нітасні

GE Hitachi Nuclear Energy

Richard E. Kingston Vice President, ESBWR Licensing

3901 Castle Hayne Road PO Box 780 M/C A-65 Wilmington, NC 28402-0780 USA

T 910 819 6192 F 910 362 6192 Rick.Kingston@ge.com

Docket No. 52-010

MFN 10-162

June 16, 2010

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555-0001

Subject: Submittal Related to ESBWR Design Certification Application - Appendix 1D, Summary of Tier 2* Information

Enclosure 1 contains page changes to DCD Tier 2, Chapter 1. These changes add Appendix 1D, Summary of Tier 2* Information in compliance with Standard Review Plan (SRP) 14.3, Appendix A, Section III.2 which states, "A table should be provided in the DCD listing the areas of the DCD that contain Tier 2* information".

Additional DCD changes were identified as a result of compiling the new Appendix. These changes, also part of Enclosure 1, include:

Chapter 1 - Table 1.6-1 was updated to designate instrument setpoint methodology, NEDE-33304P / NEDO-33304, as Tier 2*. The table was also updated to list the non-proprietary versions of NEDO-33243 and NEDO-33244.

Chapter 4 - References 4.2-5, 4.2-8, 4.2-9 and 4.4-12 were updated to list the non-proprietary versions of NEDO-33242, NEDO-33244, NEDO-33243 and NEDO-33237.

Chapter 7 - References 7.1-9, 7.2-1, 7.3-2, 7.4-2, 7.5-2 and 7.8-4 were updated to designate NEDE-33304P / NEDO-33304 as Tier 2*.

If you have any questions about the information provided, please contact me.

Sincerely,

Richard E. Kingston

Richard E. Kingston Vice President, ESBWR Licensing

Enclosure:

- 1. Submittal Related to ESBWR Design Certification Application Appendix 1D, Summary of Tier 2* Information- DCD Markup
- cc: AE Cubbage USNRC (with enclosures) JG Head GEH/Wilmington (with enclosures) DH Hinds GEH/Wilmington (with enclosures) LF Dougherty eDRF Section 0000-0118-2543

Enclosure 1

MFN 10-162

Submittal Related to ESBWR Design Certification Application

Appendix 1D, Summary of Tier 2* Information

DCD Markup

ESBWR

1. INTRODUCTION AND GENERAL DESCRIPTION OF PLANT

1.1 INTRODUCTION

1.1.1 Format and Content

This design control document (DCD) describes the ESBWR and is written based on the general contents of the ABWR DCD, with additional material provided to be consistent with the NUREG-0800 Standard Review Plan versions as summarized in Table 1.9-20. In addition, a number of other relevant topics are addressed, e.g., Appendix 1A describes the treatment of TMI-related matters; Appendix 1B discusses plant shielding to provide access to areas and protective safety equipment for post-accident operation in response to NUREG-0737, Item II.B.2; and Appendix 1C discusses industry operating experience; and Appendix 1D provides a summary of DCD locations containing Tier 2* information that requires NRC approval before making any changes.

Chapter 19 provides the response to the severe accident policy statement.

1.1.2 General Description

1.1.2.1 ESBWR Standard Plant Scope

The ESBWR Standard Plant includes buildings dedicated exclusively or primarily to housing systems and equipment related to the nuclear system or controlled access to these systems and equipment. Figure 1.1-1 illustrates a conceptual layout showing the approximate relative locations of these buildings, but an individual Combined License (COL) may be arranged differently.

1.1.2.1.1 Seismic Category I Standard Plant Structures

The following Seismic Category I buildings/structures are within the design certification scope for the ESBWR:

- Reactor Building houses safety-related structures, systems and components (SSC), except for the main control room, safety-related Distributed Control and Information System equipment rooms in the Control Building and spent fuel storage pool and associated auxiliary equipment in the Fuel Building. The Reactor Building includes the reactor, containment, refueling area and auxiliary equipment.
- Control Building houses the main control room and safety-related controls outside the reactor building.
- Fuel Building houses the spent fuel storage pool and its associated auxiliary equipment.
- Firewater Service Complex consists of two fire water storage tanks and a fire pump enclosure that share a common basemat.

1.1.2.1.2 Seismic Category II and NS Standard Plant Structures

The following Seismic Category II and NS buildings/structures are included in the ESBWR standard plant scope:

Table 1.6-1

Referenced GE / GEH Reports

Report No.	Title	Section No.
NEDC-33238P NEDO-33238	Global Nuclear Fuel, "GE14 Pressure Drop Characteristics", NEDC-33238P, Class III (Proprietary), and NEDO-33238, Class I (Non- proprietary), December 2005.	4.4
NEDC-33239P NEDO-33239	[Global Nuclear Fuel, "GE14 for ESBWR Nuclear Design Report," NEDC-33239-P, Class III (Proprietary) and NEDO-33239, Class I (Non- proprietary), Revision 4, March 2009.]*	4.3, 4.4, 4A, 4D, 15.0, 15.2, 15.3, 15.5, Chapter 16 B3.1.1
NEDC-33240P NEDO-33240	[Global Nuclear Fuel, "GE14E Fuel Assembly Mechanical Design Report," NEDC-33240P, Class III (Proprietary), and NEDO-33240, Class I (Non- proprietary), Revision 1, January 2009.]*	4.2
NEDC-33242P NEDO-33242	[Global Nuclear Fuel, "GE14 for ESBWR Fuel Rod Thermal-Mechanical Design Report," NEDC-33242P, Class III (Proprietary), and NEDO-33242, Class I (Non-proprietary), Revision 2, June 2009.]*	4.2
NEDE-33243P <u>NEDO-33243</u>	[GE Hitachi Nuclear Energy, "ESBWR Control Rod Nuclear Design," NEDE-33243P, Class III (Proprietary), Revision 2, July 2008 <u>, and NEDO- 33243, Class I (Non-proprietary), Revision 2, July 2008</u> .]*	4.2, Chapter 16 B3.1.3
NEDE-33244P <u>NEDO-33244</u>	[GE Hitachi Nuclear Energy, "ESBWR Marathon Control Rod Mechanical Design Report," NEDE- 33244P, Class III (Proprietary), Revision 1, November 2007, and NEDO-33244, Class I (Non-proprietary), <u>Revision 1, November 200</u> 7.]*-	4.2
NEDE-33245P NEDO-33245	[GE Hitachi Nuclear Energy, "ESBWR – Software Quality Assurance Program Manual," NEDE-33245P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33245, Class I (Non-proprietary), Revision 5, February 2010.]*	7.1, 7.2, 7.3, 7.8, 7B, 17.1

ESBWR

Design Control Document/Tier 2

Table 1.6-1

Referenced GE / GEH Reports

Report No.	Title	Section No.
NEDE-33304P NEDO-33304	[GE-Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), and NEDO-33304, Class I (Non- proprietary), Revision <u>34</u> , February May 2010.]*	7.1, 7.2, 7.3, 7.4, 7.5, 7.8 Chapter 16 Sect. 5.5.11
NEDO-33306	GE Hitachi Nuclear Energy, "ESBWR Severe Accident Mitigation Design Alternatives," NEDO- 33306, Class I (Non-proprietary), Revision 1, August 2007.	19.2
NEDE-33312P NEDO-33312	GE Hitachi Nuclear Energy, "ESBWR Steam Dryer Acoustic Load Definition," NEDE-33312P, Class III (Proprietary), Revision 1, July 2009, and NEDO- 33312, Class I (Non-Proprietary), Revision 1, July 2009.	3L
NEDE-33313P NEDO-33313	GE Hitachi Nuclear Energy, "ESBWR Steam Dryer Structural Evaluation," NEDE-33313P, Class III (Proprietary), Revision 1, July 2009, and NEDO- 33313, Class I (Non-Proprietary), Revision 1, July 2009.	3.9, 3L
NEDC-33326P NEDO-33326	[Global Nuclear Fuel, "GE14E for ESBWR Initial Core Nuclear Design Report," NEDC-33326P, Class III (Proprietary), and NEDO-33326, Class I (Non-proprietary), Revision 1, March 2009.]*	4.3, 4.4, 4A, 4D, 15.0, 15.2, 15.3, 15.5
NEDO-33337	GE Hitachi Nuclear Energy, "ESBWR Initial Core Transient Analyses," NEDO-33337, Class I (Non-proprietary), Revision 1, April 2009.	4.4, 4D, 15.0, 15.2, 15.3, 15.5, 15D
NEDO-33338	GE Hitachi Nuclear Energy, "ESBWR Feedwater Temperature Operating Domain Transient and Accident Analysis," NEDO-33338, Class I (Non-proprietary), Revision 1, May 2009.	1.1, 4.4, 4D, 6.2, 6.3, 15.0, 15.2, 15.3, 15.5, 15D Chapter 16, Sect. 5.6.3

APPENDIX 1D SUMMARY OF TIER 2* INFORMATION

1D.1 PLANT-SPECIFIC CHANGES TO CERTAIN DESIGNATED MATERIAL IN TIER 2

Certain information within sections of Tier 2 is designated as Tier 2* with brackets, italicized text, and an asterisk after the closing bracket. Table 1D-1 provides a summary of DCD locations that contain Tier 2* information. A plant-specific change to any of this Tier 2* designated information shall require NRC Staff approval prior to implementing the change. A request for departure from Tier 2* will be treated as a request for license amendment under 10 CFR 50.90 and 50.92.

1D.2 EXPIRATION OF TIER 2* INFORMATION

The requirement for prior NRC Staff approval of plant-specific changes will expire for some of the designated information, as indicated in Table 1D-1, when the plant first achieves 100% power.

<u>Tier 2* material related to the following topics has no expiration date and may not be changed</u> without prior NRC approval. A request for a departure will be treated as a request for a license amendment.

- Fuel mechanical and thermal-mechanical design evaluation reports (References 4.2-4 and 4.2-5).
- Control rod mechanical and nuclear design reports (References 4.2-8 and 4.2-9).
- Fuel nuclear design report (referenced in several locations in Chapters 4 and 15).
- Critical power correlation (Reference 4.4-12).
- Fuel licensing acceptance criteria (Appendix 4B).
- Control rod licensing acceptance criteria (Appendix 4C).
- Mechanical and structural design of spent fuel storage racks (Subsection 9.1.2.4 and Reference 9.1-2).

After the plant first achieves full power, Tier 2* material related to the following topics reverts to Tier 2 status and is thereafter subject to the same departure provisions that apply to Tier 2 material.

- ASME Boiler & Pressure Vessel Code, Section III.
- ACI 349 and ANSI/AISC–N690.
- Motor-operated valves.
- Equipment seismic qualification methods.
- Piping design acceptance criteria.
- Instrument Setpoint Methodology

- Safety-Related Distributed Control and Information System (Q-DCIS) performance specifications and architecture.
- Safety System Logic and Control (SSLC) hardware and software qualification.
- Self-test system design testing features and commitments.
- Human factors engineering design and implementation process.

<u>Table 1D-1</u>

Location	Short Description of Tier 2* Information	Expiration	
	Chapter 1		
<u>Table 1.6-1</u>	Selected Licensing Topical Reports (LTRs) consistent with how they are marked at their referenced locations	As marked at their referenced locations later in this table	
<u>Table 1.9-22</u>	Applicable Edition/Addenda for ASME Boiler and Pressure Vessel Code, Section III	First Full Power	
	<u>Chapter 2</u>		
Table 2.0-1	Standard Plant Site Parameters	First Full Power	
Figure 2.0-1	Horizontal SSE Design Ground Spectra at Foundation Level	First Full Power	
Figure 2.0-2	Vertical SSE Design Ground Response Spectra at Foundation Level	First Full Power	
	<u>Chapter 3</u>		
<u>S3.6.2.1.1</u>	Locations of Postulated Pipe Breaks	First Full Power	
<u>83.6.2.1.2</u>	Locations of Postulated Pipe Cracks	First Full Power	
<u>S3.6.2.5</u>	Pipe Break Analysis Results and Protection Methods	First Full Power	
<u>S3.7</u>	Seismic Design	First Full Power	
<u>83.7.1.1.3</u>	Single Envelope Ground Motion	First Full Power	
<u>S3.7.1.2</u>	Percentage of Critical Damping Values	First Full Power	
<u>S3.7.1.3</u>	Supporting Media for Category I Structures	First Full Power	
<u>83.7.2</u>	Seismic System Analysis	First Full Power	
<u>\$3.7.2.1.2 b</u>)	Response Spectrum Method, Multi-Supported System with ISMs	First Full Power	
<u>83.7.2.1.3</u>	Static Coefficient Method	First Full Power	
<u>83.7.2.2</u>	Natural Frequencies and Responses	First Full Power	
<u>83.7.2.3</u>	Procedures Used for Analytical Modeling	First Full Power	
<u>83.7.2.4</u>	Soil-Structure Interaction	First Full Power	
<u>83.7.2.5</u>	Development of Floor Response Spectra	First Full Power	
<u>83.7.2.6</u>	Three Components of Earthquake Motion	First Full Power	

ESBWR

.

-

· .

. Table 1D-1

Location	Short Description of Tier 2* Information	Expiration
<u>83.7.2.7</u>	Combination of Modal Responses	First Full Power
<u>\$3.7.2.8.1</u>	Turbine Building	First Full Power
<u>\$3.7.2.8.2</u>	Radwaste Building	First Full Power
<u>\$3.7.2.8.3</u>	Service Building	First Full Power
<u>S3.7.2.8.4</u>	Ancillary Diesel Building	First Full Power
<u>S3.7.2.9</u>	Effects of Parameter Variations on Floor Response Spectra	First Full Power
<u>\$3.7.2.10</u>	Use of Equivalent Vertical Static Factors	First Full Power
<u>\$3.7.2.11</u>	Methods Used to Account for Torsional Effects	First Full Power
<u>\$3.7.2.13</u>	Analysis Procedure for Damping	First Full Power
<u>S3.7.2.14</u>	Determination of Seismic Category I Structure Overturning Moments	First Full Power
<u>83.7.3.1</u>	Seismic Analysis Method	First Full Power
<u>83.7.3.2</u>	Determination of Number of Earthquake Cycles	First Full Power
<u>83.7.3.3.1</u>	Piping Systems	First Full Power
<u>83.7.3.3.2</u>	Equipment	First Full Power
<u>83.7.3.3.3</u>	Modeling of Special Engineered Pipe Supports	First Full Power
<u>83.7.3.5</u>	Analysis Procedure for Damping	First Full Power
<u>\$3.7.3.6</u>	Three Components of Earthquake Motion	First Full Power
<u>83.7.3.7</u>	Combination of Modal Responses	First Full Power
<u>S3.7.3.8</u>	Interaction of Other Systems with Seismic Category I Systems	First Full Power
<u>\$3.7.3.9</u>	Multiple-Supported Equipment and Components with Distinct Inputs	First Full Power
<u>\$3.7.3.10</u>	Use of Equivalent Vertical Static Factors	First Full Power
<u>\$3.7.3.11</u>	Torsional Effects of Eccentric Masses	First Full Power
<u>\$3.7.3.12</u>	Effect of Differential Building Movements	First Full Power
<u>\$3.7.3.13</u>	Seismic Category I Buried Piping, Conduits and Tunnels	First Full Power

ESBWR

<u>Table 1D-1</u>

Location	Short Description of Tier 2* Information	Expiration
<u>S3.7.3.14</u>	Methods for Seismic Analysis of Seismic Category I Concrete Dams	First Full Power
<u>83.7.3.15</u>	Methods for Seismic Analysis of Above-Ground Tanks	First Full Power
<u>S3.7.3.16 (1)</u>	Design of Small Branch and Small Bore Piping	First Full Power
<u>83.7.5</u>	Site-Specific Information	First Full Power
<u>Table 3.7-2</u>	5%-Damped Target Spectra of Single Envelope Design Ground Motion at Foundation Level	First Full Power
<u>Table 3.7-3</u>	Summary of Methods of Seismic Analysis for Primary Building Structures	First Full Power
Figure 3.7-38	Single Envelope Spectrum Match – H1 Component	First Full Power
Figure 3.7-39	Single Envelope Spectrum Match – H2 Component	First Full Power
Figure 3.7-40	Single Envelope Spectrum Match – Vertical Component	First Full Power
Figure 3.7-41	Single Envelope Time Histories – H1 Component	First Full Power
Figure 3.7-42	Single Envelope Time Histories – H2 Component	First Full Power
Figure 3.7-43	Single Envelope Time Histories – Vertical Component	First Full Power
<u>S3.8.1.1.1</u>	Concrete Containment	First Full Power
<u>S3.8.1.1.3</u>	Containment Boundary	First Full Power
<u>S3.8.1.2.2</u>	Construction Codes of Practice	First Full Power
<u>S3.8.1.2.3</u>	General Design Criteria, Regulatory Guides, and Industry Standards	First Full Power
<u>S3.8.1.3.6</u>	Load Combinations for the Containment Structure and Liner Plate	First Full Power
<u>S3.8.1.4.1.4</u>	Corrosion Prevention	First Full Power
<u>S3.8.1.5</u>	Structural Acceptance Criteria	First Full Power
<u>\$3.8.1.6</u>	Materials, Quality Control and Special Construction Techniques	First Full Power
<u>S3.8.1.6.1</u>	Concrete	First Full Power
<u>S3.8.1.6.2</u>	Reinforcing Steel	First Full Power
<u>S3.8.1.6.3</u>	Splices of Reinforcing Steel	First Full Power
<u>S3.8.1.6.4</u>	Liner Plate and Appurtenances	First Full Power

ESBWR

Design Control Document/Tier 2

Table 1D-1

Location	Short Description of Tier 2* Information	Expiration
<u>S3.8.1.7.1</u>	Structural Integrity Pressure Test	First Full Power
<u>S3.8.1.7.3.12</u>	Evaluation of Inaccessible Areas	First Full Power
<u>S3.8.2.2.1</u>	Codes, Standards and Regulatory Guides	First Full Power
<u>S3.8.2.2.3</u>	Code Compliance	First Full Power
<u>S3.8.2.3</u>	Loads and Load Combinations	First Full Power
<u>S3.8.2.5</u>	Structural Acceptance Criteria	First Full Power
<u>S3.8.2.6</u>	Materials, Quality Control and Special Construction Techniques	First Full Power
<u>S3.8.3.1.1</u>	Diaphragm Floor	First Full Power
<u>\$3.8.3.1.3</u>	Reactor Shield Wall	First Full Power
<u>\$3.8.3.1.4</u>	Vent Wall	First Full Power
<u>S3.8.3.2</u>	Applicable Codes, Standards, and Specifications	First Full Power
<u>\$3.8.3.3.2</u>	Load Combination	First Full Power
<u>S3.8.3.5.1</u>	Diaphragm Floor	First Full Power
<u>\$3.8.3.5.2</u>	Reactor Pressure Vessel Support Brackets	First Full Power
<u>S3.8.3.5.3</u>	Reactor Shield Wall	First Full Power
<u>S3.8.3.5.4</u>	Vent Wall	First Full Power
<u>S3.8.3.5.5</u>	Gravity Driven Cooling System Pool	First Full Power
<u>S3.8.3.5.6</u>	Miscellaneous Platforms	First Full Power
<u>83.8.3.6.1</u>	Diaphragm Floor	First Full Power
<u>S3.8.3.6.2</u>	Reactor Pressure Vessel Support Brackets	First Full Power
<u>S3.8.3.6.3</u>	Reactor Shield Wall	First Full Power
<u>\$3.8.3.6.4</u>	Vent Wall	First Full Power
<u>\$3.8.3.6.5</u>	Gravity Driven Cooling System Pool	First Full Power
<u>\$3.8.3.6.6</u>	Miscellaneous Platforms	First Full Power
<u>S3.8.4</u>	Other Seismic Category I Structures	First Full Power
<u>S3.8.4.1.1</u>	Reactor Building Structure	First Full Power
<u>\$3.8.4.1.2</u>	Control Building	First Full Power
<u>\$3.8.4.1.3</u>	Fuel Building	First Full Power

Design Control Document/Tier 2

ESBWR

Table 1D-1

<u>Location</u>	Short Description of Tier 2* Information	Expiration
<u>S3.8.4.1.4</u>	Firewater Service Complex	First Full Power
<u>S3.8.4.1.5</u>	Radwaste Building	First Full Power
<u>S3.8.4.2.1</u>	Reactor Building	First Full Power
<u>S3.8.4.2.2</u>	Control Building	First Full Power
<u>\$3.8.4.2.3</u>	Fuel Building	First Full Power
<u>S3.8.4.2.4</u>	Radwaste Building	First Full Power
<u>S3.8.4.2.5</u>	Welding of Pool Liners	First Full Power
<u>S3.8.4.3.1.2</u>	Load Combinations for Concrete Members	First Full Power
<u>S3.8.4.3.1.3</u>	Load Combinations for Steel Members	First Full Power
<u>\$3.8.4.3.2</u>	Control Building	First Full Power
<u>\$3.8.4.3.3</u>	Fuel Building	First Full Power
<u>\$3.8.4.3.4</u>	Radwaste Building	First Full Power
<u>S3.8.4.3.5</u>	Firewater Service Complex	First Full Power
<u>S3.8.4.5.1</u>	Reactor Building	First Full Power
<u>S3.8.4.5.2</u>	Control Building	First Full Power
<u>\$3.8.4.5.3</u>	Fuel Building	First Full Power
<u>S3.8.4.5.4</u>	Radwaste Building	First Full Power
<u>S3.8.4.5.5</u>	Firewater Service Complex	First Full Power
<u>S3.8.4.6.1</u>	Concrete	First Full Power
<u>S3.8.4.6.2</u>	Reinforcing Steel	First Full Power
<u>\$3.8.4.6.3</u>	Splices of Reinforcing Steel	First Full Power
<u>S3.8.4.6.4</u>	Quality Control	First Full Power
<u>\$3.8.5.1</u>	Description of the Foundations	First Full Power
<u>\$3.8.5.2</u>	Applicable Codes, Standards and Specifications	First Full Power
<u>\$3.8.5.3</u>	Loads and Load Combinations	First Full Power
<u>S3.8.5.5</u>	Structural Acceptance Criteria	First Full Power
<u>\$3.8.5.6</u>	Materials, Quality Control, and Special Construction Techniques	First Full Power
<u>S3.8.6.1</u>	Foundation Waterproofing	First Full Power

Design Control Document/Tier 2

<u>Table 1D-1</u>

Summary of Tier 2* Information

Location	Short Description of Tier 2* Information	<u>Expiration</u>
<u>S3.8.6.2</u>	Site-Specific Physical Properties and Foundation Settlement	<u>First Full Power</u>
<u>Table 3.8-1</u>	Key Dimensions of Concrete Containment	First Full Power
<u>Table 3.8-2</u>	Load Combinations, Load Factors and Acceptance Criteria for the Reinforced Concrete Containment	First Full Power
<u>Table 3.8-3</u>	Major Allowable Stresses in Concrete and Reinforcing Steel	First Full Power
<u>Table 3.8-4</u>	Load Combination, Load Factors and Acceptance Criteria for Steel Containment Components of the RCCV	First Full Power
<u>Table 3.8-5</u>	Welding Activities and Weld Examination Requirements for Containment Vessel	First Full Power
<u>Table 3.8-6</u>	Codes, Standards, Specifications, and Regulations Used in the Design and Construction of Seismic Category I Internal Structures of the Containment	First Full Power
<u>Table 3.8-7</u>	Load Combination, Load Factors and Acceptance Criteria for Steel Structures Inside the Containment	First Full Power
<u>Table 3.8-8</u>	Key Dimensions of RB, CB, FB, RW and FWSC	First Full Power
<u>Table 3.8-9</u>	Codes, Standards, Specifications, and Regulatory Guides Used in the Design and Construction of Seismic Category I Structures	First Full Power
Table 3.8-10	Temperatures During Operating Conditions (RB)	First Full Power
Table 3.8-11	Temperatures During Operating Conditions (CB)	First Full Power
Table 3.8-12	Temperatures During Operating Conditions (FB)	First Full Power
Table 3.8-13	Key Dimensions of Foundations	First Full Power
<u>Table 3.8-14</u>	Load Combinations and Factor of Safety for Foundation Design	First Full Power
<u>Table 3.8-15</u>	Load Combinations, Load Factors and Acceptance Criteria for the Safety-Related Reinforced Concrete Structures	First Full Power
<u>Table 3.8-16</u>	Load Combinations, Load Factors and Acceptance Criteria for the Safety-Related Steel Structures	First Full Power
Table 3.8-18	Temperatures During Operating Conditions (FWSC)	First Full Power

.

<u>Table 1D-1</u>

Location	Short Description of Tier 2* Information	Expiration
Figure 3.8-1	Configuration of Concrete Containment	First Full Power
<u>\$3.9.2.3</u>	Dynamic Response of Reactor Internals Under Operational Flow Transients and Steady-State Conditions	<u>First Full Power</u>
<u>\$3.9.3.1</u>	Loading Combinations, Design Transients and Stress Limits	First Full Power
<u>\$3.9.3.1.1</u>	<u>Plant Conditions – Correlation of Plant Condition with</u> <u>Event Probability</u>	First Full Power
<u>S3.9.3.1.2</u>	Inspections/Testing Following the Reactor Coolant System Exceeding Service Level B Pressure Limit	First Full Power
<u>\$3.9.3.2</u>	Reactor Pressure Vessel Assembly	First Full Power
<u>\$3.9.3.3</u>	Main Steam System Piping	First Full Power
<u>\$3.9.3.4</u>	Other Components:	First Full Power
	Main Steamline Isolation, Safety Relief, and Depressurization Valves	
	ASME Class 1, 2 and 3 Piping	
<u>\$3.9.3.5</u>	Valve Operability Assurance	First Full Power
<u>\$3.9.3.6</u>	Design and Installation of Pressure Relief Devices:	First Full Power
	 Main Steam Safety Relief Valves 	
	 Other Safety Relief and Vacuum Breaker Valves 	
<u>\$3.9.3.7</u>	Component Supports	First Full Power
<u>\$3.9.3.7.1</u>	Piping Supports	First Full Power
<u>S3.9.3.7.1</u> <u>Item (3) b.</u>	Inspection, Testing, Repair and/or Replacement of Snubbers	First Full Power
<u>S3.9.3.7.1</u> <u>Item (3) c. iii.</u>	Snubber Design and Testing	First Full Power
<u>S3.9.3.7.1</u> <u>Item (e)</u>	Snubber Preservice and Inservice Examination and Testing	First Full Power
<u>\$3.9.3.7.2</u>	Reactor Pressure Vessel Sliding Supports	First Full Power
<u>\$3.9.3.9.1</u>	Threaded Fasteners – ASME B&PV Code Class 1, 2 and 3 – Material Selection	First Full Power

<u>Table 1D-1</u>

<u>Location</u>	Short Description of Tier 2* Information	<u>Expiration</u>
<u>\$3.9.3.9.2</u>	<u>Threaded Fasteners – ASME B&PV Code Class 1, 2</u> and 3 – Special Materials Fabrication Processes and Special Controls	First Full Powe
<u>S3.9.3.9.3</u>	<u>Threaded Fasteners – ASME B&PV Code Class 1, 2</u> and 3 – Preservice and Inservice Inspection <u>Requirements</u>	First Full Powe
<u>Table 3.9-2</u>	Load Combinations and Acceptance Criteria for Safety- Related, ASME B&PV Code Class 1, 2 and 3 Components, Component Supports, and Class CS Structures	First Full Powe
Table 3.9-9	Load Combinations and Acceptance Criteria for Class 1 Piping Systems	First Full Pow
Table 3.9-10	Snubber Loads	First Full Pow
Table 3.9-11	Strut Loads	First Full Pow
<u>Table 3.9-12</u>	Linear Type (Anchor and Guide) Main Steam Piping Support	First Full Pow
<u>S3.10.1.1</u>	Selection of Qualification Method	First Full Pow
<u>Ref 3.11-6</u>	LTR NEDE-33516P, ESBWR Qualification Plan Requirements for a 72-Hour Duty Cycle Battery	<u>First Full Pow</u>
<u>83A.2</u>	RB/FB complex, CB and FWSC shape, dimensions and embedment depths	First Full Pow
Table 3A.2-1	Standard ESBWR Building Dimensions	First Full Pow
<u>S3A.3.1</u>	Generic Site Conditions	First Full Pow
<u>S3A.3.2</u>	North Anna ESP Site Conditions	First Full Pow
Table 3A.3-1	Generic Site Properties for SSI Analysis	First Full Pow
Table 3A.3-2	North Anna Site-specific Properties for SSI Analysis	First Full Pow
Table 3A.3-3	Layered Site Cases	First Full Pow
<u>S3A.4.1</u>	Input motion for SSI analysis	First Full Pow
<u>S3A.5,</u> <u>S3A.5.1,</u> <u>S3A.5.2</u>	Soil-Structure Interaction Analysis Method	First Full Pow
<u>Table 3A.5-1</u>	Soil Spring and Damping Coefficient for RB/FB complex	First Full Pow

ESBWR

Design Control Document/Tier 2

Table 1D-1

Leasting Short Description of Tion 2* Information Expiration		
<u>Location</u>	Short Description of Tier 2* Information	Expiration
<u>Table 3A.5-2</u>	Soil Spring and Damping Coefficient for CB	First Full Power
<u>Table 3A.5-3</u>	Soil Spring and Damping Coefficient for FWSC	First Full Power
Figure 3A.5-1	Method for Frequency-Independent Soil Properties	First Full Power
<u>S3A.6</u>	Soil-Structure Interaction Analysis Cases	First Full Power
<u>Table 3A.6-1</u>	Seismic SSI Analysis Cases	First Full Power
<u>S3A.7,</u> <u>S3A.7.1,</u> <u>S3A.7.2,</u> <u>S3A.7.3</u>	Analysis Models	First Full Power
Table 3A.7-1	Eigenvalue Analysis Results for RB/FB model at Soft Site	First Full Power
<u>Table 3A.7-2</u>	Eigenvalue Analysis Results for RB/FB model at Medium Site	First Full Power
<u>Table 3A.7-3</u>	Eigenvalue Analysis Results for RB/FB model at Hard Site	First Full Power
<u>Table 3A.7-4</u>	Eigenvalue Analysis Results for RB/FB model in Fixed-base Case	First Full Power
<u>Table 3A.7-5</u>	Eigenvalue Analysis Results for RB/FB model at Best- estimate North Anna Site	First Full Power
<u>Table 3A.7-6</u>	Eigenvalue Analysis Results for RB/FB model at Upper-bound North Anna Site	First Full Power
<u>Table 3A.7-7</u>	Eigenvalue Analysis Results for RB/FB model at Lower-bound North Anna Site	First Full Power
<u>Table 3A.7-8</u>	Eigenvalue Analysis Results for CB Model at Soft Site	First Full Power
<u>Table 3A.7-9</u>	Eigenvalue Analysis Results for CB Model at Medium Site	First Full Power
Table 3A.7-10	Eigenvalue Analysis Results for CB Model at Hard Site	First Full Power
<u>Table 3A.7-11</u>	Eigenvalue Analysis Results for CB Model in Fixed- base Case	First Full Power
Table 3A.7-12	Eigenvalue Analysis Results for CB Model at Best- estimate North Anna Site	First Full Power
<u>Table 3A.7-13</u>	Eigenvalue Analysis Results for CB Model at Upper- bound North Anna Site	First Full Power

ESBWR

Design Control Document/Tier 2

<u>Table 1D-1</u>

Location	Short Description of Tier 2* Information	Expiration
<u>Table 3A.7-14</u>	Eigenvalue Analysis Results for CB Model at Lower- bound North Anna Site	First Full Power
Table 3A.7-15	Eigenvalue Analysis Results for FWSC Model at Soft Site	First Full Power
<u>S3A.9,</u> <u>S3A.9.1,</u> <u>S3A.9.2,</u> <u>S3A.9.3</u>	Site Envelope Seismic Responses	<u>First Full Power</u>
<u>Table 3A.9-1a</u> to 3A.9-1h	Enveloping Seismic Loads	First Full Power
<u>Table 3A.9-2a</u> to 3A.9-2e	Enveloping Seismic Loads for LOCA Flooding	First Full Power
<u>Table 3A.9-3a</u> to 3A.9-3i	Enveloping Maximum Vertical Acceleration	<u>First Full Power</u>
<u>Table 3A.9-4a</u> to 3A.9-4e	Enveloping Maximum Vertical Acceleration for LOCA Flooding	<u>First Full Power</u>
Figure 3A.9-1a to 3A.9-31	Enveloping Floor Response Spectra	First Full Power
Appendix 3B	Containment Hydrodynamic Load Definitions	First Full Power
<u>Table 3D.1-1</u>	Computer Program User Details	First Full Power
Appendix 3F	Response of Structures to Containment Loads	First Full Power
Appendix 3G	Design Details and Evaluation Results of Seismic Category I Structures	First Full Power
<u>Ref 3H.4-8</u>	LTR NEDE-33536P/NEDO-33536, Control Building and Reactor Building Environmental Temperature Analysis for ESBWR	First Full Power
Appendix 31	Designated NEDE-24326-1-P Material Which May Not Change Without Prior NRC Approval	First Full Power
<u>Chapter 4</u>		
<u>Ref 4.2-4</u>	LTR NEDE-33240P/NEDO-33240, GE14E Fuel Assembly Mechanical Design Report	None
<u>Ref 4.2-5</u>	LTR NEDC-33242P/NEDO-33242, GE14E for ESBWR Fuel Rod Thermal-Mechanical Design Report	None

ESBWR

<u>Table 1D-1</u>

Location	Short Description of Tier 2* Information	Expiration	
<u>Ref 4.2-8</u>	LTR NEDE-33244P/NEDO-33244, ESBWR Marathon Control Rod Mechanical Design Report	None	
<u>Ref 4.2-9</u>	LTR NEDE-33243P/NEDO-33243, ESBWR Marathon Control Rod Nuclear Design Report	None	
<u>Ref 4.3-8,</u> <u>4.4-21, 4A-2,</u> <u>4D-27</u>	LTR NEDC-33239P/NEDO-33239, GE14 for ESBWR Nuclear Design Report	<u>None</u>	
<u>Ref 4.3-10,</u> <u>4.4-20, 4A-1,</u> <u>4D-23</u>	LTR NEDC-33326P/NEDO-33326, GE14E for ESBWR Initial Core Nuclear Design Report	First Full Power	
<u>Ref 4.4-12</u>	LTR NEDC-33237P/NEDO-33237, GE14 for ESBWR Critical Power Correlation, Uncertainty, and OLMCPR Development	None	
<u>Ref 4.4-22</u>	LTR NEDC-33456P/NEDO-33456, Full-Scale Pressure Drop Testing for a Simulated GE14E Fuel Bundle	First Full Power	
<u>S4B.1</u>	Fuel Licensing Acceptance Criteria – General	None	
<u>S4B.3</u>	Fuel Licensing Acceptance Criteria – Nuclear	None	
<u>S4B.6</u>	Fuel Licensing Acceptance Criteria – Critical Power	None	
Table 4B-1	Fuel Rod Thermal-Mechanical Design Criteria	None	
<u>S4C.1</u>	Control Rod Licensing Acceptance Criteria - General	None	
<u>Ref 4D-19</u>	LTR NEDE-33217P/NEDO-33217, ESBWR Man- Machine Interface System and Human Factors Engineering Implementation Plan	First Full Power	
<u>Chapter 5</u>			
<u>85.2.1.1</u>	10 CFR 50.55a compliance for seismic design of piping	First Full Power	
<u>85.2.4.2</u>	Accessibility requirements to support ASME B&PV Code Section XI examinations	First Full Power	
<u>Chapter 6</u>			
<u>86.6.2</u>	Accessibility requirements to support ASME B&PV Code Section XI examinations	First Full Power	
<u>Chapter 7</u>			
<u>Ref 7.1-8,</u> <u>7B.3-3</u>	LTR NEDE-33295P/NEDO-33295, ESBWR Cyber Security Program Plan	First Full Power	

ESBWR

<u>Table 1D-1</u>

Summary of Tier 2* Information

<u>Location</u>	Short Description of Tier 2* Information	Expiration	
<u>Ref 7.1-9,</u> <u>7.2-1, 7.3-2,</u> <u>7.4-2, 7.5-2,</u> <u>7.8-4</u>	LTR NEDE-33304P/NEDO-33304P, GEH ESBWR Setpoint Methodology	First Full Power	
<u>Ref 7.1-10,</u> <u>7.2-4, 7.3-4,</u> <u>7.8-3, 7B.3-2</u>	<u>LTR NEDE-33245P/NEDO-33245, ESBWR –</u> Software Quality Assurance Program Manual	First Full Power	
<u>Ref 7.1-12,</u> <u>7.2-3, 7.3-3,</u> <u>7B.3-1</u>	LTR NEDE-33226P/NEDO-33226, ESBWR – Software Management Program Manual	<u>First Full Power</u>	
<u>87.2.1.3.5,</u> <u>87.2.2.3.5,</u> <u>87.3.5.3.5</u>	BTP HICB-14 discussions about Software Management Program Manual and Software Quality Assurance Program Manual LTRs	<u>First Full Power</u>	
<u>\$7.8.2.1</u>	Software Quality Assurance Program Manual LTR	First Full Power	
<u>S7B.1</u>	Software Development	First Full Power	
<u>Ref 7B.3-4</u>	LTR NEDE-33217P/NEDO-33217, ESBWR Man- Machine Interface System and Human Factors Engineering Implementation Plan	First Full Power	
	Chapter 8		
	None	<u>N/A</u>	
	<u>Chapter 9</u>		
<u>\$9.1.2.4</u>	Mechanical and structural design of spent fuel racks	None	
<u>Ref 9.1-2</u>	LTR NEDC-33374P/NEDO-33374, Criticality Analysis for ESBWR Fuel Racks	None	
	<u>Chapter 10</u>		
	None	<u>N/A</u>	
<u>Chapter 11</u>			
	None	<u>N/A</u>	
Chapter 12			
	None	<u>N/A</u>	

,

ESBWR

Design Control Document/Tier 2

<u>Table 1D-1</u>

<u>Location</u>	Short Description of Tier 2* Information	Expiration
Chapter 13		
<u>Ref 13.3-1,</u> <u>13.5-1</u>	LTR NEDE-33217P/NEDO-33217, ESBWR Man- Machine Interface System and Human Factors Engineering Implementation Plan	First Full Power
	<u>Chapter 14</u>	
<u>S14.2.8.2.7</u>	First of a kind testing for reactor stability	Successful completion of testing for First ESBWR
<u>S14.2.8.2.35,</u> <u>S14.2.8.2.35.1,</u> <u>S14.2.8.2.35.2,</u> <u>S14.2.8.2.35.3,</u> <u>S14.2.8.2.35.4,</u> <u>S14.2.8.2.35.5</u>	<u>First of a Kind Tests</u>	Successful completion of testing for First ESBWR
<u>S14.3A.2</u>	Design Acceptance Criteria ITAAC for Piping Design	First Full Power
<u>S14.3A.3</u>	Digital Instrumentation and Control Design Acceptance Criteria ITAAC Closure	First Full Power
<u>S14.3A.4</u>	Human Factors Engineering Design Acceptance Criteria ITAAC Closure	First Full Power
	<u>Chapter 15</u>	
<u>Ref 15.0-6,</u> <u>15.2-2, 15.3-4,</u> <u>15.5-6</u>	LTR NEDC-33239P/NEDO-33239, GE14 for ESBWR Nuclear Design Report	None
<u>Ref 15.0-7,</u> <u>15.2-3, 15.3-5,</u> <u>15.5-3</u>	LTR NEDC-33326P/NEDO-33326, GE14E for ESBWR Initial Core Nuclear Design Report	First Full Power
Chapter 16 and 16B		
	None	<u>N/A</u>
Chapter 17		
<u>S17.1.3</u>	Software Quality Assurance Program Manual LTR, Software design verification and validation	First Full Power
<u>Ref 17.1-2</u>	LTR NEDE-33245P/NEDO-33245, ESBWR – Software Quality Assurance Program Manual	First Full Power

ESBWR

Design Control Document/Tier 2

<u>Table 1D-1</u>

Location	Short Description of Tier 2* Information	Expiration
	<u>Chapter 18</u>	
Ref 18.1-1, 18.2-1, 18.3-1, 18.4-1, 18.5-1, 18.6-1, 18.7-1, 18.8-1, 18.9-1, 18.10-1, 18.11-1, 18.12-1, 18.13-1	LTR NEDE-33217P/NEDO-33217, ESBWR Man- Machine Interface System and Human Factors Engineering Implementation Plan	<u>First Full Power</u>
<u>Ref 18.3-2</u>	LTR NEDO-33262, ESBWR Human Factors Engineering Operating Experience Review Implementation Plan	First Full Power
<u>Ref 18.4-2</u>	LTR NEDO-33219, ESBWR Human Factors Engineering Functional Requirements Analysis Implementation Plan	First Full Power
<u>Ref 18.4-3</u>	LTR NEDE-33220P/NEDO-33220, ESBWR Human Factors Engineering Allocation of Function Implementation Plan	First Full Power
<u>Ref 18.5-2</u>	LTR NEDE-33221P/NEDO-33221, ESBWR Human Factors Engineering Task Analysis Implementation Plan	First Full Power
<u>Ref 18.6-2</u>	LTR NEDO-33266, ESBWR Human Factors Engineering Staffing and Qualifications Implementation Plan	First Full Power
<u>Ref 18.7-2</u>	LTR NEDO-33267, ESBWR Human Factors Engineering Human Reliability Analysis Implementation Plan	First Full Power
<u>Ref 18.8-2</u>	LTR NEDE-33268P/NEDO-33268, ESBWR Human Factors Engineering Human-System Interface Design Implementation Plan	First Full Power
<u>Ref 18.9-2</u>	LTR NEDO-33274, ESBWR Human Factors Engineering Procedures Development Implementation Plan	First Full Power
<u>Ref 18.10-2</u>	LTR NEDO-33275, ESBWR Human Factors Engineering Training Development Implementation Plan	First Full Power

ESBWR

.

Design Control Document/Tier 2

Table 1D-1

Location	Short Description of Tier 2* Information	Expiration
<u>Ref 18.11-2</u>	LTR NEDE-33276P/NEDO-33276, ESBWR Human Factors Engineering Verification and Validation Implementation Plan	First Full Power
<u>Ref 18.12-2</u>	LTR NEDO-33278, ESBWR Human Factors Engineering Design Implementation Plan	First Full Power
<u>Ref 18.13-2</u>	LTR NEDO-33277, ESBWR Human Factors Engineering Human Performance Monitoring Implementation Plan	First Full Power
<u>Chapter 19</u>		
	None	<u>N/A</u>

ESBWR

The ESBWR Marathon control rod is designed to be compatible with the Control Rod Guide Tube (CRGT) cylindrical boundary, to provide a seat with the guide tube base during FMCRD removal, to provide lower guide rollers for smooth transitions, and to have clearance with the orificed fuel support for insertion and withdrawal from the core.

The control rod coupling socket provides a compatible interface with the FMCRD. The coupling engages the FMCRD by rotating one-eighth turn (45°). With the FMCRD, Control Rod Drive Housing (CRDH), and CRGT positively assembled, any orientation of the cruciform control rod between the fuel assemblies is a coupled position, and rotation to an uncoupled position is not possible during reactor operation. The four lobes of the FMCRD coupling spud are in line with the four wings of the control rod in the coupled position.

The control rod is designed to permit coupling and uncoupling of the control rod drive from below the vessel for FMCRD servicing without necessitating the removal of the reactor vessel head. The control rod is also designed to allow uncoupling and coupling from above the vessel using control rod handling tools.

The control rod is positively coupled to the FMCRD and is designed to remain coupled during all scrams and loading conditions, including inoperative buffer scram loads. The control rod withstands the loads induced by the FMCRD without exceeding the structural design criteria as stated in Subsections 4.2.4.1 and 4.2.4.2 above.

The control rod is dimensionally compatible with the fuel assemblies (unirradiated and irradiated). The control rod is guided, rotationally restrained and laterally supported by the adjacent fuel assemblies. The control rod is designed and constructed to establish and maintain the alignment of the control rod drive line (CRDH, CRGT, and fuel assemblies) so that control rod insertion and withdrawal is predictable. The top of the active absorber of a fully withdrawn control rod is below the Bottom of the Active Fuel (BAF). Absorber gap requirements are placed on the control rod in the operating condition to be compatible with the core nuclear design requirements.

4.2.5 Testing, Inspection, and Surveillance Plans

GEH has an active program for the surveillance of both production and developmental fuel. The NRC has reviewed the GEH program and approved it in Reference 4.2-6.

4.2.6 COL Information

This section contains no requirement for additional information to be provided in support of the combined license. Combined License Applicants referencing the ESBWR certified design will address changes to the reference design of the fuel assembly or control rods from that presented in the DCD.

4.2.7 References

- 4.2-1 Global Nuclear Fuel, "Global Nuclear Fuels Fuel Bundle Designs," NEDE-31152P, Class III (Proprietary), Revision 9, May 2007, NEDO-31152, Class I (Non-proprietary), Revision 9, May 2007.
- 4.2-2 GE Nuclear Energy, "Fuel Rod-Mechanical Thermal Analysis Methodology (GSTRM)," NEDC-31959P, Class III (Proprietary), April 1991.

- 4.2-3 Global Nuclear Fuel, "Cladding Creep Collapse," NEDC-33139P-A, Class III (Proprietary), July 2005.
- 4.2-4 [Global Nuclear Fuel, "GE14E Fuel Assembly Mechanical Design Report," NEDC-33240P, Class III (Proprietary), Revision 1, January 2009, NEDO-33240, Class I (Non-proprietary), Revision 1, January 2009.]*
- 4.2-5 [Global Nuclear Fuel, "GE14 for ESBWR Fuel Rod Thermal-Mechanical Design Report," NEDC-33242P, Class III (Proprietary), Revision 2, June 2009, and NEDO-33242, Class I (Non-proprietary), Revision 2, June 2009.]*
- 4.2-6 USNRC Letter, L. S. Rubenstein (NRC) to R. L. Gridley (GE), "Acceptance of GE Proposed Fuel Surveillance Program," June 27, 1984.
- 4.2-7 GE Nuclear Energy, "GE Marathon Control Rod Assembly," NEDE-31758P-A, Class III (Proprietary), October 1991.
- 4.2-8 [GE Hitachi Nuclear Energy, "ESBWR Marathon Control Rod Mechanical Design Report," NEDE-33244P, Class III (Proprietary), Revision 1, November 2007, and NEDO-33244, Class I (Non-proprietary), Revision 1, November 2007.]*
- 4.2-9 [GE Hitachi Nuclear Energy, "ESBWR Marathon Control Rod Nuclear Design Report," NEDE-33243P, Class III (Proprietary), Revision 2, July 2008, and NEDO-33243, Class I (Non-proprietary), Revision 2, July 2008.]*
- 4.2-10 GE Nuclear Energy, "GESTR-LOCA A Model for Prediction of Fuel Rod Thermal Performance," NEDE-23785-1-P-A (Volume 1), Revision 1, October 1984.

References that are bracketed and italicized with an asterisk following the brackets are designated as Tier 2. Prior NRC approval is required to change Tier 2* information.

ESBWR

"Regulatory Relaxation for BWR Loose Parts Monitoring Systems," written by the BWR Owner's Group (Reference 4.4-19).

The ESBWR design and operation minimizes the potential for loose parts in the reactor pressure vessel. The ESBWR design takes into consideration material selection for critical components, and utilizes FIV testing and temporary strainers during startup to prevent loose parts from entering the reactor vessel. Foreign Materials Exclusion (FME) programs and underwater vessel inspections are employed to prevent loose parts from entering the reactor vessel. The ESBWR is capable of performing its safety-related functions without the LPMS.

4.4.6 Testing and Verification

The testing and verification techniques to be used to assure that the planned thermal and hydraulic design characteristics of the core have been provided, and remain within required limits throughout core lifetime, are discussed in Chapter 14.

4.4.7 COL Information

None.

4.4.7.1 (Deleted)

4.4.8 References

- 4.4-1 (Deleted).
- 4.4-2 General Electric Company, "Core Flow Distribution in a General Electric Boiling Water Reactor as Measured in Quad Cities Unit 1," NEDO-10722A, Class I (Nonproprietary), August 1976.
- 4.4-3 General Electric Company, "Brunswick Steam Electric Plant Unit I Safety Analysis Report for Plant Modifications to Eliminate Significant In-Core Vibrations," NEDO-21215, Class I (Non-proprietary), March 1976.
- 4.4-4 R.C. Martinelli and D.E. Nelson, "Prediction of Pressure Drops During Forced Convection Boiling of Water," ASME Trans., 70, 695-702, 1948.
- 4.4-5 C.J. Baroczy, "A Systematic Correlation for Two-Phase Pressure Drop," Heat Transfer Conference (Los Angeles), AIChE, reprint No. 37, 1965.
- 4.4-6 N. Zuber and J. A. Findlay, "Average Volumetric Concentration in Two-Phase Flow Systems," Transactions of the ASME Journal of Heat Transfer, November 1965.
- 4.4-7 W. H. Jens and P. A. Lottes, "Analysis of Heat Transfer, Burnout, Pressure Drop and Density Data for High Pressure Water," USAEC Report ANL-4627, 1951.
- 4.4-8 General Electric Company, "General Electric BWR Thermal Analysis Basis (GETAB): Data Correlation and Design Application," NEDO-10958-A, Class I (Non-proprietary), January 1977.
- 4.4-9 GE Nuclear Energy, "TRACG Application for ESBWR," NEDE-33083P-A Revision 0, Class III (Proprietary), March 2005.

FÓÐWD	26A6642AP Rev. 08 Design Control Document/Tier 2
ESBWR	Design Control Document/ Her 2
4.4-10	GE Hitachi Nuclear Energy, "Licensing Topical Report TRACG Model Description," NEDE-32176P, Revision 4, Class III (Proprietary), January 2008, NEDO-32176, Revision 4, Class I (Non-proprietary), January 2008.
4.4-11	GE Nuclear Energy, "Licensing Topical Report TRACG Qualification," NEDE- 32177P Revision 3, Class III (Proprietary), August 2007.
4.4-12	[Global Nuclear Fuel, "GE14 for ESBWR-Critical Power Correlation, Uncertainty, and OLMCPR Development," NEDC-33237P Revision 4, Class III (Proprietary), July 2008, and NEDO-33237, Revision 4, Class I (Non-proprietary), July 2008.]*
4.4-13	GE Nuclear Energy, "Methodology and Uncertainties for Safety Limit MCPR Evaluations," NEDC-32601P-A, Class III (Proprietary), August 1999.
4.4-14	Global Nuclear Fuel, "GE14 Pressure Drop Characteristics," NEDC-33238P, Class III (Proprietary), December 2005.
4.4-15	GE Nuclear Energy, "TASC-03A, A Computer Program for Transient Analysis of a Single Channel," NEDC-32084P-A, Revision 2, Class III (Proprietary), July 2002.
4.4-16	Letter, J.S. Charnley (GE) to C. O. Thomas (NRC), Amendment 15 to General Electric Licensing Topical Report NEDE-24011-P-A, January 25, 1986.
4.4-17	GE Hitachi Nuclear Energy, "ESBWR Initial Core Transient Analysis," NEDO-33337, Class I (Non-proprietary), Revision 1, April 2009.
4.4-18	GE Hitachi Nuclear Energy, "ESBWR Feedwater Temperature Operating Domain Transient and Accident Analysis," NEDO-33338, Class I (Non-proprietary), Revision 1, May 2009.
4.4-19	GE Nuclear Energy, "Regulatory Relaxation for BWR Loose Parts Monitoring Systems," BWR Owner's Group Licensing Topical Report NEDC-32975P-A, Class III (Proprietary), Revision 0, February 2001.
4.4-20	[Global Nuclear Fuel, "GE14E for ESBWR Initial Core Nuclear Design Report," NEDC-33326-P, Class III (Proprietary), Revision 1, March 2009, NEDO-33326, Class I (Non-proprietary), Revision 1, March 2009.]*
4.4-21	[Global Nuclear Fuel, "GE14 for ESBWR Nuclear Design Report," NEDC-33239-P, Class III (Proprietary), Revision 4, March 2009, NEDO-33239, Class I (Non proprietary), Revision 4, March 2009.]*
4.4-22	[Global Nuclear Fuel, "Full-Scale Pressure Drop Testing for a Simulated GE14E Fuel Bundle," NEDC-33456P, Class III (Proprietary), Revision 0, March 2009, NEDO-33456, Class I (Non-proprietary), Revision 0, March 2009]*
	erences that are bracketed and italicized with an asterisk following the brackets are gnated as Tier 2*. Prior NRC approval is required to change Tier 2* information.

. ..

ESBWR

maintenance provisions of safety-related power supplies. Further discussion of the safety-related power supplies is provided throughout Chapter 8.

A single non-electrical redundant power source (e.g., one of two parallel accumulators, one of two squibs) may be taken to "maintenance bypass" (i.e., isolated) without adversely impacting the safety function of any system.

For those non-electrical power sources having a degree of redundancy of one, taking it to maintenance bypass does not adversely impact the reliability of any safety-related system to perform its safety functions. Additionally, manual bypassing of power sources for each system are discussed in the Safety Evaluation section for each applicable system as part of conformance to 10 CFR 50.55 a(h).

7.1.6.6.1.28 Cyber Security (IEEE Std. 7-4.3.2)

The security measures included in RG 1.152 are evaluated and incorporated in the Q-DCIS design and include plant hardware and software security measures. The software development process plans are developed with the security measures.

The comprehensive ESBWR Cyber Security Program Plan (Reference 7.1-8) includes methods for identifying security risks and outlines appropriate procedures. The plant ensures that hardware, controls, and data networks comprising the control network cannot be disrupted, interrupted, or negatively affected by unauthorized users or external systems. Reference 7.1-8 documents the design commitments, which meet the applicable guidance of RG 1.152, Section C.2, and Positions 2.1 through 2.9.

Inspections, tests, analyses, and acceptance criteria (ITAAC) associated with the cyber security program plan are provided in Tier 1 together with the SDP.

7.1.7 COL Information

None.

7.1.8 References

- 7.1-1 (Deleted)
- 7.1-2 (Deleted)
- 7.1-3 (Deleted)
- 7.1-4 GE Hitachi Nuclear Energy, "ESBWR I&C Diversity and Defense-In-Depth Report." NEDO-33251, Class I (Non-proprietary), Revision 2, May 2009.
- 7.1-5 (Deleted)
- 7.1-6 (Deleted)
- 7.1-7 (Deleted)
- 7.1-8 [GE Hitachi Nuclear Energy, "ESBWR Cyber Security Program Plan," NEDE-33295P, Class III (Proprietary), Revision 1, July 2009, and NEDO-33295, Class I (Non-Proprietary), Revision 1, July 2009.]*

ESBWR

- 7.1-9 [GE Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), Revision <u>34</u>, February May 2010, and NEDO-33304, Class II (Non-proprietary), Revision <u>34</u>, February May 2010.]*
- 7.1-10 [GE Hitachi Nuclear Energy, "ESBWR Software Quality Assurance Program Manual," NEDE-33245P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33245, Class I (Non-Proprietary), Revision 5, February 2010.]*
- 7.1-11 (Deleted)
- 7.1-12 [GE Hitachi Nuclear Energy, "ESBWR Software Management Program Manual," NEDE-33226P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33226, Class I (Non-proprietary), Revision 5, February 2010.]*
- 7.1-13 (Deleted)

ESBWR

BTP HICB-19, Guidance for Evaluation of Defense-in-Depth and Diversity in Digital Computer-Based Instrumentation and Control Systems:

• Conformance: The SPTM function conforms to BTP HICB-19. The implementation of an additional diverse instrumentation and control system is described in Section 7.8.

BTP HICB-21, Guidance on Digital Computer Real-Time Performance:

• Conformance: The SPTM function conforms to BTP HICB-21.

7.2.3.3.6 TMI Action Plan Requirements

In accordance with the SRP for Section 7.2 and with Table 7.1-1, only I.D.3 applies to the SPTM function. This is addressed in Subsection 7.2.3.3.1 for 10 CFR 50.34(f)(2)(v)[I.D.3]. TMI action plan requirements are generically addressed in Table 1A-1 of Appendix 1A.

7.2.3.4 Testing and Inspection Requirements

Proper functioning of analog temperature sensors is verified by channel cross-comparison during the plant normal operation mode. The bulk pool temperatures are continuously compared between divisions and indicated by the PCF.

Each of four SPTM safety-related divisions is testable during plant normal operation to determine the operational availability of the system. Each safety-related SPTM division has the capability for testing, adjustment, and inspection during a plant outage.

7.2.3.5 Instrumentation and Controls Requirements

The I&C requirements related to SPTM are addressed in Subsections 7.2.3.1 and 7.2.3.2.

7.2.4 COL Information

None.

7.2.5 References

7.2-1 [*GE Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), Revision* <u>34</u>, *February* <u>May</u> 2010, and NEDO-33304, Class II (Non-proprietary), Revision <u>34</u>, *February* <u>May</u> 2010.]*

7.2-2 (Deleted)

- 7.2-3 [GE Hitachi Nuclear Energy, "ESBWR Software Management Program Manual," NEDE-33226P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33226, Class I (Non-proprietary), Revision 5, February 2010.]*
- 7.2-4 [GE Hitachi Nuclear Energy, "ESBWR Software Quality Assurance Program Manual)," NEDE-33245P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33245, Class I (Non-proprietary), Revision 5, February 2010.]*

ESBWR

Design Control Document/Tier 2

BTP HICB-19, Guidance for Evaluation of Defense-in-Depth and Diversity in Digital Computer-Based Instrumentation and Control Systems:

• Conformance: The VB isolation function design conforms to BTP HICB-19. The discrete logic and solid state controls used in this design are not subject to the vulnerabilities described by BTP HICB-19.

BTP HICB-21, Guidance on Digital Computer Real-Time Performance:

• Conformance: The VB isolation function design conforms to BTP HICB-21.

7.3.6.3.6 Three Mile Island Action Plan Requirements

In accordance with the SRP for 7.3 and with Table 7.1-1, 10 CFR 50.34(f)(2)(v)[I.D.3] applies to the VB isolation function. The VB isolation function complies with the requirements as indicated above. TMI action plan requirements are addressed in Appendix 1A.

7.3.6.4 Testing and Inspection Requirements

The VB isolation function TLUs are self-tested continually at preset intervals and can be tested during plant operation. VB isolation function equipment is tested during reactor operation to support VB Isolation Valve stroke testing as specified in Table 3.9-8 and Subsection 6.2.1.1.5. Refer to Subsection 6.2.1.1.5 for a discussion of mechanical tests performed on the VB isolation functions.

7.3.6.5 Instrumentation and Control Requirements

The performance and effectiveness of the VB isolation function in a postulated accident is verified by observing the following MCR indications (additional discussion on the VB isolation function instrumentation is contained in Subsection 7.3.6.1 and in Subsection 6.2.1.1.5):

- Status indication of VB position;
- Status indication of VB isolation valve position;
- Drywell and wetwell pressure indication;
- Drywell and wetwell temperature indications;
- VB isolation valve bypass status; and
- Status indication of bypass leakage.

The VB isolation function instrumentation located in the drywell is designed to operate in the harsh drywell environment that results from a LOCA. Safety-related instruments, located outside the drywell, are qualified for the environment in which they must perform their safety-related function.

7.3.7 COL Information

None.

7.3.8 References

7.3-1 (Deleted)

ESBWR

- 7.3-2 [GE Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), Revision <u>34</u>, February May 2010, and NEDO-33304, Class II (Non-proprietary), Revision <u>34</u>, February May 2010.]*
- 7.3-3 [GE Hitachi Nuclear Energy, "ESBWR Software Management Program Manual," NEDE-33226P, Class III (Proprietary), Revision5, February 2010, and NEDO-33226, Class I (Non-proprietary), Revision 5, February 2010.]*
- 7.3-4 [GE Hitachi Nuclear Energy, "ESBWR Software Quality Assurance Program Manual," NEDE-33245P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33245, Class I (Non-proprietary), Revision 5, February 2010.]*

7.3-5 (Deleted)

ESBWR

- Status indication of HP CRD isolation bypass valve position;
- GDCS pool level indication;
- RPV water level indication; and
- Drywell and RPV pressure indication.

The HP CRD isolation bypass function instrumentation located in the drywell is designed to operate in the harsh drywell environment that results from a LOCA. Instrumentation, located outside the drywell, is qualified for the environment in which they must perform their function.

7.4.6 COL Information

None.

7.4.7 References

7.4-1 (Deleted)

7.4-2 [GE Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), Revision <u>34</u>, February May 2010, and NEDO-33304, Class II (Non-proprietary), Revision <u>34</u>, February May 2010.]*

ESBWR

7.5.8 References

- 7.5-1 GE Nuclear Energy, "GE Nuclear Energy Quality Assurance Program Description," NEDO 11209-04A, Class I (Non-proprietary), Revision 8, March 1989.
- 7.5-2 [GE Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), Revision <u>34</u>, February May 2010, and NEDO-33304, Class II (Non-proprietary), Revision <u>34</u>, February May 2010.]*

ESBWR

7.8.6 COL Information

None.

7.8.7 References

- 7.8-1 GE Hitachi Nuclear Energy, "ESBWR I&C Diversity and Defense-In-Depth Report," NEDO-33251, Class I (Non-proprietary), Revision 2, May 2009.
- 7.8-2 NUREG/CR-6303, "Method for Performing Diversity and Defense-in-Depth Analyses of Reactor Protection Systems, December 1994
- 7.8-3 [GE Hitachi Nuclear Energy, "ESBWR Software Quality Assurance Program Manual," NEDE-33245P, Class III (Proprietary), Revision 5, February 2010, and NEDO-33245, Class I (Non-proprietary), Revision 5, February 2010.]*
- 7.8-4 [GE Hitachi Nuclear Energy, "GEH ESBWR Setpoint Methodology," NEDE-33304P, Class III (Proprietary), Revision <u>34</u>, February-May 2010, and NEDO-33304, Class II (Non-proprietary), Revision <u>34</u>, February-May 2010.]*