Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards Subcommittee on ESBWR: Open Session

Docket Number: (n/a)

Location: Rockville, Maryland

Date: Tuesday, July 13, 2010

Work Order No.: NRC-339

Pages 1-130

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

	1
1	
2	
3	DISCLAIMER
4	
5	
6	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
7	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
8	
9	
10	The contents of this transcript of the
11	proceeding of the United States Nuclear Regulatory
12	Commission Advisory Committee on Reactor Safeguards,
13	as reported herein, is a record of the discussions
14	recorded at the meeting.
15	
16	This transcript has not been reviewed,
17	corrected, and edited, and it may contain
18	inaccuracies.
19	
20	
21	
22	
23	
2.4	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	2
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	SUBCOMMITTEE ON ESBWR
8	+ + + + +
9	OPEN SESSION
10	+ + + + +
11	TUESDAY
12	JULY 13, 2010
13	+ + + + +
14	ROCKVILLE, MARYLAND
15	+ + + + +
16	The Subcommittee met at the Nuclear
17	Regulatory Commission, Two White Flint North, Room
18	T2B1, 11545 Rockville Pike, at 2:35 p.m., Michael L.
19	Corradini, Chairman, presiding.
20	PRESENT:
21	MICHAEL L. CORRADINI, Chairman
22	J. SAM ARMIJO, Member
23	SAID ABDEL-KHALIK, Member
24	SANJOY BANERJEE, Member
25	DANA A. POWERS, Member
26	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

1	PRESENT: (continued)
2	MICHAEL T. RYAN, Member
3	JOHN D. SIEBER, Member
4	JOHN W. STETKAR, Member
5	
6	CONSULTANTS TO THE SUBCOMMITTEE:
7	THOMAS S. KRESS, Consultant
8	GRAHAM B. WALLIS, Consultant
9	
10	NRC STAFF:
11	CHRISTOPHER BROWN, Designated Federal
12	Official
13	AMY CUBBAGE
14	JOHN MCKIRGAN
15	LESLIE PERKINS
16	HANRY WAGAGE
17	JOSEPH SHEPHERD
18	TUAN LE
19	MANOMOHAN SUBUDHI
20	SAMIR CHAKRABARTI
21	MANUEL MIRANDA
22	
23	
24	
25	
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASLINGTON D.C. 20005 2701
1	1 (202) 234-4455 WASHINGTON, D.C. 2000-5701 WWW.Realigross.com

		4
1	ALSO PRESENT:	
2	WAYNE MARQUINO	
3	RICK WACHOWIAK	
4	JERRY DEAVER	
5	JOHN GELS	
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	NEAL R. GROSS	
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.	
	(202) 234-4433 WASHINGTON, D.C. 20005-3701	www.nealrgross.com

			5
1	ТА	BLE OF CONTENTS	
2	AGENDA ITE	:M	PAGE
3	RAI 6.2-202 (hydroge	en) NRO:	5
4	Leslie Perkins, Ha	anry Wagage, Joseph	
5	Shepherd, Tuan Le,	Samir Chakrabarti	
6			
7	PCCS Redesign, GEH:	Rick Wachowiak	93
8			
9	ACRS Summary: Long	Term Cooling	120
10	SRM Response and C	Committee	
11	Discussion (Dr. Co	orradini, ACRS)	
12			
13	Adjourn		130
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
	COUR	NEAL R. GROSS	
	(202) 234-4433	1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701	www.nealrgross.com

	6
1	PROCEEDINGS
2	Time: 2:35 p.m.
3	CHAIRMAN CORRADINI: We are back in
4	session. Hanry, are you going to lead us? Oh, I am
5	sorry, Leslie. I am sorry. Excuse me.
6	MS. PERKINS: Yes. My name is Leslie
7	Perkins. I am the PM for Chapter 6, ESBWR, and this
8	afternoon the staff is going to discuss the hydrogen
9	accumulation in the PCCS, which is RAI 6.2-202. This
10	presentation starts on Slide 11 in your packet.
11	Staff that are presenting are Hanry
12	Wagage, Tuan Le and Samir Chakrabarti, and we have
13	also Joe Shepherd from Caltech. So at this time, I
14	will turn it over to Hanry.
15	MR. WAGAGE: Hi. My name is Hanry Wagage.
16	Dr. Joe Shepherd and I will be presenting PCCS
17	function, design and detonation pressure loading.
18	Other two presenters will be discussing structure
19	analyses for PCCS and containment.
20	ACRS raised concern on the possibility of
21	hydrogen accumulation in PCCS at the November 2009
22	meeting. The staff expanded the issue to ICS. Staff
23	has not received submittal on the response to the RAI
24	in terms of for ICS. We heard from GE, but we have to
25	receive the response and evaluate. We are not ready
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

1	7
1	to discuss the evaluation on ICS, because we haven't
2	received the response.
3	CHAIRMAN CORRADINI: So that will be taken
4	up at a later time. She hasn't objected to my
5	inference. So I guess we are okay.
6	MS. CUBBAGE: Yes. We can take that up at
7	a later time.
8	MR. WAGAGE: MELCOR results showed the
9	hydrogen and oxygen mole fractions, 48 percent, and
10	then for 24 percent in PCCS lower drum at 8 hours
11	after LOCA. At these high concentrations of hydrogen,
12	they really maybe needed for PCCS
13	CONSULTANT WALLIS: What does that mean?
14	What does minimal energy mean? Does it mean the
15	energy of a baseball or a cosmic ray or what? That is
16	a lot. That is much more than you get from
17	radioactive decay.
18	DR. SHEPHERD: A few millijoules. In the
19	world if ignition, that is a pretty small number.
20	CONSULTANT WALLIS: Just got to excite a
21	few molecules.
22	DR. SHEPHERD: More than that, yes.
23	CONSULTANT WALLIS: Can radioactive decay
24	do that. You got to have something more significant
25	than what is already there, and still there is a wet
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	8
1	atmosphere. Everything is wet.
2	DR. SHEPHERD: So do you mean wet by
3	having a liquid film or steam?
4	CONSULTANT WALLIS: Everything is covered
5	with water in this thing.
6	DR. SHEPHERD: So it depends. Depends on
7	where your ignition source is.
8	CONSULTANT WALLIS: Is there any?
9	DR. SHEPHERD: That is a good question.
10	MR. McKIRGAN: If I may, I believe from
11	the staff's perspective and also from GE, this is one
12	of the points that we are actually in agreement on in
13	that we cannot preclude a detonation, and so we are
14	proceeding under the assumption
15	CONSULTANT WALLIS: That there could be
16	one.
17	MR. McKIRGAN: that there would be an
18	ignition.
19	CONSULTANT WALLIS: But minimal energy
20	doesn't mean anything, does it, and you got to get
21	more specific.
22	MR. McKIRGAN: I think the only point
23	there is that we are going to assume
24	CONSULTANT WALLIS: It's kind of small,
25	but you might as well be zero. Right? Okay.
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 www.nealrgross.com

MEMBER POWERS: Actually, this is one case where there is a minimum. There is a minimum in the ignition energy at the stoichiometric composition. DR. SHEPHERD: Yes, the minimum ignition

usually defined in terms of electrical 5 enerqy is You don't have to have an electrical 6 discharge. 7 source for the ignition, and as you vary the 8 stoichiometry, as Dana indicated, your stoichiometric 9 or slightly rich is usually a minimum. Then as you go to the rich and the lean size increases. 10 So you use 11 very typical, sort of U-shaped curve. Then if you do something like add steam, it goes up from there. 12

CONSULTANT WALLIS: It is energy per unit
 volume or something.

15 DR. SHEPHERD: Well, it is an interesting The way that it has been characterized over 16 thing. 17 the years in the explosions hazards business is, in 18 fact, in terms of energy. We recently have 19 been looking at this, and we believe it is a linear It is more energy per length, but you are 20 spark. 21 It is to say that it is energy per unit right. 22 volume, because it is really the temperature you have, 23 because also a characteristic size that you need. Ιt 24 is not just temperature --25 CONSULTANT WALLIS: Because if it is

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

www.nealrgross.com

	10
1	losing energy You know, it is like lighting a fire.
2	It is big enough so that it produces more heat than
3	is being lost. So it will grow.
4	DR. SHEPHERD; Yes, exactly. So there is
5	some criteria connected with that.
6	MR. WAGAGE: ACRS raised a concern on
7	Regulated criteria applicable to this issue are 10 CFR
8	5457(b)(5) and GDC 38 and 50.
9	Staff issued RAI to 6.2-202 on December
10	11, 2009. After that, we had several public meetings
11	and issued a Supplemental RAI to address other issues
12	that came up.
13	GEH submitted NEDE-33572P Revision 1 to
14	provide technical details. As a result of this RAI,
15	GEH changed their PCCS design basis to perform its
16	safety function after multiple hydrogen detonations.
17	Before we go through the details of our
18	presentation, we would like to bring to the Committee
19	the status of this one, the status of this resolution
20	is ongoing. However, we resolved certain issues.
21	There are certain open issues. I would like to list
22	those issues right at the beginning.
23	We have resolved issue on hydrogen
24	concentrations. GEH, they are using the maximum
25	possible hydrogen concentration and stoichiometric
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 www.nealrgross.com

11 1 ratio of hydrogen and oxygen in the condenser. That 2 is conservative. CONSULTANT WALLIS: Actually, it is not a 3 4 maximum. If you had 100 percent hydrogen, you 5 wouldn't have а problem, would you? It's a stoichiometric thing. 6 7 That is right. MR. WAGAGE: That is 8 right. 9 CONSULTANT WALLIS: You really should say 10 that. 11 MR. WAGAGE: Ι had that later, stoichiometric issue. 12 Detonation pressure loading in PCCS. 13 GEH 14 calculated detonation pressure loading on tubes. 15 Staff calculations confirmed those numbers. 16 Case by case evaluation using ASME Section 17 components is recalled. Loading III Class MC 18 combination to include detonation plus all other applicable loads for NUREG-800 SRP 3.8.2. Next one. 19 20 Open issues on this are: Detonation pressure loading in PCCS lower drum and then in vent 21 22 lines. Dr. Shepherd is going to talk more about 23 detonation pressure on lower drum, and drain and vent 24 lines, you see the LTR. You see that pressure loading 25 on drain and vent lines are 407 megapascals. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

12 GEH concern at that time was that the vent 1 2 line was prevented from detonation by having catalyst at the entrance of the vent line. 3 Then staff raised a 4 concern that, although this prevented formed 5 detonation, however, in the business of closing in the lower drum, that how you close, the mixture would 6 7 expand to the vent line, and the vent line pressure 8 has to be higher than the 407 megapascals. So we 9 chose the highest peak LOCA pressure. 10 MEMBER ABDEL-KHALIK: Can you repeat that 11 number, please? MR. WAGAGE: 407, and you see that --12 MEMBER ABDEL-KHALIK: 407 what, though? 13 14 That is where we didn't --15 MR. WAGAGE: 407 megapascals. 16 MEMBER ABDEL-KHALIK: Megapascals or 17 kilopascals. 18 MR. WAGAGE: No, kilopascals, kilopascals. 19 CHAIRMAN CORRADINI: Good. Good. I was guessing we were off by 1,000. I just wanted to make 20 21 sure. 22 MR. WAGAGE: That is the highest pressure 23 experienced by the -- That is in the LTR. We pointed 24 to GEH that, when the explosion occurs in the drum, 25 the explosion mixture expands through the vent line. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

13 The vent line will go to pressures higher than that 1 2 407 kilopascals. CONSULTANT WALLIS: The force of this is a 3 4 delta P anyway. It is the same inside as outside. 5 MR. WAGAGE: I will tell you the outside 6 is --7 CONSULTANT WALLIS: Four hundred and 8 seven, isn't it? It's the same thing, much the same. 9 There is no delta P from 407. 10 MR. WAGAGE: That is right. CONSULTANT WALLIS: It is the 38.7 that we 11 12 are asking them to use? The point was that it cannot 13 MR. WAGAGE: 14 be the LOCA pressure. 15 CONSULTANT WALLIS: Are you asking them to use the same pressure as in the drum? I thought that 16 17 was the resolution of it. 18 MR. WAGAGE: If they would pick a pressure the same as the drum, that wouldn't be an issue. 19 Resolution is that we haven't seen the response yet. 20 21 I mean, we pointed to GEH that 407 kilopascals should 22 not be the correct level. 23 Ignition effects on -- The second one was 24 that drain lines -- Originally, GEH pointed to that, 25 asked that drain lines would contain water. Because **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

14 1 they contain water, they is less likelihood that 2 hydrogen would be there, and there will be no 3 distinction. That is why that in the staff response -4 - in the NTR GEH is proposing 407 kilopascals pressure 5 for the drain line. Staff pointed to GEH that it is possible 6 7 that there may be some -- the drain is not flowing 8 full. There will be hydrogen and oxygen that could 9 detonate, and GEH has corrected that. 10 There is an open issue on modification for 11 lower drum covers and drain nozzles to account for high stresses. Detonation effects on PCCS components 12 not directly exposed to detonation, for example, in 13 14 anchorage, support frame, and pool --15 CONSULTANT WALLIS: Does that include the 16 fans? 17 MR. WAGAGE: Fans? It should. Fans, that 18 should be the higher pressure, because originally that drain lines, that GEH assumed drain lines do not see 19 higher pressures, but right now, because of that high 20 explosive mixture expanding to the drain lines, fans 21 also have to be qualified for that. 22 23 Fatique evaluation for multiple 24 detonations have been resolved, and as we discussed 25 before, design of ICS is an open issue. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

15 Because of the changes in PCCS design, the 1 2 thickness of the tubes were increased, and that 3 releases the heat transfer, and new method, it has 4 lower thermal conductivity than the previous material. 5 That increases the heat resistance to heat transfer. CONSULTANT WALLIS: Ι 6 May ask you 7 What are the effects of this bang on the something? 8 Do the operators hear a loud bang when operators? 9 Do they hear nothing? this thing happens? Do they have a sensor that tells them there has been an 10 11 explosion in the PCCS? How do they know what is going 12 on? MR. WAGAGE: Does GEH have answers? 13 14 MR. WACHOWIAK: Yeah, this is Rick 15 Wachowiak from GE. In the ICS it is easier to tell, and I 16 17 know we are not talking about that yet, because we 18 have indication of pressure and temperature in that 19 heat exchanger. In the PCCS we would have to infer it 20 from other pressures in the other areas of 21 containment. 22 There will be а fluctuation, slight 23 fluctuation, in the drywell pressure and possibly you

24 would be able to see a signature in the wetwell as 25 gases are pushed through there, but maybe not quite so

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

ĺ	16
1	much there.
2	It won't be as easy to tell this, because
3	that was one of the things that we wanted to make
4	sure, is that the detonation in the PCCS did not
5	affect the drywell pressure significantly so that we
6	would have an issue with that part of the boundary.
7	So it is a good question that We did
8	not need to answer that question to address the design
9	basis of that. So
10	CONSULTANT WALLIS: You don't think they
11	will hear anything? Will they hear something, too?
12	MR. WACHOWIAK: It is under water.
13	CONSULTANT WALLIS: It will be too far
14	away.
15	MR. WACHOWIAK: Too far away in a
16	different part of the building. I just don't know.
17	But you are probably not the last one that is going to
18	ask that question. So I am guessing that something
19	will happen over time to determine what is that
20	signature or what is going to tell the operators that
21	that has happened. But to do the safety evaluation,
22	you don't need that piece of information.
23	MEMBER POWERS: What I know is that in the
24	hydrogen combustion event at TMI, people heard a sound
25	that they described as a bang, and people now conclude
	NEAL R. GROSS
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	17
1	that, in fact, it was water hammer when the sprays
2	were ignited, and they did not hear the deflagration
3	at TMI. No sound would have transmitted out.
4	CONSULTANT WALLIS: That was a relatively
5	mild burn, wasn't it?
6	MEMBER POWERS: Yes. About an eight
7	percent burn. It actually was you would kind of
8	expect for large dry containments to be kind of
9	routine. It definitely did not have a shock wave
10	associated with it.
11	CONSULTANT WALLIS: It is a good thing.
12	MR. WAGAGE: The next open item we have on
13	this is accounting for thermal effect generated by
14	detonation in the design. In the structural areas,
15	GEH has used that temporary
16	CONSULTANT WALLIS: What is the
17	detonation on the design? A mistake in English
18	somehow? Design blow up?
19	MR. WAGAGE: Thermal in the design.
20	MEMBER ABDEL-KHALIK: You mean energy
21	added.
22	MR. WAGAGE: In designing the PCCS, GEH
23	had to consider the higher temperature generated by
24	the explosion. That is the point.
25	MEMBER ABDEL-KHALIK: If you go back one
	NEAL R. GROSS
	LOURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	18
1	slide, Slide 15, if they are predicting at most
2	consecutive detonations, why do they have to do the
3	fatigue evaluation?
4	MR. WAGAGE: Scott, do you want to answer
5	that? Mano, you want to expand on that?
6	MEMBER ABDEL-KHALIK: If you are going to
7	get to it later, we can wait until you present that.
8	MR. WAGAGE: Because the fatigue
9	evaluation was to Ask Mano, and I think he can
10	explain on that.
11	The question raised was that the GEH is
12	considering a number of detonations. After
13	considering that many number of detonations, why does
14	the design have to consider fatigue evaluation. That
15	is the question.
16	MR. SUBUDHI: My name is Manomohan Subudhi
17	from Brookhaven National Lab. According to ASME
18	criteria, we do want a fatigue analysis for class
19	level A and B, but we do sometimes ask to use with
20	SSE, which is not a subject level A and B, to be
21	included.
22	This particular there is no precedence.
23	That is, we don't know how to deal with it, but we
24	wanted to see, because this PCCS is required to remain
25	functional for this sort of severe accidents. So we
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

19 1 want that it doesn't leak enough to violate the 10 CFR 2 Part 100 requirements. So from that point of view, we wanted to 3 4 see how much damage, how much fatigue life it is 5 taking away by calculating at least the alternating stress and material property to see that how many 6 7 cycles we can survive. If it is going to fail due to 8 fatigue only, due to detonation, then we have no life 9 left for the severe accidents. 10 CHAIRMAN CORRADINI: But is your -- Okay, 11 but I assume it is your expectation that it will --12 You are not expecting to see a fatigue? 13 MR. SUBUDHI: No. We are not expecting 14 any fatigue calculations or anything. We want to see 15 that how much fatigue life it is eating away. 16 CHAIRMAN CORRADINI: Okay. Thank you. 17 MR. WAGAGE: As a result of this RAI, GEH 18 made several design changes to PCCS. For the tubing, GEH changed the material to XM-19 and increased the 19 tube thickness, increased number of tubes per module. 20 For the drum, GEH increased thickness of 21 22 the drum and changed the material to XM-19, added 23 catalyst, platinum or palladium coated plates, to the vent in the lower drum of the condenser. 24 25 On the next slide, this has more about our **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

evaluation of the catalyst. Impact of potential performance inhibitors, example, aerosols and condensate, etcetera.

1

2

3

4

5

6

7

8

There is little potential for poisons and inhibitors other than steam is expected during design basis accident, because the core is not going to be uncovered. There is little possibility of most of the poisons other than steam and some droplets of water.

9 Design of the vent entrance limits water
10 droplets getting into the catalyst, and --

11 CONSULTANT WALLIS: Is this a qualitative 12 statement or do you know how much water is tolerable, 13 and do you know how much water will actually be 14 carried in?

15 qualitative MR. WAGAGE: This is а statement. Because of the design, and there is some 16 17 little water can get in. Even if some water gets in, 18 droplets get in that recombine when it is -- settle on the recombiner, it evaporates. 19 CONSULTANT Ιf recombiner 20 WALLIS: the has initiated 21 recombination, whatever. It can't ignite. It can't 22 Then there is a difference problem. stop. 23 If it is completely soaked MR. WAGAGE:

24 with water, that may be the possibility, but at the 25 beginning there is a high steam flow and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

www.nealrgross.com

21 1 noncondensable flow through that. CONSULTANT WALLIS: So what? There is no 2 incentive to dry it if it got water on it, because it 3 is still saturated. 4 5 MR. WAGAGE: But the --CONSULTANT WALLIS: The drying effect of 6 7 saturated steam. 8 MR. WAGAGE: I think, because of the flow, 9 so water would be carried away from the plates. If it 10 in certain areas, needing to exposes start the 11 recombination and heat the plates. WALLIS: 12 CONSULTANT Now there is а transition from that state to the state where there is 13 14 no nitrogen. There is still steam there, and then 15 there is more of the oxygen and hydrogen. There is a 16 transition period. 17 I think you can't get away with just 18 qualitative statements. There has to be some 19 will convincing demonstration that it start 20 recombining. You can't just say publicly the water 21 will be blown off or something. It has to be 22 something better than that. MEMBER ARMIJO: I think there is. 23 I think 24 the very fact that in operating BWRs today people put 25 noble metal chemical additions, in and they **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

22 1 effectively are recombiners right in the core and 2 cooling system, and they work. They drop the 3 electrochemical potential dramatically and protect the stainless steel. 4 5 So if it works under water at full power, I think a recombiner in the steam phase would fire up 6 7 just fine. In fact, I would rather put the catalyst 8 in the core --9 CONSULTANT WALLIS: If it is in the core, 10 then you've got dissolved oxygen and hydrogen. 11 MEMBER ARMIJO: You've got dissolved 12 oxygen and hydrogen. 13 CONSULTANT WALLIS: Here, you've got the 14 oxygen and hydrogen in the vapor phase. 15 MEMBER ARMIJO: And there may be a time delay in dissolving it and getting it to the catalyst, 16 17 but I think it will get there. CONSULTANT WALLIS: Well, at least --18 19 MEMBER ARMIJO: They are going to do the 20 test, that qualification. They are going to do the 21 test. They have to do the qualification test. I am 22 just guessing that that would work. 23 CHAIRMAN CORRADINI: But I quess the one 24 thing, though, that I want to make sure you -- at 25 least my interpretation of what you were saying, which **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

23 1 is the evolution of the gases coming out will be 2 nitrogen and steam, then steam and hotter and hotter 3 steam passing through -- right? -- because everything 4 is rising in pressure and, therefore, the -- and I am 5 going to continually get out some small amounts going through the vent line. 6 7 So whatever I might have in initial water, 8 I don't think I would have --9 is not hotter CONSULTANT WALLIS: Tt. 10 steam, because the steam temperature is governed by 11 the temperature at the bottom of the condenser, which 12 is the temperature of the pool. CHAIRMAN CORRADINI: Right, but everything 13 14 is rising, though. Everything is rising in pressure. 15 So everything is going to have to rise in its 16 appropriate temperature. 17 CONSULTANT WALLIS: there Then is deposition of water going on all the time. 18 CHAIRMAN CORRADINI: But if I understand 19 20 the design -- Again, it is just I think what I was 21 interpreting their answer to you was that they expect 22 it to dry up, be in a saturated environment but dry, 23 not covered in water for this reason. Ι Am 24 understanding your logic? 25 MR. WAGAGE: Yes, I think that, because of **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

24 1 the flow, it is going to carry away some water. It is 2 going to expose certain areas of the catalyst, and 3 once it exposes the areas, some areas of the catalyst, 4 it is going to start recombining. There is flow of 5 hydrogen and oxygen, when that then recombiner moves heat up and evaporates the water. 6 7 CONSULTANT WALLIS: That is a supposition. 8 Speculation. 9 MR. WAGAGE: Yes, speculation. 10 CHAIRMAN CORRADINI: Judgment 11 CONSULTANT WALLIS: A hope. 12 MR. WAGAGE: EPRI evaluations showed functionality under 13 beyond design basis and 14 conditions. Flow channels of PCCS catalyst are equal 15 or larger than EPRI prototypical design. Now for this application of catalyst warm-16 17 up, catalyst warm-up is unimportant because of other 18 designs, the catalyst is placed the and in 19 It takes some time for the flow through containment. the catalyst, but in this case hydrogen and oxygen 20 21 flow through the catalyst. There is not significant 22 timing or warm-up. 23 At peak recombination flux, GEH should 24 confirm the recombiner temperature will be below the 25 auto-ignition limit, reasoning the that the **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

temperature goes significantly higher, about 560 degrees Centigrade, to ignite and start the ignition in the drum.

GEH should confirm ESBWR-specific calculations to assess impact of various catalyst design parameters on gas mixture entering the vent line under design basis conditions to demonstrate module effectiveness.

9 GEH should address impact of detonations structural 10 integrity of the catalyst on module, 11 because this catalyst module has to survive detonations occurring in the drum. 12

13 CHAIRMAN CORRADINI: Let me make sure I 14 understand these last few bullets. "Should confirm," 15 "should perform," "should address" -- does this mean 16 this is going to be part of a qualification test? I 17 am trying to understand -- Well, maybe I should ask 18 the question this way.

Do you view that their design of 19 the catalyst has closed this open item or are you still in 20 21 discussion to close it, and these are things they are 22 going to do shortly or in some qualification test? That is what I don't understand. 23 24 MR. WAGAGE: Some qualification, some GEH 25 has to address, because this is ongoing issue. We **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

www.nealrgross.com

have -- Right now don't have information to 1 we 2 complete this. 3 CHAIRMAN CORRADINI: Okay. So it is still 4 an ongoing open issue. 5 MR. WAGAGE: Ongoing open issue. CHAIRMAN CORRADINI: Okay. 6 7 MEMBER ABDEL-KHALIK: So I am trying to 8 understand the second bullet. If it is higher than 9 this limit, are you concerned that the loads may 10 actually be higher than what they used in their 11 analyses? 12 MR. WAGAGE: No. 13 MEMBER ABDEL-KHALIK: So what is the 14 concern here? 15 CONSULTANT WALLIS: Because you are 16 assuming ignition anyway. 17 MEMBER ABDEL-KHALIK: Right. I am just trying to figure out what is the concern here vis a 18 vis the analyses that they had already presented. 19 MEMBER ARMIJO: 20 Is it about catalyst 21 performance or is it about actually burning more? 22 MR. WAGAGE: It is because -- That is, it 23 is not the calculated value should be bounding, that this is the initiation of ignition. 24 25 CHAIRMAN CORRADINI: But, Hanry, I guess **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

27 1 where confused is: Is this about the we are 2 performance of the catalyst and it being damaged or is 3 this about creating another burn out of the sequence 4 of N burns? 5 MR. WAGAGE: Actually, GEH report this for One is that it can start initiate 6 two reasons. 7 ignition in the drum, and --8 MEMBER ABDEL-KHALIK: They have already 9 assumed that. 10 That is right. It should be MR. WAGAGE: 11 covered by -- That is not an important issue. But, 12 however, this temperature has to be considered, because the testing done for these catalysts were for 13 14 hydrogen and air mixtures. Now we have hydrogen and 15 oxygen mixture, which may rise to significantly higher 16 affect the temperature. That may catalyst's 17 That may affect the integrity of the effectiveness. 18 catalyst. Because of that, that temperature issue has 19 to be resolved. What temperature will it go? 20 It has to be resolved for the purpose of 21 confirming that catalyst would stay intact, because 22 the tests were done for hydrogen and air. This 23 application is for hydrogen and oxygen. 24 MEMBER ABDEL-KHALIK: Ι am just still 25 trying to figure out what the concern is with regard **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	28
1	to 560 degrees C. Is it the auto-ignition and,
2	therefore, the loading that would result from that and
3	whether that loading is different than what they had
4	assumed, or is it the survivability of the catalyst
5	between successive detonations?
6	MR. WAGAGE: Five hundred sixty degree
7	report because starting detonation in the drum.
8	However, that would not apply. The question is that,
9	when the temperature rises, it has to be the 560
10	degrees would not matter. What temperature would the
11	catalyst go?
12	CHAIRMAN CORRADINI: So you are worried
13	about Said, let me give you what Is it the
14	operability of the catalyst or is it the temperature
15	the catalyst will have in inducing additional burns or
16	combustion events? Which one of those are you worried
17	about? That is what I think we are still unclear
18	about.
19	MR. WAGAGE: We are worried about the
20	second one mostly.
21	MEMBER ABDEL-KHALIK: Auto-ignition, and
22	the question then is: Isn't that bounded by whatever
23	loading calculations they have assumed?
24	MR. WAGAGE: But the ignition would not be
25	an issue. The loading combination would bound it.
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHUUE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON D.C. 20005-3701 www.nealraross.com
1	

MEMBER ABDEL-KHALIK: Okay. Thanks. 1 2 CHAIRMAN CORRADINI: We are just making Okay. 3 sure. 4 MEMBER POWERS: One of the issues that I 5 have always wondered about these catalysts, if they get very hot on the surface, do you lose surface area? 6 7 CHAIRMAN CORRADINI: You evaporate some of 8 the stuff off. Oh, you burn it off? 9 MEMBER POWERS: If it is operating at 10 these temperatures for a couple of hours -- The only 11 reason it works is it is a very high surface, the 12 volume ratio and material is at center, and you lose 13 surface area. 14 MR. McKIRGAN: Hanry, is it fair to say 15 that the staff hasn't evaluated that, and the review is ongoing, and we will take that feedback from the 16 17 Committee? CONSULTANT WALLIS: So if it is centered, 18 what happens when it gets wet? Does the water go into 19 the center and fill up the pools? 20 21 CHAIRMAN CORRADINI: You enjoy to talk 22 about water, don't you? 23 MEMBER POWERS: At this temperature, you 24 don't need to worry about water. 25 CONSULTANT WALLIS: If you get up to that **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

temperature. 1 2 MEMBER POWERS: I will not worry about 3 water at all. 4 CHAIRMAN CORRADINI: Keep on going. 5 MR. WAGAGE: These figures are the schematic of PCCS. Top drum and intake lines were not 6 7 designed for ignition, because the reason is that, 8 when steam -- steam comes from the top. That could 9 have -- The top intake line and top drums would have less concentration of hydrogen --10 11 Thee issues to be resolved in PCCS design PCCS heat transfer capacity should be sufficient 12 are: for containment long-term cooling, because there are 13 14 changes, because of the material change, the thermal 15 conductivity reduced, and because of that, heat 16 transfer could go lower. To compensate that, GEH 17 increased the number of tubes. Overall effect has to be evaluated with calculations to how it would affect 18 19 the heat transfer capability of the PCCS. 20 As I said, staff raised the issue with the 21 vent and drain lines designs. pressure loading on the lower drum should 22 23 include deflagration to detonation transition, (DDT). With that, the Committee doesn't have more 24 25 questions, I will transfer presentation to Dr. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

31

Shepherd.

1

2

3

4

5

6

7

DR. SHEPHERD: Thank you, Hanry. So what I would like to do is to go through some discussion about what is being done here in the analysis and, hopefully, as part of that I can answer some of the questions that were raised earlier about the role of different codes, dynamic load factors and so forth.

So the GEH methodology is to use something that is often done in simplified engineering design for explosions, and that is to define an equivalent static pressure, and that equivalent static pressure is designed to accommodate in some conservative way the actual loading that would be experienced in the explosion and the dynamic response.

15 It does not include all of the details of 16 the vibration, wave propagation in the structure, all 17 of the possible range of things that can happen.

18 On the other hand, it is found to be a 19 good tool for safety analysis and for design where you 20 have a certain amount of conservatism involved, 21 sufficient conservatism so you can accommodate other 22 things.

23 You do need to go off and look at various 24 issues; for example, more limitations in connection 25 with vibrations and wave propagation, wave

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

interference.

1

2

3

4

5

6

7

8

If you do a static analysis, you obviously don't have any dynamics whatsoever. So they are neglecting reaction forces that can be created. A wave propagates down to the end of the steam drum and reflects and produces a loading that causes them to be set into motion. That is something that would have to analyzed separately.

9 Finally, you are thinking of the loading 10 itself as being averaged out in some way. There are 11 some exceptional cases where you can have transition 12 to detonation happening close to the closed end of the 13 structure, and that can create responses that are 14 higher than you would ordinarily experience.

15 So the ANSYS analysis is being done. That 16 usinq this approach of an equivalent static is 17 pressure based on some simple ideas about what kind of 18 loading you would expect from an idealized loading, 19 explosion detonation wave, and selecting a dynamic load factor based on some considerations of structural 20 21 response.

This technique has also been validated by work that has been done, and I have cited my laboratory here, but there are many other laboratories around the world that have done this work. So on the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

next slide --

1

2

3

4

5

6

7

CONSULTANT WALLIS: Can I ask you about that? It says here detonations in tubes. If you have got a simple geometry, I can understand how you could do this, but when you have a more complicated one, there must be locations where it is a little iffy to do this.

B DR. SHEPHERD: Well, it is. In fact, if you have a complex vessel that has a lot of flanges and nozzles and so forth on it, you have to think very carefully about that.

One of the things that the ASME has done 12 13 is they have put together a working group on 14 impulsively loaded vessels. That is being headed up 15 by Bob Nichol. They are going to be meeting next 16 They have been doing so for the last five or month. 17 six years, and they have created, actually, a code 18 case to deal with that.

In that case, it is necessary to do a 19 fairly complete job of a dynamic analysis. 20 That is, 21 you want to do a calculation with ANSYS, not in the 22 static mode, but you can run ANSYS in a dynamic mode. 23 don't necessarily have to model the You wave 24 propagation within the material, but you should model 25 the structural motions in sufficient civility so that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	you get all of the stress risers and flexural motion
2	that would be associated with those features.
3	So that is something that to think about
4	here. And now what I would point out is that the
5	effort that GEH is making with LS-DYNA is designed to
6	look at some of those issues. I have not gone through
7	that calculation in detail. I can't say how much of
8	those issues they are going to be looking at.
9	LS-DYNA is certainly an appropriate tool
10	for doing dynamic analysis. As always with any kind
11	of computer simulation, it depends on what you feed
12	into it is what you are going to get out. t. Okay?
13	Anything else about that?
14	CONSULTANT WALLIS: Well, the question is,
15	is this good enough?
16	DR. SHEPHERD: So good enough can be
17	defined in various ways. It depends on what your
18	metric is going to be. What I always like to see is
19	some kind of comparison with experimental measurements
20	or very high fidelity calculations for structures that
21	have all the features you are interested in.
22	Obviously, we are not going to go off and
23	build a PCCS system. We are not talking about that.
24	If the time dependent finite elements simulations have
25	enough fidelity, I believe that that can be used to
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	35
1	provide a standard against which we can judge whether
2	or not the static analysis is good enough.
3	The individual components we do have a lot
4	of experience with and looking at the loading on
5	individual pieces of tubing. That is something that I
6	have a great deal of confidence in, and I believe this
7	method is good enough.
8	MEMBER ABDEL-KHALIK: How would you get
9	the boundary conditions for the transient analysis?
10	DR. SHEPHERD: I will talk about that in
11	the upcoming slides.
12	MEMBER ABDEL-KHALIK: Okay.
13	DR. SHEPHERD: Let's just talk about
14	detonations in straight pipes for a minute. So a
15	detonation wave is a traveling load. So that is one
16	of the things that makes this different than even
17	other dynamic analyses.
18	Because the load is traveling, it can
19	excite a number of different loads. On the little
20	cartoon down here in the lower righthand side you can
21	see a schematic that shows running out in front of the
22	detonation wave, which might be moving at two to three
23	thousand meters a second, are some waves in the pipe.
24	There is a longitudinal wave that is going
25	to be moving at 5,000 meters a second, a sure wave at,
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com
36 1 say, 3,000. But the bulk of the disturbance we find 2 in this case is a flexural wave. That is, it is a 3 motion of the tube wall, and all the material in the 4 tube wall is moving simultaneously and essentially 5 axisymmetric, if the wave is plainer. That where almost all the energy is concentrated in. 6 7 So that is what you will pick up if you 8 put strain gauges on this tube or, if you measure the 9 deflections, you will see that when the detonation 10 runs by, it sets the wave into motion -- sets the wall 11 into motion, excuse me, of the pipe. What the pipe will do, it will sit there 12 and it rings at a frequency which is and ring, 13 14 basically the frequency you would have if you just cut 15 out a piece of material and calculated what the ringing frequency was as a single degree of system. 16 17 CONSULTANT WALLIS: What happens when the wave reflects off the end of the pipe? 18 19 DR. SHEPHERD: I am going to talk about 20 that next. 21 So what is going to happen is you are 22 going to create a shock wave, because you have got to 23 bring all that flow to rest that is traveling behind 24 the detonation wave, and then that shock wave will run 25 back in the other direction. The pressure is going to **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	37
1	go up to a higher value, and then decay. So that is
2	what you are going to see.
3	That actually is If you are looking for
4	a bounding case and you have a detonation in a closed-
5	in tube, that is where you want to look. You will
6	find out the loads are always the highest at the end
7	of the tube.
8	CONSULTANT WALLIS: This doesn't account
9	for a compression of the gas ahead of the wave.
10	DR. SHEPHERD: So this is a So that is
11	what happens in DDT. What I am talking about here is
12	a very idealized situation where you start the
13	detonation wave right away, and there is not any
14	significant period of compression. So we just have a
15	supersonic disturbance.
16	So the case that you have mentioned is
17	very important for accidents, and I will come onto
18	that next.
19	CONSULTANT WALLIS: That is what happens
20	in automobiles.
21	DR. SHEPHERD: Something like that happens
22	in automobiles. It is sort of a knock phenomenon. So
23	modern vehicles, you don't hear that very much,
24	because they have got computers that keep that from
25	happening, but you and I can remember when automobiles
	NEAL R. GROSS
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	38
1	used to do that all the time. My old motorcycles do
2	that. They get the timing wrong.
3	MEMBER BANERJEE: What happens if there is
4	an area change? Is there an exception?
5	DR. SHEPHERD: Yes, anytime you have an
6	area change, basically the detonation wave is really a
7	shock wave followed by a thin zone of chemical
8	reaction. So that shock wave is going to have to
9	defract through that area change. If it gets bigger,
10	you will make some expansion waves. It will slow down
11	for a minute and then pick up again.
12	It is a self-propagating wave. It likes
13	to travel at a speed, this Chapman-Jouguet velocity,
14	which you can calculate by conserving maximal energy
15	across the wave. It turns out that that is the
16	slowest speed this thing can travel at, consistent
17	with the conservation laws.
18	If you go through a constriction, what
19	will happen is you will generate some compression
20	waves, and it will momentarily speed up, and then it
21	will slow back down to this speed.
22	So it wants to travel, if it has got a
23	very thin reaction zone, at this idealized speed, but
24	it will interact with any geometrical disturbances,
25	produce expansions and compressions. You will have
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

39 1 some gas dynamics that go along. 2 MEMBER BANERJEE: So turbulence does not have an effect on this, or does it? 3 4 DR. SHEPHERD: Turbulence has а very 5 strong effect on the initiation of the explosion and the acceleration of a point in the detonation. 6 It is 7 absolutely crucial. 8 Once the detonation gets propagating, what 9 is much more important is it is a balance between 10 compressibility and chemical reaction. So this is a 11 pretty high speed wave. 12 This wave is traveling at two to three thousand meters a second, as I said, which if you 13 14 think about it in terms of mach number, could be --15 For example, the sound speed in these hydrogen-oxygen 16 mixtures is probably on the order of about 450 meters 17 a second or something like that. 18 So this is about a mach-5 to mach-7 wave. -- Compressibility effects really 19 So that is а dominate. 20 21 MEMBER BANERJEE: The ignition is going on in that cone behind it somehow. 22 DR. SHEPHERD: Well, what happens is the -23 24 - You can basically think of it as it is adiabatic 25 compression. The shock along, waves comes **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

5 Now the wave is unstable, and there is 6 little wavelets running back and forth on there, but 7 in these kinds of mixtures, that instability doesn't 8 play a big role. It is pretty close to an ideal wave, 9 and that sort of classical one-dimensional analysis 10 works pretty well.

11 So it is basically a chemical reaction 12 that is created by this shock compression getting into 13 high temperatures.

14 The coupling with the structural motion --15 I just want to touch on that before I go to the next 16 When you have a wave that is a propagating slide. 17 load that is traveling through the tube like this, and it generates these flexural waves, it turns out that 18 you can have a resonance when the group speed of these 19 the flexural waves, of course, 20 flexural waves, 21 disperses.

When that is equal to the phase speed of the waves then and the energy builds up at the front and you get large amplitude, and that is what is shown as this peak here in this response of this dynamic

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

www.nealrgross.com

load factor. That is the ratio of the response, say, in the strain to what we would have just with the equivalent static pressure.

4 That peak occurs because of this 5 So one of the things that GEH has looked resonance. at is are we sitting at this resonance? 6 The answer 7 is, no, we are somewhere off to the right of that, and 8 that means we have a dynamic load factor of about two. So how do we calculate these 9 Okay. 10 Chapman-Jouguet properties, these detonation 11 properties? Well, can do that with we 12 thermochemistry. GE is using the CEA code.

We have a different set of tools that we use in our lab. They are all based on thermodynamics, and so they all give you the same answer if you use the right thermodynamics, and you are conserving stuff. You know, that always works for everyone all over the world, I have found.

So now what happens is, if you add steam, you are basically reducing the energy content per unit mass of the whole mixture. You think about now, if you took a kilogram of this stuff and made it 50 percent steam, it is not going to be -- This is 50 percent by volume, not by mass, but in any case, now the energy content is just through the hydrogen and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

oxygen.

1

2	So we have less energy. So the velocity
3	goes down, and the pressure goes down, and we can
4	calculate this. What you can see from the shape of
5	these curves is that it is always bounding to assume
6	that you don't have any steam, and it is also bounding
7	if you assume that it is cold. It makes just a little
8	bit of difference in this case to assume it is cold
9	versus being at 100 degrees C.
10	So you go through all that, and you make
11	your calculation.
12	CONSULTANT WALLIS: Your steam doesn't go
13	down The steam fraction doesn't change CE to zero
14	or whatever, VcO.
15	DR. SHEPHERD: Oh, well, yes. You are
16	starting to get down there, but I have looked at what
17	some of
18	CONSULTANT WALLIS: Far enough?
19	DR. SHEPHERD: You don't get far enough.
20	You don't get far enough. So, for example, the Vc0 is
21	for the PCCS tubes is 1540. For the drum, it would be
22	about 2,700. So you are still a way from it.
23	So if I go through and calculate the
24	numbers. I wound up with a bounding pressure of
25	CONSULTANT WALLIS: This is or the

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

NEAL R. GROSS

WASHINGTON, D.C. 20005-3701

(202) 234-4433

www.nealrgross.com

	43
1	stiffened tubes, presumably, which have a
2	DR. SHEPHERD: Yes. This is for the
3	redesigned tube with a 4 millimeter wall.
4	I go through the calculations, and I used
5	a factor of 2.5 times to account for reflection,
6	which I will come onto next, and then a factor of 2
7	for the dynamic load factor. So that gives me an
8	equivalent static pressure of 39 megapascals, which I
9	think is comparable to what GE is assuming.
10	So I conclude that is the right static
11	equivalent pressure to use.
12	What happens when the wave gets to the
13	closed end? You can imagine this would be something
14	like the drum. So the drum is about three meters
15	long, I think, and three-quarters of a meter in
16	diameter.
17	Now if we start a detonation and it runs
18	down to the end of the drum, when it gets to the end
19	of the drum, you've got all this fluid that is moving
20	about halfway back behind the detonation wave.
21	That fluid has been set into motion, and
22	then from halfway back to the closed end, it is not
23	moving. So you have got a chunk of fluid that is
24	moving. You have got to stop that. The way you stop
25	that, with a shock wave that comes back out. When it
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	44
1	does that out, the pressure jumps up by two and a
2	half, and then the pressure decays, and that decay
3	depends on the gas dynamics of the interaction of that
4	shock wave that is running backwards with that non-
5	steady flow field.
6	CONSULTANT WALLIS: Now the factor in this
7	figure looks like more than two and a half.
8	DR. SHEPHERD: It is two and a half. It
9	is 1.5 times two and a half, which would be almost
10	four. Right?
11	CONSULTANT WALLIS: So it is 1.5. So I
12	shouldn't start from the
13	DR. SHEPHERD: No. No, start from the
14	peak of the
15	CONSULTANT WALLIS: Start from the red
16	curve.
17	DR. SHEPHERD: red curve. Yes. That
18	is right. So those are snapshots at different
19	locations, and that is a little confusing about this
20	picture, and I didn't give the snapshot right when it
21	reaches the end.
22	So this is where the two and a half comes
23	from. That can be calculated from thermodynamics,
24	too. You just take the very instant in time when the
25	wave arrives at the end, and you imagine you have a
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	45
1	shock wave coming back. You have an infinitesimal
2	little sliver of fluid that is at rest next to the
3	end wall. You whip out your maximum and minimum
4	energy conservation, and off you go.
5	So you can calculate that number. It
6	turns out it is 2.4, but you know, 2.5 gives us
7	plenty of margin there.
8	All right. So that is what happens with
9	reflection. Any questions about that?
10	Now but what happens in explosions is
11	really something very complicated. So you can't
12	prescribe what is going to happen, because in almost
13	all accidents you have some extremely small amount of
14	energy.
15	As we were speaking before, you have to
16	always say this in relative terms, but the energy you
17	typically have with accidental ignitions is energy
18	that is associated with millijoules.
19	So you don't make shock waves right away.
20	All that you do is you make a little hot region.
21	That little hot region then grows into a propagating
22	flame. The flame itself is unstable. It produces
23	flow that is turbulent. That turbulent flow then
24	distorts the surface area of the flame, and then the
25	flame accelerates.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

If you watch the voluminosity on a high 1 2 movie or video, you will this flame speed see 3 accelerating. Accelerating gets up to around 1,000 4 meters a second, and bang, transitions with an 5 explosion right inside the flame brush, and you get this shock wave that runs up, and the thing jumps up 6 7 with 2000 to 3000 meters a second, and off it goes. 8 So that is the transition to detonation, an extremely 9 hard thing to calculate or predict. 10 So we do experiments, and examples are 11 shown over there on the right. When that transition 12 takes place, you get this high, spiky pressure, very -13 - something that is highly variable. You can get very

14 peaks there, and I will quantify that in the next 15 slide.

16 CHAIRMAN CORRADINI: Joe, the variability 17 is simply because of where at the sides it wants to 18 kick off and all that is compressed prior to that. Is 19 that where the variability comes in?

20 DR. SHEPHERD: Yeah. It is a hiqh Reynolds number flow, Mike, and these high Reynolds 21 22 number flows and things that are happening because of natural instabilities is something that has a lot of 23 24 variability in it, and it is like transition to 25 turbulence in a boundary layer. Unless you are

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

www.nealrgross.com

47 1 controlling everything to a super degree, you can't 2 predict exactly when it is going to take place. 3 CHAIRMAN CORRADINI: Thank you. 4 DR. SHEPHERD: Okay. So on the next 5 slide--MEMBER BANERJEE: If it was very turbulent 6 7 to start with, you predict it then? 8 This process would be DR. SHEPHERD: 9 highly accelerated, but you know, trying to make 10 predictions about the interactions of flames and 11 turbulences is one of these challenging problems that folks are still spending a lot of time on in the 12 13 academic community. And the answer is, no, we don't 14 have good first principles predictive mechanisms. 15 You can do a lot with doing experiments 16 and doing some careful correlations of your turbulence 17 model results, but -- you know. 18 CONSULTANT WALLIS: Now this presented in 19 a foqqy atmosphere. That would make things less severe, wouldn't it? 20 Well, 21 DR. SHEPHERD: that is an 22 interesting thing. We thought about that. Back in 23 the days after Three Mile Island, we did a lot of work 24 on that at Sandia. I remember, one of the things that 25 I did was I built a big box, and we got some of these **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

48 1 showerheads and sprayed them into the box and tried to 2 figure out what happens. If you have big drops, it turns out that 3 4 the flow over the drops generates a lot of turbulence, 5 and it actually accelerates the flame. So you are a lot worse off if you have big drops. 6 7 Now if you have tiny drops, you can go off 8 and make the drops tiny enough and, you know, maybe it 9 will influence things. But they have to be really, 10 really, really tiny, because they have to evaporate in 11 basically 100 microns to one millimeter, which is the thickness of the flame that itself. 12 13 it turns out, until you get those So 14 droplets to be very, very tiny, then it actually 15 accelerates it. 16 CONSULTANT WALLIS: The droplets are worse 17 -- make it worse? 18 DR. SHEPHERD: It can be, yes. Yes. So we had another bright idea where at Sandia we got all 19 kinds of crazy things we came up with to try to 20 21 prevent combustion. 22 One of them was going to fill up the whole 23 containment with foam, one of these aqueous foams. 24 Ah, that is great, you know. We just turn on the foam 25 generator, and so we went out to the lab, and we had a **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

49 1 pipe, and we filled it up with foam. But we foamed 2 it, and we put a hydrogen air mixture inside. Man, that thing went like gangbusters, because the little 3 4 skins in the surface tensions acted, and those little 5 things erupted, generated all this turbulence, and then, boom, went right down the pipe. So don't do 6 7 that. 8 So now what we have done to characterize 9 this structural response when you have this complex unsteady motion is we have tried to do this in the 10 11 old-fashioned way. We have done experiments. 12 CONSULTANT WALLIS: Done by law anyway. So you will be okay. 13 I know. I am just 14 DR. SHEPHERD: I know. 15 influence over pretending that I have some the 16 science. 17 So what we have done, on the next slide 18 you can see the kinds of experiments we do. You take a pipe, and you fill it up with gas. You instrument 19 20 it with strain gauges. You put a lot of them down 21 toward the end. We have done this with all different sizes 22 23 and lengths and shapes of pipes. I have done it with 24 pipes with elbows and T's, and this is just an example 25 of one of the simple experiments we have done. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

We just start a flame at one end with a low energy ignition source, actually not even a spark but just a thermal ignition source, and then it runs down to the other end.

What we looked at is basically we did this a very large number of times and look at the ratio of the peak strains that we get to the strains that we would expect, and then we interpret that in terms of a very simplified model, which is this single degree of freedom model.

11 Then on the next page -- and basically we just think of this radial motion as a tube. 12 There is 13 spring oscillator system. So it а has а 14 characteristic frequency. So there is а 15 characteristic structural response time, which is 16 associated just with the radius of the motion and the 17 elastic modulus in the density.

18 Just for reference, some of the times that 19 we have in our system are that the -- or not our 20 system, but GE's system -- the PCCS tubes, that 21 characteristic response time, the period of oscillation is about 30 microseconds for the radial 22 motion of those PCCS tubes, the heat exchanger tubes. 23 it is 24 For the drum, about 130 25 microseconds, and for the eight-inch pipe it is about

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

400 microseconds. So those times are actually all really short, and what does short mean? It means short in comparison to the time it takes for the waves to run the length of the tubes.

5 So the implication of that is really given 6 on the next slide. It says that we are in a loading 7 regime where basically it is a sudden loading regime. 8 The load is applied very quickly, and then it decays 9 slowly. So this gives us a dynamic load factor on the 10 basis of this simplified model of about two. So that 11 is where the two comes from. Now --

12 CHAIRMAN CORRADINI: Can I just make sure 13 I get this right? So what you are really saying is 14 the structure -- the characteristic time of the 15 structure is much shorter than the characteristic time 16 that I load, or vice versa?

DR. SHEPHERD: Unload.

18 CHAIRMAN CORRADINI: I'm sorry? Unload. 19 DR. SHEPHERD; Unload. Yes. So you load 20 it. When you load it with a shock wave or a 21 detonation wave, that loading happens in a fraction of 22 a microsecond.

23CHAIRMAN CORRADINI:So we are up like24this?

DR. SHEPHERD: Yes. So we go jump up, and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

17

25

www.nealrgross.com

	52
1	then it is a question about how fast do you unload.
2	So if you unload really quickly, then that is an
3	impulsive type of a situation. But you have to unload
4	more quickly than about a quarter of the structural
5	period for it to be considered to be impulsive.
6	CHAIRMAN CORRADINI: But in this case, you
7	are not unloading that quickly.
8	DR. SHEPHERD: We are not unloading that
9	quickly, and so it hangs up there
10	CHAIRMAN CORRADINI: Okay. So it looks
11	like a static load?
12	DR. SHEPHERD: Well, a static load is
13	actually different yet. It looks like what I call a
14	sudden load. It jumps up, and it hangs, and so you
15	get a dynamic load factor of two. Now in a static
16	load, the wave comes up very, very slowly, and so
17	there is no chance for this thing to oscillate, and
18	there you get a dynamic load factor of one for a
19	static load.
20	CHAIRMAN CORRADINI: And if it was an
21	impulsive load that unloaded quickly, you actually
22	would have more strength in the structure.
23	DR. SHEPHERD: Because what happens is the
24	dynamic load factor then decreases. So that omega
25	tile If you look on the front on the lefthand side,
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	53
1	that omega tile will go down over toward the zero, and
2	then the load factor comes down.
3	CHAIRMAN CORRADINI: I see what you are
4	doing. So the blue line is static. The sudden that
5	you just said is green, and impulsive, if it unloaded
6	fast enough, would be red.
7	DR. SHEPHERD: The green line is static.
8	The blue line is the sudden, and if it is impulsive,
9	it will be somewhere along here. If it is very, very
10	short loading, very short, responding very short, you
11	are going to be way down here. The longer that gets,
12	the closer you get to the sudden approximation.
13	The quasi-static is actually a little
14	different, because what you are changing is the time
15	that you are taking to apply the load. So you are
16	very, very, very slowly pushing on.
17	CONSULTANT WALLIS: It gets to four if
18	there is a resonance of some sort.
19	DR. SHEPHERD: Yes. Now what happens to
20	get to four what happens in the case where you have
21	a traveling load, that is a special kind of resonance
22	that has to do with the traveling load character.
23	CONSULTANT WALLIS: Which this is.
24	DR. SHEPHERD: This is a ring model, a
25	ring model, and if I stay away from that resonance, I
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	54
1	can use the ring model. So it is an approximation.
2	CHAIRMAN CORRADINI: And that is where in
3	the RAI, if I remember correctly, GEH indicated that
4	their speed was not close to the ringing speed.
5	DR. SHEPHERD: That is right. In fact, it
6	is above it. So what happens is we go back now to
7	Slide Number 24, and we can take a look at that. On
8	Slide 24 you look now here.
9	So this is the resonance. So that is
10	where you have this phenomenon, and all of these
11	things are ringing. All these things. All these
12	things are ringing, but this ringing is a resonant
13	ringing.
14	If we are below this speed, it actually
15	looks like it is a quasi-static load. You are
16	actually going to have a dynamic load factor of one.
17	So when you have a very slow wave, you wind up with a
18	dynamic load factor of one. Your very fast wave, you
19	have a dynamic load factor of two. Then you have this
20	special situation. So they are operating up here.
21	Okay, back to page
22	CHAIRMAN CORRADINI: Thirty-two.
23	DR. SHEPHERD: Thirty-two. Thank you. So
24	back to the real situation. Here is where we made
25	measurements in that tube, where we plastered the
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

55 1 strain gauges all over it. These are the strain 2 These are the peak pressures. measurements. 3 What you have is, over here at the left, I 4 split the pressures up into two parts. The peak 5 pressures are always highest at the end, and you can see that. Here we have -- this is not for -- This is 6 7 for hydrogen and oxygen starting at one atmosphere, 8 and here we can see we are up to 16 megapascals. In 9 this particular case, it is not right _ _ at 10 Stoichiometric would be actually over here, right? Ιt 11 is a little bit off of that. This is what I would calculate. 12 This is 13 the calculated Chapman-Jouguet pressure. This is the 14 calculated reflective pressure, and you see that, when 15 I have this situation where I have transition to 16 detonation, I can get these pressures that are up to,

So here is the strain I would calculate 22 23 without any dynamic load factor. So this is without 24 the factor of two. So this is the strain just 25 calculated the basis of taking on radius over

more of an impulsive character.

in this case, a factor of almost five greater than

that, but the strains themselves are only about a

factor of two larger than that, because these pressure

spikes that you have in this transition process have

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

17

18

19

20

21

	56
1	thickness times the delta P and dividing that by the
2	modulus, and that is the strain that I get.
3	Now if I go to the next slide and I take
4	the ratio of that equivalent static load for the
5	reference values and I am using here as a reference
6	value the Chapman-Jouguet reflective pressure, which
7	is two and a half times roughly the CJ pressure and
8	here I have drawn the line at two. You can see that I
9	found all these points except for that one up there.
10	So this estimate also then gives me a
11	reasonable estimate for the case
12	CONSULTANT WALLIS: This is mole fraction
13	of H2?
14	DR. SHEPHERD: This is mole fraction of
15	Н2.
16	CONSULTANT WALLIS: Hydrogen and oxygen
17	mixture?
18	DR. SHEPHERD: Yes.
19	MEMBER BANERJEE: Does the length of the
20	tube matter?
21	DR. SHEPHERD: The length of the tube
22	matters. In this case, we are talking about lengths -
23	- The length of the drum is about three meters, and
24	the length of the heat exchanger tubes is help me
25	out here, guys what is it, 1.25? And the way that
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

57 1 matters is the following, that if you have a situation 2 where you can get a prolonged period of acceleration and compression, 3 and you shove a lot of gas up and 4 compress it into the end, and then it explodes, then 5 you can get to much higher pressures. That is something that, I think, should be 6 7 thought of in terms of, when you analyze this, what is 8 the likelihood that you would get that situation as 9 opposed to getting initiation right away. That is a 10 much less likely thing --CONSULTANT WALLIS: Like the automobile 11 12 engine. DR. SHEPHERD: Yes, That is right, because 13 14 in the automobile engine the flame is burning, and you 15 are still compressing at the same time. If you get this stuff compressed and then it all explodes at 16 17 once, then you get this very strong explosion. So it 18 is exactly that. 19 CONSULTANT WALLIS: Now on this graph, 20 they are at .666, aren't they, where they are two-21 thirds hydrogen? 22 DR. SHEPHERD: This would be stoichiometric. 23 CONSULTANT WALLIS: Yes, they are over 24 25 there. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	58
1	DR. SHEPHERD: Yes. Why is the peak over
2	here? Because what happens is that this mixture is
3	very sensitive. So this mixture is pretty ideal. So
4	this is a mixture that initiates very quickly, and you
5	don't have much in the way of recompression.
6	You have to reduce the flame steam, and
7	you do that by going off of stoichiometric, and these
8	are very lean mixtures down here, and in fact, we can
9	hardly get any combustion at all going on. This is
10	just a flame. Just before you get to the point where
11	you can no longer have a detonation, that is the worst
12	situation.
13	So it is really these marginal cases. So
14	that is why this stoichiometric mixture is really more
15	favorable in terms of the loading.
16	CONSULTANT WALLIS: But when you add steam
17	
18	DR. SHEPHERD: That is right. You are
19	back into this situation, and you could make the same
20	kind of plot with steam concentration, except that it
21	would be as you increase the amount of steam, then you
22	get into this situation.
23	CHAIRMAN CORRADINI: Say it again, Joe,
24	that last part. I didn't understand.
25	DR. SHEPHERD: So what this Really, the
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

59 1 variable here, instead of having fraction of hydrogen, 2 this should be flame speed, and as you go from a high 3 flame speed down to a low flame speed, this is when 4 you get into trouble with this load. 5 CHAIRMAN CORRADINI: And so the presence 6 of steam lowers the flame speed? 7 DR. SHEPHERD: Exactly. Exactly. So the 8 group in Germany that -- the BWR's Owners Group 9 fostered a good deal of research on this, has done a measurements and calculations 10 looking lot of at 11 situations in which one gets explosions, and this is 12 in a given size of piping. That is something that I have a little bit of a hard time pulling out of this 13 14 report. Ιt is a really great report. 15 It has got a lot of information in it, but it is a 16 little bit of putting your light under bushel, because 17 I don't think anybody else in this community has looked at it outside of myself, the combustion 18 19 community anyway. 20 What they have shown is that this isn't 21 quite the conditions we are interested in, but it is 22 close. So we are interested in four-bar, not three, 23 and temperature is 373 instead of 423, but the idea is 24

very similar.

They have some other plots for different

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1 conditions in there. This is a plot -- Here we have 2 hydrogen concentration on the y-axis, water on the x-3 axis, and inside of this blue region are all of the 4 things that are flammable, so a very wide range of 5 mixtures. CONSULTANT WALLIS: How much oxygen is in 6 7 there? 8 DR. SHEPHERD: What's that? 9 CONSULTANT WALLIS: How much oxygen is in 10 there? 11 DR. SHEPHERD: Whatever is left over. 12 Okay? So there is three components. CONSULTANT WALLIS: Three plus three. 13 14 DR. SHEPHERD: If you pick a point in here 15 So there is a line here that you can't ---- right. There is impossible compositions on this side of the 16 17 line. So you get the oxygen by subtraction. 18 MEMBER ABDEL-KHALIK: What is lambda in this plot? 19 20 DR. SHEPHERD: Okay. I am going to get 21 onto lambda in a second, but that is basically called the detonation cell width, and so it is a measure of 22 23 the sensitivity, and the smaller that number is, the 24 more sensitive and the more easy it is to detonate. 25 What this actually does is set the upper **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	61
1	size and the upper size typically is when that
2	detonation cell width and that cell width is just a
3	measure of instability wave facing in the front. When
4	that is equal to the diameter of the pipe, that is
5	considered to be the limit for getting transition.
6	So a small size of 100 millimeters you
7	can't get transition and detonation in a 50 millimeter
8	pipe, but you can get transition and detonation in a
9	100 millimeter pipe. So this plot is specific to a
10	certain size of a pipe.
11	CHAIRMAN CORRADINI: And you have to wait
12	a bit. In other words, the way I remember That is
13	diameter.
14	DR. SHEPHERD: So there is some induction
15	distance, and that is another variable you have to
16	look at. But this gives an idea of the very wide
17	range of conditions over which you can get
18	flammability and transition and detonation.
19	So one of the questions, of course, is,
20	well, what happens if we have steam in here, and we
21	have looked at that a bit. You can have pretty large
22	amounts of steam and still get deflagration and
23	detonation and transition in this particular example.
24	And I think that that is the case also for what we
25	are talking about here.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

5 This is without steam, and this shows a 6 very strong dependence on pressure which is almost 7 roughly inverse with pressure. So we are sitting 8 about right here, and so you notice that, for hydrogen 9 and oxygen mixtures without steam, this cell width is 10 less than a millimeter.

That means that the structure of this front is extremely fine, and if you take a picture of it with an ordinary video camera, it just looks like a line. You can't even see the structure of it.

So I can use these measurements. GE used a different set of measurements that came from the group in Canada, but the results are pretty similar. What I can do is use a technique that we developed when we were working on this in Sandia, which is to use a calculation of the ideal reaction zone length.

This is using a set of reactions. We have described the hydrogen and oxygen reaction, and the idea is this detonation cell width scales with this reaction zone length.

Reaction zone length is just how long we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

www.nealrgross.com

have to wait after the shock wave until we get the energy coming out, and this gives us a prediction of how this detonation cell width is changing as а function of steam fraction.

if you take this What this shows is, diameter, which is equal to the PCCS tube diameter, 6 7 that we are able to get up to something on the order 8 of about 40 percent before we would expect not to have DDT inside of the PCCS tubes. Obviously, you go to higher steam fractions and get detonation inside the 11 drum.

I think I have saturated you guys.

is 13 CONSULTANT WALLIS: So it not 14 conservative to assume no steam. They said to start 15 with it -- they would assume no steam as conservative, 16 but it isn't really conservative on this basis.

17 DR. SHEPHERD: Well, so conservative is one of those words that is very pejorative. I mean, 18 depends on who is using it. So if you mean by 19 conservative that it provides kind of the --20

21 CONSULTANT WALLIS: Upper bound to the 22 pressure. 23 -- upper bound to the DR. SHEPHERD:

24 pressure, then that is the correct thing to say is, 25 It is conservative in another sense, which is yes.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

9

10

12

www.nealrgross.com

	64
1	that it also has the smallest cell size, which means
2	that it is the most sensitive mixture. If you are
3	going to ignite something with a little piece of high
4	explosive, it turns out the energy you need goes like
5	the cube of the cell width.
6	So these mixtures are much, much harder to
7	detonate than these mixtures, if you are going to do
8	it by that technique. Also, the distance that it
9	requires for it propagate to transition the detonation
10	from a flame generally scales with this cell width.
11	CONSULTANT WALLIS: Why don't they
12	demonstrate that there is no ignition source which is
13	capable of igniting it with this amount of steam in
14	it, because it is sort of incredible that you get
15	energy to fill a cell 43 millimeters in size.
16	DR. SHEPHERD: Well, I mean, that is a
17	good question.
18	CHAIRMAN CORRADINI: What was the
19	question, Graham? I'm sorry.
20	CONSULTANT WALLIS: Well, he said we know
21	said that the energy goes as the cube of a cell
22	size and so on. Looks as if it is very hard to set
23	this thing off, if there is a steam fraction of 40
24	percent.
25	DR. SHEPHERD: That is the energy if you
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON D.C. 20005-3701 www.nealraross.com

65 1 are going to directly initiate the detonation and the 2 explosion. What you need for a spark remains 3 essentially down in the millijoule region. 4 CONSULTANT WALLIS: Just for the 5 explosion. DR. SHEPHERD: Yes. The hazard is always 6 7 -- I was just trying to make an observation about how 8 this cell width is tied in with a sort of loose 9 concept of sensitivity of the material. 10 MEMBER BANERJEE: Do these detonation 11 widths keep accelerating in a pipe or do they 12 saturate? DR. SHEPHERD: Well, they saturate, and so 13 14 they -- Basically, they want to go and propagate at 15 Chapman-Jouguet velocity unless this you have 16 something in the pipe that keeps interfering with 17 that, and so if the pipe is basically a piece of 18 commercial pipe, it will run within a percent of that velocity after transient, in which all 19 the qas dynamics size down. 20 21 So after -- We have a two-inch pipe. After 22 five or six feet, we are basically within a few 23 percent of the Chapman-Jouguet velocity. 24 Okay. So to summarize, we can have 25 detonations up to about 40 percent of steam. There is **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

another criteria that I didn't talk about that is in the FSedk Report, and that is that, when the stuff burns, that it has to generate a sufficient amount of volume. Turns out that we satisfy that criterion. It is a little bit more complicated than being larger than a certain number. It is discussed in detail in the report. We satisfy the criteria that, at least for less than 40 percent steam fraction, and the cell size is sufficiently small. So I believe that transition and detonation will occur rapidly for these steam fractions between zero and .4 at peak conditions. CONSULTANT WALLIS: So they will have detonation? DR. SHEPHERD: Yes, if you get ignition. If you get ignition. CHAIRMAN CORRADINI: Which is an assumed thing here. This is how all the safety DR. SHEPHERD: analysis of this business goes. For 30 years, the number one problem has always been can you get ignition. Do you have any kind of ignition, and almost all the cases that I have been involved with, people throw up their hands at trying to determine ignition frequency or they shy away from getting **NEAL R. GROSS**

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

www.nealrgross.com

67 1 involved in that, and they say, well, let's just go 2 ahead and assume it ignites, and then we will look at 3 the consequences. 4 So I think that the dynamic load factor of 5 2 bounds almost all the cases away from the tube end. So I think that, certainly, their assumptions are 6 7 reasonable for the tubing. 8 As far as the drum goes, the original idea 9 was to treat that differently. I believe that that is 10 still an open issue, and that the mixture is just as sensitive there as it is in the tubes. The cell size 11 is even smaller relative to the dimensions, and I 12 don't believe you can rule out DDT. 13 14 CHAIRMAN CORRADINI: That is what, I guess, I didn't understand. Maybe I misread their 15 16 Are they treating the drum differently? RAI. Ι 17 thought they were using the 2 x 2.5 times Chapman-Jouguet. 18 DR. SHEPHERD: They are now treating it in 19 the same way. Previously, they were not. 20 CHAIRMAN CORRADINI: Ah. 21 So there is a 22 time lapse from your comments and what I read? 23 DR. SHEPHERD: That is right. 24 CHAIRMAN CORRADINI: Okay. 25 DR. SHEPHERD: So that RAI came in at, **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	68
1	what?
2	CHAIRMAN CORRADINI: May-something.
3	DR. SHEPHERD: No, no. I am talking about
4	the most recent one.
5	CHAIRMAN CORRADINI: Oh, we haven't seen
6	the most recent one perhaps then.
7	DR. SHEPHERD: In the May one, though,
8	they were going to do a constant line combustion.
9	CONSULTANT WALLIS: So the lower drum is
10	now going to be treated differently from what we have
11	seen?
12	DR. SHEPHERD: No. The lower drum, I
13	believe I believe, and GE should respond to this,
14	but I believe they are going to be treating it on the
15	same basis.
16	CHAIRMAN CORRADINI: Could I have you guys
17	say something at this point? Identify yourself.
18	MR. GELS: I am John Gels from GEH. Yes,
19	we are applying the same load combination to the lower
20	drum as we are for the tubes.
21	CHAIRMAN CORRADINI: And to understand
22	that response, that means that they are not taking
23	I am trying to understand. They are not taking credit
24	for the venting through the tubes, or they are now;
25	because I didn't understand. These two things kind of
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

go together, and I didn't understand that. 1 2 MR. Ι think, in a GELS: previous iteration licensing topical 3 of our report, we 4 indicated that venting through the tubes would be a 5 mitigating strategy for the pressure in the lower drum, but further research indicated that that might 6 7 not be the case. So we are no longer going to be 8 crediting that kind of phenomena. 9 CHAIRMAN CORRADINI: So the scale you 10 quoted to us earlier -- we are in Open Session, so I -11 - (a) I don't remember them; (b) I can't say them if I 12 remember -is a thickness that happen to is consistent with this type of analysis? 13 14 MR. GELS: That is correct. 15 CHAIRMAN CORRADINI: Okay. Fine. 16 MEMBER ABDEL-KHALIK: Now how long are the 17 tubes from one drum to the other? 18 CHAIRMAN CORRADINI: Careful. 19 MEMBER ABDEL-KHALIK: Can you say that in It is proprietary? 20 public? 21 MR. GELS: It is roughly 1.8 meters. 22 MEMBER ABDEL-KHALIK: Is what? MR. GELS: About 2 meters. 23 24 MEMBER ABDEL-KHALIK: Two meters? 25 CONSULTANT WALLIS: What about the drain **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

www.nealrgross.com

	70
1	pipe well, go ahead with yours.
2	MEMBER ABDEL-KHALIK: The transit time of
3	a shock wave from one end to the other within a tube
4	would be in the order a millisecond.
5	DR. SHEPHERD: Well, so I will work those
6	numbers up, because that is what is really relevant.
7	Let me just find my scribbling here.
8	So if we take about take the number
9	that was just mentioned, it turns out that the actual
10	pressure transient is about half of the time. So t is
11	about .6 milliseconds for the tube. So you are right.
12	And for the drum it is going to be more like on the
13	order of one.
14	So those are the times for the fluid
15	dynamic unloading, and the important thing for the
16	structure response is to look at those relative to
17	this hoop oscillation period, which was much shorter.
18	So that ratio being very large, we are
19	over on the side of the dynamic load factor where you
20	are two.
21	CHAIRMAN CORRADINI: And just to make sure
22	I understand, your blue highlighted conclusion, given
23	that they are taking two and a half times the Chapman-
24	Jouguet, they are being treated consistently?
25	DR. SHEPHERD: Yes.
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

71 CHAIRMAN CORRADINI: Okay. Thank you. 1 2 CONSULTANT WALLIS: Now you have in this drum -- You have this thing sticking up with the 3 4 catalytic converter on it, and you have a pipe 5 sticking down which takes out the gases or whatever, and also some liquid. 6 7 What happens when the explosion comes by 8 and hits this structure and this side tube? What is 9 the loading on the structure in the side tube? Can 10 they work that out? 11 DR. SHEPHERD: I haven't seen any results for that, but I think that is a very good question to 12 ask, and the staff has asked that question. 13 14 CONSULTANT WALLIS: We need to see a 15 response to that. 16 DR. SHEPHERD: Yes, that is one of the 17 open issues that was identified. 18 MEMBER BANERJEE: What are the other open 19 issues? 20 DR. SHEPHERD: Go back to Slide 13. Not 21 really. 22 CHAIRMAN CORRADINI: It is on here, Slide 23 14 and 15. Sanjoy, they went over them earlier. MR. McKIRGAN: I think we will summarize 24 25 those at the end as well. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433
72 MEMBER BANERJEE: Talk about them at the 1 2 end again. 3 CHAIRMAN CORRADINI: I think you need to 4 proceed. 5 CONSULTANT WALLIS: I am just wondering what is the response to the concept of these heat 6 7 exchangers and condensers that are being designed for 8 multiple hydrogen explosions. It is a little bit 9 mindboggling, isn't it? 10 CHAIRMAN CORRADINI: This is just a 11 comment back. If they went down the path that some of 12 us might suggest, we would have them in here for five subcommittee meetings about where, how long, length 13 14 scales, time scales, and we would drive them crazy 15 about that. 16 So I think this is a cover -- an umbrella 17 At least, that was my impression of how approach. 18 they took it. 19 MEMBER ABDEL-KHALIK: If you go to your Slide 37, are you qualifying this conclusion by saying 20 21 all cases away from the tube end or doesn't this apply 22 for everything? 23 would DR. SHEPHERD: Ι apply it to 24 everything. I think there is а role for а 25 probabilistic risk assessment here to say that you **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	73
1	need to look at things that are close to the tube end
2	and decide whether or not
3	MEMBER ABDEL-KHALIK: But the tube is open
4	on both ends.
5	DR. SHEPHERD: The drum is not.
6	CHAIRMAN CORRADINI: The drum is not.
7	That is what he is worried about.
8	DR. SHEPHERD: But if you think about
9	I'm sorry. So I use the word tube here generically.
10	MEMBER ABDEL-KHALIK: Right.
11	DR. SHEPHERD: And so there is So in
12	this case, it is the tube, and since the tube is open
13	and doesn't have an end, it is good. But if we think
14	about this generically as the drum, then there is an
15	issue there.
16	MEMBER ABDEL-KHALIK: But you had a
17	separate slide for this.
18	DR. SHEPHERD: Yes. I have a separate
19	slide for the drum.
20	MEMBER ABDEL-KHALIK: As it applies for
21	the tube.
22	DR. SHEPHERD: I apologize for this being
23	not as crisp as it should be. I don't think I am
24	not qualifying it for the PCCS.
25	MR. LE: My name is Tuan Le. The next
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

presentation, going to go to the structure review. In this review, there are two parts. One is the PCCS structure design, and also the containment structure design. I will present the PCCS structure design.

5 The Applicant had to make a change, 6 significant change, in the PCCS condenser design. 7 They desire it to withstand the loads resulting from 8 the buildup and possible detonation of radiolytically 9 generated combustible gases, particularly hydrogen, 10 during a LOCA.

11 Secondly, the design of the PCCS, 12 including the condensers, are modified to improve 13 their ability to mitigate the hydrogen detonation 14 loads.

Thirdly, the PCCS condenser tube-lower
drum materials and thicknesses --

17 CONSULTANT WALLIS: I don't think you mean 18 the word mitigate. You mean to withstand. Mitigate, 19 to me, implies you are trying to reduce the load. You mean reducing the -- I guess you are reducing the 20 21 loads -- the stresses. Right? But the applied loads 22 is still the same. Right? You aren't mitigating the 23 load from detonation. You are mitigating the stress 24 by making it thicker.

MR. LE: Right. Well, it is to withstand

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

www.nealrgross.com

the loads.

1

2

3

4

5

6

7

8

9

10

CONSULTANT WALLIS: You are not trying to actually mitigate the load itself.

MR. LE: Yes, you are right. That word does not apply in this situation, because the Applicant had designed the PCCS, and it changed from the original design with the peak load on material and the thickness of tube and drum, and also number of would take care of the detonations tubes they calculate for this LOCA.

11 The next is for the condenser, it is heat transfer function after a 12 required to perform LOCA. Even during a LOCA, they also perform function, 13 but important that their function should be carried 14 15 out after 72 hours and beyond that. So the condenser 16 required to perform the heat transfer function after a 17 LOCA.

18 The PCCS condenser is designed as a part19 of containment boundary.

The design criteria for PCCS condenser is: For containment pressure boundary, the entire PCCS condenser is classified as ASME Class MC component and is designed to ASME Subsection NE requirements. This also includes a small section of the drain pipe connected to the lower drum nozzle.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

www.nealrgross.com

Also, the remaining portions of the drain and the vent pipe are classified as ASME Class 2 components, as the Applicant presented this detail, and this portion are designed to ASME Subsection NE requirements. This is part of the pressure boundary.

1

2

3

4

5

The third bullet, the third criteria for 6 condenser criteria is: 7 A]] the PCCS ASME MC 8 components of the PCCS will be designed to withstand 9 hydrogen detonation pressure, and to the remain 10 essentially within the elastic stress range is an 11 important criteria.

12 CONSULTANT WALLIS: What does essentially 13 mean here?

MR. LE: Currently, there is some location where this meets the service level C, but other level -- for service level D, ASME D, some of the area would exceed the elastic range, but the Applicant committed to make a further modification of this local stress would exceed the elastic range, and to make it within the elastic range.

21 CONSULTANT WALLIS: So there might be some 22 regions which are drastically deformed? 23 MR. LE: Yes.

24 CONSULTANT WALLIS: But not enough to 25 change the geometry to change the performance --

(202) 234-4433

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

www.nealrgross.com

	77
1	MR. LE: Right.
2	MR. CHAKRABARTI: Service Level C is
3	really differentially elastic behavior, but the
4	primary that you can have local stresses exceed
5	little bit beyond this.
6	CONSULTANT WALLIS: There is no
7	significant geometrical distortion.
8	MR. CHAKRABARTI: Right.
9	MR. LE: This stress location is at the
10	local member, and stress can exceed the elastic range.
11	It is a localized area, and at the two locations that
12	will be discussed later on.
13	CONSULTANT WALLIS: So the tube won't
14	break?
15	MR. LE: Yes. Is there any other question
16	for me?
17	CONSULTANT WALLIS: Are you satisfied that
18	they can do this or this is essentially what they have
19	to show now? Is it still an open item? They have to
20	show that they will meet these requirements?
21	MR. LE: They will like Samir is going
22	to discuss a different level that how they meet the
23	service level D, level C and ASME code requirements.
24	Essentially, the staff view that the level C gives
25	more a conservative margin compared with level D
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 www.nealrgross.com

78 1 service, which is -- They are going to meet all the 2 elastic range, analyze all the part of the components which is withstand the detonation load. 3 4 So currently, there are two locations, and 5 will be discussed later and that that on, was exceeding the elastic range, and they are going to 6 7 modify it. One --8 CHAIRMAN CORRADINI: Sir, you are 9 speaking a big quietly there. So there is two This is the ones that GEH identified that 10 locations. 11 they have to go back and do what? MR. LE: A little bit modification. 12 One location is the -- the section, the tube and the lower 13 14 drum, that component there where the high stress 15 concentration occur. A resolution on that has been 16 discussed, and they are going to proceed to modify 17 It may be less susceptible to a high that corner. stress local membrane occur in that location. 18 The other location is the -- Okay. 19 So the next presentation will discuss the location of that. 20 MR. CHAKRABARTI: I am Samir Chakrabarti. 21 I am the technical reviewer for Section 3.8 which is 22 section technical structure of the ESBWR design. 23 24 We have BNL consultant, Manuel Miranda, 25 who provided technical assistance of this review. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

79 We had reviewed structural design of the 1 2 PCCS prior to detonation event. Since we all know it is part of the containment pressure boundary, and it 3 4 has to meet ASME Class MC component requirement. 5 The design of the BWR PCCS is designed is in the SRP 3.8.2 guidelines that we have to make sure 6 7 they pass the Class MC components are met. 8 The PCCS components that are within the 9 containment pressure boundary are the steam supply 10 pipes, the upper drum, lower drum, the tubes, and 11 penetration area, and the lower drum penetration, the in-line that we talked over this morning. That is a 12 little bit overlap, and depends on that we have not 13 14 really seen the details and how it has been qualified. 15 But that area is also in our containment pressure

The vent pipe and the other portions of the lower drum, the drain pipe -- they are not within containment pressure boundary, and we did not look at those.

Also, what we look at is structure that has been used to support the PCCS. That is also part of our review.

For the detonation loads, there areseveral issues.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16

boundary.

80 CONSULTANT WALLIS: Are you looking at 1 2 loads -- excuse me -- on the catalytic assembly as well? 3 MR. CHAKRABARTI: Not for pressure load. 4 5 CONSULTANT WALLIS: Small, but it is loaded. 6 MR. CHAKRABARTI: I know, but for Section 7 8 3.8 we are qualified with the PCCS components only 9 which are part of the pressure boundary. 10 CONSULTANT WALLIS: Pressure boundary. 11 Okay. 12 MR. CHAKRABARTI: That is containment areas, because that is where the components are. 13 14 CHAIRMAN CORRADINI: And that is something 15 that will be handled by the components group and should be done or is a closed issue? 16 17 That is what I didn't understand. 18 MR. CHAKRABARTI: I cannot say about that. 19 It is not my part. 20 CHAIRMAN CORRADINI: I got that part. I 21 understand that portion of what you said. So whose 22 part is it? My question is, the way it was discussed 23 is you are looking at it via the pressure boundary, 24 and now you are looking at components. Is that still 25 reviewed by the staff from a component to be **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	standpoint?
2	MR. LE: Right.
3	CHAIRMAN CORRADINI: Okay. Thank you.
4	MR. CHAKRABARTI: Okay. Now so for the
5	issue of PCCS containment pressure boundary, there are
6	several issues: Assessment of the load; the loading
7	combinations to be used; the acceptance criteria to be
8	used.
9	We have some problems. One is the
10	assessment of the load is fairly complex, as we all
11	saw from Dr. Shepherd's presentation, and we got input
12	from his review and Hanry's review to determine what
13	load we should use for design of this PCCS component,
14	and we are using the equivalence static approach using
15	the detonation loads established.
16	That is above the detonation pressure, and
17	also we need to determine what is the effect of the
18	detonation on the overall PCCS, including several new
19	structures. We have asked this question, and
20	apparently some evaluation using LS-DYNA and all that
21	has been done, but we have not seen the results yet.
22	So that a portion of our ongoing review.
23	The evaluation of the effects: Like I
24	discussed, we use the equivalent static pressure for
25	design. The amplification factors for wave reflection
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

and dynamic effects are considered; essentially linear elastic response of the components assumed. Detonation pressure used to design the condenser tubes, lower drum and portion of the drain pipe classified as MC component.

for determination of the load 6 Now 7 combination and acceptance criteria, we have to 8 perform what we call case by case evaluation, because 9 ASME SRP component does not specifically address how 10 to design for detonation loading.

We chose that, if we use Class MC component Level C acceptance criteria, it is probably the most appropriate and will assure maintaining containment pressure boundary for this assembly.

15 The reviews for that -- I have listed 16 reviews here, the basis: The structural integrity of 17 containment pressure boundary is ensured; response of 18 components remain essentially elastic, except some 19 local yielding, assumptions in stress analysis; essentially elastic response, also the calculation of 20 21 the dynamic load factors due to detonation; assure 22 essentially elastic behavior of the tubes; maintaining Level C stress limits and ensure that; the ratcheting 23 24 and other plastic instabilities will be limited, and 25 other load combinations using the same acceptance

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

	83
1	criteria: The LOCA along with SSE, and hydrogen
2	pressurization and burn resulting from fuel clad water
3	reaction.
4	GE had alternately proposed using which
5	would be not quite what with GM we jointly agreed
6	to use service level C. In fact, ASME does allow the
7	service level D estimates for very dynamic loading
8	like get impingement and stuff, but there will be
9	still some issues, how the
10	CHAIRMAN CORRADINI: There are still
11	issues about how what?
12	MR. CHAKRABARTI: Detonation effects,
13	because that could be affected, the elastic limit
14	the subsequent detonations may not be justified in the
15	service level D, because that was much higher in the
16	elastic limit.
17	CHAIRMAN CORRADINI: I guess I I'm
18	sorry, Graham. Excuse me. Go ahead.
19	CONSULTANT WALLIS: What you mean is you
20	keep stretching it a bit more, and
21	MR. CHAKRABARTI: Right. Service level D,
22	the test goes much higher into the plastic regime.
23	That will have an lasting effect. You may not
24	guaranty sensitivity of the multiple detonations.
25	CHAIRMAN CORRADINI: But let me make sure
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	84
1	I understand the logic. So that, if they go back and
2	address these two areas that Well, I'm sorry.
3	Maybe I am getting confused.
4	Are they in the elastic or in the plastic
5	regime in their loading?
6	MR. CHAKRABARTI: They had figured, but we
7	are going to accept only for those areas above.
8	MR. McKIRGAN: So, Samir, if I could, I
9	could help.
10	CHAIRMAN CORRADINI: I don't understand.
11	MR. McKIRGAN: GE's commitment now is to
12	get back to service level C.
13	CHAIRMAN CORRADINI: And by some means
14	thicker walls, different material.
15	MR. McKIRGAN: Correct. And that will
16	eliminate these issues that the staff had raised when
17	we were talking about service level D. So the
18	rationing and the plasticity issues are obviated by
19	the commitment to service level C. They just need to
20	get there, and the review is ongoing.
21	MEMBER ABDEL-KHALIK: Which means you only
22	have to review one detonation.
23	MR. McKIRGAN: They are considering
24	multiple detonations. It just so happens that, when
25	they go to service level C, they will stay in the
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	85
1	elastic regime.
2	MR. CHAKRABARTI: That is correct.
3	CHAIRMAN CORRADINI: But I guess I am I
4	am going to ask the question that is going through at
5	least a couple of minds here. If they agree to one
6	thing, at least they are going to let them off the
7	hook on doing things that are clearly a waste of time.
8	MR. CHAKRABARTI: I didn't get that.
9	CHAIRMAN CORRADINI: That is what I think
10	we kind of thinking, in the sense that, if you are
11	satisfying service level C as purely elastic behavior,
12	going through multiple and additional ones makes no
13	sense.
14	MR. CHAKRABARTI: That is correct.
15	CHAIRMAN CORRADINI: Okay. I wanted to
16	make sure I understand that.
17	MR. CHAKRABARTI: That is right. It will
18	take care of the ratcheting effect.
19	The stress analysis has been done using
20	static, linear elastic, Finite Element analysis.
21	The global Finite Element model of the
22	PCCS has been used for other loadings other than
23	detonations, like dead, live and plastic loading, and
24	refined Finite Element submodels that GE already
25	presented were used for the detonation loading.
	NEAL R. GROSS
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

86 Detonation loads applied as internal 1 pressures on Finite Element submodels, and they have 2 3 presented the results of the analysis. 4 The stress analysis reported in Licensing 5 The condenser tubes and the lower Topical Report. drum are significantly strengthened compared to the 6 7 original design. It has already been discussed. 8 Also the stress hot spots, the tube bends, 9 lower drum covers, and the lower drum drain nozzles. 10 These are the two areas right now that have higher 11 stresses than service level C. 12 That concludes my presentation, and now we have again status of results and open issues. 13 Before 14 we go into that one, are there any questions on 15 staff's evaluation of these? 16 CHAIRMAN CORRADINI: Okay. Does the 17 committee have any questions for Mr. Le and Mr. 18 Chakrabarti about structural issues that we have just 19 heard about? Okay. Hearing none, let's broaden it into all the -- whether they be resolved or open 20 21 issues. 22 We have the last two slides essentially discuss all the -- what they consider to be resolved 23 24 issues and open issues. So we will open up the 25 general discussion. **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

MS. CUBBAGE: Excuse me. I also wanted to 1 2 point out that GE Hitachi did have a couple of slides 3 on how they are evaluating the PRA impacts that we 4 deferred from earlier. So if you would like to hear 5 that, Ge can do that as well. CHAIRMAN CORRADINI: That would be fine. 6 7 Before we do that, I just want to make sure we get all 8 the questions to the staff. All right. 9 MEMBER ABDEL-KHALIK: I have a question 10 about one of your open issues. On Slide 54, 11 accounting for thermal effects generated by 12 detonations in the design. If I have a tube that is 10 centimeters 13 14 thick, and the transit of this detonation is a 15 millisecond, do you think there is any thermal 16 participation or thermal interaction during that one 17 millisecond time period between --MR. CHAKRABARTI: Yes, let me address that 18 That question is really not the thermal impact 19 one. of the thermal stresses on top of the detonation 20 21 That question is primarily raised because stresses. 22 of the detonation, the temperature inside the tube 23 apparently may get higher, and how long this high 24 temperature is going to stay there. 25 If that high temperature stays for certain **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	88
1	period of time, then we need to look at it, because
2	the detonation is not operating in multiple tubes.
3	Probably in a single tube, we may have the detonation.
4	MEMBER ABDEL-KHALIK: It is sort of an
5	artifact of the way they are doing the stress analysis
6	for the detonation, that they are assuming it to be a
7	steady load, but in reality this thing is going to die
8	out very quickly before any thermal participation
9	takes place.
10	MR. CHAKRABARTI: What we really wanted to
11	know, if the temperature in a single tube when all the
12	other tubes are holding the two drums, sustaining the
13	two drums, whether it is going to cause stress on a
14	single tube.
15	CHAIRMAN CORRADINI: It would cause what?
16	MR. CHAKRABARTI: Thermal excessive
17	thermal stresses on a single tube.
18	MR. LE: Could I inject in this. In case
19	of the single detonation, you have the one instant
20	detonation, and you want to know the temperature, what
21	the delta T, significant different from the initial
22	temperature. But after multiple detonations, one
23	detonation and carry on to the next detonation, the
24	temperature add in to the whole entire tube design
25	could be significant.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	We look at thermal stress on that. Also
2	back to the number of cycles due to fatigue, if you
3	have a high loading of thermal stress, even if you
4	have a few cycles, it will be significant impact.
5	CHAIRMAN CORRADINI: I guess I don't want
6	to quote, because I don't have the numbers in front of
7	me, but the energy released Make sure I understand
8	this. You are worried about the thermal stresses
9	because of some sort of thermal stress in the
10	structural part.
11	MR. LE: Yes.
12	CHAIRMAN CORRADINI: And you have done the
13	calculation? I mean, my guess is there is not a lot
14	of energy there to heat up the steel. Am I missing
15	something? That is what I want to ask. Have you guys
16	done that comparison point?
17	DR. SHEPHERD: So we haven't gone into
18	this in detail for the PCCS tubes, but I have gone
19	into this in other problems I have worked on in the
20	last five years.
21	Surprisingly, what happens is there is a
22	skin effect, and there is a very small amount, and
23	this thermal stress causes tension to be created in
24	all o the members of this thing, because you have got
25	this region that is trying to expand right at the
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

(202) 234-4433

interior surface.

1

2

3

4

5

6

7

Now when you compare that to the strains that are generated by the questions from the explosion itself, it is something that is relatively modest, but it turns out it is much larger than the strain that you would get just from constant volume combustion. Very surprising.

We have actually measured this, and we did it with that experimental facility that I showed, that tube. I had a graduate students, who are very creative, and after he did it, I said, what the hell did you do this for.

He rolled up a roll of rubber material inside of half of the tube and compared the strains in the half that had the thermal insulation with the half that didn't have it, and sure enough, you could get strains that are two to three times what you would get with constant volume explosion just due to the thermal stress.

It takes a little while for that stuff to soak in, and in comparison with a detonation, it is negligible, but if you have something that can distort, those thermal stresses can play a role. CHAIRMAN CORRADINI: So it is because they

25 are fixed at the end?

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	DR. SHEPHERD: No.
2	CHAIRMAN CORRADINI: No?
3	DR. SHEPHERD: It is because you've got
4	this thin shell of material, and you've got this
5	confinement of this cold stuff, and so it is like
6	doing a shrink fit. Then that stress gets felt all
7	the way through the material.
8	MEMBER ARMIJO: But if each side of that
9	tube is under compression, isn't it?
10	DR. SHEPHERD: Yes. So and it pushes
11	on the other part of the tube, which is restraining.
12	MEMBER ARMIJO: Restraining is colder, and
13	it is moving pretty strong. So how does that lead to
14	structural damage?
15	DR. SHEPHERD: It doesn't necessarily lead
16	to structural damage. It is an effect that exists, if
17	you think about such things.
18	If you were, for example, to just think
19	about deflagrations. Let's suppose we don't have any
20	shock waves or anything like that. We just burn the
21	stuff. It turns out the stresses you really want to
22	consider are the thermal stresses.
23	CHAIRMAN CORRADINI: Okay. That makes
24	sense.
25	DR. SHEPHERD: That result is actually
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	92
1	very surprising to most people. They don't believe it
2	until I show them the data. Thermal stresses will be
3	larger than the mechanical stresses.
4	MEMBER ABDEL-KHALIK: But if this skin
5	heating produces compressive stresses because of this
6	very thin layer that has the time to participate in
7	heating
8	DR. SHEPHERD: It puts the whole system
9	into
10	CONSULTANT WALLIS: Like a thermal shock.
11	DR. SHEPHERD: into tension.
12	CONSULTANT WALLIS: A thermal shock.
13	DR. SHEPHERD: The thing is being held
14	together from the outside. I misspoke. Then on the
15	inside it is trying to expand. Right? So the outside
16	is trying to hold it together, and the inside is
17	trying to expand. The net result of that is that you
18	will get tensions on the entire thing.
19	MEMBER ABDEL-KHALIK: So it is additive.
20	MEMBER ARMIJO: The magnitude is what
21	really counts.
22	DR. SHEPHERD: The magnitude is what
23	really counts. It is a residual stress. Right?
24	CHAIRMAN CORRADINI: So it remains past the
25	pressure.
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON D.C. 20005-3701 HAMM DOUBTORS COM

	93
1	DR. SHEPHERD: That is right. it shows up
2	at the end.
3	CHAIRMAN CORRADINI: All right. Thank
4	you. Other questions? Okay. I will thank the staff,
5	and we will come back to what we had delayed in terms
6	of the PRA discussion, brief, because this, if I
7	understand, is also like the isolation condenser in
8	that this is still an ongoing discussion with the
9	staff.
10	CONSULTANT WALLIS: So what we heard about
11	was the PCCS. The ICS is another day or something?
12	CHAIRMAN CORRADINI: The ICS is still in
13	process. One of the open items from the in-process
14	part, as these guys are getting themselves set up, is
15	we wanted to see some details in terms of timing.
16	Do we have to go back Closed on this?
17	That is a question.
18	MR. WACHOWIAK: I will let you know what I
19	can't answer in Open.
20	CHAIRMAN CORRADINI: Okay, but there is
21	nothing in your slides?
22	MR. WACHOWIAK: The PRA is not
23	proprietary, and we are not intending on putting
24	anything proprietary in the PRA.
25	CHAIRMAN CORRADINI: Okay. Good. Thank
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

you.

1

2

3

4

5

6

7

MR. WACHOWIAK: All right. So the reason we want to talk about this today is because we are in -- We are a little bit strapped for time on this. We are doing this in parallel. Once again, you can't quite do a real good job on the PRA until you know what it is you are modeling.

8 It took us up through about now to know 9 what it was we were going to have to model. We've had 10 considerations for what we were going to do, but we have now gotten to the point where we know what we are 11 12 going to look at, and we want to let you know, in parallel with the staff, what it is we are doing so, 13 14 if it looks like we are missing something, we don't 15 want to find out about it three months from now or 16 whenever we come back to Chapter 19. We would like to 17 know about it now so we can have it resolved in the 18 same time frame.

So we take a look at what it was that we did. In general, for containment analysis for the severe accidents, we look at what kind of capability the containment has beyond what is considered in the design basis.

For the rest of the containment, that was going from a service level A-B sort of analysis for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

the design and taking it to a service level C analysis for the severe accident.

Well, as you just heard over the last few hours, we used service level C for the PCCS heat exchanger. So that is not where the margin is. it is not in the capability to withstand the loads. The margin are the things that we talked about earlier in what is the actual load.

9 So talk about what the differences are. 10 In the severe accident we are starting from a higher 11 pressure. If you look in Chapter 8 of the PRA, it 12 will show you that in the defined, more likely severe 13 accidents -- your term, not mine -- the initial 14 pressures are at about six bars rather than four.

Okay. Where we end up saying that we are going to vent are up more at 10 bars rather than six. So we've got some margin there, but when we start the initial pressure higher, as we said, along with everything else, the detonation -- the ultimate load scales up with initial pressure.

So what do we have to deal with here? We have got the gas composition. We neglected any steam or residual nitrogen left in the heat exchanger when we calculated these pressures. We also assumed a very low temperature. Both of those effects tend to push

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

it toward the bounding region of the pressure curves.

So what we looked at was what kind of steam do we expect to be in the drum mixed in with the drum and tubes, mixed in with that? What is in the drain lines, that sort of thing? What do we predict for it, and what kind of temperatures are we expecting to see?

8 When we did that straight analysis and 9 then accounted for the possibility that the temperature inside the drum could be as low as the 10 11 temperature of the water in the PCCS pool, we found 12 that we exceeded the pressure by -- that we calculated for the design basis event, by about 10 percent. 13 So 14 it wasn't a factor of 10, like if you just looked at 15 the initial pressure, but it was still bounding or 16 still beyond what we had.

17 So what we needed to do is look for an 18 additional way to mitigate the pressures. We could have gone through another redesign cycle of the PCCS 19 heat exchanger to increase the capability. That would 20 21 probably work, but then it would bring into question 22 more, okay, so exactly how certain of you of the steam concentration at the exit of the tube on the PCCS, and 23 24 other questions that I may have heard earlier today.

So rather than go through that exercise

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

and stick with the same set of uncertainties that we had before, what we looked at was adding -- for the severe accident cases where the pressures are elevated is a set of igniters in the lower drums that we would operate off of the BiMAC system. Essentially, now the BiMAC detects the core outside -- the core outside the vessel scenario. It turns on the deluge line. It would also turn on a sequence for these igniters.

9 the purpose of the igniters is not to 10 eliminate the potential for detonation. It is to burn 11 out the oxygen so that the oxygen concentration isn't 12 at the stoichiometric mixture that allows for the 13 super-high detonation pressures.

Using the CEA code that we have talked about here earlier, what we see that, if we knocked the oxygen down by about a factor of 50 percent, we can get a reduction in pressure, ultimate pressures in the system, and including the steam -- we can get a pressure load reduced by more than 50 percent.

20 MEMBER ABDEL-KHALIK: In reality, though, 21 wouldn't you want these igniters to work a lot earlier 22 than that? I mean, this might help you in the PRA 23 space, but in real life --

24 MR. WACHOWIAK: In real life, there is 25 nothing that says during detail design that we would

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

prohibit the use of this earlier. Okay? But for right now, the automatic actuation and the things that we are crediting will be in the PRA and credited only when the BiMAC is in operation. Okay?

5 Remember, in our PRA -- If we remember at 6 all these different meetings we had, we tried not to 7 rely too much on what the operators were going to do, 8 because we don't have the control systems done yet. 9 We don't have the control room. We don't have the HRA 10 analysis, and that would add additional uncertainty 11 that -- You never know how that could go.

So our base case for the design PRA was 12 minimize the reliance on the operators. Let that go 13 14 into the final PRA that is done just before fuel load, 15 when you have all that, and we would expect that to be 16 an improvement by adding in the operators. We don't 17 expect that to be an improvement, but -- and so we 18 wouldn't put anything in that precludes the operators from using this. 19

Would it 20 MEMBER STETKAR: make much 21 difference if, instead of triggering them off high 22 temperature down in the lower drywell, triggered them 23 something like upper drywell pressure in or 24 temperature, that type of thing?

That would fire the igniters, you know,

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

99 long before you got core damage and still keep the 1 2 operators out of the picture, and still pick up signals that you have already. 3 4 MR. WACHOWIAK: Yes, but once again, that 5 was additional things that we didn't have -- We tried to minimize what it was we were changing here, and 6 7 there might be a better signal to do it, but the only 8 time when we found a problem with this is when we were 9 relying on the BiMAC and the PCCS working in concert 10 with each other to keep the containment intact. 11 So if we are only relying on it when the 12 BiMAC is in operation, the signal that we put in here is that one. 13 14 CONSULTANT KRESS: Well, here you've got a lot more hydrogen. It is no longer stoichiometric. 15 16 WACHOWIAK: it is no MR. No, longer 17 stoichiometric. It is out of balance. 18 CONSULTANT KRESS: Way out of balance. So you can get rid of this 02 without --19 20 MR. WACHOWIAK: Exactly. CHAIRMAN CORRADINI: So I wanted to ask a 21 22 question to make sure I am clear. I'm sorry. So just 23 to be clear, because you are using it in this mode, it 24 is not -- it is not going to -- you are not going to 25 need the DC power to use these. You will use --NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	MR. WACHOWIAK: We will use the same DC
2	power source that the BiMAC squibs use.
3	MEMBER STETKAR: They have got a separate
4	
5	MR. WACHOWIAK: A separate system.
6	MEMBER STETKAR: separate system for
7	the BiMAC squibs.
8	MR. WACHOWIAK: And the other thing that
9	is nice about that, not necessarily for this
10	evaluation, but in other places where we are trying to
11	market this reactor, there are requirements for
12	totally independent severe accident systems, in other
13	markets, and this would qualify for that. So it also
14	helps us in that sort of a regime.
15	CONSULTANT KRESS: Is there a problem of
16	where to put the igniters for the maximum effect?
17	MR. WACHOWIAK: For maximum effect, yes,
18	there is a problem. However, we are not relying on
19	maximum effect. We have done some sensitivity studies
20	on this, and we have shown that, if we knock the
21	oxygen down a few percent, halfway, a quarter of the
22	way, it takes us off the bounds, and we are showing a
23	reduced pressure from the flame, so from the
24	detonation, which then we still apply the two and a
25	half and the two other factors to get the load in
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

ļĮ

	101
1	the heat exchanger.
2	CONSULTANT KRESS: You are back within
3	this 10 percent?
4	MR. WACHOWIAK: And we are back below the
5	same loads that were analyzed for the design basis
6	case.
7	CONSULTANT KRESS: I see.
8	CONSULTANT WALLIS: Well, this Is this
9	lowering oxygen and hydrogen?
10	MR. WACHOWIAK: It will lower hydrogen
11	some, but remember, there is a lot more hydrogen in
12	the problem now, because we have generated 800
13	kilograms of hydrogen or whatever it was from the ZrP
14	water reaction. I think that was the bounding case,
15	but we have generated a lot more hydrogen.
16	So now as these burn off, we are cycling
17	vacuum breakers a little bit more, and so we bring
18	back more nitrogen and hydrogen back. So it stays out
19	of balance.
20	So we have done that modeling. We have
21	run those cases for the Level II, and we have also
22	identified where in the containment event tree we
23	would need to model this, and I will get back to that
24	probably right around this slide somewhere.
25	MEMBER STETKAR: Rick, have you recycled
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

102 1 back through the -- I am not a structural guy. So 2 forgive me -- through the stress analyses -- I mean, you have to insert these igniters into the lower drum 3 4 somewhere through penetrations. 5 MR. WACHOWIAK: We have not gone and done that piece yet. It is likely -- The likely location 6 7 would be through the end covers. The maximum stress 8 on the end covers is at the bolting around the edges, 9 and we don't really have a problem with the center. That is what we are thinking right now. 10 Have not 11 located them yet, though. 12 CONSULTANT KRESS: It is a pretty small 13 thing. 14 MEMBER STETKAR: They are small things. 15 MR. WACHOWIAK: They are small. Yes. All 16 So that is the phenomenology change that we right. 17 have to make. 18 We also have to put in a description of the hydrogen mitigation features. Right now it just 19 says we don't have to worry about it, because we are 20 21 inerted. We are not going to say that anymore. We 22 will say something else, but we will provide a 23 description of that. 24 CHAIRMAN CORRADINI: Let me just say, 25 prior to this you knew there was hydrogen and oxygen **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

103 1 from radiolytic decomposition. You just didn't 2 consider it? MR. WACHOWIAK: There is a section in the 3 DCD that discusses radiolytic decomposition of water 4 5 to produce hydrogen and oxygen. When we did that, we mixed the hydrogen and oxygen with the drywell air 6 7 space, the wetwell air space. It takes much, much 8 longer than 72 hours before we get to any sort of a 9 flammable concentration. So we discounted it, because 10 it wasn't -- that wasn't an issue at that point. 11 CHAIRMAN CORRADINI: Okay. 12 MR. WACHOWIAK: Now inside these specific components, we need to address it, and we will 13 14 describe how we address it. 15 CHAIRMAN CORRADINI: Thank you. Okay. So we discussed the 16 MR. WACHOWIAK: 17 TCS earlier. is -- We probably could have It 18 described that other piece without updating the PRA qualitatively, and because the way that the igniters 19 would interact in the containment of entry, it acts 20 21 exactly like the squib components i the BiMAC. in 22 So where we would have it the 23 containment of entry -- I don't think I brought the 24 containment event tree, but where we have it in there, 25 if the BiMAC is operating, which means the control **NEAL R. GROSS**

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

> > WASHINGTON, D.C. 20005-3701

(202) 234-4433

104 1 system works, then the igniters have to operate. So 2 the only delta between the two are the igniters for 3 the deluge valves and the reliability of the igniters. The reliability of those two types of 4 5 components are similar. So we would expect that we would get a very small increase of large release 6 frequency associated with that, in the 10^{-12} order. 7 When I look at those specific cut sets, not going to 8 9 be an issue. 10 So the big part is on the ICS. Now in the 11 ICS, we are saying that, when the ICS is active, it 12 has to vent. In the PRA before, we had uncertainty 13 there. 14 So we always said that it had to vent, even though in the design basis case it didn't -- we 15 16 didn't always show that it would vent. But in the 17 PRA, we said that there really are more cases, and it 18 wasn't hurting us. 19 So we always said that, if the ICS doesn't vent, we are going to fail that ICS. Okay, but the 20 21 configuration for how it is vented now is different. It is de-energized to actuate where it used to be 22 23 energized to actuate. It is actuated now on the 24 initiation of the ICS rather than separate pressure 25 signals. **NEAL R. GROSS**

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So we put that into the model. What we have now is actually a more reliable vent than what we had before, and we weren't trying to do this, but it is just an artifact of putting in the real model. Cordite damage frequency dropped a smidge. Okay? Not enough to change anything, but it is a different number.

8 Then we went through and we added in the 9 ICS isolation, because now we are saying during the 10 LOCA scenario, if you don't isolate ICS, we are going 11 to put a hole in the containment boundary.

That is just an assumption we are going to make. So we are not trying to quantify the probability of getting a hole. We will just say, if it doesn't vent, we have one.

So we were able to add to the containment event tree, and -- let's see; I put it here somewhere. Well, I don't see it right now. So we added to our trees here. It is a little bit difficult to see on this scale, but you can see that we are putting it into the model.

Here in the cases where we have a LOCA -this is a large LOCA -- once we get past vapor suppression, we add ICS isolation. So ICS isolation is required to go through the rest of the system of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

entry.

(202) 234-4433

1

2

3

4

5

6

7

8

Likewise, in the transient scenarios, this is the inadvertent open relief valve. if we have a failure of the ICS -- there are, obviously, cases where ICS is not working -- and the DPVs have opened. So here is one branch. DPVs have opened, and here -somewhere else is another branch, and the DPVs have opened.

9 We add in the requirement to isolate the 10 ICS. It must isolate to get to success. Otherwise, 11 it goes to failure. Our initial case that -- It goes Our initial case we did, we 12 to transfer right now. wanted to say, oh, let's just say these go to failure 13 14 and, if it doesn't affect anything, we are done. We 15 don't have to update the PRA. It is irrelevant. 16 Didn't work out.

MEMBER STETKAR: When you say failure, you mean --

MR. WACHOWIAK: Any ICS fails to isolate. MEMBER STETKAR: Goes to melting and containment failure?

22 MR. WACHOWIAK: Well, originally we were 23 going to say goes to melt and containment failure. If 24 that had gone to melt and containment failure and it 25 didn't affect the cut sets appreciably, we would have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

just called it good, you get a sensitivity, and moved Didn't work out that way. It goes to a transfer. on.

So what we have modeled here is, once we have a failure to isolate, we assume that there is now some sort of a hole in the containment pressure boundary, and in our thermal hydraulic analysis that we are performing right now, we are looking at a spectrum up through what we think could be the -- you know, from one tube to the maximum amount that could get through the velocity limiters on the component. 11 All right?

have failure then of our 12 Τf we GDCS system, then we are just taking it right -- failure of 13 14 GDCS, failure of active injection, it goes to a 15 containment bypass. Okay?

16 We get about -- In the whole base model, 17 we get about 15 cut sets that come down to this range, 18 but if we change it from the Level 1 quantification to the Level 2 quantification, none of them make it 19 It is right on the edge of the truncation 20 through. 21 limit for each of those cut sets. So it is there. Not 22 important.

23 CONSULTANT WALLIS: Could you go back to 24 this ICS vent failures to operate?

> MR. WACHOWIAK: Okay.

> > **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

25

1

2

3

4

5

6

7

8

9

10
	108
1	CONSULTANT WALLIS: Then you blow a hole
2	in the ICS?
3	MR. WACHOWIAK: No. If the ICS vent fails
4	to operate, we consider that an ICS failure in the
5	model, and
6	CONSULTANT WALLIS: How is that treated
7	then?
8	MR. WACHOWIAK: That is The way that
9	that is treated is eventually it will get down to this
10	branch where we ask does it need to isolate.
11	CONSULTANT WALLIS: Fails to do its job of
12	heat transfer.
13	MR. WACHOWIAK: Fails to do its job. Yes.
14	CONSULTANT WALLIS: It doesn't
15	mechanically fail by explosion?
16	MR. WACHOWIAK: It can. Okay? So it can
17	mechanically fail by explosion, depending on how
18	But remember, we still have two other ways that, in a
19	scenario, that are already modeled that a rupture of
20	that isolation condenser that is detectable by
21	another control system, and it can be isolated.
22	CONSULTANT WALLIS: Then you isolate it.
23	Then you shut it off?
24	MR. WACHOWIAK: Yes. There is a system
25	there. That is not explicitly in here yet. We will
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

109

case are combined with any of the things that are causing this failure from the vent line.

So I don't see that as a big impact. It is something to consider, and we are looking at that.

9 If we have a success of the GDCS pools and 10 we have the hole, the calculation that we have now 11 shows that it is more than 72 hours before we get to 12 core uncovery from loss of inventory.

So the way the rest of entry goes is, you know, if we fail the equalizing line in, fail the other active injection systems, we are just going to call that a Class 2 sequence, add it to the Class 2s and Level 2, go on. No cut sets survive this branch.

We look at, if the GDCS is successful and the equalizer line is successful, then we have more than 100 hours before we get to core uncovery. I'm sorry, I said core damage. I meant core uncovery. Then core damage happens some number of hours after that. So we have 100 hours on this branch.

24 What we have looked at is that we can 25 probably -- AS long as we get any kind of active

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

system going, including FAPCS and suppression pool cooling, given the long time frame on this, these are going to be okay. We have got active systems that are working. Suppression pool cooling will delay it out another some number of tens of hours out there, but these PRA analyses, once you get out beyond 72 hours -- some would say once you get out beyond 24 hours -become a little suspect in terms of their accuracy.

9 So we have got an active system, active 10 system, active system, active system. If we can have 11 active systems, we are going to say we are okay. 12 Otherwise, we will look at how these progress into 13 Class 2 sequences, because there is a hole and we are 14 going to lose the water.

15 The only thing that actually ends up 16 surviving the quantification of the base case are the 17 ones that come from success of the passive injection 18 systems and the success of the containment with no We get about a 10^{-11} increase in 19 further injection. 20 CDF from these sequences. So it is not а 21 significant change to the CDF. Ιt is not а 22 significant change to the risk profile. When you 23 propagate this through Level 2, it is not а 24 significant change to the Level 2, even though this is 25 a form of a bypass case in the class. We just call

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

www.nealrgross.com

110

those hard releases in Class 2.

1

2

3

4

5

6

7

8

9

So we know enough now to say that this -and I can leave this up here. We know enough now to know that this isn't going to affect our base case.

The other place where we were worried about this has a potential impact to the PRA was in the fire scenario, because the fires have the potential to degrade the reliability of some of these things.

When we were designing these systems, we did a couple of things that we had done for designing the previous systems in the plant. When we have an active control system that is providing one of these barriers, like this isolation, we have a control system. We need to have a back-up control system.

16 In this particular case, because it would 17 cause the isolation of the ICS, it had to be a safety-18 related control system. So we have a secondary safety-related independent control platform, a control 19 system that provides a back-up isolation. 20 No new 21 valves, but just a new control signal for the isolation valves. 22

The other thing is we are using the same spurious actuation mitigation scheme for these valves that we use for other things that we didn't want to

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

112 have spuriously actuate for fires. Took credit for 1 2 that. We ran at least the first unverified run 3 4 through the PRA. It has yet to be validated by an 5 independent modeling and run, but in the initial run no additional cut sets were added to the PRA fire 6 7 analysis because of this. 8 MEMBER STETKAR: Go back to the transient, 9 the front end model that you had there. I need to get re-oriented a little bit. There it is. 10 11 MR. WACHOWIAK: I don't have a hard copy 12 of this. 13 Point to where the MEMBER STETKAR: 14 isolation is. 15 MR. WACHOWIAK: Isolation is in this row This row here, and so this branch and 16 right here. 17 this branch. 18 MEMBER STETKAR: So it is after you have -- I am assuming it is after you have degraded ICS, so 19 you have to blow down. 20 21 MR. WACHOWIAK: Yes. ICS degraded --22 MEMBER STETKAR: Is up in there somewhere. 23 MR. WACHOWIAK: -- is here. So we are on 24 the -- I'm sorry. This is an IORV. We don't take 25 credit for ICS in IORV. So on all the other **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

113 transients it is after ICS degrade. 1 2 MEMBER STETKAR: That is what I was going to -- This is IORV. 3 4 MR. WACHOWIAK; Inadvertent open relief 5 valve. MEMBER STETKAR: Right. Do you have a 6 7 small LOCA? I mean, this is kind of like a small LOCA 8 model. 9 MR. WACHOWIAK: Kinda sorta. MEMBER STETKAR: This is like a medium 10 11 sort of LOCA. Right? MR. WACHOWIAK: The small LOCA tree looks 12 very similar to that. So the key is here, it is added 13 14 in after successful operation of the DPVs. 15 Well, that MEMBER STETKAR: is what 16 triggers it. Don't they have to isolate on any LOCA? 17 MR. WACHOWIAK: They do. 18 MEMBER STETKAR: Regardless of whether the 19 DPVs are successful or not? 20 MR. WACHOWIAK: If you look at the branch 21 that goes down below here --22 MEMBER STETKAR: You showed it to us 23 earlier. MR. WACHOWIAK: But the way that the small 24 25 LOCA in this works is, if the DPVs fail, then it goes **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	114
1	to core damage.
2	MEMBER STETKAR: Right.
3	MR. WACHOWIAK: You don't ask again, does
4	it go to worst core damage. It still goes to core
5	damage.
6	MEMBER STETKAR: But I am thinking, on the
7	top part of the tree you get into where things work.
8	Don't even get into the DPV demands, though. On the
9	top part of the branch you get into
10	MR. WACHOWIAK: Were we okay.
11	MEMBER STETKAR: were you okay.
12	MR. WACHOWIAK: So on the OK branch, the
13	first OK branch we have an active cooling system.
14	Doesn't matter if we have a hole in the ICS. We have
15	an active cooling system. The second OK branch, we
16	have an active cooling system. So if there is active
17	cooling, we don't need to worry about this.
18	MEMBER STETKAR: Right, right. Yes.
19	MR. WACHOWIAK: It is only when we are
20	going to be relying on the passive cooling. In the
21	large LOCAs, we don't ask DPV. So you have to go
22	directly and ask ICS isolation. In the smaller LOCAs,
23	if there is no DPV, you already go to core damage. So
24	e don't have to go to double core damage. We just go
25	to core damage, and then we pick up in the containment
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	115
1	event tree whether or not we are going to have
2	additional failure in containment. So we will have to
3	look at that.
4	MEMBER STETKAR: I was going to say, you
5	could still have If you are looking at damage to
6	the IC tubes
7	MR. WACHOWIAK: So that would be up in the
8	Level 2, and that is another consideration in the
9	Level 2s. We haven't built that event tree yet. We
10	think we know what it looks like, but we haven't built
11	that yet, and you are right. If there are any
12	sequences going into the Level 2
13	MEMBER STETKAR: They would be out there.
14	MR. WACHOWIAK: that end up as OK under
15	CD1 or CD3 in the Level 2, we would have to have asked
16	did the ICS isolate.
17	MEMBER STETKAR: Yes. Okay.
18	MR. WACHOWIAK: Haven't gotten that far
19	yet.
20	MEMBER STETKAR: As long as he has got a
21	tick mark, then he needs to look at it.
22	MR. WACHOWIAK: So if there is anything
23	else good points there that we need to look at. We
24	just want to make sure that we are covering all of our
25	bases, and if you think of something else that we need
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON. D.C. 20005-3701 www.nealroross.com

	116
1	to look at, great. We will factor it in. We are not
2	quite there yet.
3	My conclusion from before, after looking
4	at the fire scenarios, I am expecting the flood and
5	high wind scenarios to come out to be the same, that
6	initiators on those are low enough that we don't
7	degrade the mitigating systems enough, that these are
8	going to just fall out in the truncation, and we won't
9	see them.
10	I think I covered all those. The one
11	thing that I am not sure that I did cover was one
12	other area that we had to look at in this particular
13	case.
14	If you remember, back in 2006 I think
15	most of you were herein 2006 we made a presentation
16	on the thermal hydraulic uncertainty for a success
17	criteria. You remember from earlier in the day, we
18	changed some of the parameters of the PCCS heat
19	exchanger, which changed its heat transfer
20	characteristics.
21	We have re-performed the PCCS portion of
22	the thermal hydraulic uncertainty calculation, and
23	while the numbers are somewhat different, the
24	conclusions are exactly the same as what we had
25	before.
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

117 CHAIRMAN CORRADINI: In terms of success 1 2 criteria? 3 MR. WACHOWIAK: In terms of success 4 criteria. There is margin down to including only two 5 PCCS heat exchangers as working without having any appreciable effect on the containment pressure in the 6 7 severe accident case. 8 So we think we have got that. That is the 9 one main uncertainty that we -- uncertainty analysis 10 that we knew we needed to re-perform because of the 11 changes we made here, and again it doesn't --- There 12 is an interesting phenomenon that goes with this, 13 though. 14 As you -- If -- and I am not sure how we 15 can fail a PCCS heat exchanger, but if you do fail 16 PCCS heat exchangers and get down to fewer and fewer 17 available, then the hydrogen and oxygen concentrations 18 go way down, and the steam fractions are up at 100 percent because it bypassing enough steam. 19 20 So it is just an interesting phenomenon. 21 Not sure what we can do, if we can do anything with 22 that, but it is an interesting phenomenon. 23 CHAIRMAN CORRADINI: That answers, 24 actually, a question you asked privately about this. 25 Well, no, he is talking MEMBER STETKAR: **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	118
1	PCCS. I was talking ICS.
2	CHAIRMAN CORRADINI: Oh, it is probably a
3	similar sort of argument.
4	MR. WACHOWIAK: That is essentially what
5	that purge or what that new vent line is doing, is it
6	is providing a bypass of steam.
7	CHAIRMAN CORRADINI: Okay. I think we are
8	going to go around the table and get
9	CONSULTANT KRESS: One quick question.
10	Could you, just out of curiosity, refresh my memory on
11	what your definition of LRF is? Is that becomes a
12	bypass sequence or
13	MR. WACHOWIAK: Our definition for ESBWR
14	design PRA, LRF is defined as any release that is
15	greater than tech spec allowed.
16	CONSULTANT KRESS: Does it matter when?
17	MR. WACHOWIAK: Doesn't matter when,
18	doesn't matter where.
19	CONSULTANT KRESS: Doesn't matter when or
20	where.
21	MR. WACHOWIAK: Right. if the core is
22	damaged and there is something getting outside of the
23	containment, then we just call it a release. Ours is
24	really more ARF than LRF, any release frequency.
25	Certainly bounds large release frequency, and someday
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	119
1	somebody will come up with a definition for a large
2	release frequency and figure out how to deal with it.
3	CHAIRMAN CORRADINI: Graham.
4	CONSULTANT WALLIS: This last item, the
5	PCCS severe accident igniters now that is there in
6	the drums at the bottom?
7	MR. WACHOWIAK: Lower drum.
8	CONSULTANT WALLIS: And that is something
9	else you are adding to the PCCS?
10	MR. WACHOWIAK: Yes. Let me say this. If
11	we get management approval to add them to the lower
12	drums on Thursday, they will be added.
13	CONSULTANT WALLIS: Well, will you use
14	them then to mitigate the with the build-up of
15	combustible material we were talking about earlier
16	today?
17	MR. WACHOWIAK: The way we are doing this
18	is we are adding it to the BiMAC control system.
19	CONSULTANT WALLIS: So it wouldn't come
20	on.
21	MR. WACHOWIAK: So it wouldn't come on
22	automatically.
23	CONSULTANT WALLIS: But it is there.
24	MR. WACHOWIAK: It would not come on
25	automatically in that time frame, and what I said is
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	120
1	we would not put in a requirement that it must not
2	come on. So I think we will be leaving the
3	opportunity for our HFE guys to go in and look to see
4	if that is something worth crediting as an operator
5	action performed from the control room when we do the
6	DAC for the HFE.
7	MEMBER STETKAR: They are not wiring it
8	into any safety-related instrumentation and control
9	system design.
10	MR. WACHOWIAK: The only safety-related
11	aspect of these igniters would be their pressure
12	retention capability.
13	CONSULTANT WALLIS: But they could be
14	used.
15	MR. WACHOWIAK: They could be used, but we
16	are not crediting it at this point in time.
17	CONSULTANT WALLIS: Not taking credit.
18	Okay.
19	MR. WACHOWIAK: So we left the opportunity
20	for the HFE to decide that they should be.
21	MEMBER STETKAR: In the event you don't
22	management approval to put these igniters in, what
23	would you do?
24	MR. WACHOWIAK: We will do something else.
25	We have gone through the steps necessary. We have
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

121 1 done the briefings. We just haven't executed the last 2 We would have liked to have done that before step. 3 coming here, but it was not possible. 4 CHAIRMAN CORRADINI: So I will thank Rick, 5 and I would like to go around to all the members, starting with Jack, about comments that I can take 6 7 down. 8 Let me encourage you all to keep your 9 comments in two bins. Bin one is long term cooling, 10 which was the very first thing we heard from them and 11 from staff this morning, and Bin Two is everything 12 else; because the everything else is going to be a letter that is still on track for October-ish, whereas 13 14 long term cooling, we have to respond back to the 15 Commission on a per advance planned basis, and that is 16 September. 17 So I would like to make sure I get your comments separated like that, so in case there is a 18 19 problem with long term cooling, I can capture it. Jack? 20 21 MEMBER SIEBER: I have no comments or 22 concerns. 23 CHAIRMAN CORRADINI: Graham? 24 CONSULTANT WALLIS: Well, first of all, we 25 heard about this containment pressure. It is long term **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

122 1 cooling, and there was a response to an RAI, SO-6. 2 There were a lot of things in that response that 3 weren't discussed today, like the oscillation flow and 4 the discharge from the PCCS. 5 I was wondering if the staff is going to pick up on some of those. They said everything was 6 7 resolved. So I will mention that. 8 In the vacuum breakers -- is it okay to 9 talk about the vacuum breaker? This facility, which I 10 think is clear, needs to be designed with more care 11 and more attention to detail, and a thought given to 12 what really happens physically in there. We spent a lot of time on that. 13 14 On the hydrogen issue, I would like to 15 hear more about the ICS. We were told that it built 16 up over a certain period of time, but there was no 17 detail about that. What is the concentration versus 18 time? What are the volumes involved? I would like to satisfy myself that TRAC is doing the right job of 19 those predictions. It takes 10 hours before you have 20 21 to do anything. Seems an awful long time. 22 On the last one, the PCCS redesign, it is 23 sort of a surprising thing to have to redesign it so 24 much, but I think, from what I have heard, that you 25 are on a reasonable track. You seem to be considering **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	123
1	the right things. I am not an expert on these factors
2	of 2.5 and 2 and 19 and all that, but if they are
3	valid, then you seem to be on a reasonable track. We
4	still have to hear more about the ICS.
5	CHAIRMAN CORRADINI: And maybe I should
6	have said at the beginning. My impression is that
7	when we get to Chapter 6 in the Subcommittee meeting
8	in September, we will come back and hear about that
9	topic.
10	CONSULTANT WALLIS: And, of course, I will
11	write you my usual report which will elaborate on all
12	things, too.
13	CHAIRMAN CORRADINI: With details and line
14	drawings.
15	MEMBER RYAN: I didn't have any concerns,
16	but I wanted to especially mention Dr. Shepherd's
17	presentation. I thought it was very lucid and
18	informative and appreciate the detail he provided.
19	MEMBER ABDEL-KHALIK: I am still concerned
20	about this vacuum breaker leak detection. I think you
21	ought to be thinking about Plan B, because
22	intuitively, despite the detail and the experiments,
23	I am not sure that this approach will
24	ultimately allow you to detect leaks down to the .6
25	square centimeter level, but I am willing to wait
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

124 1 until you run the experiments, and we will see what 2 the results look like. But I just think there is a 3 great deal of uncertainty on the relationship between 4 the leak and the quantity that you will detect. 5 The parameter that you will measure, that to be able to use that relationship to take such an 6 7 action as isolating the vacuum breaker will be a bit 8 tenuous. 9 As far as the PCCS redesign, I am just 10 amazed at how robust these components have become, and intuitively I think that this should be able to handle 11 any of these explosions that will fall its way. 12 CHAIRMAN CORRADINI: 13 Sam? 14 MEMBER ARMIJO: As far as the long term 15 cooling, I think that issue is resolved. The new --16 updated MELCOR-TRAC analyses match the The peak 17 pressure, and then on the longer term the pressure is and the deltas between these two 18 not going up, analyses aren't really important for the long term. 19 I am a little more optimistic about the 20 21 ability to detect the temperature increase, even at 22 these tiny, tiny leak rates, but again the only way to 23 really nail it is by experiment. 24 CHAIRMAN CORRADINI: Right. 25 MEMBER ARMIJO: The PCCS has gotten to be **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	125
1	a tank. It is really a robust system. I just wonder
2	why GEH hasn't taken a look at another approach, but
3	this is the approach you have taken, and I think you
4	can make it work.
5	That is all I have.
6	MEMBER STETKAR: I have nothing more.
7	CONSULTANT KRESS: I have to agree with
8	Sam, and I think the long term cooling issue has been
9	properly addressed by the staff and by GEH, and that's
10	pretty good.
11	I share Said's problem with the vacuum
12	detection system. I think it can be made to work, but
13	I think we need to see a little more about how many
14	thermocouples, where they are going to be, and that
15	sort of thing. I am skeptic, but I think it can be
16	made to work.
17	I think we did bring up a question about
18	what happens if all three vacuum breakers had been
19	isolated, and we ought to hear something about that
20	they have got a way to get around that, but we have
21	yet to hear that.
22	MR. WACHOWIAK: We identified that as a
23	follow-up item. The person I need to get to answer
24	that is not available today.
25	CONSULTANT KRESS: I guess I agree with
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON D.C. 20005-3701 www.pealroross.com
1	, , , , , , , , , , , , , , , , , , ,

(202) 234-4433

126 1 Graham that we need to see more of the details on the 2 ICS calculations and concentrations. 3 There was one issue that got passed over a 4 little bit, and that was the PCS system's parallel 5 path with saying delta T pressures on each end. I do think there is a potential there for one path to 6 7 starve the other, and I think that needs to be thought 8 about at least and looked at to see if there is such a 9 potential. 10 The way it can work is if you get a little 11 bit of non-parallel -- But what can happen is you can 12 back up liquid in one and starve it from flow through the other one, and it can end up with the same delta 13 14 P, but most of the play going down one path. It is 15 not your standard parallel path in instability, but it 16 can happen. 17 I think that needs to be thought about a little bit. 18 i think they designed he PCCS to where it can stand any detonations you get from radiolytic 19 decomposition, and I think Level C is the right level 20 21 to think about all those, too. So I think that is all 22 right, a substantial design. That's it. 23 CHAIRMAN CORRADINI: That's it? 24 MR. WACHOWIAK: I do want to bring up one 25 amendment to an earlier comment. When Wayne was **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	talking about the flow rate through the vacuum
2	breaker, he had mentioned a value, one pounds per
3	second. The question is does that seem reasonable,
4	and it doesn't seem reasonable.
5	So we are in the process of checking that
6	to see if that was a unit conversion issue or a
7	decimal point placement issue, but we are not
8	warranting the .1 feet or pounds per second number.
9	CONSULTANT WALLIS: there were some
10	problems when you presented this source before, and I
11	think I calculated that you have mach three going
12	through the holes.
13	MR. WACHOWIAK: There is something with
14	that. I would expect to It is too high. The
15	velocities come out to be around 700 feet per second,
16	and they should be more like 180 feet per second.
17	MEMBER ARMIJO: I kind of withdraw my
18	comment about the detectability thing, because I was
19	using that number to do my own back-of-the-envelope.
20	MR. WACHOWIAK: So it seems too high, and
21	I am not We will find out what the right value is.
22	MEMBER STETKAR: Rick, this is a side
23	comment, but it is a question I have been trying to
24	think about. There is a tech spec requirement that,
25	once every two years or once a refueling outage, you
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

1 have to verify that the leakage through those vacuum 2 breakers is less than whatever the equivalent of two 3 square centimeters is. 4 MR. WACHOWIAK: It is less than that, but 5 yes. Actually, it is 6 MEMBER STETKAR: Yes. 7 less than -- It is half that. By pumping up the 8 drywell, I guess --9 CHAIRMAN CORRADINI: No, no, no. They had 10 answered that early on. 11 MEMBER STETKAR: Oh, did they really? 12 Okay. CHAIRMAN CORRADINI: Put essentially a hut 13 14 over each one of the vacuum breakers and essentially -15 16 MEMBER STETKAR: Oh, yes. 17 MR. WACHOWIAK: And we talked to a company that does that type of leak break testing, and I think 18 when we presented that the first time, we said that. 19 20 MEMBER STETKAR: I see. Sorry. Thanks. 21 CHAIRMAN CORRADINI: So the only thing I 22 guess I have to add -- and I think I captured all my 23 colleagues' comments. I think the one thing, and I 24 know you were pressed for this -- I asked you a bit 25 aside -- is that I guess I am looking for, when we see **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701

128

	129
1	Chapter 6 again and the isolation condenser, is an
2	evolution of how you get to where you want to isolate
3	or get to how you want to vent.
4	That just whizzed by way too quickly for
5	me in terms of a calculation. Now Graham was asking
6	very specific things about concentrations here, but I
7	think we were expecting to see some evolution of this
8	to the point of venting, to the point of essentially
9	isolating and venting, depending the two approaches.
10	I think that might give us a bit more
11	confidence, because at this point we are, I would say,
12	a tad in the ark about that.
13	MEMBER STETKAR: I think it is mostly the
14	venting, the timing on the venting.
15	CHAIRMAN CORRADINI: I'm sorry, the timing
16	on the venting.
17	MEMBER STETKAR: The timing of the
18	venting.
19	CHAIRMAN CORRADINI: But everything up to
20	that venting point, to make sure there is time,
21	because you were choosing a time, and it was related
22	to the time in which build-up occurs. I think that is
23	the one thing that would give us some confidence.
24	Other than that, I think all the other points were
25	captured.
	NEAL R. GROSS

1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	MR. WACHOWIAK: We had that information.
2	CHAIRMAN CORRADINI: I understand.
3	I want to ask, though, because I'm
4	sorry. I wanted to ask: Was a member of the public
5	going to make a comment or just wanted to listen in?
6	MR. KEEGAN: Hello. Yes, I have been
7	listening in. Some very interesting information.
8	CHAIRMAN CORRADINI: Yes, go ahead.
9	MR. KEEGAN: This is Michael Keegan with
10	Don't Waste Michigan.
11	CHAIRMAN CORRADINI: Okay.
12	MR. KEEGAN; Yes. Very appreciative to be
13	able to sit in. I am looking forward to reading and
14	reviewing the transcript, and I have no further
15	comments at this time.
16	CHAIRMAN CORRADINI: Okay. Thank you. I
17	just wanted to make sure, because I wasn't sure if you
18	were listening in or you had a comment for us. Thank
19	you very much.
20	MR. KEEGAN: Thank you very much.
21	CHAIRMAN CORRADINI: So with that, I will
22	thank members of the staff and of GEH for today, and
23	we will adjourn the meeting.
24	I will talk with Amy separately as we
25	prepare for the full Committee meeting relative to
	NEAL R. GROSS
	(202) 234-4433 WASHINGTON D.C. 20005-3701 WARM pastaross com

	131
1	long term cooling, and to remind everybody, we have a
2	Subcommittee on the week of the 16th. I don't dare
3	give you the dates, because they will probably change,
4	the week of the 16th of August and the week of the
5	22nd or 21st of September.
6	Meeting adjourned.
7	(Whereupon, the Subcommittee adjourned at
8	5:14 p.m.)
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	NEAL R. GROSS
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

Protecting People and the Environment

Presentation to the ACRS ESBWR Subcommittee

ESBWR Open Items

July 13, 2010

ACRS Subcommittee Presentation ESBWR Open Items

Staff Review Team

- Project Manager
 Leslie Perkins
- Technical Staff
 - NRO/DSRA/SBCV Reviewer Hanry Wagage
 - NRO/DSRA/SRSB Reviewer George Thomas
 - NRO/DE/EMB1 Reviewer Tuan Le
 - NRO/DE/SEB2 Reviewer Samir Chakrabarti
 - NRO/DE/CIB2 Reviewer Robert Davis
 - RES/DSA/FSTB Reviewers –
 Allen Notafrancesco and Hossein Esmaili

Outline

Containment long-term cooling (RAI 6.2-140)

- Hanry Wagage

Hydrogen Accumulation in PCCS (RAI 6.2-202):

PCCS Functional Design and Detonation Pressure Loading

- Hanry Wagage and Joe Shepherd (Caltech)

PCCS Structural Design

- Tuan Le and Mano Subudhi (BNL)

Containment Structural Design

Samir Chakrabarti and Manuel Miranda (BNL)

Vacuum Breaker Leakage Detection (RAI 6.2-148)

- Hanry Wagage

Protecting People and the Environment

Presentation to the ACRS ESBWR Subcommittee

ESBWR Open Items: Containment Long-term Cooling (RAI 6.2-140)

Hanry Wagage

July 13, 2010

Containment Long-term Cooling (RAI 6.2-140)

- Regulatory Criteria: 10 CFR 50.46(b)(5) and GDC 50 of 10 CFR 50 Appendix A
- December 3, 2009, ACRS meeting
- TRACG and MELCOR differences
- PCCS pool level control
- PCCS vent fan submergence

DCD Rev 6 (TRACG)

Pool level control (variant procedure) Fan vent with varying submergence (variant design)

Confirmatory Calculation

MELCOR ESBWR plant with level control without GDCS pool tray

Figure 1. Drywell pressure predicted by MELCOR and TRACG (DCD Rev. 6) for MSLB (bounding case) (presented at December 3, 2009, ACRS Meeting)

Figure 2. PCCS pool level predicted by TRACG (DCD Rev. 7) for MSLB (bounding case)

Figure 3. PCCS vent line exit elevation used and GDCS pool water level predicted by TRACG (DCD Rev. 7) for MSLB (bounding case)

Figure 4. Drywell pressure predicted by MELCOR and TRACG (DCD Rev. 7) for MSLB (bounding case) 9

Containment Long-term Cooling: Conclusion

- ESBWR design-basis LOCA containment longterm pressure response calculated by TRACG, which is confirmed by staff's MELCOR analysis, is below the containment design pressure and is acceptable
- RAI 6.2-140 is closed

Protecting People and the Environment

Presentation to the ACRS ESBWR Subcommittee

ESBWR Open Items: Hydrogen Accumulation in PCCS (RAI 6.2-202): PCCS Functional Design and Detonation Pressure Loading

Hanry Wagage and Joe Shepherd (Caltech)

July 13, 2010

Hydrogen Accumulation in PCCS (RAI 6.2-202): PCCS Functional Design and Detonation Pressure Loading

- ACRS raised a concern on the possibility of hydrogen accumulation in PCCS at a November 2009 meeting
- The staff expanded the issue to ICS
- MELCOR results show hydrogen and oxygen mole fractions of 48%, and 24%, respectively, in the PCCS lower drum, at 8 hours after a LOCA
- At high concentrations of hydrogen and oxygen, a minimal energy is needed to initiate ignition

PCCS Functional Design and Detonation Pressure Loading

- Regulatory Criteria: 10 CFR 50.46(b)(5), and GDC 38 and 50 of 10 CFR 50 Appendix A
- Staff issued RAI 6.2-202 on December 11, 2009
- Additional issues discussed in public meetings and issued as supplemental RAIs
- GEH submitted NEDE-33572P Rev. 1 to provide technical details
- PCCS design basis is to perform its safety function after multiple hydrogen detonations

Hydrogen Accumulation in PCCS (RAI 6.2-202): Summary of PCCS Design

Status:

Issue resolution is ongoing

Resolved issues:

- Hydrogen concentrations
- Detonation pressure loading in PCCS tubes
- Case by case evaluations using ASME Section III Class MC components
- Loading combination to include detonation pressure plus all other applicable loads per NUREG-800 SRP 3.8.2

Hydrogen Accumulation in PCCS (RAI 6.2-202): Summary of PCCS Design

Open issues:

- Detonation pressure loading in PCCS lower drum and drain and vent lines
- Modifications of lower-drum covers and drain nozzles to account for high stresses
- Detonation effects on PCCS components not directly exposed to detonations (e.g., anchorage, support frame, and pool slab penetrations)
- Fatigue evaluations for multiple detonations
- Design of ICS

Hydrogen Accumulation in PCCS (RAI 6.2-202): Summary of PCCS Design

Open issues (con.):

- PCCS Heat transfer capacity
- Accounting for thermal effects generated by detonations in the design

PCCS Functional Design and Detonation Pressure Loading: PCCS Design Changes

- PCCS condenser tubing
 - Changed material from SA-213 Gr TP304L to SA-312 Gr XM-19
 - Increased thickness
 - Increased number of tubes per module (2 modules in each PCCS condenser)
- Increased thickness of lower drum and changed material to SA-182 Gr XM-19
- Added catalyst (platinum or palladium coated plates) to the vent in the lower drum of the condenser

PCCS Functional Design and Detonation Pressure Loading: Evaluation of the Catalyst Module

- Impact of potential performance inhibitors (e.g., aerosols, condensate, etc.):
 - Little potential for poisons and inhibitors other than steam is expected under ESBWR DBA conditions
 - Design of the vent entrance limits water droplets carryover; high temperature during recombination causes any water carried into the recombiner to evaporate
 - EPRI evaluations showed functionality under beyond DBA conditions; flow channels of PCCS catalyst are equal or larger than EPRI prototypical design

- PCCS Functional Design and Detonation Pressure Loading: Evaluation of the Catalyst Module (con.)
 - Catalyst warm-up is unimportant since flow through the catalyst module does not depend on convection currents (i.e., flow is driven by differential pressure between drywell and wetwell).
 - At peak recombination flux, GEH should confirm that recombiner temperature will be below the auto-ignition limit (i.e., ~560 °C). GEH should establish final design values (e.g., recombination rate, temperature, etc.)
 - GEH should perform ESBWR-specific calculations to assess impact of various catalyst design parameters on gas mixture entering the vent line under DBA conditions to demonstrate module effectiveness.
 - GEH should address the impact of detonations on structural integrity of the catalyst module

Figure 1: Portions of PCCS Considered for Detonation

PCCS Functional Design and Detonation Pressure Loading: Issues to be Resolved

- PCCS heat transfer capacity should be sufficient for containment long-term cooling
- The staff raised issue with vent and drain lines designs
- Pressure loading on the lower drum should include deflagration to detonation transition (DDT)

Protecting People and the Environment

Presentation to the ACRS ESBWR Subcommittee

ESBWR Open Items: Hydrogen Accumulation in PCCS (RAI 6.2-202): Evaluation of Detonation and DDT response of PCCS

Joe Shepherd (Caltech)

July 13, 2010

GEH Methodology for PCCS Tubes

- Static analysis based on dynamic load factor and equivalent static pressure
- Approach is based on experimental data and analysis of detonations in tubes (Shepherd and Beltman, 2002)
- Select multiplier based on
 - Single-degree-of -freedom models of structural response
 - Experimental measurements of strains
- Limitations
 - Neglects vibrations and wave interference effects
 - Neglects reaction forces due to propagating waves changing directions
 - Deflagration-to-detonation transition can result in higher loads – requires estimating response based on experimental data.

Detonations in Straight Pipes

- Traveling load step increase in pressure
- Hoop strain in straight pipes
 - Dynamic effect 2 x equivalent static response $\Phi = 2$

 $\sigma_h = \Phi \frac{R}{h} \Delta P_{\rm CJ}$

- Exceptional situation of resonance up to 4 x static $\Phi \leq 4$
- Bounding estimates from
 - Thermochemical computations (CJ = Chapman-Jouguet model) of detonation pressure and velocity
 - Simple structural models

- Thermochemical computations of CJ detonation properties
- Bounding case, 25 °C and 407 kPa, 0 % steam
- CJ Pressure 7.95 MPa (P_{cj}/P_o = 19. 5)
- Wave speed substantially higher than $V_{co} => \Phi \sim 2$
- Equivalent static pressure
 7.95 x 2.5 x 2 = 39.8 Mpa

Assumes reflection of detonation

• GEH assumes 38.7 Mpa

Computation using Shock and Detonation Toolbox FM

Detonation Induced Strain in Tubes, Ph D Thesis, J. A. Karnesky California Institute of Technology Pasadena, California 2010

Deflagration to Detonation Transition

6. Transition to detonation

Characterizing DDT Structural Response

- DDT more hazardous than detonation
 - Structural loading higher
- Requires testing of mixtures and geometries of interest
 - Complex, unsteady motion in gas
 - Computational methods in research stage
 - Loading is
 - Localized
 - Unsteady
- Use direct measurements of strain to define dynamic load factor

$$\Phi = \frac{\text{Peak dynamic strain}}{\text{Reference Static strain}}$$

Measuring Structural Response to DDT

Thick walled vessels for elastic response Thin-walled vessels for plastic response and failure

Use bars or tabs as "obstacles" to cause flame acceleration

FM2010.005

Single Degree of Freedom (SDOF) Model

- Maximum dynamic hoop stress
- Φ = dynamic loading factor

$$\Delta \mathsf{P} = \mathsf{P}_{\mathsf{max}} - \mathsf{P}_{\mathsf{atm}}$$

- R = tube radius
- t = tube thickness
- τ = characteristic structuralresponse time

$$\sigma_{H} = \frac{\Phi \Delta PR}{t}$$

SDOF Model for Φ

Loading Regimes

 $H_2 - O_2$

Structural Response of Tubes to Deflagration-to-Detonation Transition Z. Liang and J. E. Shepherd Graduate Aeronautical Laboratories California Institute of Technology Pasadena, CA 91125 Explosion Dynamics Laboratory Report FM2010.005

H₂-O₂, 100 kPa, 25 °C

Explosion loads within 5-in diameter pipe, 1.25 m long

Combustion Regimes

p. 5.1.21, COMBUSTION OF BWR-TYPICAL RADIOLYTIC GAS MIXTURES, W. Breitung et al, FZK Report 2007

Detonation Cell Width

p. 5.2.4, COMBUSTION OF BWR-TYPICAL RADIOLYTIC GAS MIXTURES, W. Breitung et al, FZK Report 2007

Estimated effect of steam 407 kPa, 100 °C

Scale cell width with reaction zone length, $\lambda_2 = \lambda_2 \Delta_1 / \Delta_2$

DDT Summary

- DDT possible with up to 0.4 steam fraction
 - Expansion ratio sufficiently high $\sigma > 3.5$
 - Cell size sufficiently small $\lambda < D$
- Transition to detonation will occur rapidly for steam fractions between 0 and 0.4 at 407 kPa
- Conclusion:

Dynamic load factor of 2 applied to $P_{CJ,r}$ bounds almost all cases away from tube end. => GEH assumptions are reasonable for PCCS tubing.

PCCS Lower Drum

- GEH proposed to treat combustion as constant volume and take credit for venting through tubes.
- Mixture is very sensitive, cell size is very small relative to dimensions of drum and DDT cannot be ruled out.
- No analysis was done on efficacy of venting in preventing DDT – likely to be difficult to show
- Conclusion:

Analysis of lower drum is an open issue.

Protecting People and the Environment

Presentation to the ACRS ESBWR Subcommittee

ESBWR Open Items: Hydrogen Accumulation in PCCS (RAI 6.2-202): PCCS Structural Design

Tuan Le and Mano Subudhi (BNL)

July 13, 2010

Design of PCCS Condensers

- To withstand loads resulting from buildup and possible detonation of radiolytically-generated combustible gases, particularly hydrogen, during a LOCA
- The designs of PCCS including the condensers are modified to improve their ability to mitigate the hydrogen detonation loads
- The PCCS condenser tube/lower drum materials and thicknesses, and the number of tubes are modified to provide adequate heat transfer function during a LOCA

Design of PCCS Condensers

- PCCS condenser is required to perform its heat transfer function after a LOCA
- PCCS condenser is designed as part of the containment pressure boundary

Design Criteria for PCCS Condensers

- For containment pressure boundary, the entire PCCS condenser is classified as ASME Class MC component and is designed to ASME Subsection NE requirements. This also includes a small section of the drain pipe connected to the lower drum nozzle
- The remaining portions of the drain and the vent pipe are classified as ASME Class 2 components and are designed to ASME Subsection NC requirements
- All ASME MC components of the PCCS will be designed to withstand the hydrogen detonation pressure and to remain essentially within the elastic stress range under the bounding pressure load

Protecting People and the Environment

Presentation to the ACRS ESBWR Subcommittee

ESBWR Open Items: Hydrogen Accumulation in PCCS (RAI 6.2-202): Containment Structural Design

Samir Chakrabarti and Manuel Miranda (BNL)

July 13, 2010

Design of the ESBWR PCCS

- Maintain structural integrity of the containment pressure boundary (ASME Code, Class MC component) during 72 hour LOCA
- Staff review under NUREG-0800, SRP 3.8.2, "areas relating to steel containments or to other Class MC steel portions of steel/concrete containments"
- PCCS components within containment pressure boundary:
 - steam supply pipe including pool slab penetration
 - upper and lower drums
 - condenser tubes
 - portion of drain pipe including pool slab penetration
- Structural support for the PCCS assembly

Considerations for Design of PCCS to Address Effects Due to Detonation of Non-Condensable Gases (hydrogen and oxygen) inside PCCS

- Additional loads due to detonation not considered in original design
- Detonations possible in condenser tubes, lower drum and drain pipe
- Other PCCS components not directly exposed to internal detonations, but affected by energy release from detonation
- Multiple detonation events considered during 72 hour LOCA
- Appropriate loading combinations and acceptance criteria

Evaluation of Effects Due to Detonation

- Equivalent static design pressure: 38.7 MPa absolute (approx. 5600 psia) to account for detonation
- Amplification factors to account for wave reflection and other dynamic effects were included
- Essentially linear elastic response of components assumed
- Simplified equivalent-static methodology to compute structural response to detonation pressures
- Detonation pressure used to design condenser tubes, lower drum and portion of drain pipe classified as MC component

Structural Acceptance Criteria

- Case-by-case evaluation by the staff
- Guidance in NUREG-0800 SRP 3.8.2 and ASME Code interpreted for unique loading conditions
- Acceptance criterion:
 - Level C Service Limit per ASME Code, Section III, Division
 I, Subsection NE
- Design load combination:
 - Detonation pressure plus all other applicable loads per NUREG-0800 SRP 3.8.2 (e.g., dead, accident temperature, and SSE loads)

Basis for Structural Acceptance Criteria

- Level C Service Limit chosen because:
 - Structural integrity of containment pressure boundary is ensured
 - Response of components remain essentially elastic (localized yielding is possible) per assumptions in stress analysis and estimation of detonation pressures
 - Essentially elastic response prevents geometric distortions of components, thereby maintaining the heat removal function of the PCCS
 - Ratcheting and other plastic instabilities are limited
 - Other load combinations using same acceptance criteria include:
 - Design-basis LOCA in combination with SSE
 - Hydrogen pressurization and burn resulting from 100% fuel clad metal-water reaction

Basis for Structural Acceptance Criteria (con.)

- Detonations are dynamic loads of very short duration
- ASME Code NE-3113.4 Level D Service Limits:
 - "This service limit applies to those loads subject to other service limits in combination with loadings of a local dynamic nature, such as jet impingement, pipe whip, and pipe reaction loads resulting from a postulated pipe rupture, for which the containment function is required."
- Conservative approach adopted, Level C chosen over Level D because:
 - Uncertainties in estimation of detonation pressures
 - Level D implies allowable stresses (general primary membrane stresses) significantly greater than yield limit
 - Stress analysis and estimation of detonation pressures
 assume essentially elastic response of components

Stress Analysis

- Static, linear elastic, Finite Element (FE) analysis
- Global FE model of PCCS (including support frame) used in analysis for loads other than detonations
- Refined FE submodels used in analysis for detonation loads of:
 - condenser tubes
 - lower drum
- Detonation loads applied as internal pressures on FE submodels
- FE results combined and compared to ASME Code limits

Stress Analysis (Cont.)

- Stress analysis reported in Licensing Topical Report NEDE-33572P "ESBWR ICS and PCCS Condenser Combustible Gas Mitigation and Structural Evaluation"
- Condenser tubes and lower drum significantly strengthened compared to original design:
 - Tube thickness and lower drum thickness increased. Tube material changed to SA-312 Gr. XM-19; drum material changed to SA-182 Gr. XM-19
- Stress hotspots:
 - condenser tube bends
 - lower drum covers
 - lower drum drain nozzle

Hydrogen Accumulation in PCCS (RAI 6.2-202): Summary of PCCS Design

Status:

Issue resolution is ongoing

Resolved issues:

- Hydrogen concentrations
- Detonation pressure loading in PCCS tubes
- Case by case evaluations using ASME Section III Class MC components
- Loading combination to include detonation pressure plus all other applicable loads per NUREG-800 SRP 3.8.2

Hydrogen Accumulation in PCCS (RAI 6.2-202): Summary of PCCS Design

Open issues:

- Detonation pressure loading in PCCS lower drum and drain and vent lines
- Modifications of lower-drum covers and drain nozzles to account for high stresses
- Detonation effects on PCCS components not directly exposed to detonations (e.g., anchorage, support frame, and pool slab penetrations)
- Fatigue evaluations for multiple detonations
- Design of ICS

Hydrogen Accumulation in PCCS (RAI 6.2-202): Summary of PCCS Design

Open issues (con.):

- PCCS Heat transfer capacity
- Accounting for thermal effects generated by detonations in the design

PCCS Evaluation for Severe Accidents

PCCS overpressure analysis

- Initial pressure containment pressure is higher in severe accident scenarios
- Gas composition steam reduces DET pressure
- Temperature higher temperature reduces DET pressure

Bounding severe accident case exceeds PCCS pressures analyzed by 10%

- Addition of igniters in lower header reduces O2 concentration
- Pressure load reduced by more than 50%
- BiMAC control system used to operate igniters

HITACHI

ESBWR Design PRA Changes

ICS vent - Needs to operate when ICS is active

- More reliable
 - De-energize to actuate
 - Does not rely on pressure signals
- CDF reduction of about 3%

ICS isolation to prevent rupture in LOCA-like scenarios

- Implemented in SSLC-ESF & ICP
- Designed to address external event scenarios

T-H Uncert conclusions remain valid

PCCS severe accident igniters needed

PRA Results - Preliminary

CDF does not change

- ~10⁻¹¹ increase in calculated mean
- All are late core damage / release sequences
- Core damage after 100 hrs
- LRF due to igniter failure is negligible
- ~10⁻¹²

No change to fire CDF or LRF

• No change expected for other external event scenarios

