MITSUBISHI HEAVY INDUSTRIES, LTD.

16-5, KONAN 2-CHOME, MINATO-KU

TOKYO, JAPAN

June 10, 2010

Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Attention: Mr. Jeffrey A. Ciocco

Docket No. 52-021 MHI Ref: UAP-HF-10167

Subject: MHI's Response to US-APWR DCD RAI No.584-4468 Revision 0

References: 1) "Request for Additional Information No. 584-4468 Revision 0, SRP Section: 09.02.02 – Reactor Auxiliary Cooling Water Systems Application Section: 9.2.7 Chilled Water System" dated May 10, 2010.

With this letter, Mitsubishi Heavy Industries, Ltd. ("MHI") transmits to the U.S. Nuclear Regulatory Commission ("NRC") a document entitled "Responses to Request for Additional Information No.584-4468 Revision 0".

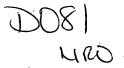
Enclosed are the responses to 10 RAIs contained within Reference 1.

Please contact Dr. C. Keith Paulson, Senior Technical Manager, Mitsubishi Nuclear Energy Systems, Inc. if the NRC has questions concerning any aspect of the submittals. His contact information is below.

Sincerely,

4. Ogata

Yoshiki Ogata, General Manager- APWR Promoting Department Mitsubishi Heavy Industries, LTD.


Enclosure:

1. Responses to Request for Additional Information No. 584-4468, Revision 0

CC: J. A. Ciocco C. K. Paulson

Contact Information

C. Keith Paulson, Senior Technical Manager Mitsubishi Nuclear Energy Systems, Inc. 300 Oxford Drive, Suite 301 Monroeville, PA 15146 E-mail: ck_paulson@mnes-us.com Telephone: (412) 373-6466

Docket No. 52-021 MHI Ref: UAP-HF-10167

Enclosure 1

UAP-HF-10167 Docket Number 52-021

Responses to Request for Additional Information No. 584-4468, Revision 0

June, 2010

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.:NO.584-4468 REVISION 0SRP SECTION:09.02.02 - Reactor Auxiliary Cooling Water SystemsAPPLICATION SECTION:DCD Tier 2 Section 9.2.7DATE OF RAI ISSUE:05/10/2010

QUESTION NO.: 09.02.02-70

This is a follow-up to RAI 343-2208, Question 09.02.02-5:

In response to RAI 09.02.02-5, the applicant stated that the ECWS and non-ECWS are both completely independent and separated systems. The RAI response also stated that the piping of the non-ECWS within an area containing safety-related equipment is designed as seismic Category II. Since Table 3.2-2 does not show any seismic Category II piping for the non-ECWS, it is not clear what non-ECWS seismic Category II piping is being referenced. Table 3.2-2 specifically defines non-ECWS "Piping and valves (except portion of the containment penetration)" as Seismic Category "NS".

Due to the apparent inconsistencies referred to above, the staff cannot conclude whether any of the non-ECWS piping should be seismic Category II and that non-ECWS failures will not adversely impact safetyrelated SSCs. The applicant is requested to:

1. Provide clarification and revise the DCD as necessary to address the above inconsistency with respect to seismic classification of non-ECWS piping and components.

2. Describe to what extent failures of non-ECWS piping and components can adversely impact safetyrelated SSCs, including the basis for this determination.

3. Parts of the non-ECWS which are non-safety related were designated as Equipment Class 4, Seismic Category NS, and Quality Group D. However, Rev 2 of the DCD changed this to Equipment Class 9, Seismic Category NS, and Quality Group N/A. The reason for this change in non-ECWS classification is unclear. In addition, more confusion is added by the designation of Equipment Class 5 that is assigned to the Auxiliary Building air handling unit (AHU) as shown in Tier 2 Table 9.4.3-1; which appears to be inconsistent with the equipment classification that was assigned for non-ECWS which provides the chilled water that is used for cooling this AHU. Therefore, additional explanation and justification is needed for the changes that were made to the non-ECWS classification designations that were made and the apparent inconsistencies that exist.

4. Tier 2 Table 3.2-2 (page 55 of 57) references "Valves VWS-MOV-425, -426" as Seismic Category I. However, Valve "-426" is not shown on non-ECWS Figure 9.2.7-2.

Explain this apparent discrepancy and revise the DCD as necessary to resolve this problem.

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

Question 1:

Provide clarification and revise the DCD as necessary to address the above inconsistency with respect to seismic classification of non-ECWS piping and components.

Answer 1:

As described in DCD Section 3.2.1, Seismic Classification, SSCs that must maintain their structural integrity to prevent unacceptable structural interaction or failure with seismic category I SSCs are designated as seismic category II. Portions of the non-ECWS are routed through areas containing safety-related, seismic category I SSCs in the PCCV, R/B, and the PS/B. Where these portions of the non-ECWS are determined to have the potential, upon loss of structural integrity during a SSE, to degrade the functioning or integrity of a seismic category I SSC to an unacceptable level, the system piping and valves are analyzed and designed to seismic category II requirements described in DCD Section 3.2.1.1.2, Seismic Category II.

As a clarification, a note will be added to Table 3.2-2, for the non-ECWS item "Piping and valves (except portion of the containment penetration)" to indicate that the system piping and valves within an area containing safety-related, seismic category I equipment are seismic category II.

Question 2:

Describe to what extent failures of non-ECWS piping and components can adversely impact safetyrelated SSCs, including the basis for this determination.

Answer 2:

As stated in Part 1 above, portions of the non-ECWS in areas of safety-related equipment are designated as seismic category II. As described in DCD Section 3.2.1.1.2, seismic category II SSCs are designed so that the SSE could not cause unacceptable structural interaction or failure with seismic category I SSCs.

Question 3:

Parts of the non-ECWS which are non-safety related were designated as Equipment Class 4, Seismic Category NS, and Quality Group D. However, Rev 2 of the DCD changed this to Equipment Class 9, Seismic Category NS, and Quality Group N/A. The reason for this change in non-ECWS classification is unclear. In addition, more confusion is added by the designation of Equipment Class 5 that is assigned to the Auxiliary Building air handling unit (AHU) as shown in Tier 2 Table 9.4.3-1; which appears to be inconsistent with the equipment classification that was assigned for non-ECWS which provides the chilled water that is used for cooling this AHU. Therefore, additional explanation and justification is needed for the changes that were made to the non-ECWS classification designations that were made and the apparent inconsistencies that exist.

Answer 3:

Equipment classification system is changed and Class 8, 9 and 10 are added in DCD Revision 2. The non-ECWS equipment and components are classified as Equipment Class 9 except the portion of seismic Category II piping and valves. The portions of the seismic Category II are classified as Equipment Class 5. Table 3.2-2 will be revised to clarify the equipment class of non-ECWS.

Question 4:

Tier 2 Table 3.2-2 (page 55 of 57) references "Valves VWS-MOV-425, -426" as Seismic Category I. However, Valve "-426" is not shown on non-ECWS Figure 9.2.7-2.

Answer 4:

The non-ECWS valves that isolate the system from the CCWS are VWS-MOV-424 and -425 and these valves are seismic category I. DCD Table 3.2-2, first line item on Sheet 55 of 57, will be changed to read "Valves VWS-MOV-424, 425."

Impact on DCD

MHI will revise the information on the non-essential chilled water system in Tier 2, DCD Table 3.2-2, to clarify seismic category II non-ECWS piping and valves, identify components as Equipment Class 5, and provide the correct isolation valves description as follows:

System and Components	Equipment Class	Location	Quality Group	10 CFR 50 Appendix B (Reference 3.2-8)	Codes and Standards ⁽³⁾	Seismic Category	Notes
46. Non-Essential Chilled							
Water System				L		:	
Non-essential chiller units					_		
Evaporator side	9	A/B	N/A	N/A	5	NS	
Condenser side	9	A/B	N/A	N/A	5	NS	
Non-essential chilled water pumps	9	A/B	N/A	N/A	5	NS	
Non-essential chilled water compression tanks	9	A/B	N/A	N/A	5	NS	
Non-essential chilled water system cooling towers	9	A/B	N/A	N/A	5	NS	
Non-essential chilled water system condenser water pumps	9	A/B	N/A	N/A	5	NS	
Non-essential chilled water chemical feed tank	10	A/B	N/A	N/A	5	NS	
Piping and valves (except portion of the containment penetration)	5 or 9	PCCV R/B A/B PS/B T/B	N/A	N/A	5	II or NS	Piping and valves within areas containing safety-related equipment are designed as Seismic Category II.
(Deleted)							
Piping and valves between and including the containment isolation valves VWS-MOV-403 and 421, VWS-MOV-422, VLV-423 and 407	2	PCCV R/B	В	YES	2	I	
Valves VWS-MOV- <u>424,</u> 425 , 4 26	3	R/B	С	YES	5	I	
Non-essential chilled water chemical feed tank supply and return line piping and valves between VWS-VLV- 571 and VWS-VLV- 574	10	A/B	N/A	N/A	5	NS	

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.:NO.584-4468 REVISION 0SRP SECTION:09.02.02 - Reactor Auxiliary Cooling Water SystemsAPPLICATION SECTION:DCD Tier 2 Section 9.2.7DATE OF RAI ISSUE:05/10/2010

QUESTION NO. : 09.02.02-71

This is a follow-up to RAI 343-2208, Question 09.02.02-6:

Standard Review Plan (SRP) 9.2.2 Section III, which is being utilized as guidance for the review of the chilled water system, specifies in Section III confirmation of the overall arrangement of the system. The chilled water system description and flow diagrams in Tier 2, Design Control Document (DCD), Figure 9.2.7-1, were reviewed to assess the design adequacy of the chilled water system for performing its heat removal functions. While the flow diagrams show the essential chilled water system (ECWS) components, some of the information is incomplete, inaccurate, or inconsistent. Consequently, the applicant was asked, in RAI 09.02.02-6 to revise the DCD to address a large number of technical issues identified by the staff. The applicant responded to each of the RAI 09.02.02-6 issues identified by the staff. In reviewing the Rev. 2 of the DCD, submitted in October 2009, the staff found that the majority of the issues were satisfactorily incorporated; however, there were a few that were not satisfactory. These remaining issues are discussed below.

1. The staff asked the applicant to revise the DCD to address Tier 2, DCD Figure 9.2.7-1 not showing where indications are displayed (e.g., local, remote panel, control room), and what instruments provide input to a process computer and/or have alarm and automatic actuation functions. This item was not addressed anywhere in the applicant's RAI response. Therefore, the applicant is asked to address the original staff request to show on Figure 9.2.7-1 where indications are displayed and what instruments provide input to a process computer and/or have alarm and automatic actuation functions. Or, as indicated in RG 1.206 (C.I.9.2.1.5), describe the system alarms, instrumentation, and controls. Include a description of the adequacy of instrumentation to support required testing, as well as the adequacy of alarms to notify operators of degraded conditions.

2. Answer (4) in the applicant's response states that "Instrumentation of ECWS is designed as non-safety related." However, DCD Section 9.2.7.5.1 indicates that instrumentation is safety-related. Confirm whether the instrumentation is safety-related.

3. Answer (11) in the applicant's response states that Sections 9.2.7 will be revised to state that GDC 4 and 44 are met for the ECWS. In addition, revisions to Section 9.2.7.1.1.1 and 9.2.7.3.1 were proposed to correct errors in the system descriptions. The staff reviewed DCD Rev. 2 to determine if the proposed revisions have been acceptably incorporated. The staff found that the proposed revision to Section 9.2.7.1.1.1 to correct system errors has been incorporated; however, the revision to Subsection 9.2.7.3.1 has not been incorporated. Additionally, the staff could not locate the incorporation into DCD Rev. 2 of the

applicant's proposed statement that GDC 4 and 44 are met for the ECWS. The applicant should address these possible omissions.

Reference:

MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

Question 1:

The staff asked the applicant to revise the DCD to address Tier 2, DCD Figure 9.2.7-1 not showing where indications are displayed (e.g., local, remote panel, control room), and what instruments provide input to a process computer and/or have alarm and automatic actuation functions. This item was not addressed anywhere in the applicant's RAI response. Therefore, the applicant is asked to address the original staff request to show on Figure 9.2.7-1 where indications are displayed and what instruments provide input to a process computer and/or have alarm and automatic actuation functions. Or, as indicated in RG 1.206 (C.I.9.2.1.5), describe the system alarms, instrumentation, and controls. Include a description of the adequacy of instrumentation to support required testing, as well as the adequacy of alarms to notify operators of degraded conditions.

Answer 1:

DCD, Revision 2, incorporated changes to Figure 9.2.7-1 to include additional details related to instrumentation and controls for the essential chilled water system (ECWS), such as compression tank level indication, control and alarm; air handling unit temperature control; and chiller and chilled water pump automatic start signals. The instrumentation and control level of detail shown on Figure 9.2.7-1 is consistent with other system P&IDs within DCD Chapter 9. Additional description of ECWS instrumentation and control is provided in DCD Section 9.7.2.5.1. The automatic start of standby ECWS chillers and pumps upon receipt of an ECCS actuation signal is described in DCD Section 9.2.7.2.1.

Question 2:

Answer (4) in the applicant's response states that "Instrumentation of ECWS is designed as non-safety related." However, DCD Section 9.2.7.5.1 indicates that instrumentation is safety-related. Confirm whether the instrumentation is safety-related.

Answer 2:

Consistent with Answer (4) to RAI No.343-2208 Question No.09.02.02-6, the instrumentation of the ECWS is designed as non-safety related. DCD Section 9.2.7.5.1 will be revised to delete the first sentence in the first paragraph.

Question 3:

Answer (11) in the applicant's response states that Sections 9.2.7 will be revised to state that GDC 4 and 44 are met for the ECWS. In addition, revisions to Section 9.2.7.1.1.1 and 9.2.7.3.1 were proposed to correct errors in the system descriptions. The staff reviewed DCD Rev. 2 to determine if the proposed revisions have been acceptably incorporated. The staff found that the proposed revision to Section 9.2.7.1.1.1 to correct system errors has been incorporated; however, the revision to Subsection 9.2.7.3.1 has not been incorporated. Additionally, the staff could not locate the incorporation into DCD Rev. 2 of the applicant's proposed statement that GDC 4 and 44 are met for the ECWS. The applicant should address these possible omissions.

Answer 3:

DCD Section 9.2.3.7.1 will be revised as indicated in Answer (11) to RAI No.343-2208 Question No. 09.02.02-6. In addition, DCD Section 9.2.7.1.1 will be revised to indicate that the ECWS is designed to meet the relevant requirements of GDC 2, GDC 4, GDC 44, GDC 45, and GDC 46.

Impact on DCD

MHI will revise Tier 2, DCD Section 9.2.7 to clarify instrumentation as non-safety related; clarify the natural phenomena and missile protection basis; and clarify the applicability of GDC.

Delete the first sentence of the first paragraph of Section 9.2.7.5.1 as follows:

"Safety-related instrumentation and control associated with the essential chilled water system meets the requirements of IEEE Std. 603 and are qualified in accordance with IEEE-Std. 323 and IEEE-Std. 344."

Revise the fourth paragraph in Section 9.2.7.3.1 as follows:

"Casings of the chiller refrigerant compressor and the chilled water pumps are designed to withstand penetration by internally generated The safety-related portions of the ECWS are protected against natural phenomena and internal missiles."

Revise the second sentence of the first paragraph in Section 9.2.7.1.1 as follows:

"The essential chilled water system is designed to meet the relevant requirements of <u>GDC 2, GDC 4,</u> <u>GDC 44</u>, GDC45, and GDC 46 (Ref.9.2.11-1)"

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.: SRP SECTION: APPLICATION SECTION: DATE OF RAI ISSUE: NO.584-4468 REVISION 0 09.02.02 – Reactor Auxiliary Cooling Water Systems DCD Tier 2 Section 9.2.7 05/10/2010

QUESTION NO. : 09.02.02-72

This is a follow-up to RAI 343-2208, Questions 09.02.02-7 and 09.02.02-9:

General Design Criterion (GDC) 44 requires the essential chilled water system (ECWS) to be capable of removing heat from structures, system and components (SSCs) important to safety during normal operation. RAI 09.02.02-7 and 09.02.02-9 requested additional information regarding the heat transfer and flow requirements. In its response, the applicant proposed the addition of Table 9.2.7-2. Based upon review of this response, the staff does not find this response to provide the information requested by the RAI. The RAI requested a description of the excess head margin for the pumps along with the basis for this determination. The excess margin and basis should include a quantitative statement of the losses and the resulting excess capacity that is provided by the design. Therefore, additional information is needed to provide a more quantitative description of the excess flow and head capacity that are provided by the ECWS pumps, including the basis for these determinations. In particular:

1. Section 9.2.7 should fully describe and explain what the minimum system heat transfer and flow requirements are for normal operating, refueling, and accident conditions, the bases for these requirements including limiting assumptions that apply (such as temperature and heat load considerations), how much excess margin is available and how this was determined, and what limiting system temperatures and pressures are assumed with supporting basis. The RAI response should re-address these items and clearly address excess margin that is available, and explain why the excess margins that are available are considered to be sufficient to ensure adequate performance over the life of the plant.

2. The addition of Table 9.2.7-2 provides the flow rates for Normal and Abnormal operation. Abnormal flow demand is indicated as 440 gpm and the ECWS pump is sized for 440 gpm. This table provides an overall demand for all 4 trains of the ECWS. Describe the basis for the pump flow rating and how many ECWS trains are required to cool the respective rooms during normal and abnormal operation.

3. The system description in DCD, Tier 2 Section 9.2.7, should provide design details for ECWS such as system operating temperatures, pressures, and flow rates for all operating modes and alignments. Alternatively, bounding values could be provided.

4. Table 9.2.7-2 provides the Normal and Abnormal operation flow and heat load and is misleading in regards to the chilled water system demands. In accordance with Table 9.2.7-2 and Table 9.4.5-1, Class 1E Electrical Room air handling unit (AHU) abnormal heat load operation per train (A, B) is 1,650,000 btu/hr and heat load operation per train (C, D) is 2,250,000 btu/hr. The reason for this large difference in

heat loads needs to be explained, including to what extent ECWS is capable (during normal and abnormal operation) of providing adequate cooling with only A & B trains operable (i.e. train C in maintenance and failure of train D). This assessment should include operation with and without offsite power available.

5. For both ECWS and non-ECWS, Section 9.2.7 is missing an "operating section", which usually includes the system configuration during normal and abnormal operation. It is not clear how many ECWS trains are normally operating and the normal required heat load and flow requirements are not clearly defined. The staff requests the applicant to include a normal and emergency operation section in Section 9.2.7 of the DCD and, as a minimum, clearly define the following for normal and abnormal operation and update the DCD accordingly:

a. Provide details of valve configuration: normally open or closed during modes of operationb. Define whether some trains running and other standby. Provide description of signal and process for starting standby trains.

c. Provide description of how many ECWS and non-ECWS trains are required to provide cooling during normal and accident conditions to ensure the operating requirements for the various rooms are met. d. Include details of the configuration of the ECWS and non-ECWS on safety injection signal or LOOP.

e. Discuss any adjustments which require automatic or manual configuration.

f. Describe what actions are needed for by the operators to align makeup to the compression tank on low level.

6. Section 9.4.7 of the DCD contains a COL 9.4(4) for the air handling units (AHUs) indicating that "The COL Applicant is to determine the capacity of cooling and heating coils provided in the air handling units that are affected by site specific conditions." It is not clear why the standard plant heat load would not bound the plant-specific situation in most cases. Therefore, address the need, if any, for the ECWS to contain a similar COL item to account for any changes to the ECWS as a result of COL 9.4(4) items that will directly affect the ECWS capacity.

Reference:

MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

Question 1:

Section 9.2.7 should fully describe and explain what the minimum system heat transfer and flow requirements are for normal operating, refueling, and accident conditions, the bases for these requirements including limiting assumptions that apply (such as temperature and heat load considerations), how much excess margin is available and how this was determined, and what limiting system temperatures and pressures are assumed with supporting basis. The RAI response should readdress these items and clearly address excess margin that is available, and explain why the excess margins that are available are considered to be sufficient to ensure adequate performance over the life of the plant.

Answer 1:

The ECWS flowrate and heat removal capacity design assumes the worst-case requirements as input to the sizing calculations. The flowrate requirements for the ECWS pumps are determined by the heat removal requirements of the system loads. The flowrate necessary to remove the design heat load for each air handling unit served, while limiting the temperature rise across the cooling coil to 16°F, is summed for all of the heat loads to arrive at the total required ECWS train flowrate. The highest train flowrate requirement, based on the heat loads served under the worst-case conditions, is used as the basis for the design flowrate for all ECWS trains. These flowrate requirements are conservatively determined to ensure available margin for detailed design. A conservative heat removal capability margin

is provided in the design of the air handling units as stated in the response to RAI Question No.09.02.02-7. The worst-case condition for heat load requirements, and therefore ECWS flowrate requirements, is the Abnormal Operation case indicated in DCD Table 9.2.7-2. This case is the LOCA case, and results in the operation of safety-related equipment for accident response and the greatest heat removal requirement for the safety-related HVAC systems and the ECWS.

As stated above, heat removal capability margin is accounted for in the design of the air handling units for safety-related ventilation systems. Therefore, the ECWS is not required to be designed with significant additional margin for heat removal. In addition, other than providing margin through the conservative methods used for calculating flow requirements, additional margin for system resistance increases due to changes in pipe roughness and heat transfer surface fouling is not required since the ECWS is a closed-loop system with deaerated, demineralized water treated with corrosion inhibitors. Significant corrosion or fouling is not expected in this system.

Excess margin available in the ECWS design will not be determined until the detailed design phase. At that time, the system flowrate requirements will be finalized, along with system resistances, to confirm that the ECWS pump design is adequate and that there is sufficient margin provided in the design.

Question 2:

The addition of Table 9.2.7-2 provides the flow rates for Normal and Abnormal operation. Abnormal flow demand is indicated as 440 gpm and the ECWS pump is sized for 440 gpm. This table provides an overall demand for all 4 trains of the ECWS. Describe the basis for the pump flow rating and how many ECWS trains are required to cool the respective rooms during normal and abnormal operation.

Answer 2:

As described in Answer 1 above, ECWS pump flow requirements are based on the design heat removal requirements for the safety-related HVAC air handling units while limiting the temperature rise across the cooling coil to 16°F. The ECWS train with the highest flowrate requirement under worst-case heat load conditions defines the flowrate requirement for all trains. The conservatively determined maximum flowrate requirement for the ECWS pumps is 440 gpm.

As described in DCD Section 9.2.7.2.1, the ECWS consists of four independent trains and each train consists of one 50% capacity system. Each 50% capacity ECWS train provides the cooling capacity required for a HVAC equipment train.

Question 3:

The system description in DCD, Tier 2 Section 9.2.7, should provide design details for ECWS such as system operating temperatures, pressures, and flow rates for all operating modes and alignments. Alternatively, bounding values could be provided.

Answer 3:

As described in Answer 1, the Abnormal Operation condition in DCD Table 9.2.7-2 constitutes the worstcase for ECWS heat removal and flowrate requirements. Therefore, the flow rate values in the table are the bounding values for ECWS flowrate requirements for each heat load. DCD Table 9.2.7-1 provides ECWS equipment and component operating data including system operating temperatures, total flowrate, and pump head. The operating data in Table 9.2.7-1 are determined at the system operating point, which is based on the abnormal operation condition, and are considered bounding values.

Question 4:

Table 9.2.7-2 provides the Normal and Abnormal operation flow and heat load and is misleading in regards to the chilled water system demands. In accordance with Table 9.2.7-2 and Table 9.4.5-1, Class 1E Electrical Room air handling unit (AHU) abnormal heat load operation per train (A, B) is 1,650,000 btu/hr and heat load operation per train (C, D) is 2,250,000 btu/hr. The reason for this large difference in heat loads needs to be explained, including to what extent ECWS is capable (during normal and abnormal operation) of providing adequate cooling with only A & B trains operable (i.e. train C in

maintenance and failure of train D). This assessment should include operation with and without offsite power available.

Answer 4:

The Class 1E Electrical Room HVAC air handling unit trains C and D provide cooling to additional nonsafety related spaces (refer to DCD Figure 9.4.5-2) that are not heat loads for trains A and B. As such, the heat load for trains C and D is 2,250,000 Btu/hr each whereas the heat load for trains A and B is 1,650,000 Btu/hr each. Conservatively, these non-safety related heat loads are assumed to remain in the Abnormal Operation condition.

Each train of ECWS is designed for a heat removal requirement assuming the Class 1E Electrical Room HVAC heat load is 2,250,000 per train. This is evidenced by the fact that the Class 1E Electrical Room AHU flowrate requirement identified in DCD Table 9.2.7-2 for ECWS train A and B is identical to the corresponding flowrate requirement for trains C and D. Therefore, each of the ECWS trains is capable of removing the maximum heat load.

Question 5:

For both ECWS and non-ECWS, Section 9.2.7 is missing an "operating section", which usually includes the system configuration during normal and abnormal operation. It is not clear how many ECWS trains are normally operating and the normal required heat load and flow requirements are not clearly defined. The staff requests the applicant to include a normal and emergency operation section in Section 9.2.7 of the DCD and, as a minimum, clearly define the following for normal and abnormal operation and update the DCD accordingly:

a. Provide details of valve configuration: normally open or closed during modes of operation

b. Define whether some trains running and other standby. Provide description of signal and process for starting standby trains.

c. Provide description of how many ECWS and non-ECWS trains are required to provide cooling during normal and accident conditions to ensure the operating requirements for the various rooms are met.

d. Include details of the configuration of the ECWS and non-ECWS on safety injection signal or LOOP.

e. Discuss any adjustments which require automatic or manual configuration.

f. Describe what actions are needed for by the operators to align makeup to the compression tank on low level.

Answer 5:

DCD Section 9.2.7.2.1.2 System Operations will be added to the DCD to provide a description of the normal and abnormal operation of the ECWS. DCD Section 9.2.7.2.2.1 System Operations will be added to the DCD to provide a description of the normal and abnormal operation of the non-ECWS. The automatic level control for the compression tank is shown on Figure 9.2.7-1 for ECWS and Figure 9.2.7-2 for non-ECWS.

Question 6:

Section 9.4.7 of the DCD contains a COL 9.4(4) for the air handling units (AHUs) indicating that "The COL Applicant is to determine the capacity of cooling and heating coils provided in the air handling units that are affected by site specific conditions." It is not clear why the standard plant heat load would not bound the plant-specific situation in most cases. Therefore, address the need, if any, for the ECWS to contain a similar COL item to account for any changes to the ECWS as a result of COL 9.4(4) items that will directly affect the ECWS capacity.

Answer 6:

For the safety-related HVAC systems served by the ECWS, COL 9.4(4) is only applicable to heating coil capacity. For these HVAC systems, the COL item is worded "The COL Applicant is to determine the capacity of heating coils that are affected by site specific conditions." Therefore, the safety-related cooling coils are not subject to change based on COL 9.4(4) and there is no affect on ECWS heat removal requirements. No similar COL item is needed.

Impact on DCD

MHI will revise Tier 2, DCD Section 9.2.7 to add the system operations description for the ECWS and non-ECWS.

Add Section 9.2.7.2.1.2 and 9.2.7.2.2.1, and associated subsections, as follows:

9.2.7.2.1.2 System Operations

Table 9.7.2-2 provides heat loads and water flow rates for individual ECWS heat loads for normal and abnormal operating modes.

9.2.7.2.1.2.1 Normal Power Operation

During normal operation, two trains of ECWS are placed in service. A total of two essential chilled water pumps and two essential chiller units are in operation. An operating essential chilled water pump supplies chilled water to cooling coils of safety-related HVAC systems through the chiller units. The chiller units and pumps that are not in service are placed in standby.

9.2.7.2.1.2.2 Loss of Offsite Power

In the event of a LOOP, four essential chilled water pumps and four essential chiller units are powered from the emergency power source and they are actuated automatically by the LOOP load sequence signal. As a minimum, two trains are required to operate during a LOOP.

9.2.7.2.1.2.3 Loss of Coolant Accident

In the event of a LOCA, four essential chilled water pumps and four essential chiller units are actuated automatically upon receipt of the ECCS actuation signal, and are loaded onto their respective Class 1E power source. As a minimum, two trains are required to operate during a LOCA."

9.2.7.2.2.1 System Operations

9.2.7.2.2.1.1 Normal Power Operation

During plant startup, shutdown, and power operation, and while in cold shutdown/refueling conditions, three non-essential chilled water pumps and three non-essential chiller units, including dedicated cooling towers and condenser pumps, are operated. The additional train of equipment is placed in standby.

9.2.7.2.2.1.2 Loss of Offsite Power

During the LOOP conditions, two non-essential chilled water pumps and two non-essential chiller units are powered from the permanent non-safety power distribution system and are actuated automatically. In the event of a LOOP, the non-essential chilled water pumps and the non-essential chiller units are actuated to protect property and assets.

9.2.7.2.2.1.3 Loss of Coolant Accident

In the event of a LOCA, the non-ECWS containment isolation valves are automatically closed upon receipt of the containment isolation signal.

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.:NO.584-4468 REVISION 0SRP SECTION:09.02.02 - Reactor Auxiliary Cooling Water SystemsAPPLICATION SECTION:DCD Tier 2 Section 9.2.7DATE OF RAI ISSUE:05/10/2010

QUESTION NO.: 09.02.02-73

This is a follow-up to RAI 343-2208, Question 09.02.02-10:

The essential chilled water system (ECWS) must be capable of removing heat from structures, systems and components (SSCs) important to safety during normal operating and accident conditions over the life of the plant in accordance with General Design Criteria (GDC) 44 requirements. In order to satisfy system flow requirements, the ECWS design must assure that the required minimum net positive suction head (NPSH) for the ECWS pumps will be met for all postulated conditions, including consideration of vortex formation.

RAI 09.02.02-10 requested the applicant to provide additional information in Tier 2, DCD Section 9.2.7 to fully explain how the required minimum NPSH for the ECWS pumps is satisfied by the system design. In its response, the applicant proposed a simple revision to Tier 2 subsection 9.2.7.2.1.1 that states that the ECWS pumps have sufficient NPSH available based on pressurization of the system by the compression tank. The applicant provided a more complete description in the response but did not propose to add this description to the Tier 2 DCD. Based upon review of this response, the staff does not find this response to provide the information requested by the RAI. The RAI requested that the DCD provide the minimum required NPSH and how the required minimum NPSH is satisfied by the system design when vortex formation is included, and how much excess margin is available for the limiting case. The proposed revision to the Tier 2 DCD does not address the information requested.

- The applicant should provide a more complete description in the Tier 2 DCD Section 9.2.7 of the minimum net positive suction head and how this is satisfied by the system design considering the possibility of vortex formation. This will enable the staff to independently confirm that the design is adequate in this regard, including limiting assumptions that were used along with supporting justification
- 2. The applicant should address how the potential for dissolved gas (i.e. nitrogen) in the liquid does not negatively impact pump performance.
- 3. In addition, 10CFR52.47 requires that a DCD to contain the ITAAC that are necessary and sufficient to provide reasonable assurance that, if the ITAAC are performed and the acceptance criteria met, a plant that incorporates the design certification is built and will operate in accordance with the design certification. US-APWR has included an ITAAC in Tier 1, Table 2.7.3.5-5 to confirm that the NPSH available exceeds the required NPSH. However, in the absence of the available or required NPSH details, this ITAAC does not include measurable criteria in order to be closed. The applicant should

provide the NPSH ITAAC details similar to those provided in Section 10.4.9.3 for the emergency feedwater system.

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF- 09350; Dated July 17, 2009; ML092080395.

ANSWER:

Question (1):

The applicant should provide a more complete description in the Tier 2 DCD Section 9.2.7 of the minimum net positive suction head and how this is satisfied by the system design considering the possibility of vortex formation. This will enable the staff to independently confirm that the design is adequate in this regard, including limiting assumptions that were used along with supporting justification.

Answer (1):

Each ECWS train is a closed-loop, recirculating system. As described in DCD Section 9.2.7.2.1, each train includes a compression tank that functions to maintain system pressure within the design operating range. The compression tank is connected to the ECWS pump suction line (ECWS return line) and provides a surge volume for system fluid thermal expansion and contraction. As such, there is normally no significant amount of water flow from the compression tank so vortex formation is not a credible concern.

The ECWS pumps will not be specified or selected until the detailed design phase so the required NPSH for these pumps is not yet determined. However, as described in DCD Section 9.2.7.2.1.1, the compression tank is pressurized in order to provide a positive pressure at the ECWS pump suction such that sufficient NPSH will be provided. In addition, the ECWS is a low temperature system such that saturation pressure at the pump suction will be relatively high. The combination of positive gauge pressure at the pump suction and low temperature suction fluid provides high confidence that the required NPSH of the selected pump will be satisfied.

Question (2):

The applicant should address how the potential for dissolved gas (i.e. nitrogen) in the liquid does not negatively impact pump performance.

Answer (2):

As described in DCD Section 9.2.7.2.1.1, the ECWS is initially filled with deaerated water from the primary makeup water system. Make-up to the ECWS is from the demineralized water system line that taps into the piping between the compression tank and the ECWS pump suction line. No dissolved gas in the system fluid is expected from these water sources. Although the compression tank is pressurized with nitrogen, there is no flow through the tank and the volume of fluid out of the tank during thermal contraction is not significant relative to the volume of the system. Therefore, even with an assumption of nitrogen saturated water within the tank, there is no potential for dissolved gas to affect pump performance.

Question (3):

In addition, 10CFR52.47 requires that a DCD to contain the ITAAC that are necessary and sufficient to provide reasonable assurance that, if the ITAAC are performed and the acceptance criteria met, a plant that incorporates the design certification is built and will operate in accordance with the design certification. US-APWR has included an ITAAC in Tier 1, Table 2.7.3.5-5 to confirm that the NPSH available exceeds the required NPSH. However, in the absence of the available or required NPSH details, this ITAAC does not include measurable criteria in order to be closed. The applicant should provide the NPSH ITAAC details similar to those provided in Section 10.4.9.3 for the emergency feedwater system.

Answer (3):

As discussed in Answer (1) above, ECWS pump selection will be made during the detailed design phase. In addition, based on the positive overpressure at the pump suction provided by the compression tank and the low temperature suction fluid, there is limited concern with meeting the selected pump NPSH requirements. The ITAAC provided in Tier 1 DCD Table 2.7.3.5-5 (ITAAC Item 13) is established to confirm that the NPSH requirement of the ECWS pump is met by system design and installation. The ITAAC provides for testing, inspection, and analysis to determine the available NPSH at the ECWS pump suction and establishes the acceptance criterion that the available NPSH exceeds the required NPSH. This ITAAC provides reasonable assurance that NPSH requirements will be met for the ECWS pump.

The ECWS pump NPSH conditions are not similar to the emergency feedwater pump NPSH conditions. The emergency feedwater system is not a closed-loop system and the pumps take suction from a defined volume of fluid (i.e., the EFW pit) with no overpressure system. Since the EFW pit volume can be drawn down, the head available to the pump suction will decrease as the EFW pit level decreases. These concerns are not applicable to the ECWS pumps. Therefore, a similar level of detail for ECWS pump NPSH as that for the emergency feedwater pump is not required.

Impact on DCD

There is no impact on the DCD.

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.: SRP SECTION: APPLICATION SECTION: DATE OF RAI ISSUE: NO.584-4468 REVISION 0 09.02.02 – Reactor Auxiliary Cooling Water Systems DCD Tier 2 Section 9.2.7 05/10/2010

QUESTION NO.: 09.02.02-74

This is a follow-up to RAI 343-2208, Question 09.02.02-12:

Under seismic or post-accident conditions where the demineralized water system (DWS) or the primary make-up system (PWS) may be unavailable for ECWS makeup, the compression tanks need to provide sufficient water volume to assure reliable operation without makeup. Makeup water to the compression tank is shown in Tier 2, DCD Figure 9.2.7-1; however, the DCD does not discuss compression tank capabilities in the event of a makeup source interruption. Consequently, the staff prepared RAI 09.02.02-12 to request further information on expected or assumed system leakage and the capabilities of the compression tank to operate without a makeup source for an extended period of time. In its response, the applicant addressed the staff questions and proposed a revision to Tier 2 DCD section 9.2.7.2.1.1.1 (actually added to 9.2.7.2.1.1) for clarification. The compression makeup water is provided with deaerated water from the primary makeup water system (PMWS) or with demineralized water from the demineralized water system (DMS). The deaerated water is used for initial filling of this system and demineralized water is used for makeup when the tank water level reaches a low-level setpoint during normal plant operation. The blowdown discharge of the compression tank relief valves (non-radioactive drain sump) was described as discharging to the non-radioactive drain sump. The applicant stated that the compression tank capacity is designed with sufficient water for at least 7 days of operation in the event of a loss of makeup water.

However, the applicant did not define the basis for this 7-day tank capacity and what the minimum level and volume of tank water is based on to assure the tank contains sufficient inventory during all conditions (i.e normal and abnormal). The assumptions used to define the tank capacity, including most limiting system leakage was not provided.

- 1. Describe whether compression tank is sized to ensure adequate NPSH available and prevent vortexing for its associated SCW pump under worst case conditions.
- 2. Explain what controls and features are provided to monitor and ensure the compression tank quantity is adequate to support the 7-day supply at all times. Discuss whether a technical specification is needed to verify the 7-day supply is available.
- 3. Define the most limiting leak rate and assumptions used to define compression tank capacity during normal and abnormal operation.

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July

ANSWER:

Question (1):

Describe whether compression tank is sized to ensure adequate NPSH available and prevent vortexing for its associated SCW pump under worst case conditions.

Answer (1):

Refer to the response to RAI Question No. 09.02.02-73 for the discussion of the potential for vortex formation within the compression tank and ECWS pump NPSH provided by the compression tank.

Question (2):

Explain what controls and features are provided to monitor and ensure the compression tank quantity is adequate to support the 7-day supply at all times. Discuss whether a technical specification is needed to verify the 7-day supply is available.

Answer (2):

As described in DCD Section 9.2.7.2.1.1, the ECWS compression tank is provided to accommodate thermal expansion and contraction of the system fluid and potential leakage from the ECWS. Make-up to the compression tank during normal operation is provided from the demineralized water system by the automatic level controller shown in DCD Figure 9.2.7-1. The level control maintains the compression tank level in the normal operating range during operation of the ECWS. A low-level alarm is provided to alert operators that make-up water flow to the ECWS is inadequate and to initiate actions to restore compression tank water level to the normal range.

The compression tank contains sufficient water volume to assure reliable system operation without makeup for at least seven days. The capacity of the compression tank is based on the thermal contraction of the volume of water within the ECWS due to cooling from an initial system fill temperature equal to outdoor temperature to a normal operating chilled water temperature. The ECWS volume is conservatively determined by adding 50% greater piping run than expected and accounting for system load (cooling coils) volumes. The calculated volume requirement is then doubled to provide added tank capacity.

The tank is sized to accommodate minor leakages and maintain system operation for seven days without make-up. Leakage is not normally expected from the ECWS and accommodating significant amounts of volume loss is not the intent of the compression tank design. Major leakage from a pipe failure, pump seal failure, or other significant source would constitute a train failure, and the redundant train would provide the heat removal function. The tank capacity calculation includes margin in the volume requirement to accommodate the minor system leakages since the tank capacity is double the required volume for thermal expansion and contraction alone.

Since the tank design includes margin to accommodate minor leakages, no Technical Specification is required to ensure that the seven day supply is available.

Question (3):

Define the most limiting leak rate and assumptions used to define compression tank capacity during normal and abnormal operation.

Answer (3):

As discussed in Answer (2) above, significant leakage from the ECWS is not expected. Compression tank capacity is determined based on a conservative calculation of system volume thermal expansion and contraction. The required volume from that calculation is then doubled to add margin to accommodate minor leakages without make-up available. Since leakage is expected to be minor, this added volume

requirement is judged to be adequate for a minimum seven day period. Significant leakage, such as from piping failure, pump seal failure, or other significant source would constitute a train failure and the redundant train would provide the necessary heat removal function.

Impact on DCD

There is no impact on the DCD.

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.: SRP SECTION: APPLICATION SECTION: DATE OF RAI ISSUE: NO.584-4468 REVISION 0 09.02.02 – Reactor Auxiliary Cooling Water Systems DCD Tier 2 Section 9.2.7 05/10/2010

QUESTION NO. : 09.02.02-75

This is a follow-up to RAI 343-2208, Question 09.02.02-18:

Section 10CFR52.47, Content of Application, states that "the description shall be sufficient to permit understanding of the system design and their relationship to the safety evaluation." Since Tier 2, DCD Section 9.2.7 has missing design bases information related to the importance of the ECWS, the staff generated RAI 09.02.02-18. In addition, the RAI requested applicant to provide justification of why the US-APWR DCD does not have a separate section in the technical specification related to essential chilled water system. In its response, the applicant proposed to add a statement on design bases to Tier 2 DCD sections 9.2.7.1 and 9.2.7.3 and provided the definition of "OPERABLE – OPERABILITY" with respect to technical specifications to argue that operability of the ECWS in indirectly included under other primary system LCO which ECWS supports.

In regards to the technical specification, the applicant needs to justify how Criterion 3 of 10CFR50.36(c)(2)(ii) is not applicable as a basis for the need for a technical specification for the ECWS. " (C) Criterion 3. A structure, system, or component that is part of the primary success path and which functions or actuates to mitigate a design basis accident or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier."

Operability problems with the ECWS and non-ECWS could result in the failure of systems used to mitigate a design basis accident to be able to perform their safety function. The applicant should also address the need for technical specification surveillance requirements to ensure operability of ECWS is maintained (i.e. compression tank 7-day supply inventory and required pressure, chiller discharge temperature, system flow rate requirements, etc.)

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

The ECWS provides chilled water at the required flowrate and temperature to support the room temperature control function of the safety-related HVAC systems. The safety-related HVAC systems, in turn, provide heat removal from equipment spaces and the control room in support of safety-related equipment operation and control room habitability. In this manner, the ECWS indirectly supports the

function of safety-related equipment and the habitability of the control room. As such, the ECWS is a support system. The ECWS is not part of the primary success path to mitigate a design basis accident or transient that involves a challenge or failure of a fission product barrier. Therefore, Criterion 3 of 10CFR50.36(c)(2)(ii) is not applicable to the ECWS.

As described in DCD Section 16.1.1.2, the US-APWR Technical Specifications content meets 10CFR50.36 requirements. In addition, NUREG-1431, Rev. 3.1, Standard Technical Specifications Westinghouse Plants, was used as guidance for developing the US-APWR Technical Specifications for consistency with the Technical Specification Improvement Program. The US-APWR Technical Specifications are consistent with NUREG-1431 in that the standard technical specifications do not explicitly include LCO or surveillance testing requirements for the chilled water system.

Impact on DCD

There is no impact on the DCD.

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

NO.584-4468 REVISION 0

RAI NO.: SRP SECTION: APPLICATION SECTION: DATE OF RAI ISSUE:

09.02.02 – Reactor Auxiliary Cooling Water Systems DCD Tier 2 Section 9.2.7 05/10/2010

QUESTION NO.: 09.02.02-76

This is a follow-up to RAI 343-2208, Question 09.02.02-19:

Standard Review Plan (SRP) 9.2.2, which is being utilized as guidance for the review of the essential chilled water system (ECWS), specifies in Section III confirmation of the overall arrangement of the component cooling system (CCWS). SRP 14.3, Appendix C, Item 1B.ix states that Tier 1 figures for safety-related systems should include most of the valves on the DCD Tier 2 drawings. The staff found that the Tier 1 and Tier 2 information is incomplete, inconsistent, inaccurate, or that clarification is needed and asked the applicant in RAI 09.02.02-19 to revise the information in Design Control Document (DCD), Tier 1 Section 2.7.3.5 and applicable Tier 2 Sections (as appropriate) to address the following considerations in this regard. In the response, a single issue addressed by the applicant was not found to be acceptable to resolve the staff's question. This issue is addressed in the paragraph below.

Although the Introduction Section in Chapter 1 of the Tier 1 DCD states that "information contained in the Tier 1 document was derived from the Tier 2 document," the staff found that much of the information provided in DCD Tier 1 is not described in Tier 2 DCD Section 9.2.7 (e.g., active safety function, loss of motive power position, harsh environment considerations, MCR alarm and display, control function, and RCS display). This information needs to be added to Tier 2. The applicant proposed to revise Tier 2 Section 9.2.7 to add the missing information that is included in Tier 1. However, the applicant did not provide a markup of the proposed Tier 2 DCD changes; therefore, the staff is unable to determine the acceptability of the proposed changes until the next DCD revision.

In addition, the staff has the following related requests:

- 1. Review DCD to ensure all Tier 1 information is provided in Tier 2, including table and figure content.
- 2. During a review of DCD Rev. 2, the staff noted that Section 9.2.7.5.1 specifies the compression tanks contain MCR alarms, but Table 2.7.3.5-4 seems to indicate that the tanks do not have any MCR/RSC Alarm. The applicant is asked to resolve this inconsistency.
- 3. In addition, provide a reason why non-ECWS Tier 1 Section 2.7.3.6.1 does not include valves VLV-421/422 and MOV-424/425 in a table similar to Table 2.7.3.5-2 with the pertinent ITAAC.
- 4. Table 2.7.3.6-2 should include valves VWS-MOV-424, -425, which are Seismic Category I.

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

Please note that the changes to DCD Section 9.2.7 proposed in response to RAI Question 09.02.02-19, Question 1, have been incorporated into Revision 2 of the US-APWR DCD. Changes to Section 9.2.7 are indicated with revision bars in the right margin.

Question 1:

Review DCD to ensure all Tier 1 information is provided in Tier 2, including table and figure content.

Answer 1:

DCD Tier 1, Section 2.7.3.5 and 2.7.3.6, for the ECWS and non-ECWS, respectively, was reviewed and it has been confirmed that the content of these sections, including associated tables and figures, is consistent with the content in DCD Tier 2, as appropriate.

Question 2:

During a review of DCD Rev. 2, the staff noted that Section 9.2.7.5.1 specifies the compression tanks contain MCR alarms, but Table 2.7.3.5-4 seems to indicate that the tanks do not have any MCR/RSC Alarm. The applicant is asked to resolve this inconsistency.

Answer 2:

As described in answer to Question No.09.02.02-71, the instrumentation of the ECWS is designed as non-safety related. Thus these alarms does not included in Table 2.7.3.5-4 because Table 2.7.3.5-4 shows the safety-related displays and control functions. The essential chilled water compression tanks in 3rd column of Table 2.7.3.5-4 will be deleted since there is no "Yes" answer for safety related alarms displays or controls in the MCR or RSC.

Question 3:

In addition, provide a reason why non-ECWS Tier 1 Section 2.7.3.6.1 does not include valves VLV-421/422 and MOV-424/425 in a table similar to Table 2.7.3.5-2 with the pertinent ITAAC.

Answer 3:

Non-ECWS valves VWS-VLV-421 and VWS-MOV-422 are containment isolation valves and are part of the CIS. As indicated in DCD Tier 1, Section 2.7.3.6.2, the ITAAC associated with non-ECWS components that comprise a portion of the CIS are described in DCD Tier 1, Table 2.11.2-2.

Non-ECWS valves VWS-MOV-424 and -425 are component cooling water system supply and return line isolation valves. The valves support the non-safety related non-ECWS function to provide an alternate supply of component cooling water to the containment fan cooler units in the event of a severe accident. The valves do not perform an active safety function. Therefore, the ITAAC listed in DCD Tier 1, Table 2.7.3.6-3 to verify the non-ECWS capability to provide alternate component cooling water to the containment fan cooler units is considered adequate to confirm the function of these valves.

Question 4:

Table 2.7.3.6-2 should include valves VWS-MOV-424, -425, which are Seismic Category I.

Answer 4:

Non-ECWS valves VWS-MOV-424 and -425 will be added to DCD Tier 1, Table 2.7.3.6-2 to indicate that the valves are ASME Code Section III Class 3 and Seismic Category I.

Impact on DCD

MHI will delete the chilled water compression tanks in the 3rd column of Table 2.7.3.5-4:

Equipment/Instrument Name	MCR/RSC Alarm	MCR Display	MCR/RSCC ontrol Function	RSC Display
Essential Chiller Units	Yes	Yes	Yes	Vas
(VWS-PEQ-001 A, B, C, D)	res	Tes	res	Yes
Essential Chilled Water Pumps	Naa	N	N	N
(VWS-PPP-001 A, B, C, D)	<u>Yes</u>	Yes	Yes	Yes
Essential Chilled Water Compression Tanks	N.	Vee	NI-	Vaa
(VAVS-PTK-001 A, B, C, D)	<u>No</u>	Yes	No	Yes

MHI will add the non-ECWS valves VWS-MOV-424 and -425 in Table 2.7.3.6-2:

Pipe Line Name	ASME Code Section III Class	Seismic Category I
Non-Essential chilled water valves VWS-MOV- 424 and -425	3	Yes

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.: SRP SECTION: APPLICATION SECTION: DATE OF RAI ISSUE: NO.584-4468 REVISION 0 09.02.02 – Reactor Auxiliary Cooling Water Systems DCD Tier 2 Section 9.2.7 05/10/2010

QUESTION NO.: 09.02.02-77

This is a follow-up to RAI 343-2208, Question 09.02.02-20:

Standard Review Plan (SRP) Section 9.2.2, which is being utilized as guidance for the review of the essential chilled water system (ECWS), specifies in Section III confirmation of the overall arrangement of the component cooling system (CCWS). The staff found that the proposed ITAAC in DCD Tier 1, Section 2.7.3, Table 2.7.3.5-5, are incomplete, inconsistent, inaccurate, or that clarification is needed. Consequently, in RAI 09.02.02-20, the staff identified that the Tier 1 information needed to be revised to address a number of issues. The applicant provided a response to each of the identified issues. Based on the response, the staff has the following questions:

1. The applicant responded that, consistent with the response to RAI 192-1847, question 14.03.04-15, item 7 will require a report to conclude that the ECWS as built provides adequate flow rates for heat removal for all operating conditions. This approach provides sufficient assurance that acceptance criteria are met without adding excessive detail to Tier 1. The staff believes a report should be prepared to confirm the adequacy of the ECWS design (assumptions, sizing, etc.), but testing is needed to confirm that the ECWS will perform in accordance with design specifications, and inspection is needed to confirm functional arrangement. This issue will remain open until the applicant establishes quantitative acceptance criteria for all ITAAC.

2. The applicant added new ITAAC #13 to address ECWS pump and compression tank testing. The staff reviewed the response and found that it was not sufficient. First, the ITAAC should verify the sizing of the compression tank (including the 7-day makeup water supply), not just the ECWS pump performance at minimum tank level. Second, while the nitrogen make-up and relief valve on the compression tank may be non-safety, an ITAAC is needed for where the nitrogen is relieved so that the staff can confirm that it will not pose a hazard for occupancy. Finally, the ITAAC for ECWS pump NPSH only accounts for minimum compression tank level. The ITAAC should also account for minimum tank pressure and temperature limitations.

References:

MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

MHI's Responses to US-APWR DCD RAI No. 192-1847; MHI Ref: UAP-HF-09167; Dated April 10, 2009;

ML091040326.

ANSWER:

Question 1:

The applicant responded that, consistent with the response to RAI No.192-1847, Question No.14.03.04-15, item 7 will require a report to conclude that the ECWS as built provides adequate flow rates for heat removal for all operating conditions. This approach provides sufficient assurance that acceptance criteria are met without adding excessive detail to Tier 1. The staff believes a report should be prepared to confirm the adequacy of the ECWS design (assumptions, sizing, etc.), but testing is needed to confirm that the ECWS will perform in accordance with design specifications, and inspection is needed to confirm functional arrangement. This issue will remain open until the applicant establishes quantitative acceptance criteria for all ITAAC.

Answer 1:

As indicated in DCD Tier 1, Table 2.7.3.5-5, ITA 7.i., an inspection for the existence of a report that determines the heat removal capability of the as-built ECWS will be performed. The associated AC 7.i. is that a report exists and concludes that the heat removal capability of the as-built ECWS is greater than or equal to the design values for all plant operating conditions, including normal plant operating, abnormal and accident conditions.

As further indicated in Table 2.7.3.5-5, ITA 7.ii., tests will be performed to confirm that the as-built ECWS pumps identified in Table 2.7.3.5-2 provide flow to the ECWS cooling unit. The associated AC states that the as-built ECWS pumps identified in Table 2.7.3.5-2 are capable of achieving their design flow rate.

Table 2.7.3.5-5, ITA 1.a. requires that an inspection of the as-built ECWS will be performed. The associated AC is that the as-built ECWS conforms with the functional arrangement as described in the Design Description of Subsection 2.7.3.5 and as shown in Figure 2.7.3.5-1.

Based on the above, sufficient quantitative acceptance criteria are provided to conclude that the ECWS as-built provides adequate flow rates for heat removal for all operating conditions.

Question 2:

The applicant added new ITAAC #13 to address ECWS pump and compression tank testing. The staff reviewed the response and found that it was not sufficient. First, the ITAAC should verify the sizing of the compression tank (including the 7-day makeup water supply), not just the ECWS pump performance at minimum tank level. Second, while the nitrogen make-up and relief valve on the compression tank may be non-safety, an ITAAC is needed for where the nitrogen is relieved so that the staff can confirm that it will not pose a hazard for occupancy. Finally, the ITAAC for ECWS pump NPSH only accounts for minimum compression tank level. The ITAAC should also account for minimum tank pressure and temperature limitations.

Answer 2:

A new ITAAC item 14 to identify that the as-built compression tank meets the design sizing requirements will be added to DCD Tier 1, Table 2.7.3.5-5.

The compression tanks are located in the PS/B in an open area that is subject to continuous ventilation air flow. Nitrogen relief from the compression tank would not create a hazard to occupancy of the PS/B due to the small relief volume in comparison to the space volume, and in consideration of the ventilation air flow. On this basis, no ITAAC is required related to compression tank nitrogen pressure relief. Note that this answer amends the response to RAI No.343-2208, Question No.09.02.02-6, in that the compression tank relief valve discharge line routing will be changed to be open-ended at the local floor drain in the PS/B.

Table 2.7.3.5-5, Item 13 will be clarified to ensure ECWS pump NPSH is confirmed at compression tank minimum operating pressure and level conditions. Since the temperature range for the ECWS is small (40°F - 56°F), the effect of pumped fluid temperature variation on pump NPSH is insignificant and need not be considered.

Impact on DCD

MHI will revise Figure 9.2.7-1 and 9.2.7-2 to indicate that the ECWS compression tank relief valve discharge is routed to a local floor drain. See attached mark-up for changes.

MHI will revise Tier 1, DCD Table 2.7.3.5-5 to identify as-built ECWS compression tanks meet design requirements and to ensure that ECWS pump NPSH is confirmed at compression tank minimum operating pressure and level conditions, as follows:

Design Commitment	Inspections, Tests, Analyses	Acceptance Criteria
 The ECWS pumps have sufficient net positive suction head (NPSH). 	13. Tests to measure the as-built ECWS pump suction pressure will be performed <u>at</u> <u>minimum compression</u> <u>tank operating pressure</u> <u>and water level conditions</u> . Inspections and analysis to determine NPSH available to each pump will be performed.	 The as-built system meets the design, and the analysis confirms that the NPSH available exceeds the required NPSH.
<u>14. The ECWS compression</u> <u>tank volume meets design</u> <u>requirements.</u>	14. Inspection of the as-built compression tank size will be performed.	14. The as-built compression tank size meets the design requirement for compression tank volume.

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.:NO.584-4468 REVISION 0SRP SECTION:09.02.02 - Reactor Auxiliary Cooling Water SystemsAPPLICATION SECTION:DCD Tier 2 Section 9.2.7DATE OF RAI ISSUE:05/10/2010

QUESTION NO. : 09.02.02-78

This is a follow-up to RAI 343-2208, Question 09.02.02-13:

The essential chilled water system (ECWS) must be capable of removing heat from structures, systems and components (SSCs) important to safety during normal operating and accident conditions over the life of the plant in accordance with General Design Criteria (GDC) 44 requirements. The Design Control Document (DCD) does not adequately describe the various operating modes and operator actions that are required and how the ECWS control system functions. RAI 09.02.02-13 was initiated, requesting the applicant to address several technical deficiencies. These considerations need to be fully described in Tier 2, DCD Tier 2 Section 9.2.7 In its response, the applicant addressed the five identified RAI issues. During the staff review of DCD Rev. 2, most of these issues were satisfactorily resolved; however, the staff noted that several will require additional revisions to the DCD by the applicant. The applicant is requested to address the remaining issues as described below.

- For question 4, instrumentation and controls (I&C) related to ECWS automatic operation such as pump and chiller starts signals, trip signals, lock-outs, and permissives should be described in the DCD. This should include loss of offsite power (LOOP) signals and emergency core cooling system (ECCS) actuation signals. The applicant proposed adding the initiation signals to the flow diagram. During a review of DCD Rev. 2, the staff did not find that the I&C automatic initiation signals were added to the flow diagrams nor were they described in the DCD. The applicant needs to address this deficiency.
- For question 5, explain why all instrumentation described in Section 9.2.7.5 are not found on Figure 9.2.7-1 and 9.2.7-2. In addition, indicate whether expansion tank level alarm should be included in Section 9.2.7.5.

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

Question 1:

For question 4 [from RAI 343-2208, Question 09.02.02-13 response], instrumentation and controls (I&C) related to ECWS automatic operation such as pump and chiller starts signals, trip signals, lock-outs, and

permissives should be described in the DCD. This should include loss of offsite power (LOOP) signals and emergency core cooling system (ECCS) actuation signals. The applicant proposed adding the initiation signals to the flow diagram. During a review of DCD Rev. 2, the staff did not find that the I&C automatic initiation signals were added to the flow diagrams nor were they described in the DCD. The applicant needs to address this deficiency.

Answer 1:

The automatic initiation signals for the ECWS chiller units and chiller pumps are indicated on DCD Figure 9.2.7-1 as "S, BO" with an indicator pointing to the chiller unit and the chiller pump. As indicated on DCD Figure 1.7-3, Legend for Piping and Instrumentation Diagrams of Primary Systems, "S" indicates a Safety Injection Signal (i.e., the ECWS automatic start on an ECCS initiation signal) and "BO" indicates a Blackout Sequence Signal (i.e., the ECWS automatic start on a LOOP initiation signal).

Question 2:

For question 5 [from RAI 343-2208, Question 09.02.02-13 response], explain why all instrumentation described in Section 9.2.7.5 are not found on Figure 9.2.7-1 and 9.2.7-2. In addition, indicate whether expansion tank level alarm should be included in Section 9.2.7.5.

Answer 2:

Instrumentation described in DCD Section 9.2.7.5 that is part of the system design is shown on Figures 9.2.7-1 and 9.2.7-2. Instrumentation that is part of vendor-supplied equipment, such as the chiller package, is not shown on the figures.

For the ECWS instrumentation described in Section 9.2.7.5.1:

- Temperature indication of chiller units entering and leaving chilled water with an alarm for leaving chilled water temperature exceeding the design limit *supplied as part of the ECWS chiller package and not shown on Figure 9.2.7-1*
- High and low pressure indication with an alarm of the compression tanks *shown on Figure* 9.2.7-1 {ex.: PICA-041-N}
- Chilled water flow failure of the chilled water pumps shown on Figure 9.2.7-1 {ex.: FI-001-N}
- Categorical alarms for chiller operation malfunction *supplied as part of the ECWS chiller package* and not shown on Figure 9.2.7-1
- Temperature indicator for chillers, chilled water and condenser water entering and leaving water flows supplied as part of the ECWS chiller package and not shown on Figure 9.2.7-1
- Pressure indicator at chilled water and condenser water entering and leaving water flows *supplied* as part of the ECWS chiller package and not shown on Figure 9.2.7-1
- Pressure indicator at the chilled water pumps suction and discharge nozzles shown on Figure 9.2.7-1 {ex.: PI-002-N and PI-003-N}
- Chiller oil pressure indicators, suction pressure indicator and discharge pressure indicators *supplied* as part of the ECWS chiller package and not shown on Figure 9.2.7-1

For the non-ECWS instrumentation described in Section 9.2.7.5.2:

- Temperature indication of entering and leaving chilled water and condenser water with an alarm for leaving chilled water temperature exceeding the design limit – supplied as part of the ECWS chiller package and not shown on Figure 9.2.7-2
- High and low pressure alarms of the compression tank shown on Figure 9.2.7-2 {PICA-401-N}
- Chilled water flow failure of the chilled water pumps shown on Figure 9.2.7-2 {ex.: FI-301-N}
- Categorical alarms for chiller operation malfunction supplied as part of the ECWS chiller package and not shown on Figure 9.2.7-2

- Temperature indicator for chillers, chilled water and condenser water entering and leaving water flows supplied as part of the ECWS chiller package and not shown on Figure 9.2.7-2
- Pressure indicator at chilled water and condenser water entering and leaving water flows *supplied* as part of the ECWS chiller package and not shown on Figure 9.2.7-2
- Pressure indicator at the chilled water pumps suction and discharge nozzles shown on Figure 9.2.7-2 {ex.: PI-311-N and PI-312-N}
- Chiller oil pressure indicators, suction pressure indicator and discharge pressure indicators supplied
 as part of the ECWS chiller package and not shown on Figure 9.2.7-2

The ECWS compression tank level is indicated in the main control room and abnormal level actuates a MCR alarm. This instrumentation should have been included in DCD Section 9.2.7.5.1.

Impact on DCD

MHI will revise Tier 2, DCD Section 9.2.7.5.1 to include ECWS compression tank level indication and alarm in the list of MCR instrumentation. The Compression tank level indication symbols in Figure 9.2.7-1 and 9.2.7-2 will be revised to be consistent with following change:

Add a new third bullet to the second paragraph of Section 9.2.7.5.1 and 9.2.7.5.2 as follows:

· High and low level indication with an alarm of the compression tanks

Impact on COLA

There is no impact on the COLA.

Impact on PRA

06/10/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.:NO.584-4468 REVISION 0SRP SECTION:09.02.02 - Reactor Auxiliary Cooling Water SystemsAPPLICATION SECTION:DCD Tier 2 Section 9.2.7DATE OF RAI ISSUE:05/10/2010

QUESTION NO.: 09.02.02-79

This is a follow-up to RAI 343-2208, Question 09.02.02-17

Means must be provided for monitoring effluent discharge paths and the plant environs for radioactivity that may be released in accordance with General Design Criteria GDC 64 requirements. Also, 10 CFR 52.47(a)(6) and 10 CFR 20.1406 require applicants for standard plant design certifications to describe how facility design and procedures for operation will minimize contamination of the facility and the environment. The staffs review criteria (Standard Review Plan Section 9.2.1, Paragraph III.3.D) specify that provisions should be provided to detect and control leakage of radioactive contamination into and out of the essential service water system (ESWS) which is the heat sink for the essential chilled water system (ECWS). The staff generated RAI 09.02.02-17 to address this concern for the ECWS. In its response, the applicant stated that radiation monitors in the ECWS were not necessary because the compression tanks maintained the system at a higher pressure than potentially contaminated systems. In addition, the applicant stated that the makeup water sources to ECWS contained no contamination. The staff disagrees with the applicant that the ECWS will not contain radioactive material because one of the makeup water paths is the Primary Water System (PWS). As discussed below, the PWS is a contaminated system:

Figure 9.2.7-1 "Essential Chilled Water System Flow Diagram" shows an interface to PWS VLV-265(A-D)-N. FSAR Section 9.2.7.2.1.1 "Component Descriptions", states, "Makeup water is supplied to the respective surge line. The makeup water is supplied from the following systems.

· Demineralized water system (DWS) which supplies the demineralized water

• Primary makeup water system (PMWS) which supplies the deaerated water" Section 9.2.6.2.6 "Primary Makeup Water Tanks", states that the tanks also receive distilled water discharged from the boric acid evaporator (subsection 9.3.4). This is shown on Figure 9.2.6-2 "Primary Makeup Water System Flow Diagram".

Section 9.3.4.2.5 "Boron Recycle Subsystem" states "that the boric acid evaporator feed pump transfers water from the holdup tank to the boric acid evaporator by first passing the waste through the boric acid evaporator feed demineralizer, where lithium and radioactive ions are removed. The coolant is then separated into boric acid water of approximately 7,000 ppm Boron and distilled water. The distilled water coming from the boric acid evaporator is transferred to the primary makeup water tank or released to the liquid waste management system (LWMS).

Table 12.2-51 "Miscellaneous Sources - Primary Makeup Water Tank" indicates that the PWS storage tanks contain Cobalt-60.

The applicant should address the staff concerns about this potential for contaminating the ECWS and the possible measures to be used to control and minimize it.

Reference: MHI's Response to US-APWR DCD RAI No. 343-2208; MHI Ref: UAP-HF-09350; Dated July 17, 2009; ML092080395.

ANSWER:

The ECWS is initially filled with deaerated water from the PMWS and makeup to the system is provided by demineralized water from the DWS. However, as indicated on DCD Figure 9.2.6-2, Primary Makeup Water System Flow Diagram, the PMWS water source for the supply to the ECWS (refer to the upper right portion of the figure) is from the DWS (indicated as 3746 Deaerated Water Supply). The PMWS supply to the ECWS is a branch line from the DWS supply line to the PMWS tank. As indicated in Figure 9.2.6-2, the PMWS tanks are not a source for the supply from PMWS to the ECWS. Therefore, there is no potential for radioactive contamination of the ECWS from the PMWS tank contents and measures to control and minimize radioactive contamination within the ECWS are not required.

Impact on DCD

There is no impact on the DCD.

Impact on COLA

There is no impact on the COLA.

Impact on PRA

ATTACHMENT-1

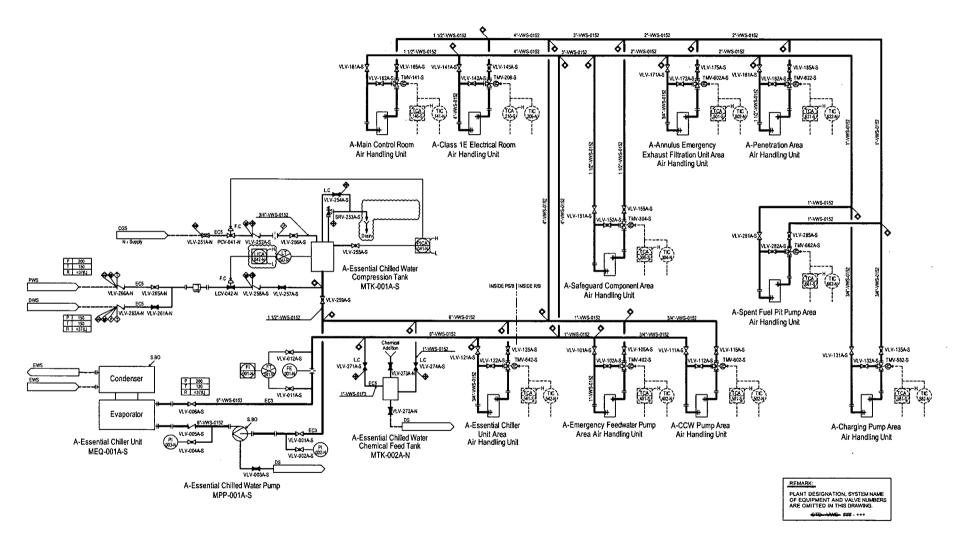


Figure 9.2.7-1 Essential Chilled Water System Flow Diagram (Sheet 1 of 4)

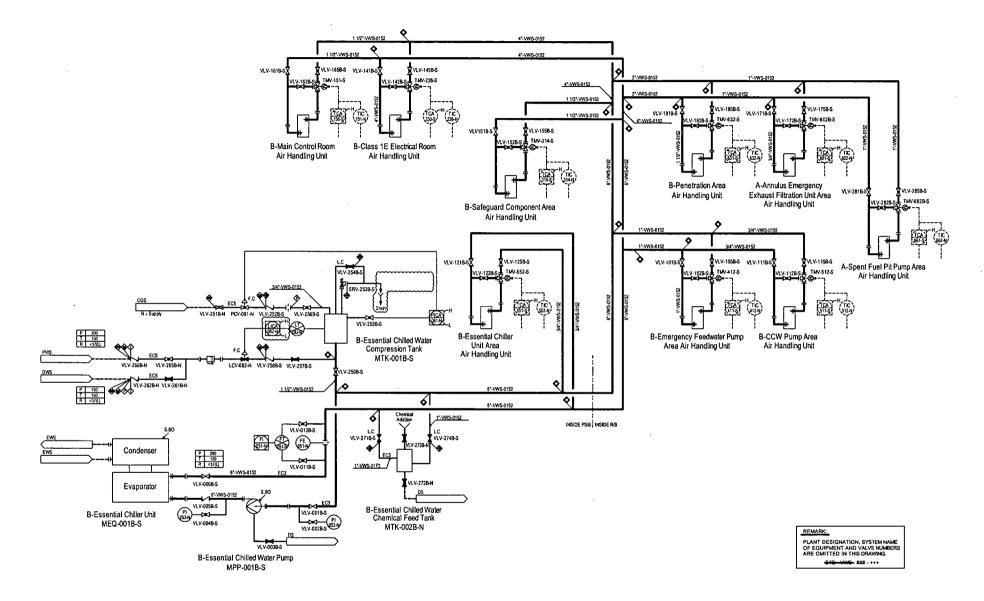


Figure 9.2.7-1 Essential Chilled Water System Flow Diagram (Sheet 2 of 4)

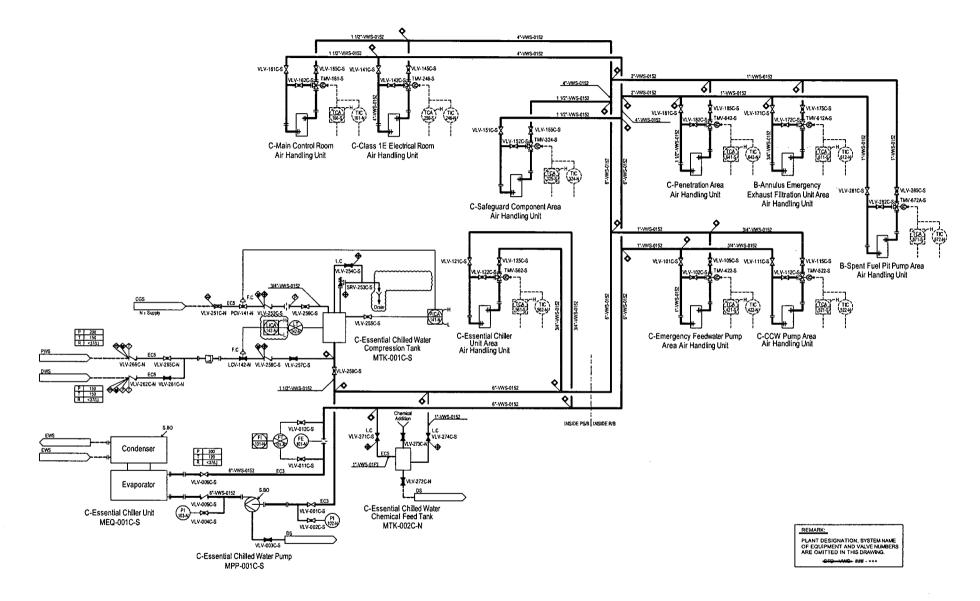


Figure 9.2.7-1 Essential Chilled Water System Flow Diagram (Sheet 3 of 4)

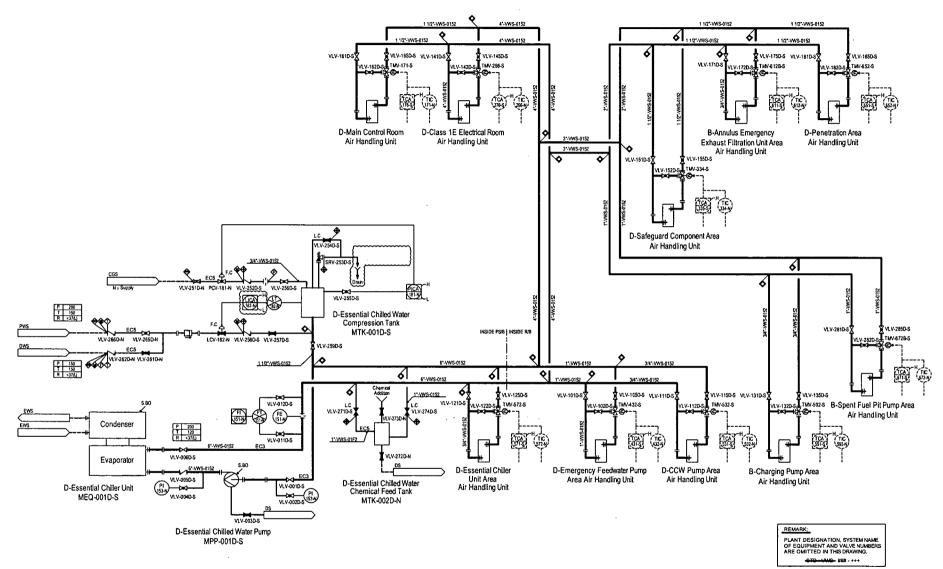


Figure 9.2.7-1 Essential Chilled Water System Flow Diagram (Sheet 4 of 4)

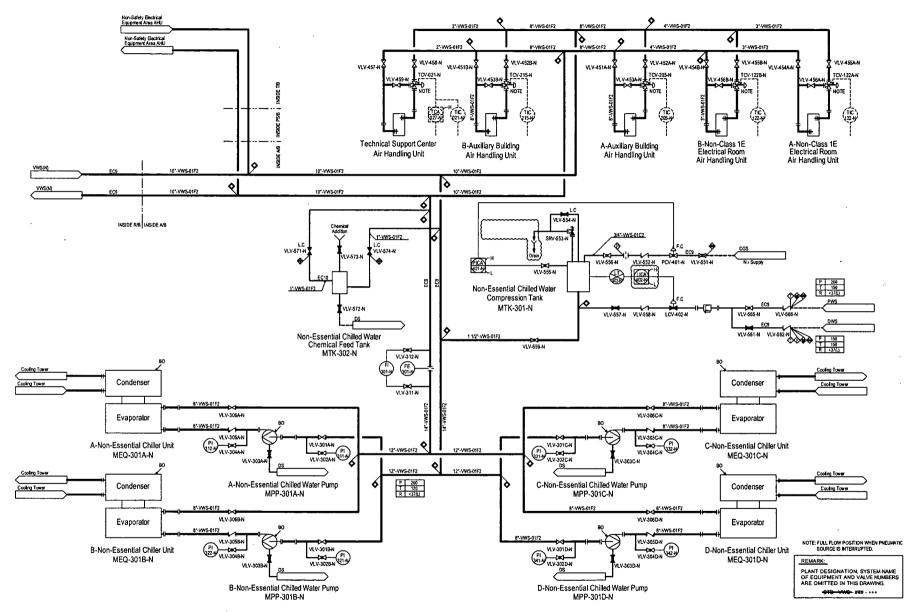


Figure 9.2.7-2 Non-Essential Chilled Water System Flow Diagram (1 of 3)