NRC Research to Support Regulatory Decisions Related to Subsequent License Renewal Periods

> C. E. (Gene) Carpenter, Jr. Group Lead for Aging Management Issues U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Gene.Carpenter@nrc.gov

"I never think of the future, it comes soon enough."

Albert Einstein

Global Age of NPPs

Number of Operating Reactors by Age

Source: International Atomic Energy Agency; http://www.iaea.or.at/programmes/a2/

Why Long-Term Operation

- Steep fall-off in generating capacity if current nuclear operations not sustained
- 5% total U.S. generating capacity lost by 2035; 15% by 2045

Figure 29. U.S. nuclear power plants that will reach 60 years of operation by 2035

- EIA's Annual Energy Outlook 2010 with Projections to 2035 assumes:
 - 30.8 GW retired at 60 years
 - 2.0 GW replaced by new NPPs
 - Remaining capacity replaced by coal or natural gas

EIA AEO 2010 (http://www.eia.doe.gov/oiaf/aeo/nuclear_power.html)

Timing is Critical

License Renewal Granted for Operating Nuclear Power Reactors

Licensed to Operate (104) License Renewal Granted (59)

U.S. Commercial Nuclear Power Reactors— Years of Operation by the End of 2010

Source: U.S. Nuclear Regulatory Commission

Integration of Domestic Nuclear Research Programs

INDUSTRY

- Profit motive / shareholder perspective
- Short term research addressing known problems and managing costs / downtime
- <u>Ex</u>: IASCC Better, faster weld repairs needed for reliability and reduce field repair times

Long Term Operability Program

NRC

- Public health and safety protection perspective
- Confirmatory research addressing known safety issues

Ex: Better testing and repair integrity assurance methods needed

Life Beyond 60 Program

DOE

Long term national interest perspectives

•

- Long term research addressing predictive and improvement opportunities
- <u>Ex</u>: Crack precursors and irradiation damage need to be understood for better predictions and future material selection

LWR Sustainability Program

Individually, each program addresses a specific perspective; collectively, they address the majority of issues that need to be answered for safe extended operations.

Aging R&D Areas

Materials Issues Key

- Materials research key need for existing nuclear reactor fleet
- Materials degradation can lead to increased maintenance, increased downtime, and increased risk
- Materials issues must be resolved for:
 - Reactor Pressure Vessels and Primary Piping
 - Core Internals
 - Secondary System
 - Weldments
 - Concrete
 - Cabling
 - Buried Piping

NRC's Aging Management Research

 NRC research into potential technical issues that may challenge long-term safe operation

Challenges include:

- Reactor vessel and internals
- Electric cable insulation
- Buried/submerged structures
- Concrete exposed to high temperature and radiation

Proactive Management of Materials Degradation

- Develop information
 - Materials behavior
 - Mitigation or repair
 - Inspection or monitoring
- Proactively address potential future degradation
 - Avoid failures
 - Maintain integrity and safety
- Increase cooperation
 - Prioritize PMMD research with industry
 - Pursue additional international collaborations
- Evaluate existing requirements
 - Integrity of susceptible components
 - Inspection and monitoring regulations

Avoid Surprises e.g. V.C. Summer And Davis Besse

NRC Aging Management Research

- Information Tool Knowledge Capture & Utilization
- Identify Degradation Scenarios Not Addressed in NUREG-1801, "Current Generic Aging Lessons Learned (GALL) Report"
- Identify Inspection and Monitoring Programs and Associated Requirements for Highly Likely Degradation Scenarios

NRC Aging Management Research

- Assess Results from Implementation of License Renewal Aging Management Programs and Recommend Improvements for Subsequent License Renewal Periods
- Hold Recurrent NRC/Industry Workshops on Status of Operating Experience from Initial Renewal Term and Industry Research Activities to Address Aging Management Technical Issues for Subsequent License Renewal Periods
- Develop Domestic and International Partnerships to Share Expertise, Capabilities and Resources Related To Aging Management Research

Materials Degradation

- Extending the life of any reactor will require comparing the known modes of materials degradation with the expected service life to identify possible problems
- Materials are a common problem/concern in existing reactors/nuclear facilities
 - Materials degradation can lead to increased maintenance, increased downtime, and increased risk
- Understanding the long-term behavior of materials in a nuclear reactor is critical for safe, reliable, reactor operation

Expanded PMDA

- NRC Developed NUREG/CR-6923, "Expert Panel Report on Proactive Materials Degradation Assessment"
 - Published February 2007
 - Scope encompassed passive components in primary, secondary and some tertiary systems of BWRs and PWRs, the failure of which could lead to a release of radioactivity or affect functionality of safety systems
- NRC updating and expanding PMDA to capture operating period beyond 60 years and to expand scope
 - EMDA will ascertain gaps in present level of understanding of materials degradation during subsequent license renewal periods
 - EMDA will look at materials in passive, long-lived systems, structures and components (e.g., RPV steels, concrete, cables, underground piping, etc.)
 - NRC and DOE LWRSP collaborating on developing EMDA

Workshop on Embrittlement Models

- Development of Predictive Models of Neutron Irradiation Embrittlement in Reactor Pressure Vessel Steels to Support Worldwide Efforts on Nuclear Power Plant Life Extension
- Safe operable lifetime of reactor pressure vessels is regulated by surveillance programs
 - Surveillance programs are, necessarily or by law, limited to
 - Materials of current construction
 - Fluences not much larger than those experienced at end of currently licensed lifetime
- Trend curves in current regulatory use (in US) do not extrapolate well to conditions outside of their calibrated range (e.g., high fluences, low copper)

Conclusions

- Research is necessary to establish basis for long-term operation of existing nuclear plants beyond 60 years, and this research will:
 - Answer safety questions on aging, reliability, and long-term operability of systems, structures and components
- Industry has lead role to drive the process and identify issue resolutions

- Ultimately, life extension is utility business decision

- NRC ensures that safety-significant issues are identified and resolved in a timely manner
 - It is <u>not</u> NRC's responsibility to resolve any potential aging issues that may impact continued safe operation of existing fleet
 - NRC seeking to collaborate with DOE, industry and international partners in an integrated, holistic program to ensure long-term safety