

The Next Generation Nuclear Plant Fuels Development Program

Paul Demkowicz

June 30, 2010

Idaho National Laboratory

NGNP background

NGNP

- Very High Temperature Gas-Cooled Reactor (VHTR)
- He coolant
- Outlet temperature 850-950°C.
- Production of electricity and process heat for industrial applications
- HTGRs have numerous advantages, but a commercial scale demonstration is needed

NGNP Fuels Program:

- Provide a fuel qualification data set in support of NGNP licensing
- Fabricate and test performance of TRISO-coated particle fuel under normal operating and accident conditions

Next Generation Nuclear Plant

Coated particle fuel

TRISO fuel performance

- Coated particle fuel is at the heart of high temperature gas-cooled reactor performance
- Fuel research, development and qualification is focused on demonstrating fuel performance under normal and accident conditions
 - ⇒Can be fabricated with very low defect fractions (≤10⁻⁵)
 - The fuel is very robust with no expected failures during irradiation and under accident conditions
 - Fission product retention within particles results in a high degree of safety

daho National Laboratory

The AGR challenge

German Fuel has historically demonstrated 1,000 times better performance than U.S. fuel.

daho National Laboratory

4

NGNP Fuel program elements

NGNP fuel irradiation tests

daho National Laboratory

TRISO particle fabrication

Particle fabrication

Kernel fabrication

- Key characteristics:
 - Diameter
 - Chemistry
 - Homogeneity
 - Sphericity

Coatings

- Key characteristics:
 - Coating thickness
 - Coating uniformity
 - Low defect fractions
 - Pyrocarbon anisotropy
 - Buffer density
 - SiC grain structure
 - Carbon dispersion in SiC

Compact fabrication

- Key Characteristics:
 - Matrix density
 - Particle packing fraction
 - Uniform particle distribution
 - Dimensional tolerances
 - Heavy metal contamination

Next Generation Nuclear Plant

Fabrication accomplishments

- Established capability to fabricate and characterize TRISO -coated particle fuel in the U.S. after a 10-15 year hiatus
- Developed a significantly improved understanding of how to fabricate high-performing TRISO fuel providing the technical basis for co-location in industrial complexes
- Currently fabricating high-quality, low-defect (about 1 defect in every 100,000 particles) TRISO-coated fuel particles at industrial scale (B&W). This has never been done in the U.S. before
- Establishing a domestic vendor and associated fundamental understanding of key fuel fabrication parameters establishes credibility that the historical industrial experience from Germany in the 1980s is repeatable and has a sound technical basis

Next Generation Nuclear Plant

Idaho National Laboratory

AGR-1 irradiation

- Irradiation in ATR large B-hole
- Test train consists of six separate capsules with independent temperature control and fission product monitoring
- Fuel compacts:
 - 3 fuel stacks
 - 4 compacts/stack
 - 12 fuel compacts/capsule
- Irradiation goals:
 - 14% FIMA < Burnup < 18% FIMA</p>
 - − T_{max} < 1250°C, T_{avg} ~ 1150°C
 - Fast fluence < 5 x 10^{25} n/m²

Next Generation

AGR-1 Irradiation

- Began Dec 2006
- Completed Nov 2009
- 622 effective full power days of irradiation
- Peak burnup > 19% FIMA with zero failures out of 300,000 total particles
- Very low fission gas release-to-birth ratios during the irradiation (generally much less than 10⁻⁷)

Next Generation

AGR-1 burnup and temperatures

Capsule	Burnup (%FIMA)	Time average temperatures (°C)		
		Peak	Volume average	Minimum
1	13.4 - 17.2	1162	1038	840
2	16.0 – 19.1	1238	1101	885
3	17.1 – 19.6	1211	1076	858
4	16.5 – 19.5	1254	1121	902
5	14.3 – 18.4	1231	1097	883
6	11.5 – 15.0	1183	1076	886

AGR-1 post-irradiation examination

- Assess the performance of NGNP particle fuel under normal and accident conditions
 - Fission product retention of particles
 - Coating/kernel microstructure and integrity
- Support fuel fabrication effort by providing feedback on the relationship between fuel processing, properties, and performance
- Provide data to support development and validation of fuel performance and fission product transport models
- Facilities at INL and ORNL upgraded to support AGR fuel PIE
- AGR-1 PIE began in March 2010

PIE activities overview

Test train inspection and disassembly

- Fuel inspection and dimensional measurements
- Compact and particle micro-analysis to evaluate coating integrity
- Compact deconsolidation and particle inspections

spectrometry

- **Next Generation** Nuclear Plant
- Accident testing to determine fission product release at 1400 1800°C

Leach-burn-leach testing for failure fraction analysis

Idaho National Laboratory

Safety testing

- High temperature (1400-1800°C) testing of compacts in flowing helium
- Measure releases of fission gases (Kr, Xe) and fission metals (Ag, Cs, I, Sr, Eu)
- Verify fuel performance under simulated accident conditions
- Additional testing in air/moisture mixtures will be needed to simulate air/moisture ingress accidents

Next Generation

Nuclear Plant

Fuel Accident Condition Simulator (FACS) Furnace

AGR program summary and accomplishments

- Fuel development and qualification needed to support NGNP program
- 8 fuel irradiation experiments are planned to examine fuel performance and fission product transport, qualify a reference fuel, and support code development
- Completed most successful U.S. irradiation of TRISO-coated particle fuel (AGR-1). 300,000 particles tested to peak burnup of 19.6% FIMA and peak temperatures less than 1250°C under prototypical HTGR conditions with no failures
- Upgraded INL and ORNL facilities and initiated AGR-1 PIE
- Completed fabrication of AGR-2 fuel produced by industrial teams (B&W, PBMR and CEA/CERCA)
- Fabrication and assembly of AGR-2 irradiation capsule is complete; irradiation to begin in June 2010
- Design of AGR-3/4 is underway