ENCLOSURE 6

PRAIRIE ISLAND NUCLEAR GENERATING PLANT SUPPORTING ENGINEERING EVALAUTIONS

EC 16275

Report Date: 06/11/2010

EC Number: 0000016275 **Revision:** 000

Engineering Change

EC Number: Status/Date:	0000016275 CLOSED	000 06/10/2010	Facility Type/Sub-ty	: Pi pe: EVAL	1
	ECTS OF PIPE ERNAL FLOODII		IS FOR VARIOUS PIP	E COMBINATIO	ONS FOR
Mod Nbr:	K	W1: KW2:	KW3:	KW4:	KW5:
Master EC	:	Work Group	:	Temporary	y :
Outage	:	Alert Group	: E-REG PROG	Aprd Req.	Dt. : 07/01/2010
WO Required	: N	Image Addr	:	Exp Insvc	Date :
Adv Wk Appvd	:	Alt Ref.	:	Expires O	n :
Auto-Advance	:	Priority	:	Auto-Asbu	uild :
Caveat Outst	:	Resp Engr	: PTTD06		

Units and Systems

Facility	<u>Unit</u>	<u>System</u>	System D	Description
Pl	0	ОТН	OTHER	
Attributes				
Attribute Name	Value	Updated By	Last Updated	Notes
SCRN NO	NA	PTTD06	06/10/2010	This evaluation does not support design basis.
SIMULATOR				
SYSTEM HEALTH				
EVAL NO				
PORC DTE				
PRIORITY RANKING				

Report Date: 06/11/2010

opic	ļ	Notes							
DESCRIPTION		See Attached in sl	harepoint.		· · · ·				
JUSTIFICATION		See Attached in sl							
	NTS (Owners comments: 14" Table Interaction 186 should be interaction 188. Tthe remainder of data stay the same for the line item.							
		16" Table One interaction ne	eds to be added	d (it will be bounded	by interaction 15)				
		20 ID 19.25 Wall Thick 0.375 Area (In^2 1.80 Target ID 16-2CL-9 [32] So 30 Thickness 0.375 Distance 6" Operating Pressur 24" Table Interaction 20a ne The above comment Interaction 151 wat AES was requested	2)291 Crack Si ch re of 20-2CD-7 = reds to be added ents were incorp as requested to to ed not to pursue	- 420 psig I. The data is identio orated. De assessed. Howe	cal to Interaction 20. ver, the results were not coming out favorably. on further as it was acknowledged that the wns.				
·	es		Data	D.(cription				
	Sub	STATILE							
XRef <u>Number</u>	<u>Sub</u>		<u>Date</u>	Reference Des	•				
XRef <u>Number</u>	<u>Sub</u>	<u>Status</u> APPROVED	04/15/2009		g calculation for Turbine Building				
XRef <u>Number</u> AR 01178236					•				
XRef <u>Number</u> AR 01178236 Affected Docun					•				
XRef <u>Number</u> AR 01178236 Affected Docun Milestone				No HELB flooding	•				
	nents	APPROVED	04/15/2009	No HELB flooding	g calculation for Turbine Building				

Report Date: 06/11/2010

Milestone				
<u>Milestone</u>	Date	ID	Name	<u>Req By</u>
Notes:	Suitability review pattached in Sharpo incorporated. EC is	int. Comments list	lified individual and ted in Topic Notes were	
CLOSE	06/10/2010	LDWHIP01	Whipple, Linda D	CLOSED
Notes:				
PRE JOB BRIEF	06/10/2010	PTTD06	Potter, David J	
Notes:				
PREPARED (EVL)	06/10/2010	PTTD06	Potter, David J	H/APPR
Notes:				

Document References

Facilty	Doc-Type	Sub-Type	Doc #	<u>Sheet</u>	<u>Rev</u>	Minor Rev	Date
PI	EC		0000016275		000		06/10/2010

Report Date: 06/11/2010

Page 4 of 4

Xcel Energy

Page 1 of 1

External Design Document Suitability Review Checklist

External Design Document Being Reviewed:Engineering Evaluation

Title: Technical Backup for Turbine Building HELB Screening Evaluation

Number:	PI-996-83-S01	Rev:	1	Date:	6/10/10	
			A			

This design document was received from:

Organization Name: AES

PO or DIA Reference: EC16275

The purpose of the suitability review is to ensure that a calculation, analysis or other design document provided by an External Design Organization complies with the conditions of the purchase order and/or Design Interface Agreement (DIA) and is appropriate for its intended use. The suitability review does not serve as an Independent verification. Independent verification of the design document supplied by the External Design Organization should be evident in the document, if required.

The reviewer should use the criteria below as a guide to assess the overall quality, completeness and usefulness of the design document. The reviewer is not required to check calculations in detail.

RE\	/IEW		
		Reviewed	N/A
1.	Design inputs correspond to those that were transmitted to the External Design Organization.	\boxtimes	
2.	Assumptions are described and reasonable.	\boxtimes	
3.	Applicable codes, standards and regulations are identified and met.	\boxtimes	
4.	Applicable construction and operating experience is considered.	\boxtimes	
5.	Applicable structure(s), system(s), and component(s) are listed.	\boxtimes	
6.	Formulae and equations are documented. Unusual symbols are defined.	\boxtimes	
7.	Acceptance criteria are identified, adequate and satisfied.	\boxtimes	
8.	Results are reasonable compared to inputs.	\boxtimes	
9.	Source documents are referenced.	\boxtimes	
10.	The document is appropriate for its intended use.	\boxtimes	
11.	The document complies with the terms of the Purchase Order and/or DIA.		
12.	Inputs, assumptions, outputs, etc. which could affect plant operation are enforced by adequate procedural controls. List any affected procedures.		\boxtimes
13.	Plant impact has been identified and either implemented or controlled. (e.g., For piping analyses, the piping and support database is updated or a tracking item has been initiated.)		
14.	Design and Operational Margin have been considered and documented.		\boxtimes

David Potter Completed by: Date: 6/10/2010

Form retained in accordance with record retention schedule identified in FP-G-RM-01.

•	
	1

				· · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Calculatio	n Number:	PI-996-83-S01						
Calculatio	Calculation Title: Technical Backup for Turbine Building HELB Screening Evaluation							
Client:	XCE	L Energy		Station: PINGP				
Project Nu	imber: PI-9	96-83		Unit(s):				
Project Ti	Project Title: PRA HELB Screening							
Safety Rel	ated Yes	No 🖂						
Revision	Affected Pages	Revision Description	Ap Da	oproval Signature / ite	Signature / Initials of Preparers & Reviewers			
0	All	Initial Issue		A.V. Setlur	Prepared by: David DeGrush Reviewed by: Olof Andersson			
1	All	Piping interaction tables and associated references revised.		A.V. Setlur 6/10/2010	Prepared by:			

of 39

a. a. a.	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
REVIEWER'S CHECKLIST F	OR DESIGN CALCULATIONS			SHEET 1 of 2		
STATION: PINGP NUCLEAR SAFETY RELATED: YES NO PROJECT NO: PI-996-83 CLIENT: NMC, LLC CALCULATION TITLE: Technical Backup for Turbine Building HELB Screening Evaluation						
CALC. NO: <u>PI-996-83-</u>	<u>S01</u> CALC. REV. NO: 1					
INDICATE THE DESIGN INP	UT DOCUMENTS USED:		1			
TYPE OF DOCUMENT	DOCUMENT ID, REV AND/OR DATE	YES	N/A	COMMENT		
1. General Design Basis	Ref. 1 - 11	X				
2. System Description			X			
3. Design information package from related equipment vendor			x			
4. Electrical Discipline Input			х			
5. Mechanical Discipline Input			x			
6. Control Systems Discipline Input			х			
7. Structural Discipline Input			х			
8. Specifications			х			
9. Vendor Drawings			х			
10. Design Standards	Ref. 9	x				
11. Client Standards			x			
12. Checked Calculations	Ref. 1, 7	X				
13. Other (specify)			Х	· ·		
PREPARER'S SIGNATURE: D. DeGrush DATE: 6/10/2010 REVIEWER'S SIGNATURE: Interface APPROVER'S SIGNATURE: A.V. Setlur DATE: 6/10/2010						

Calculation Package

r

REVIEWER'S CHECKLIST FOR DESIGN CALCULATIONS	HECKLIST FOR DESIGN CALCULATIONS SHEET 2 of 2				
PROJECT NO: PI-996-83					
CALC. NO: <u>PI-996-83-S01</u>		[
REVIEWER TO COMPLETE THE FOLLOWING ITEMS:	YES	NO	N/A	COMMENT	
1. Has the purpose of the calculation been clearly stated?	X	M145 N6461 - 655 77 1			
2 Have the applicable codes, standards and regulatory requirements been:					
A. Properly Identified?	x				
B. Properly Applied?	X				
3. Were the inputs correctly selected and used?	X				
4. A. Was Design Input Log used?			X		
B. If 4A is No, provide Manager's signature in Comment column to signify approval of Design Input Documents used in the calculation.				fill bethen	
5. Are necessary assumptions adequately stated?	·X				
6. Are the assumptions reasonable?	x				
7. Was the calculation methodology appropriate?	X				
8. Are symbols and abbreviations adequately identified?	X				
9. Are the calculations:					
A. Neat?	X				
B. Legible?	X				
C. Easy to follow?	X				
D. Presented in logical order?	X				
E. Prepared in proper format?	X				
10. Is the output reasonable compared to the inputs?	X			Reviewed by Detailed Check	
11. If a computer program was used:					
A. Is the program listed on the ASL and has the SRN been reviewed for any program use limitations?			X		
B. Have existing user notices and/or error reports for the production version been reviewed as appropriate?			Х		
C. Were codes properly verified?			X		
D. Were they appropriate for the application?	X				
E. Were they correctly used:	X				
F. Was data input correct?	X				
G. Is the computer program and revision identified?	X			LS-DYNA	

	Automated Engineering CALCULATION SHEET	Page: 4 of 39		
	Services Corp		Calc. No.: PI-996-83-S01	
Client: Xcel E	nergy Nuclear	Revision: 1		
Station: Prairi	e Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush	
Calc. Title: Te	chnical Backup for	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson	
Safety Related	I Yes] X	Date: 6/10/2010	
		TABLE OF CONTENTS		
		<u> 1.00000 00 0000000000</u>		
Sectio	Dn		Page	
1.	Purpose		5	
2.				
3.		ia		
4.				
5.				
6.				
7. 8.		· · · · · · · · · · · · · · · · · · ·		
8 . 9.				
,				
			x .	
Form 3.1-3		•		Rev. 2

	Automated		Page: 5 of 39			
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01			
Client: Xcel E	nergy Nuclear		Revision: 1			
Station: Prairi	e Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush			
Calc. Title: Te	chnical Backup for	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson			
Safety Related	d Yes] X	Date: 6/10/2010			
1.0 <u>Purpo</u>	1.0 <u>Purpose/Objective</u>					
The purpose of this calculation is to perform analysis of pipe-on-pipe impact interactions using finite element simulation. The objective is to quantify the effect of impact of the projectile pipe on a target pipe. The anaylsis will evaluate the impact of specific postulated interactions at the Prairie Island Nuclear Generating Plant (PINGP).						
2.0 <u>Metho</u>	dology					
Analytic	Analytical models of two pipe interactions (collisions) are prepared using the Finite Element Simulation code					

Analytical models of two pipe interactions (collisions) are prepared using the Finite Element Simulation code LS-DYNA. The models were comprised of a projectile or moving pipe and a stationary Target Pipe. The physical scenario being analyzed is a postulated catastropic failure occurring in a pressurized piping system producing a projectile pipe which ultimately impacts a stationary or target pipe. The damaged caused by the projectile pipe to the target pipe is evaluated using the finite element code.

The analyses are performed on actual pipe to pipe interactions pairs identified via plant walkdown at PINGP. Engineering evaluations using key parameters identified the specific bounding interaction pairs for each target pipe size. These bounding interactions were modeled to determine the extent of the damage caused by a postulated collision. If the resulting damage for these limiting cases is shown to be acceptable then any damage resulting from the other interactions can be assumed to fall within acceptable limits.

This calculation is classified as Non-Safety Related since it does not result in a design document. The inputs were based upon reasonable and, where possible, conservative values which produced generally conservative results.

Software

MathCad software is used to generate this calculation. All MathCad calculations are independently verified for accuracy and correctness as if they were manually generated.

LS-DYNA is used to analyze the pipe to pipe interactions. LS-DYNA is a general purpose explicit/implicit finite element code used to analyze the nonlinear dynamic response of three-dimensional and two-dimensional inelastic structures. Its fully automated contact analysis capability and error checking features have enable users in various industries worldwide to successfully solve many complex crash, forming and other problems. Previously LS-DYNA has been used successfully to analytically model actual experimental pipe to pipe interactions (Ref. 6) which makes it an ideal tool for this analysis. LS-DYNA is not on the AES Approved Software List but it has been used extensively in the industry for non-linear analyses. As such its use is acceptable for this non-safety related application.

	Automated Engineering Services Corp	CALCULATION SHEET	Page: 6 of 39
			Calc. No.: PI-996-83–S01
Client: Xcel E	nergy Nuclear	Revision: 1	
Station: Prairi	ie Island Nuclear Ger	Prepared By: D. DeGrush	
Calc. Title: <u>Te</u>	echnical Backup for 7	Reviewed By: O. Andersson	
Safety Related	d Yes	Date: 6/10/2010	
			J

3.0 Acceptance Criteria

This analysis will be utilized to provide technical backup to support an evaluation which attempts to screen postulated HELB piping interactions within the Turbine Building. The interactions will be screened as those which could significantly contribute to flooding and those that will not. Previous Probabalistic Risk Assessment (PRA) has concluded that leakage flows within the turbine building less than 5000 gpm do not pose a significant threat to plant design basis operation (Ref. 1).

Analysis has shown that 5000 gpm would exceed the expected flowrate through a 4" diameter pipe at system operating pressures of approximately 100 psig which is roughly that of a service water or fire protection system (Ref. 2). The cross sectional flow area of a 4" pipe is approximately 12.7 in². Therefore a non-threatening pipe interaction will be that considered to cause no more than a 12.7 in² opening in the target pipe.

	Automated Engineering Services Corp	CALCULATION SHEET	Page: 7 of 39
			Calc. No.: PI-996-83-S01
Client: Xcel E	nergy Nuclear	Revision: 1	
Station: Prairi	e Island Nuclear Ge	Prepared By: D. DeGrush	
Calc. Title: Te	chnical Backup for	Reviewed By: O. Andersson	
Safety Related	l Yes] X	Date: 6/10/2010
· · · · · · · · · · · · · · · · · · ·			

4.0 Assumptions

1. Only orthogonal perpendicular pipe interactions are considered due to their bounding nature based upon previous testing and analysis. (Ref. 5). Any departure from perpendicularity between the plane of motion of the projectile pipe and the axis of the target pipe would have resulted in a lesser component of the maximum impact force between the pipes.

2. A conservative length of 15 ft is arbitrarily chosen for the projectile pipe to maximize impact forces. The longer the projectile pipe the larger the moment formed about the rotation hinge and thus the greater the impact force. Based upon typical piping geometries, support spacing and general clearances within the plant it is not reasonable to assume projectile pipe lengths longer than 15 ft could occur and move freely without interference from other structures.

3. The theoretical impact point on the projectile pipe is chosen as 10 ft from the fixed base to maximize imparted energy to the target pipe. Previous testing has shown that maximum damage will occur when the impact occurs from 50 to 75% length of the projectile pipe from the hinge Ref.(6). In the event that the plastic hinge forms away from the base the impact zone should fall within this range on the Projectile Pipe.

4. The impact point on the Target pipe is conservatively chosen at the midpoint of the span which maximizes the imparted forces to the pipe. (Ref. 5)

5. The intact end of the projectile pipe is conservatively modeled as rigidly supported (fixed) to maximize impact forces to the Target Pipe. A lesser boundary condition would allow the intact end to deflect or move away from the projected impact and thus reducing the severity of the impact.

6. The blowdown force is assumed to always act perpendicular to the axis of the Projectile pipe. This will maximize the rotational moment of the Projectile pipe, increasing the angular velocity and maximizing the impact force.

7. The length of the Target pipe is reasonably chosen as 1/2 the recommended maximum spacing between piping supports as specified in ASME B31.1 piping code, Table 121.1.4.(Ref. 9) Piping support spacing can vary somewhat throughout the plant and between plants but this is a reasonable input based upon actual field installations.

8. Both pipes are modeled as filled with water. The greater mass will increase the impact energy and maximize the impact result.

9. Material properties for A106 Grade B Carbon Steel are assumed for both pipes.

10. The identical True Stress-Strain curve at elevated temperature is used for both pipes which is conservative due to the fact that the Target pipe is actually at lower temperature which would increase the material strength of this pipe.

11. The internal pressure in both pipes is conservatively assumed to be atmospheric.

12. Failure will occur at 25% Strain. (Ref. 8)

Form 3.1-3

	Automated Engineering Services Corp	CALCULATION SHEET	Page: 8 of 39
			Calc. No.: PI-996-83–S01
Client: Xcel E	Energy Nuclear	Revision: 1	
Station: Prairi	ie Island Nuclear Ger	Prepared By: D. DeGrush	
Calc. Title: Technical Backup for Turbine Building HELB Screening Evaluation			Reviewed By: O. Andersson
Safety Related	d Yes		Date: 6/10/2010

5.0 Design Inputs

5.1 <u>Material Properties</u>

The following true stress-strain curve is used for both pipes (Ref 3).

Eng	Eng.	True	True
Strain	Stress	strain	Stress
0.0010	4.29E+04	0.0010	42965
0.0020	4.39E+04	0.0020	44023
0.0025	4.42E+04	0.0025	44326
0.0050	4.45E+04	0.0050	44766
0.0075	4.49E+04	0.0075	45247
0.0100	4.56E+04	0.0100	46008
0.0125	4.60E+04	0.0124	46585
0.0150	4.64E+04	0.0149	47053
0.0175	4.66E+04	0.0173	. 47374
0.0200	4.75E+04	0.0198	48427
0.0225	4.91E+04	0.0223	50232
0.0250	5.07E+04	0.0247	51951
0.0300	5.29E+04	0.0296	54471
0.0350	5.49E+04	0.0344	56822
0.0400	5.67E+04	0.0392	59002
0.0450	5.82E+04	0.0440	60819
0.0500	5.98E+04	0.0488	62746
0.0750	6.42E+04	0.0723	68969
0.1000	6.67E+04	0.0953	73395
0.1250	6.85E+04	0.1178	77023
0.1500	6.92E+04	0.1398	79578
0.2000	6.97E+04	0.1823	83587
0.2840	6.97E+04	0.2500	89438

Density for Carbon Steel per Reference [23] :
$$\rho_{CS} \coloneqq 0.283 \frac{lbf}{in^3}$$

Form 3.1-3

Rev. 2

١

	Automated Engineering	CALCULATION SI	HEET	Page: 9 of 39
	Services Corp			Calc. No.: PI-996-83-S01
Client: Xcel E	Energy Nuclear			Revision: 1
Station: Prairi	ie Island Nuclear Ge	nerating Station		Prepared By: D. DeGrush
Calc. Title: <u>Te</u>	echnical Backup for	Turbine Building HELB Screening	Evaluation	Reviewed By: O. Andersson
Safety Related	d Yes	<u> </u>		Date: 6/10/2010
Proje	14 in Sch.XS, 14 in 16 in Sch 30, 16 in 24 in Sch 20, 24 in ectile Pipe sizes cons 8 in Sch 80, 8.625 12in Std Sch., 12.7 16 in Sch 30 (data 20 in Sch 20, 20 in	red in this evaluation are as follows n OD, 0.5 in wall thickness, . OD, 0.375 in wall thickness, . OD, 0.375 in wall thickness, sidered (Ref. 7) in OD, 0.5 in wall thickness, 75 in OD, 0.375 in wall thickness, given above for Target Pipe) OD, 0.375 in wall thickness,	· · ·	I.4 (Ref. 9)
		on cases are identified in Section 6.	1 (8.625)	Case 1 - Interaction 186/190
	Diameter	ers for Interaction Pairs (Ref. 7) D _{p.o}	12.75 16	Case 2 - Interaction 191 Case 3 - Interaction 15 Case 4 - Interaction 19/109 Case 5 - Interaction 20/123 Case 6 - Interaction 48
Wail T	hickness	t _p :=	(0.500 0.375 0.375 0.375 0.375 0.375 0.375	

	Automated	CALCULATION SHEET		Page: 10 of 39
	Engineering Services Corp			Calc. No.: PI-996-83-S01
Client: Xcel E	nergy Nuclear	Revision: 1		
Station: Prairi	e Island Nuclear Ge	nerating Station		Prepared By: D. DeGrush
Calc. Title: <u>Te</u>	chnical Backup for	Turbine Building HELB Scr	eening Evaluation	Reviewed By: O. Andersson
Safety Related	I Yes	<u> </u>	, 	Date: 6/10/2010
Inner C	Diameter	$D_{p,i} := D_{p,o} - 2t_p$	$D_{p.i} = \begin{pmatrix} 7.625\\ 12.000\\ 15.250\\ 19.250\\ 15.250\\ 19.250 \end{pmatrix}$	in
Operat	ing Pressure in Proj	ectile Pipe (Ref. 7)	$P_{p} := \begin{pmatrix} 685 \\ 420 \\ 420 \\ 420 \\ 420 \\ 420 \\ 420 \\ 420 \end{pmatrix} psi$	
Mass o	of Pipe (Ref. 11)		$m_{p.p} := \begin{pmatrix} 43.4 \\ 49.6 \\ 62.6 \\ 78.6 \\ 62.6 \\ 78.6 \end{pmatrix} \xrightarrow{\text{Ib}}_{\text{ft}}$	
Mass o	of Water Inside Pipe	(Ref. 11)	$m_{p.w} := \begin{pmatrix} 19.8 \\ 49.0 \\ 79.1 \\ 125.7 \\ 79.1 \\ 125.7 \end{pmatrix}$	<u>lb</u> ft
Total M	lass of Pipe m	$p := m_{p.w} + m_{p.p}$	$m_{p} = \begin{pmatrix} 63.2 \\ 98.6 \\ 141.7 \\ 204.3 \\ 141.7 \\ 204.3 \end{pmatrix} \cdot \frac{lb}{ft}$	

Form 3.1-3

Rev. 2

Client: Xcel Energy Nuclear	<u> </u>	
		Revision: 1
tation: Prairie Island Nuclear G	enerating Station	Prepared By: D. DeGrush
Calc. Title: Technical Backup for	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson
afety Related Yes		Date: 6/10/2010
Inner Cross-Sectional Area of Pipe	$A_{p,l} := \frac{\overline{\pi \cdot D_{p,i}^2}}{4}$	$A_{p,I} = \begin{pmatrix} 45.7 \\ 113.1 \\ 182.7 \\ 291.0 \\ 182.7 \\ 182.7 \\ 291.0 \\ 182.7 \\ 1$
Length of Projectile Pipe (Assumption #2)	(291.0) L _p := 15ft
Theoretical Position of Im		_p := 10ft
Target Pipe Parameters fo	r specific interaction pairs (Ref. 7)	
Outer Diameter		$D_{t.0} := \begin{pmatrix} 14 \\ 14 \\ 16 \\ 16 \\ 24 \\ 24 \end{pmatrix} \text{ in }$
Wall Thickness		$t_{t} := \begin{pmatrix} 0.500 \\ 0.500 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.375 \\ 0.375 \end{pmatrix} in$
Inner Diameter	$D_{t.i} \coloneqq D_{t.o} - 2t_t$	$D_{t,i} = \begin{pmatrix} 13.00\\ 13.00\\ 15.25\\ 15.25\\ 23.25\\ 23.25\\ 23.25 \end{pmatrix} \cdot \text{in}$
Form 3.1-3		Rev

Automated	CALCULATION SHEET	Page: 12 of 39	
Engineering Services Corp		Calc. No.: PI-996-83-S01	
Client: Xcel Energy Nuclear		Revision: 1	
Station: Prairie Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush	
Calc. Title: <u>Technical Backup for</u>	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson	
Safety Related Yes		Date: 6/10/2010	
Mass of Pipe (Ref. 11)		$m_{t.p} := \begin{pmatrix} 72.1 \\ 72.1 \\ 62.6 \\ 62.6 \\ 94.6 \\ 94.6 \\ 94.6 \end{pmatrix} \xrightarrow{ b }{ft}$	
Mass of Water Inside Pipe	(Ref. 11)	$m_{t.w} := \begin{pmatrix} 57.5 \\ 57.5 \\ 79.1 \\ 79.1 \\ 184.0 \\ 184.0 \end{pmatrix} \xrightarrow{lb} ft$	
Total Mass of Pipe	$m_t := m_{t.w} + m_{t.p}$	$m_{t} = \begin{pmatrix} 129.6 \\ 129.6 \\ 141.7 \\ 141.7 \\ 141.7 \\ 278.6 \\ 278.6 \\ 278.6 \end{pmatrix} \cdot \frac{1b}{ft}$	
Inner Cross-Sectional Area of Pipe	$A_{t,I} := \frac{\overrightarrow{\pi \cdot D_{t,i}^2}}{4}$	$A_{t.I} = \begin{pmatrix} 132.7 \\ 132.7 \\ 182.7 \\ 182.7 \\ 182.7 \\ 424.6 \\ 424.6 \\ 424.6 \end{pmatrix} \cdot \ln^2$	
Form 3.1-3			

ł.

	Automated	CALCULATION SHEET	Page: 13 of 39		
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client: X	cel Energy Nuclear		Revision: 1		
Station: 1	rairie Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush		
Calc. Titl	: Technical Backup for	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson		
Safety Re	ated Yes		Date: 6/10/2010		
6.0 <u>A</u>	ALYSIS				
6.1 <u>M</u>	odeling Discussion				
The model considers only orthogonal / perpendicular pipe interactions based upon previous studies (Ref. 5). Both pipes were modeled as cylinders containing water. The water itself was not specifically modeled but the water in the pipes were included in the model as a non-participating structural mass. Which is to say the water mass is evenly distributed about the structure but does not alter the material or dimensional properties of the pipes. The pipes were modeled with ASTM A106 Grade B Carbon Steel material properties. The target pipe was modeled as a span of pipe supported at each end. At both ends the pipe was constrained axially (X direction) via a rigid spring. The pipe was rigidly supported from translational motion in the directions perpendicular to the pipe axis (Y-Z). Rotationally, the target pipe was allowed some movement about all axes via rotational springs. The length of the target pipe is based upon recommended B31.1 maximum support spacing as detailed in Assumption #7					
ai le hi pr m	The catastrophic failure of the moving pipe produces a jet force at the failed end which produces a moment arm and causes the pipe to rotate about a plastic hinge. This moment arm is conservatively assumed to be 15 ft in length and based upon previous testing (Ref. 2) is assumed to contact the target pipe 10 ft from the plastic hinge. The pipe rotates in a plane perpendicular to the axis of the target pipe and impacts the target pipe in a perfect "cross" blow at some point in its travel. The jet or blowdown force acting on the broken end of the moving pipe is determined via the equation $F_{bd} = 1.2 \times P_{op} \times A_{cs}$ where P_{op} is the line operating pressure and A_{cs} = Pipe Cross Sectional Area. (Ref 10)				

The actual Blowdown Force acting on Projectile Pipe for the bounding interaction cases are as follows:

Blowdown force

$$\mathbf{F}_{\mathbf{p}} := \overline{\left(\mathbf{1.2P}_{\mathbf{p}} \cdot \mathbf{A}_{\mathbf{p},\mathbf{I}}\right)}$$

$$F_{p} = \begin{pmatrix} 3.8 \times 10^{4} \\ 5.7 \times 10^{4} \\ 9.2 \times 10^{4} \\ 1.5 \times 10^{5} \\ 9.2 \times 10^{4} \\ 1.5 \times 10^{5} \end{pmatrix}$$
 lbf

Form 3.1-3

1

	Automated Engineering CALCULATION SHEET		Page: 14 of 39
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01
Client: Xcel E	nergy Nuclear		Revision: 1
Station: Prairi	e Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush
Calc. Title: Te	chnical Backup for	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson
Safety Related	d Yes		Date: 6/10/2010
pipe was calculat resistan This sca Referen piping s A more software conditio Projectil stationa was cor actual p location The soft event. Velocity conside moving pipe thio	s modelled just conta ed assuming the proj ice. The hinged end enario was much to c ce 5 addresses this i ystem behavior. realistic modelling ap e allowed the entire a ns as inputs. Specif le pipe interactions a ry projectile pipe sim istrained as would be lastic hinge in the pi . As this hinge formet tware then determine red from Reference 7 pipe is thinner than the ckness to diameter reference 7	e considered for the projectile pipe. In the first s acting the target pipe with a calculated angular ve- ectile pipe rotates about a purely plastic hinge w is constrained from any translational movement conservative and too limiting when considering la modelling scenario as completely theoretical and proach was possible due to the capabilities of th ctual event to be modelled rather just a portion w ically the model was made using actual bounding s obtained from Reference 7. At t =0 an instanta ulating the blowdown force due to a pipe break. The case in an actual piping system. The mode rojectile or moving pipe rather than assuming an ed the projectile pipe rotates via the blowdown for s the deformation and the residual damage to bo mined using actual separation distances determing . The interaction pairs could be categoried in two he target pipe and those where the two pipe thick atio is less than 0.065. Additionally the interaction body and 14 inch.	elocity. The initial velocity was thich offers no rotational or rotation about any other axis. rger diameter moving pipes. I not being a credible "real-life" the LS-DYNA software. This which used theoretical, ideal initial g orientations of Target pipe vs aneous force was applied to the The other end of the projectile pipe el calculated the formation of the ideal actual hinge at an assumed when pipes at the conclusion of the the pipes at the conclusion of the constant of the pipes of the pipes of general groups, those where the kness are equal and the target on pairs contain only 3 distinct
target p	ipe sizes, 24 inch, so	chedule 20; 16 inch, schedule 30 and 14 inch, sc	hedule xs pipe.

.

	Automated	1981-1990-1990-1990-1990-1990-1990-1990-	Page: 15 of 39					
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01					
Client: Xcel E	Energy Nuclear	Revision: 1						
Station: Prairi	ie Island Nuclear Ger	Prepared By: D. DeGrush						
Calc. Title: Te	echnical Backup for	Reviewed By: O. Andersson						
Safety Related	Safety Related Yes X Date: 6/10/2010							
6.2 <u>Detern</u>	nination of Boundin	g Cases						
thickn cases the int boundi param	6.2 Determination of Bounding Cases Reference 7 identifies all of the applicable pipe interactions for the Turbine Building area where the projectile pipe thickness is either equal to or less than the target pipe thickness. From these interaction cases several critical cases were selected for detailed analysis. The interaction cases are summarize in tables in this section for all the interaction pairs for the respective target pipe sizes. The bounding interactions are highlighted in yellow. The bounding interactions were mostly identified using engineering judgement / logic by comparing critical parameters such as separation distance, operating pressure, size of target vs moving pipe and relative thickness of each pipe.							

In cases where these parameters did not clearly differentiate the interaction a calculation of the theoretical impact momentum was performed to allow relative comparison of impact severity between specific pipe interactions. The higher the momentum of the projectile pipe, the higher the potential for damage to the target pipe. The method for calculating the theoretical impact momentum of the projectile pipe is shown below (the calculation is theoretical because the moving pipe is assumed to rotate about a pinned connection located at the end of the pipe with no resistance to rotation):

Rev. 2

	Automated		Page: 16 of 39		
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client: Xcel E	nergy Nuclear	Revision: 1			
Station: Prairi	e Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush		
Calc. Title: <u>Te</u>	chnical Backup for	Reviewed By: O. Andersson			
Safety Related	l Yes	Date: 6/10/2010			

14 inch Target Pipe

Interaction	Pipe ID	Sched	ID	Wall Thickness	Target ID	Sched	Wall Thickness	High Energy pipe operating pressure	Separation Distance (Inches)	Impact Velocity, ft/sec	Impact Momentun per unit wt Ibf*sec/ft
190	8-2HD-8 [41]	80	7.625	0.5	14-ZX-161 [53]	XS [57]	0.5	685	48	161	321
188	8-2HD-6 [41]	80	7.625	0.5	14-ZX-161 [53]	XS [57]	0.5	685	48	161	321
191	12-2CD- 10 [40]	std	12	0.375	14-ZX-161 [53]	XS [57]	0.5	420	48	163	501
187	14-2HD- 36 [41]	std	13.25	0.375	14-ZX-161 [53]	XS [57]	0.5	360	24	120	425
181	2 1/2-2HD- 82 [46]	. 80	2:323	0.276	14-ZX-161 [53]	XS [57]	0.5	685	3		
192	2 1/2-2HD- 83 [46]	.80	2.323	0.276	14-ZX-161 [53]	XS [57]	0.5	685	24		
182	6-2HD-6 [41]	80	5:761	0.432	14-ZX-161 [53]	XS [57]	0:5	685	36		
183	6-2HD-8 [41]	80	5.761	0.432	14-ZX-161 [53]	XS [57]	0.5	685	2		
135	8-2HD-28 [41]	40	7.981	0:322	14-ZX-161 [53]	XS [57]	0.5	165	2		
134	8-2HD-29 [41]	40	7.981	0.322	14-ZX-161 [53]	XS [57]	0.5	165	84	124	192
136	8-2HD-29 [41]	40	7:981	0.322	14-ZX-161 [53]	XS [57]	0.5	165	36		
142	8-2HD-29 [41]	40	.7:981	0:322	14-ZX-161 [53]	XS [57]	0.5	165	48		
184	8-2HD-6 [41]	80	7:625	0.5	14-ZX-161 [53]	XS [57]	0.5	685	12		
185	8-2HD-8 [41]	80	7.625	0.5	14-ZX-161 [53]	XS [57]	0.5	685	1		
189	8-2HD-8 [41]	80	7.625	0.5	14-ZX-161 [53]	XS:[57],	0.5	685	36		大学

Rev. 2

	Automated		Page: 17 of 39			
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01			
Client: Xcel E	nergy Nuclear	Revision: 1				
Station: Prairi	e Island Nuclear Ger	nerating Station	Prepared By: D. DeGrush			
Calc. Title: Te	chnical Backup for 7	Reviewed By: O. Andersson				
Safety Related	l Yes	X	Date: 6/10/2010			

16 inch Target Pipe

Interaction	Pipe ID	Sched	ID	Wall	Target ID	Sched	Wall Thickness	High Energy pipe operating pressure	Separation Distance (Inches)	Impact Velocity, ft/sec	Impact Momentum, Ibf*sec/ft
15	20-CD-7 [44]	20	19.25	0.375	16-CL-67 [30]	30	0.375	420	16	133	846
19	16-CD-9 [44]	30	15.25	0.375	16-CL-67 [30]	30	0.375	420	36	158	697
109	16-2CD-9 [40]	30	15.25	0.375	16-2CL-9 [32]	30	0.375	420	36	158	697
114	12+20D-7 [40]	408	12	0.375	16+20L49 [62]	30	0.375	420	16	k ter	
1115	20-200-7/ [40]	20	19.25	0.375	16-20L29 [32]-	30	0.375	420	6		and and seven in the Distance of the
121	[40] 12-00-7	- 30		0.375	[32] [6-01-67	30	0.375	420	12		
14	[44] 16-CD-7	40S.	12	1. 1. S. S. S.	[30] 16-0L-67	30	0.375	420	36	S.	
18	[44]	- 30	15.25	0.375	[30]		0.375	420	16		

24 inch Target Pipe

				Wall			· Wall	High Energy pipe operating	Separation Distance	Impact Velocity,	Impact Momentum
nteraction	Pipe ID	Sched	ID	Thickness	Target ID	Sched	Thickness	pressure	(Inches)	ft/sec	lbf*sec /ft
123	20-2CD-7 [40]	20	19.25	0.375	24-2CL-56 [32]	20	0.375	420	24	155	990
20	20-CD-7 [44]	20	19.25	0.375	24-CL-110 [30]	20	0.375	420	24	155	990
20a	20-CD-7 [44]	20	19.25	0.375	24-CL-110 [30]	20	0.375	420	24	155	990
48	16-CD-10 [44]	30	15.25	0.375	24-CL-110 [30]	20	0.375	420	60	201	889
168	16=2CD= 10[40]	30	15.25	0.375	24-2CL-56 [32]	20	0.375	420	36		- Pet lened
- 169 .	18=2610=77 [40]	୍ ଷ୍	15.25	0.375	24-201-53 [62]	. 20	0.375	420	24		
161	8=21:10=23 (411)	40	77.98 ₁ 1	0.322	24 : 20]-56 [82]	20	0.375	165	- 1 . S		
164	8-21:10-23 [(31]	-40	7:981	0.322	24-20L-56 [32]	- 20	0.8773	165	96	143	- 222
60	16:00:7 [{44]	30	15.25	0.375	24-CL-110 [30]	20	0.375	420	36		
49	8-HD-28 [45]	40	7:981	0:322	24-CL-110- [30]	4-620 A	0.375	165	16		ale at the second
56	8-HD-28 [45]	40	7.981	0.322	24-CL-110 [30]	20	0:375	' 165	6		

	Automated	CALCULATION SHEET	Page: 20 of 39					
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83–S01					
Client: Xcel E	nergy Nuclear		Revision: 1					
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush						
Calc. Title: Te	chnical Backup for	Reviewed By: O. Andersson						
Safety Related	d Yes] <u>X</u>	Date: 6/10/2010					
Check case for Y=0, and θ = 90 degrees								
Angle	of rotation at impact	$\theta 2 := 90 \cdot \deg$	$\theta 2 = 90 \cdot \deg$					
Angula	ar Velocity at Impact	$\omega 2 := \sqrt{\frac{2 \cdot M_p \cdot \theta 2}{I_p}}$	$\omega 2 = \begin{pmatrix} 28.3 \\ 27.9 \\ 29.6 \\ 31.1 \\ 29.6 \\ 31.1 \end{pmatrix} \cdot \frac{\text{rad}}{\text{sec}} \qquad \omega = \begin{pmatrix} 16.2 \\ 16.3 \\ 15.8 \\ 13.3 \\ 20.2 \\ 15.6 \end{pmatrix} \cdot \frac{\text{rad}}{\text{sec}}$					
Impact	t Velocity	$v_{p2} := (X \cdot \omega 2)$	$v_{p2} = \begin{pmatrix} 140\\ 143\\ 128\\ 88\\ 197\\ 119 \end{pmatrix} \stackrel{ft}{=} v_{p} = \begin{pmatrix} 162\\ 163\\ 158\\ 133\\ 202\\ 156 \end{pmatrix} \stackrel{ft}{=}$					
forms for this potenti blowdo	right at the same heig case. Therefore ma ial for damage to the own flow due to the re e corresponding force	the angular velocity is greater when the Y distar ght as the target pipe), due to the smaller mome aximizing the Y distance produces a higher impa target pipe. Also note that this analysis does no educed cross-sectional area at the hinge or buck a reduction associated with large values of θ (se	ent arm, the impact velocity is less act velocity, and therefore a higher ot consider the effect of reduced ling location in the projectile pipe,					

			Y						
	Automated		Page: 21 of 39						
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01						
Client: Xcel	Energy Nuclear	Revision: 1							
Station: Prain	rie Island Nuclear Ger	Prepared By: D. DeGrush							
Calc. Title: <u>T</u>	echnical Backup for	Furbine Building HELB Screening Evaluation	Reviewed By: O. Andersson						
Safety Relate	d Yes] X	Date: 6/10/2010						
6.4 Bour	idary Conditions		·						
	The boundary conditions for both the target pipe and the projectile pipe need to be established to provide a realistic approximation of the actual configuration. Certain assumptions have been made for the length of the								

The boundary conditions for both the target pipe and the projectile pipe need to be established to provide a realistic approximation of the actual configuration. Certain assumptions have been made for the length of the target pipe, and the relative location of the contact point along the length of the projectile pipe as discussed in Section 6.3. The boundary conditions for both the projectile pipe and the target pipe will be discussed in this section.

The boundary conditions for the projectile pipe are fairly simple. At the break location, the projectile pipe is conservatively considered free to displace based on the assumption of a full cross section guillotine break. A force is applied at the end of the projectile pipe perpendicular to the pipe axis. In order to preserve the integrity of the model behavior, a reinforcing ring is added to the model on the end of the projectile pipe where the load is applied to facilitate even load distribution to the model elements around the end of the pipe ensuring there is no localized deformation there. As it pertains to the real life situation, it is assumed there is a 90 degree elbow at the top of the break which is causing the whipping force. Note that the elbow was not modelled in LS-DYNA to simplify the modeling effort. The use of the rigid ring on the free end of the pipe is conservative in comparison to actually modelling the elbow in LS-DYNA.

At the opposite end the projectile is fixed as an anchor. This end condition is conservative from the perspective that it will not allow deflection or displacement of the projectile pipe at this location up to and through pipe impact thus maximizing imparted energy to the target pipe. As can be seen from the results in Section 6.6, a plastic hing forms in the moving pipe at some distance above the fixed end of the moving pipe (approximately 1 to 2 diameters above the fixed point location. The consequential damage that occurs in the projectile pipe below the hinge point is not relevant to this investigation.

The boundary conditions placed upon the target pipe are more sophisticated and indicative of the remainder of the piping system which brackets the target pipe on each end. A single span of the target pipe was considered. In order to account for the continuation of the pipe, spring restraints were used on both ends of the target pipe. Parametric runs were made (see Section 6.7) that confirmed that the smaller the stiffness values of these springs, the higher the potential for damage to the target pipe. Conservatively low spring stiffnesses were used based on relatively long unsupported spans of the target pipe. Since the target pipes are non-safety, non-seismic, it is conservatively assumed that the pipe is mostly supported by spring or rod hangers with very few lateral supports. A conservative support scheme was used to calculate representative stiffnesses as shown on the next page.

Evaluation has shown that damage results are sensitive to the span of the target pipe between supports. The degree of sensitivity depends upon a number of key factors including relative pipe thickness to each other, magnitude of the blowdown force, initial separation distance, etc. Parametric runs performed in Section 6.7 indicate that for the case where only the angular velocity is considered, a shorter pipe span produces the most conservative results. However, for cases where the jet force continues to be applied after the initial contact with the pipe, the longer the span the worse the damage to the target pipe. For this evaluation a reasonable support span of 1/2 the maximum recommended per ASME B31.1 was utilized.

Rev. 2

	Automated		Page: 25 of 39		
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client: Xcel E	nergy Nuclear	Revision: 1			
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush			
Calc. Title: Te	chnical Backup for 7	Reviewed By: O. Andersson			
Safety Related	l Yes) <u>X</u>	Date: 6/10/2010		
As the two loc	ations; at the hinge v	s about a plastic hinge, the cross-sectional area vhere the pipe buckles and at the impact locatio the pipe cross-sectional area is reduced there is	n as the projectile pipe tends to wrap		

around the target pipe. As the pipe cross-sectional area is reduced there is a corresponding reduction in the blowdown flow from the pipe. This reduces the whipping force on the pipe as the pipe continues to deform. Following impact, as the collision continues, and both pipes deform, the flow is eventually reduced to zero at the point where the projectile pipe basically seals itself off and the blowdown force is gone.

To account for this force reduction, the LS-DYNA runs were used to estimate the reduced cross sectional areas at both the plastic hinge, and at the impact location. Data was taken from preliminary runs to determine the reduced area at the deformed cross sections at specific times during the event. Using this data, more realistic force functions were utilized in the Case runs by applying a force time history based on a linear reduction in the area. Conservatively, for most cases only the reduction of area at the collision point was considered. In one case, the reduction in the area at the moving pipe hinge location was also considered (for Case 5 where the separation distance was larger resulting in a large rotation in the moving pipe prior to impact. The shape of the force time history curve is shown below:

	Automated	CALCULATION SHEET	Page: 27 of 39		
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client: Xcel E	nergy Nuclear	Revision: 1			
Station: Prairi	e Island Nuclear Ge	nerating Station	Prepared By: D. DeGrush		
Calc. Title: Te	chnical Backup for	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson		
Safety Related	l Yes	Date: 6/10/2010			

6.6 Analysis Results

Six specific interaction cases were run as described in the sections above. A table summarizing the input parameters for these six load cases is provided below:

-				-	Separation Distance, ft	cL to dL separation distance, ft	elevation,	Axial Spring,	Rotational Spring(all	Supported	Free End	Linear force reduction tim
	۵5	8625	05			1	ft	lb*in	axes)	End	nceun	steps, msec
14			us	12.5	4	49	87	500	10E8	Fixed	F=37,500lbs	No
	۵5	1275	0.375	125	4	51	86	500	1.0E8	Fixed	F=57,0001bs	t1=64, t2=81
16	0.375	16	0.375	13.5	3	4.333	9	500	10E8	Fixed	F=92,100lbs	t ₁ =52, t ₂ =72
16	Q375	20	0.375	13.5	1.333	28	96	500	10E8	Fixed	F=147,000lbs	t1=32, t2=62
24	0.375	16	0.375	16	5	66	7.5	1000	20E8	Fixed	F=92,100lbs	t ₁ =55, t ₂ =69, t =82 ¹
24	Q375	20	0.375	16	2	3.8	92	1000	20E8	Fixed	F = 147,000 lbs	t ₁ =40, t ₂ =70
24	6 4 4	6 0.375 4 0.375 4 0.375	6 0.375 20 4 0.375 16 4 0.375 20	6 0.375 20 0.375 4 0.375 16 0.375 4 0.375 20 0.375 4 0.375 20 0.375	6 0.375 20 0.375 13.5 4 0.375 16 0.375 16 4 0.375 20 0.375 16	6 0.375 20 0.375 13.5 1.333 4 0.375 16 0.375 16 5 4 0.375 20 0.375 16 5 4 0.375 20 0.375 16 2	6 0.375 20 0.375 13.5 1.333 2.8 4 0.375 16 0.375 16 5 6.6 4 0.375 20 0.375 16 2 3.8 4 0.375 20 0.375 16 2 3.8 4 0.375 0.0 0.0 0.0 0.0 0.0 4 0.375 10 0.0 0.0 0.0 0.0 0.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 0.0	6 0.375 20 0.375 13.5 1.333 2.8 9.6 4 0.375 16 0.375 16 5 6.6 7.5 4 0.375 20 0.375 16 2 3.8 9.2 4 0.375 20 0.375 16 2 3.8 9.2	6 0.375 20 0.375 13.5 1.333 2.8 9.6 500 4 0.375 16 0.375 16 5 6.6 7.5 1000 4 0.375 20 0.375 16 2 3.8 9.2 1000 4 0.375 20 0.375 16 2 3.8 9.2 1000	6 0.375 20 0.375 13.5 1.333 2.8 9.6 500 1.0E8 4 0.375 1.6 0.375 1.6 5 6.6 7.5 1000 2.0E8	6 0.375 20 0.375 13.5 1.333 2.8 9.6 500 1.0E8 Fixed 4 0.375 16 0.375 16 5 6.6 7.5 1000 2.0E8 Fixed 4 0.375 20 0.375 16 2 3.8 9.2 1000 2.0E8 Fixed 4 0.375 20 0.375 16 2 3.8 9.2 1000 2.0E8 Fixed	6 0.375 20 0.375 13.5 1.333 2.8 9.6 500 1.0E8 Fixed F=147,000lbs 4 0.375 16 0.375 16 5 6.6 7.5 1000 2.0E8 Fixed F=92,100lbs 4 0.375 20 0.375 16 2 3.8 9.2 1000 2.0E8 Fixed F=147,000lbs

Results for these six analysis cases are provided in the sections below:

	Automated	CALCULATION SHEET	Page: 28 of 39						
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01						
Client: Xcel E	nergy Nuclear	Revision: 1							
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush							
Calc. Title: Te	chnical Backup for T	Furbine Building HELB Screening Evaluation	Reviewed By: O. Andersson						
Safety Related	Safety Related Yes X Date: 6/10/2010								
6.6.1 <u>Case </u>	6.6.1 Case 1 (Interaction 188/190) - 14" XS Target Pipe, 8" XS Projectile Pipe								
The fig	The figure below shows the deformation for both pipes at specific time points throughout the collision event								
	LS-DYNA keyword deck by LS-PrePost Time = 0.06595								

t = 0.065 msec (Initiation of contact)

t = 0.077 msec (Projectile Pipe Blowdown = 0)

t= 0.087 msec (Continued deformation)

t = 0.100 msec (Conclusion of event)

The results of the analysis show that no elements exceeded the strain limit of 25%. Therefore it is concluded that the interaction of the moving pipe with the target pipe will not create sufficient damage to the target pipe to add to the Turbine Building flooding concern.

	Automated		Page: 29 of 39
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83–S01
Client: Xcel E	nergy Nuclear	Revision: 1	
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush	
Calc. Title: Te	chnical Backup for T	Reviewed By: O. Andersson	
Safety Related	l Yes	X	Date: 6/10/2010

6.6.2 Case 2 (Interaction 190) - 14" XS Target Pipe, 12" Std Projectile Pipe

The figure below shows the deformation for both pipes at specific time points throughout the collision event

t = 0.064 msec (Initiation of contact)

t = 0.081 msec (Projectile Pipe Blowdown Flow = 0)

t= 0.096 msec (Continued deformation)

t = 0.124 msec (Conclusion of event)

The results of the analysis show that no elements exceeded the strain limit of 25%. Therefore it is concluded that the interaction of the moving pipe with the target pipe will not create sufficient damage to the target pipe to add to the Turbine Building flooding concern.

	Automated Engineering Services Corp	CALCULATION SHEET	Page: 30 of 39 Calc. No.: PI-996-83–S01
Client: Xcel E	nergy Nuclear	Revision: 1	
Station: Prairi	ie Island Nuclear Ger	Prepared By: D. DeGrush	
Calc. Title: Te	echnical Backup for T	Reviewed By: O. Andersson	
Safety Related	d Yes		Date: 6/10/2010

6.6.3 Case 3 (Interaction 15) - 16" Sch. 30 Target Pipe, 16" Sch. 30 Projectile Pipe

The figure below shows the deformation for both pipes at specific time points throughout the collision event

t = 0.052 msec (Initiation of contact)

t = 0.072 msec (Projectile Pipe Blowdown Flow = 0)

t= 0.088 msec (Continued deformation)

t = 0.125 msec (Conclusion of event)

The results of the analysis show that 5 elements exceeded the strain limit of 25% creating a calculated surface area opening in the Target Pipe of 7.0 in². Because this pipe area opening is less than the acceptance criteria of 12.7 in² this piping interaction is not expected to cause adverse Turbine Building flooding.

	Automated		Page: 31 of 39		
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client: Xcel E	inergy Nuclear	Revision: 1			
Station: Prairi	ie Island Nuclear Ger	Prepared By: D. DeGrush			
Calc. Title: <u>T</u> e	echnical Backup for T	Reviewed By: O. Andersson			
Safety Related	d Yes		Date: 6/10/2010		

6.6.4 Case 4 (Interaction 19/109) - 16" Sch. 30 Target Pipe, 20" Sch. 20 Projectile Pipe

The figure below shows the deformation for both pipes at specific time points throughout the collision event

t = 0.032 msec (Initiation of contact)

t= 0.082 msec (Continued deformation)

t = 0.125 msec (Conclusion of event)

The results of the analysis show that 3 elements exceeded the strain limit of 25% creating a calculated surface area opening in the Target Pipe of 4.2 in². Because this pipe area opening is less than the acceptance criteria of 12.7 in² this piping interaction is not expected to cause adverse Turbine Building flooding.

	Automated Engineering Services Corp	CALCULATION SHEET	Page: 32 of 39 Calc. No.: PI-996-83–S01			
Client: Xcel H	Energy Nuclear	Revision: 1				
Station: Prair	ie Island Nuclear Ger	Prepared By: D. DeGrush				
Calc. Title: To	echnical Backup for 7	Reviewed By: O. Andersson				
Safety Relate	d Yes	Date: 6/10/2010				
6.6.5 Case 5 (Interaction 20/20a/123) - 24" Sch. 20 Target Pipe, 16" Sch. 30 Projectile						
<u>Pipe</u> The figure below shows the deformation for both pipes at specific time points throughout the collision event						

t = 0.055 msec (Cross-sectional area reduced 25% at hinge)

t = 0.069 msec (Initiation of contact)

t = 0.087 msec (Projectile Pipe Blowdown flow = 0) t = 0.119 msec (Conclusion of event)

The results of the analysis show that 4 elements exceeded the strain limit of 25% creating a calculated surface area opening in the Target Pipe of 8.4 in². Because this pipe area opening is less than the acceptance criteria of 12.7 in² this piping interaction is not expected to cause adverse Turbine Building flooding.

	Automated	CALCULATION SHEET	Page: 33 of 39	
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01	
Client: Xcel E	nergy Nuclear	Revision: 1		
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush		
Calc. Title: Te	chnical Backup for	Reviewed By: O. Andersson		
Safety Related	l Yes	X	Date: 6/10/2010	

6.6.6 Case 6 (Interaction 48) - 24" Sch. 20 Target Pipe, 20" Sch. 20 Projectile Pipe

The figure below shows the deformation for both pipes at specific time points throughout the collision event

t = 0.040 msec (Initiation of contact)

t = 0.072 msec (Projectile Pipe Blowdown Flow = 0)

t= 0.085 msec (Continued deformation)

t = 0.109 msec (Conclusion of event)

The results of the analysis show that 2 elements exceeded the strain limit of 25% creating a calculated surface area opening in the Target Pipe of 4.2 in². Because this pipe area opening is less than the acceptance criteria of 12.7 in² this piping interaction is not expected to cause adverse Turbine Building flooding.

	Automated	CALCULATION SUFET	Page: 34 of 39	
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01	
Client: Xcel E	nergy Nuclear	Revision: 1		
Station: Prairi	e Island Nuclear Ge	Prepared By: D. DeGrush		
Calc. Title: Te	chnical Backup for	Reviewed By: O. Andersson		
Safety Related	I Yes] X	Date: 6/10/2010	
· · · · · ·			-	

6.7 Parametric Evaluations

A few select additional cases were run to determine the impact of altering some of the key input parameters to determine the sensitivity of the results to the variation of these parameters. The results of these parametric runs are included on the following pages:

	Automated	CALCULATION SHEET	Page: 35 of 39
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01
Client: Xcel E	nergy Nuclear	Revision: 1	
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush	
Calc. Title: Te	chnical Backup for T	Reviewed By: O. Andersson	
Safety Related	l Yes] X	Date: 6/10/2010

Case 7 - Reduce spring stiffness boundary conditions on the targey pipe by a factor of 5 (run on base Case 3 (Interaction 15) - 16" Sch. 30 Target Pipe, 16" Sch. 30 Projectile Pipe)

The results of this run confirmed that reducing the stiffness of the springs resulted in additional damage to the target pipe. Comparison of the screen shots below to those of the Base Case it is apparent that the lighter spring forces result in much more target pipe deformation. Since the stiffness used already represent lower bound values, the results from Cases 1 - 6 are still bounding. There is no need to make additional runs with stiffer springs as this will result in less damage to the target pipe.

t = 0.052 msec (Initiation of contact)

t = 0.072 msec (Projectile Pipe Blowdown Flow = 0)

t= 0.088 msec (Continued deformation)

Form 3.1-3

	Automated	CALCULATION SHEET	Page: 36 of 39		
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client: Xcel E	nergy Nuclear	Revision: 1			
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush			
Calc. Title: Te	echnical Backup for 7	Reviewed By: O. Andersson			
Safety Related	d Yes] X	Date: 6/10/2010		

Case 8 - Increase support span on target pipe by a factor of 2 (run on base Case 3 (Interaction 15) - 16" Sch. 30 Target Pipe, 16" Sch. 30 Projectile Pipe)

t = 0.052 msec (Initiation of contact)

t = 0.072 msec (Projectile Pipe Blowdown Flow = 0)

t= 0.088 msec (Continued deformation)

t = 0.125 msec (Conclusion of event)

	Automated Engineering Services Corp	CALCULATION SHEET	Page: 37 of 39 Calc. No.: PI-996-83–S01
Client: Xcel E	nergy Nuclear	Revision: 1	
Station: Prairi	e Island Nuclear Ger	Prepared By: D. DeGrush	
Calc. Title: Te	chnical Backup for 7	Reviewed By: O. Andersson	
Safety Related	I Yes] X	Date: 6/10/2010

Case 9 - Increase support span of target pipe by a factor of 2 (run on base Case 2 (Interaction 190) - 14" XS Target Pipe, 12" Std Projectile Pipe)

t = 0.065 msec (Initiation of contact)

t = 0.081 msec (Projectile pipe Blowdown flow = 0)

t= 0.096 msec (Continued deformation)

t = 0.134 msec (Conclusion of event)

The results of the analyses for Cases 8 and 9 show that the damage to the Target Pipe did increase over that observed for the respective base cases but to relatively different extents. For Case 9, similar to Base Case 2, no elements exceeded the strain limit of 25% and the increase in damage was minimal. Case 8 showed appreciably more damage than it's Base Case 3 counterpart in that 13 elements were deleted compared to 5 in the base case. The conclusion is that the impact of increasing the target pipe length is significantly dependent upon other key parameters such as relative pipe thickness, initial separation distances, blowdown force, etc.

	Automated	CALCULATION SHEET	Page: 38 of 39	
	Engineering Services Corp	CALCULATION SHEET	Calc. No.: PI-996-83–S01	
Client: Xcel E	nergy Nuclear	Revision: 1		
Station: Prairi	ie Island Nuclear Ger	nerating Station	Prepared By: D. DeGrush	
Calc. Title: <u>Te</u>	echnical Backup for 7	Reviewed By: O. Andersson		
Safety Related	d Yes] X	Date: 6/10/2010	

7.0 <u>Summary</u>

Actual Turbine Building pipe to pipe interactions were evaluated resulting in a set of bounding interactions. Detailed Finite Element models were prepared for each of these bounding cases. The parameters for each of the bounding cases evaluated are provided in the table below.

Case	Target Pipe, OD, in	Target Wall t, in	Projectile Pipe, OD, in	Projectil e Pipe, t, in	Target	Separation Distance, ft	Blowdown Force on Projectile Pipe	Number of Failed Elements in Model	Surface Area per Element, in ²	
Case 1	14	0.5	8.625	0.5	12.5	4	F'= 37,500 lbs	None	1.22	0
Case 2	14	0.5	12.75	0.375	12.5	4	F = 57,000 lbs	None	1.22	0
Case 3	16	0.375	16	0.375	13.5	3	F = 92,100 lbs	5	1.4	7.00
Case 4	16	0.375	20	0.375	13.5	1.333	F = 147,000 lbs	3	1.4	4.20
Case 5	24	0.375	16	0.375	16	5	F = 92, 100 lbs	4	2.09	8.36
Case 6	24	0.375	20	0.375	16	2	F = 147,000 lbs	2	2.09	4.18

Parametric investigations were performed for a few key modeling parameters. The results show that a Target Pipe boundary condition with lower (lighter) spring constants tend to result in more damage to the Target Pipe. Physically the lower spring constants would represent a piping system with less support / less restraint.

Another parameter investigated was the length of the Target Pipe span (distance of Target Pipe Support separation). The results show that for impacts with no sustained force on the Projectile Pipe that shorter Target Pipe spans are more conservative, i.e. more resultant damage to the Target Pipe. Conversely, for impacts which include a blowdown force on the Projectile Pipe the longer Target Pipe spans result in more Target Pipe damage.

The sensitivity to each parameter variation is individual to each specific interation pair as it depends on a number of key interaction parameters such as relative thickness of the two pipes, blowdown force, initial separation of the two pipes, etc.

8.0 <u>Conclusions</u>

The results of the analyses, included in the table above, show clearly that none of the cases would produce an excessive flooding event within the Turbine Building.

١

		Automa		CALCULATION SHEET	Page: 39 of 39	
Engineering Services Corp			CALCULATION SHEET	Calc. No.: PI-996-83-S01		
Client:	Xcel E	nergy Nucl	ear		Revision: 1	
Station	: Prairi	e Island Nu	iclear Ge	nerating Station	Prepared By: D. DeGrush	
Calc. T	itle: <u>Te</u>	chnical Ba	<u>ckup for '</u>	Turbine Building HELB Screening Evaluation	Reviewed By: O. Andersson	
Safety I	Related	 I ~	Yes] X	Date: 6/10/2010	
9.0	<u>Refere</u> The fol		rences we	ere reviewed and used in the generation of this c	alculation.	
[1]				5/2010 - "EVALUATION OF FLOODING TIMES TB FOR SIGNIFICANCE DETERMINATION"	AND FLOW RATES ASSOCIATED	
[2])90, Rev.0, < ANALYSI		Process" - "TURBINE BUILDING FLOODING	SDP: CL TURBINE BUILDING PIPE	
[3]	US NR 1997."	C Piping Fi	racture M	eçhanics Database (PIFRAC), Version 3.1, from	US NRC Pipe Fracture Encyclopedia,	
[4]	Structu	ural Enginee	ering Hand	dbook, Edwin H Gaylord, Jr. / Charles N. Gaylord	I, McGraw-Hill Book Co., 1968	
[5]	NURE	G / CR-323	1 PNL-57	79 Pipe-to-Pipe Impact Program, May 1987		
[6]	Experir May 20		ly and Nu	merical Simulation of Pipe-to-Pipe Impact, Interr	national Journal of Impact Engineering,	
[7]		nergy, NSP g'', Rev. 0,		ation No: ENG-ME-732 "Determination of HELB)	/ Flooding Interactions in the Turbine	
[8]	Machir	ne Design T	heory and	Practice, Deutschman, Michels, Wilson, Macmi	llan Publishing Co. 1975	
[9]	ASME B31.1 - 1989 Edition, Power Piping					
[10]	0] Prairie Island Unit 1 Pipe Rupture Analysis Feedwater Piping System, NSC-PIP-M-SLR-9, Rev. 1, August 11, 1972					
[11]] Crane Technical Paper No. 410, "Flow of Fluids Through Valves, Fittings, and Pipe", 1988 Crane Co.					
				·		

-

,