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ABSTRACT

A series of in-reactor experiments were conducted using full-length 32-rod
pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant
Accident (LOCA) Simulation Program by Pacific Northwest Laboratory (PNL). The
fourth materials experiment (MT-4) was the seventh experiment in the series of
thermal-hydraulic and materials deformation/rupture experiments conducted in
the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada.
This experiment was funded by the U.S. Nuclear Regulatory Commission (NRC) to
evaluate ballooning and rupture during adiabatic heatup in the temperature
range of 1033 to 1200K (1400 to 1700'F). The 12 test rods in the center of
the 32-rod bundle were initially pressurized to 4.62 MPa (670 psia) to insure
rupture in the correct temperature range. All 12 test rods ruptured with an
average strain of 43.7% at the maximum flow blockage elevation of 2.68 m
(105.4 in.). Experimental data for the MT-4 transient experiment and post-
test measurements and photographs of the fuel are presented in this report.
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SUMMARY

The Loss-of-Coolant Accident (LOCA) Simulation Program was conducted by
Pacific Northwest Laboratory (PNL) to evaluate the thermal-hydraulic and
mechanical deformation behavior of full-length light-water reactor (LWR) fuel
bundles under LOCA conditions. The test conditions were designed to simulate
the heatup, reflood, and quench phases of a large-break LOCA. The experiments
were performed in the National Research Universal (NRU) reactor using nuclear
fission to simulate the low-level decay power that is typical of these
conditions.

Data and initial results and analysis from the seventh experiment in the
program--materials test-4 (MT-4)--are presented in this document. MT-4 was
funded by the U.S. Nuclear Regulatory Commission (NRC) with the main objective
of addressing NRC licensing requirements for ballooning and blockage.

The major objectives of the MT-4 experiment were to:

* Provide sufficient time in the alpha-Zircaloy ballooning window of
1033 to 1200K (1400 to 1700'F) to allow all 12 pressurized test fuel
rods to rupture before reflood cooling was introduced.

* Demonstrate boiloff control of the test by alternately boiling down
and filling the test assembly with water.

* Measure data to determine heat transfer coefficients for ballooned
and ruptured fuel for boildown and refill conditions with very low
reflood rat-.

* Measure internal rod pressure as a function of time during
deformation.

* Measure fuel rod deformation as a function of position for each of
the deformed fuel rods.

" Determine the effects of grid spacers on limiting fuel rod
deformations.

All of the major objectives of the experiment were accomplished. Test
results indicated that all 12 pressurized test rods in the 32-rod bundle rup-
tured. The time in the ballooning window was -58 s, and the temperature
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history was almost identical to that of the TH-1.16 test. All 12 test rods
were instrumented with pressure transducers to indicate pressure histories.

The results of the test demonstrated the successful use of liquid level
feedback to control peak temperatures for extended periods of time. Oscillat-
ing boiloff conditions provided information on the range of reflood rates
necessary to achieve a stable liquid level in the test bundle. There was no
measurable effect of "liftoff" (a thermal decoupling of the cladding from the
fuel that results in cooling of the cladding during deformation).

The average maximum test rod rupture strain (72.1%) was obtained using the
measured rod strain on each side of the rupture zone. Peak rod rupture strains
of up to 99.2% were obtained. Significant strains were detected over 0.189 m
(7.42 in.) of rod length. The rupture sites were randomly distributed with no
apparent flow channel or flux tilt bias. Test data are summarized below:

Failure time 52 to 58 s

Peak pressure 9.41 MPa (1365 psi)

Pressure at failure 5.58 to 6.48 MPa (810 to 940 psi)

Cladding temperature at failure 1077 to 1114K (1480 to 1547°F)

Maximum test rod rupture strain (rod 5C) 99.2%

Average maximum test rod rupture strain 72.1%

Standard deviation of test rod strain 11.9
at maximum rupture Oite for each rod

Average test bundle strain for 12-rod 43.7%
cruciform; test rods at maximum block-
age elevation of 2.68 m (105.4 in.)
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INTRODUCTION

The Loss-of-Coolant Accident (LOCA) Simulation Program was conducted in
the National Risearch Universal (NRU) reactor at Chalk River Nuclear Laborato-
ries (9 L),(a Chalk River, Ontario, Canada, by Pacific Northwest Laboratories
(PNL). The program was sponsored by the U.S. Nuclear Regulatory Commission
(NRC) to evaluate the thermal-hydraulic and mechanical deformation behavior of
full-length, 3% enriched 17 x 17 pressurized water reactor (PWR) fuel bundles
during the heatup, reflood, and quench phases of a LOCA. Low-level nuclear
fission heat was used t simulate the decay heat in the fuel and cladding that
is typical of a LOCA.( 1

Three thermal-hydraulic and four cladding materials deformation experi-
ments were performed. The initial thermal-hydraulic experiment (TH-1) was per-
formed in October 1980 and provided a data base for predicting the quenching (
characteristics of Zircaloy-clad fuel rods under various reflood conditions.(2)

The first materials experiment (MT-I) was performed in April 1981 and used
a pressurized cruciform of 11 rods pressurized to 3.21 MPa (465 psia), 1 water
tube, and 20 guard rods sealed at atmospheric pressure. The delay time and the
reflood rate were ýejected to duplicate the TH-1.1O experiment, which reached a
peak fuel cladding c) temperature of 1144K (1600'F). These conditions were
achieved, 6 of (•e 11 rods ruptured, and all 11 pressurized test rods deformed
significantly. The average peak rupture strain was 43%, the average rupture
time was 43 s, and the average rupture temperature was 1145K (1601'F).

In the second materials experiment (MT-2), which was performed in July
1981, the MT-I guard rod and shroud assembly was reconstituted underwater
and reused with a new cruciform test bundle. The 12 test rods were pres
surized to 3.21 MPa (465 psia). One of the test objectives was to perform a
low-temperature--1089K (1500°F)--test using variable reflood rates. A malfunc-
tion of the test loop sulted in higher temperatures than desired, and 8 of
the 11 rods ruptured.M(4 The average peak rupture strain was 43%, the average
rupture time was 65 s, and the average rupture temperature was 1156K (1623°F).

The fourth experiment (TH-2) was conducted in October 1981 and used a new
thermal-hydraulic test bundle sealed at atmospheric p sure that was reconsti-
tuted in the MT-1/MT-2 guard rod and shroud assembly.M This experiment
evaluated the reflood rates necessary to obtain a "flat top" or extended tran-
sient from 1033 to 1103K (1400 to 1525°F). The delay time and automatic
control system used to control the variable reflood rate in this experiment
demonstrated the capability of holding temperatures above 1033K (1400'F) for
periods of up to 280 s. The test conditions approached a steady-state boiloff
condition.

(a) Operated by Atomic Energy of Canada Ltd. (AECL).
(b) Operated for the U.S. Department of Energy (DOE) by Battelle Memorial

Institute.
(c) Fuel cladding subsequently referred to as cladding.
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The fifth experiment (TH-3) used the same test bundle as TH-2; several new
thermocouples (TCs) and a spray desuperheater were added. Several modifica-
tions were also made to the loop control logic to improve the reflood rate con-
trol and extend the. length of the flat top transient. TH-3 was performed just
prior to MT-3 to verify the loop control system (LCS) and the data acquis.ition
and control system (DACS) instrumentation and operation. TH-3 and MT-3 were
both performed in November 1981. TH-3 also verified test assembly power levels
and the changes to the DACS control performance. The results of the TH-3
experiment made it possible to extend the time above 1033K (1400'F) from 280 s
in TH-2.14 to 340 s in TH-3.03. In addition, the transient time-temperature
history was modified to provide more two-phase cooling at the start of the
transient. The desuperheater modification to the TH-3 assembly controlled exit
steam temperatures.

The primary objective of the MT-3 experiment was to determine the deforma-
tion and flow channel restrictions for a flat top transient using pressurized
fuel rods. Peak cladding temperatures were maintained above 1033K (1400'F) for
180 s. The MT-3 experiment repeated the test conditions demonstrated by the
TH-3.03 test using a completely new test train with 12 fuel rods pressurized to
3.90 MPa (565 psia). All 12 test rods ruptured during the active two-phase
cooling regime. The average peak rupture strain was 46%, the average rupture
time was 133 s, and the average failure temperature was 1067K (1461'F). The
MT-3 experiment had a lower average failure temperature and a longer failure
time than any of the other materials experiments due to the significant amount
of reflood water that was introduced early in the transient (reflood delay time
was 7 s). The active strain region was spread over 2.03 m (80 i .) of fuel,
and no lack of coolability due to coplanar blockage or liftoff(ai was observed.

The MT-4 experiment was conducted in May 1982. Its primary objective was
to evaluate cladding ballooning and rupture during adiabatic heatup in the tem-
perature range from 1033 to 1200K (1400 to 1700'F). The 12 test rods in the
32-rod bundle were initially pressurized to 4.62 MPa (670 psia) at 296K (72°F)
to assure rupture in the correct temperature range. All 12 test rods ruptured
with an average peak rod strain of 72.1%. The active strain region was spread
over 0.189 m (7.42 in.), the average failure time was 55 s, and the average
failure temperature was 1094K (1511'F). The MT-4 experiment was most similar
to the MT-2 experiment, except for three differences: 1) MT-4 rods were.
pressurized to 4.62 MPa (670 psia) whereas MT-2 rods were pressurized to
3.21 MPa (465 psia); 2) after the adiabatic heatup transient and temperature
turnaround, peak cladding temperatures were stabilized to measure heat transfer
characteristics of the deformed (and ruptured) fuel rods, and 3) self-powered
neutron detectors (SPNDs) mounted on the shroud were moved to grid elevations
to minimize axial neutron power distortion.

The MT-4 experiment used a new cruciform bundle of 12 pressurized test
fuel rods and the guard fuel rods and shroud previously used in MT-3. Test
operations most closely followed the operating conditions of TH-1.16, where

(a) Liftoff is a thermal decoupling of the cladding from the fuel that results
in cooling of the cladding during deformation.
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reflood cooling was used to terminate the heatup transient temperature at
-1200K (1700 0 F). Stabilized post-transient operations closely followed the
operating conditions used in the MT-3 experiment.

The results from MT-4 provide thermal-hydraulic and materials deformation
response data for full-length PWR nuclear-heated cladding in the high alpha
temperature range for variable reflood conditions. These conditions extend the
existing data base on thermal-hydraulic and mechanical response to LOCA operat-
ing conditions not previously investigated by other out-of-reactor test pro-
grams. The MT-4 test series has resulted in valuable information on 1) the
control of quench fronts and two-phase cooling that will be used for subsequent
thermal-hydraulic and materials experiments and 2) the quench characteristics
of deformed rods as compared with nondeformed rods for the flow conditions
covered in these experiments.

Data from MT-4 will be used in conjunction with previous test results to
assess various calculational models for reactor safety analyses and conclusions
derived from the large series of electrically heated tests and smaller scale
in-reactor tests being conducted elsewhere. The experimental results of the
program address 17 specific items outlined in the Code of Federal Regulations
10 CFR 50.46 and 10 CFR 50, Appendix K. These results will be used to provide
additional data for model calibration and to help define the primary heat
transfer mechanisms for new analytical models. The major contribution of these
tests to light-water reactor (LWR) technology is to quantify the uncertainty on
licensing criteria and offer the potential for raising the operating limits on
some commercial LWRs.
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EXPERIMENT DESCRIPTION

This section describes the components of the test assembly that were
used for the MT-4 experiment and details the instrumentation that was pro-
vided. The experiment operation, which consisted of four separate tests,
is also described; and experimental conditions and results are discussed.

TEST TRAIN ASSEMBLY

A schematic of the test train used for the LOCA program is depicted in
Figure 1. The test train (including the head closure, hanger tube, and fuel
assembly) was -9 m (-30 ft) long. The closure region provided the primary
pressure boundary and included penetrations for 183 instrumentation leads.
The hanger tube was used to suspend the fuel assembly and shroud from the head
closure plug, and instrument leads were attached to the hanger to protect them
during transport and testing. The shroud, which supported the fuel assembly
and served as a protective liner during the experiment and during transfer
operations, also provided proper coolant flow distribution during various
stages of the experiment. The stainless steel (SS) shroud consisted of two
halves that were clamped together at 17.8-cm (7-in.) intervals and attached at
the end fittings. The split shroud design made it possible to disassemble,
examine, and reassemble the fuel assembly underwater after its irradiation.
The highly instrumented shroud and fuel assembly was -4 m (14 ft) long.

The fuel assembly consisted of a 6 x 6 segment of a 17 x 17 PWR fuel
assembly with the four corner rods removed (Figure 1) and provided a basic fuel
array of 32 rods. The 20 unpressurized guard rods in the outer row isolated
the inner 12 test rods and reduced the heat transfer from the test rods to the
shroud during the test. The 12 test rods, which were arranged in a cruciform
pattern, were pressurized with helium to 4.62 MPa (670 psia) to provide the
necessary internal cladding stresses that would result in test rod failure at
the desired temperature (Table 1).

Test train instrumentation included: 24 SPNDs, 143 TCs, 12 fuel rod pres-
sure sensors, 1 liquid level detector, and 4 flux.wires. The instrumentation
was located at 37 elevations or levels along the test assembly; 36 of these
levels are defined in Figure 2 and detailed in Figures 3 through 9. An addi-
tional level was located in the test assembly closure where four TCs measured
the closure region temperatures. Instrumentation for the 36 levels is shown in
Table 2; the instrumentation array, in Table 3; and failed sensors, in Table 4.

Turbine flowmeters and TCs provided the main source of thermal-hydraulic
data. Local coolant temperatures were measured with steam probe TCs that
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TABLE 1. Test Fuel Rod Design Variables

Cladding material
Cladding outside diameter (OD)
Cladding inside diameter (ID)
Pitch (rod to rod)
Fuel pellet OD
Fuel pellet length
Active fuel length
Total shroud length
Helium pressurization
Fuel enrichment

Zircaloy-4
0.963 cm (0.379 in.)
0.841 cm (0.331 in.)
1.275 cm (0.502 in.)
0.826 cm (0.325 in.)
0.953 cm (0.375 in.)
3.66 m (12 ft)
4.33 m (14.18 ft)
4.62 MPa (670 psia) at 296K (73°F)
2.93% 23

5 U

protruded into the coolant channel and with TCs attached to the shroud. TCs
were also spot welded to the inside of the cladding surface. These cladding
TCs monitored the cladding temperature without interference from fuel pellet
chips or unintentional TC relocation. TCs were also located at the fuel cen-
terline.

SPNDs provided neutron flux measurements within the fuel bundle. They
could also detect coolant density variations (through flux changes) associated
with the quench front that passed each SPND during the reflood phase of the
transient. SPND data with regard to coolant density could potentially be cor-
related to liquid level. The four flux wires provided additional information
on the axial flux distribution.

A liquid level detector measured changes in the liquid level in the fuel
bundle during the test. The detector, which is based on time domain reflectom-
etry (TDR), is described in more detail in Reference 6.

EXPERIMENT OPERATION

The MT-4 experiment consisted of a preconditioning phase, three prelimi-
nary tests, and a test in which all 'test rods ruptured (MT-4.04). The experi-
ment was performed in the L-24 site in the NRU reactor (Figure 10). The assem-
bly was oriented in the reactor with side F (side that has fuel rods designated
F) facing north.

The preconditioning phase was initiated May 26, 1982. Two rises to full
NRU power operation and two conditional reactor trips assured fuel pellet
cracking and good fuel/cladding mechanical contact.

7
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FIGURE 7. Instrumentation at Levels 93.9 Through 111.0
in the MT-4 Test Assembly
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LEVEL 168.7

IC-i 87.4-HI-i :ý

TC-i87.4-HT-3

LEVEL 187.4

FIGURE 9. Instrumentation at Levels 168.7 and 187.4
in the MT-4 Test Assembly

The first transient test sequence--MT-4.01--consisted of two phases: a
reflood calibration at 0.123 m/s (4.8 in./s) with no power and an interrupted
steady-state test at power using a reflood rate of 0.123 m/s. The transient
never reached steady state because the power was so high that the reactor
tripped at a cladding temperature of 867K (11000 F). Reprogramming the LCS led
to an error in the steam cooling flow rate indication, which resulted in a high
reactor power setting. MT-4.02 was an adiabatic heatup test with heatup rates
of -1O.3K/s (18.5°F/s). These heatup rates showed that test fuel powers were
still higher than required for the reflood transient test. MT-4.03 was an
adiabatic heatup test that achieved maximum cladding heatup rates of -8.3K/s
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TABLE 2. Instrumentation at Each Level in the MT-4 Test Assembly

C laddl ng

Inside

Diaameter TCs

Cladding

Outs ide

Diameter TCs

Fuel

Center line

TCsLeve 1
-0.2 (1)
8.7 (2)
13.9 (3)
19.2 (4)

Shroud Carrier

TCs TCs

2

2 2

2 2

2

St earn

Probe

TCs SPNDs

25.5 2

28.0 (5) 2

34.9 (6) 4

40.2 (7) 2

42.9 (8) 2

46.5 2

49.0 (9) 2

55.9 (10) 4

61.2 (11) 4 2

67.5 4

69.0 (12) 4 1

73.9 4

76.9 (13) 12 4

78.9 4

80.9 4

83.9 4

88o5 4

90.0 (14) 4

93.9 2

97.9 (15) 9 4 4

101.9 4

104.9 3

109o5 4

111.0 (16) 4 4

118.9 (17) 5 4

130.5 4

139.9 (18) 4 4

148.2 3

151.5 2

156.0 (19) 2

168.7 (20) 4

Tota I 61 2 4 42 10 15 24

Note:

Four flux wires ran from Level -0.2 to Level 151.5; 12 fuel plenum pressure taps were at

Level 156.0; 5 desuperheater tube outlets and I fuel plenum TC were at Level 151.5; 4 hanger tube

TCs were at Level 187.4; and 4 TCs were located in the closure region.
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TABLE 3. Instrumentation Array in the MT-4 Test Assembly

Guard bundle
Test bundle
Shroud
Hanger tube
Carrier
Fuel plenum
Spacer grid
Fuel rod braze
Closure head

Total

TCs

30
35
42

4
10
1

15
2
4

143

Pressure
SPNDs Transducers

12
22

2

24 12

TABLE 4. Sensors That Failed in the MT-4 Experiment

Failed Sensor

TC-40.2-2A-IR-2
TC-76.9-3F-IR-1
TC-76.9-5B-IR-1
TC-80.9-2D-I R-2
TC-83.9-3C-IR-.2
TC-90.0-2B-SP-2
TC-97.9-6D-IR-4
TC-111.0-1A-C-2
TC-118.9-6E-IR-4
TC-139.9-5A-I R-3
ND-25.5-6F-S-3
ND-67.5-6F-S-3
ND-67.5-6A-S-2
ND-67.5-6F-S-3
ND-88.5-1A-S-I
ND-88.5-1F-S-4
ND-109.5-1A-S-1
ND-151.5-6F-S-3

Time of Failure

before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
before MT-4.01
during MT-4.03
before MT-4.01

17
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FIGURE 10. NRU Reactor Core Configuration
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(15'F/s)--rates desired for the final transient (MT-4.04). MT-4.04 consisted
of two phases: a short heatup phase that lasted -1.5 min and a longer phase at
temperature that lasted -20 min. Tests MT-4.01 through MT-4.04 were all per-
formed on May 27, 1982.

EXPERIMENT CONDITIONS AND RESULTS

The MT-4 experiment consisted of four separate tests. The first three
tests were preliminary evaluation runs performed to determine reactor power and
reflood rates and to check loop control performance. The last test--MT-4.04--
was the final transient test where all 12 pressurized test rods ruptured during
the heatup phase.

The test conditions measured for MT-4.03 are summarized in Figures 11
through 13. These figures indicate the average temperature versus time his-
tories for the shroud and the test rods at Levels 76.9, 97.9, and 118.9. The
MT-4.03 test was an adiabatic heatup run using a stagnant steam environment.
The results of this test were used to set the reactor power for transient test
MT-4.04. The temperature ramp rates for the test rods and the shroud indicate
the assembly power and the degree of coupling between the test rods and the
shroud.

The MT-4.04 transient test used a combination of LCS preprogrammed reflood
rate control and DACS reflood control logic. After a reflood delay of 57 s,
the LCS controlled the reflood rate at 0.203 m/s (8 in./s) for 6 s, 0.102 m/s
(4 in./s) for 6 s, and then 0.00254 m/s (1 in./s) for 3 s. The DACS then took
over using variable reflood rates to control cladding temperatures for the
boiloff portion of the test.

The fuel failed in the 52- to 58-s range; the reflood coolant delay time
was 57 s; and all but one rod ruptured during the adiabatic heatup (Figure 14).
Fuel failure temperatures ranged from 1077 to 1114K (1480 to 1547 0 F). Five of
the 12 test rods ruptured before leaving the 1033 to 1088K (1400 to 1500 0 F)
ballooning window and seven ruptured shortly afterwards. The measured tempera-
tures for the hot spot TC sensors used in the control logic for the 20-min
duration of MT-4.04 are plotted in Figure 15. The peak control temperatures
changed from Level 95.9 to Level 118.9. Boiloff was controlled by alternately
boiling down and filling the test assembly with water (Figures 15 through 18).
Average test rod inside cladding temperatures at Levels 76.9, 97.9, and 118.9
are shown in Figures 19 through 21 for MT-1, MT-2.2, MT-3.06, and MT-4.04.
These plots demonstrate test repeatability using DACS control. The extended
time at temperature for MT-4.04 demonstrates the feasibility of controlling a
boildown test.

19



MT4.03 5/27/82 21:28: 0.000 5/27/82 21:29:27.000

- "Test Rod
1 650 ----- Shroud

11

S

UL

r2j

bLJ

12001 +
IiI

1050--

900

600

-j

i.

--II

- ---I;

-4

-j

- I -

_____ r

1200

1050

900

750
Ui

lI-

450

300

150

0

-4--

---- --- ---

10 , 3 40

0 1 0 20 30 4-0

600

450

300..... ..... . . --------

50 i 70 -050 60 70 80

TIME, s
FIGURE 11. Average Test Rod and Shroud Temperatures at Level 76.9 for

Adiabatic Test MT-4.03

20



MT4.03 5/27/82 21:28: 0.000 5/27/82 21:29:27.000

1

1

1

1

Ld

M

iy-

1

1200

1050

900

750
Lu0_

i--

600

450

300

TIME, s

Average Test Rod and Shroud Temperatures
Adiabatic Test MT-4.03

FIGURE 12. at Level 97.9 for

21



MT4.03 5/27/82 21:28: 0.000 5/27/82 21:29:27.000

1 650.

7 - -----

Test Ro
------ Shroud

is

1500

JI-

... . . --

]

-+

q

1 350
------ -

120(

1 05(Li

~900

0_

L£ 750

600

450

300

150

1200

1050

900

IY-

750

w

600

450

300

0
0 10 20 30 40 50 60 70 80

TIME, s
FIGURE 13. Average Test Rod and Shroud Temperatures-at

Adiabatic Test MT-4.03
Level 118.9 for

22



MT4.04 5/27/82 23:32:26.000 5/27,/82 23:33:56-000

1172

1088

1005

922

838 "
Vi Li

I-

< 755
w b
13_ C

LW 672 i'

588

505

422

338

Ll

J

,L

i

1650

1500

1 350

1200

1050

900

750

600

450

300

150

10 .254

9 .229

8 .203

7 .178

6 .152
Lii

5 fl.127

0
04 _ .102
Lii

3 .076

2 .051

1 .025

a .000

E

Li

I-

0
0

-LJ0:ILiJ

25•
t _ _ _ _ . I

5 0 -1 -. 0250 10 20 30 40 50 60 70 80

TIME, s

FIGURE 14. Hot Spot Sensor Averages--Levels 97.9 and 118.9--and
Demand and Actual Reflood Flow Rates for Initial
90 s of MT-4.04

23



MT4.04 5/27/82 23:32:26.000 5/27/82 23:57:28.000

1172I 165 -. _ -- -!-- - 0 . 51172 1650-.. ... --. ...-- - - - - - - - --.".... . -,. --- .--- - --- ------- 118a9 (Level 17) - ] .2 4
S"--- SR-FLOW-LO-W

" , ----- SR-FLOW-HI-GH

1088 1500 D- - , - DEMAND REFLOOD - 9 .229

1005 1350 8 . .. .... .203II• ,I i :It '0I

922 1200 1.1 - -- - --. ---- - -- - . - 7 .178

838 1050 .152 E

I") It Ir- I! ;

8755 1900 ....... .12
'" "w i

5J7 2 Li 7 50 ------- 4----02 I'

Lii:. iu 1L

588 600 . . --. .. .. . 3 .076

505 450 -t 'j 2 .051

42 2 300 --- ............ . -- - - .102 -

338 150 .0

2? 5l 5 1 -.2

U 0U0 20U 0 U iuu 30uU UU /UU U uu 9UU IUQU IUU LzUU 30UU 14UU
TIME, s

FIGURE 15. Hot Spot Sensor Averages--Levels 97.9 and 118.9--and Demand and Actual Reflood
Flow Rates for 1500 s of MT-4.04; DACS Control 72 s After Steam Off



MT4.04. 5/27/82 23:32:26.000 5/27/82 23:3,3:56.000

2000

1600--

1400

1200

CL 1000

800

600

400 . .

200 ..

0

FIGURE 16.

1400

1200

1000Y

ri

:D

F-

800o.

I---

600

400

10 20 30 40 50 60 70 80
TIME, s

Average Test Rod Temperatures at Levels 76.9, 97.9, and
118.9 for Initial 90 s of MT-4.04

25



MT4.04 5/27/82 23:32:26.000 5/27/82 23:57:26.000

]:E
wL

1400

1200

1000•Ž

Li

600

400

ITIME, s

FIGURE 17. Average Test Rod Temperatures at Levels 76.9, 97.9, and 118.9 for 1500 s of MT-4.04



MT4.04 5/27/82 23:32:26.000 5/27/82 23:57:26.000

165. 4.191

15 Ai ,.1

135 3.429

1 2 0 . . . .. . .. . . . . .. . . . . . . . . . .3 .0 4 8
. II E

2105 2.66

Ii I 0

0 0

. .. -90 ..... - ------ 2.286 >

120 i t

05 -.... _1.905

__60_ 1.524

30 _ _ .762

15 -- ----- .3 81

5100 200 300 400 500 600 700 .00 900 14 .000

100 110.50230 10

TIME S

FIGURE 18. Time Domain Reflectometry Instrumentation Liquid Level Response for 1500 s of MT-4.04



MT4.04
MvT.3.06
MT2.2
MT1

5/27/82
11/13/81
7/23/81
4/ 2/'81

23:32:26.000
0:13:52.098

18: 6:46.039
16:38:43.039

5/27/82
11/13/81
7/23/81
4./ 2/81

23:39:26.000
0:19:31.879

18:12:29.039
16:46:11.625

2

CL

1400

1200

1000Y

:D

800

600

400

800

600

400

200

0
0 50 100 150 200 250 300 350 400

TIME, s
FIGURE 19. Average Cladding Temperatures

MT-2.2, MT-3.06, and MT-4.04
at Level 76.9 for MT-1,

28



MT4.04
MT3.06
M72.2
MT1

5/27/82
11/13/81
7/23/81
4/ 2/81

23:32:26.000
0:13:52.098

18: 6:46.039
16:38:43.039

5/27/82
11/13/81
7/23/81
4/ 2/81

23:39:26.000
0:19:31.879

18:12:29.0039
16:46:11.625

2000

1800

1600

14-00
I.,o

1200
I-

Lc 1000

800

600

400

200

14-00

1200

1000"'
Lic/

I.-

800w

600

400

0
0 50

FIGURE 20.

100 150 200 250 300 350 400

TIME, s
Average Cladding Temperatures at Level 97.9 for MT-I,
MT-2.2, MT-3.06, and MT-4.04

29



Mr4..04
MT3.06
MT2.2
MT1

5/27/82
11/13/81
7/23/81
4/ 2/81

23:32:26-000
0:13:52.098

18: 6:46.039
16:38:43-039

5/27/82
11/13/81
7/23/81
4/ 2/81

23:39:26.000
0:19:31.879

18:12:29.039
16:46:11.625

Ld

LUJ
0-

1400

1200

1 000Y
Ld

8 0 0 aW

I-

600

400

0
0 50 100 150 200

TIME,
250

S

300 350 400

FIGURE 21. Average Cladding
MT-2.2, MT-3.06,

Temperatures
and MT-4.04

at Level 118.9 for MT-1,

30



HEAT TRANSFER COEFFICIENTS AND ASSOCIATED THERMAL-HYDRAULICS
FOR BALLOONED AND RUPTURED FUEL

The MT-4.04 experiment operation closely followed the operating conditions
of the TH-1.16 test to provide the desired ballooned and ruptured fuel for heat
transfer characterization. Following the heatup transient temperature turn-
around, the peak cladding temperatures were controlled using variable reflood
to provide the required boildown and refill conditions. This test environment
provided the opportunity to determine the heat transfer characteristics associ-
ated with ballooned and ruptured full-length nuclear-heated fuel during reflood
and boildown transient modes.

Data on reflood rate, quench-front propagation, liquid level, axial power,
fuel rod temperature, and heat transfer coefficients are presented in this sec-
tion. The data represent the test environment for which heat transfer condi-
tions were determined. The test conditions for TH-1.16 and MT-4.04 are com-
pared in Table 5. Desuperheater spray system data are also presented,
establishing that the pressure tube surrounding the test assembly was in a safe
environment at all times.

REFLOOD RATES

The reflood rates used in the MT-4 experiment were selected to stabilize
the peak cladding temperatures so that the heat transfer characteristics of the
deformed (and ruptured) fuel bundle could be measured. In addition, latter
portions of the test were devoted to, gaining experience with boildown transient
behavior. The measured reflood rates during the MT-4 transient are illustrated
in Figure 22.

QUENCH-FRONT PROPAGATION AND LIQUID LEVEL

During the reflood and boildown phases of the transient, the fuel bundle
and shroud quenched and dried out. The time history of the quench-front level
in the fuel bundle is an approximation of the water level in the fuel bundle
for very low reflood rates. Quench-front movement for the shroud will be much
faster than for the fuel bundle and will give an indication of the liquid
entrainment effects in the steam during the reflood and boildown operations.
The average guard rod and shroud quench-front elevations as a function of time
are shown in Figure 23.

A lijquid level detector was used to determine the liquid level during the
course of the transient. The average guard rod and shroud quench-front
behaviors and the liquid level detector indications are compared in Figure 24.
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TABLE 5. Experiment Conditions for the MT-4.04 Transient

Pa rameter

Average rod power,(a) kW/ft

TH-1.16

0.316

MT-4.04

0.367

Delay time, s 65 57

Reflood rate, m/s (in./s)

Peak temperature elevation,
m (in.)

Peak temperature, K (OF)

Average peak temperature, K (OF)

Peak rod temperature, K (OF)
Start of test
Start of reflood

Average temperature at peak
location, K (OF)
Start of test
Start of reflood

Nominal system pressure,
MPa (psia)

Nominal inlet coolant
temperature, K (°F)

0.104 (4.1)

2.47 (97.3)

1204 (1707)

1182 (1668)

720 (836)
1089 (1500)

682 (768)
1121 (1558)

0.276 (40)

311 (100)

2.05 (80.9)

1459 (2166)

1418 (2092)

636 (686)
1103 (1526)

639 (690)
1105 (1529)

0.276 (40)

311 (100)

Variable

(a) Based on heatup rate method; from adiabatic portion of MT-4.

AXIAL POWER DISTRIBUTION

The axial power distribution in the fuel assembly was evaluated using
normalized local heatup rates, assembly SPND measurements, assembly flux wire
data, and a series of measurements taken by a transit flux probe during the
preconditioning phase of the experiment in the NRU reactor. Local axial powers
were calculated using the adiabatic period heatup rates and the fuel rod mass
and specific heat. These normalized readings are plotted against a computed
power profile based on core physics calculations prior to the test in
Figure 25.
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TEST ROD AND GUARD ROD TEMPERATURES

The maximum and minimum test rod and guard rod temperatures at Levels
76.9, 97.9, and 118.9 are compared in Figures 26 through 28, respectively. The
shaded areas show the range between the maximum and minimum rod temperatures.
There does not appear to be any significant effect of the ballooning and rup-
ture on the measured higher cladding temperatures between nonpressurized
nondeformed guard rods and pressurized deformed test rods.
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HEAT TRANSFER COEFFICIENTS

The evaluation of the thermal conditions in the fuel cladding as a func-
tion of time is characterized by the local heat transfer coefficients. The
heat transfer coefficients presented are from an analysis that used saturation
temperatures and measured local cladding temperatures. The saturation tempera-
ture is defined by the system operating pressures and remained constant
throughout the experiment at 0.276 MPa (40 psi).
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Temperatures and local heat transfer coefficients are shown in Figures 29
through 39. Computed results are compared for the deformed test bundle rods
and for the nondeformed guard bundle rods at Levels 76.9, 97.9, and 118.9.
These plots also contain information from the MT-1, MT-2, and MT-3 experiments.
The different results for guard and test rods at Levels 76.9 and 97.9 are
caused more by the earlier quenching of guard rods than by deformation dif-
ferences. Heat transfer for deformed versus nondeformed rods can be best
compared by evaluating deformed test rod behavior versus nondeformed guard rod
behavior for the same test at higher elevations (Figure 39).
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DESUPERHEATER SPRAY SYSTEM

A desuperheater spray system was installed in the MT-4 test assembly at
the 151.5-in, elevation as an engineered safety feature. The system insured
that steam did not heat the pressure tube in the upper region above 700K
(800'F). Subcooled water was injected into the outlet steam to maintain a
temperature of 589 ±56K (600 ±100'F). The system was controlled by the DACS,
which monitored several TCs in the upper region and activated the spray injec-
tion. The average steam temperatures at the 148.2-, 156.0-, 168.7-, and
187.4-in. elevations are shown in comparison to the desuperheater activation
signal during the MT-4 transient in Figure 40.
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FUEL ROD PLENUM PRESSURE MEASUREMENTS

Gas pressure changes as a function of time in the plenums of the 12 test
rods were measured using an out-of-reactor pressure transducer on each rod.
All 12 test rods were initially filled with helium to a pressure of 0.243 to
0.384 MPa (35.3 to 55.7 psia) at room temperature and sealed. This same ini-
tial fill gas was maintained throughout preconditioning and tests MT-4.01
through MT-4.03. Prior to the final transient test (MT-4.04), the 12 test rods
were pressurized to 4.62 MPa (670 psia) at 296K (72°F).

The pressure transducers indicated rod failure data as summarized in
Table 6. Post-test examinations using the DERM(a) showed that all of the pres-
surized rods ruptured, which indicated that all test rods were pressurized dur-
ing the test. The test rods were fitted with Thurman Hydronics pressure trans-
ducers (strain gauge design). The pressure transducers were located outside
the reactor above the test assembly and were connected to the fuel rod plenum
by capillary tubes. Pressure transducer data are shown in Figures 41 through
43; fuel rod failures occurred where pressure traces drop dramatically.

TABLE 6. Summary of Pressure Switch and Pressure Transducer
Rod Failure Data for MT-4.04

Rod Number

2C
2D
3B
3C
3D
3E
4B
4C
4D
4E
5C
5D

Time to
Failure, s

57
56
53
56
57
55
52
56
58
55
54
54

Temperature
at Failure,

K (°F)

1114
1099
1092
1094
1110
1095
1077
1088
1088
1101
1086
1086

(1547)
(1520)
(1508)
(1510)
(1540)
(1512)
(1480)
(1500)
(1500)
(1524)
(1497)
(1497)

Differential
Failure Pressure,

MPa (psi)

5.58 (810)
6.13 (890)
6.23 (905)
6.03 (875)
6.30 (915)
6.48 (940)
6.37 (925)
6.06 (880)
5.79 (840)
6.06 (880)
5.82 (845)
6.10 (885)

Fill Pressure,
MPa (psia)

4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)
4.62 (670)

(a) DERM - dissassembly, examination, reassembly machine.
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DEFORMATION EXAMINATION AND ANALYSIS

The examination and measurement of the MT-4 test assembly was performed
using the DERM--a computer-controlled device that provides remote, detailed
measurement data on individual fuel rods under -2 m (6.0 ft) of water. The
DERM is located in the spent fuel storage bay at CRNL. Detailed photographic
and mechanical measurement data were obtained on the cruciform test bundle and
on each of the 12 ruptured fuel rods. Television scans of the guard bundle,
the test bundle, and some of the individual rod examinations were also
obtained. Detailed DERM rod deformation data are included in Appendix G.

The photographic information on the MT-4 test assembly is summarized in
this section of the report. The rupture strains in each rod are also summa-
rized. The deformation of one fuel rod (rod 2C) is analyzed to show the rela-
tionship among local heat transfer conditions, temperature history, mechanical
properties, and constitutive laws analysis techniques.

GUARD ROD BUNDLE EXAMINATION

The guard rod bundle was examined during the disassembly process to deter-
mine if the bundle and shroud were reusable and to detect any abnormal appear-
ances. Visual inspections and television scans were made of one side of the
bundle when the top half of the shroud was removed; however, no photographs
were taken. Although visual examination indicated some distortion of the
guard rods in the vicinity of Levels 76.9, 97.9, and 118.9, this distortion
was <0.102 cm (0.040 in.). The results of this examination indicated that the
guard bundle and shroud were in excellent condition and could be used again.

TEST ROD BUNDLE EXAMINATION

Visual examination of the test rod bundle verified that all 12 rods had
ruptured; failure conditions are summarized in Table 7. The peak test bundle
strain for the 12-rod region was 43.7% at an elevation of 2.68 m (105.4 in.).
The active strain region was spread over 0.189 m (7.42 in.) of fuel, and no
indication of coplanar blockage was observed. Bundle cross sections before
and after deformation at rupture elevations are shown in Figures 44 and 45 as
viewed from the bottom of the test assembly. The sides of the test bundle were
photographed from the outside; sides A, 6, F, and 1 are shown for the rupture
region in Figure 46. Several views of the rupture zones for each of the
12 test rods are shown in Figures 47 through 58. The rupture zones for indi-
vidual rods are compared in Figures 59 through 61. In these figures, a 00
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TABLE 7. Summary of Failure Conditions

Rod

Number

2C

20

38

3C

3D

3E

4B

4C

40

4E

5C

5D

Center

of Rupture,

cm (in.)

242.38 (9 5.43)

241.66 (95.14)

240.99 (94.88)

241.16 (94.95)

241.14 (94.94)

240.37 (94.63)

257.21 (101.27)

241.13 (94.93)

254.97 (100.38)

240.69 (94.76)

254.58 (100.23)

255.02 (100.40)

Rupture

Length,

cm (in.)

1.52 (0.60)

2.06 (0.81)

2.19 (0.86)

2.55 (1.01)

3.09 (1.22)

1.95 (0.77)

2.06 (0.81)

1.76 (0.69)

2.39 (0.94)

2.19 (0.86)

3.81 (1.50)

2,69 (1.06)

Lower End of Rupture

Axial Position,

cm (in.)

241.623 (95.127)

Upper End of Rupture

Axial Position,

cm (in.)

243.139 (9 5.724)

240.627

239.888

239 .888

239. 588

239 .390

256.*184

240 .246

253.771

239.598

252.677

2 53 .672

(94.73 5)

(94.444)

(94.444)

(94.326)

(94.248)

(100.860)

(94.58 5)

(99.9 10)

(94 .330)

(99.479)

(99.871)

242 .682

242. 082

242 .440

242.682

241 .343

2 58.242

242.004

256.*1 59

241.783

256.489

256 .362

(9 5.54 4)

(9 5.308)

(95.449)

(9 5.544)

(95.0 17)

(101.670)

(95.277)

(100.85)

(9 5.19 0)

(100.980)

(100.93)

Fai lure

T Ime,

s

57

56

53

56

57

55

52

56

58

55

54

54

Fai l ure

Temperature,

K (*F)

1114 (1547)

1099 (1520)

1092 (1508)

1094 (1510)

1110 (1540)

1095 (1512)

1077 (1480)

1088 (1500)

1088 (1500)

1101 (1524)

1086 (1497)

1086 (1497)

Peak

Rupture

St ra in,

76.*2

67.6

64.*6

53.0

59.4

73.7

68.4

99.2

78.5

81.5

66.*0

77.3

Differential

Failure

Pressure,

MPa (psi)

5.58 (810)

6.13 (890)

6.23 (905)

6.03 (875)

6.30 (915)

6.48 (940)

6.37 (925)

6.06 (880)

5.79 (840)

6.06 (880)

5.82 (845)

6.10 (885)

(a) Al I measurements are from the top of the tie plate that supports the fuel rods.
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MT-4 TEST BUNDLE RUPTURE REGION
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FIGURE 46. Test Rod Bundle Rupture Zones--Sides A, 6, F, and 1
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FIGURE 49. Rupture Zone for Test Rod 3B (Z = 94.876)
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FIGURE 50. Rupture Zone for Test Rod 3C (Z = 94.947)



MT-4
ROD 3D
Z=94.939

00 90O

1 in 254 cm

180o RUPTURE 2700

FIGURE 51. Rupture Zone for Test Rod 3D (Z = 94.939)
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FIGURE 52. Rupture Zone for Test Rod 3E (Z = 94.633)
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FIGURE 53. Rupture Zone for Test Rod 4B (Z = 101.26)
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FIGURE 54. Rupture Zone for Test Rod 4C (Z = 94.931)
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FIGURE 57, Rupture Zone for Test Rod 5C (Z = 100.230)
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FIGURE 58. Rupture Zone for Test Rod 5D (Z = 100.40)
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FIGURE 61. Comparison of Rupture Zones for Test Rods 4D, 4E, 5C, and 5D
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orientation represents the view looking toward the north; 90', the east; 180',
the south; and 270', the west. The tops of all the photographs are the upper
ends of the rods.

ANALYSIS OF FUEL CLADDING DEFORMATION

The 12 test rods in the MT-4 experiment deformed significantly before the
cladding burst. The measured cladding strain profile for a typical test rod is
shown in Figure 62. This measured strain provides a good data base for testing
the predictive capabilities of transient cladding deformation computer pro-
grams. One such code--DILATE--was run to simulate the MT-4 experiment. The
results of the simulation are shown in Figure 63. The code underpredicted the
actual strains by a large margin. Calculated strains were again much less than
by experiment when using the original EPRI data base( 7 ) or the relationships
developed by Donaldson, Horwood, and Healey.( 8 ) A more complete description of
DILATE and these data can be found in References 7, 8, and 9.

LU

90

80

70

60

50

40

30

20

10

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

AXIAL LENGTH, in.

FIGURE 62. Cladding Deformation Profiles for MT-4
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FIGURE 63. DILATE Calculations for MT-4
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DESCRIPTION OF THE APPENDICES

Appendices A through G summarize the data resulting from the MT-4 experi-
ment. The data are arranged as follows:

Appendix A - Preconditioning Test Assembly Temperatures
Appendix B - Pretransient Test Assembly Temperatures
Appendix C - Transient Fuel and Cladding Temperatures
Appendix D - Test Coolant and Shroud Temperatures
Appendix E - Neutron Flux Data
Appendix F - Reflood Flow Measurements
Appendix G - Fuel Rod Deformation Data
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APPENDIX A

PRECONDITIONING TEST ASSEMBLY TEMPERATURES

Data from the fourth materials experiment (MT-4) were recorded during the
power ascensions and during the full-power, steady-state preconditioning phases
of National Research Universal (NRU) reactor operation. Two preconditioning
rises to power were performed. This appendix contains plots showing the test
assembly environment at the second and final rise to full power. U-2 loop
water at 16.3 kg/s (129,400 Ibm/h) and 827 MPa (1200 psig) was used to cool the
fuel. The average axial temperature profile for the test assembly shroud is
shown in Figure A.1, and the individual corner channel axial temperature pro-
files are presented in Figure A.2. Modest coolant temperature gradients less
than 12K (22°F) across the test assembly are evident from this comparison of
individual corner channel temperatures. Radial coolant temperatures were
measured by steam probe thermocouples (TCs) (Figure A.3); axial fuel and steam
probe temperatures are shown in Figure A.4. The upper fuel TC in Figure A.4
was located in the fuel plenum.

The remainder of this appendix consists of the following graphical data:

FIGURE A.1. Average Axial Temperature Profile for the Shroud During
Preconditioning (second rise to power) for MT-4

FIGURE A.2. Corner Axial Temperature Profiles for the Shroud During
Preconditioning (second rise to power) for MT-4

FIGURE A.3. Radial Temperature Profiles Across Test Assembly Coolant at
Levels 90.0, 111.0, and 148.2 During Preconditioning
(second rise to power) for MT-4

FIGURE A.4. Average Fuel Rod Cladding Temperature Profiles for Interior and
Centerline Thermocouples and Average Steam Probe Temperatures
During Preconditioning (second rise to power) for MT-4

A.1



MT4P

ELEVATION, in.
0 20 40 60 80

5/26/82 10: 7: 1.000

100 120 140

LU-

i,

0

LU

I-
n.-

ILL
a3_

I--

600

500

400

300

1234 3SBi i 0 Ii 2 6' i4 i d 410519iInstrument Level

IIII I I I 1

588

533 F<
0::
LU

477
I42

.422
.00 .51 1.02 1.52 2.03 2.54 3.05

ELEVATION, m

3.56

FIGURE A.1. Average Axial Temperature Profile for the Shroud During
Preconditioning (second rise to power) for MT-4

MT4P

ELEVATION, in.
0 20 40 60 80

5/26/82 10: 7: 1.000

100 120 140

o Channel 1A

A Channel 1F

t Channel 6A

x Channel AF

Instrument Level
16 id 18 19

LL-

0:

LUj

LiJ

600

500

400

300

588 L

533
0•

477 •

422I I iI I I I I

.00 .51 1.02 1.52 2.03 2.54 3.05 3.56

FIGURE A.2.

ELEVATION, m
Corner Axial Temperature Profiles for the Shroud During
Preconditioning (second rise to power) for MT-4

A.2



MT4P 5/26/82 10: 7: 1.000

t-

rY

I---

700

600

500

40,0

1 I I I I I I I I I I

0 Level 90.0
A Level 111.0
÷ Level 148.2

II

Shroud Rod Rod FT Rod Shroud
Wall 1 25 3C 4D 5E Wall 6

I I I I I I I I I I

644

588.<

5 3 3 L

477
1 2 3 4 5 6 7 8 9 10 11 12

DIAGONAL LOCATION, APPROXIMATE

FIGURE A.3. Radial Temperature Profiles Across Test Assembly Coolant
at Levels 90.0, 111.0, and 148.2 During Preconditioning
(second rise to power) for MT-4

A.3



MT4P

ELEVATION, in.
20 40 60 80

5/28/82 10: 7: 1.000

0 100 120
'II

0

Li
cy-
---

zAJ
LU

I.--

1800

1600

1400

1200

1000

800

600

400

200

2si i W ~ id~ i ¶i 2 i3 144
Instrument Level

o Center TCs
* Interior 7C%
* Steam Probes

is i'

140 324

1255

1144

1033

922
Lj

Cr
810~

n-
699 1

588

477

366

0 I I pp Ia

.00 .51 1.02 1.52 2.03
ELEVATION, m

2.54 3.05 VS 68 )r,-

FIGURE A.4. Average Fuel Rod Cladding Temperature Profiles for Interior
and Centerline Thermocouples and Average Steam Probe
Temperatures During Preconditioning (second rise Lo power)
for MT-4

A.4



APPENDIX B

PRETRANSIENT TEST ASSEMBLY TEMPERATURES





APPENDIX B

PRETRANSIENT TEST ASSEMBLY TEMPERATURES

Pretransient temperature data summaries are presented in this appendix.
Steam at -0.378 kg/s (3000 Ibm/h) was used to cool the test assembly, and test
assembly backpressure was maintained at -0.28 MPa (40 psia).

Pretransient axial temperatures for the shroud are shown for adiabatic
tests MT-4.02 and MT-4.03 and for the final test MT-4.04 (Figures B.1, B.2, and
B.3, respectively). Individual corner channel axial temperature profiles are
presented in Figures B.4 through B.6. Modest coolant temperature gradients (in
steam) across the test assembly are evident. Radial coolant channel tempera-
tures were measured by steam probe thermocouples (TCs) (Figures B.7 through
B.9). Average fuel cladding temperatures for interior and centerline TCs and
average steam probe temperatures during the pretransients are shown in
Figures B.10 through B.12. The upper level TC was located in the fuel rod
plenum.

The remainder of this appendix consists of the following graphical data:

FIGURE B.1.

FIGURE B.2.

FIGURE B.3.

FIGURE B.4.

FIGURE B.5.

FIGURE B.6.

FIGURE B.7.

Average Axial Temperature Profile for the
Pretransient for Adiabatic Test MT-4.02

Average Axial Temperature Profile for the
Pretransient for Adiabatic Test MT-4.03

Average Axial Temperature Profile for the
Pretransient for MT-4.04

Corner Axial Temperature Profiles for the
Pretransient for Adiabatic Test MT-4.02

Corner Axial Temperature Profiles for the
Pretransient for Adiabatic Test MT-4.03

Corner Axial Temperature Profiles for the
Pretransient for MT-4.04

Shroud During

Shroud During

Shroud During

Shroud During

Shroud During

Shroud During

Radial Temperature Profiles Across Test Assembly Coolant at
Levels 90.0, 111.0, and 148.2 During Pretransient for Adiabatic
Test MT-4.02
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FIGURE B.8.

FIGURE B.9.

FIGURE B.10.

FIGURE B.11.

FIGURE B.12.

Radial Temperature Profiles Across Test Assembly Coolant at
Levels 90.0, 111.0, and 148.2 During Pretransient for Adiabatic
Test MT-4.03

Radial Temperature Profiles Across Test Assembly Coolant at
Levels 90.0, 111.0, and 148.2 During Pretransient for MT-4.04

Average Fuel Rod Cladding Temperature Profiles for Interior and
Centerline Thermocouples and Average Steam Probe Temperatures
During Pretransient for Adiabatic Test MT-4.02

Average Fuel Rod Cladding Temperature Profiles for Interior and
Centerline Thermocouples and Average Steam Probe Temperatures
During Pretransient for Adiabatic Test MT-4.03

Average Fuel Rod Cladding Temperature Profiles for Interior and
Centerline Thermocouples and Average Steam Probe Temperatures
During Pretransient for MT-4.04
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APPENDIX C

TRANSIENT FUEL AND CLADDING TEMPERATURES

Transient fuel centerline and cladding temperatures for adiabatic tests
MT-4.02 and MT-4.03 and the final test MT-4.04 are presented in this appendix.
The test assembly environment during the transient was steam, or water, or both
with a changing neutron flux depending partially on control rod position and
the changing reactivity of water and steam. The test assembly backpressure was
maintained at -0.28 MPa (40 psia). All of these environmental conditions
affected the fuel and cladding temperatures during the transients.

Test rod interior cladding temperatures are shown for Levels 76.9, 97.9,
and 118.9 in Figures C.1 through C.12 for MT-4.02, MT-4.03, and MT-4.04. Aver-
age fuel temperatures for test and guard rods at Levels 76.9, 97.9, and 118.9
are shown in Figures C.13 through C.24 for MT-4.02, MT-4.03, and MT-4.04.
These figures demonstrate the resultant average guard and test fuel tempera-
tures when using hot spot sensor feedback control. Fuel centerline and plenum
temperatures for test rods 2B, 2E, 5E, and 5B are shown in Figures C.25 through
C.32 for MT-4.02, MT-4.03, and MT-4.04. The temperatures of the brazes at the
top of the fuel (Level 156.0) for MT-4.04 are shown in Figure C.33.

The remainder of this appendix consists of the following graphical data:

FIGURE C.1.

FIGURE C.2.

FIGURE C.3.

FIGURE C.4.

FIGURE C.5.

FIGURE C.6.

Test Rod Interior Cladding Temperature Histories at Level
During Adiabatic Test MT-4.02

Test Rod Interior Cladding Temperature Histories at Level
During Adiabatic Test MT-4.02

Test Rod Interior Cladding Temperature Histories at Level
During Adiabatic Test MT-4.02

Test Rod Interior Cladding Temperature Histories at Level
During Adiabatic Test MT-4.03

Test Rod Interior Cladding Temperature Histories at Level
During Adiabatic Test MT-4.03

Test Rod Interior Cladding Temperature Histories at Level
During Adiabatic Test MT-4.03
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118.9

76.9
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C.1



FIGURE C.7.

FIGURE C.8.

FIGURE C.9.

FIGURE C.10.

FIGURE C.11.

FIGURE C.12.

FIGURE C.13.

FIGURE C.14.

FIGURE C.15.

FIGURE C.16.

FIGURE C.17.

FIGURE C.18.

FIGURE C.19.

FIGURE C.20.

FIGURE C.21.

Test Rod Interior Cladding
for First 90 s of MT-4.04

Test Rod Interior Cladding
for First 90 s of MT-4.04

Test Rod Interior Cladding
for First 90 s of MT-4.04

Test Rod Interior Cladding
for 1500 s of MT-4.04

Test Rod Interior Cladding
for 1500 s of MT-4.04

Test Rod Interior Cladding
for 1500 s of MT-4.04

Temperature Histories at Level 76.9

Temperature Histories at Level 97.9

Temperature Histories at Level 118.9

Temperature Histories at Level 76.9

Temperature Histories at Level 97.9

Temperature Histories at Level 118.9

Average Guard and Test Rod Interior Cladding Temperatures at
Level 76.9 During Adiabatic Test MT-4.02

Average Guard and Test Rod Interior Cladding
Level 97.9 During Adiabatic Test MT-4.02

Average Guard and Test Rod Interior Cladding
Level 118.9 During Adiabatic Test MT-4,.02

Average Guard and Test Rod Interior Cladding
Level 76.9 During Adiabatic Test MT-4.03

Average Guard and Test Rod Interior Cladding
Level 96.9 During Adiabatic Test MT-4.03

Average Guard and Test Rod Interior Cladding
Level 118.9 During Adiabatic Test MT-4.03

Average Guard and Test Rod Interior Cladding
Level 76.9 for First 90 s of MT-4.04

Average Guard and Test Rod Interior Cladding
Level 97.9 for First 90 s of MT-4.04

Average Guard and Test Rod Interior Cladding
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APPENDIX D

TEST COOLANT AND SHROUD TEMPERATURES

It was difficult to measure the temperature of the coolant once reflooding
occurred because much of the time the coolant was in two phases. Thermocouple
(TC) coolant temperature data are thus a rough indication of the steam and
water temperature with the additional effects of the instrument response time
and in situ environment. Test assembly inlet, outlet, and steam probe TCs at
Levels 69.0, 90.0, and 111.0 are shown in Figures D.1 through D.8 for MT-4.04.

Shroud temperatures at Levels 55.9, 76.9, 97.9, 118.9, and 139.9 for
MT-4.02, MT-4.03, and MT-4.04 are shown in Figures D.9 through D.12. It was
important to know the shroud temperature to insure that the shroud did not get
too hot. If it did, it could have warped and delayed removal of the test
assembly from the test site. Shroud temperatures tended to be lower than cool-
ant temperatures, which indicates that heat was transferred radially outward,
allowing the shroud TCs to quench before the coolant TCs. There was a tendency
for upper level shroud and coolant TCs to be hotter, which might be caused by
less quenching by entrained liquid at the higher levels.

The remainder of this appendix consists of the following graphical data:

FIGURE D.1.

FIGURE D.2.

FIGURE D.3.

FIGURE D.4.

FIGURE D.5.

FIGURE D.6.

Steam Probe Temperatures for Rod 2B and Inlet and Outlet Coolant
Temperatures During First 90 s of MT-4.04

Steam Probe Temperatures for Rod 2E and Inlet and Outlet Coolant
Temperatures During First 90 s of MT-4.04

Steam Probe Temperatures for Rod 5B and Inlet and Outlet Coolant
Temperatures During First 90 s of MT-4.04

Steam Probe Temperatures for Rod 5E and Inlet 'and Outlet Coolant
Temperatures During First 90 s of MT-4.04

Steam Probe Temperatures for Rod 2B and Inlet and Outlet Coolant
Temperatures During 1500 s of MT-4.04

Steam Probe Temperatures for Rod 2E and Inlet and Outlet Coolant
Temperatures During 1500 s of MT-4.04
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FIGURE D.7.

FIGURE D.8.

FIGURE D.9.

FIGURE D.1O.

FIGURE D.11.

FIGURE D.12.

Steam Probe Temperatures for Rod 5B and Inlet and
Temperatures During 1500 s of MT-4.04

Steam Probe Temperatures for Rod 5E and Inlet and
Temperatures During 1500 s of MT-4.04

Average Shroud Temperatures at Levels 55.9, 76.9,
and 139.9 During MT-4.02

Average Shroud Temperatures at Levels 55.9, 76.9,
and 139.9 During MT-4.03

Average Shroud Temperatures at Levels 55.9, 76.9,
and 139.9 During First 90 s of MT-4.04

Average Shroud Temperatures at Levels 55.9, 76.9,
and 139.9 During 1500 s of MT-4.04

Outlet Coolant

Outlet Coolant

97.9, 118.9,

97.9, 118.9,

97.9, 118.9,

97.9, 118.9,
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APPENDIX E

NEUTRON FLUX DATA

Neutron flux data were collected by self-powered neutron detectors
(SPNDs), a traveling (vertical) fission chamber,(a) and four 0.127-cm
(0.050-in.) diameter copper wires located within the test assembly next to the
shroud. SPNDs were located at spacer grid elevations, thus limiting their
effect on cladding ballooning. The SPNDs were made from a 15.2-cm (6-in.) long
by 0.381-cm (0.150-in.) diameter shell containing a 10.2-cm (4-in.) long
emitter. The longitudinal axes of the SPNDs were parallel to the fuel rods.
The SPNDs measured neutron flux throughout the test. Flux wire activation pri-
marily represents neutron fluence accumulated during preconditioning. The tra-
veling fission chamber was only used during preconditioning.

The fission chamber and flux wire axial neutron flux profiles for precon-
ditioning are compared in Figure E.1. The lower curves represent measured cop-
per wire activation or neutron fluence normalized to the peak near the test
assembly center. A significant amount of data variation was caused by swaging
that produced nonuniform diameter wire.(b) However, a nominal depression in
neutron fluence is evident at SPND locations. The flux wires were terminated
just below the SPNDs at Level 109.5. The wires were 269 to 274 cm (106 to 108
in.) long, which allowed them to fit into the instrument lead carrier.

The upper curve on Figure E.1 represents the total neutron flux measured
during preconditioning at full power. During full-power operation, the NRU
reactor operated at -110 MW; the MT-4 test assembly produced -2.1 MW. The
traveling fission chamber was used in site J-22, and the MT-4 test assembly was
in the L-24 site. The fission chamber and the test assembly were separated by
two lattice sites; consequently, the fission chamber did not detect the neutron
flux depression caused by the SPNDs.

Neutron flux histories from SPNDs at Levels 25.5 through 151.5 are
provided in Figures E.2 through E.10. Both reliable and failed sensor data are

(a) Allan, C. J., et al. November 1980. "The Development and Use of a
Traveling Flux Detector System for CANDU Reactors." In Proceedings
of the IEEE.

(b) Okazaki, A., and D. A. Kettner. July 1982. Activity Distribution in
Copper Wires from Battelle MT-4 LOCA Simulation Test in NRU. APRP-RP-101,
AECL, Chalk River Nuclear Laboratories, Chalk River, Ontario.
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presented. Some failed sensor signals drifted, some were off-scale, and others
were inexplicably uncalibrated. Axial temperature data have shown that
resultant axial fuel powers were relatively smooth.

During the simulated loss-of-coolant accident (LOCA) transient, light
water was used to reflood the test assembly. In the heavy-water moderated
National Research Universal (NRU) reactor, this introduction of a neutron-
absorbing material resulted in relocation of the dynamic control rod. Up until
the time of the reactor trip, the control rod relocation did not have much
effect on neutron flux in the test assembly. The neutron noise evident in the
figures was primarily caused by water boiling, entrainment, and carryover (or
ejection) from the test assembly.

One previous concern about SPND operation was the effect of temperature on
instrument leads that conduct signals to the data-recording system. Previous
tests have shown the temperature effects on dielectric property changes (and
signal shunting) in the SPND leads. This was not a problem in the MT-3 or MT-4
experiments because all SPND leads were mounted on the shroud walls, which
remained relatively cool during experiment.

This appendix consists of the following graphical data:

FIGURE E.1.

FIGURE E.2.

FIGURE E.3.

FIGURE E.4.

FIGURE E.5.

FIGURE E.6.

FIGURE E.7.

FIGURE E.8.

FIGURE E.9.

FIGURE E.10.

Normalized Axial Neutron Fluence and Neutron Flux Measured During
Preconditioning

Neutron Flux at SPND Level 25.5

Neutron Flux at SPND Level 45.5

Neutron Flux at SPND Level 67.5

Neutron Flux at SPND Level 69.0

Neutron Flux at SPND Level 88.5

Neutron Flux at SPND Level 109.5

Neutron Flux at SPND Level 111.0

Neutron Flux at SPND Level 130.5

Neutron Flux at SPND Level 151.5
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APPENDIX F

REFLOOD FLOW MEASUREMENTS

The reflood flow system included a Fisher-Porter turbine flowmeter in the
high flow rate line and series-connected Barton and Fisher-Porter turbine flow-
meters in a parallel flow rate line. A parallel standby reflood line was also
provided to supply emergency reflood coolant but was not used during the MT-4
experiment. The reflood control system was calibrated prior to the first tran-
sient using steam probe data to determine the water/steam interface during
reflood operation. Three reflood calibration tests were performed at -0.051O
m/s (2 in./s), 0.089 m/s (3.5 in./s), and 0.109 m/s (4.3 in./s).

Reflood flow was determined by turbine flowmeters that measured the total
flow rate into the assembly, by a time domain reflectometry instrument, and by
thermocouples (TCs) at various levels that revealed the reflood level inside
the shroud. Prior to calibration, steam flowed through the test assembly. For
a calibration test, the steam was shut off and the reflood water was turned on.
As the water level increased in the assembly and passed a given level, the TCs
at that level showed a marked decrease in temperature. Reflood flow data for
the three calibration tests are shown in Figures F.1 through F.9.

Transient test starting times and reflood delay times depended on the flow
conditions at the bottom of the active fuel. These flow conditions are related
to the temperature response of TCs located at Level -0.2, which is 0.023 m
(0.9 in.) below the active fuel. The transients began when the steam coolant
was shut off as determined from a quick drop in temperature at Level -0.2. The
reflood initiation times occurred when the reflood water quenched TCs at
Level -0.2 as indicated by a second quick drop in temperature.

The initial three tests--MT-4.01, MT-4.02, and MT-4.03--were adiabatic
tests and did not use reflood water to control temperature. For the final
test--MT-4.04--a combination of the loop control system (LCS) and the data
acquisition and control system (DACS) was used. Once 11 of the 12 test rods
ruptured, the LCS controlled reflood rates at 0.203 m/s (8 in./s) for 6 s,
0.102 m/s (4 in./s) for 6 s, and then 0.0254 m/s (1 in./s) for 3 s. For the
lower reflood rates, the LCS controlled reflood using the low-flow control
value instead of the high-flow control value. Finally, 15 s after the LCS-
initiated reflood, the DACS took over temperature control using variable
reflood rates. The DACS used hot spot sensors (TCs) at Levels 97.9 and 118.9
for temperature feedback control. The resultant reflood rates for MT-4.04 are
shown in Figures F.10 through F.13.
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The remainder of this appendix consists of the following graphical data:

FIGURE F.1.

FIGURE F.2.

FIGURE F.3.

FIGURE F.4.

FIGURE F.5.

FIGURE F.6.

FIGURE F.7.

FIGURE F.8.

FIGURE F.9.

FIGURE F.10.

FIGURE F.11.

FIGURE F.12.

FIGURE F.13.

Total Reflood Flow Rate for Reflood Calibration Test 1

Time Domain Reflectometry Response for Reflood Calibration Test I

Temperatures at Levels -0.2 Through 168.7 for Reflood Calibration
Test 1

Total Reflood Flow Rate for Reflood Calibration Test 2

Time Domain Reflectometry Response for Reflood Calibration Test 2

Temperatures at Levels -0.2 Through 168.7 for Reflood Calibration
Test 2

Reflood Flow Rate for Reflood Calibration Test 3

Time Domain Reflectometry Response for Reflood Calibration Test 3

Temperatures at Levels -0.2 Through 168.7 for Reflood Calibration
Test 3

Total Reflood Flow Rate for First 90 s of MT-4.04
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APPENDIX G

FUEL ROD DEFORMATION DATA

The MT-4 test assembly and fuel rod data were measured and computer-stored
using the disassembly, examination, and reassembly machine (DERM). The
computer-controlled DERM is designed to remotely perform these functions on
radioactive test assembly components when they are available for postirradia-
tion examination.

The test assembly was placed on the DERM for visual examination under
1.83 m (72 in.) of water in the Chalk River Nuclear Laboratories (CRNL) fuel
rod bay. This appendix provides details of fuel rod deformation data. Single
rod cross sections before and after deformation are shown in Figures G.1
through G.12. The axial distribution of average fuel rod diameter measurements
for the bundle are shown in Figure G.13. The corresponding reduced flow area
is shown in Figure G.14, and the corresponding average diametral strain is
shown in Figure G.15. Diametral measurements along the length of the fuel rods
are shown in Figures G.16 through G.27.

The remainder of this appendix consists of the following graphical data:
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Deformation Cross Sections of Test Rod 2C at Various Elevations
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FIGURE G.12.
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Deformation Cross Sections of Test Rod 5D at Various Elevations
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