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1.0 INTRODUCTION

The E Area PA (McDowell-Boyer et al. 2000) includes a steady-state simulation of groundwater
flow in the General Separations Area as a prerequisite for saturated zone contaminant transport
analyses. The groundwater flow simulations are based on the FACT code (Hamm and Aleman
2000). The FACT-based GSA model was selected during preparation of the original PA to take
advantage of an existing model developed for environmental restoration applications at the SRS
(Flach and Harris 1997, 1999; Flach 1999). The existing GSA/FACT model was then slightly
modified for PA use, as described in the PA document. FACT is a finite-element code utilizing
deformed brick elements. Material properties are defined at element centers, and state variables
such as hydraulic head are located at element vertices. The PORFLOW code "(Analytic &
Computational Research, Inc. 2000) was selected for performing saturated zone transport
simulations of source zone radionuclides and their progeny. PORFLOW utilizes control volume
discretization and the nodal point integration method, with all properties and state variables being
defined at the center of an interior grid cell.

The groundwater flow calculation includes translating the Darcy velocity field computed by
FACT into a form compatible for input to PORFLOW. The FACT velocity field is defined at
element vertices, whereas PORFLOW requires flux across cell faces. For the present PA,
PORFLOW cell face flux is computed in a two-step process. An initial face flux is computed
from FACT as an average of the normal components of Darcy velocity at the four corners. The
derived flux field approximately conserves mass, but not rigorously. Thus, the flux field is
subsequently perturbed to force rigorous mass conservation on a cell-by-cell basis. The
undocumented process used is non-unique and can introduce significant artifacts into the final
flux field.

Another issue with using both FACT and PORFLOW for saturated modeling is the different mesh
numbering systems used by the two codes. Both codes share the identical mesh, but the (I,J,K)
element/cell numbering indices differ by one. The different numbcring scheme has lead to errors
in defining source zones.

The GSA groundwater model will soon be updated to reflect characterization and monitoring data
acquired since the original development to support the Saltstone PA revision. The decision was
made to also migrate from FACT to PORFLOW for groundwater flow simulations. The
motivation is to consolidate all flow and transport analyses to a single software product, and
avoid technical issues related to code differences, such as those discussed above.

This report describes how the FACT-based GSA flow model described in the PA has been
converted to PORFLOW 5.95.0 (03 MAR 2004), the latest version available to Westinghouse
Savannah River Company LLC under license from ACRi. Verification and validation testing
pertaining to the new GSA/PORFLOW groundwater flow model following the PORFLOW
Software QA Plan (Collard 2002) is also described.
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2.0 MIGRATION FROM FACT TO PORFLOW

In migrating the existing GSA/FACT groundwater flow model to PORFLOW, the main objective
was to effect only a change of simulation software. To this end, the original characterization and
monitoring datasets, pre-processing algorithms, and model calibration strategies were retained
largely intact. Nevertheless, differences between the two codes lead to notable exceptions which
are described in the sections below. Flach and Harris (1999), Flach (1999) and the PA
(McDowell-Boyer et al. 2000) provide additional information about the baseline GSA/FACT
model.

2.1 Computational Mesh

The computational mesh used with FACT conforms to the ground surface as shown in Figure
2-1a. Note that model layers are not truncated by the ground surface, but rather become thin and
follow the ground surface beyond outcrops. The resulting mesh contains significantly distorted
grid cells. FACT is capable of accurately representing the velocity field, despite element
distortion, when the Gaussian quadrature option is used (Hamm and Aleman 2000). However,
distorted grid cells are undesirable for PORFLOW, and thin grid cells can lead to severe time step
constraints due to high cell Courant numbers when simulating contaminant transport.

Therefore, the logic for constructing the computational mesh was modified for PORFLOW to
truncate mesh layers at the ground surface. Also, the mesh layers above the tan clay confining
zone are non-uniformly distributed between the TCCZ and an elevation of 325 ft msl, rather than
uniformly distributed between the TCCZ and ground surface in GSA/FACT. A cross-section of
the GSA/PORFLOW mesh, comparable to Figure 2-1a, is shown in Figure 2-1b. Note that the
layering below the tan clay confining zone is essentially the same between the two models. In
E Area, the water table occurs just above the tan clay confining zone. To approximately preserve
the vertical mesh resolution of the GSA/FACT model in the saturated zone between the water
table and tan clay, a non-uniform distribution of layers is used in the PORFLOW grid.

The meshes are identical in plan view, with a nominal spacing of 200 ft square (Figure 2-2).
Figure 2-3 provides a perspective view of the entire PORFLOW mesh looking toward the
northeast in the SRS coordinate system.

2.2 Boundary Conditions

Four types of boundary conditions are used in the GSA/FACT model as depicted in Figure 2-2:
prescribed head, general head, combined recharge and drain, and no flow. From a physical
perspective, the same boundary conditions are effectively applied in the GSA/PORFLOW model,
with a few exceptions:

1. The maximum recharge rate has been increased from 18 in/yr in the GSA/FACT model to
19 in/yr in the GSA/PORFLOW model, for reasons discussed further in section 2.5 on
model recalibration.

2. Recharge/drain BCs are applied over the entire top of the mesh in the GSA/FACT model,
including arcas also receiving general head BCs. Implementation of two BCs at the same
location was an apparent oversight. For the GSA/PORFLOW model, only one BC is
allowed at a cell face.

3. The independent variable in the recharge/drain BC is defined to be pressure head
(w=p/pg=h—-z) in FACT. For the GSA/PORFLOW model, the independent

variable is chosen as the product of pressure head and a normalized vertical conductivity
at the face,
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y'=y— (Eq. 2-1)
Kref

where K,ef is set to 1 ft/d. The functional form of the recharge/drain BC is shown in

Figure 2-4 for reference. The modification was made to mitigate numerical convergence
issues described in section 2.4, and has little effect on the hydraulic head computed at the
boundary face from a physical perspective.

4. Low permeability caps are represented in the GSA/FACT model by setting the
conductivity in the uppermost grid layer to a very low value. In the GSA/PORFLOW
model, caps are ignored as being unimportant to regional groundwater flow. Thus,
material properties just beneath the surface are unaltered and the recharge rate is the same
as adjacent areas (Figure 2-4). This modification also alleviates numerical difficulties
caused by the presence of a very low permeability surface elements.

5. The general head BC applied to an area described as the "H-area recharge polygon" in
Flach and Harris (1999, Figure 18) has been omitted, for reasons discussed in section 2.5
on model recalibration.

Although the boundary conditions are physically very similar between the two models,
implementation differs somewhat to accommodate mesh and code differences. In FACT
boundary conditions are applied to clement vertices, whereas in PORFLOW boundary conditions
are applied to cell faces. FACT boundary conditions are translated into PORFLOW boundary
conditions using the following logic:

1. Prescribed head boundary conditions defined at boundary cell vertices in the GSA/FACT
model are first identified. Boundary faces having 3 or more prescribed head boundary
conditions at comers in GSA/FACT receive a prescribed head BC in the
GSA/PORFLOW model. The value prescribed on the face is the average of the head
values prescribed at vertices. Boundary faces of any orientation (x-, x+, y-, y+, z-, z+) are
eligible to receive a prescribed head BC.

2. General head boundary conditions are applied in a similar manner, except that only
horizontal faces (z- or z+) are considered and any existing prescribed head BC takes
precedence over a general head BC.

3. Recharge/drain boundary conditions are applied in a similar manner, except that only
ground surface faces (z+ orientation) are eligible and the preceding 2 BCs take
precedence. The PORFLOW code does not have an explicit recharge/drain BC option.
However, the concept can be implemented using the prescribed flux BC, with flux being
set to a certain function of pressure head at the boundary face. Further information is
provided in section 2.4.

4. No flow boundary conditions are applied to all remaining boundary faces.
Figure 2-5 illustrates some of the boundary conditions resulting from the above logic.

The greatest difference in boundary condition implementation occurs at the top of each model. In
the GSA/FACT model, the top of the mesh smoothly conforms to the ground surface (Figure
2-1a) and each eclement vertex receives a recharge/drain boundary condition. In the
GSA/PORFLOW model, layers crop out at the ground surface producing a stair-step effect
(Figure 2-1b). The horizontal z+ faces receive a recharge/drain or general head BC, and all
vertical faces receive a no flow boundary condition (Figure 2-5).
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2.3 Material Properties

The algorithm for defining the initial PORFLOW model hydraulic conductivity field is unaltered
from that used previously for FACT. However, the three-dimensional K fields for the two models
differ due to differences in the grids used (Figure 2-1), and how the respective numerical
algorithms use cell properties. In the GSA/PORFLOW, geometric averaging of properties at cell
faces was chosen. Differences in the initial K field occur primarily in the volume above the tan
clay confining zone. The initial K field in both models was subsequently modified during model
calibration to field data. These modifications differ somewhat between FACT and PORFLOW, as
discussed in section 2.5, and introduce further differences in the final K fields. Figure 2-6 shows a
typical cross-section through the final K field in both models. The fields are similar, but clearly
not identical. Additional information about the calibrated GSA/PORFLOW K fields is provided
in section 3.0 on model results.

Although the primary focus of the GSA/PORFLOW model is saturated flow beneath the water
table, the vadose zone is included in the mesh. Therefore, soil characteristic curves are needed to
simulate flow in unsaturated zones. A common practice in this circumstance is to specify
"pseudo-soil" characteristic curves that exhibit less non-linearity than actual soil curves. The
main function of the vadose zone becomes transfer of water from the ground surface to the water
table under steady conditions. Saturations and pressure heads computed in the vadose zone should
be largely ignored. The pseudo-soil functions adopted for the GSA/PORFLOW model are
depicted in Figure 2-7, and differ somewhat from the GSA/FACT model. The primary
modification was to reduce the thickness of the simulated capillary fringe to increase the
downward component of vadose zone flows near the water table.

A single set of soil characteristic curves is used in GSA/PORFLOW irrespective of actual soil
type. For consistency and to avoid significant lateral flows in unsaturated zones, the saturated
hydraulic conductivity field was made uniform in unsaturated zones. Specifically, horizontal and
vertical conductivities of cells with a computed saturation less than 90% are set to 0.1 ft/d. The
latter value was somewhat arbitrarily chosen to represent average conditions. The homogeneous
and isotropic nature of the K field ensures that moisture movement in the vadose zone is
vertically downward for practical purposes. The action produces a similar effect to setting the
"pkrz" parameter to 1.0 in the FACT code. Figure 2-8 shows simulated velocity at the same
cross-section through the GSA/PORFLOW mesh as depicted in carlier figures. Note that above
the computed water table, the vectors are predominantly downward, as desired.

Prior to setting K to 0.1 ft/d, significant lateral flows were observed above the water table. This
was believed to be an artifact of anisotropy in the K field for saturated conditions, coupled with a
homogeneous relative permeability. Anisotropy in the saturated K field was present at the mesh
scale (cell horizontal K >> vertical K), and at larger scales due to a heterogeneous conductivity
field that represented strata. The same degree of anisotropy was thus present in the unsaturated K
field because the relative permeability curve was identical throughout the mesh. A slight
horizontal head gradient produced large horizontal flows. In reality, relative permeability fields
for coarse and fine-grained sediments tend to crossover at a certain water saturation. At a
sufficiently low saturation, a coarse-grained material will have lower permeability than a fine-
grained. This counteracts the anisotropy present under saturated conditions and leads to largely
vertical flow in response to a largely vertical gradient.

2.4 Implementation of Recharge/Drain BC

In FACT, the recharge/drain concept is implemented as a kind of mixed (Cauchy) boundary
condition, similar to the "general head" and "drain" BCs. Non-linear equations representing the
recharge/drain BC at various nodes are included in the overall system of equations being solved
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at each numerical step. Thus, pressure heads at a recharge/drain BC nodes are solved implicitly
with other unknown (e.g. interior) pressures.

PORFLOW includes a mixed boundary condition equivalent to the "general head" BC in FACT,
but does not offer a recharge/drain BC option. An initial attempt to implement the recharge/drain
concept using a prescribed flux BC, with flux defined to be the function of pressure head shown
in Figure 2-4, proved numerically unstable. PORFLOW performs the boundary pressure head and
flux calculations in between time steps in an explicit manner. Apparently the recharge/drain
equation was not sufficiently coupled to the system of other equations being solved
simultaneously.

To mitigate numerical instability, an under-relaxation scheme was implemented. The basic idea
of under-relaxation is to dampen the perturbations in boundary pressure that would otherwise
occur. Although the calculation is still explicit, under-relaxation produces adequate numerical
stability. The precise calculation sequence used in the GSA/PORFLOW model is

I. At the beginning of step n, set the boundary flux at a recharge/drain BC based on the
pressure head from the previous step (cf. Figure 2-4)

dn =q(¥'n-1) (Eq. 2-2)
2. Solve the non-linear system of equations for pressure head at the center of the grid cell

with a recharge/drain BC, /..

3. Compute a preliminary new boundary pressure head, /,,, using Darcy's law

ek o e |
= _[{v M (Eq. 2-3)
z—2z

4. Set the final boundary pressure using under-relaxation, where 0 < @ < 1

Yn =¥n-1 +w('};n = Wﬂ—l) (Eq. 2-4)
5. Compute the pressure head and conductivity product
K
Wp=Wy— (Eq. 2-5)
K ref

The undér-relaxation parameter should be set to roughly 0.5 when the flow field is undergoing a
transient, and then be reduced as steady-state conditions are approached. Under the latter

conditions, values in the range 0.01 < @ < 0.1 are effective at dampening numerical instabilities.

2.5 Model Recalibration

During calibration of the original GSA/FACT model, recharge was increased over H-area to
produce simulated heads observed in the field (Flach and Harris, 1999, p. 21). Increased recharge
was based on speculation that process water leaks produced an artificial source of recharge in H-
area. Presently, high well water levels are believed to be the result of a low permeability
confining zone beneath part of H-area, and perhaps lower horizontal conductivity. Therefore,
supplemental recharge in H-area was omitted in the GSA/PORFLOW model. Instead,
conductivities around H-area were adjusted downward during recalibration to match measured
well levels.
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After preliminary adjustments to the GSA/PORFLOW conductivity fields to match hydraulic
head targets, particle tracking simulations were performed for both models in order to compare
groundwater travel times. GSA/PORFLOW travel times were generally longer than those for
GSA/FACT. To better match travel times and subsequent transport simulations, the maximum
recharge rate in the recharge/drain BC was increased from 18 in/yr in GSA/FACT to 19 in/yr in
GSA/PORFLOW. As an additional although minor step, capped areas were ignored.

Relative to the GSA/FACT model, the modifications needed to GSA/PORFLOW achieve similar
calibration results included

1. Increasing horizontal K in the upper aquifer zone by 25%
2. Decreasing vertical K in the tan clay confining zone by 50%
3. Increasing horizontal K in the lower aquifer zone by about 35%.

A few more minor changes were also made (see the "./MatProp/Cal.dat" files for each
model for a precise comparison). Changes to the K field were larger than anticipated and

probably reflect geometric averaging at cell faces in PORFLOW versus the corresponding logic
used in FACT.
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Figure 2-1. Cross-sectional view of computational mesh for (a) FACT, and (b) PORFLOW.
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Figure 2-4. Combined recharge and drain boundary condition used in GSA/FACT and

GSA/PORFLOW models.
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Cross-hatching key
blue = prescribed head

red = general head
green = recharge/drain
yellow = no flow

Figure 2-5. Boundary conditions applied to GSA/PORFLOW computational mesh.
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Figure 2-6. Cross-sectional view of horizontal hydraulic conductivity field for (a) FACT,
and (b) PORFLOW,
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Figure 2-8. Example velocity field showing predominantly downward flow in the vadose
zone; vectors are fixed length showing flow direction only.
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3.0 STEADY-STATE GROUNDWATER FLOW SIMULATION

Steady-state results from the final calibrated GSA/PORFLOW model are presented in this
section. Summary measures of model calibration are also included. Discussion of results and
additional model verification and validation testing are provided in section 4.0.

3.1 Hydraulic Head

Portions of the three-dimensional hydraulic head field are shown in Figures 3-1 and 3-2, which
show the top surface of the mesh and a cross-sectional slice, respectively. Two-dimensional plots
of vertically-averaged head in each aquifer zone are shown in Figures 3-3a through 3-5a.
Residuals at well locations, defined as computed minus measured heads, are shown in the Figures
3-3b through 3-5b. Statistics of the head residuals are summarized in Table 3-1.

Table 3-1. Summary statistics for hydraulic head residuals in GSA/PORFLOW.

Aquifer Number Median Average Root- Minimum | Maximum
zone residual residual mean- residual residual
square
residual
(ft) (ft) (ft) (ft) (o)
Gordon 79 -0.0 -0.5 157 -4.7 2.5
lower UTR 173 +0.8 +0.6 4.6 -9.4 27.0
upper UTR 386 -0.1 -0.5 3.4 =18:2 10.0

3.2 Groundwater Flows

Figure 3-6 defines seepage faces simulated by the GSA/PORFLOW model. The seepline
predicted by the model is the border between recharge (red) and discharge (blue) areas. A survey
of the seepline in the early 1990's is shown in the figure for comparison. The flux of water
entering the model at the ground surface is shown in Figure 3-7. Groundwater discharge areas
correspond to positive flux values. Figures 3-6 and 3-7 are similar with the former indicating only
the direction of water flow and the latter showing magnitude as well. The average recharge rate
for the model, defined as top surface inflow divided by total area including seepage faces, is 14.7
in/yr. Table 3-2 compares simulated and measured values of recharge and stream baseflow.
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Table 3-2. Comparison of measured and simulated stream baseflow in GSA/PORFLOW,

Stream Estimated baseflow Simulated baseflow
contribution from GSA contribution from GSA
(f63/s) (1t3/s)
Upper Three Runs and 18.2 11.4
tributaries excluding

McQueen Branch

Fourmile Branch and 2.6 3.8

tributaries
McQueen Branch B 24
Crouch Branch 1.8 1.7
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Figure 3-2. Simulated hydraulic head in GSA/PORFLOW model at cross-section through
E Area (I=50).
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resid

(b)

Figure 3-3. GSA/PORFLOW results for the UTR upper aquifer zone: (a) vertically-
averaged head, and (b) residuals between computed and measured heads.
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Figure 3-4. GSA/PORFLOW results for the UTR lower aquifer zone: (a) vertically-
averaged head, and (b) residuals between computed and measured heads.
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Figure 3-5. GSA/PORFLOW results for the Gordon aquifer unit: (a) vertically-averaged
head, and (b) residuals between computed and measured heads.
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Figure 3-6. Simulated scepage areas in GSA/PORFLOW model compared to available
seepline survey data.

L

Figure 3-7. Simulated surface flux in GSA/PORFLOW model with positive values
indicating groundwater discharge (ft'/d).
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4.0 VERIFICATION AND VALIDATION

As used in this report, the term "verification" refers to confirmation that conceptual and/or
mathematical models have been correctly implemented in software comprised of execution and
input files. The GSA/PORFLOW model consists of a generic PORFLOW version 5.95.0 binary
executable file and several ASCII input files to PORFLOW that define specific attributes of the
GSA hydrologic system. "Validation" refers to confirmation that the software model is a valid
representation of the physical system. Thus assuming a model has successfully undergone
verification testing, validation emphasizes the broader question of whether the underlying
conceptual and/or mathematical models adequately represent the actual hydrologic system. This
section describes a sequence of V&V tests of the GSA/PORFLOW model. These include code-to-
code comparisons between GSA/FACT and GSA/PORFLOW.

The PORFLOW Software Quality Assurance Plan is defined by Collard (2002). The document
also contains acceptance testing results specific to PORFLOW version 4.00.7. The
GSA/PORFLOW model results described in Section 3.0 were generated with PORFLOW version
5.95.0, thus acceptance testing for the newer PORFLOW code is required (Collard 2002, Sections
1.5.4 and 1.9.1 and p. 32). Under current plans, use of version 5.95.0 will be limited to generation
of the steady-state GSA groundwater flow field described herein. Therefore, PORFLOW
acceptance testing was limited to only those tests required to validate the steady-state flow field
from the present application. Specifically, PORFLOW was tested to confirm that the code
conserves mass and satisfies Darcy's Law, the governing equations embedded in PORFLOW.
These two software V&V tests are described in the current report, a form of documentation
permitted by the software QA plan (Collard 2002, p. 14). Additional V&V tests pertaining to the
overall GSA/PORFLOW model follow.

4.1 Conservation of Mass

Under steady-state and constant fluid density conditions and no internal sources or sinks present,
the net volumetric flow entering the model grid should be zero. A global mass balance is
provided in Table 4-1. The discrepancy between incoming and outgoing flows (ft'/d) is negligible
at -0.04%. Under the same conditions, the net volumetric flow should also be effectively zero on
a cell-by-cell basis. The results of mass balance computations for individual grid cells are
summarized in Table 4-2. Discrepancies are few, small and presumably the result of incomplete
model convergence.

Table 4-1. Global mass balance for GSA/PORFLOW model.

BOUNDARY: IN ouT NET FLOW IN ouT NET FLUX
RECHO1: 1.220E+01 1.521E+01 -3,006E+00 1.467E+01 1.828E+01 -3.614E+00
RECHO2: 1.125E-01 0.000E+00 1.125E-01 1.901E+01 0.000E+00 1.901E+01
GENHO1: 5.940E-01 1.080E-03 5.929E-01 7.151E-01 1.300E-03 7.138E-01
GENHO2: 4.619E-03 0.000E+00 4.619E-03 5.462E+00 0.000E+00 5.462E+00
GENHO05: 1.030E-02 0.000E+00 1.030E-02 9.744E+01 0.000E+00 9.744E+01
GENH10: 1.590E-02 0.000E+00 1.590E-02 3.009E+01 0.000E+00 3.009E+01
HEADOL: 5.249E-02 4.039E-01 -3.514E-D1 5.710E+01 4.394E402 -3.823E+02
HEADO2 3.819E+00 1.205E+00 2.613E+00 1.684E+02 5.314E+401 1.152E+02
TOTALS: 1.681E+01 1.682E+01 =-7.365E-03 -0.04%
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Table 4-2. Summary of cell-by-cell mass balance for GSA/PORFLOW model.

Description Number Percentage of total
Grid cells 102295 100%
Cells with a flow imbalance 89 0.09%

exceeding 0.1% of largest
magnitude flow among the 6
adjoining cell faces

Cells with a flow imbalance 0 0%
exceeding 0.1% of largest
magnitude flow among all cell
faces in the grid

4.2 Darcy's Law

For a saturated porous medium and coordinate directions aligned with the principal axis of the
conductivity tensor, Darcy's law for a particular coordinate axis can be expressed in terms of
flowrate as

dh
By i 7l Eq. 4-1
O=gq 5 (Eq. 4-1)

where

volumetric flow (L*/T)

volumetric flux (L/T)

area normal to flow (Lz)

]

hydraulic conductivity (L/T)
hydraulic head (L)

distance in flow direction (L)

I

R T S T )
Il

The precise numerical implementation of Eq. 4-1 is not defined in PORFLOW user
documentation. Therefore, rigorous verification that Darcy's law as represented in PORFLOW is
satisfied 4n GSA/PORFLOW is not readily attainable. Nevertheless, an independent calculation
should be close to that embedded in PORFLOW and can serve as a validation test at a minimum.

Table 4-3 summarizes the results of such a calculation for cell faces in the saturated zone. The
flowrate across each cell face was computed using a finite-difference version of Eq. 4-1 and
geometric averaging to define conductivity at the face. This flowrate was compared to that
reported by PORFLOW. The flowrates reported by PORFLOW and computed using Darcy's law
are in general agreement. Discrepancies occur mostly at the Z- and Z+ faces of cells. At these
locations the conductivity contrasts are often large (e.g. between aquifer and confining zones) and
vertical mesh distortion creates ambiguities in the distance x. Thus the discrepancies are
understandable. The comparison confirms that Darcy's law is satisfied.
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Table 4-3. Summary of testing to confirm Darcy's law is satisfied at saturated internal cell

faces.
Description Number Percentage of total
Interior (non-boundary) cell 239,562 100%
faces in saturated zone
Faces with a flow imbalance 34,088 14%

exceeding 5% of largest
magnitude flow among the 6
adjoining cell faces

Cells with a flow imbalance 2382 1.0%
exceeding 1% of largest
magnitude flow among all cell
faces in the grid

4.3 Stratigraphy

Hydrostratigraphic surfaces, as represented in the GSA/PORFLOW model, are shown by flooded
contours in Figures 4-1 through 4-5. The locations of individual picks used to create the surfaces
are shown as scattered data, along with control data outside the model domain. The elevation of
each pick is indicated by the color fill inside the outline of the symbol. Triangulation was used to
interpolate the scattered picks onto layers of finite-element vertices (Flach 1999). Therefore, the
interpolation is exact and color fill for the model surface and scattered data are observed to be
identical. The GSA/PORFLOW stratigraphic surfaces are identical to those in the GSA/FACT
model, which have previously been validated (Flach 1999, Figures 5.1.1 through 5.1.5 and
Section 5.1). Figures 4-1 through 4-5 can also be validated through visual comparison to Figures
3 through 7 in Flach and Harris (1999), which are same surfaces developed in EarthVision using
an alternative interpolation algorithm. The two sets of surfaces are observed to be similar.

4.4 Hydraulic Conductivity

The initial hydraulic conductivity field in the original GSA/FACT model was qualitatively
validated against characterization data as described in Flach (1999, Section 5.5). The same
comparison to field data is repeated in Appendix A for the calibrated GSA/PORFLOW model.
The GSA/PORFLOW model conductivity field follows the trend indicated by slug and pump test
data in 44% of the comparisons. That is, the model K field exhibits a higher (lower) than average
value when the data exhibit a higher (lower) than average value. The model is counter to the data
trend 17% of the time. Indeterminate or neutral comparisons comprise 39%. The former are cases
in which the slug and pumping test data indicate opposing trends. Appendix A suggests that the
calibrated GSA/PORFLOW conductivity field is valid in that it agrees or is neutral with respect
to the data 83% of the time. These percentages are similar to those for the GSA/FACT model.

4.5 Hydraulic Head

Hydraulic head results from the GSA/PORFLOW model exhibit adequate agreement with well
data considering uncertainties in the long-term average well water levels, limited characterization
of field-scale conductivity, and the model resolution. Head residuals for GSA/PORFLOW are
somewhat larger than those for GSA/FACT (Table 4-4) for various reasons. The artificial
recharge zone in the GSA/FACT model was more effective in reducing head residuals near
H Area, but is currently viewed as less realistic than the GSA/PORFLOW model. The coarser
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vertical resolution of the GSA/PORFLOW mesh may also be a contributing factor. More
extensive calibration efforts would likely improve the GSA/PORFLOW model.

Table 4-4. Summary statistics for hydraulic head residuals in GSA/FACT.

Aquifer Number Median Average Root- Minimum | Maximum
zone residual residual mean- residual residual
square
residual
() (ft) (ft) (ft) (ft)
Gordon 79 -1.2 -1.8 2.5 -6.2 -
lower UTR 172 -0.4 -0.1 4.8 - 16.0
upper UTR 407 0.0 -0.3 2.6 -9.8 -

4.6 Recharge and Stream Baseflows

The average recharge rate in the GSA/PORFLOW model, 14.7 in/yr, is about the same as the
best-estimate based on ficld data, 15 in/yr. For comparison, the GSA/FACT model has an average
rate of 14.5 in/yr. Stream baseflows are similar for the two models, with the largest differences
occurring for Upper Three Runs and McQueen Branch (Table 4-5). The GSA/PORFLOW model
prediction for McQueen Branch (2.4 ft'/s) is significantly closer to the prior estimate (1.5 ft'/s)
than the GSA/FACT model (3.6 ft'/s). Conversely, the GSA/PORFLOW model prediction for
Upper Three Runs (11.4 ft'/s) is deviates further from the prior estimate (18.2 ft'/s) than the
GSA/FACT model (14.5 ft'/s).

The GSA/PORFLOW model prediction of seepage faces is approximately the same as past
survey data (Figure 3-6). The resolution of seepage faces and seeplines is poorer for
GSA/PORFLOW compared to the GSA/FACT model. The top surface of the latter conforms to
the actual ground surface more accurately.

Table 4-5. Comparison of measured and simulated stream baseflow in GSA/FACT.

Stream Estimated baseflow Simulated baseflow
4 contribution from GSA contribution from GSA
(f3s) (ft3/s)

Upper Three Runs and 18.2 14.5

tributaries excluding
McQueen Branch
Fourmile Branch and 2.6 3.6
tributaries v e LN
McQueen Branch 155 4.7
Crouch Branch 1.8 1.6
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4.7 Particle Tracking and Solute Transport

Figure 4-6 compares particle tracking simulations based on the velocity fields from GSA/FACT
and GSA/PORFLOW, as a V&V test of GSA/PORFLOW through code-to-code comparison.
Overall, particle trajectories and timing are close between the two models. Locally, differences
can be more significant.

Flach and Millings (2003) recently performed tritium transport simulations for several pairs of
LAW vault footprints in E Area using the GSA/FACT flow field. Table 4-6 summarizes the peak
groundwater concentration results from those computer runs, and analogous simulations
performed using the GSA/PORFLOW flow field. The transport simulations for both flow fields
were performed with PORFLOW using the identical contaminant source and transport
parameters. On average the peak concentration results are about the same. However, individual
runs tend to vary on the order of £25%.

The particle tracking and solute transport comparison indicates the velocity field is similar
between the two models.

Table 4-6. Tritium transport simulations for various LAW vault footprints following Flach
and Millings (2003).

H-3
Peak conc. at 100 meter well (any location) GSAFACT Tecplot Tecplot Tecplot ~PORFLOW GSA/PORFLOW
Case Peak conc. node Peak time| Peak conc Peak conc. node Peak time | Peak conc Conc.
I J K (yrs) (pCilL) N i i k_ Keaqv| (yrs) (pCit) | vs. FACT

PA 36 24 ] 9 1.59E+03

Case01 36 24 1" 9 2785 65772 55 51 1 12 9 3153 113
Case02 1 23 12 10 3145 71174 56 50 12 13 ] 3027 0.96
Case03 41 21 1 10 241 59007 60 48 10 1 10 1816 0.75
Case04 43 19 12 10 2369 59717 62 46 10 1" 1 1574 0.66
Case05 43 15 13 12 2195 75584 63 40 13 14 1 1946 0.89
Case06 44 12 14 12 1788 80508 64 a 14 15 1 1891 1.06
Case07 44 10 14 12 2183 80408 64 36 14 15 12 1915 0.88
Case08 42 17 13 1" 2848 70603 61 44 12 13 " 2454 0.86
Case09 42 16 13 11 2923 70502 61 43 12 13 11 2206 0.75 0.88 avg
Case10 44 13 14 11 5812 75584 63 40 13 14 12 5330 0.92
Peak conc. within aquifer zone only GSAFACT Tecplol Tecplot Tecplol ~PORFLOW GSA/PORFLOW

Case Peak conc. node Peak time| Peak conc Peak conc. node Peak time | Peak conc | Conc.

' | J K (yrs) (pCinL) N I /| k Keqy (yrs) (pCiiL) vs. FACT
PA 36 24 9 9 1.58E+03

Case01 36 24 10 10 2248 54516 55 51 9 10 10 2095 0.93
Case02 ar 23 10 12 1595 71174 56 50 12 13 9 3027 1.90
Case03 41 21 10 12 1783 54227 60 48 9 10 1 1522 0.85
Case0d4 43 19 10 12 171 54031 62 46 ] 10 12 177 1.01
Case05 43 15 13 12 2195 75584 63 40 13 14 1 | 1946 0.89
Case08 44 12 14 12 1788 80508 64 ar 14 15 1" 1801 1.06
Case07 44 10 14 12 2183 80408 B4 kli} 14 15 12 1915 0.88
Case08 42 17 13 " 2848 T0603 61 44 12 13 1" 2454 0.86
Case09 42 16 13 1 2023 70502 61 43 12 13 11 2206 0.75 1.01 avg
Case10 44 13 14 1 5812 75584 63 40 13 14 12 5330 0.92

4.8 Summary Assessment

The GSA/PORFLOW model conserves mass, satisfies Darcy's law, and produces simulated
hydraulic heads and groundwater flows that substantially agree with extensive field data.
GSA/PORFLOW particle tracking and solute transport results are similar to those produced by
GSA/FACT. Thus the new PORFLOW model appears to produce valid simulations of
groundwater flow in the GSA.
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Figure 4-1. GSA/PORFLOW representation of the top of the Meyers Branch confining
system (Crouch Branch confining unit).

Figure 4-2. GSA/PORFLOW representation of the top of the Gordon aquifer unit.
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Figure 4-4. GSA/PORFLOW representation of the top of the UTR lower aquifer zone.
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Figure 4-5. GSA/PORFLOW representation of the top of the UTR tan clay confining zone.
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(b)

Figure 4-6. Particle tracking simulation with 5 year markers for (a) GSA/FACT and (b)
GSA/PORFLOW.
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5.0 CONCLUSIONS AND RECOMMENDATIONS

A numerical model of groundwater flow beneath the GSA using PORFLOW version 5.95.0 has
been developed based on the former GSA/FACT model. The original GSA/FACT
characterization and monitoring datasets, pre-processing algorithms, and model calibration
strategies were largely preserved. Differences in flow results between the two models, due to
mesh and code differences, were minimized to the extent practical. The GSA/PORFLOW model
is an equally valid representation of groundwater flow compared to GSA/FACT, and suitable as
the new baseline for future Performance Assessment work.

Software acceptance testing of PORFLOW version 5.95.0 used to generate GSA/PORFLOW
results was very limited in scope: Tests for mass conversation and satisfaction of Darcy's law
were performed. These tests, combined with visual confirmation that boundary conditions have
been adequately specified, are sufficient to validate the steady-state flow field results. Additional
software testing would be required for other applications of PORFLOW version 5.95.0.
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APPENDIX A - QUALITATIVE COMPARISON OF GSA/PORFLOW HORIZONTAL
CONDUCTIVITY FIELD TO CHARACTERIZATION DATA.

Table A-1. Comparison of characterization data trends for horizontal conductivity
to GSA/PORFLOW variations from average.

(1) (2) (3) (4) (5) (6) (7) @ | (9 | (10) | (11) | (12

Well ID zbot | ztop | %sand | slug | pump | modl | sand | slug | pump | model | Agree/

(ft) (ft) Kh Kh Kh trend | trend | trend | trend Dis-

(fud) (fud) | (fd) il
BGCOO1A | 108 112 -1 0.46 | -1 0.32 | - L - L A
BGCOO2A | 117.6 | 121.6 | -1 0.02 | -1 3.37 | = L - L A
BGCO03A | 131.6 | 135.6 | -1 15.9 | -1 11.39 | - H - H A
BGO001D | 225 245 0.83 0317 =1 10.56 | H L - H -
BGO002D | 218.9 | 238.9 | -1 0.62 | -1 6.46 | - L - L A
BGO003A [ 103.7 [113.7|0.82 [4.22 | -1 16.58 | H H - H A
BGO003C | 178.7 | 188.7 | 0.83 | 0.01 | -1 1.44 | H L - T -
BGO003D | 227.6 | 247.6 | 0.71 | 0.14 | -1 6.21 | L L - L A

BGO004D | 220.6 | 240.6 | -1 0.69 | -1 9.65 | - L - L
BGO0OSC | 183.2 (193.2]|0.79 |0.13 | -1 7.66 |H L - L -
BGO005D | 219.3239.3(0.84 |0.73 | -1 8.41 | H L - T -
BGO006A | 107.5 | 117.5| 0.9 bR | =1 4.37 | H L - ; -
BGO006C | 158 168 0.7 4l 1.51% -1 10.71 | L L - H D
BGOO06D | 217.2 | 237.2(0.89 |[0.38 |[-1 10.99 | H L - H -
BGO007D | 220.2 | 240.2 | -1 15.1: =1 12.97 | - H - H

BGO00BA | 105.3 | 115.3 | 0.76 |0.21 | -1 B2 T L - i A
BGOOOBAR | 94.6 | 104.6 | 0.91 | 0.9 -1 972 |.H L - L -
BGO00OBC | 174.3 | 184.3] 0.9 1.39 |0.41 |[8.53 |H I L L A
BGOO008D 220.6 | 240.6 | 0.89 1:87 125 13.3% |'H L L H D
BGO0095 | 209.2 [ 229.2 | 0.7 0.1 -1 902 i L - L A
BGO010A | 111.1 | 121.1|0.88 [0.16 | -1 8.38 | H L - L -
BGOO10AA | 80.8 | 90.8 |0.63 | 0.43 | -1 792 | |'L L - L A
BGOO10AR | 96.5 | 106.5| 0.9 0.85 | -1 8.38 |H L - L -
BGOO10B | 139 149 0.61 |0.31 |[-1 1285 |0 L - L A
BGO010C | 157.3 | 167.3 | 0.69 |[0.07 | -1 Be51- |1 L - L A
BGO010D | 230.5 | 250.5|0.83 |[0.33 | -1 9.03 | H L - L -
BGOO10DR | 218.3 | 238.3 | 0.8 ist6) |=1 10.01 | H L - L -
BGO011D | 216.3 | 236.3 | -1 2.54 |1.89 [8.84 |- L L L A
BGOO12A | 106.4 | 116.4 | 0.89 |0 -1 4.99 |H L - L -
BGOO12AR | 99.3 | 109.3 | 0.89 [0.98 | -1 4.99 |H L - L -
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July 15, 2004 A-2 WSRC-TR-2004-00106

0 () ©) (4) (5) (6) @ [ @ | © | (10| @11) | (12)
Well ID z bot ztop | %sand | slug pump | modl | sand | slug | pump | model | Agree/
(ft) (ft) Kh Kh Kh trend | trend | trend | trend [ Dis-
(fd) | (fvd) | (fd) S,
BGOO012C 153.6 | 163.6 | 0.93 g.51 =1 T 0T H L - L =
BGOO12CR | 144 154 0.92 0.16 =i T.33 H L - L -
BGO012D 217.8'| 237:8 |0.87 0.12 =1 9,22 H L = L =
BGO013D 228:5'| 248.57|"=1 0.14 =il 6.91 =3 L = L A
BGOO13DR | 210.3 | 220.3 | -1 0.28 =] 8.95 = L = L
BGOO14A 109.6 ] 119.6 | 087 0.04 =1 5.65 H L = L ~
BGOO14AR | 96.8 106.8 | 0.88 1565 =1 6.58 H L = L B
BGOO014C 192.1 |'20271°].0.84 0.98 0.89 5796 H L L L A
BGOO14CR | 190.1 | 200.1 | 0.82 0.4 =1l 7.86 H L = L =
BGO014D 229.6 | 249.6 | 0.717 0.56 ol o L L » L A
BGOO14DR | 218.1 | 238.1 0.;14 2.15 ! 11.05 | L L = H D
BGO015D 20280 | 23857 1-=1 1.11 =1 6.12 = L = L A
BGOO16A 102.5 | 112557 094 0.15 — 8.25 H L = L =
BGOO016D 217.3] 237.3 | O.67 0.07 =1 4.99 L L = L A
BGO017D 204 224 =i 1.28 =it 8.75 = L = L
BGOO18A 995 109.5 | 0.91 12 =k 16.69 | H H - H A
BGO018D 219.6 | 239.6 | 0.78 12.6 =1 14.24 | L H = H =
BGO019D 196.8 | 216.8 | -1 0.45 =1 7.68 - L = L A
BGO020B 131 141 0.83 0.38 =i 8.09 H L = L -
BGO020C 174 184 0.83 0.94 =L 10.23 | H L - H s
BGOO21D 21850 | 2350 | 9013 8.9 =it 5.49 L L = L A
BGO023D 222 242 Q18 i S =i 8.03 H L = L =
BGO024D 221 241 o 0.36 =4l 7.83 E L — L A
BGOOESAJ 104.1 | 114.1 | 0.89 0.5 =3 1o H L % L =
BGO029C 176.8 | 186.8 | 0.69 0.29 =1 8.34 L L - L A
BGO029D 208.5 | 228.5 [.0.83 1.58 = 11.06 | H L = H -
BGO041A 103.3 | 113.3 | 0:9 0.13 = 9.09 H L - L =
BGOO042C 185.9 | 195.9 | 0.91 0.45 =il 10.3 H L = H =
BGOO43AA | 62.2 72.2 0.86 0.86 =] 10.31 [ H L = H =
BGOO44A 98 108 0.93 4.03 = 10.06 | H L = H =
BGOO44AA | 61.2 7B 0.86 4.37 =1 13,07 |°H H = H A
BGOO44B 148.1 %1981 110,73 0.06 = 4.43 L L = L
BGO044C 190.6 | 200.6 | 0.82 0.08 = i3 H L ~ L -
BGO044D 223.4 | 233.4 | 0.83 13 Ak 11.32 | H H = H A
BGO045A 116.9 126.9 | 0.91 2.45 -1 4.48 H L = L =
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July 15, 2004 A-3 WSRC-TR-2004-00106

(1) (2) (3) (4) (5) (6) 7 (8 | 9 | (10) | (11) | (12)
Well ID zbot | ztop | %sand | slug | pump | modl | sand | slug | pump | model | Agree/
(ft) (ft) Kh Kh Kh trend | trend | trend | trend Dis-
(fid) | (fid) | (fvd) agree
BGO045B | 137 147 0.9 0221 -1 7.94 |H L = L ~
BGO045C | 190.5 | 200.5 | 0.7 1.22 | -1 0.01 |& L - L A
BGO045D | 209.6 | 229.6 | 0.9 6.07 [-1 14.56 | H H - H
BGOO46B | 140.4 [ 150.4 [ 0.88 |2.33 | -1 12.6 |H L - b -
BGO046C | 178 188 0.86 [0.14 |[-1 g:27 | = T - L =
BGO046D | 202.1|212.1 (0.88 [11.5 | -1 14.98 | H H - H A
BGOO47A |86.8 [96.8 [0.95 [3.06 |-1 13.87 | H L - H =
BGOO47C | 178.6 | 188.6|0.86 [0.46 [ -1 9.64 | £ - L =
BGO047D | 203.4 [ 213.4|0.91 [15.9 | -1 15.32 | n H - H A
BGO048C | 176.7 | 186.7 [ 0.92 |[2.15 | -1 10.39 | H L - H -
BGO048D | 202 212 0.75 |11 -1 13.88 | L H - H =
BGO049A | 75.1 |85.1 [0.93 [o0.48 | -1 10.83 | H L ' H -
BGO049C | 166 176 0.91 |o0.88 |-1 11.19 | H L - H =
BGO049D | 218.5|238.5|0.87 [0.73 | -1 9 H L - L -
BGOOSO0A | 90.5 [ 100.5|0.89 |0.4 -1 10.84 | H L = H =
BGO0S0C |162.5]|172.5]0.77 |0.33 |-1 9.08 | L I = L A
BGO0O50D | 208 228 0.83 |1.61 ] =2 11.42 | H L - H -
BGOO51A | 75.1 [85.1 |o0.91 |10.5 |-1 18.21 | H H - H
BGOO51AA | 29.2 [39.2 |0.67 [0.99 | -1 §a7 |1 L - L
BGOO51B | 117.1 | 127.1|o0.82 [5.39 | -1 2.9 H H - L
BGO051C | 175.1 [ 185.1]0.87 |1.51 |-1 12.6 |H L - H -
BGOO51D | 220 240.1 [ 0.82 |[o0.24 | -1 6.81 |n L - L =
BGO052A |[81.7 |91.7 |o0.89 |4.15 | -1 17.23 | H H - H A
BGOO52AA | 36.6 | 46.6 | 0.9 4.52 | -1 12.24 | H H - H A
BGO052B | 126.7 | 136.7 | 0.82 | 0.53 | -1 Il DTN P L =
BGO052C | 178.7 | 188.7 [0.79 [2.69 | -1 12.46 | H L - g -
BGO052D | 219.4 | 239.4]|0.76 |0.11 |-1 5.14 | L L - L A
BGOO53A | 78.6 [88.6 |[0.95 [0.36 | -1 9.13 |=H L - L =
BGOOS3AA | 38.8 |48.8 [0.96 [1.12 |-1 12.15 | H L - H -
BGO053B | 143.4 [ 153.4 |0.88 |0.11 | -1 6.21 | & L - L =
BGOO053C | 183.1]193.1]0.93 [2.3 =1 9.76 | H L - B =
BGO053D | 225.2 | 245.2]0.87 |1.94 |-1 12.18 | H L - H -
BGX001A | 114.1 [124.1]0.93 |0.01 |-1 6.23 |n L - L -
BGX001C | 176 186 0.85 [0.36 |-1 9.44 |H L - L =
BGX001D | 214.7 | 234.7]|0.86 |1.65 | -1 10.45 | ® L = H =
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July 15, 2004 A-4 WSRC-TR-2004-00106

1 () 3) (4) ) (6) @ [ @ [ © | @10 | @1) | (12

Well ID Z bot ztop | %sand | slug pump | modl | sand | slug | pump | model | Agree/

(ft) (ft) Kh Kh Kh trend | trend | trend | trend Dis-

(frd) | (fud) | (fud) T
BGX002B TG 2 A4y 24072 0.21 =1 5.64 L L - L A
BGX002D 181.1 ) 191.1 | 0.86 0.34 =1 9.14 H L = L =
BGX003D 201.6 | 221.6 | -1 1.85 =1 25 R o8| L = H D
BGX004A 106.8 | 116.8 | 0.92 1.83 =i 12.66 | B L = H -
BGX004C 170.7 | 180.7 | 0.87 1.16 =1 12.16 | H L = H =
BGX004D 203.8 | 223.8 | 0.66 288 = 1.01 L L = L A
BGX005D 195 215 o | 1.45 & 10:.76 |"= L = H D
BGX006D 191 211 =1 R Y | =1 14.2 = L = H D
BGX007D 194:1 | 214:1 | 0:9 20.4 =1 18.68 | H H = H A
BGX009D 212.4 | 232.4 | 0.88 0.36 =4 10.51 | H L = H -
BGX010D 216.2 | 236.2 | =1 0.52 =1 8.44 = L = L A
BGX012C 174.1 | 184.1 | -1 1.11 =1 8.96 = L = L A
BGX012D 2230 243900 =1 0.36 =i 7.83 = L = L A
FCO001A 96.7 TOL =1 1.47 =il 10338~ L = H D
FCO01B 151.8 | 156.8 | -1 0.07 0.05 1.3 = L L L A
FC001C 183.9 | 188.9 | -1 0 = 2 e | - L = L A
FC002A 53.1 | 57.1 | =1 839 1.2 5.23° |.= H L L A
FC002B 18.8 83.8 =1 0.59 0.12 55223 = L L L A
FC002D 159.2 | 164.2 | -1 273 =1 11.82 | - L = H D
FCOO2E t88.9 | 193:9 ) =1 6.01 = I3 418]0= H = H A
FCO02F 207:31| 21233 | =1 1.9 -1 17 [ = E - L A
FCO03B 61.2 66.2 =1 TE.S =i 22=03 | = H = H A
FC003C 1kl 126 =1 1.66 =i 1l T L = H D
FC003D - 165 9SO =] 0.15 =1 4.92 = L = L A
FCOO3E 185.7 | 3807 =1 ] =1 10.63 |.= L = H D
FC004B 76.1 | 81.1 | -1 B0 e =1 10.44 | - H - H A
FCO04E 176.4 | 181.4 | =1 4.79 =1 16:21 | = H = H A
FC005B 34.6 39.6 =1 0.04 =1 11 = L = H D
FC005C 70 75 =1 0 =1 11 = L = H D
FCO005D 136.4 | 141.4 | -1 13 =1 0:55 | - H = L D
FSB08BC | 158.4 | 168.4 | -1 4.5 -1 10278 | = H - H A
FSBO88D 202.1 ' 222,111 0.65 =1 g1 = L = L A
FSB089C 156.1 | 166.1 ]:0.87 0.52 =1 10.78 | H L = H =
FSBO89D 201.9 | 221.9 | 0.8 22 =7 C g ) H L = L =
FSB090C 3581 | 1689 F =1 1.08 == 9.59 = L - L A
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July 15, 2004 A-5 WSRC-TR-2004-00106

(1) (2) (3) (4) (5) (6) g @ [ (9 | (10| (11) | (12
Well ID zbot | ztop | %sand | slug pump | modl | sand | slug | pump | model | Agree/
(ft) (ft) Kh Kh Kh trend | trend | trend | trend Dis-
(ft/d) (ft/d) (ft/d) agres
FSB090D | 205.1 | 225.1 | -1 0.34 | -1 12.94 | - L - H D
FSB091C 149.1 [ 159.1 | 0.83 0.14 =1 11.16 | H L = H -
FSBO91D 200.91220.9 ] 0.85 3.82 =] 15.431 | H L = H -
FSB092C 147.6 | 157.6 | -1 025 =1 8.19 = L - L
FSB092D 2007 [8220 7 | =1 3.57 -1 8.5 T L - L A
FSB093C 142 152 0.87 5227 L | 6.92 H H = L
FSB093D LT 94 217.9,| 0.9 2732 -1 .39 H L = L =
FSBO97A 85.8 95.8 0.91 0.85 =] X820 R L - H -
FSB097C 143.8 | 153.8 | 0.46 0.26 =1 6.25 L L = L
FSBO97D 196.9 1-2)6.9 | 0,71 0.08 -1 5.68 L L = L
FSB098C 148.4 | 158.4 | 0.95 G ) =] 9.09 H L = L =
FSB098D 200.3 |1 220.3]10.89 0.05 =1 LT H L - L -
FSB099C 1572 1167:2 ] 0,19 303 =1 9.19 H L - L -
FSB099D 198.1 | 218.1 | 0.76 2.38 =1 9.41 L L = L A
FSB100A 95.8 105.8 | 0.95 0.37 -1 11.02 | H L 24 H =
FSB101A 92°9 102.9 ] 0.93 0.33 -1 11.38 | H L = H -
FSB102C 145.9 | 155.9 | -1 5.51 =1 16.13 | - H = H A
FSB103C T47.1 1 187.1 | =1 0.39 -1 3 a7 r L = L A
FSB104C 1807 [7160.7 | =1 1.67 =1 558 o L = L A
FSB104D 190.4 | 210.4 | -1 23.1 =1 22532 I'= H = H A
FSB105C 141.5/| 151.5 | =1 3.84 =1 6.63 - L = L A
FSB105D | 203.7 | 223.7 | -1 0.62 | -1 55910 |== L = L A
FSB106C | 156 166 -1 24 -1 L [ ] (6 H = L D
E‘SBlOTC_ 150.8 | 160.8 | =1 0.89 =1 11.6 = L = H D
FSB107D 200.9 | 220.9 | -1 1.38 =1 16.2 - L - H D
FSB108D 203.8 | 223.8 | -1 0.48 -1 1.2 = L = H D
FSB110D 19321 | 2111 | -1 2.3 =1 10.8 = L = H D
FSB111C | 159 169 -1 10.4 [5.39 | 14.34| - H L H D
FSB111D 201.7 | 221.7 | =1 1.25 =1 9.81 = L = L A
FSB112A 81 91 0.84 157 | 1329 1°H L = H =
FSBl1l2C 129.1 | 139.1 | 0.63 0.16 -1 473 L L = L A
FSB112D 188.9 | 208.9 | 0.86 4.8 -1 14.74 | H H > H
FSB113A 81 91.3 0.9 0.62 =k 10.22 | H L = H -
FSB113C 154 164 0.85 0.16 -1 10.27 | H L - H -
FSB113D 189.6 | 209.6 | 0.85 Bl =1 13:36 | H H - H A
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July 15, 2004 A-6 WSRC-TR-2004-00106
(1) (2) (3) (4) (5) (6) (7 8 | (9 | (10) | (11) | (12)
Well ID zbot | ztop | %sand | slug | pump | modl | sand | slug | pump | model | Agree/
(ft) (ft) Kh Kh Kh trend | trend | trend | trend | Dis-
(ft/d) (ft/d) (ft/d) agres
FSB114A 95.2 105 0.9 0.44 -1 2571 H L - L -
FSB114C 158 168 0.94 0.42 -1 12.8B9 | H L - H -
FSB114D 197.7 | 217.8 | 0.88 3.5 =1 10.19 | H L = H -
FSB115C 163.8 | 173.8 | 0.89 0.36 =1 6.17 H L - L -
FSB115D 182.501:1582,.51°0:89 3.8 o 13 859 R L = H =
FSB116C 160«a | 1105 081 0.69 il 8.47 H L - L =
FSB116D 186.4 | 196.4 | 0.88 T1 -1 10,85 |'H L - H -
FSB117D 189.7 | 209.7 | -1 L5 =1 13,6 - L - H D
FSB118D 1913 |41l.a)] =1 : st =3 12,230 = L - H D
FSB119D 183,14 21330 ] =1 0.6 =1, 9.2 - L - L A
FSB120A 99 109 0.92 0.65 =d 6:92 H L = L -
FSB120C 15057 [F160.% | 089 152 -1 9.29 H L = L =
FSB120D 196.5 | 216.5 | 0.88 3.4 =1 I0.111H L - H =
FSB121C 148.4 | 158.4 | 0.9 11 = | 17.44 | H H - H A
FSB121DR | 191.3 | 211.3 | 0.89 0.27 -1 10.03 | H L = H =
FSBl122C 160 170 0.85 2.6 =1 Xt D H L = H =
FS5B122D 186.6 | 206.6 | 0.88 1l -1 12.42 | H L - H &
FSB123C 199216531 0.93 e -1 13.B8 | H H - H A
FSB123D 194,17 |1 214.1 | 993 3.9 -1 15.23 | R L = H =
FSLOO1D 208.5 | 228.6 | -1 0.58 =1 6.66 = L = L A
FSL002D 208.7 | 228.8 | -1 0.25 =1 6.37 - L - L A
FSLO03D | 205.9 226 | -1 0.88 |-1 8.96 =" Hud |= I A
FSLO04D 204 224.1 | =1 0.79 =1 Q.12 - L = L A
FSL005D' 203.50 | 2237 h=1 3.02 =1 9.95 - L - L A
FSLOO06D elZ 1 | 2221 | =1 0.89 =1 1053 - L = H D
FSLOO7D 199.5 | 219.6 | -1 0.59 = 10.55: | = L - H D
FSLOOBD 202.7 ] 222.8 | =1 0.41 =1 B.53 - L - L A
FSLO09D 201.4 | 221 5% =1 0.56 =1 8.99 = L - L A
HAAOO01A 94.9 104.9 ] 0.93 5.34 =1 0 H H - L D
HAAOO1AA | 13.6 23.6 0.43 9.89 =1 16.85 | L H E H E
HAROO01B 119, 34F129.3. ] D9 0.75 =1 9.53 H L - L e
HAAOO1C 147.4 | 157.4 | 0.87 0.57 -1 6.34 H L = L =
HAAO001D 261.8 | 281.8 | 0.44 1.35 =1 2.24 L L - L A
HAAOO2AA | 29.4 39.4 0.89 25.25 | -1 222337 H H - H
HARO002D 2603 ] 28054 | 0:51 0.01 =1 1.18 L L & L A

Rev. 0



July 15, 2004 A-7 WSRC-TR-2004-00106

(L) (2) () 4) (5) (6) @ [ @) | 9 | (10) [ (11) [ (12)

Well ID zbot | ztop | %sand | slug pump | modl | sand | slug | pump | model | Agree/

(ft) (ft) Kh Kh Kh trend | trend | trend | trend Dis-

(f/d) (f/d) (ft/d) agres
HAAOO03A 96.8 106.8 | 0.91 0.64 = 1019 'R L S H -
HAAOO3AA | 6.5 16.5 0.66 0.41 = 8.12 L L = L A
HAA003B 125.9. | 135.9 | 0.81 0533 =1 6.87 H L = L -
HAAOD03C $63.3:| 173.3 | 0.85 0.13 ik 5.17 H L = L -
HAAOO0S5A 100.7 | 110.7 | -1 8.69 = 0 = H = L D
HAAQQSC < Er B S5 1 - e o [ B3 =] 8.11 = L = L A
HAADQO6A 956 105.6 | 0.99 1.41 il 13.6 H L = H -
HAAOO6AA | 25.8 35.8 0.89 0.24 = 8.07 H L = L -
HAAQ06B 131.3 | 141.4 | 0.81 0.08 =] 4.46 H L = L -
HAAOO6C | 161.1 [ 171.1 | 0.9 23 -1 19.12 | H H = H A
HAAO06D 247.1 | 267.2 | 0.77 1.29 =i 7.8 L L = L A
HCO001A 89.5 94.5 0.92 0.56 =1 14 H L = H -
HCOO01B 133.5 | 138.5 | =1 1.28 =] 0.92 - L = L A
HC001C 183.5 | 188.5 | -1 4.28 0.95 0.96 - H L L A
HCO001D 206.5 | 211.5 | -1 3 e B ==l 9.49 = L = L A
HCOO1E 251.5 | 256.5 | =1 123 ~ak 12.44 | - H = H A
HCO002A { 77.2 0.91 2583 =1 13.96 | H L = H =
HC002B 85.7 90.7 =1 T U =] 14 - L = H D
HCO002C 135441 140:7 | -1 0.34 =1 0.91 = L = L A
HC002D g98s 2383, 2.1 =1 Fe58 =1 0.96 = L = L A
HCO02E 205.7 | 210.7 | -1 2l b 0.62 8.16 = L L L A
HCOO02F 230572557 | =1 12.3 1.8 Lod d] = H L H D
HCO02H 154.7 | 164.7 | -1 Q.85 =L 0502 = L = L A
HCOOBA’ 65.6 70.6 0.91 12.5 250 15.41 | H H L H =
HCO03B 04.1 ] 309.1 1 -1 12 =1 5.17 = H = L D
HCOO3E w217 2071 | =1 2.45 -1 8.98 - L = L A
HCOO03F 240.6 | 245.6 | -1 14.6 il 14.61 | - H = H A
HCO04A 150 155 0.78 1.54 0.35 8.09 H L L L A
HCO004B 200 205 =1 120L 0.23 7.76 | - L L L A
HCO05A 156.5 | 161.5 | 0.62 0.42 =] 8.87 H L = L -
HCOO0S5B 198 203 -1 4.73 | =1 10.62 | - H = H A
HCO006A 156.2 | 161.2 | 0.88 : LAl 0.24 3.45 H L L L A
HCO006B 210721 215.2 | =1 210 0.42 7.34 = L L L A
HCO0BB 582571 13700 =1 D98 1.2 12.3 = H L H D
HCO008C 189,31 192 35 =1 4.73 0.5 10.03'| = H L H D
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July 15, 2004 A-8 WSRC-TR-2004-00106

(1) @ | @& | @ | ® | @ | o]|@|©]00q)]| @2

Well ID z bot ztop | %sand | slug pump | modl | sand | slug | pump | model | Agree/

(ft) (ft) Kh Kh Kh trend | trend | trend | trend | Dis-

(fvd) | (wd) | (fvd) e
HCO010B 164.8 | 169.8 | -1 0.91 | -1 11.04 | - I - H D
HCO11C 190.8 | 195.8 | -1 1.01 | -1 8.82 | - L - L A
HC012B 177.3 | 182.3 | -1 5.09 |-1 11.36 | - H - H A
HCO13B 193.3 | 198.3 | -1 0.45 |0.09 |[3.05 |- L I I A
HC015B 163 168 -1 4.09 | -1 15.78 | - L - H D
HC035D BR7-B 19258 7|-05897 110519 =1 11.46 | H L - H -
HCAOO4A | 103.7 | 113.7 (0.91 |8.53 | -1 3:57 |:H H - L D
HCAOO4AA | 33.6 | 43.6 | 0.97 |13.9 |-1 25.44 | H H - H A
HCAO04B | 126.6 [ 136.6 | 0.81 [ 0.19 | -1 5.56 | H L - L E
HCAO004C 153.8 |"163.8 0.92 1559 = 11.86 | H L = H -
HMD002D | 190.8 | 210.8 | 0.89 [4.14 | -1 12.96 | H H - H A
HMDO03D | 187.7 | 207.7 | 0.91 | 0.26 | -1 10.66 | H L - H -
HSB0O69A [83.1 |93.1 |0.93 |8.79 |-1 21.75 | H H - H A
HSB070C 164.9 | 174.9 | -1 0.25 =1 9.21 - L - L A
HSBO71C | 171.9 | 181.9 | -1 0.22 | -1 4.91 | - L - L A
HSB100C | 153 163 -1 1.39 | -1 10055710 L - H D
HSB100D | 216.9 | 236.9 | -1 Loy | =1 10.45 | - L - H D
HSB101C | 166.3 [ 176.3 | 0.81 | 4 1.68 | 10.44 | H I L H D
HSB101D | 216.1 | 236.1 | 0.73 | 2.7 -1 8.8 L L - L A
HSB102C | 166.7 | 176.7 | -1 2 -1 i i L - L A
HSB102D | 216.3 | 236.3 | -1 0.31 | -1 10.52 | - L - H D
HSB103C | 159.2 | 169.2 | 0.76 |3.15 | -1 10.39 | L L - H D
HSB1OU3D™ | 213.7 | 23347 | 0.81 || 3:02 |'=2 17.61 | H L - H -
HSB104C [ 163.5|173.5 [ -1 0.64 | -1 5.83 | = L - L A
HSB104D | 210.6 | 230.6 | -1 24.65 | -1 13.58 | - H - H A
HSB10SC | 152.2 | 162.2 | 0.86 |4.28 | -1 10.84 | H H - H A
HSB105D | 211.8 | 231.8 | 0.57 | 36.15 | -1 8.84 |L H - L -

HSB106C | 158.7 | 168.7 | -1 24.4 | -1 el a0k L8
HSB106D | 210.7 | 230.7 | -1 18.2¢8 | =1 18.52 | - H - H

HSB107C [ 159.3 | 169.3 | 0.9 0.98 | -1 11.24 | H L - H -
HSB107D | 215.1 | 235.1 | 0.5 9.28 | -1 17,53 | L H - H -
HSB108C | 186 196 -1 0.98 | -1 0.12 | - L - L A
HSB108D | 212 232 -1 7.28 | -1 16.29 | - H - H A
HSB109C [ 168.4|178.4 )| 0.82 |0.95 | -1 7-53 |8 L - L -
HSB109D | 213 233 0:81 ['5:23 | =1 10.77 | H H - H A
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(1 () (3) (4) (5) (6) @ [ @ | (9 | (10) | (1) | (12)

Well ID zbot | ztop | %sand | slug pump | modl | sand | slug | pump | model | Agree/

(t) (ft) Kh Kh Kh trend | trend | trend | trend | Dis-

(frd) | (fud) | (fvd) st
HSB110C 171.4 | 1814 | -1 0.71 il 6.64 = L = L A
HSB110D 211.4 | 2314, =1 23.87 | =1 135068 = H = H A
HSB111C 2400 VS0 | BT S LGS S 11:.7 L L = H D
HSB111E 211.7 | 231.7 | 0.89 38.2 =1 8.64 H H - L D
HSB112C 140.6 | 150.6 | -1 4.17 =1 1087 | = H = H A
HSB113C LD T 15461 074 0. 84 0.99 =1 9.4 H L = L -
HSB113D 216.2 | 236.2 | 0.65 4.73 =0 13.53 | L H - H -
HSB114C 185.6 | 195.6 | -1 2.86 =1 10.38 | - L = H D
HSB114D 212.8 | 232.8 | -1 3.46 =ik 1A T 19 = L = H D
HSB115C 182.8 | 192.8 | 0.84 0.46 =1 1.15 H L = L —
HSB115D 213.9 | 233.9 | 0.74 1.47 =1 10,19 |.L L — H D
HSB116C 180.5 | 190.5 | -1 4.36 =4 7 = H = L D
HSB116D 214.5 | 234.5 | =1 2iere =1 8.53 = L = L A
HSB117A 84.8 94.8 0.91 0.16 = 10.18 | H L = H =
HSBEi7c [*165.% |275,.14 0.88 |['0.:57 |=1 9.68 |H L = L -
HSB117D 20053 2203 | 0:71 T3 2 =L 15.35 | L H = H =
HSB118A o1 101 0.86 12 =3 12.6 H H = H A
HSB122A 85.4 95.4 0.86 6.8 =1 14.11 | H H = H A
HSB125C 145.6°1155.6 | -1 0.86 = 9.65 = L — L A
HSB125D 199.4 | 219.4 | -1 5.67 =3 14,68 | = H = H A
HSB126C 176.3 |[:281.3 | -1 56.7 =1 4.46 = H = L D
HSB126D 19055 | 200.5 | =1 1529 ! 305350 = L — H D
HSB127C 148.4 | 158.4 | -1 0.82 =1 14-16°1 = L = H D
HSBIZ?Q' 397.8 | 211.8 | =1 13.63 | =1 17.44 | = H = H A
HSB129C 147.8 | 157.8 | -1 0.55 =3 7.89 = L = L A
HSB129D | 185.2 | 205.2 | -1 274 [=1 14.49 | - L - H D
HSB130C E59. 80 k8.9 | =1 70.85 | 94.5 5[ pE T e H H H A
HSB130D 182.1 | 202.1 | -1 0.45 0.26 4,84 = L L L A
HSB131C 148.5 | 158.5 | -1 136 =i 32.47 | = H = H A
HSB131D 195.7 | 205.7 | -1 (P 65.96 | 21.26 | - H i H A
HSB132C 168.6 | 178.6 | -1 0.28 =% 4.99 = L — L A
HSB132D | 206.5 | 226.5 | -1 [ -1 15.17 | - H - H A
HSB133D 208.5 | 228.5 | -1 0.08 -1 8.66 = L = L A
HSB134C 149.1 | 159.1 | =1 4l =4, 10.74 | = L = H D
HSB134D 205.8 | 225.8 | -1 7.01 =y L9506 ~ H = H A
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(1) (2) (3) (4) (5 (6) 7 @ | (9 | (10) | (11) | (12)

Well ID zbot | ztop | %sand | slug | pump | modl | sand | slug | pump | model | Agree/

(f) (ft) Kh Kh Kh trend | trend | trend | trend Dis-

(fud) | (fd) | (fvd) e
HSB135C 2473 | 15T -3 =] 20.01 | -1 14.56 | - H = H A
HSB136C F60.5 | F10.5] =X 0.61 =1 4.48 E L = L A
HSB136D 200.2 | 220.2 | -1 9.05 =1 17.19 | = H - H A
HSB137D 20553 12253 | =1 2.07 =1 11.8 = L - H D
HSB139A 87.6 97.6 0.86 3.82 = 13 e H L = Lo -
HSB139D 206.7 [:22657 |i0:74 6.52 3L e H = H =
HSB140A 81 91 0.9 12 =1 182 H H = H A
HSB140C 1el: & [SLTdls 64 09 0.61 =it 901 H L = L -
HSB140D 194 1" [\214.1°| Q.78 4 =1 12.8 H L — H =
HSB141A 80.6 90.6 0.94 e ~1 13.98 | H L = H E
HSB141C | 154.7 | 164.7 | 0.86 |9 -1 13.82 | H H - H A

HSB141D 217.8 | 23718 |0 72 0.59 -1 8.75 L L = L

HSB142C 161.6 | 171.6 | 0.9 0.6 =1 10-223H L = H =
HSB142D 189:7 | 199.7 | 6.62 0.68 =1 0.49 L L = L A
HSB143C 169.1 [ 27911 0.93 2.4 = 14.1 H L = H =
HSB143D 196.9 | 216:.9] 0:75 955 =% 12.42 | L H = H -
HSB144A 7B.6 88.6 0.95 0.22 = 15.57 | H L = H -
'HSB145C | 164.7 [ 174.7 [ 0.8 0.38 |-1 6.67 |H L - L -
HSB145D 184.2 | 194.2 | 0.88 0.33 =3 7.02 H L = L =
HSB146A 85.5 95.5 0.87 9.4 =i 16.44 |‘H H = H A
HSB146C 152.3 | 162.3 | 0.76 0.68 =% 7.38 L L - L A
HSB146D 204 22451 |07 1 6 =i 8.1 L L - L A
HSB147D 21532 | 235.2 ||=1 0.67 =1 FaT = L = L A
HSBl48€_ 15859 | 168,805 3 1.8 = 10.4 H L = H =
HSB148D 19821 | 228:<1 | 0.87 0.42 = 913 H L = L =
HSB149D 207 227 =1 2.9 =i L3521 5= L = H D
HSB150D 20609 |"226791 =1 1.2 =1 13. 240 1= L = H D
HSB151C 170.6 | 180.6 | 0.88 0.8 =3 10 H L = L =
HSB151D 197.6 | 207.6 | 0.8 2:3 =1 11.65 | H L = H =
HSB152C 173.1 | 183:1 | 0.8 0.8 =1 =25 H L = L -
HSB152D 197 207 0.87 1Ll =il 10-:57 | 8 L = H =
HSLOO01D 219.8 1239.8 | -1 5.51 ok 9.22 = H = L D
HSL002D 2252 | Z45.3 |1 1.44 =1 18.88 | - L = H D
HSLOO03D 233.7 | 253.8 | =1 0.52 =1 10.13 | = L = H D
HSLO04D 245 2651 | =1 119 =1 8.52 = L = L A
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(1) (2) (3) (4) (5 (6) @) @) | 9 | (10) [ (11) | (12)

Well ID zbot | ztop | %sand | slug | pump | modl | sand | slug | pump | model | Agree/

(ft) (ft) Kh Kh Kh trend | trend | trend | trend Dis-

(fud) | (fvd) | (fvd) faree
HSLOOSD | 247.8 | 267.7 | -1 0.9 -1 10.61 | - L - H D
HSLOO6A 104.7 | 114.7 | 0.92 5.76 = 01 H H - L D
HSLOOGAA | 18.6 28.6 0.91 5.49 -1 155 1 90¢H H = H A
HSLOO6B 12758 | 137.9 | 087 0.2 =] 9.33 H L - L -
HSLOO6C 157.6 | 167.6 | 0.82 4.65 Bl B 37 H H - Py D
HSLOOED 243.9 | 264 0.76 3532 =1 9.93 L L - L A
HSLOO7D | 242.3 | 262.4 | -1 1.84 =1 9.93 = L = L A
HSLO08D 248.4 | 268.4 | 0.45 gigal =1 4.8 L L - L A
MO37A 225 227 -1 0.24 | -1 7.4 - L - L A
SDS003A 210.5 |:230.5 ] =1 2515 =1 T22hy | = L . H D
SDsS004 185.4 | 205.4 | -1 3.87 =] 1296 &= L = H D
SDs007A 15 80 =% 0.06 Ak 16.96 | - L = H D
SDS012A 136.4 | 141.4 | 0.92 1.21 =1 Lot /L | H L - L =
SDs012B 186.7 | 191.7 | 0.88 0.08 -1 .02 H L = L =
SDs017 196.6 | 216.6 | -1 3:31 =l 11.4 = L - H D
YSC001C 197.5.| 207.5 | 091 2.4 =% 12.4 H L = H -
YSC002D 197.9 | 218 0.83 ke -1 2182 H L > H =
YScoo04c 195.9 | 205.9 ]| 0.8 1.26 =] 8.72 H L - L =
YSCO05A 116 121 0.99 0.71 —k 10.43 | H L = H =
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APPENDIX B — DESIGN CHECKING COMMENTS AND RESPONSES/RESOLUTIONS.

Design checking was performed by S. Aleman.
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