9	0.294			
13	17.3	12.2	12.9	21	0.7	56.3	0.261	83.2	0.291			
14	18.5	10.6	14.8	23	0.7	56.3	0.256	85.9	0.301			
15	18.3	10.6	13.9	22	0.7	56.0	0.257	83.4	0.292			
16	17.4	10.8	13.7	21	0.7	56.4	0.255	83.0	0.291			
17	18.5	11.2	15.1	23	0.7	56.3	0.252	83.7	0.293			
18	17.9	10.7	14.6	22	0.7	56.0	0.253	82.3	0.288			
19	16.4	11.0	12.7	20	0.7	56.5	0.262	84.3	0.295			
Average	18.6	12.5	14.2	23 Total pur	0.7	53.3 analyzed: 18	0.260	83.8	0.293			

Drive 4 minutes 56 seconds

11:55:59 AM - 12:00:55 PM (9/2/2009) BN 1 - 20

Total number of blows analyzed: 18

NORTH ANNA 3 Project - BORING M-8 (38.7' - 40.2' sample)

MACTEC Engir Case Method R		onsulting, Inc.				PDIPLO	T Ver. 2008.	P: 1 - Printed: 16-	age 1 of 1 Nov-2009	
NORTH ANNA 3 Project - BORING M-8 (38.7' - 40.2' sample) Rig Serial No. MEC-12; CME-45c Track OP: JNH							E-45c Track (D Test date: 2-			
AR: 1.22 ii LE: 44.20 ft WS: 16,807.9 f.	t								0.492 k/ft3 0,000 ksi 0.70	
CSX: Max Mea TSX: Tension VMX: Maximur FMX: Maximur FVP: Force/Ve	Stress Maxim n Velocity n Force	um	n				EF2: ETR:	Blows per Minu Energy of F^2 Energy Transfe Max Transferre	F^2 ansfer Ratio	
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX	
	ksi	ksi	f/s	kips	[]	**	k-ft	(%)	k-ft	
2	17.6	14.6	15.9	22	0.6	1.9	0.274	86.6	0.303	
3	18.3		15.3	22	0.5	56.1	0.274	88.2	0.309	
4	18.1	14.7	15.2	22	0.5	56.7	0.269	88.4	0.309	
5	17.2	13.1	16.7	21	0.6	56.5	0.258	84.7	0.297	
6	18.6	14.1	15.0	23	0.7	56.7	0.260	84.6	0.296	
7	17.1	11.5	16.0	21	0.5	56.4	0.255	87.2	0.305	
8	18.0	13.3	16.1	22	0.6	56.3	0.258	85.7	0.300	
9	15.7	11.8	16.7	19	0.5	56.5	0.253	84.4	0.295	
10	15.8	11.0	16.7	19	0.5	56.3	0.257	85.5	0.299	
11	16.7	10.8	16.7	20	0.6	56.6	0.253	86.5	0.303	
12	18.1	10.1	14.8	22	0.7	56.3	0.257	85.5	0.299	
13	17.7	10.3	14.9	22	0.7	56.2	0.253	86.5	0.303	
14	17.3	10.0	15.4	21	0.5	56.4	0.257	85.7	0.300	
15	15.6	9.2	16.9	19	0.5	56.3	0.251	84.9	0.297	
16	17.8	9.6	15.7	22	0.6	56.3	0.248	84.7	0.296	
17	17.9	10.2	14.2	22	0.5	56.4	0.252	85.4	0.299	
18	17.1	9.8	15.5	21	0.5	56.3	0.253	84.5	0.296	
19	15.7	9.9	16.2	19	0.5	56.3	0.250	83.9	0.294	
20	17.8	7.4	15.7	22	0.6	56.4	0.247	84.9	0.297	
21	17.8	7.8	14.9	22	0.7	56.4	0.250	85.9	0.301	
22	18.0	6.8	14.3	22	0.5	56.3	0.250	86.7	0.303	
23	16.5	5.6	16.5	20	0.5	56.4	0.248	87.7	0.307	
24	18.1	4.9	15.5	22	0.6	56.3	0.247	84.1	0.294	
25	15.4	5.1	16.6	19	0.5	56.3	0.247	87.2	0.305	
Average	17.2	10.3	15.7	21	0.6	54.1 analyzed: 24	0.255	85.8	0.300	

Drive 4 minutes 22 seconds 12:10:11 PM - 12:14:33 PM (9/2/2009) BN 1 - 26

NORTH ANNA 3 Project - BORING M-8 (43.7' - 45.2' sample)

Page 35 of 55 DCN#NAP299

MACTEC Engir Case Method R		onsulting, Inc.				PDIPLO	T Ver. 2008.1	P: - Printed: 16-	age 1 of 1 Nov-2009
NORTH ANNA OP: JNH	3 Project - BC	ORING M-8 (4	3.7' - 45.2' sar	mple)	R	ig Serial No. N	MEC-12; CME	E-45c Track (D Test date: 2-	
AR: 1.22 ir LE: 49.20 ft WS: 16,807.9 f/	t			`				SP: (0.492 k/ft3 0,000 ksi 0.70
CSX: Max Mea TSX: Tension VMX: Maximur FMX: Maximur FVP: Force/Ve	asured Compr Stress Maxim n Velocity n Force	um					EF2: ETR:	Blows per Minu Energy of F^2 Energy Transfe Max Transferre	ute er Ratio
BL#	CSX	TSX	VMX	FMX	FVP	BPM	EF2	ETR	EMX
DLπ	ksi	ksi	f/s	kips		**	k-ft	(%)	k-ft
2	19.1	15.5	16.3	23	0.7	1.9	0.254	85.2	0.298
3	18.3	12.9	14.7	22	0.7	56.4	0.268	87.9	0.298
4	19.1	11.7	15.4	23					
					0.7	56.5	0.261	86.4	0.302
5	17.9	14.1	13.5	22	0.8	56.5	0.260	86.0	0.301
6	19.2	11.5	15.8	23	0.7	56.3	0.261	85.9	0.301
7	18.5	11.1	14.4	23	0.7	56.6	0.262	85.2	0.298
8	17.8	12.6	13.2	22	0.7	56.3	0.261	86.4	0.302
9	18.6	10.9	15.1	23	0.7	56.3	0.259	87.0	0.305
10	17.0	12.6	13.3	21	0.7	56.7	0.258	86.3	0.302
11	19.1	11.9	15.7	23	0.7	56.3	0.258	84.8	0.297
12	19.1	11.9	15.9	23	0.7	56.6	0.259	84.6	0.296
13	18.1	12.3	13.5	22	0.7	56.2	0.261	86.1	0.301
14	19.0	10.2	15.7	23	0.7	56.6	0.261	85.9	0.301
15	18.7	12.2	14.6	23	0.7	56.6	0.256	84.7	0.296
16	17.5	12.0	13.4	21	0.7	56.4	0.261	88.3	0.309
17	17.8	11.0	13.8	22	0.7	56.6	0.264	85.9	0.301
18	18.0	11.9	13.5	22	0.7	56.7	0.264	85.8	0.300
19	19.4	10.2	16.1	24	0.7	56.6	0.264	86.8	0.304
20	18.6	11.7	14.2	23	0.7	56.5		85.9	
21	18.8	11.8	14.2	23			0.266		0.301
					0.7	56.5	0.263	86.0	0.301
22	19.4	10.3	16.4	24	0.7	56.7	0.265	87.8	0.307
23	19.2	11.6	15.4	23	0.7	56.5	0.261	85.8	0.300
24	18.8	11.4	14.7	23	0.7	56.5	0.260	88.7	0.310
25	18.2	10.5	15.0	22	0.7	56.7	0.262	89.1	0.312
26	19.1	11.0	15.6	23	0.7	56.4	0.262	86.7	0.304
27	19.6	10.6	16.6	24	0.7	56.7	0.265	88.6	0.310
. 28	19.4	10.9	16.0	24	0.7	56.7	0.258	87.0	0.305
29	19.6	10.5	16.3	24	0.7	56.4	0.265	86.8	0.304
30	18.9	10.3	15.1	23	0.7	56.7	0.269	88.8	0.311
31	19.2	9.1	15.8	23	0.7	56.5	0.261	87.8	0.307
32	19.2	9.0	15.8	23	0.7	56.7	0.262	85.9	0.301
33	19.1	9.1	15.3	23	0.7	56.6	0.263	88.6	0.310
34	19.2	9.6	15.5	23	0.7	56.6	0.264	90.4	0.317
35	19.8	8.8	15.8	24	0.7	56.4	0.260	87.0	0.305
36	18.3	8.5	14.5	22	0.7	56.7	0.261	88.4	0.309
37	19.7	9.4	16.3	24	0.7	56.5	0.265	90.8	0.318
38	19.8	8.1	15.7	24	0.7	56.8		90.6	
39							0.263		0.315
	20.1	8.7	16.3	25	0.7	56.1	0.262	88.6	0.310
40	19.4	8.9	15.8	24	0.7	56.8	0.263	87.2	0.305
41	18.9	7.4	14.1	23	0.8	56.5	0.259	88.4	0.310
42	18.7	6.9	13.5	23	0.8	56.2	0.265	88.3	0.309
Average	18.9	10.7	15.1	23 Total nur	0.7 nber of blows	55.2 analyzed: 41	0.262	87.1	0.305
T: 0									

Drive 1 minute 47 seconds

12:24:49 PM - 12:26:36 PM (9/2/2009) BN 1 - 42

